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10 Abstract

11 The combined effects of climate change and human impact lead to regional and local coastal 

12 responses that pose major challenges for the future resilience of coastal landscapes, increasing the 

13 vulnerability of communities, infrastructure and nature conservation interests. Using the Suffolk 

14 coast, southeast England, as a case study, we investigate the importance of sediment supply and 

15 barrier dynamics as driving mechanisms of coastal change throughout the Holocene. Litho-, bio- and 

16 chronostratigraphic methods are used to decipher the mechanisms of coastal change from the 

17 record preserved within coastal stratigraphy. Results suggest that local coastal configuration and 

18 sediment supply were the most influential in determining coastal change during the mid- and late 

19 Holocene, against a background control of sea-level rise. The importance of sedimentological and 

20 morphological factors in shaping Holocene coastal changes in the southern North Sea basin must 

21 therefore be considered when using the database of evidence from this region as an analogue for 

22 future change under accelerated sea-level rise. 

23
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26 1. Introduction

27 The rate of relative sea-level (RSL) rise increased at the end of the 20th century and this is projected 

28 to continue in future climate change scenarios (AR5-RCPs) (Church et al., 2013), putting the future 

29 resilience of coastal landscapes, and their associated communities, infrastructure and nature 



30 conservation interests at risk. Resilient coastlines have the capacity to respond and evolve to forcing 

31 by natural and anthropogenic processes and are the desired outcome of coastal management 

32 strategies (Nicholls and Branson, 1998; Long et al., 2006). Coastal resilience is best framed by 

33 understanding the local coastal response to global forcing mechanisms and how this fits within the 

34 regional setting. Understanding the role of coastal configuration and sediment supply in moderating 

35 coastal change is essential for informing coastal management strategies. Extending understanding 

36 beyond the instrumental era enables the relative importance of the driving mechanisms of coastal 

37 evolution, and their spatial and temporal variability, to be investigated, aiding the production of 

38 informed management strategies (Plater et al., 2009). The Holocene record of coastal 

39 geomorphological change preserved within coastal stratigraphy can help with evidence based 

40 management decision-making of barrier coasts by improving understanding of the complex 

41 behaviour of barrier systems and their response to climate and geomorphic change. The southern 

42 North Sea Basin is an ideal site for exploring this for the mid- to late Holocene, when morphological 

43 and sedimentological factors are likely to be at their most influential for coastal evolution due to  

44 low background rates of RSL rise. This paper aims to establish the extent to which variations in 

45 sediment supply and barrier dynamics can be determined from the Holocene back-barrier 

46 stratigraphic record. Using the Suffolk coast as a case study, litho-, bio- and chronostratigraphic 

47 methods are utilised to establish driving mechanisms of coastal change and understand their relative 

48 importance for Holocene coastal evolution. 

49 Barrier coasts form approximately 15 % of the world’s coastline and protect sensitive back-barrier 

50 wetlands and adjacent coastal environments from the direct impacts of storms and erosion (Cooper 

51 et al., 2018). Barrier and back-barrier evolution are controlled by; RSL change, sediment supply, 

52 barrier grain-size, substrate gradient, geological inheritance, wave and tidal energy (Roy, 1984; Roy 

53 et al., 1994; Cooper et al., 2018). The interconnected nature of these processes requires 

54 investigation in unison, as they can result in a range of responses, dependent on the 

55 geomorphological character of the coast (Carter and Woodroffe, 1994). For example, sea-level rise 

56 could manifest itself through a range of responses, such as barrier overtopping, overwashing or 

57 breaching, dependent on the ability of the coast to accommodate geomorphic stress (Carter and 

58 Woodroffe, 1994).

59 Back-barrier sediments can be utilised to identify variation in barrier coherence and determine the 

60 mechanisms controlling barrier evolution (e.g. Spencer et al., 1998; Lario et al., 2002; Clarke et al., 

61 2014). Tidal inlets are dynamic features of barrier coastlines that allow tidal waters to penetrate 

62 landwards each tidal cycle, providing a connection between the ocean and back-barrier 

63 environments (Fitzgerald et al., 2002; 2008). The morphology and sedimentary structure of tidal 



64 inlets is continually altered by the complex interactions of waves, tides and currents (Fitzgerald et 

65 al., 2002; 2008; Long et al., 2006; Mellett et al., 2012). The location of tidal inlets relative to a barrier 

66 coastline influences sediment input to the coastal system and as a result, the pattern of sediment 

67 processing (Long et al., 2006). Sediment supply directly influences the importance of RSL rise for 

68 barrier (e.g. barrier rollover, overstepping or erosion) and back-barrier evolution (Carter, 1988; 

69 Carter et al., 1989; Forbes et al., 1995; Jennings et al., 1998; Rosati, 2005; Fitzgerald et al., 2008; 

70 Plater and Kirby, 2011). A reduced sediment supply can result in sediment reworking and thinning, 

71 weakening barrier architecture and increasing the likelihood of tidal inundation to back-barrier 

72 environments (Orford et al., 1991). In contrast, an adequate sediment supply, coupled with a low or 

73 stable rate of RSL rise, can cause barrier stabilisation or progradation, protecting back-barrier 

74 environments from tidal inundation (Roy et al., 1994).

75 2.  Study Site

76 2.1 Suffolk coast, United Kingdom
77 The Suffolk coast, southeast England (Fig. 1) is on the northwestern boundary of the southern North 

78 Sea basin (Fig. 1A). The region has high conservation value with large portions protected by the 

79 Suffolk Coast and Heaths Area of Outstanding National Beauty (AONB), the Suffolk Coast National 

80 Nature Reserve, the Minsmere-Walberswick Heaths and Marshes Site of Special Scientific Interest 

81 (SSSI), the Minsmere-Walberswick Heaths and Marshes Special Area of Conservation (SAC), 

82 Minsmere-Walberswick Special Area of Protection (SPA), and the Minsmere-Walberswick Ramsar. 

83 The coastline alternates between cliffs formed from soft unconsolidated Quaternary sediments and 

84 low-lying wetlands, separated from the sea by a narrow beach-barrier system. The study area (Fig. 2) 

85 is a region of low-lying brackish and freshwater marshes containing shallow lagoons and extensive 

86 drainage channels behind a narrow barrier ridge of coarse sand and gravel which is susceptible to 

87 breaching and overtopping during storm surges (Steers, 1953; Pye and Blott, 2009). The tidal regime 

88 on the Suffolk coast is semi-diurnal with an average mean spring tidal range between Southwold and 

89 Minsmere of c. 2 m. The wave regime is bimodal, with waves approaching predominantly from the 

90 north and northeast or south and southwest, and moderate, with 76 % of the waves not exceeding 2 

91 m (Pye and Blott, 2006; 2009; Brooks and Spencer, 2010). The underlying geology is a sandstone 

92 containing shells (Coralline Crag, Norwich Crag, and Red Crag) dating from the Pliocene and 

93 Pleistocene (Hamblin et al., 1997). 

94 The current stability of the Suffolk coast is significantly compromised by long-term subsidence 

95 (Shennan and Horton, 2002), RSL rise, and a lack of sediment supply (Pye and Blott, 2006; Haskoning, 

96 2009). The coastline is particularly vulnerable to storms, experiencing high rates of erosion (up to 4.5 



97 m a-1) throughout the 20th century (Cambers, 1975; Carr, 1981; Brooks and Spencer, 2010; 2012). 

