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Abstract 

It is often observed that there is a high individual variability in the response to exercise-

induced muscle damage (EIMD), even when tested in a homogeneous cohort accounting 

for age, sex, ethnicity and physical activity. The response to EIMD is very complex as 

several tissues, including skeletal muscle fibres, the extra-cellular matrix (ECM), and 

tendon, play a potential role in the damage response. Therefore, the overall aim of this PhD 

thesis was to investigate the physiological and genetic factors underpinning the response 

to muscle damaging exercise. For that, the following objectives were (i) to comprehensively 

assess the physiological mechanisms and recovery pattern of neuromuscular fatigue of the 

hamstring muscle group following an intermittent sprint (IS) intervention; (ii) to investigate 

inter-individual differences in skeletal muscle repair/recovery after an artificial wounding 

(scratch) assay using of primary human skeletal muscle cells in vitro; (iii) to ascertain 

whether multiple genetic variations, which are linked to varying tissues, forming a polygenic 

profile could distinguish between high and low responders following muscle damage in vivo 

and in vitro; and (iv) to assess whether a genetic profile is linked with the response to both 

EIMD and chronic resistance exercise. The methodological and analytical approaches 

utilised in this thesis identified a number of important, novel and impactful findings. 

Following IS, the impaired hamstring muscle function and delayed recovery is probably 

caused primarily by damage to the contractile tissue, and participants with a greater force 

generating capacity (larger physiological cross-sectional area) of the biceps femoris long 

head were less susceptible to hamstring strength loss immediately after IS, providing 

evidence that the structure of the muscle protects it against peripheral fatigue/damage. The 

in vitro study showed that skeletal muscles with an increased number of stem cells of the 

connective tissue (fibroblasts) might have a better capacity to reorganise the complex ECM, 

which results in a faster muscle strength recovery after muscle damaging exercise. 

However, a larger number of active muscle stem cells (myoblasts) seems to be important 

for the latter stage of muscle regeneration. Individuals possessing a non-preferential 

genetic profile demonstrated increased rate of muscle damage biomarkers than individuals 
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with a preferential genetic profile. Lastly, we calculated a second polygenic profile which 

was linked with both the EIMD and the chronic resistance exercise response. These 

polygenic profiles may be used to anticipate an individual’s response/adaptation to EIMD 

and to chronic resistance exercise, thus enabling resistance exercise to be prescribed on a 

personalised level to improve muscle health and function. 
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1 General Introduction 

Sporting success is the result of the relative contributions of nature (heritability) and nurture 

(environmental) factors, and the diverse environments of different sports are likely to act as 

agents of natural selection (Kujala et al., 2000). The current understanding suggests above 

50% of the variance for an elite athlete status can be accounted for by genetic variation (De 

Moor et al., 2007, Georgiades et al., 2017). An athlete’s potential to succeed at the highest 

level of sport may be determined in part by their physical resilience, such as the capability 

to recover, and their responsiveness to training stimuli (Durand-Bush and Salmela, 2002, 

Reilly and Williams, 2003). For instance, highly dynamic skills, such as high-speed running 

and landing in soccer, require eccentric (muscle lengthening) contractions, in order to 

control the deceleration of the joint (Stanton and Purdam, 1989, Padulo et al., 2013). This 

can result in ultrastructural muscle damage manifested in Z-line disturbance, as well as 

disruption of the extracellular matrix (ECM), which provides structural scaffolding for muscle 

remodelling and has an integral role in force transmission (Tidball, 1991, Garg and Boppart, 

2016). However, some individuals experience stiff or sore muscles, which typically occurs 

24-72 hours after exercise, whilst others do not feel any muscle soreness despite 

performing the same relative intensity of exercise. Several factors have been reported, 

which contribute to this individual differences, including age (Fielding et al., 1991), ethnic 

origin (Sherwood et al., 1996), sex (Sewright et al., 2008), training level (Balnave and 

Thompson, 1993), and nutrition (Howatson and Van Someren, 2008). Nonetheless, when 

all these factors are taken into account, it still cannot entirely explain the large variation in 

the response to exercise-induced muscle damage (EIMD), and a number of investigations 

suggest that multiple genetic variations may play a (key) role in influencing a person’s 

susceptibility to EIMD (Baumert et al., 2016a). Insufficient recovery of previously fatigued 

and damaged muscles, e.g. caused by an exposure to a number of maximal sprints, is 

thought to increase muscle injury risk (Malone et al., 2016, Malone et al., 2018, Chumanov 
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et al., 2011, Duhig et al., 2016). Given the impact of such injuries, it is important to 

understand their manifestation, in order to minimise their occurrence. 

Skeletal muscle regeneration is a complex process that is mediated by muscle stem cells 

(i.e. satellite cells). Furthermore, recent investigations have reported an important role for 

muscle connective tissue stem cells  (known as fibroblasts) during skeletal muscle 

regeneration following EIMD (Mackey et al., 2017, Murphy et al., 2011) and muscle injuries 

(Joe et al., 2010). However, little is known about the interplay between satellite cells and 

muscle fibroblasts regarding skeletal muscle regeneration following physiological EIMD 

within the first days, and whether specific genetic polymorphisms influence their dynamics 

and impact on skeletal muscle regeneration. 

Chronic resistance exercise (RE), i.e. resistance training, is a potent stimulus for increasing 

muscle size and strength, which are both important for athletic performance (Harries et al., 

2012, Granacher et al., 2016), and are also increasingly recognised as a cornerstone for 

the prevention (e.g. Nordic hamstrings) of muscle (Petersen et al., 2011) and ACL injuries 

(Petushek et al., 2018, Webster and Hewett, 2018). However, as the rate of non-contact 

injuries is only reduced but still occur in some athletes, it could be suggested that prevention 

training has a variable effect on athletes. It is possible that individuals who show a 

detrimental response to acute RE (e.g. a high inflammatory response and elevated muscle 

soreness), might possess a non-preferential genetic profile, which also leads to an 

attenuated adaptation with respect to gains in muscle strength and hypertrophy following 

chronic RE, potentially leading to a higher risk of non-contact injuries. 

Gene–environment interactions likely account for a large portion of the “missing heritability” 

of genetic associations with traits and diseases. In concert with large-scale genome-wide 

association studies (GWAS) (Willems et al., 2017, Zillikens et al., 2017), additional studies 

with homogenous cohorts and controlling for lifestyle factors and comprehensive phenotype 

assessments are necessary to understand the complex interplay between multiple genetic 

polymorphisms (i.e. a polygenic profile) and environmental variables affecting athletic 

performance (Munafò and Smith, 2018).   
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The experiments, on which this thesis is based, used the strategy of multiple approaches 

(triangulation). By using a combination of assessments from different research disciplines, 

including genetics, cell biology, muscle physiology and biomechanics, the overarching aim 

of this PhD thesis was to investigate the physiological and genetic factors underpinning the 

response to EIMD. In the first two experimental chapters, the causes and consequences of 

EIMD were comprehensively assessed, whilst the last two experimental chapters 

investigated the association between genetic variations and the acute and chronic response 

following EIMD. More precisely, the objectives of this PhD thesis were:  

 

1. To characterise the physiological mechanisms underpinning neuromuscular fatigue 

and the recovery pattern following intermittent maximal sprints, to acquire a better 

understanding of EIMD in an applied setting (Chapter 3). 

2. To determine the effect that inter-individual differences in the ratio of skeletal muscle 

myoblast to fibroblast composition has on skeletal muscle repair/recovery after an 

artificial wounding (scratch) assay using primary human skeletal muscle cells in 

vitro, and the association of this ratio with recovery after intermittent maximal sprints 

(Chapter 4).  

3. To ascertain whether a polygenic profile could distinguish between high and low 

responders following a controlled in vivo eccentric exercise (acute resistance 

exercise, RE) intervention in previously untrained individuals, and whether those 

genetic variations were also associated with the artificial wounding (scratch) assay 

in vitro (Chapter 5). This would, therefore, provide a genetic link between in vivo and 

in vitro muscle damage, thus potentially shedding new light on the aetiology of 

EIMD. 

4. To determine whether the polygenic profile associated with acute RE from Chapter 

5 could anticipate individual adaptations to chronic RE, in terms of gains in muscle 

size and strength (Chapter 6) and 
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5. To ascertain whether a new polygenic profile associated with the adaptations to 

chronic RE (gains in muscle size and strength) (Chapter 6) could estimate the 

individual responses to acute RE in Chapter 5 (e.g. loss of strength, increase in 

soreness, inflammation, etc.). Objectives 4 and 5 have implications for furthering our 

understanding of the genetic and physiological mechanisms underpinning and 

linking the acute and chronic responses to RE. 
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2 Literature Review: Genetic Variation and Exercise-

induced Muscle Damage: Implications for Athletic 

Performance and Injury 
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2. Baumert, P., Lake, M. J., Stewart, C. E., Drust, B., & Erskine, R. M. (2016). Inter-

individual variability in the response to maximal eccentric exercise. European journal 

of applied physiology, 116(10), 2055. 
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2.1 ABSTRACT 

Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can 

result in ultrastructural muscle disruption, impaired excitation–contraction coupling, 

inflammation and muscle protein degradation. This process is associated with delayed 

onset muscle soreness and is referred to as exercise-induced muscle damage. Although a 

certain amount of muscle damage may be necessary for adaptation to occur, excessive 

damage or inadequate recovery from exercise-induced muscle damage can increase injury 

risk. Furthermore, it is apparent that inter-individual variation exists in the response to 

exercise-induced muscle damage, and there is evidence that genetic variability may play a 

key role. Although this area of research is in its infancy, certain gene variations, or 

polymorphisms have been associated with exercise-induced muscle damage (i.e. 

individuals with certain genotypes experience greater muscle damage, and require longer 

recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, 

rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 

17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of 

exercise could help coaches/practitioners individualise the exercise training of their 

athletes/patients, thus maximising recovery and adaptation, while reducing overload-

associated injury risk. The purpose of this review is to provide a critical analysis of the 

literature concerning gene polymorphisms associated with exercise-induced muscle 

damage, and to highlight the potential mechanisms underlying these associations, thus 

providing a better understanding of exercise-induced muscle damage. 
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2.2 INTRODUCTION 

People who engage in unaccustomed, strenuous physical exercise can experience stiff or 

sore muscles, a feeling that is usually apparent for 24-72 hours after exercise. This 

phenomenon is known as delayed-onset muscle soreness. Several investigations have 

revealed that these unaccustomed eccentric actions, during which the muscle is lengthened 

while it is active, provoke stiffer and more tender muscles compared to concentric or 

isometric contractions (Armstrong, 1984, Armstrong et al., 1991). These contractions are 

strongly associated with damage to skeletal muscle consisting of structural disruption of 

sarcomeres, disturbed excitation-contraction coupling and calcium signalling, leading to an 

inflammatory response and the activation of several muscle protein degradation pathways. 

This process has been referred to as exercise-induced muscle damage (Hyldahl and Hubal, 

2014, Peake et al., 2005) and is normally accompanied by swelling, a temporary reduction 

in both maximum strength and range of motion (Baird et al., 2012, Brown et al., 1999, 

Clarkson et al., 1992). Circulating muscle-specific proteins [e.g. creatine kinase (CK) 

myoglobin and α-actin] are commonly used to indicate exercise-induced muscle damage 

(Huerta-Alardín et al., 2005, Martinez Amat et al., 2007), whereas tenascin-C is thought to 

be an indicator for disruption of the overlying connective tissue and the extracellular matrix 

(Flück et al., 2003).  

Exercise-induced muscle damage can be divided into the initial damage phase, which 

occurs during the exercise bout, and the secondary damage phase, which is linked with the 

delayed inflammatory response (Kuipers, 1994, Howatson and Van Someren, 2008). These 

phases are eventually followed by muscle remodelling (Flann et al., 2011, Thiebaud, 2012, 

Tidball, 2005). Although there is evidence to suggest that a certain amount of muscle 

damage is a positive stimulus for muscle restructuring, hypertrophy and strength gains 

(Roig et al., 2008), in rare cases, strenuous unaccustomed exercise can lead to exertional 

rhabdomyolysis, which is characterized by muscle fibre necrosis (Warren et al., 2002b). 

Intracellular muscle contents leak into the circulation and extracellular fluid, which can lead 

to kidney failure or even to death (Knochel, 1990, Clarkson et al., 2005b).  
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From the plethora of studies that have investigated exercise-induced muscle damage, it is 

apparent that variability in the response to muscle damaging exercise exists between 

(Vincent et al., 2010, Clarkson et al., 2005b) and within studies (Nosaka and Clarkson, 

1996). Variations between studies can occur due to different study population, age, gender 

and a small sample size (Eynon et al., 2013, Toft et al., 2002). However, intra-study 

variation within a homogenous cohort warrants further consideration, with evidence to 

suggest that genetic variability may play a role. Some genes have common variations in 

sequence, known as polymorphisms, which, depending on where this polymorphism occurs 

within the gene, can directly affect gene expression and ultimately the amount of protein 

produced. The most common type of sequence variation is a single nucleotide 

polymorphism (SNP), where one nucleotide substitutes another. Another type of common 

sequence variation is the insertion/deletion (indel) polymorphism, in which a specific 

nucleotide sequence is present (insertion) or absent (deletion) from the allele. Some 

polymorphisms can modify the protein product, thus potentially altering function. It follows, 

therefore, that polymorphisms of genes encoding key proteins in the muscle-tendon unit 

(such as the ACTN3 R577X SNP) have implications for the ability to recover from strenuous 

exercise, thus influencing the risk of injury. This may be particularly relevant in elite athlete 

groups, who are known to have different genetic profiles compared to the general population 

(Yang et al., 2003, Myerson et al., 1999). Moreover, specific gene polymorphisms (e.g. 

COL1A1 rs1800012, COL5A1 rs12722, rs3196378, MMP3 rs679620, rs591058 and 

rs650108) have been associated with tendon/ligament injury prevalence (e.g. Achilles 

tendinopathy/rupture and anterior cruciate ligament rupture) (Bell et al., 2012, Laguette et 

al., 2011, Collins and Raleigh, 2009). However, very little is known about the potential 

genetic association with muscle damage and muscle regeneration in response to muscle 

damaging exercise or the mechanisms that underpin that association.  

Knowing who requires longer to recover from a bout of strenuous exercise, may help 

practitioners prescribe personalised exercise medicine to their patients, thus optimising 

health and reducing the risk of injury and further muscle wasting. One of the greatest 
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challenges facing exercise genetic research is the investigation of functionally relevant 

genetic variation and of their mechanisms of action. The aims of this review are to (i) provide 

a critical review of the current literature on exercise-induced muscle damage and, therefore, 

to improve our understanding of the different phases of the responses to muscle damaging 

exercise; (ii) emphasize those studies that have investigated the association between 

genetic variation and muscle damage; and (iii) propose mechanistic explanations that may 

underpin these associations. 

 

2.3 GENETIC VARIATION AND THE INITIAL PHASE OF EXERCISE-

INDUCED MUSCLE DAMAGE 

Exercise-induced muscle damage can result in damage to the ultrastructure of the muscle 

fibre (including Z-line streaming), to the extracellular matrix, and to overextended 

sarcomeres and t-tubules of skeletal muscle tissue (Brown et al., 1997b, Kjær, 2004, Friden 

and Lieber, 1992, Friden et al., 1981, Friden and Lieber, 2001). Structural disruption of 

sarcomeres is thought to be caused by the heterogeneity of sarcomere length (Morgan, 

1990) and, consequently, some sarcomeres resist eccentric actions more than others (Allen 

et al., 2005, Friden et al., 1981). Prolonged strain causes weaker sarcomeres to be 

stretched beyond the optimum overlap of actin and myosin filaments (Figure 2-1). This 

results in popped sarcomeres and appears as a broadening, smearing or even disruption 

of the Z-lines. Interestingly, the thinnest Z-lines are detected in type II muscle fibres, which 

generate the highest shortening velocities, while the widest Z-lines are found in slow-twitch 

muscle fibres (Knoll et al., 2011). Consequently, fast-twitch fibres are more sensitive than 

slow twitch fibres to Z-disk streaming (Proske and Morgan, 2001, Appell et al., 1992). This 

mechanical damage is one mechanism by which a prolonged loss of strength occurs 

immediately after excessive strain (Cheung et al., 2003, Hyldahl and Hubal, 2014, Friden 

and Lieber, 1992).  
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Figure 2-1 Initial phase of exercise-induced muscle damage. Due to different abilities of each 
sarcomere to resist eccentric actions, some of the sarcomeres will be stretched beyond the optimum 
overlap of actin and myosin filaments, resulting in Z-line streaming (Morgan, 1990) (1). This is 
accompanied by increased permeability of the sarcolemma (2). Extracellular Ca2+ influx into the 
muscle fibre activates different Ca2+-sensitive proteases (calpains). Calpain activation leads to 
proteolysis of cytoskeletal and costameric proteins (Thiebaud, 2012) (3). However, a failure of 
excitation-contraction coupling also seems to play an important role in strength loss following 
strenuous exercise, as murine muscle exposed to caffeine revealed an attenuated loss of muscle 
strength (Warren, Lowe et al. 1993) (4). Figure adapted from Hyldahl and Hubal (2014).  

 

The transmission of muscle fibre force to the tendon (leading to joint movement) not only 

occurs in the longitudinal direction in line with the direction of pull of the tendon, but also in 

the lateral direction (between adjacent fibres to the overlying connective tissue and 

extracellular matrix) (Kjær, 2004, Hughes et al., 2015). The extracellular matrix in skeletal 

muscle provides structural and biochemical support to the contractile tissue, and is 

associated with the inflammatory response and satellite cell activation (see section 2.5) 

(Hyldahl and Hubal, 2014, Kjær, 2004). The relative proportion of different collagen 

subtypes in the extracellular matrix of skeletal muscle and tendon varies depending on the 

position and function of the connecting tissues (Kjær, 2004, Duance et al., 1977, Davis et 
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al., 2013). The contractile apparatus is connected to the extracellular matrix by costameres 

(structural complexes comprising proteins such as dystrophin, focal adhesion kinase and 

integrins) and by intermediate filament proteins, such as desmin (Hughes et al., 2015). 

According to Ramaswamy et al. (2011), more than 80% of muscle force is transferred via 

this lateral pathway. Thus, costameres, intermediate filament proteins and the extracellular 

matrix are considered essential for the integrity of skeletal muscle and the maintenance of 

lateral force transmission. Furthermore, they are thought to play an important role in injury 

prevention by stabilizing the myofilaments (Lovering and De Deyne, 2004, Stauber et al., 

1990, Hughes et al., 2015). The degradation of cytoskeletal, costameric and extracellular 

matrix proteins could negatively influence the lateral transmission of force between adjacent 

muscle fibres, which could, at least in part, be the source of the prolonged decrease of 

maximum strength seen following strenuous exercise (Raastad et al., 2010).  

Activation of Ca2+ proteases (calpains) appears to play an important part in the muscle 

damage-repair process. Damage to the sarcolemma results in the accumulation of excess 

intracellular Ca2+, which activates different calcium-sensitive proteases, which are mostly 

localized at the I band and Z disk regions of myofibrils (Belcastro et al., 1998). The activation 

results in proteolysis within minutes of cytoskeletal and costameric proteins (Thiebaud, 

2012, Lovering and De Deyne, 2004, Boppart et al., 2008, Zhang et al., 2008, Allen et al., 

2005), and calpain activity is still measurable three days after exercise-induced muscle 

damage (Raastad et al., 2010). This intra- and extracellular damage requires the removal 

and repair of the damaged proteins, and is therefore followed by an inflammatory response 

and by activation of the ubiquitin–proteasome pathway (see section 2.4) (Wei et al., 2005, 

Tidball, 2005). However, the loss of strength after eccentric muscle contractions was 

reversed by exposing mouse muscles to caffeine (Balnave and Allen, 1995, Warren et al., 

1993). Caffeine facilitates the influx of free intracellular Ca2+ from sarcoplasmic reticulum 

into the cytosol of the muscle (Warren et al., 1993, Proske and Morgan, 2001). This 

phenomenon cannot be explained by damage to the sarcomere, so it can be concluded that 

sarcomere damage is not the only cause of strength loss, as impaired ECC also appears to 
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play a role (Cheung et al., 2003, Hyldahl and Hubal, 2014). Increased permeability of the 

sarcolemma, due to damaged muscle fibre structure, metabolic disturbance, and fibre 

remodelling, is likely to be the main reason for elevated plasma CK and myoglobin (Kjær, 

2004, Baird et al., 2012).  

A repeated bout of the same eccentric exercise causes significantly fewer symptoms, such 

as a lower sensation of pain and almost no increase in serum CK activity plus faster 

recovery of muscle function (Brown et al., 1997a). This well-established phenomenon is 

referred to as the repeated bout effect and can last up to six months (Nosaka et al., 2001). 

A repeated bout of strength training results in a different expression of genes, which are 

involved in pro- and anti-inflammatory responses, leading to reduced inflammation (Gordon 

et al., 2012). There is also evidence that the repeated bout effect, at least in part, is based 

on restructuring of the muscle after damage (McHugh, 2003). Likewise, extracellular matrix 

remodelling is believed to be associated with protection of skeletal muscle against future 

damage which is indicated by an increase in gene expression of collagen types I and III and 

laminin-β2 (Mackey et al., 2011). This is thought to occur in line with muscle remodelling of 

intermediate filaments and the addition of sarcomeres in series (leading to longer fibres) 

(Friden et al., 1984, Armstrong, 1990, Hyldahl and Hubal, 2014).  

Considering all of the above, candidate SNPs influencing the initial phase of contraction-

induced damage are likely to be functional SNPs of genes encoding key structural proteins 

within the sarcomere, the extracellular matrix and the costameric protein complexes linking 

the two. The following sections will highlight the evidence to support this hypothesis. Table 

2-1 summarises every candidate SNP, which has been discussed in this review. 

 

Table 2-1 Gene polymorphisms associated with exercise-induced muscle damage. 

Gene 

polymorphism 

Subjects Exercise performed ‘Protective’ 

allele 

Reference 

ACE (I/D) 

(rs4646994) 

Moderately 

active young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

D Yamin et 

al. (2007) 
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 Physically 

active young 

men and 

women 

Step up exercise for 5 

min followed by 15 

knee bends with a 

backpack weighted at 

30% of their body 

weight 

- Heled et al. 

2007 

ACTN3 R577X 

(rs1815739) 

Untrained 

healthy young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

- Clarkson et 

al. (2005b) 

 Untrained 

healthy young 

men 

4 series of 20 bilateral 

maximal eccentric 

knee extensions 

R Vincent et 

al. (2010) 

 Wild type & 

Actn3 

knockout 

mice 

Eccentric contractions 

on isolated extensor 

digitorum longus 

muscles at 30% 

stretch 

R Seto et al. 

(2011) 

  Professional 

male soccer 

athletes 

Plyometric leg 

exercise 

R Pimenta et 

al. (2012) 

 Moderately 

active young 

men 

Two bouts of 50 drop 

jumps separated by 

two weeks 

X Venkunas 

et al. 

(2012) 

 Male and 

female 

patients  

Retrospective cohort 

study for risk of 

exertional 

rhabdomyolysis 

R Deuster et 

al. (2013) 

 Female 

athletes 

Retrospective cohort 

study for risk of 

muscle injury 

X Iwao-

Koizumi et 

al. (2014) 

CCL2 -

3441(C>T) 

(rs3917878)  

Untrained 

healthy young 

males & 

females 

50 unilateral eccentric 

elbow flexion 

contractions 

C Hubal et al. 

(2010) 

CCL2 -289 

(G>C) 

(rs2857656) 

Elite soccer 

players 

Retrospective cohort 

study for risk of non-

contact 

musculoskeletal soft 

tissue injuries 

C Pruna et al. 

(2013) 

CCR2 -

941(A>C) 

(rs3918358) 

Healthy 

untrained 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

A Hubal et al. 

(2010) 

CCR2 4439 

(T>C) 

(rs1799865) 

Healthy 

untrained 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

T Hubal et al. 

(2010) 
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CKM Ncol 

(A>G) 

(rs1803285) 

Moderately 

active young 

men and 

women 

Step up exercise for 5 

min followed by 15 

knee bends with a 

backpack weighted at 

30% of their body 

weight 

G Heled et al. 

(2007) 

 Moderately 

active young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

- Yamin et 

al. (2010) 

 Healthy men 

and women 

of different 

ages 

4-21 km running race - Miranda-

Vilela et al. 

(2012) 

 Male and 

female 

patients 

Retrospective cohort 

study for risk of 

exertional 

rhabdomyolysis 

A Deuster et 

al. (2013) 

IGF2 13790 

(C>G) 

(rs3213221) 

Healthy 

untrained 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

C Devaney et 

al. (2007) 

IGF2 17200 

(G>A) (rs680) 

Healthy 

untrained 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

G Devaney et 

al. (2007) 

IGF2AS 1364 

(A>C) 

(rs4244808) 

Healthy 

untrained 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

C Devaney et 

al. (2007) 

IGF2AS 11711 

(G>T) 

(rs7924316) 

Healthy 

untrained 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

G Devaney et 

al. (2007) 

IL1B -3737 

(C>T) 

(rs4848306) 

Healthy 

untrained 

men 

3 sets of 8 

contractions at 80% of 

the subject’s maximal 

voluntary contraction 

followed by a 4th set to 

voluntary failure for 

leg press, leg curl, and 

leg extension, 

respectively  

C Dennis et 

al. (2004) 

IL1B -511 (C>T) 

(rs16944) 

Healthy 

untrained 

men 

3 sets of 8 

contractions at 80% of 

the subject’s maximal 

voluntary contraction 

followed by a 4th set to 

voluntary failure for 

- Dennis et 

al. (2004) 
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leg press, leg curl, and 

leg extension, 

respectively  

 (Non-) 

professional 

athletes 

versus control 

Cross-sectional study - Cauci et al. 

(2010) 

IL1B 3954 

(C>T) 

(rs1143634) 

Healthy 

untrained 

men 

3 sets of 8 

contractions at 80% of 

the subject’s maximal 

voluntary contraction 

followed by a 4th set to 

voluntary failure for 

leg press, leg curl, and 

leg extension, 

respectively  

T Dennis et 

al. (2004) 

 (Non-) 

professional 

athletes 

versus control 

Cross-sectional study - Cauci et al. 

(2010) 

IL6 -174 (G>C) 

(rs1800795) 

Moderately 

active young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

G Yamin et 

al. (2008) 

 Male and 

female 

patients 

Retrospective cohort 

study for risk of 

exertional 

rhabdomyolysis 

- Deuster et 

al. (2013) 

 Older obese 

women 

7 sets of 10 bilateral 

eccentric knee 

extensions with a load 

corresponding to 

110% of 10-repetitions 

maximum. 

C Funghetto 

et al. 

(2013) 

INS 1045 (C>G) 

(rs3842748) 

Healthy 

untrained 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

C Devaney et 

al. (2007) 

MLCK 49 (C>T) 

(rs2700352) 

Untrained 

healthy young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

C Clarkson et 

al. (2005b) 

MLCK 37885 

(C>A) 

(rs28497577) 

Untrained 

healthy young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

C Clarkson et 

al. (2005b) 
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 Male and 

female 

patients 

Retrospective cohort 

study for risk of 

exertional 

rhabdomyolysis 

C Deuster et 

al. (2013) 

OPN -66 (T>G) 

(rs28357094) 

Healthy 

untrained 

men and 

women 

24 unilateral eccentric 

elbow flexion 

contractions 

T Barfield et 

al. (2014) 

SLC30A8 (C>T) 

(rs13266634) 

Untrained 

healthy young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

T Sprouse et 

al. (2014) 

SOD2 (C>T) 

(rs4880) 

Healthy male 

and female 

volunteers of 

different ages 

4-21 km running race C Akimoto et 

al. (2010) 

TNF -308 (G>A) 

(rs1800629) 

Moderately 

active young 

men and 

women 

50 unilateral eccentric 

elbow flexion 

contractions 

A Yamin et 

al. (2008) 

 
 

2.3.1 Alpha-Actinin-3 R577X Polymorphism and the Initial Phase of Exercise-

Induced Muscle Damage  

Of all the polymorphisms that have been associated with exercise-induced muscle damage, 

the most investigated is the ACTN3 R577X SNP (Clarkson et al., 2005b, Deuster et al., 

2013, Pimenta et al., 2012, Seto et al., 2011, Venckunas et al., 2012, Vincent et al., 2010) 

(Table 2-1). The protein isoforms α-actinin-2 and α-actinin-3 are crucial components of the 

Z-line in mammalian skeletal muscle and anchor actin filaments to the Z-lines, cross-linking 

the thin filaments to the adjacent sarcomeres (Mills et al., 2001, North et al., 1999, 

Blanchard et al., 1989). Whilst α-actinin-2 is ubiquitously expressed in skeletal muscle, α-

actinin-3 is only expressed in fast twitch fibres of human skeletal muscle (North and Beggs, 

1996, North et al., 1999). A functional SNP (rs1815739; substitution of a C with a T 

nucleotide) results in an abortive stop codon (X-allele) rather than the expression of the 

amino acid arginine (R-allele) at amino acid 577 of exon 16 on chromosome 11, resulting 

in an individual being either RR, RX or XX genotype. As a consequence, XX homozygotes 

are not able to express the protein α-actinin-3 (MacArthur and North, 2004, North and 
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Beggs, 1996, North et al., 1999). A sub-section of the population is XX homozygous, 

ranging from less than 1 % in African Bantus to 18 % in Europeans, to 25 % in Asian 

populations (Mills et al., 2001). Absence of α-actinin-3 does not result in a disease 

phenotype due to compensatory up-regulation of α-actinin-2 (North et al., 1999) but there 

is evidence that this nonsense SNP affects physical performance (Erskine et al., 2014b, 

Niemi and Majamaa, 2005, Clarkson et al., 2005a, Moran et al., 2007).  

The ACTN3 XX genotype has been associated with smaller muscle volume (Erskine et al., 

2014b), slower baseline sprint times (Niemi and Majamaa, 2005, Moran et al., 2007), lower 

strength (Erskine et al., 2014b, Clarkson et al., 2005a), and lower muscle power (Clarkson 

et al., 2005a, Seto et al., 2011, Walsh et al., 2008, Moran et al., 2007, Erskine et al., 2014b). 

These findings are supported by Actn3 knock-out mouse models, demonstrating a shift in 

the properties of fast muscle fibres towards a more oxidative fast fibre profile, lower muscle 

strength, reduced mass and decreased diameter of IIb fibres (Chan et al., 2011, MacArthur 

et al., 2008, MacArthur et al., 2007). Strong evidence has been presented that, as a 

consequence of the up-regulation of α-actinin-2 in XX homozygotes, more calsarcin-2 is 

bound to α-actinin-2 and less to calcineurin (Seto et al., 2013). The binding affinity of 

calsarcin-2, which functions as an inhibitor of calcineurin activation, is greater for α-actinin-

2 compared to α-actinin-3. Consequently, a higher level of free calcineurin is able to activate 

the downstream signalling of the slow myogenic programme. Given the larger size, higher 

force and power generating capacity, and lower fatigue resistance of type II fibres compared 

to type I fibres (Bottinelli et al., 1996), the evidence presented by Seto et al. (2013) provides 

a mechanistic explanation for the associations between ACTN3 genotype and muscle size, 

strength, power, and endurance phenotypes. 

Recent investigations have suggested that α-actinin-3 may be evolutionarily optimized for 

the minimization of muscle damage (Yang et al., 2003). The majority of the human studies 

support the hypothesis that XX homozygotes are more susceptible to strenuous exercise 

compared to their RR or RX counterparts (Pimenta et al., 2012, Vincent et al., 2010, Deuster 

et al., 2013). For instance, ACTN3 XX homozygotes are approximately three times more 
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likely to develop exertional rhabdomyolysis compared to people of RR or RX genotypes 

(Deuster et al., 2013). However, other studies have revealed no differences between 

ACTN3 genotypes regarding markers of muscle damage (Clarkson et al., 2005b), or have 

shown contrary effects post-exercise (Venckunas et al., 2012) or in muscle injury risk (Iwao-

Koizumi et al., 2014). The cross-sectional study of Clarkson et al. (2005b) revealed no 

differences in strength loss but a lower baseline CK activity in the blood in ACTN3 XX 

homozygotes compared to carriers of the ACTN3 R-allele. These baseline differences in 

CK activity may have been due to ACTN3 genotype-dependent differences in muscle mass 

(i.e. smaller muscle volume in XX homozygotes versus R-allele carriers) (Erskine et al., 

2014b). 
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Figure 2-2 Proposed changes in sarcomere structure during stretch-shortening cycle 
movements and purely eccentric actions, focussing on α-actinin (highlighted in red). The left-
hand side shows the sarcomere longitudinally in a quasi-3D model at rest, and the α-actinin 
elongation during purely eccentric actions, and stretch-shortening cycle movements (1). The right-
hand side illustrates the sarcomere cross-sectional area at the level of the Z-line (2). At rest, α-actinin 
is set to roughly 90° between the antiparallel actin filaments, while under active tension, the space 
between the antiparallel actin filaments increases and α-actinin is stretched to a basket-weave lattice 
(Gautel, 2011b). Alpha-actinin is thought to play a key role in the longitudinal (via the anchoring of 
actin filaments to the Z-line) and lateral (via costamere fibre-to-fibre interaction) transmission of 
muscle fibre force (Hughes et al. 2015; Yang and Xu 2012). Moreover, human type II muscle fibres 
from ACTN3 XX homozygotes (where α-actinin-3 deficiency is compensated by the presence of α-
actinin-2) are less stiff than type II muscle fibres from ACTN3 R-allele carriers (Broos et al., 2012). 
Thus, it is likely that α-actinin-2 is able to store more energy than α-actinin-3 during the active stretch 
phase of the stretch-shortening cycle, which is released during the shortening phase (Kjær, 2004; 
Yang and Xu, 2012). We propose that stretch-shortening cycle movements increase the actin 
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filament spacing to a greater extent compared to purely eccentric actions, thus elongating α-actinin 
to become almost completely straight at peak eccentric force. Individuals with α-actinin-3 deficiency 
(ACTN3 XX homozygotes) might, therefore, benefit from having a more elastic Z-line during stretch-
shortening cycle movements compared to R-allele carriers (Broos et al., 2012), resulting in a reduced 
damage response to stretch-shortening movements (Venckunas et al., 2012). Figure adapted from 
Gautel (2011b).  

 

Movements with repeated stretch-shortening cycles, eccentric followed by immediate 

concentric muscle contraction) (Venckunas et al., 2012) seem to have a different demand 

profile for the muscle-tendon unit compared to purely eccentric actions (Figure 2-2) (Seto 

et al., 2011, Vincent et al., 2010). Due to the fact that α-actinin is linked to both the 

longitudinal and lateral transmission of force (Hughes et al., 2015, Yang and Xu, 2012), we 

propose that α-actinin-3 deficiency (XX genotype) with a more elastic Z-line (Broos et al., 

2012) might result in benefits to stretch-shortening cycle movements compared to R-allele 

carriers. Although the stretch-shortening cycle includes an eccentric element, contrary to 

the type of maximal eccentric contractions typically used in exercise-induced muscle 

damage studies, the force and the eccentric phase involved in the active braking phase of 

stretch-shortening cycles are generally fast and of short duration (Nicol et al., 2006). 

Interestingly, muscle activation decreases with increasing velocity in the eccentric phase 

under stretch-shortening cycle conditions (Benoit and Dowling, 2006), which indicates that 

other non-contractile (elastic) structures, such as the extracellular matrix/tendon, might 

provide an important contribution to the power output by storing energy (Kjær, 2004, Yang 

and Xu, 2012). Indeed, a highly compliant elastic musculotendinous system is thought to 

elevate the use of elastic strain energy in stretch-shortening cycle movements (Wilson et 

al., 1991). Thus, individually performed eccentric actions with greater longitudinal force 

transmission might damage the link between the contractile structure and the Z-line, which 

might activate the calpain system to a greater extent.  

The transmission of muscle fibre force to the tendon may occur faster by the stiffer Z-line 

including α-actinin-3 in the longitudinal direction (Hughes et al., 2015, Broos et al., 2012) 

and, also, might reduce muscle damage in eccentric actions performed without a stretch-

shortening cycle compared to the α-actinin-3 deficient fibres (Seto et al., 2011, Vincent et 
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al., 2010). Head et al. (2015) revealed a significantly increased sarcoplasmic reticulum Ca2+ 

pumping and leakage in ACTN3 XX homozygotes, which was probably due to a higher 

expression of the specific Ca2+ channel sarco(endo)plasmic reticulum calcium-adenosine-

triphosphatase-1 gene, and of the Ca2+ binding proteins, calsequestrin and sarcalumenin, 

in the sarcoplasmic reticulum (Head et al., 2015). Increased dynamics with elevated 

intracellular Ca2+ levels during and after exertional muscle damage may lead to increased 

cytoskeletal damage and membrane disruption (Zhang et al., 2008, Head et al., 2015, 

Quinlan et al., 2010). Muscle damage induced by exclusively performed eccentric actions 

might lead to increased desmin degradation (Yu, 2013), which results in fewer connections 

with the extracellular matrix and adjacent myofibrils, and could be an explanation for the 

higher susceptibility of XX homozygotes in this mode of exercise. Taken together, the 

different effect of the ACTN3 R577X SNP in diverse mode of exercises could explain the 

fact that studies show mixed results. This may be why there are differences in ACTN3 

genotype frequency in short and long distance athletes of stretch-shortening cycle-related 

sports (e.g. running) (Yang et al., 2003), whereas both short and long distance athletes in 

power sports, commonly carried out without stretch-shortening cycles (e.g. swimming), 

show no difference in genotype/allele frequency distribution (Ben-Zaken et al., 2015). This 

demonstrates why future studies should not only distinguish between power and endurance 

athletes, but should focus on sport-specific movements when investigating the association 

with genetic variation.  

 

2.3.2 Myosin Light Chain Kinase Polymorphisms and the Initial Phase of 

Exercise-Induced Muscle Damage  

Every myosin head is connected with two light chains on the long lever arm, which are 

known as the essential and the regulatory light chains. In skeletal and cardiac muscles of 

mammals, troponin and tropomyosin have the role of triggering the contraction following the 

increase in free cytosolic Ca2+, while the regulatory light chain modulates Ca2+ activation 

(Sweeney et al., 1993, Cheung et al., 2003, Lossie et al., 2014). Repeated Ca2+ influx due 
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to muscular contraction activates myosin light chain kinase, and this enzyme 

phosphorylates the regulatory light chains. It has been shown that regulatory light chain 

phosphorylation results in increased Ca2+ sensitivity (Szczesna et al., 2002), which 

increases the rate of force development predominantly in type II muscle fibres (Childers and 

McDonald, 2004). This might be the result of an increased number of force-generating 

cross-bridges. However, the increased force output by light chain phosphorylation might 

also result in elevated muscle damage, which has been shown in skinned fast-twitch fibres 

(Childers and McDonald, 2004).  

Two different SNPs of the myosin light chain kinase gene [49 (C>T) (rs2700352) and 37885 

(C>A) (rs28497577)] have been investigated concerning exercise-induced muscle damage 

(Clarkson et al., 2005b). T-allele carriers of the 49 (C>T) SNP have shown increased 

baseline strength in comparison to CC carriers but TT homozygotes revealed increased 

circulatory levels of the muscle damage biomarkers (CK and myoglobin) following eccentric 

exercise. Furthermore, A-allele carriers of the 37885 (C>A) SNP have revealed greater 

muscle strength loss and increased plasma CK following strenuous exercise. This is in line 

with the findings of Deuster et al. (2013), who showed that exertional rhabdomyolysis cases 

are about 5 times more likely for the A-allele of the 37885 (C>A) SNP of the myosin light 

chain kinase gene compared to carriers of the C-allele. The mechanisms, however, are 

unclear. Clarkson et al. (2005b) suggested that these SNPs may alter regulatory light chain 

phosphorylation, thus leading to higher muscle strain and subsequently greater muscle 

damage following strenuous exercise. 

2.3.3 Muscle-Specific Creatine Kinase Polymorphisms and the Initial Phase 

of Exercise-Induced Muscle Damage   

The creatine kinase enzyme is expressed in the cytosol and mitochondria of tissues with 

high energy consumption (e.g. skeletal muscle fibres). The cytosolic enzyme is composed 

of the two subunits muscle type (M) and brain type (B), which provide three different 

combination possibilities: CK-BB (predominantly in brain), CK-MB (in cardiac muscle) and 
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CK-MM (in skeletal muscle). Skeletal muscle-specific CK is bound to the M-Line structure 

and to the sarcoplasmic reticulum of myofibrils (Wallimann et al., 1992, Brancaccio et al., 

2007). In healthy individuals, most serum CK consists of skeletal muscle CK (Brancaccio et 

al., 2007). Creatine kinase can leak from muscle fibres into the circulation following the 

mechanical tearing of the sarcolemma and opening of stretch-activated channels following 

contraction-induced damage, although the exact mechanism is still unclear (Allen et al., 

2005). 

The skeletal muscle CK-encoding gene is located at the 19q13.2–13.3 region of the 

chromosome 19 (Nigro et al., 1987). The Ncol (A>G) SNP (rs1803285) of the muscle 

creatine kinase gene, is mapped to the 3’ untranslated region, which means it could affect 

the localization, translation efficiency and stability of the mRNA, which might mediate the 

location and function of the protein (Wilson et al., 1995). Interestingly, the genes for the 

ryanodine receptor 1 (Robinson et al., 2006) and myotonic dystrophy protein kinase 

(Brunner et al., 1989), which are associated with muscle function and specific myopathies, 

are mapped to the same area of chromosome 19. According to Deuster et al. (2013), Ncol 

GG homozygotes are present in 28.1 % of African Americans, in 14.2 % of Caucasians, 

0 % of Hispanic and 8.3 % of Asian individuals. Investigations of the Ncol SNP of the muscle 

creatine kinase gene have revealed different outcomes. In the study of Deuster et al. (2013), 

GG homozygotes were reportedly 3.1 times more likely to experience exertional 

rhabdomyolysis than carriers of the A-allele. However, Heled et al. (2007) revealed that 

NcoI AA homozygotes had a six-fold higher risk of being a high responder of circulating CK 

to eccentric exercise than GG or AG genotypes. Other studies do not support a role for the 

Ncol SNP of the muscle creatine kinase gene in explaining the CK variability between 

individuals (Miranda-Vilela et al., 2012, Yamin et al., 2010). However, the mechanism 

remains poorly understood and is confounded by the different methodological designs 

implemented by researchers. Furthermore, Heled et al. (2007) and Yamin et al. (2010) have 

only investigated CK-response as a marker for muscle damage. Further studies with several 

other muscle damage markers such as muscle strength loss and soreness could provide a 
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better physiological/systems-based understanding of the influence of this NcoI SNP on 

exertional muscle damage. An additional restriction fragment length polymorphism, the TaqI 

SNP of the muscle creatine kinase gene, has been shown to be in strong linkage 

disequilibrium with the NcoI SNP (Miranda-Vilela et al., 2012). The TaqI 1-2 genotype has 

indicated a lower risk for inflammation after a track event between 4 and 21 km, whereby 

the participants could choose their preferential distance. However, no further studies have 

been undertaken towards understanding a potential role for this SNP in association with 

muscle damage. It is possible that these SNPs change the half-life of the CK enzyme and 

the intracellular concentration of CK (Heled et al., 2007). Elevated intracellular CK 

concentration might increase calpain activation, thus resulting in greater protein 

degradation.  

 

2.4 GENETIC VARIATION AND THE SECONDARY PHASE OF 

EXERCISE-INDUCED MUSCLE DAMAGE  

 
The secondary phase of muscle damage is a complex event that has been linked to 

inflammation (Schoenfeld, 2010), where leucocytes infiltrate muscles with damaged fibres 

and remain there for days or even weeks (Tidball, 2005). Although the results of published 

studies are inconsistent (Schneider and Tiidus, 2007), in vitro (Kanda et al., 2013, Suzuki 

and Ford, 1999) and in vivo studies (Paulsen et al., 2010) support a role for neutrophils in 

muscle damage. It is assumed that neutrophils (Suzuki et al., 1996) migrate to the region 

of injury in the early stage of muscle damage (Figure 2-3). Neutrophils contribute to the 

degradation of damaged muscle tissue by producing reactive oxygen species (ROS), which 

are thought to attract macrophages to the area of trauma (McGinley et al., 2009, Nguyen 

and Tidball, 2003). 
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Figure 2-3 The secondary phase of muscle damage. Leucocytes infiltrate the site of myotrauma 
(Tidball 2005). Firstly, neutrophils migrate to damaged muscle fibres and produce reactive oxygen 
species (ROS) to degrade cellular debris (Suzuki et al. 1996) (1). Neutrophils are substituted by 
macrophages within 24 hours (Malm et al. 2000), with M1 macrophages removing cellular debris by 
producing cytotoxic levels of nitric oxide (NO) (2). In the latter stage of muscle damage, a shift from 
M1 to M2 macrophages is associated with the activation of satellite cells and the subsequent 
regeneration of muscle fibres (Tidball 2011) (3). Neutrophils and macrophages also express tumour 
necrosis factor (TNF), which activates the ubiquitin–proteasome pathway (Tidball and Villalta 2010) 
(4). This pathway regulates proteolysis by attaching ubiquitin polymers (Ub) to cellular debris via 
three different types of enzymes (E1 - E3 ligases). As a result, these ubiquitin-marked proteins will 
be degraded by the 26S-proteasome complex (Reid 2005). 

  

Reactive oxygen species can directly and indirectly modulate muscle damage through 

several mechanisms (Toumi et al., 2006). A potential mechanism to link oxidative stress 

with calpain-mediated proteases is via ROS decreasing plasma membrane Ca2+-

adenosine-triphosphatase activity (Siems et al., 2003), which might encourage Ca2+ 

accumulation within the cell (Powers and Jackson, 2008). Although ROS is toxic, it may 

also play an important role as a secondary messenger in cell signalling and in the regulation 

of gene expression resulting in ROS-mediated adaptation to exercise (Schoenfeld, 2012, 

Hornberger et al., 2003, Crane et al., 2013). 

In contrast to neutrophils, there is strong evidence that macrophages and monocytes 

infiltrate the endomysium and especially the perimysium of the injured area of the muscle 

(Hubal et al., 2008, Paulsen et al., 2010). Macrophages replace neutrophils within 24 hours 
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and remain present for up to 14 days after exercise (Malm et al., 2000). During the early 

stages of muscle damage, there is an increase of M1 macrophages (which express CD68 

surface marker but not CD163), supporting the removal of cellular debris by producing 

cytotoxic levels of nitric oxide. This is followed by a shift from M1 to M2 macrophages 

(CD68−/ CD163+), which promote the activation of satellite cells and the subsequent 

regeneration of muscle fibres (see section 2.5) (Mahoney et al., 2008, Kanda et al., 2013, 

Tidball and Villalta, 2010, Philippou et al., 2012, Zanou and Gailly, 2013).  

Leucocyte accumulation and the following remodelling appear to be gradual processes 

regulated by the extent of damage (Paulsen et al., 2010, Paulsen et al., 2012). In an extreme 

case of muscle damage, remodelling may become maladaptive characterized by necrosis, 

incomplete healing, and fibrotic scar tissue formation (Butterfield, 2010). Cytokines play 

particularly well-characterized roles in an orchestrated regulated fashion of the activation 

and modulation of the inflammatory response (Paulsen et al., 2012). Recent investigations 

revealed that some cytokines are also expressed by skeletal muscle, and are therefore 

named myokines (Pedersen et al., 2003). The role of cytokines in the phase of inflammation 

following exercise-induced muscle damage is explained in the comprehensive review of 

Paulsen et al. (2012). Cytokines are classified as (i) pro-inflammatory cytokines [promoting 

inflammation, e.g. interleukin (IL)-1α, IL-1β and tumour necrosis factor (TNF)]; (ii) anti-

inflammatory cytokines (inhibiting inflammation, e.g. IL-10, IL-4 and IL-13) and chemokines 

(abbreviated from chemotactic cytokines), which attract leucocytes and other cells to 

migrate from the blood to the region of injury [e.g. chemokine (C-C motif) ligand 2 (CCL2)] 

(Paulsen et al., 2012, Peake et al., 2005, Suzuki et al., 2002). Muscle cytokine expression 

after strenuous exercise is predominantly pro-inflammatory (Peake et al., 2005). 

In addition, some cytokines such as IL-6 can act either as a pro- or an anti-inflammatory 

agent, depending on the environment (Pedersen and Febbraio, 2008). The majority of 

cytokines are released from several cell types including muscle fibres, fibroblasts, 

neutrophils, and macrophages, and the expression of cytokines is determined by the mode, 

intensity and duration of exercise (Peake et al., 2015). Furthermore, the action patterns of 
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some of these cytokines change during the inflammatory response. These findings make it 

difficult to identify the specific roles of each cytokine after exercise-induced muscle damage 

(Smith et al., 2008). However, the invading neutrophils and macrophages express TNF at 

the early phase of the inflammatory response (Philippou et al., 2012, Tidball and Villalta, 

2010, Warren et al., 2002a). Tumour necrosis factor is able to activate the ubiquitin–

proteasome pathway, which is one of the main mechanisms for the cellular protein 

degradation in eukaryotic cells (Murton et al., 2008, Li et al., 2005). The ubiquitin–

proteasome pathway regulates proteolysis by attaching ubiquitin polymers to damaged 

proteins via three distinct types of enzymes (known as E1 - E3 ligases). Subsequently, the 

26S-proteasome complex degrades the ubiquitin-marked protein (Reid, 2005). Tumour 

necrosis factor increases the gene expression of the E3 ligases, muscle ring finger 1 

(MuRF1) and muscle atrophy F-box (MAFbx; also referred to as Atrogin1) (Li et al., 2005, 

Li et al., 2003, Murton et al., 2008, Bodine et al., 2001b). Thus, it is thought that TNF is an 

important factor in the instigation of the remodelling process after exertional muscle damage 

(Murton et al., 2008). 

 

2.4.1 Interleukin-1 Polymorphisms and the Secondary Phase of Exercise-

Induced Muscle Damage  

The interleukin-1 (IL1) family of cytokine genes is located together on chromosome 2, and 

includes IL-1α (IL1A), IL-1β (IL1B) and IL-1 receptor antagonist (IL-1Ra; IL1RN) (Dennis et 

al., 2004). Interleukin-1α and IL-1β are agonists of the IL-1 receptor type I (IL-1R1) and 

promote inflammation. In general, IL-1β acts synergistically with TNF and induces the 

expression of several other pro-inflammatory genes (Dinarello, 2009). Following eccentric 

exercise in humans, systemic levels of IL-1β increase marginally (Peake et al., 2005), but 

there is an increase of local IL-1β levels within skeletal muscle up to 5 days post exercise 

(Fielding et al., 1993). In contrast, IL-1Ra acts as an antagonist of IL-1R1, preventing the 

binding of IL-1α and IL-1β with IL-1R1, respectively. Instead of IL-1β, IL-1Ra is highly 

concentrated in plasma following intense physical exercise (Paulsen et al., 2012). In the 
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absence of IL-1Ra, the activity of IL-1 is unrestricted and leads to increased inflammatory 

response (Dinarello, 2009).  

Different SNPs of the IL1B gene have been investigated in relation to the response to 

exercise and exercise-induced muscle damage: (i) at position -511 (C>T) (rs16944) in the 

promoter region (di Giovine et al., 1992); (ii) at position +3954 (C>T) (rs1143634) in exon 5 

(TaqI restriction site polymorphism) (Bioque et al., 1995); (iii) at position -3737 (C>T) 

(Dennis et al., 2004, Vangsted et al., 2011). Dennis et al. (2004) investigated the 

associations of selected IL1 SNPs with the inflammatory response following a single bout 

of resistance exercise. Twenty-four sedentary Caucasian males were recruited based on 

specific clusters of IL1 SNPs (haplotypes) (+4845 IL1A, +3954 IL1B, -511 IL1B, and -3737 

IL1B polymorphisms). Only participants with the IL1B C/C (+3954) or with the T/T (-3737) 

genotype showed an increased inflammatory response (changes in inflammatory 

associated cytokines and M1 macrophages number) in skeletal muscle. However, the 

concentration of macrophages did not change. This leads to the assumption that the 

cytokine release by each macrophage is elevated or local production by the skeletal muscle 

itself is increased. Individuals with the above-mentioned genotypes, who also carried the 

C-allele of the IL1RN +2018 (T>C) SNP, demonstrated a further increase of inflammatory 

response following resistance exercise. 

Cauci et al. (2010) found that the IL1B +3954 (C>T) SNP, together with the -511 (C>T), 

have no influence on athletic phenotype, which is in accordance with the findings that 

neither plasma IL-1β nor IL1B mRNA is influenced by physical activity (Petersen and 

Pedersen, 2005, Mahoney et al., 2008). In addition, a multi-allelic insertion polymorphism 

in intron 2 of the IL-1RN gene (rs380092) contains a variable number tandem repeat of an 

86-bp length of DNA (Mansfield et al., 1994). Allele 2 (two repeats of the 86 bp region) of 

the IL1RN intron 2 variable number tandem repeat was significantly more frequent in 

athletes compared to non-athletes. In addition, there was a higher frequency distribution of 

the 1/2 (allele 1 with four repeats and allele 2 with two repeats of the 86 bp region) genotype 

variable number tandem repeat IL1RN in high-grade professional athletes than in non-

http://www.dict.cc/englisch-deutsch/unrestricted.html


 43 

professional athletes. In contrast, the frequency of IL1RN allele 2 homozygotes did not differ 

between athletes and non-athletes. Unfortunately, this study has only distinguished 

between professional (high-grade), non-professional (medium-grade) athletes, and non-

athletes. Athlete status was not discriminated within the different types of sport, which is 

necessary, as different mode of exercises require different physical traits. However, in vitro 

investigations showed that the IL1RN allele 2 has been associated with a lower expression 

of IL-1Ra (Dewberry et al., 2000), but increased production of the pro-inflammatory cytokine 

IL-1β (Santtila et al., 1998). Cauci et al. (2010) suggested that carriers of IL1RN allele-2 

displayed a moderate increase of IL-1-dependent inflammation, which results in benefits to 

athletic performance. IL1RN allele 2 might support the removal of cellular debris, promoting 

a faster recovery. However, IL1RN allele 2 homozygotes may lead to a sharp increase of 

inflammation, which negatively influences the recovery or remodelling. Further investigation 

is necessary to confirm these findings. 

 

2.4.2 Tumour Necrosis Factor -308 G>A Polymorphism and the Secondary 

Phase of Exercise Induced Muscle Damage  

Tumour necrosis factor (formerly known as tumour necrosis factor-α) is a pro-inflammatory 

cytokine with short half-life and low circulating levels (Reid and Li, 2001, Pedersen, 2011) 

and is associated with the occurrence of metabolic disorders (Borst, 2004). Plomgaard et 

al. (2005) have shown that TNF infusion in healthy individuals alters insulin signalling 

transduction and subsequently induces insulin resistance in skeletal muscle. Like IL-1β, 

systemic TNF concentration does not change or is only slightly increased after intense 

exercise (Peake et al., 2015). However, local expression of TNF within the skeletal muscle 

is significantly elevated after exercise (Peake et al., 2015). Tumour necrosis factor is 

associated with up-regulation of catabolic pathways and suppression of protein synthesis 

in skeletal muscle (Ling et al., 1997), mediated by NF-κB, which stimulates the ubiquitin-

proteasome pathway (Reid and Li, 2001). This is in line with Tiainen et al. (2012), who have 

shown that high plasma levels of TNF are associated with reduced physical performance in 
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men. Furthermore, intravenous infusion of TNF in rats led to a significant drop in systemic 

IGF-I and IGF-binding proteins 3 levels, suggesting a negative influence of TNF on the IGF-

system (Llovera et al., 1998).  

The minor A-allele of the rare TNF -308 (rs1800629) SNP is associated with increased 

plasma TNF concentration (Karimi et al., 2009) and with impaired improvement of physical 

performance in older women following physical activity (Pereira et al., 2013). Presumably, 

the A-allele is a stronger activator of TNF transcription than the G-allele (Wilson et al., 

1997). To the best of our knowledge, only one study has investigated an association 

between the TNF -308 (G>A) SNP and its association with exercise-induced muscle 

damage. Interestingly, carriers of the A-allele showed a non-significant (P = 0.06) blunting 

of elevated plasma CK following eccentric exercise (Yamin, 2009, Yamin et al., 2008). 

However, no AA homozygotes were included in this investigation. The TNF -308 A-allele 

was associated with higher plasma TNF concentration and impaired improvements in 

physical fitness following chronic exercise in older populations, while in young, healthy 

individuals, A-allele carriers demonstrated blunted CK activity in the blood after eccentric 

exercise. However, CK activity was measured at the peak activity 96 hours post-exercise 

in Yamin et al. (2008). The blunted CK activity of TNF -308 A-allele carriers in the study by 

Yamin et al. (2008) might not be attributed to the muscle damage itself but may be caused 

by attenuated remodelling, such as myoblast fusion which is accompanied by CK activity 

(Zalin, 1972). Due to the fact that membrane damage might be repaired in a short time 

(Bansal et al., 2003), other mechanisms should be considered for the prolonged leakage of 

CK. Elevated TNF attenuates myoblast fusion and differentiation which might impair the 

regeneration of the muscle (Stewart et al., 2004). Subsequently, carriers of the TNF -308 

A-allele might have a higher susceptibility to muscle atrophy and sarcopaenia due to the 

impaired ability of muscle remodelling. However, Lappalainen (2009) has indicated some 

technical limitations of the assay which might have influenced the data interpretation of 

Yamin et al. (2008). Further studies are needed, which investigate a potential association 

between the TNF -308 SNP and other muscle damage markers.  
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2.4.3 Interleukin-6 –174 G>C Polymorphism and the Secondary Phase of 

Exercise-Induced Muscle Damage  

Interleukin-6 (IL-6) modulates the release of different cytokines, such as of TNF and IL-1Ra 

(Steensberg et al., 2003, Starkie et al., 2003). The human IL6 gene is mapped to 

chromosome 7p21–24 with a 303 bp upstream promoter (Fishman et al., 1998). Interleukin-

6 plasma concentration is affected by exercise duration and intensity (Fischer et al., 2004), 

and the amount of muscle mass involved (Ostrowski et al., 2000), particularly during weight-

bearing exercise (Catoire and Kersten, 2015). Eccentric exercise induces a delayed peak 

and a slower decrease of plasma IL-6 after exercise in comparison to other modes of 

exercise, such as running (Fischer, 2006, Pedersen and Fischer, 2007). According to 

McKay et al. (2009), IL-6 may play a role as an important signalling molecule associated 

with satellite cell proliferation after strenuous exercise. Furthermore, damaged extracellular 

matrix might have an effect on IL-6 expression, as IL-6 is involved in collagen synthesis 

(Andersen et al., 2011). These findings suggest that the different circulating IL-6 timescale 

of prolonged but non-damaging exercise and of eccentric exercise occurs due to a different 

source and function of IL-6 expression. Whilst muscle fibres, peritendinous connective 

tissue (Langberg et al., 2002) and adipose tissue (Holmes et al., 2004) all express and 

release IL-6 into the circulation without activating pro-inflammatory pathways (Pedersen, 

2011), eccentric exercise might induce more local IL-6 expression within the skeletal muscle 

with pro-inflammatory properties (Nieman et al., 1998, Nieman et al., 2000). The delayed 

peak of plasma IL-6 concentration after strenuous eccentric exercise might occur due to 

release into the circulation following the mechanical tearing of the sarcolemma and opening 

of stretch activated channels due to exertional muscle damage. 