98 Historical records evidence the catastrophic impact storms have had on the coast of Suffolk over the 

99 last 1000 years, with over 90 % of the medieval port settlement of Dunwich now submerged due to 

100 coastal recession (Sear et al., 2011). Adaptive and sustainable strategies are necessary to manage 

101 the coast effectively due to the significant infrastructure (e.g. Sizewell B nuclear power station and 

102 the planned Sizewell C nuclear new build) as well as high conservation value. 

103 Data points and associated glacial isostatic adjustment model output from East Anglia, in addition to 

104 Fenland, North Norfolk and Essex, record a predominantly continuous RSL rise trend during the 

105 Holocene, although the rate of RSL rise declined gradually throughout this period (e.g. Shennan et 

106 al., 2018). Global mean sea level rose at a rate of 1.2 to 1.9 mm yr-1 between the mid-to-late 19th 

107 century and 20th century, a rate comparable with the late Holocene period (Woodworth et al., 2009; 

108 Cazenave et al., 2018). However, satellite altimetry has determined a global mean sea level rise rate 

109 of 3.1 ± 0.3 mm yr-1 for the last 25 years (Cazenave et al., 2018), exceeding the late Holocene 

110 average. 

111 Information on the existing Holocene stratigraphy of the Suffolk coast is spatially and temporally 

112 limited, hindering an understanding of the system’s long-term behaviour. Existing research has 

113 focused on Norfolk and Essex, to the north and south of Suffolk respectively, revealing large 

114 stratigraphic differences between the two regions. Research completed in northern Suffolk (Bure-

115 Yare-Waveney estuary and Blyth estuary) identified lithostratigraphic similarities with the Holocene 

116 sequence of intercalated peat horizons from east Norfolk (Coles and Funnell, 1981; Alderton, 1983; 

117 Brew et al., 1992; Boomer and Godwin, 1993; Horton et al., 2004) but contrasts with southern 

118 Suffolk. Here, clastic estuarine sedimentation dominates and peat is limited or absent (Brew et al., 

119 1992). Reconstructions of palaeogeography in central Suffolk, between the Southwold and Sizewell, 

120 are primarily based upon historical records (e.g. Pye and Blott, 2006). The resulting conceptual 

121 models reconstruct small open coast estuaries, which existed along this coast prior to the Middle 

122 Ages but were blocked and enclosed by gravel and sand barriers between the 14th and 18th century 

123 (Chant, 1974; Parker, 1978; Comfort, 1994; Pye and Blott, 2006). 

124 2.2 Driving mechanisms of coastal change in southern North Sea 
125 basin
126 Back-barrier stratigraphy contains a complex record of the driving mechanisms of coastal change, 

127 which varies through space and time, modulated by coastal processes. Research investigating the 

128 evolution of the coastal plains of the Netherlands, Belgium and southern England during the 

129 Holocene has shown that the driving mechanisms of coastal change vary spatially and temporally. 

130 The rate of RSL rise, for example, greatly influenced the southern North Sea depositional record 



131 during the early and mid-Holocene. Minerogenic sedimentation, representative of tidal 

132 environments, dominates the early Holocene depositional history of the southern North Sea basin as 

133 high rates of RSL rise resulted in landward advancement of the coast. For example, RSL rose by over 

134 20 m OD between 8.8-5 ka in southeast England (Long and Innes, 1993) whilst on the Belgian and 

135 Holland coast the RSL rise rate decreased from over 7 mm yr-1 to less than 3 mm yr-1 after 7 ka (van 

136 de Plassche, 1982; Denys and Baeteman, 1995; Beets and van der Spek, 2000; Baeteman and 

137 Declercq, 2002). The relative dominance of a driving mechanism will also vary spatially and 

138 temporally. Thus, in the southern North Sea basin the transition from the early to mid-Holocene is 

139 denoted by a shift in the relative importance of RSL rate vs sediment supply. The decline in RSL rise 

140 rate after 7 ka enabled sediment supply to balance, and eventually surpass, the creation of 

141 accommodation space, halting the landwards migration of tidal sedimentary environments and 

142 stabilising the shoreface, resulting in shoreline progradation (Beets and van der Spek, 2000; 

143 Baeteman and Declercq, 2002). By 5.5-4.5 ka, freshwater marsh and peat sedimentation dominated 

144 the majority of the Belgian coastal plain (Beets and van der Spek, 2000; Baeteman and Declercq, 

145 2002) whilst the central section of the Dutch coast prograded nearly 10 km between c. 5 ka and 2 ka 

146 (Beets and van der Spek, 2000).

147 Local factors, such as variation in sediment supply, morphology of the pre-flooded surface, barrier 

148 presence and status, and the influence of river catchments, modulate how the sedimentological 

149 signal is recorded (Beets et al., 1992; Beets and van der Spek, 2000; Baeteman and Declercq, 2002; 

150 Pierik et al., 2017). The late Holocene is characterised by a return to minerogenic, tidal 

151 sedimentation and the culmination of a 2000-3000 year period of peat accumulation. The 

152 mechanisms responsible for the cessation of peat sedimentation are likely to be various. Local 

153 factors have been suggested as potential explanations; inadequate conditions for the preservation of 

154 organic sedimentation (Long et al., 2000); coastal barrier breach and the formation of drainage 

155 networks, enhanced by digging and excavating for industrial purposes (Vos and van Heeringen, 

156 1997); creation of accommodation space caused by the compaction of the peat following 

157 reclamation and drainage (Baeteman et al., 2002; Mrani-Alaoui and Anthony, 2011) and the 

158 influence of natural preconditions, i.e. the geological setting such as coastal plain extent and 

159 sediment delivery (Pierik et al., 2017).

160 3. Methods

161 Stratigraphy across each site was investigated using a 30 mm diameter Eijkelkamp gouge corer and 

162 sediments logged following the Troels-Smith (1955) classification scheme. The Crag underlying the 

163 region is composed mainly of sand with thinner sandy gravel units and occasional silty-clay laminae.  



164 All cores bottomed-out in saturated, irrecoverable sand or Crag. Sampled cores for laboratory 

165 analysis were collected using a 50 mm diameter Russian corer, wrapped in cling film, placed in 

166 plastic tubing and refrigerated in the dark at 4 C. All cores were surveyed relative to the UK 

167 Ordnance Datum (OD) using a Topcon differential GPS (10 cm precision).

168 Palaeoenvironmental reconstruction of cores is based on diatom analysis, supported by particle size 

169 analysis, sediment organic content, and identification of foraminifera. Diatom distribution is strongly 

170 controlled by salinity (e.g. Kolbe, 1927; Hustedt, 1953; Kjemperud, 1981), enabling marine, brackish 

171 and freshwater palaeoenvironments and the boundary between these to be characterised (Palmer 

172 and Abbott, 1986; Vos and De Wolf, 1993; Denys and De Wolf, 1999). Diatom preparation followed 

173 the standard method summarised by Palmer and Abbott (1986) and Battarbee (1986). A minimum of 

174 250 diatoms were counted per slide and species identification followed Van der Werff and Huls 

175 (1958-1974), Krammer and Lange-Bertalot (1991; 1997) and Hartley et al. (1996). Diatoms were 

176 classified based on their life-form (Vos and De Wolf, 1988; 1993) and salinity tolerance, using the 

177 Halobian classification scheme (Kolbe, 1927; Hustedt, 1953; Simonsen, 1962; Schuette and Schrader, 

178 1981). Species greater than 5 % of the total diatom valves counted are presented graphically using 

179 C2 (Juggins, 2003) and grouped using the halobian classification (Hustedt, 1953) and lifeform (Vos 

180 and De Wolf, 1988; 1993). The count sheet for diatom species exceeding 5 % of the total diatom 

181 valves counted are presented for each core in the Supplementary Material. Diatoms assemblages 

182 are zoned based on stratigraphically constrained cluster analysis using the constrained incremental 

183 sum of squares (CONISS) software in TILIA (Grimm, 1987). Foraminifera identification followed the 

184 method summarised by Scott and Medioli (1980) at stratigraphic transitions where diatoms were not 

185 preserved. Where possible, a minimum of 100 foraminifera were counted per sample. 

186

187 A Beckman Coulter LS13320 granulometer was used for particle size determination and identified 

188 the dimensions of particles ranging from 0.04 to 2000 µm using the laser diffraction method. The 

189 aggregating effects of organics were avoided using the hydrogen peroxide digestion method (Kunze 

190 and Dixon, 1987) and Calgon was added to deflocculate particles prior to analysis. The bivariate plot 

191 of mean grain size against standard deviation was used to determine the depositional energy of a 

192 sediment sample using the environment specific graphic envelopes identified by Tanner (1991a; 

193 1991b) and later modified by Lario et al. (2002). Mean grain size and standard deviation are 

194 hydraulically controlled, therefore positively correlated with the energy of the environment and 

195 degree of sediment processing, i.e. transportation and deposition processes (Tanner, 1991a; 1991b; 

196 Long et al., 1996; Lario et al., 2002; Priju and Narayana, 2007). Organic content was determined 

197 using the loss-on-ignition (LOI) methodology (Ball, 1964; Plater et al., 2015). Approximately 5 g of 



198 sediment was dried overnight at 105 °C and weighed to two DP. The sample was ignited at 550 °C for 

199 4 hours and reweighed after being cooled in a desiccator (Heiri et al., 2001). Organic content was 

200 calculated as the percentage weight of the original sample. AMS radiocarbon dating of plant 

201 macrofossils provided a chronology for the sampled material. Horizontally aligned plant macrofossils 

202 and seeds were selected for analysis for all samples, excluding the basal sample from OTM-16-13 

203 which is based on wood. Radiocarbon measurements were completed at the Natural Environmental 

204 Research Council (NERC) Radiocarbon Facility in East Kilbride, Scotland and BETA Analytic, Miami. 

205 Dates were calibrated using CALIB Radiocarbon Calibration (Stuiver et al., 2018) and the IntCal13 

206 calibration curve (Reimer et al., 2013) and are presented as µ ± 2σ cal BP within the text. The 

207 uncalibrated and calibrated ages for all material radiocarbon dated are presented in Table 1.  

208 4. Results

209 Results are presented for two sites Great Dingle Hill and Oldtown Marsh (Fig. 2), situated within the 

210 Walberswick National Nature Reserve between Southwold and Dunwich (Fig. 1B). 

211 4.1 Great Dingle Hill
212 Representative stratigraphy at the site consists of five main sediment units outlined in Table 2, with 

213 corresponding Troels-Smith (1955) log, for the sampled core (GDH-16-2; TM48486 73145). GDH-16-2 

214 contains a well humified sandy peat unit (200-196 cm), lower well humified peat unit (196-179 cm) 

215 subdivided by a silty clay peat unit (190-185 cm), overlain by a mottled silty clay unit (179 cm to 36 

216 cm) and an upper unit comprised of organic-rich sand (36 cm to 0 cm) (Fig. 3). Organic content 

217 decreases from 40 % near the base (190 cm) to 8 % (128 cm) in the upper sampled section, with a 

218 minor peak below the overall trend at 199 cm (23 %) due to the proximity to basement substrate 

219 (Fig. 4). The sediments from GDH-16-2 plot within the graphic sedimentary domain defined by Lario 

220 et al. (2002) as indicative of open to closed estuarine environments (Fig. 5).

221 Five diatom assemblage zones are identified based on the diatom flora and lithostratigraphy (Fig. 4). 

222 Brackish epieplic diatom taxa dominate Zone 1, indicating a marine influence. The peat unit contains 

223 an increase in minerogenic content between 190 cm and 185 cm, associated with the presence of 

224 brackish diatom taxa in Zone 1. The onset of peat deposition has been constrained to 2870 ± 87 cal 

225 BP. Brackish epipelic diatoms dominate Zone 2 whilst Zone 3 is delineated by an increase in marine 

226 planktonic species. This increase in marine conditions coincides with a transition from well-humified 

227 peat to silty clay peat and is associated with a decrease in organic content and gradual coarsening 

228 upwards. The increase in planktonic taxa across the transition coincides with the near disappearance 

229 of brackish aerophilous species. The increase in marine species at the transgressive contact is 

230 constrained to 2530 ± 172 cal BP. Brackish-marine species, with planktonic and epipelic ecology, 



231 continue to dominate the assemblage for Zone 4 and 5, with the organic content remaining 

232 consistently between 8 to 14 %. 

233 4.2 Oldtown Marsh
234 The stratigraphy at Oldtown Marsh contains a series of alternating organic and minerogenic units 

235 (Fig. 6), very similar to the Holocene sequence found further north in the Blyth estuary (Brew et al., 

236 1992). Sample core OTM-16-13 (TM48610 73838) consists of seven main sediment units (Table 3): 

237 an organic sand (580-572 cm) a lower, variably humified, peat unit with occasional wood fragments 

238 (572- 332.5 cm); overlain by an organic clayey silt unit (332.5-254 cm); a fibrous woody peat unit 

239 (254-216 cm); silty peat unit (216-210 cm); a clayey silt unit (210- 45 cm); and an upper fibrous peat 

240 unit (45 cm to 0 cm).