A functional −174 G>C SNP (rs1800795) has been detected in the promoter region of the 

IL6 gene. The frequency distribution of the G-allele ranges between 45 to 100% in the 

worldwide population (Borinskaya et al., 2013) and it is associated with an increased plasma 

IL-6 response in healthy people (Bennermo et al., 2004, Fishman et al., 1998, Pereira et 
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al., 2011). The −174 G allele might affect the glucocorticoid receptor and elevate the 

transcriptional activation due to its close positioning with the receptor (Yamin et al., 2008, 

Rein et al., 1995). This IL6 SNP shows a somewhat ambiguous picture: according to Ruiz 

et al. (2010b), both GG and GC genotypes are more frequent in elite power athletes 

compared to endurance athletes and to non-athletes. There was no difference between 

endurance athletes and the control group, which is in the line with the findings of Yamin et 

al. (2008). In young individuals, C-allele carriers of the IL6 SNP presented higher CK values 

following eccentric exercise compared with GG homozygotes (Yamin et al., 2008, Yamin, 

2009). In power-orientated sports, which are associated with muscle damage during training 

or competition, GG homozygotes might have benefits with faster recovery and elevated 

satellite cell proliferation in the long term. However, Deuster et al. (2013), who did not 

observe any association between this IL6 SNP and exertional rhabdomyolysis, challenge 

this conclusion.  

Aging-related declines in physical function are associated with chronically elevated 

systemic IL-6 concentration (Ershler and Keller, 2000, da Cunha Nascimento et al., 2015). 

However, Walston et al. (2005) could not confirm any association between IL6 genotypes 

and serum IL-6 in older women. Furthermore, in the study of Funghetto et al. (2013), in 

older obese women, plasma CK integral (area under the curve of CK between the different 

time points) values were lower and IL-6 integral values were higher for carriers of the C-

allele after eccentric exercise. However, there was only a moderate increase in plasma CK 

concentration and no change in IL-6 concentration, probably resulting from the relatively 

low intensity of the eccentric exercise protocol used. Of note, the interaction between the 

−174 G>C SNP and obesity seems to be a complex one (Joffe et al., 2013). Linkage 

disequilibrium of this −174 G/C SNP with several other SNPs on the IL6 gene cannot be 

excluded (Qi et al., 2007). In diseased, obese and older populations with chronically 

elevated circulating IL-6, an increased IL-6 response might be harmful after eccentric 

exercise (Funghetto et al., 2013, Bennermo et al., 2004). 
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In summary, the pattern of circulatory IL-6 and CK levels in association with the IL6 −174 

G>C SNP appears to be diametrically opposed. It might be that an elevated IL-6 response 

and lower CK levels associated with the G-allele are beneficial due to increased IL-6 

production of macrophages (Patel et al., 2010) and satellite cell proliferation (McKay et al., 

2009) in a healthy population following eccentric exercise (Yamin et al., 2008). However, 

the G-allele might have a negative effect in those presenting with chronic low-grade 

systemic inflammation. Without knowing the actual source of IL-6 expression and its 

subsequent pro- or anti-inflammatory effect, cumulative plasma IL-6 concentration is 

probably an inaccurate biomarker of muscle damage (Pedersen and Febbraio, 2008). The 

influence of the IL6 −174 G>C SNP is not fully clear and needs further investigation, 

particularly in conjunction with both local and circulatory measures of IL-6 

expression/concentration. 

 

2.4.4 Chemokine Ligand 2 and Chemokine Receptor Type 2 Polymorphisms 

and the Secondary Phase of Exercise-Induced Muscle Damage  

Like interleukin-6, the chemokine (C-C motif) ligand-2 (CCL2), also known as monocyte 

chemoattractant protein 1 (MCP1), can be classified as an exercise factor, as it mediates 

systemic changes induced by chronic exercise training (Catoire and Kersten, 2015). 

Monocyte chemoattractant protein 1 receptor (CCR2) is one of the major receptors, which 

binds CCL2, beside CCL7 and CCL13 (Harmon et al., 2010). CCL2 is mainly expressed 

within the interstitial space between myofibres following muscle damaging exercise, and is 

co-localized with macrophages and satellite cells in the muscle (Hubal et al., 2008). 

Concentric exercise does not influence local CCL2 expression (Hubal et al., 2008). 

However, in line with the findings of Warren et al. (2005), that Ccr2-knockout mice have 

shown impaired regeneration, inflammation, and fibrotic response following freeze injury, a 

strong interaction between CCL2/CCR2 and the immune response after muscle damage is 

suggested (Hubal et al., 2008, Yahiaoui et al., 2008). Interestingly, whilst local CCL2 mRNA 

expression further increased after a second bout of eccentric exercise in comparison to the 
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first bout (Hubal et al., 2008), systemic response of CCL2 decreased after repeated downhill 

running (Smith et al., 2007).  

Hubal et al. (2010) investigated several CCL2/CCR2 SNPs in association with exercise-

induced muscle damage in the elbow flexor muscles. Following strenuous exercise, the T-

allele of the CCL2 rs3917878 (C>T) SNP was associated with a delayed recovery of 

maximum strength in men and a higher CK response in women (Hubal et al., 2010). C-allele 

carriers of the CCR2 (rs3918358) SNP showed a delayed recovery of strength in females, 

and the C-allele of the CCR2 (rs1799865) SNP increased soreness in both genders (Hubal 

et al., 2010). The significant differences between the alleles of these three SNPs occurred 

4–10 days following exertional muscle damage, confirming the action pattern of 

CCL2/CCR2 in muscle repair/regeneration. Furthermore, the GG genotype of the CCL2 

gene variant (rs2857656), for which significant differences were found in pre-exercise 

maximum strength compared to the major C-allele (Harmon et al., 2010), was associated 

with the magnitude of muscle injury in professional soccer players (Pruna et al., 2013). 

According to Hubal et al. (2010), there were moderate associations between CCL2/CCR2 

genotypes and baseline CCL2 activity (as a product of CCL2 expression and the availability 

of CCR2). Higher CCL2 activity might be an advantage in the recovery period following 

muscle damage in healthy individuals due to its ability to serve as a chemoattractant to 

macrophages and its possible activation of satellite cell proliferation (Yahiaoui et al., 2008). 

However, further investigation is needed to identify the potential molecular mechanisms 

underpinning the influence of each of these SNPs in changing CCL2 activity in response to 

muscle damaging exercise in elderly and obese people, in whom chronic systemic 

inflammation is already an issue.  

 

2.4.5 Osteopontin -66 T>G Polymorphism and the Secondary Phase of 

Exercise-Induced Muscle Damage 

The extracellular matrix protein and pro-inflammatory cytokine osteopontin (also known as 

secreted phosphoprotein 1) is expressed in numerous cell types including skeletal muscle 
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(Kahles et al., 2014, Zanotti et al., 2011, Giachelli et al., 1998). Whereas the earliest studies 

suggested that it had a central role in bone remodelling (Rodan, 1995), subsequent studies 

suggest that osteopontin has also a role as a chemoattractant for macrophages (Hirata et 

al., 2003), and possibly neutrophils (Yang et al., 2014). Osteopontin is virtually undetectable 

in resting skeletal muscle but, after induced muscle damage in mice, osteopontin 

expression is elevated 100-times compared to baseline transcription levels (Hoffman et al., 

2013, Hirata et al., 2003).  

A common SNP in the transcriptional promoter of the osteopontin gene (-66 T>G, 

rs28357094), which overlaps a specificity protein-1 transcription factor-binding site, results 

in different phenotypic characteristics (Barfield et al., 2014). The minor G-allele is 

associated with an 80% reduction in osteopontin gene expression in vitro (Giacopelli et al., 

2004, Barfield et al., 2014) and with a 17% increase in baseline upper arm muscle volume 

in women (Hoffman et al., 2013). Surprisingly, this increased muscle volume did not 

influence muscle strength (Hoffman et al., 2013). After exercise-induced muscle damage, 

women carrying the G-allele revealed significantly elevated muscle swelling, increased loss 

of muscle strength (Barfield et al., 2014) and CK values were elevated in two women with 

the rare GG genotype (Hoffman et al., 2013). In contrast, the G-allele was linked with less 

grip strength and with more rapid progression in patients with Duchenne muscular 

dystrophy (Pegoraro et al., 2011). Further investigations of Barfield et al. (2014) revealed 

several enhancer sequences on the osteopontin gene promoter for multiple steroid 

hormone-binding sites (i.e. oestrogen receptor, glucocorticoid receptor, vitamin D receptor 

and a potential NF-κB binding site). Oestrogen hormone treatment of modified human 

myoblasts with the allele-specific osteopontin promoters has shown that the human 

myoblasts with the transfected G-allele promoter revealed a threefold increase in 

osteopontin gene expression, whereas the T-allele construct was unaffected by oestrogen 

treatment. From this, we can infer that there may be an allele-specific interaction between 

the oestrogen enhancer and the more proximal specificity protein-1 transcription factor site 

leading to a hypothetical model for sexual dimorphism (Barfield et al., 2014). Thus, women 
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with the G-allele seem to be more susceptible to muscle damage. Likewise, a similar allele-

specific interaction between the NF-κB or glucocorticoid binding site and the specificity 

protein-1 transcription factor site might explain the association between the G-allele and 

Duchenne muscular dystrophy. Barfield et al. (2014) suggest that chronic inflammation 

might lead to an augmentation of the pro-inflammatory response, which accelerates the 

progress of the disease. However, the study of Barfield et al. (2014) has several limitations. 

TT genotype has shown a similar loss of force over time in both the exercised and non-

exercised arm following exertional muscle damage. In addition, due to the low number of 

volunteers (n = 6) who completed the eccentric exercise intervention, further investigations 

are needed to replicate and verify these findings.  

 

2.5 SKELETAL MUSCLE REMODELLING FOLLOWING EXERCISE-

INDUCED MUSCLE DAMAGE  

Skeletal muscle regeneration is a complex process that is mediated by satellite cells, and 

in which several factors are activated to regulate muscle remodelling (Kurosaka and 

Machida, 2012). Satellite cells are mononucleated muscle stem cells and are located on 

the outer surface of the muscle fibre, between the basal lamina and sarcolemma (Hawke 

and Garry, 2001). Usually, satellite cells remain quiescent but are activated following 

damage (Figure 2-4) (Chambers and McDermott, 1996, Grobler et al., 2004). They 

proliferate 24-48 hours later and then do one of three things: (i) return to quiescence and 

restore the population of satellite cells; (ii) migrate to the site of injury and support the repair 

process by increasing the nuclei-to-cytoplasm ratio; (iii) fuse with other myogenic cells to 

form myotubes, thus generating new fibres to replace damaged myofibres (Hawke and 

Garry, 2001, Grobler et al., 2004, Tidball and Villalta, 2010, Sharples and Stewart, 2011). 
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Figure 2-4 The cycle of skeletal muscle fibre regeneration following exercise-induced muscle 
damage. This cycle is mediated by satellite cells, which are activated following stressful physiological 
conditions such as exercise-induced muscle damage (Grobler et al. 2004). Activated satellite cells 
initially up-regulate two different myogenic regulatory factors, MyoD and myogenic factor-5 and, 
during the proliferation, paired box protein 7 (Pax7). If satellite cells return to quiescence and restore 
the population of satellite cells, MyoD will be down-regulated (i). However, subsequent cell 
differentiation is accompanied with down-regulation of Pax7/3. During this early differentiation stage, 
herculin and myogenin are up-regulated. Myoblasts differentiate into myocytes and then eventually 
migrate to the site of injury and support the repair process by increasing the nuclei-to-cytoplasm ratio 
(ii). Different chemotactic gradients, including a large number of chemokines, support the migration 
to the region of injury. A recent investigation in mice revealed that the absence of myomaker, which 
is expressed on the cell surface of myoblasts, leads to inhibition of myoblast fusion (Millay et al. 
2013). Alternatively, the myocytes fuse with other myogenic cells to form myotubes, thus generating 
new fibres to replace damaged myofibres (iii). Figure adapted from Tidball (2011) and Al-Shanti and 
Stewart (2009).  

  

Macrophages are essential, not only for removing tissue debris, but also in the activation of 

satellite cells. M1 macrophages provoke myoblast proliferation (Arnold et al., 2007, Cantini 

et al., 2002) and, together with neutrophils, they attract satellite cells to the site of injury by 

releasing TNF (Torrente et al., 2003). M2 macrophages stimulate the differentiation of 

satellite cells into mature myofibres (Arnold et al., 2007), and in vitro studies indicate that 

macrophages support differentiation through ultimate increases in myogenin expression 
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(Cantini et al., 2002). Activated satellite cells initially up-regulate two different myogenic 

regulatory factors, MyoD and myogenic factor-5 (Smith et al., 1994). In the period of 

proliferation, the satellite cells express paired box protein 7 (Pax7) and MyoD but those that 

return to quiescence to maintain the satellite cell pool only express Pax7 (Tedesco et al., 

2010, Al-Shanti and Stewart, 2009). However, subsequent down-regulation of Pax7/3 

induces cell differentiation. The satellite cells exit the cell cycle and enter the early 

differentiation stage where myogenic factor 6 (herculin) and myogenin are up-regulated 

(Zammit, 2008, Wahl et al., 2008, Le Grand and Rudnicki, 2007). Myoblasts differentiate 

into myocytes and then eventually fuse and form multinucleated myofibres (Le Grand and 

Rudnicki, 2007). Recent investigations revealed that MyoD and myogenin induce 

myomaker gene transcription (Millay et al., 2014, Millay et al., 2013). The absence of 

myomaker, which is expressed on the cell surface of myoblasts, leads to inhibition of 

myoblast fusion in mice (Millay et al., 2013). However, more information is required to 

explain the roles of myomaker in muscle regeneration and recovery following muscle 

damaging exercise.  

The extracellular matrix provides structural and biochemical support to contractile tissue 

and it is associated with the inflammatory response and satellite cell activation (Hyldahl and 

Hubal, 2014, Kjær, 2004). Activated satellite cells migrate to the site of injury along the 

basal lamina (Hughes and Blau, 1990), a process that is facilitated by the basal lamina 

components (i.e. collagen IV, laminin-2 and nidogens) (Goetsch and Niesler, 2011). 

Components of the extracellular matrix (collagen I and III, fibronectin and other extracellular 

matrix molecules) provide a temporary scaffold to support the migration of the activated 

progenitor cells (Goetsch et al., 2013). Different chemotactic gradients, including a large 

number of chemokines, also support the migration from the niche towards the site of 

myotrauma, and some of these chemokines are released from the extracellular matrix itself 

(Griffin et al., 2010, Goetsch et al., 2013). Furthermore, there is evidence that synthesis of 

type I, III and probably IV collagen within the endomysium and the perimysium increase 

after contraction-induced damage (Mackey et al., 2004, Koskinen et al., 2001).  
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2.5.1 Gene Polymorphisms of the Insulin-like Growth Factor Family and the 

Remodelling Following Exercise-Induced Muscle Damage 

The complex process of remodelling is influenced by growth factors including insulin-like 

growth factor-I (IGF-I) and IGF-II (Duan et al., 2010). In addition to IGF-I (IGF1) and IGF-II 

(IGF2), the IGF-system consists of several IGF-binding proteins, the insulin receptor, and 

cell surface receptors such as the IGF-I receptor and the IGF-II receptor (Wang et al., 2015). 

This system promotes satellite cell differentiation and proliferation (O'Dell and Day, 1998, 

Florini et al., 1996, Stewart and Rotwein, 1996b, Stewart et al., 1996, Stewart and Rotwein, 

1996a) and is thought to play an important role during exercise-induced muscle hypertrophy 

(Sharples and Stewart, 2011, Matheny et al., 2009). For example, transgenic mice 

overexpressing Igf-I in skeletal muscle revealed a significant gain in muscle cross-sectional 

area vin comparison with wild type mice following chronic muscle overload (Paul and 

Rosenthal, 2002). Inactivation of the type 1 Igf receptor inhibits the presence of newly 

formed nuclei in exercised transgenic mice (Fernández et al., 2002, Jiao et al., 2013, Wilson 

et al., 2003), while maintaining local IGF-I concentration is considered crucial for 

maintaining muscle mass and strength with advancing age (Barton-Davis et al., 1998, 

Musarò et al., 2001).  

Besides their role in hypertrophy, IGFs are crucial in muscle regeneration following exercise 

or muscle injury (Jiao et al., 2013, Mackey et al., 2011). Insulin-like growth factor-I acts 

mainly in an autocrine and paracrine manner to stimulate satellite cells to proliferate and 

differentiate. Different isoforms [IGF-IEa, IGF-IEb (in rat) and IGF-IEc (in human)] of IGF-I 

are associated with muscle damage and regeneration. Insulin-like growth factor-IEb and 

IGF-IEc are also known as mechano-growth factor, because the mRNA is expressed in 

response to overload or damage in skeletal muscle. The expression of mechano-growth 

factor is enhanced shortly after muscle damage, which subsequently promotes satellite cell 

activation (Hill and Goldspink, 2003). Afterwards, increased expression of IGF-IEa elevates 
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myoblast fusion (Yang and Goldspink, 2002, Jiao et al., 2013). Mechano-growth factor also 

promotes the activity of cytoplasmic superoxide dismutase, thus protecting against ROS 

during the inflammatory response to muscle damaging exercise (Dobrowolny et al., 2005). 

Both IGF-I and IGF-II mRNA increase during myoblast differentiation, but presumably 

autocrine IGF-II is the predominant myogenic factor during differentiation due to its 

enhanced expression, whilst IGF-II is probably elevated to suppress IGF-I gene expression 

via the mTOR pathway (Jiao et al., 2013, Wilson et al., 2003). Marsh et al. (1997) have also 

shown an age-dependent decline of IGF2 gene expression following muscle damage in 

rats. 

As far as we are aware, only Devaney et al. (2007b) have tested the association between 

IGF SNPs and exercise-induced muscle damage. Several different SNPs were 

investigated, as the IGF2 gene region consists of three genes: IGF2, IGF2 anti sense 

(IGF2AS), and the insulin gene (Lee et al., 2005). The following SNPs: IGF2 (17200 G>A, 

rs680); IGF2 (13790 C>G, rs3213221); IGF2AS (1364 A>C, rs4244808); IGF2AS (11711 

G>T, rs7924316), were significantly associated with exercise-induced muscle damage. 

Besides an association between the IGF2 17200 (G>A, rs680) and IGF2 13790 (C>G, 

rs3213221) SNPs and soreness (after 3 and 4 days), and CK activity in the blood (both after 

7 days) following muscle damaging exercise, every IGF2 SNP investigated was associated 

with strenuous exercise-induced muscle strength loss in men. Only the IGF2AS 1364 (A>C, 

rs4244808) SNP was associated with strength loss immediately after exertional muscle 

damage in both men and women. In contrast, carriers of the insulin gene 1045 (C>G, 

rs3842748) SNP have shown an increased CK activity 10 days after exercise-induced 

muscle damage only in women.  

Varying IGF-I or IGF-II levels potentially caused by these SNPs could modulate satellite cell 

activation and differentiation. For instance, the IGF1 cytosine adenine-repeat SNP located 

in the promoter region of the IGF-I gene is believed to change circulating IGF-I levels but 

the evidence is equivocal (Vaessen et al., 2001, Rosen et al., 1998, DeLellis et al., 2003, 

Allen et al., 2002). While Vaessen et al. (2001) suggest IGF-I levels are increased by these 
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SNPs, other investigations found a decrease (Rosen et al., 1998) or no difference in IGF-I 

levels (Allen et al., 2002, DeLellis et al., 2003). 

It is remarkable that several SNPs of IGF2 were associated with a loss of muscle strength 

directly after exertional muscle damage, in particular in men. It seems there must be another 

process, whereby the IGF2 gene is involved in the response to muscle damaging exercise 

separately from regeneration and differentiation. Here, we would like to highlight a new 

hypothesis. Insulin-like growth factor I also plays an important role in the regulation of 

protein synthesis, including collagen and myofibrillar protein. Local IGF-IEa and IGF-IEc 

mRNA expression is positively correlated with musculotendinous mRNA expression of 

COL1A1/3A1 (Boesen et al., 2013, Doessing et al., 2010) and may subsequently increase 

collagen synthesis in the extracellular matrix (Hansen et al., 2013). Lower circulating IGF-I 

levels induced by IGF SNPs may negatively influence the stability of the extracellular matrix. 

Therefore, a subsequent loss in the lateral transmission of force between adjacent muscle 

fibres might occur, which could be the source of the decrease in maximum strength 

observed immediately after strenuous exercise. Although, to the best of our knowledge, no 

direct effect of IGF-II concentration on human extracellular matrix protein synthesis is 

known, Keller et al. (1999) has shown that local Igf-II expression increases after injury in 

murine muscle. It is therefore possible that IGF-II is linked with exercise-induced muscle 

damage in human muscle, and possibly with extracellular matrix integrity. A direct or indirect 

influence of IGF-II level on extracellular matrix integrity would, at least in part, explain the 

significant strength loss after muscle damaging exercise and the association of the IGF2 

13790 (C>G, rs3213221) SNP with the degree of injury in soccer players (Pruna et al., 

2013). 
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2.6 ADDITIONAL GENE POLYMORPHISMS ASSOCIATED WITH 

EXERCISE-INDUCED MUSCLE DAMAGE 

The following gene polymorphisms have been associated with exercise-induced muscle 

damage. However, further investigation is necessary to attribute these polymorphisms to a 

specific phase of exercise-induced muscle damage. 

 

2.6.1 Angiotensin-I Converting Enzyme Insertion/Deletion Polymorphism 

Angiotensin-I converting enzyme (ACE) has a key role in the interaction between the 

kallikrein-kinin and the renin-angiotensin systems (Schmaier, 2003). Angiotensinogen, 

which is a precursor protein in the renin-angiotensin system, is produced constitutively and 

released into the circulation mainly by the liver (Deschepper, 1994), and can be cleaved by 

the protease renin, resulting in the decapeptide angiotensin-I. The dipeptidase ACE 

converts angiotensin-I to the octapeptide hormone angiotensin-II, which acts as a 

vasoconstrictor (Munzenmaier and Greene, 1996), and induces skeletal muscle 

hypertrophy in response to mechanical loading (Gordon et al., 2001). Angiotensin-I 

converting enzyme also cleaves the vasodilator bradykinin (Dendorfer et al., 2001), which 

supports the increase of arterial blood pressure (Murphey et al., 2000), as well as 

Substance P (SP), a protein from the tachykinin family that functions as a neurotransmitter 

(released by group III and IV afferent fibres) (Harrison and Geppetti, 2001, Inoue et al., 

1998). 

The ACE insertion/deletion (I/D) polymorphism (rs4646994) was the first gene variation to 

be investigated in the context of human physical performance-related traits, and is the most 

investigated in the renin-angiotensin system (Gayagay et al., 1998, Montgomery et al., 

1998). The insertion (I) allele of a 287 bp Alu sequence within intron 16 on chromosome 17 

is linked to lower ACE activity in serum (Rigat et al., 1990) and in cardiac muscle (Phillips 

et al., 1993, Danser et al., 1995), and reduced bradykinin degradation (Murphey et al., 2000) 
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compared to carriers of the D-allele. Carriers of the I-allele are associated with greater 

endurance capacity (Montgomery et al., 1998, Ma et al., 2013), whereas the D-allele is 

associated with greater muscular strength (Williams et al., 2005), and elite power athlete 

status (Costa et al., 2009, Nazarov et al., 2001, Woods et al., 2001). However, recent 

investigations have observed that this distinction is not considered sufficiently specific to 

detect all the phenotypic effects (Lucia et al., 2005, Rankinen et al., 2000, Thompson and 

Binder-Macleod, 2006).  

The association between the ACE I/D polymorphism and elite athlete status might be 

explained by a genotype link with the susceptibility to exertional muscle damage and injury. 

To the best of our knowledge, only two studies have investigated the influence of the ACE 

I/D polymorphism on contraction-induced damage in humans (Heled et al., 2007, Yamin et 

al., 2007). Yamin et al. (2007) observed different concentrations of circulatory CK between 

ACE genotypes after eccentric exercise: II homozygotes elicited the highest CK response, 

whilst DD homozygotes elicited the lowest plasma CK activity after strenuous exercise. This 

suggests that the I-allele is associated with a greater susceptibility to muscle damage, and 

the potential mechanism is explained below. However, Heled et al. (2007) could not find 

any association between ACE I/D polymorphism and CK response. The different outcome 

is probably attributed to the moderate-intensity exercise test and higher activity level and 

different ethnicities of the participants in the study of Heled et al. (2007). It should be noted 

that only CK level was investigated in both studies, which is only one of several indirect 

biomarkers of exercise-induced muscle damage. 

In rabbit studies, inhibition of ACE revealed [in combination with neutral endopeptidase 

(NEP) inhibitor] elevated muscle damage in a muscle overuse model induced by electrical 

stimulation every second day with four sessions in total (Song et al., 2014), which is in line 

with the human findings of Yamin et al. (2007). The muscle damage was accompanied by 

increased tachykinin, substance P and its preferred receptor neurokinin-1 receptor 

expression, which suggests that the tachykinin family may play a role in the inflammatory 

processes and pain (Song et al., 2014, Dousset et al., 2007). Substance P is widely 
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expressed in human cells and tissues of the peripheral and central nervous systems but it 

is also found in extra neuronal cells and innervated tissues. Substance P and neurokinin-1 

receptor have been associated with the inflammatory response in smooth muscle cells and 

dermal tissues but not in skeletal muscle (Renzi et al., 2000, Luger, 2002). However, 

elevated substance P might result in improved remodelling, as demonstrated in the healing 

of a rat Achilles tendon (Bring et al., 2012, Steyaert et al., 2010).  

In contrast, angiotensin-II is known to be involved in inflammatory process following muscle 

damage. Blocking of the angiotensin-II receptor type 1 improves regeneration of injured 

skeletal muscle (Bedair et al., 2008) and supresses ROS production following strenuous 

exercise in mice (Sim et al., 2014). Furthermore, nerve growth factor up-regulation through 

activation of B2 bradykinin receptors is strongly associated with increased pain sensitivity 

(hyperalgesia) (Murase et al., 2010, Babenko et al., 1999). Angiotensin-I converting enzyme 

D-allele carriers, which have a decreased bradykinin half-life, might have attenuated nerve 

growth factor expression following exertional muscle damage and therefore a decreased 

pain sensitivity. Attenuated substance P and bradykinin in the inflammatory process may 

explain the high frequency of D-allele carriers among elite strength/power athletes (Costa 

et al., 2009). Athletes with the D-allele might feel less pain and therefore might be able to 

(i) sustain high-intensity training for longer, (ii) reach the limits of their capacity in 

power/strength related competition (ii) or enable them to practise more often due to a 

decreased sensitivity to pain. In other sport-specific movements, such as short distance 

swimming (<200 m), it is crucial to sustain a high level of intensity accompanied with 

exercise-induced muscle burning (Costa et al., 2009, Woods et al., 2001). 

Another possibility might be that angiotensin-II indirectly mediates skeletal muscle damage 

by influencing angiogenesis in response to exercise (Vaughan et al., 2013). It is well known 

that, in a damaged muscle in the days following eccentric exercise, resting capillary blood-

flow is elevated and vasodilatation occurs (Rubinstein et al., 1998). According to Vaughan 

et al. (2013), the capillary density of skeletal muscle is lower in untrained carriers of the 

ACE I-allele compared to DD homozygotes. Lower capillary density might impair the 



 59 

migration of neutrophils and macrophages as well as of the removal of cellular debris, which 

could negatively affect the extent of muscle damage and possibly muscle remodelling.  