241 Diatom preservation was variable throughout OTM-16-13 (Fig. 7). As a result, where diatom 

242 preservation was poor, foraminifera were counted.  Five diatom assemblage zones are identified 

243 between 300 and 170 cm based on diatom flora and lithostratigraphy. 

244 At 330 cm (-3.21 m OD), 2.5 cm above the sharp transition from variably humified peat to organic 

245 clayey silt, Jadammina macrescens, a high-marsh foraminifera species occurs (Fig. 7), recording 

246 marine inundation at this site (Gehrels, 2002). LOI values decrease sharply from 88 % to 7 % 

247 between 334 and 326 cm, indicating that this is an erosive contact. Diatom analysis within the 

248 organic clayey silt unit (332.5-254 cm) identified brackish epipelic and marine planktonic species, 

249 with the former dominating Zone 1. Particle size analysis identified an upwards fining within Zone 1 

250 that is initially gradual and increases more rapidly in Zone 2, after 278 cm, coincident with a similar 

251 trend in organic content.

252 Jadammina macrescens is abundant at the upper boundary of the organic clayey silt unit (258 cm) in 

253 Zone 3 (Fig. 7). Organic content values ranging from 60 - 80 % at the upper and lower boundary of 

254 the organic clayey silt and middle fibrous peat units, respectively, indicate a transitional shift in 

255 sedimentation within Zone 3. The timing of this shift in sedimentation and occurrence of high-marsh 

256 foraminifera is constrained to 860 ± 69 cal BP. Organic content decreases to 45 % by 213 cm 

257 following the onset of deposition of the middle peat unit. Freshwater tychoplanktonic diatoms 

258 dominate Zone 4, with a brackish epipelic component also present.

259 The transition to silty clay sedimentation (214.5 cm) (870 ± 82 cal BP), correlates with the near 

260 disappearance of fresh tychoplanktonic diatoms and increasing dominance of marine planktonic and 

261 brackish epipelic species at the transition from Zone 4 to 5. Marine taxa gradually increase in 

262 abundance into Zone 5 and organic content remains very low. Brackish epipelic and marine 

263 planktonic diatoms dominate the clayey silt unit, whilst freshwater epiphytes disappear within this 



264 zone. Marine planktonic diatoms peak in abundance at 202 cm, followed by a shift to brackish 

265 epipelic species. Particle size analysis reveals an initial, highly variable, upwards fining associated 

266 with the onset of minerogenic sedimentation at 211 cm, succeeded by a shift to upwards coarsening 

267 at c. 190 cm into the silty clay unit. When plotted, a cluster of the sediments sampled (c. 204 – 172 

268 cm) plot within the closed- basin domain of the bivariate plot (Fig. 5).

269 5. Discussion

270 5.1. Palaeoenvironmental interpretation- Great Dingle Hill
271 Minerogenic sedimentation dominates the stratigraphic transect completed at Great Dingle Hill. The 

272 onset of minerogenic sedimentation in GDH-16-2 is associated with a sustained increase in marine 

273 conditions after 2530 ± 172 cal BP, indicating that Great Dingle Hill was tidally influenced throughout 

274 the late Holocene. Reduced barrier integrity, enabling tidal ingress, is a likely explanation for the 

275 continued dominance of marine and brackish conditions. A high magnitude event could have created 

276 a breach in the barrier whilst alternatively a restricted sediment supply could have led to sediment 

277 reworking and increased barrier instability and permeability. The onset of minerogenic 

278 sedimentation within the stratigraphic transect is not associated with the presence of sand or, 

279 indeed, other indicators of a high magnitude event. 

280 The brackish epipelic taxa dominating the diatom assemblage of the peat unit are associated with 

281 intertidal to lower supratidal mudflats and creeks, and subtidal marine basins and lagoons (Vos and 

282 De Wolf, 1988; 1993). Marine and brackish planktonic taxa, characteristic of sub-tidal areas or large 

283 tidal channels (Vos and De Wolf, 1988; 1993; Zong and Tooley, 1999), increase in abundance at 176 

284 cm (Fig. 4). The slight upwards coarsening, associated with the shift to minerogenic sedimentation, 

285 indicates an increase in depositional energy. The changes in diatom ecology (i.e. salinity and life 

286 form) associated with this sedimentation shift indicate an increase in tidal influence during the late 

287 Holocene. The increased input of planktonic species, previously identified as allochthonous 

288 (Simonsen, 1969; Vos and De Wolf, 1993), strongly indicates tidally influenced hydrodynamic 

289 conditions. Increases in these taxa have been previously attributed to episodes of barrier breaching 

290 (Sáez et al., 2018) and the opening of tidal inlets (Bao et al., 1999; Freitas et al., 2002).

291 Barrier breaching, or further reduced barrier integrity, is identified as the most likely cause for the 

292 transition from organic to minerogenic sedimentation at 2530 ± 172 cal BP. The dominance of 

293 brackish epipelic taxa prior to this indicates that Great Dingle Hill was already tidally influenced, 

294 potentially via channel inlets through the barrier. The return to minerogenic sedimentation 

295 associated with marine conditions by 2530 ± 172 cal BP could be explained by RSL rise, and the 

296 associated creation of accommodation space outpaced organic accumulation, however this is 



297 unlikely as the rate of RSL rise decreased during the mid- to late Holocene (Shennan et al., 2018). 

298 Particle size, and the bivariate plot (Fig. 5), do not record coarse sedimentation followed by a fining 

299 upwards sequence, which would be indicative of a high-magnitude event and subsequent recovery. 

300 Sediment supply would have become more important for driving coastal change as the rate of RSL 

301 decreased during the Holocene. If sufficient, the sediment supply would stabilise the position of the 

302 barrier and halt the landwards movement of tidal environments however the results indicate this 

303 was not the case.

304 5.2. Palaeoenvironmental interpretation- Oldtown Marsh
305 Peat sedimentation initially dominates the seaward end of the stratigraphic transect at Oldtown 

306 Marsh, indicating that the coastline was stable and the back-barrier environments initially protected. 

307 The onset of the lower minerogenic unit (332.5-254 cm) in OTM-16-13 is associated with high marsh 

308 foraminifera, succeeded by a dominance of brackish epipelic diatoms and the occurrence of marine 

309 planktonic taxa, indicative of a tidal mudflat environment. The upwards fining and increasing organic 

310 content within the organic clayey silt unit (from c. 278 cm) reflects a decrease in the depositional 

311 energy and gradual increase in position within the tidal frame, interpreted as a transition from 

312 intertidal mud flat to salt marsh. 

313 Vertical changes in sea level are unlikely to be responsible for this initial marine inundation due to 

314 the low RSL rise rate during the mid- and late Holocene (Shennan et al., 2018). Possible explanations 

315 include impeded drainage (Baeteman, 1981), or repeated reactivation of tidal channels resulting in 

316 peat dewatering (Spencer et al., 1998), surface lowering and landward migration of tidal influence 

317 (Baeteman and Denys, 1995). Similar shifts in sedimentation throughout the southern North Sea 

318 basin have been attributed to imbalances in sediment budget (e.g. Beets et al., 1992; 1994; 

319 Baeteman, 1999; Brew et al., 2000). The erosive nature of this contact (332.5 cm) may have occurred 

320 post-deposition, due to rapid inundation, possibly caused by peat dewatering and collapse or by 

321 barrier breakdown.

322 Freshwater tychoplanktonic taxa (e.g. Staurosira construens and Pseudostaurosira elliptica) 

323 dominate the diatom assemblage of the peat (254 cm to 214.5 cm) (Vos and De Wolf, 1993) and 

324 when combined with a small brackish component can be associated with a shallow fresh to brackish 

325 water lagoon environment, low-energy hydrodynamic conditions and aquatic vegetation (Bao et al., 

326 1999). The organic content however initially remains high, following the transition to fibrous peat 

327 (254 cm), indicating a gradual transition from a high-marsh environment. The gradually decreasing 

328 organic content and upwards coarsening may indicate gradual barrier breakdown, enabling an 

329 increasing tidal ingress into a barrier estuary. Diatoms are not preserved at the lower boundary of 



330 the middle fibrous peat, so it is not possible to determine if tidal influence is increasing within this 

331 unit. 

332 The reduced marine influence and onset of peat accumulation (254 cm) may have been strongly 

333 influenced by barrier dynamics from 860 ± 69 cal BP, especially since there is no evidence in the 

334 available RSL record, or any plausible mechanism for a sea-level driven process at this time (Shennan 

335 et al., 2018).  An adequate sediment supply is a prerequisite for a stable barrier position, as a barrier 

336 with an abundant sediment supply will have better capabilities for internal reorganisation and 

337 growth. Back-barrier environments will accrete sediment rapidly when sediment supply exceeds the 

338 accommodation space created by RSL rise resulting in less frequent tidal inundation (Baeteman et 

339 al., 2011). With time, salt marsh environments replace mud flat and peat begins to accumulate due 

340 to the asymptotic relationship between sediment accretion rates and time if sediment supply is 

341 sufficient (Jennings et al., 1995). Therefore, it is most likely that local factors (e.g. sedimentological 

342 or morphological) were responsible for the deposition of the middle peat unit recorded within the 

343 stratigraphic transect.

344 Particle size data indicate that the site was highly dynamic, with variable tidal influence, following 

345 the onset of clayey silt sedimentation at 214 cm. Marine planktonic taxa increase in abundance, 

346 indicating that the site’s position within the tidal frame was lowering or that the widening of a 

347 barrier opening was enabling tidal influence to penetrate further landwards. The diatom and particle 

348 size analysis indicate a mud flat environment experiencing an increasing tidal influence. The absence 

349 of full marine conditions and occurrence of freshwater taxa until 206 cm indicates that the tidal 

350 influence on this site was initially marginal. The dominance of brackish epipelic taxa from 202 cm 

351 indicates that tidal influence is decreasing and is coincident with an initial coarsening and consistent 

352 particle size, indicating an initial increase in depositional energy followed by a stabilisation of the 

353 environment. The model of Tanner (1991a; 1991b) supports this interpretation as sedimentation 

354 transitions from an estuarine environment to a closed basin by 204 cm, until 172 cm. The decreasing 

355 tidal influence may indicate that a tidal inlet or previous barrier breach is annealing. Diatoms are not 

356 preserved in the top 1.5 m of the Oldtown Marsh core, hampering interpretations for the upper core 

357 section.

358 The timing of the upper transgressive contact at Oldtown Marsh coincides with a period of coastal 

359 reorganisation between Southwold and Dunwich. Conceptual palaeogeographical reconstructions, 

360 based on historical evidence, depict the Blyth River diverted south by a spit, Kingsholme, estimated 

361 to have developed between c. 1500 and 700 AD, to form an estuary from Roman times (Gardner, 

362 1754; Steers, 1927; Chant, 1974; Parker, 1978; Comfort, 1994; Pye and Blott, 2006). Spit 



363 development was halted during the 13th and 14th century due to storms (1287 and 1328) which 

364 blocked the entry to the haven, connecting the distal point with the Dunwich cliffs (Steers, 1927).  

365 An insufficient sediment supply to the barrier system would have resulted in sediment recycling 

366 within the spit, creating points of weakness and eventually leading to progressive breakdown, which 

367 in turn would influence the back-barrier sediment record. Litho- and bio-stratigraphic research on 

368 nearby Dingle Marshes, neighbouring Dunwich, identified an environmental shift in a freshwater 

369 retting pit to marine saltmarsh and estuarine mud at c. 1100 AD, attributed to storms breaching a 

370 gravel barrier or spit (Sear et al., 2015). There is no sedimentological evidence to attribute marine 

371 inundation at Oldtown Marsh at 870 ± 82 cal BP (1080 ± 82 cal AD) to a high magnitude event. The 

372 differences in sedimentary record between Oldtown and Dingle Marshes (Sear et al., 2015) may 

373 reflect differing proximities to the coast. Additionally, the populations of Dunwich, Walberswick and 

374 Blythburgh are likely to have influenced the back-barrier sediment record as they attempted to 

375 maintain access to the sea by creating artificial breaches in the spit, for example following the 

376 choking of the haven in the 14th century (Comfort, 1994). 

377 5.3. Regional perspectives on Holocene coastal evolution 
378 Comparisons of the late Holocene sediment record from Great Dingle Hill and Oldtown Marsh with 

379 northern Suffolk (Blyth estuary) and eastern Norfolk (Bure-Yare-Waveney estuary and Horsey) 

380 illustrate substantial variability in sedimentary response between sites with the same regional 

381 pattern of sea-level tendency. For example, the shift from organic to minerogenic sedimentation in 

382 the Blyth estuary is constrained to 4920 ± 292 cal BP (Brew et al., 1992). In contrast, the onset of 

383 minerogenic sedimentation further north, in the Bure-Yare-Waveney estuary system, occurs later, at 

384 3000-2000 cal BP (Coles and Funnell, 1981; Alderton, 1983; Horton et al., 2004). The timing of this 

385 transition in the Bure-Yare-Waveney estuary system is comparable with Great Dingle Hill, where 

386 minerogenic sedimentation associated with the development of an intertidal mudflat environment is 

387 sustained from 2530 ± 172 cal BP until near present-day. 