 

2.6.2 Mitochondrial Superoxide Dismutase 2 Ala16Val Polymorphism 

Strenuous exercise results in oxidative stress, which causes structural damage to muscle 

fibres and stimulates an inflammatory response (Gomez-Cabrera et al., 2008), as discussed 

in section 2.4. A higher intracellular concentration of antioxidants within a muscle fibre is 

thought to protect against the negative impact of ROS (Schoenfeld, 2012, Peake and 

Suzuki, 2004). Superoxide dismutase is an antioxidant that protects cells and mitochondria 

from free radical damage by converting the anion superoxide into hydrogen peroxide 

(Huang et al., 2000). Inhibition of superoxide dismutase causes the accumulation of 

superoxide radicals, and can lead to increased damage of mitochondrial membrane and 

cell apoptosis (Huang et al., 2000). The Ala16Val (rs4880, C>T) SNP of the mitochondrial 

superoxide dismutase gene, has been associated with muscle damage susceptibility. The 

T-allele is associated with reduced mitochondrial superoxide dismutase efficiency against 

oxidative stress (Shimoda-Matsubayashi et al., 1996). Akimoto et al. (2010) demonstrated 

that trained runners of TT genotype had an increased plasma CK concentration after racing 

4-21 km. This is in line with Ahmetov et al. (2014), who revealed that TT carriers of the 

mitochondrial superoxide dismutase gene were under-represented in power and strength 

athletes compared to controls and athletes of low-intensity sports, such as curling players 

and shooters. Interestingly, in the study of Ben-Zaken et al. (2013), the frequency of the C-

allele was significantly higher in both endurance and power athletes in comparison to the 

control group. At first glance, these studies seem to be inconsistent with one another. On 

closer inspection, both studies recruited different types of participants. In the study of 

Ahmetov et al. (2014) participants covered a wide range of different sports, whereas in Ben-

Zaken et al. (2013), only track and field related athletes participated: 100 and 200 m 

sprinters and long jumpers (power athletes); 5000 m and marathon runners (endurance 

athletes). These track and field athletes perform sport-specific movements that is 
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accompanied by stress to the musculoskeletal system through repeated eccentric muscle 

contractions performed over long periods of time, which leads to muscle damage. The 

inflammation accompanying this damage potentially produces more oxidative stress than 

the endurance sports (e.g. swimming) in the study by Ahmetov et al. (2014). Therefore, the 

T-allele might impair the protection against oxidative stress due to the lower efficiency of 

the mitochondrial superoxide dismutase gene. This may indicate that there is a relationship 

between this SNP and level of athletic performance in sports with a potential risk of muscle 

damage. Unfortunately, no study has tested the effect of the mitochondrial superoxide 

dismutase SNP on exercise-induced muscle damage over the course of time. This could 

provide insight into the influence of the mitochondrial superoxide dismutase C>T SNP on 

the secondary phase of muscle damage and the subsequent remodelling. 

 

2.6.3 Solute Carrier Family 30 Member Eight C>T Polymorphism  

Type 2 diabetes mellitus is associated with disturbed zinc homeostasis and down-regulation 

of the solute carrier family 30 (zinc transporter) member eight, the product of the SLC30A8 

gene (Somboonwong et al., 2015). Solute carrier family 30 member eight is mainly 

expressed in pancreatic islet beta cells and it transports zinc from the cytoplasm into 

intracellular vesicles, which is crucial for insulin crystallization, storage, and secretion 

(Cheng et al., 2015, Lemaire et al., 2009, Chimienti et al., 2006). The C-allele of the 

nonsynonymous SLC30A8 (C>T) SNP (rs13266634) is strongly associated with type 2 

diabetes mellitus risk, in particular in European and Asian populations but not in African 

populations (Cheng et al., 2015). This SLC30A8 R325W SNP is associated with, amongst 

others, decreased fasting systemic insulin and attenuated insulin secretion in response to 

glucose intake (Staiger et al., 2007, Sprouse et al., 2014, Kirchhoff et al., 2008).  

In recent years, there has been an increase in the number of investigations regarding insulin 

resistance and muscle function in people without type 2 diabetes mellitus. Insulin resistance 

is not only associated with lower force and muscle mass in individuals with diabetes 

(Andreassen et al., 2009, Andersen et al., 2004), but also in healthy people (Gysel et al., 
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2014). Insulin signalling increases blood flow and protein synthesis at rest, and suppresses 

the breakdown of proteins after resistance exercise, thus improving net muscle protein 

balance in particular with amino acid delivery and availability (Biolo et al., 1999, Fujita et al., 

2006). Furthermore, exercise-induced muscle damage has been associated with impaired 

glycogen synthesis (Costill et al., 1990) and reduced glucose uptake (Nielsen et al., 2015, 

Asp et al., 1996), probably due to muscle damage reducing muscle insulin sensitivity 

(Kirwan et al., 1991). This could be due to increased TNF expression attenuating insulin 

signalling transduction, subsequently inducing insulin resistance in skeletal muscle 

(Plomgaard et al., 2005) and supressing the activation of glucose transporter type 4 in 

muscle fibres (Asp et al., 1995). 

Sprouse et al. (2014) reported that the TT genotype of the SLC30A8 SNP was associated 

with lower biomarkers of muscle damage (reduced soreness, strength loss and plasma CK 

and myoglobin levels) following eccentric contractions of the elbow flexor muscles in men. 

By increasing the catabolic pathway, lower insulin levels can lead to a negative net protein 

balance (Woolfson et al., 1979, Sacheck et al., 2007). Therefore, carriers of the SLC30A8 

C-allele might need longer times to recover from strenuous exercise. Further studies should 

investigate if SLC30A8 genotype-dependent insulin production is associated with the acute 

and chronic adaptations to resistance exercise, with regard to muscle protein synthesis and 

muscle hypertrophy, respectively.  

 

2.7 POLYGENIC PROFILES ASSOCIATED WITH EXERCISE-

INDUCED MUSCLE DAMAGE 

In 2008, (Williams and Folland, 2008) postulated a genetic algorithm, the total genotype 

score (TGS), that combine previously associated SNPs regarding a specific phenotypic trait 

to estimate the combined effect of SNPs on elite athlete status. Since then, several 

computed polygenic profiles have been published to estimate the association of multiple 

SNPs on the elite endurance (Ruiz et al., 2009, Grealy et al., 2015, Yoo et al., 2016), and 

strength/power (Ruiz et al., 2010a, Hughes et al., 2011, Miyamoto-Mikami et al., 2017) 
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athlete status. It is likely that the accumulation of non-preferential alleles of SNPs, which 

are associated with EIMD, accentuate the detrimental response to muscle damaging 

exercises. Indeed, recent investigations demonstrated that a TGS, based on seven SNPs 

(ACE, rs4340; ACTN3, rs1815739; CKMM, rs1803285; IGF2, rs3213221; IL6, rs1800795; 

MLCK, rs28497577; TNF, rs1800629) previously associated with EIMD, was able to 

distinguish between high and low responders in terms of CK activity following a race of 

amateur marathon runners and triathletes (Del Coso et al., 2017a, Del Coso et al., 2017b). 

However, the CK response was not linked with the performance of the athletes, which raises 

the questions if CK activity really assesses the magnitude of ultrastructural muscle damage, 

and if it does, if the individual muscle damage response is an important factor for an athlete 

status in marathon or ironman. The limitation of the majority of these polygenic profiles is 

the dependence on former research that investigated individual SNPs on the investigated 

phenotypic trait. Future research needs to adapt the genetic algorithm of Williams and 

Folland (2008) so that the improved TGS can assess so far unrelated SNPs to phenotypic 

traits, i.e. to EIMD, as seen by Yoo et al. (2016) investigating individual endurance training 

effects. Further, more research is needed that investigates multiple SNPs forming a 

polygenic profile to understand the complex mechanism underlying the individual response 

to EIMD-interventions. 

 

2.8 DISCUSSION 

Exercise-induced muscle damage provokes a prolonged loss of muscle strength, and both 

elevated soreness and circulating muscle-specific protein levels. The grade and actual time-

course of strength loss, soreness and of the inflammation response after exercise is 

variable. Several factors that are well documented can influence the response to muscle 

damaging exercise, such as exercise mode, intensity or duration (Smith et al., 1989), micro 

nutrition (Owens et al., 2014, Bhat and Ismail, 2015, Barker et al., 2013) and muscle (group) 

intervention (Clarkson and Hubal, 2002). Nevertheless, within-study variability is often seen 

in response to strenuous exercise (Nosaka and Clarkson, 1996).  
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Several studies have reported differences in SNP-specific gene activity resulting in different 

expression of the coding proteins, which may influence the susceptibly to exercise-induced 

muscle damage (Seto et al., 2011). Individuals, who are high responders to exercise-

induced muscle damage (i.e. demonstrate a greater loss of muscle strength and higher 

circulating levels of CK or myoglobin) might have a higher predisposition to injury (Kibler et 

al., 1992, Clansey et al., 2012). This is in line with the observation that history of one type 

of muscle injury increases the risk of developing other types of muscle injuries (Orchard, 

2001, Freckleton and Pizzari, 2013). The same principle may apply to high responders to 

exercise-induced muscle damage in a squad of athletes performing the same exercise 

training together. High responders, who might need a longer recovery time after a strength 

training intervention in comparison to others in the same squad, might have a higher 

potential for musculotendinous injuries due to overtraining. Both presumptions may result 

in an increased dropout rate of athletes with specific genotype profiles due to higher rates 

of (overtraining) injury extending over several years (Kibler et al., 1992). It would be 

interesting to investigate if a high responder to exercise-induced muscle damage is a 

low/high responder to chronic resistance training.  

Association studies can potentially reveal new mechanisms of genes. For instance, several 

IGF2 SNPs have been associated with strength loss immediately after muscle damaging 

exercise, which cannot exclusively be explained by satellite cell differentiation (Devaney et 

al., 2007b). It is interesting that (i) certain genotypes of several IL6 gene SNPs appear to 

be beneficial in healthy individuals regarding muscle damage response, but are 

disadvantageous in chronic disease and ageing; (ii) sex-specific genotype associations with 

exercise-induced muscle damage have been reported (Devaney et al., 2007b, Sprouse et 

al., 2014). Further investigations are necessary to uncover genotype–phenotype 

interactions and, in particular, the interaction of specific polymorphisms. A specific 

polygenic profile might help explain the inter-individual variance in the response to both 

acute eccentric damaging exercise and chronic strength training.  
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Moreover, the ACTN3 R577X SNP has been associated with different responses to muscle 

damaging exercise, according to the mode of exercise. It is likely that stretch-shortening 

cycle-related movements place different demands on the musculotendinous system 

compared to exercises, which are performed without stretch-shortening cycles, thus 

explaining the equivocal findings concerning the association between this SNP and 

exercise-induced muscle damage (see section 2.3.1). Consequently, we recommend that 

future studies distinguish between exercise-induced muscle damage caused by eccentric 

contractions with or without stretch-shortening cycles. Furthermore, real-world modes of 

exercise should be incorporated into studies investigating the genetic association with 

exertional muscle damage. Not only will this improve our understanding of the mechanisms 

underpinning the deteriorated response of ageing muscle to exercise, but also it will help in 

prescribing more practical exercise therapies to poor exercise responders. 

 

2.9 CONCLUSIONS  

In summary, whilst several genetic association studies have been performed with individual 

SNPs, the current literature does not provide enough detailed information about the 

mechanisms underpinning the effect of genetic variation in the context of exercise and 

exercise-induced muscle damage. Further, additional genetic exercise studies including the 

assessment of multiple genetic polymorphisms (polygenic profile) are necessary to 

understand the complex interplay between nature and nurture affecting the response to 

exercise-induced muscle damage. This may eventually allow the identification of 

individuals, who are at high-risk of developing specific injuries. For instance, those who are 

genetically more predisposed to muscle damage, and who require longer to recover from 

strenuous exercise, are at greater risk of developing over-use injuries. Knowing how 

someone is likely to respond to a particular type of exercise would help coaches tailor the 

training and nutrition of their athletes (moving from a one size fits all to an individualised 

approach), thus maximising recovery and positive adaptation, and reducing the risk of 

injury.  
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3 The Physiological and Biomechanical Factors 

Associated with Neuromuscular Fatigue of the 

Hamstrings Following Intermittent Sprints   
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3.1 ABSTRACT  

Introduction We aimed to investigate the physiological and biomechanical factors 

associated with neuromuscular fatigue of the hamstrings following intermittent sprints (IS).  

Methods Following ultrasound assessment of biceps femoris long head (BFLH) architecture, 

20 recreationally active young men completed 15 x 30 m sprints. Quadriceps and hamstring 

maximal voluntary contractions (MVC); central (voluntary activation, BFLH EMG) and 

peripheral (torque-frequency-relationship) hamstring fatigue; serum CK activity; treadmill 

running  and SLHL landing kinematics, were assessed before (PRE), immediately after 

(POST) and 48 h (POST48) after IS. 

Results Quadriceps and hamstring MVC decreased POST with an additional decrease of 

hamstring MVC POST48, while leg muscle soreness and CK activity increased over time 

(all P<0.05). There was no change in voluntary activation over time (P=0.099) but BFLH 

EMG decreased POST (P=0.022). There was an inverse relationship between BFLH PCSA 

and % change in hamstring MVC at POST (R2=0.421, P=0.003). Treadmill running 

demonstrated decreases in peak knee extension (P=0.047) during the late swing phase at 

POST. SLHL kinematics showed increased (i) peak hip flexion (P=0.004); (ii) hip range of 

motion in the transverse plane (p=0.025); and (iii) peak knee adduction (P=0.035) during 

the landing phase POST, and all kinematic values returned to baseline POST48.  

Conclusions Hamstring neuromuscular activation decreases immediately POST IS 

(possibly linked to central fatigue). However, the sustained reduction in hamstring MVC 

might be caused by ultrastructural muscle damage. Changes in both running and SLHL 

kinematics appear to decrease the elongation stress on the hamstrings POST. Therefore, 

48 h recovery following IS is insufficient and may increase injury risk. However, a larger 

BFLH PCSA appears to protect against hamstring fatigue, thus highlighting the importance 

of resistance exercise in reducing hamstring injury risk. 
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3.2 INTRODUCTION  

Hamstring muscle strain injury (HSI) is the most frequent injury type in sports (Crema et al., 

2017), particularly those that involve high-speed running, such as soccer (Ekstrand et al., 

2011, Opar et al., 2012, Brooks et al., 2006). Injury rate in professional soccer teams is 

positively correlated with  financial costs (Ekstrand, 2013), and is inversely correlated with 

team success (Eirale et al., 2013, Hägglund et al., 2013). Furthermore, the likelihood to 

sustain a HSI during training has increased by 4% per year in soccer since 2001 (Ekstrand 

et al., 2016). Therefore, an understanding of HSI is critical to address risk factors in future 

and could have important implications for sports clubs and athletes. 

Soccer players are required to perform intermittent sprints (IS), which are characterised by 

short-duration (<10 s) and relatively longer recovery times (>60 s)  between maximal sprint 

bouts, which have a different physiological demand compared to repeated-sprint exercises 

with shorter recovery times (<60 s)  (Bradley et al., 2010, Girard et al., 2011). The majority 

of HSIs occur during high-speed running in competition rather than in training and, during 

team sport competition, HSIs occur more often towards the end of each half (Ekstrand et 

al., 2011, Brooks et al., 2006, Woods et al., 2004). This suggests that fatigue may play a 

role in the development of HSI. Neuromuscular fatigue is responsible for acute as well as 

prolonged impairment of muscle function for days or even weeks and it can be classified 

as central fatigue when the origin is proximal to the neuromuscular junction (e.g. reduction 

in motivation), or as peripheral muscle fatigue when the origin is distal to the neuromuscular 

junction (e.g. disruption to excitation-contraction coupling, damage to the contractile 

proteins, impaired metabolism) (Byrne et al., 2004, Gandevia, 2001). Structurally damaged 

muscles exhibit prolonged strength loss and delayed-onset muscle soreness (DOMS) as 

well as the release of muscle-specific proteins [e.g. creatine kinase (CK)] into the circulation, 

which is referred to as exercise-induced muscle damage (EIMD) (Clarkson and Hubal, 

2002). 
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Several investigations have shown that both central and peripheral fatigue contribute to 

impaired muscle function in the short term following simulated soccer matches in both 

quadriceps (Thomas et al., 2017) and hamstring (Timmins et al., 2014, Marshall et al., 2014) 

muscle groups, and that mainly peripheral fatigue explains the prolonged recovery of 

muscle function in the quadriceps muscle group (Thomas et al., 2017, Rampinini et al., 

2011). Peripheral fatigue can be assessed in vivo via the torque-frequency relationship, as 

it gives an indication of reduced efficiency of the excitation-contraction coupling process, 

particularly at lower frequencies (i.e. 10-20 Hz) compared with higher frequencies (i.e. 50-

100 Hz) (Jones, 1996). Intermittent sprints have been shown to induce EIMD in both 

quadriceps (Howatson and Milak, 2009) and hamstring muscle groups (Chen et al., 2017, 

Verma et al., 2015), resulting in CK release into the circulation over the following days 

(Wiewelhove et al., 2015). To the best of our knowledge, however, no studies have 

investigated the contribution of both central and peripheral fatigue towards impaired 

function of the hamstring muscle group over time following an IS-intervention, which is an 

essential part in many team sports, such as soccer. 

Congested fixtures and substantial increases in typical match load during the last decade, 

including higher amounts of repeated high-speed running (Bush et al., 2015, Wallace and 

Norton, 2014), may not allow athletes to fully recover between matches, and poorly 

managed training workload together with insufficient recovery of previously fatigued and 

damaged muscles (probably caused by IS) is thought to increase HSI risk (Malone et al., 

2016, Malone et al., 2018, Chumanov et al., 2011, Duhig et al., 2016). High-speed running 

induces both high muscle activation (Chumanov et al., 2007) and high distal tendon load 

(Martin et al., 2018) of the hamstrings in the late swing phase, when the hip is flexed and 

the knee extended, suggesting a high muscle lengthening (eccentric) contraction during the 

deceleration of the shaft before initial foot contact (Chumanov et al., 2007). Hamstring 

muscle activation increases with running speed, and computational models suggest that 

the biceps femoris long head (BFLH) is relatively more eccentrically stretched during the late 

swing phase of sprinting compared to the other muscles within the hamstring muscle group 
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(Thelen et al., 2005, Chumanov et al., 2007), and this is presumed to be the mechanical 

mechanism underlying HSI in sprinting. However, direct measurements of the hamstring 

muscle-tendon-complex during (high-speed) running are difficult to perform and the 

underlying assumptions of the computational model regarding the contraction mode are 

under debate (Shield and Murphy, 2018, Van Hooren and Bosch, 2018). Further, a short 

BFLH fascicle length has been suggested to increase HSI risk (Timmins et al., 2016), as a 

shorter fascicle length might be more susceptible to being eccentrically overstretched due 

to fewer in-series sarcomeres (Brockett et al., 2004). To our knowledge, no study has 

investigated the relationship between BFLH architecture including physiological cross-

sectional area (PCSA), which is calculated by the total area of muscle fibres perpendicular 

to their long axes (Alexander, 1975), and the hamstring muscle response to exercise-

induced neuromuscular fatigue/damage over time.   

Neuromuscular fatigue might cause a number of biomechanical alterations. Exercise-

induced muscle damage within the quadriceps femoris together with the hamstring muscle 

group leads to changes in running kinematics (Dutto and Braun, 2004). More precisely, 

knee flexion range of motion (ROM) and hip tilt is decreased and hip rotation is increased 

in running 48 h after an EIMD-intervention (Paquette et al., 2017, Paschalis et al., 2007). 

However, it is not known whether IS influences kinematic patterns initially, and whether this 

can lead to prolonged changes in leg kinematics as changes in hip and knee joint motion 

(together) potentially reduce additional elongation stress on the hamstring muscles. Further, 

neuromuscular fatigue may increase the risk of non-contact anterior cruciate ligament (ACL) 

injury (Santamaria and Webster, 2010) as changes in movements (e.g. during landing) 

might result in less controlled cushioning knee/hip flexion during stop-tasks. It is debatable 

whether specific muscular or biomechanical parameters concerning knee (knee flexion 

angle, knee abduction angle and knee abduction moment), hip (hip adduction) and ground 

reaction forces might be associated with ACL injury, as the results of different prospective 

studies are inconclusive (Sharir et al., 2016, Rafeeuddin et al., 2016). 
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In light of the above considerations and limitations of previous studies, the purpose of the 

present study was to comprehensively investigate the physiological mechanisms and 

recovery pattern of neuromuscular fatigue to acquire the importance of EIMD in the context 

of the physiological response to IS. Using an interdisciplinary approach, the objectives were 

to quantify (i) the effect of IS on central and peripheral physiological fatigue parameters, 

particularly of the hamstring muscle group; (ii) the contribution of BFLH architecture on 

fatigue parameters; and (iii) the consequential effects of IS on knee and hip joint kinematics 

during running and single-leg hop landing (SLHL) over time. We hypothesised that (i) central 

and peripheral fatigue would both contribute to the immediate loss of muscle function in 

both the quadriceps and hamstring muscle groups, but that peripheral factors would mainly 

contribute to the sustained loss of muscle function; (ii) BFLH architecture (e.g. fascicle length 

and PCSA) would be associated with the response to hamstring fatigue; and that (iii) these 

changes would lead to reduced hip flexion and knee extension during the late swing phase 

of treadmill running as well as an increased knee flexion during landing (SLHL). 

 

3.3 MATERIALS AND METHODS   

3.3.1 Participants 

Twenty recreationally active and healthy young male Caucasians (mean ± SD; age 20.3 ± 

2.87 years; height 1.79 ± 0.05 m; body mass 75.0 ± 7.89 kg)  participated in this study. 

Written informed consent was obtained from each participant prior to starting the study, 

which complied with the Declaration of Helsinki and was approved by the Research Ethics 

Committee of Liverpool John Moores University. Participant enrolment began on January 

2016 and continued through September 2016, as there were two waves of recruitment. The 

month of the final test was April 2017. Participants were physically active but were excluded 

if they had performed strength training of the lower limbs within 6 months prior to 

participation in the study or if they performed more than three structured exercise sessions 

per week, as determined via physical activity questionnaire (Baecke et al., 1982b). Further 
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exclusion criteria were (i) any lower limb musculoskeletal injury in the past 12 months; and 

(ii) age under 18 or above 35 years; as assessed via interview and health questionnaire.  

3.3.2 Experimental Design  

Participants were required to visit the temperature-controlled laboratory (between 22 and 

24°C) on three occasions: (i) familiarisation, (ii) testing day including assessments before 

(PRE) and after (POST); and (iii) assessments 48 h (POST48) after the IS-intervention. 

Prior to the testing day, participants were familiarised with the assessments as well as with 

the IS (by performing 2-3 submaximal sprints) and BFLH architecture of the hamstring 

muscle group was assessed via ultrasound. On the test day, participants performed an IS-

protocol of 15 x 30 m sprints to induce neuromuscular fatigue/damage in both the 

quadriceps femoris and hamstring muscle groups. All tests were performed at the same 

time of the day for each participant. Further, participants were instructed to maintain their 

normal routine (including eating habits), to refrain from drinking alcohol and to avoid any 

strenuous exercise 48 h prior to testing and throughout the study. 

The test battery was always performed in the same order with the right leg of each 

participant and comprised (i) venous blood sampling [for analysing serum interleukin-6 (IL-

6) concentration and CK activity]; (ii) hamstrings and quadriceps muscle soreness via visual 

analogue scale (VAS); (iii) isometric maximum voluntary contraction (MVC) torque of the 

knee-extensors, as well as both voluntary and involuntary [voluntary muscle activation (VA) 

and torque-frequency relationship via electrical stimulation] MVC torque of the knee-flexors 

together with normalised BFLH EMG (see below); and (iv) single-leg horizontal hop landing 

(SLHL) and treadmill running (4.17 m s−1) kinematics of the right leg (8-camera motion 

capture system) PRE and POST48 of the repeated maximal sprint protocol. At POST test, 

kinematic assessments were performed first followed by the aforementioned order of the 

assessment for practical reasons. 
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3.3.3 Maximal Repeated Sprint Protocol 

The IS intervention consisted of 15 repetitions of 30 m maximal sprints with a deceleration 

zone of 12 m (IS-intervention). The 30 m distance was chosen as the upper average of both 

the total sprinting distance (346 ± 115 m) of wide-midfielders and the mean recovery time 

(70.2 ± 25.1 s) between sprint bouts in soccer (Bradley et al., 2010, Bradley et al., 2009), 

which allows the athlete to maintain the performance of the sprint bouts (Balsom et al., 

1992). Similar protocols have been used elsewhere (Timmins et al., 2014, Chen et al., 2017, 

Verma et al., 2015). Prior to the IS-intervention, a five-minute warm-up was performed, 

comprising jogging, dynamic stretching and three self-paced 20 m runs at 60%, 80%, 100% 

of perceived top speed. During the IS-intervention, the participants were instructed to sprint 

maximally (verbal encouragement) and to stop within the deceleration zone. Further, they 

were instructed to move slowly back to the start line and to sit on a chair for the remaining 

time until the next sprint. The recovery comprised 90 s between repetitions and after every 

5th repetition, the participants were allowed to rest for 3 min. Sprinting time during trials was 

measured and controlled with timing gates (Brower Timing Systems, Draper, UT, USA), 

which were placed on the start and finish line. Participants started 30 cm before the start 

line to avoid interfering with timing gates with the arms upon initial acceleration (Buchheit 

and Mendez-Villanueva, 2013). Further, heart rate (Polar Oy, Kempele, Finland) and rating 

of perceived exertion (RPE) (Borg, 1982) were recorded before and after each repetition. 

Water was available ad libitum. Participants were instructed to wear the same footwear for 

each testing day. As there was an upsurge in speed of the final sprint, fatigue was assessed 

with the performance decrement score using the following formula (Glaister et al., 2008, 

Fitzsimons et al., 1993):  

𝐹𝑎𝑡𝑖𝑔𝑢𝑒 = (100 𝑋 (𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑟𝑖𝑛𝑡 𝑡𝑖𝑚𝑒 ÷ 𝑖𝑑𝑒𝑎𝑙 𝑠𝑝𝑟𝑖𝑛𝑡 𝑡𝑖𝑚𝑒)) − 100 

Where total sprint time = sum of time from all 15 sprints; and ideal sprint time = total number 

of sprints (15) x fastest repetition sprint time. This decrement score was also used to 

quantify fatigue regarding sprinting time, heart rate and RPE. 
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3.3.4 Maximal Muscle Contraction (MVC) 

Three test sessions were conducted with an isokinetic dynamometer (IKD; Humac Norm, 

CSMI Solutions, Massachusetts, USA). As isokinetic maximum voluntary contractions 

(MVC) torque tests are only weak predictors for HSI (van Dyk et al., 2016), we decided to 

focus on isometric MVC extension and flexion torque at optimal knee strength angles  

(optimal force-length relationship) to avoid further fatigue of the participants. Torque signals 

were interfaced with an acquisition system (AcqKnowledge, Biopac Systems, Santa 

Barbara, USA) for analogue-to-digital conversion and sampled at a frequency of 2 kHz. The 

participant was seated in an upright position and securely fastened with inextensible straps 

at the chest and waist while the arms were held crossed above the chest. The tibiofemoral 

epicondyle was set parallel to the axis of rotation of the lever arm, and a shin pad of the 

lever arm was strapped to the leg, 2 cm above the centre of the lateral malleolus. A Velcro 

strap secured the distal thigh just above the knee. The hip joint angle was set to 85° (180° 

= supine position) in order to analyse the knee flexor muscle group at a sprint specific angle 

associated with the late swing phase of sprinting (Guex et al., 2012). Participants were 

instructed to maximally extend and flex their leg to measure knee ROM. Knee extension 

angle was then set to 80º knee flexion (0º = full knee extension) based on results of previous 

findings which have shown that this is the optimal joint angle for peak knee extension 

moment in healthy young men (Erskine et al., 2009). Knee flexion (30º) angle was chosen 

for the optimal joint angle for peak knee flexion based on results from our pilot study. This 

was in line with sprinting kinematics that maximal hamstring muscle lengths occur during 

late swing phase when the knee is flexed between 30° and 45° (Thelen et al., 2005). 

Published studies during the time of data collection used a similar angle of MVC knee flexion 

torque (Nedelec et al., 2014, Kirk and Rice, 2016). Prior to isometric MVC assessments, 

participants underwent a standardised warm up consisting of 10 submaximal isokinetic leg 

extensions (60ºs-1). Participants then performed three isometric MVCs of both quadriceps 

and hamstring muscle groups and with 60 s rests between each MVC for both knee flexion 

angles. The definition of MVC torque was the highest torque achieved during three maximal 
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contractions lasting about 3 s. Throughout the tests, participants received verbal 

encouragement and biofeedback (MVC outputs) were projected onto a screen in front of 

the participant  (Erskine et al., 2009). 