388 At Oldtown Marsh, however, a prolonged period of minerogenic sedimentation only occurs from 870 

389 ± 82 cal BP, overlapping with the transition to marine saltmarsh and estuarine mud at Dingle 

390 Marshes, Dunwich (Sear et al., 2015). Local factors (e.g. sedimentological and morphological) are 

391 likely to have had a greater influence on the reconfiguration of the coast during the late Holocene 

392 than vertical changes in sea level due to the low rate of RSL rise (Shennan et al., 2018). This is clearly 

393 supported by the variable sedimentary response across Suffolk and Norfolk, highlighting the 

394 importance of sediment supply to facilitate late Holocene barrier building (or barrier breakdown) 

395 and the creation of discrete sedimentary basins within the estuaries (Brew et al., 1992). Sediment 

396 availability and barrier dynamics are hypothesised to have been highly influential for the evolution of 



397 the Suffolk coast during the late Holocene. The susceptibility of the back-barrier to inundation would 

398 have increased during the late Holocene if the sediment supply was not sufficient for barrier 

399 development and the southwards progradation of Kingsholme spit. Insufficient sediment supply was 

400 one mechanism proposed to explain the culmination of late Holocene peat growth elsewhere in the 

401 southern North Sea basin (Beets et al., 1992; 1994; Baeteman, 1999). 

402 5.4 Sediment supply and barrier dynamics as driving mechanisms of 
403 Holocene coastal change
404 Analysis of the sediment sequences from Oldtown Marsh and Great Dingle Hill indicate that 

405 sediment supply and barrier dynamics were key driving mechanisms of Holocene back-barrier 

406 sedimentation in Suffolk. RSL change, however, was only a background control when the back-

407 barrier record was deposited at these sites, exerting a minimal control on the significant changes in 

408 coastal evolution reported here. Attributing shifts from organic to minerogenic sedimentation, and 

409 vice-versa, to changes in sea level can result in the oversimplification of the sediment record and 

410 often fails to consider the complex interplay between sediment supply, barrier dynamics, 

411 accommodation space and the rate of RSL rise, in addition to temporal variations in their relative 

412 importance. This simplified approach can lead to erroneous interpretations – for example in 

413 Germany where intercalated peats within Holocene marine sediment were attributed to a 

414 regression, reflecting a falling sea level (Behre, 2007), is at best equivocal when errors are fully 

415 considered and other processes explored (Baeteman et al., 2011). Mid- to late Holocene analogues 

416 from the southern North Sea basin therefore give a false impression with regard to future coastal 

417 change under accelerated sea-level rise. The importance of a regional approach when distinguishing 

418 between sediment-driven and RSL-driven changes recorded in the sediment record has been 

419 previously highlighted (Jennings et al., 1995). Changes in marine and terrestrial conditions preserved 

420 in back-barrier palaeoenvironmental records have been shown to not necessarily reflect changes in 

421 sea level (Duffy et al., 1989). For example, barrier dynamics, including its initiation, establishment 

422 and breakdown, will influence the back-barrier environment and have implications for the 

423 depositional environments formed (Orford et al., 1991). 

424 The late Holocene was associated with barrier building and the creation of discrete sedimentary 

425 basins within estuaries (Brew et al., 1992). Spit development and barrier dynamics were identified as 

426 primary controls of the Holocene coastal evolution, and resulting sediment record, in the Blyth 

427 estuary (Brew et al., 1992). The development of these features would have placed increased 

428 demands on the sediment supply required to maintain landform integrity. Variations in sediment 

429 supply are therefore likely to have been highly influential to the evolution of the Suffolk coast during 

430 this period. 



431 Throughout the instrumental era, a limited and temporally and spatially variable sediment supply 

432 has greatly influenced the evolution of the Suffolk coast. At present, the sediment supply to Suffolk’s 

433 gravel beaches is insufficient to ensure the coastline is resilient to storms. Studies have indicated 

434 that during periods of RSL rise and increased storminess, the barrier moves shoreward in places in 

435 order to evolve in response to forcing (Haskoning, 2009). Suffolk’s cliffs, a major input into East 

436 Anglia’s sediment budget, have exhibited high rates of spatially and temporally variable historical 

437 change, over decadal timescales, highlighting a well-defined north-south trend of cliff retreat 

438 (Cambers, 1973; 1975; Robinson, 1980; Carr, 1981; McCave, 1987; Brooks and Spencer, 2010; 

439 Burningham and French, 2017). Dynamic offshore bank systems complicate regional sediment 

440 transport, potentially acting as a sediment sink and morphologically influencing the wave climate 

441 and tidal currents (Lees, 1983; Brooks and Spencer, 2010). Research into the evolution of the 

442 Sizewell-Dunwich Bank system, situated offshore of the Dunwich-Minsmere cliffs, map the extension 

443 of the Sizewell Bank, its coalescence with the Dunwich Bank in the 1920s, and their landwards 

444 movement (Carr, 1979). Substantial spits, such as Orford Ness and Landguard Point, are also current 

445 features of the Suffolk coastline. 

446 Cluster analysis of the relative position of the shoreline (1881-2015), combined with metrics of 

447 shoreline change, identified multiple modes of shoreline change on the Suffolk coast and noted the 

448 importance of sediment budget variations as a driver of multi-decadal coastal behaviour 

449 (Burningham and French, 2017). Predictions of future shoreline retreat also identified that the 

450 sediment release behaviour of the Suffolk cliff system exhibits a switching of states, between on, off 

451 and no change (Brooks and Spencer, 2012). The late Holocene data presented in this paper indicates 

452 that a series of sediment release and supply pathways, which change their location through time, 

453 have existed on this coastline since at least 3 ka. Fig. 8 illustrates this concept, depicting the 

454 influence of changes in sediment release and supply pathways through time on back-barrier 

455 environments.  Transitions between organic and minerogenic sedimentation in a given location may 

456 reflect temporal changes in this spatial pattern of sediment release and storage, due to erosion and 

457 deposition. The late Holocene data presented, in addition to historical and instrumental data, 

458 suggest that the vulnerability of the Suffolk coast has varied spatially, dependent on the location of a 

459 site relative to the pattern of sediment release and supply at a given time. The vulnerability or 

460 resilience of a given site, based on this concept, would therefore be difficult to determine due to 

461 changes in this spatial pattern through time. 



462 6. Conclusions

463 Sediment supply and barrier dynamics have been identified as key driving mechanisms moderating 

464 the coastal evolution of the Suffolk coast during the mid- and late Holocene. Our findings illustrate 

465 that a temporally variable spatial pattern of sediment release and supply was an important control 

466 on coastal evolution through the late Holocene, a period when the rate of RSL change was low. 

467 Coastal systems throughout the southern North Sea basin, including Suffolk, are now responding to 

468 a rate of RSL rise which is faster than that identified for the mid- and late Holocene (Defra, 2006; 

469 Church et al., 2013; Burningham and French, 2017; Cazenave et al., 2018). The future response of 

470 anthropogenically modified coastal landscapes to a temporally variable spatial pattern of sediment 

471 release and supply pathways, whilst RSL is rising, is an uncertainty which requires consideration and 

472 incorporation into coastal management strategies. Coastal managers must therefore be cautious in 

473 advocating ‘successes’ from recent past practice. Future outcomes for the Suffolk coast will differ 

474 due to the increase in sea-level rise and this may result in the failure of previously effective 

475 interventions.