 

3.3.5 Hamstring Muscle Voluntary Activation  

To measure hamstring muscle voluntary activation capacity via the interpolated twitch 

technique, stimulation electrodes (12.5 mm x 7.5 mm self-adhesive electrodes (DJO Global, 

California, USA) were used. The general procedure has been described elsewhere (Erskine 

et al., 2009, Erskine et al., 2010b, Marshall et al., 2014). Briefly, the anode was placed 

proximal to the popliteal fossa, and the cathode was placed beneath the gluteal fold and 

slightly medial to avoid activation of the VL. Protocols were completed with electrical 

stimulation pads carefully taped down during the sprinting protocol and were additionally 

marked on the skin with a permanent marker, to ensure a precise relocation for the POST 

and POST48 tests. Stimulation was delivered by a high-voltage stimulator (DS7AH; 

Digitimer Ltd., Welwyn Garden City, United Kingdom), and consisted of a doublet using two 

200-V rectangular pulses (200 µs pulse width) with an inter-pulse duration of 10 ms (100 

Hz stimulation). During each experimental session, relaxed hamstring muscles were 

stimulated while participants were fixed in the IKD with the same setting for MVC knee 

flexion (85º back rest, 30 º knee flexion). The amplitude started with 50 mA to familiarise 

the participants to the stimulation and was gradually increased in 20 mA increments until a 

plateau in doublet torque was achieved. We decided to use the individual maximal 

stimulation (100 %) intensity despite the fact that other publications used supramaximal 

stimulation (110-130 %) (Marshall et al., 2014) as we experienced lower MVC knee flexion 

torque output beyond 100 %. That setting was applied during all maximal contractions in 

the experimental session (average intensity 162.0 17.4 mA, range; 130–200 mA). 

The maximal doublet stimulation was used two minutes later to elicit resting maximal 

doublet torque in the resting state (control doublet), followed 2.5 s later by a second 

(superimposed) doublet during an isometric knee flexion MVC. The superimposed doublet 
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torque was always calculated manually from careful selection and inspection of the 

respective time periods compared to a normal increase in voluntary torque. Voluntary 

activation was calculated according to the following equation:  

VA (%) = [1- (superimposed doublet torque/ control doublet torque)] 

 

3.3.6 Hamstring Muscle Group Maximal Compound Muscle Action Potential 

(Mmax) 

The hamstring muscle group was stimulated with single square wave twitch pulses (200 µs 

duration) using an electrical stimulator. While the participant sat resting on the isokinetic 

dynamometer with the knee angle set at 30° (0° = full knee extension), compound muscle 

action potentials (M-waves) were evoked with 10 to 20 mA incremental amplitudes until a 

maximal M-wave (Mmax) was achieved  (average amplitude necessary to evoke Mmax was 

166.8 ± 19.8 mA, range; 130–210 mA). The Mmax was defined as the mean peak-to-peak 

sEMG response from the three highest observed M-waves. Mmax was used for normalisation 

of hamstring sEMG during knee flexion MVC (Lanza et al., 2018). Due to technical issues, 

BFLH sEMG data normalised to Mmax data was only available for n = 13. 

 

3.3.7 Involuntary Peak Rate of Isometric Troque Development  

The highest involuntary peak rate of isometric torque development (pRTD) was determined 

in the last three involuntary contractions of the maximum compound muscle action potential 

of the hamstrings (Mmax) protocol (see above). Involuntary pRTD was calculated as peak 

torque divided by time, i.e as the steepest rise in torque between the manually 

determined torque onset (Erskine et al., 2014a) to peak involuntary torque.  
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3.3.8 Surface Electromyography and Antagonist Co-activation 

Surface electromyographic (sEMG) activity was recorded from the vastus lateralis (VL) and 

BFLH to determine the extent of antagonist muscle co-activation during MVCs of the 

respective muscle group. Previous reports have shown that VL and BFLH were the 

representative muscles for the quadriceps femoris (Erskine et al., 2009) and for the  

hamstring muscle group (Kellis and Baltzopoulos, 1999), respectively. This procedure has 

been reported in detail elsewhere (Reeves et al., 2004b). Briefly, once the muscles were 

identified and the skin surface was shaved and cleaned with 70% ethanol, two bipolar Ag-

AgCl surface electrodes with an inter-electrode distance of 2 cm (Noraxon duel sEMG 

electrode, Noraxon, Scottsdale, USA) were placed along the sagittal axis over the muscle 

belly at 33% of the respective muscle length from the distal end [according to SENIAM 

guidelines (Hermens et al., 2000, Watanabe et al., 2016)] and one reference electrode 

(Ambu Blue, Ambu, Copenhagen, Denmark) was positioned over the medial tibial condyle. 

The exact location of the electrodes were marked on the participant’s skin with a permanent 

marker to ensure precise electrode repositioning for the following assessments. 

Surface EMG signals were sampled at 2000 Hz (Biopac Systems, Santa Barbara, USA) 

and then band-pass filtered between 10–500 Hz (AcqKnowledge, Biopac Systems, Santa 

Barbara, USA). Surface EMG activity of both the agonist and antagonist muscles were 

analysed by calculating the root mean square of the sEMG signal of a 500-ms epoch around 

peak MVC. To compare BFLH sEMG activity at all three time points, BFLH sEMG of the 

hamstring MVC at 30° was normalised to the evoked compound muscle potential (Mmax) of 

the BFLH (see above) (Burden, 2010).  Antagonist muscle co-activation (i.e. quadriceps 

activation during MVC knee flexion at 30° knee flexion, or hamstring activation during MVC 

knee extension at 80° knee flexion) was calculated with the following formula (where 

EMGmax is the maximum sEMG of the antagonist muscle when acting as an agonist at the 

same knee joint angle):   

𝐴𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑚𝑢𝑠𝑐𝑙𝑒 𝑐𝑜 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =
𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 

𝐸𝑀𝐺𝑚𝑎𝑥 
 × 100 
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Torque signals, electrical stimuli, and sEMG activity were displayed on a computer screen, 

interfaced with an acquisition system (AcqKnowledge, Biopac Systems, Santa Barbara, 

USA) used for analogue-to-digital conversion. Co-activation data were available for flexion 

n = 12; and extension n=10. 

 

3.3.9 Torque-frequency Relationship 

The torque-frequency relationship was determined by percutaneous electrical stimulation 

of the hamstring muscle group at 1 Hz and 10, 15, 20, 30, 50 and 100 Hz for 1 s each in a 

random order and with 15 s rest between each stimulation. The stimulus intensity for 100-

Hz stimulation was the amplitude necessary to elicit ~20 % MVC knee flexion torque at 

PRE, and the same amplitude was used for the same test at POST and 48POST. The 

absolute torque at each frequency was normalised to the torque at 100 Hz for each time 

point (PRE, POST and POST48). 

 

3.3.10 Delayed Onset Muscle Soreness (DOMS) 

Using a visual analogue scale (VAS) that consisted of a 100 mm line (scale 0-10 cm; 0 

cm=no soreness; 10 cm= unbearably painful), in conjunction with both a three-repetition 

bilateral squat (predominantly to determine quadriceps femoris muscle soreness) (Scott 

and Huskisson, 1979) and lunges (predominantly to determine hamstring muscle 

soreness), participants rated their perceived lower limb muscle soreness along the muscle 

length immediately after each movement. It has been reported that VAS is a valid and 

reliable measure of muscle soreness [intraclass correlation coefficient (ICC) > 0.96] (Bijur 

et al., 2001). Muscle soreness was also measured by recording the force required to elicit 

tenderness at nine fixed sites on the skin over the quadriceps (distal, central and proximal 

locations of the three superficial quadriceps heads, VL, vastus medialis and rectus femoris) 

and six sites on the hamstrings (distal, central and proximal locations of both BFLH and the 

medial hamstrings), which were previously marked with a permanent marker to ensure the 
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same measuring position PRE, POST and POST48. At each site, a gradually increasing 

force was applied by the investigator with an algometer (FPK/FPN Mechanical Algometer, 

Wagner Instruments, Greenwich, USA) with a maximum of 10 kg. Lying in the prone position 

with the hip and knee fully extended and muscles relaxed, the participant was asked to 

indicate when the sensation of pressure changed to discomfort, and the force at the point 

was recorded (Newham et al., 1987). 

 

3.3.11 Blood Samples 

A 10 mL blood sample was drawn from an antecubital vein in the forearm and collected into 

a serum vacutainer (BD Vacutainer systems, Plymouth, UK). The blood samples were 

obtained at each time point and left at 22-24C for 30 min to allow clotting, and then kept 

on ice when necessary. Serum samples were centrifuged at 1,300 g for 15 min at 4°C. All 

samples were then aliquoted into 1.5 mL microcentrifuge tubes [Axygen (Corning), New 

York, USA] and stored at -80C until subsequent analysis (see below).  

 

3.3.12 Serum Interleukin-6 (IL-6) Concentration 

Serum samples were assayed for IL-6 concentration using commercially available human 

IL-6 enzyme linked immunosorbent assay (ELISA) kits (Quantikine®, R&D systems, 

Minneapolis, MN, USA) according to the manufacturer's instructions. Briefly, the serum 

samples were thawed and aliquots (200 μL) of each diluted sample, positive control or 

standard, with known concentrations of human IL-6 to establish standard values, were 

plated on a coated (monoclonal antibody specific for human IL-6) 96-well microtitre plate 

for 2 h. After washing, human IL-6 conjugate (200 μL) was added to each well and incubated 

for 2 h at room temperature (between 22 and 24C). After the wells were washed, substrate 

solution (200 μL) was added to each well at room temperature (between 22 and 24C) and 

protected from light. After adding 50 μL of stop solution to each well, the intensity of the 

colour produced after 20 min was measured with a Thermo Multiskan Spectrum microplate 
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reader (Thermo Fisher Scientific. Waltham, MA. USA) at 450 nm and values were 

calculated with Excel 365 (Microsoft, v. 365, USA) by generating a four-parameter logistic 

(4-PL) curve fit. The minimum detectable dose of human IL-6 was 0.70 pg/mL. 

 

3.3.13 Serum Creatine Kinase Activity  

Creatine kinase (CK) activity was assayed using a commercially available CK assay 

(Catachem Inc., Connecticut, NE, USA), as described in detail elsewhere (Sharples et al., 

2011, Owens et al., 2014). Briefly, 10 μL blood serum were loaded onto a 96-well UV plate. 

The CK reaction reagent and diluent (Catachem) were prepared as per the manufacturer’s 

instructions and heated for 2 min at 37°C. The reconstituted reagent contained the following 

active ingredients: 30 mmol/l PCr, 2 mmol/l ADP, 5 mmol/l AMP, 2 mmol/l NAD, 20 mmol/l 

N-acetyl-L-cystine, 3,000 U/l hexokinase, 2,000 U/l G-6-PDH, 10 mmol/l 1 Mg2, 20 mmol/l 

D-glucose, 10 mol/l di(adenosine 5=) pentaphosphate, and 2 mmol/l EDTA, buffered to pH 

6.7. The reagent mixture was then added to the samples and the change in absorbance 

monitored continuously over 20 min in a Thermo Multiskan Spectrum plate reader at a 

wavelength of 340 nm. 

 

3.3.14 Capillary Blood Lactate Concentration  

All lactate probes were cleaned and calibrated in accordance with the manufacturer’s 

instructions. Briefly, Capillary blood samples were taken from the finger-tip Safety-Lancet 

Extra 18G needle (Sarstedt; Nümbrecht, Germany) on testing day at rest before and 

immediately after the IS-intervention. Blood samples were analysed within 60 seconds of 

collection using a portable blood lactate analyser (Arkray Lactate Pro; Kyoto, Japan).  

 

3.3.15 Ultrasound  

Architectural parameters of the BFLH were assessed using B-mode ultrasound imaging. 

Participants were in the prone position with the hip and knee fully extended and muscles 
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relaxed. The BFLH was chosen, as this muscle is the most commonly injured hamstring 

muscle during team sports, particularly during sprinting (Slavotinek et al., 2002, Ekstrand et 

al., 2011). Longitudinal and cross-sectional panoramic ultrasound images of the right BFLH 

were obtained (Philips EPIQ 7 Ultrasound System, Bothel, USA). The transducer (L18-5, 5-

18 MHz wave frequency; aperture 38.9 mm) was carefully placed on the skin with 

transmission gel and BFLH was scanned (i) longitudinally from its distal (=0%) to proximal 

(=100%) myotendinous junction along a line drawn with a permanent marker to mark the 

central pathway between the medial and lateral aspects of the muscle (incorporating the 

intra-muscular aponeurosis (Evangelidis et al., 2014) (Figure 3-1); and (ii) cross-sectionally 

at 20, 40, 60 and 80% along the total muscle length which was tape measured (Figure 3-2).  

 

Figure 3-1 Longitudinal image of biceps femoris long head, assessment of the biceps femoris long 
head is highlighted (total muscle length and fascicle length together with pennation angle at 50% of 
total muscle length). 

 
All images were analysed offline (ImageJ, version 1.51s, National Institutes of Health, 

Bethesda, USA). Two images for each of the four cross-sectional points were recorded for 

calculating BFLH muscle volume. The volume of the muscular portion between every two 

consecutive scans was calculated with the following equation: 

𝑉𝑜𝑙𝑢𝑚𝑒 =
1 

3 
∗ 𝑑 ∗ (𝑎 + √(𝑎𝑏) + 𝑏) 

Where a and b are the anatomical cross-sectional areas of the muscle of two consecutive 

cross-sectional scans and d is the interval distance between the cross-sectional area 

measurements. The volume of the entire muscle was calculated by summing up all of the 

inter-scan muscular volumes (Esformes et al., 2002, Reeves et al., 2004a). 
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Figure 3-2 Cross-sectional image at 60% muscle length (=100% proximal myotendinous junction), 
biceps femoris long head is highlighted. 

 
Two longitudinal images were then recorded to allow for the estimation of passive BFLH 

muscle fascicle length and pennation angle, which were both assessed in 3 fascicles at 50 

% of the total length of BFLH. This point was measured offline (ImageJ). A comparison 

between offline and tape measurements of the total BFLH length revealed a very high 

correlation (R2=0.958, P<0.001). The calculation of the total fascicle length was measured 

by tracing the fascicle echo from the upper aponeurosis to the intra-muscular aponeurosis 

of the BFLH. Muscle fascicle pennation angle was determined as the angle between the 

muscle fascicular paths and their insertion into the intra-muscular aponeurosis. The mean 

of the three measurements for each parameter were used to determine both fascicle length 

and pennation angle of the BFLH muscle. PCSA was calculated by dividing BFLH volume by 

its fascicle length. During the time of data collection, a similar methodological approach was 

published (Seymore et al., 2017). One longitudinal image of one participant in the present 
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study was not analysed due to low image quality. Ultrasound scans and image analysis was 

performed by the same investigator. 

 

3.3.16 Kinematic and Kinetic Data 

Three-dimensional kinematic and kinetic data were synchronously collected at 500 Hz using 

an eight-camera motion analysis system (Qqus 300+; Qualisys, Gothenburg, Sweden) 

together with a ground-embedded force plate (90 x 60 cm, 9287B; Kistler Holding, 

Winterthur, Switzerland) at 1,500 Hz. The data were filtered with a digital dual low-pass 

Butterworth filter at 20 Hz for motion and 60 Hz for force, as previously described (Verheul 

et al., 2017).  

 

Figure 3-3  Motion capture system was used to track the three-dimensional positions of (i) reflective 
markers placed on palpable anatomical landmarks (segment defining markers); and (ii) marker 
clusters on plates attached on the lateral side of the thigh and shank (both 4 markers) of the right leg 
(tracking markers) (A). Markers were tracked offline with Qualysis Track Manager Software (B) and 
hip and knee angle and angular velocities were calculated in visual3D software (C). 

 
Retroreflective markers (12mm diameter) were placed on anatomical landmarks on the right 

leg and pelvis, as previously described (McClay and Manal, 1999) (Figure 3-3). One 

standing static and two functional motion calibration trials were recorded of the participant 

PRE, POST and POST48. For the static trial, participants stood with their feet approximately 

shoulder width apart and knees fully extended. This static trial determined local coordinate 

systems, the location of joint centres, and the foot, shank, thigh, and pelvis segment lengths 
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of each participant. The functional trials defined functional hip joint centres (Schwartz and 

Rozumalski, 2005) and knee joint axes (Robinson and Vanrenterghem, 2012). Kinematic 

data were tracked using Qualisys Track Manager Software (Qualisys). Data processing and 

analysis were undertaken in Visual3D (C-Motion, Germantown, MD). To examine any 

changes between the time points, joint angles were normalised relative to the static trial of 

the accompanying time point for minimising the influence of potential slightly different 

marker positions between the trials. Lower extremity 3D joint angles and angular velocities 

were calculated using an X-Y-Z Cardan angle rotation sequence. Investigated variables 

included the knee and hip angles at the instant of landing, peak knee and hip angles, as 

well as ROM and time (i) from landing to the peak value (SLHL); and (ii) during stance and 

swing phase (treadmill run), for all three planes, were calculated as described in previous 

studies (Verheul et al., 2017, Apps et al., 2017). 

 

3.3.17 Single-leg Horizontal Hop Landing 

The distance of a maximum unilateral horizontal right leg hop was recorded at PRE with a 

measuring tape. Landing kinematics of a single-leg horizontal hop landing (SLHL) 

movement were subsequently analysed following an 80% maximal hop on the right leg onto 

a force plate. The same distance was used for the following two assessments (POST and 

POST48). The first three successful trials were digitised and averaged for each participant. 

Jamkrajang et al. (2017) have recently shown that a reduced lower limb model showed 

worse agreement for whole-body balance regarding jump tasks, when practised with 

swinging arms compared to a full-body model, compared to the full-body model (gold 

standard), for which many markers need to be placed on the body. Therefore, the participant 

was asked to perform SLHL by holding the arms akimbo and without crossing the knees 

when generating forward momentum (to eliminate a backswing). Knee and hip angles at 

the instant of landing, peak knee and hip angles, as well as ROM and time from landing to 

the peak value, for all three planes, were calculated between the initial contact with the 
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force plate and 200 ms after the landing. The initial contact was determined when the 

vertical force exceeded a threshold of 20 N.  

 

3.3.18 Motorised Treadmill Run 

Participants ran on a motorised treadmill (HP Cosmos Pulsar; Nussdorf, Germany) for 30 s 

at 4.17 m s−1. The selected speed is based on pilot testing demonstrated that 15 km/h was 

the fastest speed on a motorized treadmill where the participants still felt comfortable. 

Motion analysis data were recorded for the last 10 s of the run and data were analysed for 

at least 6 consecutive strides.  Peak knee and hip angle data, for all three planes, were 

calculated (i) between the initial contact and terminal stance of foot; and (ii) between initial 

and terminal swing phase. The touchdown of the foot during the treadmill run was 

determined from the kinematic data as occurring at the local minima and the toe-off during 

running as the local maxima of the vertical velocity of the head of the fifth metatarsal marker 

on the foot (Maiwald et al., 2009).  

 

3.3.19 Reliability of the Current Methods 

The test-retest reproducibility for isometric knee extensor MVC is high, with a coefficient of 

variation (CV) of 3.9% (Erskine et al., 2009). Likewise, the test-retest reproducibility for 

assessing voluntary activation via ITT is also high, with a CV of 2.4% (Marshall et al., 2014). 

The test-retest reproducibility for antagonist muscle (hamstring) co-activation (assessed via 

sEMG activity in the BFLH) during an isometric knee extension MVC, on the other hand, 

has been reported to be quite low, with a CV of 14.39% (Erskine et al., 2009). The test-

retest reproducibility for ultrasonographic measurementis in the middle of the BFLH is high 

for measuring muscle length (ICC=0.93; r=0.92), fascicle length (ICC=0.79; 0.55–0.91) and 

angle (ICC=0.80; range 0.56–0.91) (Freitas et al., 2018). Using panoramic ultrasound mode 

is associated with an excellent ICC 2, k (SEMs): fascicle length, 0.99 (0.11 cm); pennation 
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angle, 0.88 (1.1°); volume, 0.99 (2.07 cm3), and PCSA, 0.99 (0.42 cm2) (Seymore et al., 

2017). 

 

3.3.20 Data Analysis 

One-way ANOVAs with repeated-measures were performed to determine whether there 

was a significant main effect for time (within subject factor) for the following dependent 

variables: MVC torque, voluntary muscle activation, antagonist muscle co-activation, 

muscle soreness (VAS-squat, VAS-lunge and algometer), RPE, CK activity, IL-6 

concentration, and for kinematics data (hip and knee angle parameters). MVC torque data 

were analysed for interactions and main effects for muscle group and time using two-way 

mixed design ANOVAs, comparing differences between muscle groups across 3-time 

points; PRE, POST, and POST48. For within test comparisons, either, independent t-tests, 

or one-way ANOVAs were used where appropriate. For the torque-frequency relationship, 

normalised torque at each frequency was analysed using a two-way repeated measures 

ANOVA with stimulation frequency and time (PRE, POST and POST48) as the independent 

variables. Separate one-way repeated measures ANOVAs were used to determine if the 

change in normalised torque was similar across all stimulation frequencies at each time 

point. Linear regression analyses were used to analyse the relation between architectural 

parameters of the BFLH (volume, fascicle length, fascicle pennation angle and PCSA) and 

fatigue biomarkers (relative MVC loss normalised to PRE MVC), serum CK activity, serum 

IL-6 concentration, muscle soreness, muscle ROM or changes in ROM during treadmill 

running or SLHL). Standard guidelines concerning violation of the sphericity assumption to 

adjust the degree of freedom of the F-test by the Huynh-Felt epsilon if epsilon is greater 

than 0.75 and to use the more stringent Greenhouse-Geisser adjustment if epsilon is less 

than 0.75 were followed (Girden, 1992). Results were expressed as mean ± SD, unless 

otherwise stated, with statistical significance set at P<0.05. All MVC data were analysed 

with AcqKnowledge software 4.4 (Biopac-Systems Inc., Goleta, USA) and SPSS 23 
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Software (IBM Inc., Armonk, NY: IBM Corp) was used for statistical analysis. Occasional 

missing data are reflected in the reported degrees of freedom. 

 

3.4 RESULTS   

3.4.1 Effect of IS-Intervention on Fatigue 

There was a main effect of time for heart rate, sprinting time, RPE and lactate with all 

parameters increased POST IS-intervention (all P < 0.001), indicating fatigue had occurred. 

Lactate significantly increased from PRE (1.63 ± 0.45 mmol/L) to POST (9.82 ± 3.62 

mmol/L). The average sprinting speed was 6.48 ± 0.33 m s-1. The sprinting performance 

decrement was 3.98 ± 2.99 % during the IS-intervention but this varied between 1.49 % and 

15.24 %. RPE increased by 96.5 ± 35.2 % during IS-intervention with a variation from 26.8 

% to 134.4 % between participants.  

There was no main effect for time regarding voluntary muscle activation or for any EMG 

activity assessments of the BFLH or VL (all P>0.05; Table 3-1) except for BFLH flexion 

EMGmax/Mmax (FF2,24=4.35, P=0.022). Post-hoc independent t-test revealed a significant 

decrease in normalised BFLH EMG from PRE to POST (P=0.019), but this change was not 

evident at POST48 (P=0.157).  

 
Table 3-1 Effect of the intermitted sprint-intervention on fatigue Markers (mean ± SD). 

Assessment [unit] n PRE POST POST48 F-Test P Value 

Hamstring Muscle 

Voluntary Activation [%] 

20 98.5 ± 2.64 94.1 ± 7.83 96.9 ± 5.96 F(1.4,38) = 2.75 0.099 

BFLH Flexion 

sEMGmax/Mmax [%] 

14 3.32 ± 1.33 2.27 ± 0.72 2.85 ± 1.16 F(2,24) = 4.35 0.022* 

VL Extensions EMGmax 

[mV] 

15 0.50 ± 0.29 0.47 ± 0.34 0.51 ± 0.34 F(2,24) = 0.17 0.772 

QF CoA During 30 

Flexion MVC [%] 

12 5.74 ± 7.23 4.08 ± 6.86 4.33 ± 8.76 F(2,22) = 0.50 0.613 

Hamstring CoA During 

80 Extension MVC [%]  

10 4.79 ± 3.37 6.62 ± 3.79 7.51 ± 4.16 F(2,18) = 1.64 0.223 

BFLH – Biceps femoris long head; CoA – Co-Activation; VL – Vastus lateralis; sEMG – surface 

Electromyography; QF – Quadriceps femoris; * Significant differences between PRE to POST. 
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There was an interaction between time x stimulation frequency regarding torque-frequency 

relationship (n=19; F4.9,216=6.62, P<0.001). Post-hoc one-way ANOVA showed significant 

differences between PRE and POST, between POST and POST48 (both P<0.005), but not 

between PRE and POST48 (Figure 3-4). Post-hoc independent t-tests revealed significant 

differences between PRE and POST, and between POST and POST48 at frequency 10, 

15 and 20 Hz (all P<0.05), all three time points at 30 Hz (P<0.05), and between PRE and 

POST, and between PRE and POST48 50 Hz (both, P<0.05).  

 

Figure 3-4 Torque-frequency relationship, all frequencies normalised to 100 Hz. * significant 
differences between before (PRE) and immediadtely after (POST) IS-intervention, P<0.05; # 
significant differences between PRE and POST, and between POST and POST48, P<0.05. Results 
were expressed as mean ± standard error of mean. 

 

3.4.2 Effect of IS-Intervention on MVC, pRTD, Muscle Soreness and Serum 

Markers of EIMD 

Isometric hamstring and quadriceps MVC, muscle soreness (all P<0.001) and serum CK 

activity (F1.3,34=5.98, P=0.017) as well as IL-6 concentration (F1.3,34=5.96, P=0.018) showed 
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a main effect of time, indicating EIMD had occurred following IS-intervention (Table 3-2). 

There was a correlation between quadriceps and hamstring relative MVC torque loss (% 

changes measured PRE to POST) (R2=0.299, F1,18=7.66, P=0.013). Involuntary pRTD 

decreased from PRE to POST (P<0.001) and remained decreased POST48 (P=0.007). 

Serum CK activity was significantly elevated POST (PRE: 27.9 ± 23.3 mU/mL; POST: 53.8 

± 45.3 mU/mL; P=0.027) and further increased POST48 (99.3 ± 104.5 mU/mL; P=0.012) 

compared to PRE. Serum IL-6 concentration was significantly elevated POST (PRE: 1.89 

± 3.10 pg/mL; POST: 7.68 ± 9.95 pg/mL; P=0.027) and reverted to baseline values POST48 

(1.59 ± 3.46 pg/mL; P>0.05). There was a main effect of time regarding sensation of 

pressure for both quadriceps (F2,28=8.27, P=0.002) and hamstring (F2,28=4.37, P=0.022) 

muscle group. Sensation of pressure on the quadriceps was significantly different POST 

(8.01 ± 1.42 kg/cm2; P=0.019) and POST48 (7.61 ± 1.36 kg/cm2; P=0.005) compared to 

PRE (8.66 ± 1.63 kg/cm2). For pressure sensation on the hamstrings, POST48 (7.59 ± 2.09 

kg/cm2) showed significant differences compared to PRE (8.58 ± 1.56 kg/cm2; P=0.047) 

and POST (8.51 ± 1.969 kg/cm2; P=0.011). However, the changes in sensation of pressure 

over time were smaller compared to both squat and lunge muscle soreness assessments 

(Table 3-2). 

 

Table 3-2 Effect of IS-Intervention on EIMD-Biomarkers (mean ± SD). 

Assessment [unit] PRE POST POST48 F-Test P Value 

QUAD MVC [Nm] 270.5 ± 51.6 222.4 ± 52.5 243.0 ± 71.3 F(2,38) = 

16.55 

<0.001* 

HAM MVC [Nm] 142.5 ± 25.0 124.8 ± 29.9 112.4 ± 30.1 F(2,38) = 

25.12 

<0.001* 

Involuntary HAM 

pRTD (Nms-1) 

214 ± 51.8 137 ± 43.6 178 ± 45.5 F(2,34) = 

26.57 

<0.001* 

Squat Muscle 

soreness [cm] 

0.20 ± 0.41 1.95 ± 1.61 2.87 ± 1.71 F(2,38) = 

28.62 

<0.001* 

Lunge Muscle 

soreness [cm] 

0.30 ± 0.57 2.30 ± 2.08 3.48 ± 2.07 F(2,38) = 

17.02 

<0.001† 

Range of Motion [°] 120.3 ± 6.76 115.7 ± 6.77 116.0 ± 6.27 F(2,38) = 

9.33 

<0.001† 
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CK activity [mU/mL] 27.9 ± 23.3 53.8 ± 45.3 99.3 ± 104.5 F(1.3,34) = 

5.98 

0.017† 

IL-6 concentration 

[pg/mL] 

1.89 ± 3.10 7.68 ± 9.95 1.59 ± 3.46 F(1.3,34) = 

5.96 

0.018# 

QUAD – Quadriceps muscle group; HAM – Hamstring muscle group; MVC – Maximal voluntary 

contraction; pRTD – Peak Rate of Torque Development; CK – Creatine Kinase; IL-6 – 

Interleukin-6; * Significant differences between all time points; † Significant differences between 

PRE to POST and POST48; # significant differences between POST to PRE and POST48.  

 

There was an interaction between time and muscle groups concerning relative MVC 

(normalised to PRE MVC) torque loss (F1.4,38=7.92, P=0.004). Percentage change in relative 

MVC decreased similarly in both quadriceps and hamstring muscle groups POST (Figure 

3-5). However, quadriceps MVC recovered towards baseline values 48POST, whilst 

hamstring MVC continued to decrease from POST to POST48 (P=0.038).  

 
Figure 3-5 Comparison of relative maximal voluntary contraction (MVC) loss between hamstring and 
quadriceps muscle group before (PRE), immediately after (POST) and 48h after (POST48) the 
intermittent sprint intervention. * signifcant differences compared to PRE, P< 0.001; # significant 
differences between quadriceps and hamstring MVC, P< 0.05. Results were expressed as mean ± 
standard error of mean. 

 

3.4.3 Architecture of the Biceps Femoris Long Head 

The values of architectural parameters are presented in Table 3-3. 
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Table 3-3 Architectural parameters of Biceps femoris long head (mean ± SD). 

Muscle length 

[cm] 

Fascicle length 

[cm] 

PCSA 

[cm2] 

Volume 

[cm3] 

Pennation Angle 

[°] 

27.86 ± 2.13 7.94 ± 1.38 23.4 ± 4.62 182.2 ± 29.5 12.7 ± 2.77 

Fascicle length at 50% of total BFLH muscle length; PCSA – Physiological cross-sectional area. 

 

Fascicle length and pennation angle of the BFLH did not correlate with any outcome variable. 

There was no correlation between BFLH volume and hamstring MVC torque PRE (R2=0.188, 

F1,18=4.16, P=0.056) and POST48 (R2=0.134, F1,18=2.78, P=0.113). However, there was an 

inverse correlation between BFLH volume and hamstring MVC torque POST (R2=0.281, 

F1,18=7.04, P=0.016). BFLH PCSA correlated inversely with relative hamstring MVC loss from 

PRE to POST (R2=0.421, F1,17=12.37, P=0.003, Figure 3-6), but not with relative hamstring 

MVC loss from PRE to POST48 (R2=0.113, F1,17=2.18, P=0.159, Figure 3-7).  

 

Figure 3-6  Correlation between physiological cross-sectional area and relative maximum voluntary 
contraction (MVC) loss measured between before (PRE) and immediately after (POST) of the 
intermittent sprint intervention (P=0.003). 
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Figure 3-7 No correlation between physiological cross-sectional area and relative maximum 
voluntary contraction (MVC) loss measured between before (PRE) and 48h after (POST48) of the 
intermittent sprint intervention (P=0.159). 

 

3.4.4 Effect of the IS-Intervention on Lower-Limb Kinematics  

Three-dimensional motion analysis for SLHL demonstrated increased (i) hip flexion 

(p=0.004); (ii) hip ROM in the transverse plane (p=0.025); and (iii) knee adduction (p=0.035) 

during the landing phase of SLHL immediately after the IS-intervention, and the values 

reverted to baseline levels POST48. There was a main effect of time for the time-period 

between heel contact and maximal knee flexion (p=0.012), whereas the duration of the knee 

flexion took significantly longer POST48 compared to POST (Table 3-4). 

Table 3-4 Effect of the IS-Intervention on selected kinematics of the Single-Leg Hop Landing 
during the Landing Phase (mean ± SD). 

Kinematics [unit] PRE POST POST48 F-Test P Value 

Peak hip flexion [°] 36.7 ± 9.61 41.7 ± 12.22 36.0 ± 11.08 F(2,34) = 

6.61 

0.004* 

Hip peak internal 

rotation [°] 

10.3 ± 6.87 6.97 ± 4.24 8.29 ± 6.22 F(2,34) = 

3.11 

0.058 

Hip peak external 

rotation [°] 

3.40 ± 4.22 9.01 ± 5.42 4.94 ± 5.17 F(2,34) = 

9.61 

<0.001* 
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Hip ROM in the 

transverse plane [°] 

10.7 ± 4.48 13.67 ± 6.10 11.60 ± 5.75 F(2,34) = 

4.13 

0.025* 

Peak knee 

adduction [°] 

-3.81 ± 3.27 -6.53 ± 5.46 -3.96 ± 5.24 F(2,34) = 

3.71 

0.035* 

Knee flexion at 

initial contact [°] 

-12.4 ± 6.79 -13.1 ± 5.87 -11.6 ± 8.47 F(2,34) = 

0.47 

0.630 

Duration of hip 

flexion [s] 

0.073 ± 0.018 0.065 ± 0.021 0.084 ± 0.041 F(1.43,3

4) = 3.60 

0.056 

Duration of knee 

flexion [s] 

0.16 ± 0.05 0.16 ± 0.04 0.18 ± 0.05 F(2,34) = 

5.12 

0.011* 

 ROM – Range of motion. 

 

There was a non-significant effect of time for the duration of a running cycle (P=0.080; Table 

3-5). The duration of the running cycle tended to take longer POST and POST48 compared 

to PRE. Treadmill running demonstrated decreases in peak knee extension (P=0.047) 

during the late swing phase at POST, which went back to baseline value POST48.  

 
Table 3-5 Effect of the IS-Intervention on Kinematics of Treadmill Running (4.17 m s−1) (mean ± 
SD). 

Kinematics [unit] PRE POST POST48 F-Test P 

Value 

Peak knee flexion 

(swing phase) [°] 

-103 ± 13.9 -110 ± 12.4 -108 ± 12.6 F(2,20) = 2.84 0.082 

Peak knee 

extension (swing 

phase) [°] 

-3.66 ± 5.32 -7.08 ± 5.07 -4.29 ± 7.06 F(2,20) = 3.57 0.047* 

Contact hip flexion 

(toe strike) [°] 

25.2 ± 5.42 29.3 ± 7.62 17.6 ± 15.6 F(1.2,20) = 

4.05 

0.062 

Contact knee flexion 

(toe strike) [°] 

-15.0 ± 6.25 -17.6 ± 6.79 -13.3 ± 9.64 F(2,22) = 2.79 0.083 

Duration Running 

cycle [s] 

0.67 ± 0.03 0.68 ± 0.03 0.69 ± 0.02 F(2,20) = 2.88 0.080 

Stance phase 

duration [s] 

0.18 ± 0.02 0.19 ± 0.02 0.19 ± 0.03 F(2,20) = 1.01 0.356 

Swing Phase [s] 0.50 ± 0.04 0.50 ± 0.05 0.50 ± 0.03 F(1.2,20) = 

0.03 

0.899 

Knee fully extended=0°; negative number indicates a flexed knee.  
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3.5 DISCUSSION  

The aim of the current study was to investigate the physiological and biomechanical factors 

underpinning impaired physical performance following an IS-intervention. The objectives 

were to comprehensively assess (i) the contribution of central and peripheral fatigue on 

acute and prolonged decrement in performance in response to a IS-intervention, (ii) whether 

BFLH architecture correlated with fatigue indices; and (iii) the consequential effect of fatigue 

on lower-limb kinematics of landing (SLHL) and running (treadmill 4.17 m s−1). In line with 

our hypotheses, immediate strength loss was associated with lower hamstring EMG activity 

(indicating impaired hamstring muscle recruitment) and markers of peripheral fatigue, but 

the magnitude and sustained changes in MVC torque over time was predominately 

associated with indicators of peripheral fatigue. Muscle damage biomarkers indicated that 

the peripheral fatigue might have been predominantly caused by ultrastructural damage 

within the hamstring muscle fibres. Further, both central and peripheral fatigue probably 

had an impact on the neuromuscular control of running and landing patterns immediately 

after the IS-intervention. Contrary to our hypothesis, BFLH fascicle length was not associated 

with the extent of hamstring fatigue following the IS-intervention. However, BFLH PCSA 

correlated with knee flexor MVC torque change immediately POST, indicating that the non-

contractile structure of the muscle, e.g. the extracellular matrix, might contribute to the 

individual variability in the response to muscle damaging exercises.  

 

3.5.1 Fatigue Following the Intermittent Sprint Intervention  

The contribution of central and peripheral fatigue has previously been investigated in 

studies using a simulated soccer-match as an intervention for the quadriceps muscle group 

(Thomas et al., 2017) and hamstring muscle group (Marshall et al., 2014). The investigation 

of Thomas et al. (2017) showed that both central and peripheral fatigue contribute to acute 

neuromuscular fatigue of the quadriceps muscles but that mainly peripheral fatigue causes 

the delayed recovery. Marshall et al. (2014) concluded that impaired hamstring muscle 
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function was mainly caused by central fatigue, which was investigated via twitch 

interpolation technique and EMG (normalised to Mmax). Presumably, the different results are 

based on varying methodological approaches and different muscle groups studied. Firstly, 

simulated soccer match protocols include additional (multidirectional) low and moderate-

speed movements and this is accompanied with less time to rest during the intervention 

compared to the current IS-intervention. In line with the current study, Marshall et al. (2014) 

showed a decreased activity of normalised BFLH sEMG over time, but no significant changes 

in parameters of fatigue detected using the twitch interpolation technique. This discrepancy 

might be explained by the fact that voluntary activation via twitch interpolation technique 

investigates the summation of all involved hamstring muscles, and the summation showed 

no decrease in central fatigue. However, normalised sEMG analyses specific muscles such 

as the BFLH in both the current and the study of Marshall et al. (2014). Both studies indicate 

that BFLH might fatigue to a greater degree immediately after IS compared to the other 

hamstring muscles, as reduced sEMG suggests either a reduction in central activation or 

recruitment of motor units affecting BFLH muscle function, or both. For estimated peripheral 

fatigue, Marshall et al. (2014) used resting doublet with 100 Hz, but lower physiological 

frequencies were not included in the assessment. In human muscle, the torque-frequency 

relationship can be used to asses peripheral fatigue, and the effect of fatigue is most evident 

when muscles are stimulated at frequencies around 10–30 Hz (Jones, 1996, Bellemare et 

al., 1983). Therefore, the impaired muscle function seen in the study of Marshall et al. 

(2014) following the soccer match simulation might be not solely based on central fatigue, 

as suggested, and a major contribution may have been due to peripheral fatigue as the 

current study indicates. 

The different results between VA and normalised sEMG of the BFLH suggest that muscle 

impairment of BFLH might not be solely caused of central fatigue as other hamstring muscles 

would then be affected at the same rate compared with the BFLH. Both the semitendinosus 

and BFLH share the same proximal tendon at the ischial tuberosity and there is evidence to 

suggest that there is a complex muscle recruitment between these both muscles 
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(Schuermans et al., 2016, Schuermans et al., 2014). Recent investigations revealed that 

the BFLH has the highest EMG activity between 15 and 30° of knee flexion angles, while the 

other hamstring muscles showed the largest EMG activity between 90 and 105° of knee 

flexion, when isokinetic MVCs were performed (Onishi et al., 2002). During the deceleration 

of the knee extension in the swing phase of sprinting, it could be speculated that the 

semitendinosus and BFLH have their highest EMG activity to different time points during the 

late swing phase. The semitendinosus might predominantly contribute to decelerate the 

shaft at the initial part of the late swing phase (at the time with a more flexed knee joint). 

During the subsequent part of the late swing phase of sprinting, the contribution to 

decelerate the shaft shifts from the semitendinosus to the BFLH (when the knee joint extends 

until terminal swing). After repeated bouts of high-speed running, the semitendinosus might 

fatigue prematurely (Schuermans et al., 2014) and the BFLH would need to substitute the 

impaired function of the preceding semitendinosus to decelerate the shaft. To protect the 

BFLH against injuries, the reduced neuromuscular activation of the BFLH is accompanied by 

changes of the running kinematic strategy as seen in the current study (see below). 

However, alterations in neuromuscular coordination of the biarticular BFLH requires further 

investigation, as unpublished observations of our laboratory (Lake et al.) demonstrate an 

increase of the semitendinosus EMG activity (with a simultaneous decrease of the BFLH 

EMG activity) following IS indicating a critical role of the semitendinosus for HSI.  

Interestingly, peripheral fatigue (identified via the torque-frequency relationship) revealed in 

the current study that frequencies between 10 and 50 Hz were affected immediately after 

the IS-intervention, but there was a delayed recovery for higher frequencies. This suggests 

that IS might impair fast-twitch muscle fibres to a greater extent compared to slow-twitch 

fibres (Henneman et al., 1965, Gregory and Bickel, 2005), which led to an impaired force 

generation rather than simply fatiguing the muscle fibres with its consequential effect on the 

rate of relaxation at lower frequencies. Initial studies reported a left shift of the torque-

frequency curve after fatiguing exercise, i.e. with the stimulation of the fatigued human 

adductor pollicis muscle (Bigland-Ritchie et al., 1983). However, the torque-frequency 
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relationship shifted to the right following IS in the current study, which is in line with other in 

vivo strenuous exercise studies (Dundon et al., 2008, Binder-Macleod et al., 1998). 

Presumably, investigations including protocols, which causes ultrastructural damage, might 

prevent muscle fibres from producing as much force at low frequency stimulation in 

comparison to protocols that only fatigue the muscle (and therefore having a greater 

influence on rate of relaxation at low frequencies than force production per se). Therefore, 

studies causing EIMD might shift the torque-frequency curve to the right rather than to the 

left, which might explain the discrepancy between the present study and the study by 

(Bigland-Ritchie et al., 1983). 

 

3.5.2 Exercise-Induced Muscle Damage  

The average strength loss was similar to other studies regarding both the hamstring (Verma 

et al., 2015, Chen et al., 2017) and quadriceps (Howatson and Milak, 2009) muscle groups. 

In the current study, both muscle groups showed similar strength loss initially POST and 

the hamstring muscle group showed further strength loss POST48 compared to the 

quadriceps muscle group. This was accompanied by supressed involuntary pRTD of the 

hamstrings, another indicator of peripheral fatigue. These findings suggest that the IS 

induced muscle damage to a different extent in each muscle group. Differences in the use 

of the muscles in daily activities may make the quadriceps muscles less susceptible to EIMD 

compared to the hamstrings (Chen et al., 2011). However, other studies did not show this 

additional strength loss for the hamstring muscle group POST48. Different methodological 

approaches might partly explain the different outcomes as sprints interspersed with longer 

rest intervals, which allows near complete recovery of sprint performance, might induce 

more muscle damage and muscle soreness compared to exercises with (submaximal but) 

longer high-speed running duration and shorter rest intervals (Wiewelhove et al., 2015, 

Balsom et al., 1992). Further, as the participants in the other studies were elite tennis and 

football players with training on at least three occasions per week (Verma et al., 2015, Chen 

et al., 2017), it could be assumed that these participants were more adapted to regular high-
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speed running and that this regular sprint exercises might have protected the hamstring 

muscles against additional EIMD or inflammatory processes, as chronic sprint exercises 

have been shown to protect athletes against HSI (Malone et al., 2018). Interestingly, 

involuntary pRTD was slightly recovered POST48 in contrast to the additional decrease of 

hamstring MVC. This was similar to results of other studies, which showed a correlated but 

disconnected time course between MVC and voluntary pRTD following a muscle-damage 

intervention (Molina and Denadai, 2012).  Involuntary pRTD might reflect the combined 

outcome of neural mechanisms underlying the early phase of MVC torque loss (Jenkins et 

al., 2014) as well as peripheral fatigue/damage. The early phase of MVC torque loss may 

be partly influenced of the inability to fully activate muscles following EIMD, which is 

reflected by the decrease of involuntary pRTD. However, the disconnected recovery 

between involuntary pRTD and MVC indicates that predominately peripheral 

fatigue/damage might cause the delayed MVC recovery in the later phase of recovery (i.e. 

48 h post IS) and that involuntary pRTD, which reflected the early phase of MVC torque 

loss, is less affected by ultrastructural muscle damage (Jenkins et al., 2014).Less is known 

about the mechanisms of muscle strain injuries other than of the hamstring muscles. High-

speed running leads to substantial activation of the upper thigh muscles, when eccentric 

contractions occur to decelerate the lower limb. This happens for the hamstrings during the 

late swing phase (= deceleration of the knee extension) (Chumanov et al., 2007) and for 

the quadriceps during the early/mid swing phase (= deceleration of hip extension) 

(Jönhagen et al., 1996, Mendiguchia et al., 2013). However, quadriceps strain injuries 

predominantly occur in the bi-articular rectus femoris (Cross et al., 2004), and it is thought 

that injuries typically occur during eccentric contractions, such as during deceleration of 

running and during kicking with the kicking leg (Brukner and Connell, 2015, Orchard, 2001). 

The likelihood to sustain a quadriceps strain injury is significantly lower compared to HSI 

(Ekstrand et al., 2011). If repeated eccentric contractions are one of the main causes for 

strain injuries, as indicated of several investigations (Malone et al., 2016, Higashihara et al., 

2010), then the differences might be explained due to different amount of repetitions and of 
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the extent of force which the involved muscles obtain. Muscle damage in the quadriceps 

muscle presumably occur during the deceleration of sprinting and during the backswing 

phase whilst the quadriceps muscle eccentrically works to decelerate the leg with a flexed 

knee during the early swing phase of high-speed running, but HSI occurs with an almost 

extended leg during the late swing phase. This extended lever arm of force might cause 

higher eccentric force on the involved hamstring muscles compared to the shorter lever arm 

with a flexed knee on the quadriceps muscle. Continuously repeated eccentric contraction 

with the longer lever arm of force will potentially induce more muscle damage within the 

hamstrings in total during i.e. a soccer match compared to the quadriceps muscle group, 

which might explain the significant different strength loss POSt48 IS in the current study 

and potentially the different injury rate between these muscle groups. 

 

3.5.3 Muscle Architecture 

Recent investigations revealed that Nordic hamstring eccentric strength test in combination 

with BFLH fascicle length might be predictors for HSI (Timmins et al., 2015, Timmins et al., 

2016). We measured fascicle length mid-way between the ischial tuberosity and the 

popliteal fossa, along the line of the BFLH. Interestingly, we could not find any association 

of the BFLH fascicle length with any biomarker of fatigue. However, BFLH volume and 

particularly PCSA were correlated with hamstring strength loss from PRE to POST. As 

muscle volume is the product of fascicle length (the main determinant of maximum 

shortening velocity) x PCSA (the main determinant of maximum force), if two muscles have 

the same volume but one has a larger PCSA, that muscle would be expected to have either 

a greater number or larger muscle fibres arranged in parallel (thus generating more force), 

while the other muscle would be expected to have longer muscle fascicles (thus enabling 

the muscle to contract faster). However, BFLH PCSA did not correlate with either baseline 

hamstring MVC (P > 0.05, data not shown). Recent investigations reported an important 

role of the extracellular matrix regarding muscle damage (Hyldahl and Hubal, 2014, Hyldahl 

et al., 2015) and muscle injuries (Balius et al., 2018). The extracellular matrix consists of 
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different layers of connective tissue and this non-contractile structure surrounds the muscle 

fibres and fascicles (Kjær, 2004). We suggest that a greater BFLH reflects more fibres 

aligned in parallel, which would be accompanied by more connective tissue (e.g. 

endomysium and perimysium) that transmits potentially damaging force laterally rather than 

longitudinally, thus protecting the muscle fibres from excessive damage during eccentric 

contractions. Therefore, we propose that a relatively small BFLH PCSA might be a better 

predictor for muscle impairment following strenuous hamstring exercises compared to a 

single assessment of the BFLH fascicle length, and that PCSA should be taken into account 

for further HSI investigations. Increasing BFLH PCSA (rather than focusing solely on 

increasing fascicle length) via resistance training should therefore be a priority in sports, 

where HSIs are prevalent.  

 

3.5.4 Kinematic Analyses  

Neuromuscular fatigue induced by a bout of straight line sprints was shown to alter hip and 

knee kinematics. Concerning SLHL, the knee showed a more adducted position (less 

valgus angle) immediately after the IS-intervention, which is in line with another study that 

used an endurance protocol to cause fatigue (Benjaminse et al., 2008). This was 

accompanied by an increase in hip ROM in the transverse plane and a generally more 

externally rotated hip angle. The thigh muscles, and particularly the hamstring muscle 

group, are important for the control of the knee (Azmi et al., 2018), e.g. during landing. 

Reduction in thigh muscle strength due to neuromuscular fatigue might trigger a protective 

mechanism for the knee directly after IS. This fatigue control leads to a more adducted 

position of the knee as knee valgus moments are suggested to increase stress on the ACL 

(Kanamori et al., 2000, Bendjaballah et al., 1997). However, the fatigued muscles are less 

able to control the landing which causes greater ROM in the transverse plane. Further, as 

the bi-articular hamstring muscles assist with hip extension (Neumann, 2010), fatigued 

hamstring muscles might not be able to keep the upright posture of the upper body in 

position during landing, which would lead to the increased hip flexion immediately after IS. 
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Other studies have shown that muscle fatigue in the leg muscles permit an increased 

anterior tibial translation which could also lead to an increased ACL strain (Behrens et al., 

2013). The protective mechanism seems predominantly to occur immediately after IS, as 

hip and knee angles for SLHL returned to the same values at baseline POST48 the 

intervention. As flexion MVC continued to deteriorate at POST48 but extension MVC started 

to improve, it could be that these kinematic changes are more controlled by the quadriceps 

rather than the hamstrings. Alternatively, as hamstring sEMG declined immediately POST 

IS, it could be that central fatigue rather than muscle damage per se might have triggered 

this change. However, there was a significant elevated time to decelerate the knee (time 

between heel contact and maximal knee flexion) during landing POST48 IS indicating that 

participants were still not able to fully control the landing. It is possible that accumulated 

fatigue over time (e.g. due to a congested match calendar) accompanied by this kinematic 

change could increase the risk for ACL injuries (Waldén et al., 2016). Injury prevention 

programmes, which included lower body strength training (i.e. Nordic hamstrings, lunges, 

and calf raises), were able to reduce ACL injury risk by 50 % (Webster and Hewett, 2018, 

Petushek et al., 2018), potentially by improving the control of the knee and by attenuating 

the effect of neuromuscular fatigue during match play. However, no prospective kinematic 

study has investigated whether EIMD is a risk factor for ACL injury (Bossuyt et al., 2016). 

Further investigations are needed, whether athletes with pre-damaged thigh muscles prior 

to the match have an increased likelihood to sustain an ACL injury. 

Running kinematics were assessed at one running speed (i.e. 4.17 m s−1) in the current 

study. Previous investigations assessed running kinematics with lower running speed 

between 2.5 and 3.6 m s−1 (Paquette et al., 2017, Tsatalas et al., 2013, Paschalis et al., 

2007). However, in the current study, high-speed running was of interest and the selected 

speed was the fastest speed on a motorized treadmill following safety considerations. The 

current IS-intervention caused changes in running kinematics in the sagittal plane with 

reduced knee extension in the late swing phase POST. This is different to isolated 

quadriceps muscle damage interventions, which cause increased minimal but significant 
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pelvic rotation (Paschalis et al., 2007) alongside the changes on the sagittal plane (reduced 

knee flexion at initial contact; reduced knee ROM during stance and swing phase) (Paquette 

et al., 2017, Dutto and Braun, 2004, Chan-Roper et al., 2012, Tsatalas et al., 2013, 

Satkunskiene et al., 2015). The reduced knee extension while contracting eccentrically in 

the late swing phase might decrease the elongation stress on the hamstring muscles, 

suggesting a protective mechanism for the hamstring muscles during submaximal running 

speed directly after IS. Changes in running kinematics were not evident for knee flexion 

angle POST48 the intervention, although hamstring MVC torque showed further strength 

loss POST48. However, there was a non-significant tendency for prolonged stride duration 

POST48 compared to PRE (P = 0.08, data not shown), which is similar to the significant 

elevated time to decelerate the knee during SLHL POST48. Presumably, ultrastructural 

damage in the thigh muscles leads to decelerated movement patterns with an extended 

phase in both the stance and swing phase. Further investigations with additional EMG tests 

for the medial hamstring muscles are necessary to confirm whether intermittent sprints 

cause fatigue/damage only or more in specific muscles (e.g. BFLH) of the hamstring muscle 

group and whether this has an effect on an increased HSI risk. 

 

3.5.5 Limitations  

Ecentric exercise results in a delayed peak and a slower decrease of serum IL-6 during 

recovery between 6 and 24 h after EIMD (Willoughby et al., 2003, Pedersen and Febbraio, 

2008). Therefore, serum IL-6 expression immediately after IS indicates that intense 

exercise occurred but it cannot be assured that this marker indicates muscle damage in the 

current study. The generally low absolute value of CK activity of the current study might be 

explained by the fact that we have used a different method involving venous blood, which 

will usually be conducted in in vitro investigations (Owens et al., 2015). Therefore, further 

interventions are necessary to compare CK activity assessments in vivo. Recent studies 

suggest that fatigue alters the optimal angle during MVC in the hamstrings but not in the 

quadriceps (Coratella et al., 2015). This might have influenced the results of the isometric 
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MVC test of the hamstring muscle group. Further studies should confirm these results with 

isometric MVCs at different knee joint angles. Peripheral fatigue can be caused by 

metabolite perturbations such as the depletion of intramuscular glycogen (Bendiksen et al., 

2012). However, despite the fact that participants were instructed to eat two hours before 

arrival, and to avoid strenuous exercise prior to the testing, the current study did not control 

for diet or assessed glycogen depletion during the intervention. Although the low decrement 

of the sprinting performance, which lasted about 25 min, indicates that glycogen depletion 

was potentially only a minor factor which contributed to the impaired muscle function 

following IS-intervention, future studies should assess and control the glycogen content of 

the muscles before and after IS. Further, we have only measured muscle architecture and 

sEMG activity of the BFLH. During data collection, several published investigations (Kellis, 

2015, Schuermans et al., 2016, Schuermans et al., 2014) indicated that the other hamstring 

muscles might have an impact on hamstring fatigue and, potentially, on HSI risk. We 

therefore suggest that further studies conducting IS should also take the other hamstring 

muscles into consideration. Other factors, such as skeletal muscle composition (Mackey et 

al., 2017) and genetic variation (Baumert et al., 2016a, Baumert et al., 2018) might also 

contribute to the prolonged recovery process following EIMD, and large-scale analyses are 

required to assess the individual differences between the participants which might be based 

on genetic variation. These studies should consider the possible influence of testing 

strength at different times of the day on the extent of strength loss. For instance, previous 

studies have shown that MVC strength is higher in the evening compared to the morning 

(Araujo et al., 2011). However, due to the large numbers required for genetic studies, the 

competition for laboratory time, and the availability of the participants, it was necessary for 

us to perform our measurements at different times of day (although each participant was 

tested at the same time of day for their respective repeated measurements). As the relative 

change in strength due to any interaction between the damaging exercise intervention and 

their genetic make-up is likely to be the same regardless of the time of day, we do not 

consider that this factor confounded our results. 
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3.6 CONCLUSION    

Our data provide strong evidence that impaired muscle function following IS is caused 

primarily by impaired neuromuscular activation of the BFLH, together with peripheral fatigue 

in the hamstrings immediately after the intervention, but the magnitude of fatigue and 

delayed recovery 48 h later is probably caused primarily by damage to the skeletal muscle 

tissue. Furthermore, BFLH PCSA was inversely related to hamstring strength loss 

immediately after IS. The findings provide evidence that the structure of the muscle protects 

it against neuromuscular fatigue showing that non-contractile tissue within the muscle, such 

as the extracellular matrix, might play an important role in the complex response to muscle 

damaging exercises. Impaired thigh muscle function following IS alters hip and knee 

kinematics during running and landing immediately after the intermittent sprints, but this 

(likely) protective effect is less evident 48 hours after the intervention which may lead to an 

increased ACL or hamstring muscle injury risk. We conclude that a 48h recovery period 

following sports incorporating IS is insufficient, and might increase injury risk. The practical 

implications of this study include the assessment of BFLH PCSA to estimate the 

neuromuscular fatigue/damage response to IS in athletes, and the inclusion of hamstring 

resistance training to increase hamstring muscle PCSA, thus decreasing injury risk. 

. 
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4 Muscle Recovery Rate Following in vitro and in vivo 

Damage is Related to the Myoblast:non-Myoblast Ratio 

Derived from Human Biopsies  
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4.1 ABSTRACT  

Introduction The aim of this study was to objectively assess whether the ratio between 

myoblast and fibroblasts was related to recovery rate following damage to human skeletal 

muscle in vivo (intermittent sprints) and in vitro (wounding assay), and whether this was 

sex-dependent. We hypothesised that a high myoblast:fibroblast ratio would lead to an 

accelerated muscle regeneration compared to a lower myoblast:fibroblast ratio, but that this 

would be independent of sex.  

Methods Myoblast:fibroblast ratio was assessed of Isolated human skeletal muscle-derived 

stem cells from biopsies of six young, recreational active male Caucasians in vitro  and the 

ratio was compared with the muscle damage response of the intermittent sprint intervention 

in vivo (Chapter 3). Primary muscle stem cells of an extended group of twelve young, 

untrained female and male Caucasian participants were subjected to mechanical wound 

injury to investigate the correlation of muscle regeneration regarding their individual 

myoblast:fibroblast ratio and sex-differences in vitro.  

Results There was an average percentage of 46.8 % myoblasts compared to fibroblasts 

(range 13.3-74.5 %). There was no significant differences to any parameters regarding sex 

following the artificial wound healing assay (all P>0.05). Cells with a high myoblast:fibroblast 

ratio showed a delayed wound closure/ MVC torque recovery within the first 48 h both in 

vitro (R2=0.51, P=0.040) and in vivo (R2=0.85, P=0.009), but a better myotube formation 

seven days after the scratch assay in vitro. 