476 The difficulty of teasing apart the driving mechanisms of coastal change and the interplay between 

477 sediment availability, barrier dynamics and the rate of RSL change from back-barrier sediment 

478 records has been highlighted by the substantially variable sedimentary response preserved. Inter-

479 regional comparisons are required to distinguish between the multifactorial processes driving the 

480 Holocene evolution of a coastal system. Sediment records from northern Suffolk and southern 

481 Norfolk contain similar patterns; however, the chronologies differ, indicating the importance of local 

482 processes (e.g. Coles and Funnell, 1981; Alderton, 1983; Brew et al., 1992; Horton et al., 2004). 

483 Stratigraphic data are limited between Dunwich and Aldeburgh and expanding the study area 

484 further south may help to explain the differing records of coastal geomorphological change 

485 preserved. 
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761 9. Tables and Figure captions

762  Table 1: AMS radiocarbon dates produced for Great Dingle Hill and Oldtown Marsh.

Site Laboratory 
code

14C age 
(1σ) BP

Calibrated 
age (2σ) BP

Calibrated age 
(2σ) AD/BC

Stratigraphic 
context

Altitude (m 
OD/cm)

Great 
Dingle 
Hill

SUERC-72912 2440 ± 35 2701-2357 752-408 cal BC Well 
humified 
peat with 
irregular 
rootlets

-2.09 180

SUERC-76469 2775 ± 37 2956-2783 1006-834 cal BC Basal peat -2.29 200
Oldtown 
Marsh

SUERC-72907 965 ± 39 952-789 1161-998 cal AD Silty peat 
with clay 
trace

-2.03 212

BETA-498399 970 ± 30 933-796 1154-1017 cal AD Woody peat -2.45 253.5
SUERC-72911 5209 ± 35 6170-5906 4221-3957 cal BC Basal peat -5.64 573

763

764

765 Table 2: Description of main sediment units identified within the sampled sediment sequence from 
766 Great Dingle Hill (GDH-16-2) and associated Troels-Smith (1955) classification. 

Unit depth 
(cm)

Description Troels-Smith log

0-36 Organic-rich sand Ga2 Sh1 As1 Th1+ Th0+ nig 3+ strat 0 elas 0 sicc 2+ 

36-179 Silty clay with black mottling 
and occassional rootlets which 
increase with depth

As3 Ag1 Sh+ Th1+ nig 2+ strat 0 elas 0 sicc 2+ lm.sup 1

179-185 Well humified, crumbly peat 
with irregular rootlets and 
trace of clay

Sh4 Th1+ Th0+ As+ nig 4 strat 0 elas 0+ sicc 1+ lm.sup 3 

185-190 Silty clay peat with irregular 
rootlets and black mottling

As1+ Ag1 Sh2 Th1+ Th0+ nig 2+ strat 0 elas 0 sicc 2 lm.sup 2

190-196 Well humified, crumbly peat 
with irregular rootlets and 
trace of clay

Sh4 Th1+ Th0+ As++ nig 4 strat 0 elas 0+ sicc 1+ lm.sup 1

196-200 Well humified sandy peat Sh2 Ga2 Th0+ Th1+ As+ nig 3++ strat 0 elas 0+ sicc 1+ lm.sup 0
767

768

769

770

771

772



773 Table 3: Description of main sediment units identified within the sampled sediment sequence from 
774 Oldtown Marsh (OTM-16-13) and associated Troels-Smith (1955) classification.

Unit depth (cm) Description Troels-Smith log
0-45 Fibrous peat with 

abundant phragmites
Sh2 Th02 Ag+ nig 3 strat 0 elas 1 sicc 1+ 

45-210 Clayey silt with 
increasing traces of 
organics with depth

Ag2+ As2 Th0+ Th1+ Sh+ nig 2+ strat 0 elas 0 sicc 2+ lm.sup 2

210-216 Silty peat Sh3 Ag1+ Th0+ Th1+ As+ nig strat 0 elas 0 sicc 2+ lm.sup 1
216-254 Fibrous woody peat Sh2 Th12 Th0+ Dl++ As+ Ag+ nig 3+ strat 0 elas 1 sicc 1+ lm.sup 0
254-332.5 Clayey silt with 

abundant rootlets and 
patches of organics

Ag2+ As2 Th1+ Th2+ Sh+ nig 2+ strat 0 elas 0 sicc 2+ lm.sup 0

332.5-572 Peat with rootlets, 
traces of silt and clay 
and sections of wood 
throughout

Sh2 Th11 Th21 As+ Ag+ Dl+ nig 4 strat 0 elas 0+ sicc 1+ lm.sup 4

572-580 Organic sand Ga4 Sh++ Gmaj+ As+ Ag+ Dl+ nig 2 strat 0 elas 0 sicc 2+ lm.sup 0
775

776 Fig. 1- A. Map of southern North Sea basin with the county of Suffolk highlighted in dark grey and 

777 outline of Fig. 1B highlighted by the dashed box. B. Suffolk coast with locations mentioned in the text 

778 included. The red box highlights the location of the Walberswick National Nature Reserve, which 

779 contains Oldtown Marsh and Great Dingle Hill. 

780 Fig. 2 - Stratigraphic transects completed at Oldtown Marsh and Great Dingle Hill. The white filled 

781 circles denote the sediment sequences sampled for analysis whilst the red circle represent gouge 

782 cores. Aerial imagery: © Getmapping Plc.

783 Fig. 3 - Stratigraphic transect from Great Dingle Hill, including radiocarbon dates from sampled 

784 sediment sequence.

785 Fig. 4 - Lithostratigraphy, organic content and particle size (PSA), and summary diatom data from the 

786 sampled sediment sequence from Great Dingle Hill (GDH-16-2). The diatom summary is based on 

787 taxa exceeding 5 % of the total valves counted and are grouped using the halobian classification 

788 (Hustedt 1953) and subdivided by lifeform (Vos and De Wolf 1988; 1993).

789 Fig. 5 - Bivariate plot of mean against standard deviation (phi) for sediments from Great Dingle Hill 

790 (GDH-16-2) and Oldtown Marsh (OTM-16-13). The graphic sedimentary domains determined by 

791 Tanner (1991), and later modified by Lario et al. (2002) are overlain onto this plot. The particle size 

792 sample location for Great Dingle Hill and Oldtown Marsh is shown on Figure 4 and 7 respectively. 



793 The stratigraphic position of samples from Oldtown Marsh that plotted in the closed basin 

794 sedimentary domain is illustrated on Figure 7.

795 Fig. 6 - Stratigraphic transect from Oldtown Marsh, including radiocarbon dates from sampled 

796 sediment sequence.