Conclusion The current results suggest that muscle stem cell characteristics are not 

influenced by sex and that fibroblasts are essential for the initial days of wound closure, but 

a larger number of myoblasts is crucial for the latter stage of muscle regeneration, 

presumably when myoblasts differentiate and fuse to become myotubes indicating that non-

contractile elements of the muscle play an important part in the recovery process following 

muscle damage. 
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4.2 INTRODUCTION  

Unaccustomed strenuous exercise, particularly, that which involves muscle-lengthening 

(eccentric) contractions, can cause exercise-induced muscle damage (EIMD) within the 

contractile tissue (Clarkson and Hubal, 2002). Ultrastructural muscle damage is indicated 

with Z-line disturbance as well as disruption of the extracellular matrix (ECM), which 

provides structural scaffolding for muscle remodelling and has an integral role in force 

transmission (Tidball, 1991, Garg and Boppart, 2016). Among several other minor 

molecular elements, collagen type I and type III are the main components of the ECM (Davis 

et al., 2013), which is connected to the Z-disks of the peripheral myofibrils via costameres 

(Jani and Schöck, 2009). In muscle, fibrils of collagen type I are stiff structures and it is 

predominantly present in the perimysium (surrounding muscle fascicles), which become 

continuous with tendon (Passerieux et al., 2007). Type III collagen fibrils are thinner and 

with less stiffer properties compared to type I (Zhang et al., 2005). Both type I and III 

collagens are almost equal distributed in the endomysium (surrounding muscle fibres) and 

epimysium (surrounding the muscle) (Gillies and Lieber, 2011). It is well established, that 

myogenic satellite cells (skeletal muscle stem cells), play a key role in skeletal muscle 

regeneration and remodelling after substantial EIMD (Yin et al., 2013, Tidball, 2011). 

Following ultrastructural muscle damage, the nuclei in the area of the myotrauma undergo 

apoptosis, and activated satellite cells (myoblasts) proliferate and migrate from their niche 

along the basal lamina to the injury site before terminally differentiating and fusing into 

myotubes (Goetsch et al., 2013). 

There is increasing evidence that fibroblasts, the main cell type of muscle connective tissue, 

have a critical role in supporting muscle regeneration (Mackey et al., 2017, Murphy et al., 

2011, Joe et al., 2010). Following damage, infiltrating inflammatory cells activate muscle 

fibroblasts, which proliferate and migrate to the injury site to produce ECM components in 

the area of the myotrauma in an orchestrated and regulated fashion (Mann et al., 2011, 

Murphy et al., 2011). This is accompanied with increased proteolytic activity of matrix 

metalloproteinase (MMPs) to degrade damaged parts of the ECM and to allow cell migration 
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through the ECM (Mackey et al., 2004). The fine-tuned coordinated resolution and 

restructure of the ECM is crucial for healthy muscle remodelling (Mann et al., 2011, 

Kragstrup et al., 2011). Interaction of activated satellite cells with fibroblasts helps to 

dissolve and reorganise the ECM by supressing the master regulator of collagen 

biosynthesis Rrbp1 in the days and weeks after the injury to avoid long lasting unfavourable 

fibrosis and to support healthy muscle regeneration (Garg and Boppart, 2016, Fry et al., 

2017). There is an increasing number of investigations into the effect of fibroblasts on 

skeletal muscle regeneration following injury, including models such as electrical stimulation 

or barium chloride (Mackey et al., 2017, Murphy et al., 2011). However, less is known about 

the effect of fibroblasts on the response to physiological EIMD within the first days following 

eccentric damage. 

Further, there is a high individual variation in the response to EIMD, as some individuals 

reveal greater muscle strength loss and perceived muscle soreness compared to others, 

who have undergone the same EIMD protocol (Nosaka and Clarkson, 1996, Baumert et al., 

2016b, please see Chapter III). In Chapter 3, we reported that a greater force generating 

capacity (larger physiological cross-sectional area) of the biceps femoris long head of the 

hamstring muscle group appears to protect the muscle immediately following intermittent 

sprints (IS). Potentially external forces can be allocated to a higher number of parallel 

sarcomeres in muscles with an higher physiological cross-sectional area, which might 

reduce the stress to each individual sarcomere leading to a lower damage response 

(Wisdom et al., 2015). However, this relationship was not evident two days after IS, 

indicating that the muscle recovery response immediately vs. days after muscle damaging 

exercise is differentially controlled. Some (Sewright et al., 2008), but not all human 

investigations (Stupka et al., 2001, Hubal and Clarkson, 2009), suggest that the different 

response following EIMD could be sex-dependent, potentially due to varying skeletal 

muscle properties such as fibre type composition or regeneration efficiency. Animal studies 

revealed that male serum enhanced cell proliferation and cell growth compared to female 

serum (Lee et al., 2011), and that primary female muscle stem cells appeared to have a 
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slower long-term proliferation kinetics and higher muscle regeneration efficiency compared 

to males (Deasy et al., 2007). However, to our knowledge, no studies have investigated 

sex-related differences in terms of proliferation and differentiation characteristics in human 

primary skeletal muscle cells in vitro. An understanding of the underlying mechanisms of 

the individual rate of skeletal muscle regeneration has implications, not only for the 

prevention of muscular injury (Larruskain et al., 2017) but also in the context of skeletal-

muscle adaptation such as muscle hypertrophy (Cartee et al., 2016) or wasting (Volaklis et 

al., 2015).  

Therefore, the main objective of this study was to investigate whether differences in the 

myoblast:fibroblast ratio was associated with the in vivo EIMD damage response following 

the IS protocol (Chapter 3) in a group of six male Caucasians, which participated in both 

studies. A second objective was to investigate whether inter-individual differences in the 

ratio between myoblast and fibroblasts affected skeletal muscle repair/recovery within the 

initial days after an artificial wounding (scratch) assay in an extended group of 12 young 

male and females. A third objective was to investigate whether this variability in the 

myoblast:fibroblast ratio was sex-dependent, and whether this led to sex-specific 

differences in the rate of muscle repair following mechanical injury. It was hypothesised that 

a higher myoblast:fibroblast ratio would be associated with an improved EIMD-response 

compared to muscle cells with a lower myoblast:fibroblast ratio following IS in vivo. We 

further hypothesised that increased percentage of fibroblasts would show an improved 

wound closure, and that sex would not be associated with muscle remodelling in vitro. 

4.3  METHODS  

4.3.1 Participants 

Recreationally active and healthy young female (n = 4; age 25.5 ± 1.29 years; height 1.67 

± 0.08 m; body mass  61.40 ±  2.57 kg; mean ± standard deviation) and male (n = 8; age 

21.25 ± 4.27 years; height  1.77 ± 0.05 m; body mass  73.78 ±  5.68 kg; mean ± standard 

deviation) Caucasian individals participated in this study. Six of the eight males (age 20.5 ± 
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4.68 years; height 1.78 ± 0.05 m; weight  73.49 ±  6.01 kg) also participated in the IS protocol 

(see Chapter 3)  after the biopsy procedure separated by at least three weeks. Prior to 

starting the study, written informed consent and a pre-biopsy screening as approved by a 

physician was obtained from each participant, which complied with the Declaration of 

Helsinki and was approved by the Research Ethics Committee of Liverpool John Moores 

University. Participants were physically active but were excluded if they had performed 

strength training of the lower limbs within 6 months prior to participation in the study, as 

screened via interview.  Further exclusion criteria were (i) any lower limb injury in the past 

12 months; and (ii) age under 18 or above 35 years; as assessed via interview and health 

questionnaire.  

 

4.3.2  Reagents, Chemicals, and Solvents  

Growth media (GM) used for the expansion of human muscle-derived cell populations 

consisted of Hams F-10 nutrient mix (Lonza, Basel, Switzerland) with added L-glutamine 

(2.5 mM), 10% heat-inactivated fetal bovine serum (hiFBS; Gibco, Thermo Fisher Scientific, 

Altincham, UK), 1% penicillin-streptomycin (Life Technologies, Warrington, UK), and 1% L-

Glutamine  (Gibco). Differentiation media (DM) consisted of α-MEM (Lonza), 1% hiFBS, 1% 

penicillin-streptomycin, and 1% L-glutamine. Phosphate-buffered saline (PBS; Sigma-

Aldrich) was used to wash cell monolayers. Desmin polyclonal rabbit anti-human antibody 

(Cat# ab15200, RRID: AB_301744) was used (1:200) from Abcam (Abcam, Cambridge, 

UK), and secondary antibody (TRITC polyclonal goat anti-rabbit; Cat# A16101, RRID: 

AB_2534775) was used (1:200) from Fisher Scientific. 

 

4.3.3 Muscle Biopsy Procedure  

Participants were advised to avoid any strenuous exercise 48 h prior to the biopsy 

procedure. Muscle biopsies, from the vastus lateralis muscle of the quadriceps femoris, 

were obtained under local anaesthesia, from each participant, using the Weil-Blakesley 
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conchotome technique as described previously (Baczynska et al., 2016). Briefly, 

participants rested in a supine position and the incision site was shaved then thoroughly 

cleaned with an alcohol swab and Hydrex surgical scrub (ECOLAB Leeds, UK), following 

which a sterile sheet was placed above the biopsy site to maintain sterility. To anesthetise 

the biopsy site, 1.5 ml of bupivacaine hydrochloride (AstraZeneca, Luton, UK) was 

administered at a concentration of 5 mg/ml. After allowing a short time for the anaesthetic 

to take effect, a sterile single-use scalpel was used to make a small incision through the 

skin and deep muscle fascia. The conchotome was inserted through the incision into the 

muscle belly to obtain the muscle biopsy (134 ± 82.7 mg).     

 

4.3.4 Extraction of Human Muscle-Derived Cells 

The muscle biopsies analysed in this study were isolated (Blau and Webster, 1981, Crown 

et al., 2000) and cultured (Owens et al., 2015) as reported previously. Briefly, biopsy 

samples were transferred with precooled GM from the muscle biopsy suite to the sterile 

tissue culture hood (Kojair Biowizard Silverline class II hood; Kojair, Vippula, Finland) within 

40 min and muscle biopsy samples were washed three times with ice-cold PBS (0.01 M 

phosphate buffer, 0.0027 M KCl, and 0.137 M NaCl, pH 7.4, in dH2O). Visible fibrous and 

fat tissue were removed using sterile scissor and forceps. Samples were cut in small pieces 

(1 mm3) and digested in 5 ml of trypsin-EDTA for 15 min on a magnetic stirring platform at 

37°C to dissociate muscle cells. The trypsinisation process was repeated twice. 

Supernatant derived following each treatment was collected and pooled with hiFBS at a 

concentration of 10% of the total volume to inhibit further protease activity. Cell supernatant 

was centrifuged at 450 g for 5 min. Supernatant was discarded and the cell pellet was 

resuspended in GM and plated on a T25 cm2 culture flask (Corning, Life Sciences, New 

York, USA) for cell population expansion. Culture flasks were previously coated with a 2 

mg/l porcine gelatin solution (90–110 g, Bloom; Sigma-Aldrich, Dorset, UK) to support cell 

adhesion. 
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4.3.5 Expansion of Extracted Cells 

The medium was refreshed on the fourth day after the extraction procedure and 

subsequently every 48 h following two brief washes with PBS. Cells were incubated in a 

HERAcell 150i CO2 Incubator (Thermo Scientific, Cheshire, UK).  T25 cm2 culture flasks 

reached 80% confluence after aproximately 10 days and were passaged via trypsinisation. 

Cells were counted using Trypan Blue exclusion and re-plated on gelatinised T75 cm2 

culture flasks (Nunc, Roskilde, Denmark). The cells were expanded until passage 3 and 

then frozen in GM with 10% dimethyl sulfoxide (DMSO) in liquid N2 as a cryopreservant. All 

experiments were performed on cells between passages 3 and 6 to avoid potential issues 

of senescence (Alsharidah et al., 2013, Foulstone et al., 2004).  

 

4.3.6 Characterization of Human Muscle-Derived Cells 

The mixed population of human skeletal muscle-derived myoblast and fibroblasts were 

characterised by immunofluorescent staining for the detection of desmin expressed by 

myoblasts (desmin positive) and non-myoblasts (desmin negative) to determine the 

percentage of myoblasts and fibroblasts (Figure 4-1). Previous investigations have 

determined that the non-myoblasts fraction is highly enriched in fibroblasts with up to 99 % 

of this fraction being fibroblasts (Agley et al., 2013, Mathew et al., 2011). Therefore, non-

myoblasts (desmin negative) will hereafter be referred to as fibroblasts. 
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Figure 4-1 Representative images for immunofluorescent staining for desmin of human muscle cell 
cultures. Myoblasts are desmin positive (red) and non-myoblasts are desmin negative. Myoblast to 
fibroblast ratio is 2.9. Magnification is x 10.5. 

Grohmann et al. (2005) showed that passaging does not change the percentage of 

myoblast and fibroblasts and all populations were included for analysis. Monolayers with a 

relatively low density of 30% were incubated with 25% (vol/vol methanol in Tris-buffered 

saline (TBS; 10 mmTris-HCl, pH 7.8, 150 mm NaCl)], 50% and 100% for 5-min to fix the 

cells and stored at 4°C wet in TBS until further analysis. Fixed monolayers were 

permeabilised and blocked for 2 h with 5% goat serum and 0.2% Triton X-100 in TBS, prior 

to staining. Cells were incubated overnight at 4°C with anti-Desmin antibody (1:200). After 

overnight incubation, the primary antibody was removed, and the cells were washed three 

times with TBS. Secondary TRITC polyclonal goat anti-rabbit antibody (1:200) was then 

applied and incubated for 2 h at 4°C. Fluorescent images were captured using live imaging 

microscopy (Leica DMB 6000; Magnification x 10.5) and analysed via ImageJ cell counter 

plug-in. A total of four randomly selected areas per well were analysed per individual. To 

compare the variability between the four images of the myoblast:fibroblast ratio within the 

same biopsy to the variability between the biopsies, we determined the intraclass correlation 

coefficient [ICC (3,k)] which was good with ICC=0.83 (95% CIs:  0.59-0.95). 
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4.3.7 Wound-Healing Assay, Migration and Differentiation Analysis 

For the wound healing assay, 100,000 cells/ml were seeded in gelatinised six-well plates 

(Nunc, Roskilde, Denmark)). Cells were expanded as described above until cell monolayers 

reached a confluent state, GM was removed, monolayers were washed with PBS and cells 

were damaged by a vertical scrape with a 1-ml pipette tip (width of the wound area, mean 

± S.E.M.: 896.4 ± 21.24 μm) as our group has reported before (Brown et al., 2017, Owens 

et al., 2015, Dimchev et al., 2013). PBS was aspirated, damaged cell monolayers were 

washed twice with PBS to remove cell debris and 2 ml DM was added. Monolayers were 

imaged with a live imaging microscopy (Leica) for the analysis of cell migration immediately, 

24h, 48h and seven days after the wound healing assay. Additional 500 µl DM was added 

in each well at day 4. TIF images were exported from Leica Application Suite and loaded 

as TIF image stacks in ImageJ with a cell counter plug-in. Cells in the outer and inner 

segments were counted (Figure 4-4).  

 

Damaged monolayers were imaged at two sites per well in the wound site immediately post-

damage (0 h). These image coordinates were tracked and stored to allow subsequent 

monitoring of the same sites on the wound to this reduce experimental bias. Myotube 

formation was captured on day. Captured images were exported as TIFF image files, and 

analysed in ImageJ. Muscle cell fusion/differentiation was assessed by myotubes per field 

of view and myotube hypertrophy via the assessment of myotube length, myotube diameter 

(the average of three diameters along the length of the myotube), myotube area  

(determined by manually drawing a line around the sarcolemma of each myotube) and total 

myotube number via ImageJ cell counter plug-in. By normalising the pixel scale to the 

micron scale of each image, a value expressed as µm2 was obtained for myotube area. A 

total of two images per well were analysed and experiments were performed on 12 cell 

populations of 12 different individuals.  
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4.3.8 Creatine Kinase Activity  

At 0 and 10 days following the mechanical scrape insult, creatine kinase (CK) activity was 

analysed as a marker of muscle cell differentiation/fusion into myotubes. Cell monolayers 

were first lysed with 300 μl/well of 50 M Tris-mes and 1% Triton-X 100, pH 7.8 (TMT). Ten 

microliters of TMT cell lysate was loaded in duplicate wells on a 96-well UV plate and used 

for quantification of CK activity. The CK reaction reagent and diluent (Catachem, Bridgeport, 

CT, USA) were prepared as per the manufacturer’s instructions as previously described 

(please see subsection 3.3.13). 

 

4.3.9 Experimental Design of the Intermittent Sprint Intervention in vivo  

Details of the experimental design of the IS-Intervention in vivo are described previously 

(please see subsection 3.3.2.) 

 

4.3.10 Data Analysis  

Data sets were first checked for normal distribution, and where data violated the assumption 

of normality, an appropriate correction factor was used. We recruited young, healthy men 

and women to increase both the external validity and sample size of our study. However, to 

the best of our knowledge, there is no investigation about sex-related differences of primary 

skeletal muscle cells. Therefore, we initially analysed the data according to sex. All data 

regarding cell migration within the first 48 h and CK activity were analysed for interactions 

and main effects for sex (sex groups: between subjects factor) and time (within subjects 

factor) using two-way-mixed analysis of covariance (ANCOVA) with wound width as a 

cofactor. Independent T-test was used for analysing the association between sex and 

myotube formation (total myotube number, myotube length, average diameter, myotube 

area and CK activity) at day seven. As no significant differences were found between sex 

for any parameter (subsection 4.4.2), the data from all muscle stem cells were combined 

for all subsequent analyses. Linear regression analyses were used to analyse the relation 
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between myoblast:fibroblast ratio and migration dynamics (total cell migration, cell 

proportion of inner to outer segment) and myotube formation (total myotube number, 

myotube length, average diameter, myotube area and CK activity). Standard guidelines 

concerning violation of the sphericity assumption to adjust the degree of freedom of the F-

test by the Huynh-Felt epsilon if epsilon is greater than 0.75 and to use the more stringent 

Greenhouse-Geisser adjustment if epsilon is less than 0.75 were followed (Girden, 1992). 

Results were expressed as mean ± SEM, with statistical significance set at P<0.05. SPSS 

23 Software (IBM Inc., Armonk, NY: IBM Corp) was used for statistical analysis unless 

otherwise stated. Occasional missing data are reflected in the reported degrees of freedom. 

 

4.4 RESULTS 

4.4.1 Comparison of the Muscle Response between the Intermittent Sprint 

Protocol and the Muscle Stem Cell Study  

Six male participants who performed the IS-intervention (see chapter 3), also volunteered 

a muscle biopsy for this study at least three weeks before the IS-intervention. There was 

an average ratio of 1.47 myoblasts to fibroblasts with a range between 0.299 and 2.93. 

There was a strong inverse correlation between myoblast:fibroblast ratio (assessed in vitro) 

and relative hamstring maximum voluntary contraction (MVC) torque measured between 

PRE and POST48 in vivo (R2=-0.89, F1,4=33.73, P=0.004; Figure 4-2 A). Participants with 

a high myoblast:fibroblast ratio showed a delayed MVC torque recovery 48 h after the IS-

intervention compared to the participants with a low myoblast:fibroblast ratio. Further, there 

was an inverse correlation between myoblast:fibroblast ratio and relative hamstring MVC 

torque measured between POST and POST48 following the IS (R2=-0.81, F1,4=17.08, 

P=0.014; Figure 4-2 B). No relationship was found between the myoblast:fibroblast ratio 

and any knee extensor MVC torque or with any other EIMD biomarker following IS. 
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Figure 4-2 Inverse correlation between the myoblast:fibroblast ratio, assessed in the current in vitro 
study and the change of hamstring MVC torque measured before and 48 h after (P=0.004) (A) and 
measured immediately after and 48 h after (P=0.014) (B) the intermittent sprints (see Chapter 3).  

 

4.4.2 Artificial Wound Healing Assay to Investigate Repair and Regeneration 

Regarding Sex-related Parameters 

There was no main effect between myoblast:fibroblast ratio and sex (Male: 1.43 ± 1.05; 

Female: 1.26 ± 1.00; F1,10=0.65, P=0.438). There were no significant differences for any 

parameters within the first 48 h after (P>0.05; Table 4-1).  

 
Table 4-1 The Effect of Sex on Artificial Wound healing for the first 48 h in vitro. 

  Time points   

 Sex POST24 POST48 F-Test P Value 

Total number of 

cells migrated into 

the wound area [n] 

Male 65.9 ± 7.44 93.7 ± 12.2 F(1.7,18) = 0.25 0.748 

Female 57.3 ± 11.27 85.1 ± 14.6   

Proportion Inner/ 

Outer Segment [%] 

Male 15.5 ± 6.00 25.8 ± 4.23 F(1.3,20) = 0.47 0.552 

Female 17.7 ± 1.94 26.4 ± 2.39   

 

Further, there were no significant differences between sex for any parameters on day seven 

after the artificial wound healing assay (P>0.05; Table 4-2). 
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Table 4-2 The Effect of Sex on Artificial Wound Healing Parameters for Day seven and CK activity 
at Day ten in vitro. 

 Sex  

 Male  Female F-Test P Value 

Total myotubes [n] 9.74 ± 3.61 6.94 ± 1.75 F(1,11) = 2.09 0.179 

Myotube length (µm) 326 ± 79.1 319 ± 30.5 F(1,11) = 0.03 0.864 

Average Diameter (µm) 18.7 ± 3.53 18.4 ± 1.03 F(1,11) = 0.03 0.871 

Myotube Area (µm2)  5129 ± 2354 4677 ± 530 F(1,11) = 0.14 0.719 

 

 
There was no interaction between sex and time concerning CK activity (F1,9=2.16, P=0.176; 

Figure 4-3) but there was a main effect for time regarding CK activity (F1,10=15.49, P=0.003). 

 
Figure 4-3 Effect of Sex on biochemical aspects of myotube formation via Average CK activity. 
Results are expressed as mean ± SEM, * significant differences between Day 0 and Day 10 for both 
male and females (P<0.05). 

 

4.4.3 Artificial Wound Healing Assay to Investigate Repair and Regeneration 

Regarding Myoblast:Fibroblast Ratio 

As no significant differences in any muscle stem cell characteristics could be detected 

between cells obtained from females and males, the data from all muscle cells were 
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combined and muscle characteristics were correlated with myoblast:fibroblast ratio. There 

was an average ratio of 1.26 myoblasts to fibroblasts with a range between 0.154 and 2.93 

(Figure 4-4). No differences were seen regarding myoblast:fibroblast ratio and the total 

number of myoblast and fibroblast migration into the artificial wound after 24 h (R2=0.20, 

F1,10=2.56, P=0.141) and 48 h (R2=0.02, F1,10=0.19, P=0.671) after the scratch assay.  

 

Figure 4-4 Representative images for cell migration of muscle cells with a high myoblast:fibroblast 
ratio (2.4; left) and with a low percentage of myoblasts (0.3; right) into the artificial wound. The wound 
area is about 900 µm in width and split into 3 x 300 µm segments. Magnification is x 10.5, and scale 
bar is 100 µm. 
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There was an inverse correlation between myoblast:fibroblast ratio and migration dynamics 

for the six male Caucasions, which performed the IS-intervention and also volunteered a 

muscle biopsy (Figure 4-5 A and B). Muscle stem cells with a low ratio of myoblasts (to 

fibroblasts) demonstrated more cells in the inner segment than to the outer segment 

compared to muscle stem cells with a medium or high myoblast:fibroblast ratio for 24 h 

(R2=0.83, F1,4=19.05, P=0.012; Figure 4-5  A) and for 48 h (R2=0.72, F1,4=10.22, P=0.033; 

Figure 4-5 B) after the artificial wound healing assay. Further, there was an inverse 

correlation between myoblast:fibroblast ratio and migration dynamics for the whole cohort 

(Figure 4-5 C and D). Muscle stem cells with a low ratio of myoblasts (to fibroblasts) 

demonstrated more cells in the inner segment than to the outer segment compared to 

muscle stem cells with a medium or high myoblast:fibroblast ratio for 24 h (R2=0.49, 

F1,10=9.53, P=0.011; Figure 4-5 C) and with a trend for 48 h (R2=0.30, F1,10=4.33, P=0.064; 

Figure 4-5 D) after the artificial wound healing assay.  

 

 

Figure 4-5 Inverse correlation between the myoblast:fibroblast ratio and the migration dynamics of 
the six male participants, who performed the intermittent sprint (IS) intervention and also volunteered 
a muscle biopsy (A) 24 h (P=0.012), and (B) 48 h (P=0.033) after the artificial wound healing assay; 
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and also for the whole cohort (C) 24 h (P=0.011) and a trend (D) 48 h (P=0.064) after the artificial 
wound healing assay.  

 
There was a linear relationship between the myoblast:fibroblast ratio with all parameters at 

seven and ten days after the artificial wound healing assay (all P<0.05; Table 4-3).  

 

Figure 4-6 Representative images for muscle cell differentiation with a high percentage of myoblasts 
(2.4; left) and with a low percentage of myoblasts (0.3; right) compared to fibroblasts at day seven. 
Magnification is x 10.5, and scale bar is 100 µm. 

Biopsies with a higher myoblast:fibroblast ratio showed more myotubes per field, which had 

a higher diameter and area compared to biopsies with a lower myoblast:fibroblast ratio 

(Figure 4-6). 

Table 4-3 Linear regression analysis between the myoblast:fibroblast ratio and fusion parameters 
at day 7 and CK activity at day 10 in vitro. 

 R2 F-Test P Value 

Total myotubes [n] 0.345 F(1,10) = 5.27 0.045* 

Myotube Length [µm] 0.339 F(1,10) = 5.13 0.047* 

Myotube Diameter [µm] 0.387 F(1,10) = 5.56 0.031* 

Myotube Area [µm2] 0.404 F(1,10) = 6.79 0.026* 

CK activity [mU/mL] 0.409 F(1,10) = 6.23 0.034* 

* significant (P<0.05);  
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4.5 DISCUSSION 

The purpose of this study was to investigate whether myoblast:fibroblast ratio influences 

functional recovery. The aim was objectively assess (i) the relationship between 

myoblast:fibroblast ratio and repair/recovery following in vitro/in vivo damage; and (ii) the 

association between sex with the response to in vitro wound healing parameters after a 

scratch assay in vitro. It was hypothesised that a high myoblast:fibroblast ratio measured in 

vitro would be related to improved recovery in vivo following the IS-intervention. Further, it 

was hypothesised that a higher myoblast:fibroblast ratio would show an improved wound 

closure compared to muscle cells with a low myoblast:fibroblast ratio, and that muscle 

remodelling would not be associated with sex differences.  

In line with our hypothesis, myoblast:fibroblast ratio was related with muscle 

repair/recovery, both in vivo and in vitro, and that there were no significant differences in 

any parameters of muscle remodelling of human primary muscle stem cells, which were 

obtained of both males and females. However, contrary to our hypothesis, our results 

showed an ambiguous picture during the muscle repair process. A high myoblast:fibroblast 

ratio showed a delayed wound closure in vitro and a delayed MVC torque recovery following 

IS in vivo within the first 48 h, but a better myotube formation at seven days, and higher CK 

activity at ten days after the scratch assay. 

4.5.1 Comparison of the Muscle Response to the Intermittent Sprint 

Intervention and the Artificial Wound Healing Study in vitro 

Six of the eight male participants who volunteered a muscle biopsy for this study also 

performed an IS-intervention vivo (Chapter 3) at least three weeks after the biopsy 

procedure. Comparing the muscle characteristics measured in the current study in vitro and 

the response patterns of the physiological EIMD-intervention in vivo (Chapter 3), revealed 

a strong inverse correlation between myoblast:fibroblast ratio and the recovery of MVC 

torque assessed between baseline and 48 h after IS. Further, there was an inverse 

relationship between myoblast:fibroblast ratio and MVC torque recovery (measured 
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between POST and POST48), which provides further evidence that the ECM is important 

for recovery of maximum strength. Force produced by the sarcomeres can be transmitted 

both longitudinally and laterally to the overlying connective tissues and ECM, and from there 

to the tendon, which leads to joint movement (Kjær, 2004, Hughes et al., 2015). Potentially, 

ECM remodelling in the initial phase of muscle regeneration is crucial for restoring (lateral) 

force transmission. Skeletal muscles with an increased availability of fibroblasts around the 

area of myotrauma might have a better capacity to reorganise the complex ECM, which 

results in a faster recovery of muscle strength after EIMD. This is also in line with the time 

course of muscle connective tissue accumulation within the first 3-5 days (Murphy et al., 

2011), potentially to restore the muscle force transmission capacity, and the recovery of 

MVC following EIMD-interventions (Clarkson and Hubal, 2002, Baumert et al., 2018). 

However, there was no significant relationship between myoblast:fibroblast ratio and any 

other EIMD-related biomarker, such as muscle soreness (Warren et al., 1999) or serum CK 

activity (Baird et al., 2012) indicating that these biomarkers might be related to other 

damage/repair mechanisms. 

Further, there was no relationship between myoblast:fibroblast ratio and any measured 

parameters for the quadriceps femoris. A recent study revealed that skeletal muscles of 

different origin but with similar physiological functions demonstrate a high similarity of 

transcriptome expression patterns (Terry et al., 2018). Skeletal muscles with similar fibre 

type compositions were found to have a striking similar transcript expression of up to 99%. 