797 Fig. 7 - Lithostratigraphy, organic content and particle size (PSA), foraminifera (Jm- Jadammina 

798 macrescens, Mf- Miliammina fusca, Ti- Trochammina inflata) and summary diatom data from the 

799 sampled sediment sequence from Oldtown Marsh (OTM-16-13). The abundance (D- dominance, T- 

800 trace) of foraminifera species is noted for each sample. The diatom summary is based on taxa 

801 exceeding 5 % of the total valves counted and are grouped using the halobian classification (Hustedt 

802 1953) and subdivided by lifeform (Vos and De Wolf 1988; 1993). The basal radiocarbon date for 

803 OTM-16-13 is shown in Fig. 6.

804 Fig. 8 – Schematic illustrating the temporally and spatially variable pattern of sediment release and 

805 supply pathways identified from the late Holocene data presented in this paper. Phase 1 and 2 show 

806 a southwards migration of a sediment supply pathway. The vulnerability of sections of the barrier is 

807 increased due to the sediment supply being limited. Phase 2 shows the barrier breach which has 

808 resulted from a weak point in the barrier, creating a barrier estuary. Phase 3 shows a shift in the 

809 spatial pattern of sediment release and supply. The breach has annealed as a result of temporal 

810 changes in the spatial pattern of sediment release and storage, resulting from erosion and 

811 deposition.
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Supplementary information- Table 1: Diatom species exceeding 5 % of the total valves counted for the Great Dingle Hill assemblage. The percentage abundance is given for 
each species, in addition to their salinity (Hustedt 1953) and lifeform (Vos and De Wolf 1988; 1993) classification. The total number of diatom valves counted is listed for 
each sample. 

Depth (cm):
Diatoms species

Salinity: Lifeform:
146 154 162 164 166 168 170 172 174 176 178 184 186 190

Paralia sulcata Marine Plankton 37 35 27 25 23 24 35 28 23 34 9 7 10 6

Caloneis westii Brackish Epipelic 3 4 6 5 4 5 3 11 13 10 21 51 29 29

Diploneis didyma Brackish Epipelic 3 5 2 1 1 2 0 4 6 2 3 4 5 0
Navicula 

digitoradiata Brackish Epipelic 3 2 1 6 11 9 2 3 5 3 3 0 0 0

Navicula 
peregrina Brackish Epipelic 6 13 5 8 7 10 5 6 5 4 35 15 24 21

Scolioneis 
tumida Brackish Epipelic 4 7 12 17 14 9 12 12 5 13 10 1 0 0

Tryblionella 
navicularis Brackish Epipelic 4 2 1 1 0 0 2 6 17 4 5 4 2 1

Tryblionella 
punctata Brackish Epipelic 11 4 3 3 3 3 5 1 2 3 2 0 1 0

Diploneis 
interrupta Brackish Aerophile 7 5 7 8 3 3 2 1 2 2 1 3 1 12

Raphoneis 
amphiceros Brackish Tychoplankton 6 3 2 3 1 6 3 3 5 1 0 0 1 0

Diploneis 
elliptica Fresh Epipelic 4 8 7 5 1 4 4 6 6 2 0 0 0 0

Diploneis ovalis Fresh Aerophile 0 1 0 1 1 1 2 0 2 3 1 10 26 23
Pseudostaurosira 

elliptica Fresh Tychoplankton 0 0 0 0 5 7 0 0 0 5 0 0 0 0

Total diatoms 
counted:  260 256 256 252 257 258 251 268 263 252 259 265 262 256



Hamilton et al. Sediment supply and barrier dynamics as driving mechanisms of Holocene coastal change for the southern North Sea basin.

Supplementary information- Table 2: Diatom species exceeding 5 % of the total valves counted for the Oldtown Marsh assemblage. The percentage abundance is given for 
each species, in addition to their salinity (Hustedt 1953) and lifeform (Vos and De Wolf 1988; 1993) classification. The total number of diatom valves counted is listed for 
each sample. * Samples with poor diatom preservation where a minimum count of 250 valves was not possible. 

Depth (cm):
Diatoms species

Salinity Lifeform
172* 176* 196* 202* 204 206 208 209 210 211 212 214 216 218 220 224 232 274* 278* 286* 290* 300*

Actinoptychus 
senarius M P 4 5 12 3 2 3 1 1 0 0 0 0 0 0 0 0 0 3 3 3 2 4

Paralia sulcata M P 19 25 32 50 42 23 17 7 3 2 1 1 1 1 0 1 0 27 19 32 16 25

Pseudopodosira 
westii M T 3 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 4 5 2

Trachyneis 
aspera M Epi 0 0 1 2 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Tryblionella 
granulata M Epi 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 6 3

Caloneis westii B Epi 0 0 2 1 3 8 7 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0

Campylodiscus 
echeneis B Epi 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 6 2 3 2

Diploneis didyma B Epi 3 12 11 14 10 2 0 0 0 0 0 0 0 0 0 0 0 4 2 4 4 4

Fallacia pygmaea B Epi 0 0 0 0 0 0 0 0 0 1 0 0 0 4 3 5 0 0 0 0 0 0

Navicula 
digitoradiata B Epi 0 0 0 0 0 7 18 16 4 5 1 0 0 0 0 0 0 0 0 0 0 0

Navicula 
peregrina B Epi 1 0 1 0 0 2 3 3 7 10 10 4 16 5 5 10 26 0 0 0 0 0

Scolioneis 
tumida B Epi 51 46 11 7 6 31 30 45 14 5 0 0 0 0 0 0 0 0 0 0 0 0
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Tryblionella 
navicularis B Epi 4 3 13 8 18 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 1

Tryblionella 
punctata B Epi 3 1 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 42 52 48 56 52

Raphoneis 
amphiceros B T 3 2 7 5 2 5 2 0 1 0 0 0 0 0 1 0 0 3 1 1 0 2

Navicula cincta S-T Epi 0 0 0 0 0 0 1 1 6 0 1 0 2 0 3 1 1 0 0 0 0 0

Diploneis 
elliptica F Epi 0 0 0 0 0 0 0 0 0 1 2 1 2 1 2 3 6 0 2 1 0 0

Staurosirella 
lapponica F Epi 0 0 0 0 1 3 2 2 8 11 13 16 24 21 24 21 13 0 0 0 0 0

Navicula 
rhynchocephala F Epi 0 0 0 0 0 0 0 1 0 1 8 5 0 1 6 6 3 0 0 0 0 0

Staurosira 
construens F T 0 0 0 0 0 1 1 2 7 11 18 19 29 20 13 9 8 0 0 0 0 0

Staurosirella 
pinnata F T 0 0 0 0 0 1 0 3 0 2 4 23 4 11 11 7 8 0 0 0 0 0

Pseudostaurosira 
elliptica F T 0 0 0 0 0 0 0 1 35 37 22 17 15 21 16 12 0 0 0 0 0 0

Pseudostaurosia 
brevistriata F T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0

Pinnularia nobilis S-I Epi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 9 2 0 0 0 0 0

Total diatoms 
counted:   107 111 130 108 250 254 270 253 289 254 259 252 258 273 258 257 250 101 103 108 105 105