As the fibre type composition is similar between the biceps femoris long head  and of the 

vastus lateralis (Evangelidis et al., 2016), from which the muscle biopsies were obtained in 

the current study, we can assume that the variation of the correlation between 

myoblast:fibroblast ratio and the EIMD-response of both hamstring and quadriceps skeletal 

muscles might be explained by the severity of ultrastructural damage caused by the IS-

intervention. This is in line with the correlation between MVC torque loss of the hamstring 

and quadriceps muscle group (please see section 3.4.2). Increased MVC torque loss of the 
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hamstrings is related with an elevated loss of MVC torque of the quadriceps of the same 

participant.   

 

4.5.2 Sex-related Outcomes 

Animal studies have often indicated attenuated EIMD susceptibility in female animals 

(Amelink and Bär, 1986), and some human in vivo investigations have supported the 

observation that there are differences in the response to EIMD between male and females 

(Sewright et al., 2008). Further, female primary muscle stem cells of mice demonstrated a 

better regeneration capacity compared to male cells (Deasy et al., 2007). However, other 

human studies could not replicate these findings (Stupka et al., 2001), and some have 

indicated that any potentially sex-related differences might be explained by differences in 

muscle fatigability (Wüst et al., 2008) rather than differences in the susceptibility to 

ultrastructural muscle damage.  

In the current study, human male and female muscle stem cells did not differ in any 

parameters regarding the early recovery rates following an artificial wound healing assay. 

However, the current study tested CK activity within ten days and only the muscle recovery 

capacity within the first seven days, which was similar compared to the results of Deasy et 

al. (2007), as different outcomes were mainly evident after 14 days, with female muscle 

stem cells exhibiting slightly slower long-term proliferation kinetics but improved 

regeneration capacity compared to males. Therefore, the current study suggests that 

human muscle stem cells characteristics are similar between male and females regarding 

the early recovery rates, but this needs to be confirmed for muscle regeneration capacity in 

the long-term, e.g. with population doubling.  

 

4.5.3 Myoblast:Fibroblast Ratio and the Artificial Wound Healing Assay 

As no significant differences were found between sex for any parameter, the data from all 

primary muscle cells were combined for assessing the effect of myoblast:fibroblast ratio on 
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cellular aspects of muscle regeneration and remodelling. The myoblast:fibroblast ratio 

ranged between 13 and 74%, which is in line with current literature (Schäfer et al., 2006, 

Owens et al., 2015). 

The results of the current study indicated that muscle stem cells with a high 

myoblast:fibroblast ratio revealed a delay in the wound closure (less cells migrated to the 

inner part of the artificial injury compared to the outer part), in particular 24 h after performing 

the scratch assay. However, this effect was less significant 48 h after the protocol. Further, 

at day seven, muscle primary cells with a higher myoblast:fibroblast ratio showed an 

improved myotube formation. These results suggest that a larger abundance of fibroblasts 

has a positive effect at the beginning of muscle repair, but a larger number of myoblasts is 

more important for the latter stage of muscle regeneration, when myoblasts differentiate 

and fuse to become myotubes.  

The contribution of fibroblasts to the early phase of muscle repair has previously been 

investigated in animal studies in vivo (Murphy et al., 2011). The amount of muscle ECM 

(measured with sirius red) increased to peak levels three days after a barium chloride-

induced injury in mice. This was accompanied with rapid proliferation of muscle fibroblasts 

in close proximity to satellite cells and both, the amount of ECM and of muscle fibroblasts, 

returned to baseline levels 21 days after the injury. Transgenic mice with Pax7+ satellite 

cells deficiency showed dramatically impaired muscle regeneration from day five onwards, 

and generated fibrosis after the chemically mediated injury. Further, genetically engineered 

mice with Tcf4+ fibroblast deficiency demonstrated a premature activation and 

differentiation of Pax7+ satellite cells three days after the barium chloride-induced injury, 

which led to a decreased number of satellite cells over the following days. These results 

are in line with that of the current study, suggesting the abundance and activity of fibroblasts 

and myoblasts play different roles, depending on the time points during muscle repair.  

Recent human in vivo investigations confirmed the interdependence of muscle fibroblasts 

and satellite cells for a healthy muscle regeneration (Mackey et al., 2017). However, the 

time frame of muscle fibroblast accumulation around the regenerating muscle fibres 
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happened at a later time point (30 days) following electrical stimulations compared to 

Murphy et al. (2011). Further, expression of collagen I, III, and IV transcripts were 

unchanged in the first 48 h following eccentric lengthening contractions, but were increased 

27 days later (Hyldahl et al., 2015). Presumably, the different results are based on the 

different organisms investigated, varying muscles studied and different injury protocols 

used. It can be assumed that involuntary isometric contractions induced by artificial 

electrical stimulation potentially damage more proteins, which anchor the actin filaments at 

the Z-line (Crameri et al., 2007). However, this involuntary isometric contractions might 

damage the muscle ECM to a lesser extent compared to physiological eccentric MVCs 

(Crameri et al., 2007) or barium chloride-induced injury (Hardy et al., 2016). That might 

explain the delayed fibroblast proliferation (Mackey et al., 2017) and production of 

temporary ECM components (Mackey et al., 2004) at the early stage of muscle repair 

compared to barium chloride-induced injury in mice (Murphy et al., 2011). 

In conclusion, therefore, the current results suggest that fibroblasts might play an important 

role in supporting muscle cell migration during muscle regeneration within the first 48 h 

following physiological relevant EIMD, when a certain level of ultrastructural damage has 

been exceeded and the ECM has been damaged. However, following wound closure, a 

higher number of myoblasts will ensure improved myoblast fusion and hypertrophy in vitro. 

Future investigations with other in vitro models, e.g. with mechanical stretch-induced injury 

of the cells (Clarke and Feeback, 1996, Wozniak et al., 2005), should assess whether 

individuals with a high number of fibroblasts (which demonstrated advantages in muscle 

regeneration shortly after an acute muscle-damaging intervention) demonstrate an 

increased proteolytic activity after elevated fibroblast proliferation, or whether these 

individuals tend to develop more fibrotic scar tissue within the muscle in the long term. 

 

4.5.4 Limitations  

The current study observed significant differences between human primary muscle cell 

composition and skeletal muscle regeneration, but there were no significant differences 
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between sex regarding any parameters. Further research is necessary to confirm these 

results with a larger sample size. However, given the scarcity of data that have examined 

human muscle stem cell characteristics in association with muscle regeneration, we believe 

that our study represents an important advance in our understanding in this area. Further 

investigations are necessary to evaluate whether a generally low number of fibroblasts has 

a detrimental effect on MVC torque following an EIMD-intervention or whether 

myoblast:fibroblast ratio is essential for healthy muscle regeneration in vivo. We assumed 

that the myoblast:fibroblast ratio is similar between the vastus lateralis musle (from which 

we obtained the muscle biopsy) and the BFLH, as Terry et al. (2018) demonstrated a high 

similarity of transcriptome expression patterns in skeletal muscles of rodents, when the 

muscles consist of similar fibre type composition and of similar physiological functions, such 

as the BFLH (47.1% MHC-I, 35.5% MHC-IIA, and 17.4% MHC-IIX) (Evangelidis et al., 2016) 

and the vastus lateralis (49-59% MHC-I, 26-35% MHC-IIA, and 16-28% MHC-IIX) 

(Mittendorfer et al., 2005, Taylor et al., 1997). However, gene expression patterns vary 

between rodents and human (Su et al., 2002), and there are is a gap of research between 

the intra-individual variability of the myoblast:fibroblast ratio between different skeletal 

muscles. Therefore, further investigations needs to address this research gap to confirm 

our findings. Lastly, we distinguished the primary muscle cells in myoblasts (desmin-

positive) and fibroblasts (desmin-negative), as previous investigations have determined that 

the non-myoblast fraction is highly enriched in fibroblasts, with up to 99 % of this fraction 

being fibroblasts (Agley et al., 2013, Mathew et al., 2011). For immnunohistochemistry 

analysis, we have fixed the cells with a low density of 30%, so that the cells could be easily 

distinguished from each other. The ICC (3, k) of 0.83 (95% CIs:  0.59-0.95) indicates a good 

reliability for the characterisation and the quantification of myoblasts and fibroblasts. 

However, analysing the entire well (instead of sub-sampling random areas of each well) 

and additional methodical approaches, such as cell sorting by flow cytometry, could have 

improved the accuracy of our myoblast:fibroblast ratio calculation. Future studies may use 
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additional antibodies, such as DAPI (for staining nuclei) and TE7 (for staining fibroblasts), 

to validate our findings.  

 

4.6 CONCLUSION/ PERSPECTIVE 

The current results suggest that individual muscle stem cell characteristics are not 

explicable by differences in sex and that fibroblasts are essential for optimal muscle 

regeneration in the initial days following injury. Skeletal muscles with an increased number 

of fibroblasts might have a better capacity to reorganise the complex ECM, which results in 

a faster MVC torque recovery after EIMD. However, a larger number of myoblasts seems 

to be important for the latter stage of muscle regeneration, when myoblasts differentiate 

and fuse to become myotubes. The results lead to further scientific questions, such as 

whether the individual muscle characteristics, including contraction properties 

(physiological cross-sectional area) (Chapter 3), and human primary muscle cell 

composition of the current study is associated with genetic variations. In addition, further 

investigations are required to demonstrate if varying regeneration capacity within the first 

days after EIMD underpinned by the percentage of fibroblasts is correlated with (i) the 

likelihood to sustain a muscle injury; and (ii) the individual differences in the response to 

prolonged resistance training.  
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5 Individual and Combined Polymorphisms are 

Associated with in vivo and in vitro Muscle Damage in 

Humans: a Genetic Approach to Elucidate the 

Mechanisms Underpinning the Response to Exercise-

Induced Muscle Damage 
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5.1 ABSTRACT  

Introduction We aimed to test the hypothesis that a combination of selected candidate 

SNPs forming a polygenic profile could estimate high and low responders to exercise-

induced muscle damage (EIMD). 

Methods Sixty-five young female and male untrained Caucasians performed 120 maximal 

eccentric knee-extensions to induce EIMD.  Maximal quadriceps strength, range of motion 

(ROM), muscle soreness and serum blood biomarkers were assessed before, directly after 

and 48 h after the EIMD intervention and participants were genotyped for 20 candidate 

SNPs. Significant SNPs were further investigated regarding the muscle recovery following 

an artificial wound healing assay in vitro. SNPs that showed a gene-intervention interaction 

in vivo, were used to calculate a total genotype score in respect to the acute response 

following EIMD (TGS-A) and the cohort was then divided into a “preferential” (PG), 

“moderate” (MG), and “non-preferential” (NPG) genetic group. 

Results Four SNPs, which showed an interaction/main effect with the EIMD-intervention in 

vivo, also demonstrated changes in muscle stem cell characteristics in vitro. Seven SNPs 

demonstrated significant interactions in vivo, and these candidate SNPs were used to 

compute the TGS-A. There was a main effect for isometric and isokinetic MVC torque 

regarding TGS-A (both P<0.001). Individuals of the NPG and MG group were consistently 

weaker compared to the PG group (P=0.005), and NPGs demonstrated higher muscle 

soreness (P=0.003) and decreased ROM (P=0.006) following the EIMD-intervention, 

respectively.  

Conclusion Individual and combined candidate SNPs forming a polygenic profile 

demonstrated a genotype X intervention interaction to the response to different biomarkers 

following EIMD. The striking finding that NPGs regarding the EIMD-intervention also 

demonstrate a generally lower muscle strength indicates that a genetically determined 

impaired EIMD-response might result in lower muscle quality over time.  
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5.2 INTRODUCTION 

Tender and sore muscles following unaccustomed intense exercise is a well-known 

phenomenon, and is referred to as delayed onset muscle soreness, or DOMS (Cheung et 

al., 2003). Several investigations have revealed that DOMS is mainly induced by eccentric 

contractions, i.e. movements that forcibly lengthen the contracting muscle (Armstrong et al., 

1991). It is thought that excessive sarcomere strain due to exercise-induced muscle 

damage (EIMD) is the primary cause of muscle injury (Lieber and Fridén, 1999) and poorly 

managed training workload (e.g. identical training intensity for all team members of a 

football squad) with insufficient recovery between exercise sessions can lead to overuse 

muscle injury (Gabbett et al., 2016). In rare cases, over-exertion (e.g. marathon) can lead 

to exertional rhabdomyolysis with clinically relevant symptoms, such as compartment 

syndrome or renal failure, and can even cause death (Rawson et al., 2017).  

The response to EIMD is very complex as several tissues that contribute to the transmission 

of force to the bone, including skeletal muscle fibres (Clarkson and Hubal, 2002), the extra-

cellular matrix (ECM) (Hyldahl and Hubal, 2014), and tendon (Hicks et al., 2017), play a 

potential role in the damage response. Further, different muscle tissue repair mechanisms 

(inflammation, degradation of damaged tissues and muscle remodelling) take part in this 

process in a highly coordinated fashion (Tidball, 2011). Therefore, the response to EIMD 

can manifest in a variety of symptoms, including prolonged loss of maximal strength, 

decreased range of motion (ROM), ultrastructural damage, DOMS, localised inflammation 

and release of muscle-specific proteins into the circulatory system [e.g. creatine kinase (CK) 

activity, and interleukin-6 (IL-6)], which can be detected for days or even for weeks (Brown 

et al., 1999, Baird et al., 2012). All of these variables are considered to be biomarkers of 

EIMD.  

Previous studies have determined a wide range of inter-individual variability in the response 

to EIMD, even when tested in the same human population (Nosaka and Clarkson, 1996). 

Investigations in the previous chapters demonstrated that the varying response to EIMD is 

potentially based on different muscle characteristics. Improved contractile properties (e.g. 
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larger muscle physiological cross-sectional area) appears to protect against immediate loss 

of maximal voluntary contraction (MVC) torque (see Chapter 3), and a relative high 

proportion of stem cells of the connective tissue/ECM (fibroblasts) to muscle stem cells 

(myoblasts) appear to support the recovery of MVC torque (see Chapter 4) the days after 

sprinting-induced muscle damage, respectively. Whilst different muscle characteristics 

between different human populations can be explained by factors such as age (Roth et al., 

1999), ethnic origin (Sherwood et al., 1996), training status (Ploutz-Snyder et al., 2001) and 

sex (Sewright et al., 2008), there is evidence to suggest that some of this inter-individual 

variability might be explained by differences in genetic make-up (Clarkson et al., 2005b, 

Ahmetov et al., 2014, Baumert et al., 2016a). Indeed, several single nucleotide 

polymorphisms (SNPs), i.e. common variations in the sequence of nucleotides within genes 

that encode proteins (i) in skeletal muscle (Baumert et al., 2017, Clarkson et al., 2005b), 

tendon and muscle ECM (Baumert et al., 2018, Barfield et al., 2014), or (ii) are related with 

the inflammatory response (Funghetto et al., 2013, Ahmetov et al., 2014) have been 

associated with changes in various biomarkers of EIMD following eccentric exercise. 

Therefore, it is important to understand that any genetic association with damage to the 

muscle-tendon unit (MTU) is likely to be polygenic.  

To our knowledge, only two studies have investigated a combination of candidate SNPs in 

regard to the response to muscle damaging exercises (Del Coso et al., 2017b, Del Coso et 

al., 2017a). Both studies investigated the association of a combination of seven candidate 

SNPs with plasma CK concentration in applied settings (marathon and half-ironman), i.e. 

the exercise is not standardised, thus making it difficult to accurately characterise the 

variable response to EIMD.  Further, whilst a plethora of genetic association studies have 

been performed (Baumert et al., 2016a), only a few studies have investigated the 

mechanisms underpinning the effect of genetic variation in the context of exercise and EIMD 

(Barfield et al., 2014, Garton et al., 2013, Garton et al., 2018b). Knowledge of both genetic 

association with the individual response to strenuous exercise and the underlying 

mechanism could help develop individualised exercise training programmes that may be 
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used to optimise physical performance, while maximising recovery, thus reducing the risk 

of injury and development of MTU-related disease (van der Horst et al., 2015, Colberg et 

al., 2010, Erskine et al., 2010b). 

Therefore, the primary aim of this study was to investigate whether a polygenic profile could 

distinguish between high and low responders following a controlled eccentric exercise 

intervention in previously untrained individuals in vivo. Using a two-level approach, 20 

SNPs, which demonstrated a genotype X intervention interaction with the skeletal muscle  

(ACTN3 C>T, rs1815739; DES G>C, rs12621188; MYLK G>A, rs2700352; MYLK G>T, 

rs28497577; TTN-AS1 A>G, rs1001238; TTN-AS1 G>A, rs3731749), muscle ECM/tendon 

(COL1A1 G>T rs1800012; COL1A1 T>C, rs2249492; COL2A1 G>A, rs2070739; COL5A1 

T>C, rs12722; MMP3 G>A, rs679620), or with the response following EIMD (AGT C>T, 

rs699; CCL2 G>C; IGF2-AS A>C, rs4244808; IL6 C>G, 1800796; NOS3 T>C, rs2070744; 

PAX7 G>A, rs485874; TNF T>C rs1799964; TRIM63 A>G, rs2275950; VDR C>T, 

rs2228570) were initially investigated on an individual basis for an interaction effect with an 

acute bout of maximal eccentric exercise in vivo. SNPs that demonstrated an interaction 

with the response to exercise (following correction for multiple comparison) were used to 

calculate a “total genotype score” to compute a polygenic profile regarding the acute EIMD 

response (TGS-A) (Williams and Folland, 2008). The secondary aim was to further 

investigate candidate SNPs, which were found to be significant in the in vivo intervention, 

in an in vitro design. We used cultures of primary human skeletal muscle cells to assess 

the association of the candidate SNPs on muscle recovery following an artificial wound 

healing assay in vitro. We hypothesised that individuals with a non-preferential genetic 

(NPG) profile, i.e. those with a low TGS-A, would demonstrate greater muscle damage and 

a slower recovery rate in response to maximal eccentric exercise compared to those with a 

preferential genetic (PG) profile. More specifically, we hypothesised that NPGs would show 

a relatively greater loss of maximal muscle strength and ROM, greater perception of muscle 

soreness, and higher concentration/activity of circulating muscle-specific proteins, 
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immediately following eccentric exercise compared to PGs, and that these differences 

would be evident either immediately after or 48 hours after the EIMD-intervention. 

 

5.3 METHODS 

5.3.1 Cohorts 

Two cohorts were included in this study and both cohorts provided written informed consent 

prior to participation in the study, which complied with the Declaration of Helsinki and were 

approved by the Research Ethics Committee of Liverpool John Moores University (Table 

5-1). Participant inclusion criteria for both cohorts comprised: (i) aged 18-35 years; (ii) no 

history of strength training 6 months prior to the study (assessed via interview); (iii) no 

history of lower extremity musculoskeletal injuries 12 months prior to the study (assessed 

via interview and health questionnaire); (iv) medium level of habitual physical activity 

(Baecke et al., 1982a); and (v) use of potentially anabolic supplements. The first (Genetics 

of Recovery after Exercise, G-REX) cohort comprised 65 (39 females and 26 males) 

participants, while the second (Muscle Stem Cell) cohort comprised 12 (four females and 

eight males) participants (Table 5-1).  

Table 5-1 Participant Characteristics of both cohorts (mean ± SD). 

Cohort Sex Total (n) Age (years) Height (m) Body mass kg) 

G-REX Females 39 22.3 ± 4.06 1.66 ± 0.07 65.5 ± 12.4 

 Males 26 22.8 ± 4.07 1.78 ± 0.07 78.6 ± 13.6 

Muscle Stem Cell Females 4 25.5 ± 1.29 1.67 ± 0.08 61.4 ± 2.57 

 Males 8 21.3 ± 4.27 1.77 ± 0.05 73.8 ± 5.68 

  

 

5.3.2 Experimental Design of the G-REX Cohort (in vivo Study) 

Participants reported to the laboratory on three separate occasions: (i) familiarisation to the 

isometric and isokinetic knee extension MVC assessments; (ii) maximal knee extension 

eccentric contractions on an isokinetic dynamometer to induce EIMD (EIMD-intervention) 

in the right leg plus assessments before (PRE) and directly after (POST); and (ii) 48 h after 



 135 

(POST48) the EIMD-intervention. The assessments of muscle damage indices comprised 

isometric and isokinetic MVC torque (assessed via isokinetic dynamometry in the right leg), 

right leg muscle soreness [assessed via visual analogue scale (VAS)] and serum samples 

(for analysing IL-6 concentration and CK activity). All tests were performed at the same time 

point of the day for each participant. Participants were instructed to maintain their normal 

dietary behaviour (consumption of purported recovery supplements was not permitted), to 

refrain from drinking alcohol and to avoid any strenuous physical activity for at least 48 h 

before and throughout the study. 

 

5.3.3 Muscle Damage Protocol 

The muscle damage protocol consisted of 12 sets of 10 right leg maximal knee extension 

eccentric contractions on an isokinetic dynamometer [either a Humac Norm, CSMI 

(Massachusetts, USA) or Biodex Multi-Joint System 3 Pro (Shirley, USA)]. The two 

isokinetic dynamometers show similar isometric, concentric and eccentric peak torques with 

high to very high reproducibility (Alvares et al., 2015) and each participant performed all 

their strength assessments on the same dynamometer. Each set consisting of 10 maximal 

repetitions (30 s rest between each set). After every fourth set, the participants rested for 

three minutes. The angular velocity was set to 30°/s of eccentric knee contraction (from 30° 

to 100° knee flexion angle, with 0° as the extended position) and the participants were 

instructed to maximally counteract the knee flexion induced by the dynamometer. 

 

5.3.4 Maximal Voluntary Contraction (MVC) Torque 

The participant was seated on the isokinetic dynamometer in an upright position with the 

hips flexed to 85º (180 = supine position) and securely fastened with inextensible straps at 

the chest and waist whilst the arms were held crossed above the chest. The lateral 

tibiofemoral epicondyle was aligned with the axis of rotation of the lever arm, and the bottom 

of the lever arm shin pad was strapped to the leg, 2 cm above the centre of the lateral 
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malleolus. Prior to performing MVCs, participants underwent a standardised warm up 

consisting of 10 submaximal isokinetic leg extensions (60ºs-1). Participants then performed 

three isometric MVCs (lasting 2-3 s and interspersed by 60 s of rest), with the knee joint 

angle set at 80º knee flexion (0 = full extension), as this has previously been shown to be 

the optimum joint angle for peak knee extension moment in healthy young men (Erskine et 

al., 2009). Three isokinetic MVCs (70° ROM, from 30° to 100° knee flexion angle; velocity 

60ºs-1) were performed after the isometric MVCs, and the participants were instructed to 

perform the MVCs in a continuous fashion. The test-retest reproducibility for isometric knee 

extensor MVC is high, with a coefficient of variation (CV) of 3.9% (Erskine et al., 2009). 

Throughout the tests, participants received verbal encouragement and biofeedback (MVC 

outputs) were projected onto a screen in front of the participant) (Erskine et al., 2009). 

 

5.3.5 Delayed Onset Muscle Soreness (DOMS)  

Participants were asked to score their perceived muscle soreness and pain with a visual 

analogue scale (VAS) following a bilateral squat. Participants stood with hands on hips with 

feet shoulder-width apart and slowly squatted to a standardised chair height of 40 cm (~90 

knee flexion) and then rose to a standing position. This was repeated twice more, after 

which participants were asked to rate their perceived quadriceps muscle soreness in their 

right leg using a VAS (scale 0-10 cm; 0 cm=no soreness; 10 cm=maximal soreness) 

(Sellwood et al., 2007).  

 

5.3.6 Blood Samples 

Venous blood samples were obtained from all participants (for genotyping purposes) and 

serum CK activity and concentration of the inflammatory cytokine interleukin-6 (IL-6) were 

determined from a subgroup of 38 participants of the G-REX cohort. All blood samples 

drawn from an antecubital vein in the forearm and collected into a 10 ml EDTA vacutainer 

(genotyping sample) and serum vacutainer (both BD Vacutainer systems, Plymouth, UK). 



 137 

The genotyping blood sample was taken on just one occasion (familiarisation session). 

Serum samples were obtained at each time point and left at temperature controlled 

laboratory (between 22 and 24C) for 30 min to allow clotting, and then kept on ice when 

necessary. Serum samples were centrifuged at 1300 g for 15 min at 4°C. All samples were 

then aliquoted into 1.5 mL microcentrifuge tubes [Axygen (Corning), New York, USA] and 

stored at -80C until subsequent analysis (see below).  

 

5.3.7 Serum Creatine Kinase Activity 

Creatine kinase (CK) activity was assayed using a commercially available CK assay 

(Catachem Inc., Connecticut, NE, USA), as described in detail elsewhere (Sharples et al., 

2011, Owens et al., 2014). Briefly, 10 μL blood serum of the G-REX cohort/cell lysate of the 

muscle cell culture study were loaded onto a 96-well UV plate. The CK reaction reagent 

and diluent (Catachem) were prepared as per the manufacturer’s instructions and heated 

for 2 min at 37°C. The reconstituted reagent contained the following active ingredients: 30 

mmol/l PCr, 2 mmol/l ADP, 5 mmol/l AMP, 2 mmol/l NAD, 20 mmol/l N-acetyl-L-cystine, 

3,000 U/l hexokinase, 2,000 U/l G-6-PDH, 10 mmol/l 1 Mg2, 20 mmol/l D-glucose, 10 mol/l 

di(adenosine 5=) pentaphosphate, and 2 mmol/l EDTA, buffered to pH 6.7. The reagent 

mixture was then added to the samples and the change in absorbance monitored 

continuously over 20 min in a Thermo Multiskan Spectrum plate reader at a wavelength of 

340 nm. 

 

5.3.8 Serum Interleukin-6 (IL-6) Concentration 

Serum samples were assayed for IL-6 concentration using commercially available human 

IL-6 enzyme linked immunosorbent assay (ELISA) kits (Quantikine®, R&D systems, 

Minneapolis, MN, USA) according to the manufacturer's instructions. Briefly, the serum 

samples were thawed and aliquots (200 μl) of each diluted sample, positive control or 

standard, with known concentrations of human IL-6 to establish standard values, were 
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plated on a coated (monoclonal antibody specific for human IL-6) 96-well microtitre plate 

for 2 h. After washing, human IL-6 conjugate (200 μL) was added to each well and incubated 

for 2 h at room temperature (between 22 and 24C). After the wells were washed, substrate 

solution (200 μL) was added to each well at room temperature (between 22 and 24C) and 

protected from light. After adding 50 μL of stop solution to each well, the intensity of the 

colour produced after 20 min was measured with a Thermo Multiskan Spectrum microplate 

reader (Thermo Fisher Scientific. Waltham, MA. USA) at 450 nm and values were 

calculated with Excel 365 (Microsoft, v. 365, USA) by generating a four-parameter logistic 

(4-PL) curve fit. The minimum detectable dose of human IL-6 was 0.70 pg/mL. 

 

5.3.9 Genotyping 

DNA extraction from whole blood was performed with a QIAamp DNA Blood Mini Kit 

(Qiagen, Manchester, UK), following the manufacturer’s QIAamp spin column protocol for 

DNA purification from whole blood. Briefly, 20 μL proteinase K (Qiagen) was pipetted into a 

1.5 mL microcentrifuge tube. 200 μL of sample and 200 μL of lysis buffer (AL, Qiagen) was 

then added and vortexed for 15 s. this was then incubated at 56°C for 10 mins to maximise 

DNA yield. Following incubation, 200 μL ethanol (96-100%) was added to the sample and 

vortexed for 15 s. This mixture was then transferred to a QIAamp Mini spin column (Qiagen) 

within a 2 mL collection tube. This was then centrifuged at 8000 rpm for 1 min before the 

mini spin column was transferred to a clean 2 mL collection tube. 500 μL AW1 binding buffer 

(Qiagen) was then added to the spin column before being centrifuged again at 8000 rpm 

for 1 min. The column was again placed into a clean 2 mL collection tube and 500 μL AW2 

wash buffer (Qiagen) was added before centrifuging at 14 000 RPM for 3 min. The column 

was then placed into a clean 2 mL collection tube and centrifuged at 14 000 RPM for 1 min. 

Finally, the spin column was placed in a fresh 1.5 mL microcentrifuge tube, 200 μL AE wash 

buffer (Qiagen) was added to the column and was centrifuged at 8000 RPM for 1 min 

following 1 min incubation at room temperature. 
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Real-time polymerase chain reaction (PCR) was performed using a Rotor-Gene Q PCR 

machine (Qiagen) to define the genotypes in each subject. Reactions were completed on a 

72-well rotor-disc. Each 10 µL reaction volume contained: 5 µL Genotyping Master Mix 

(Applied Biosystems, Foster City, California, USA), 3.5 µL nuclease-free H2O (Qiagen), 0.5 

µL genotyping assay (Applied Biosystems), which included the SNP-specific TaqMan 

primers and probes, and 1 µL DNA. A list of the 20 SNPs analysed can be found in Table 

5-2. For negative control wells, 1 µL nuclease-free H2O replaced the DNA template. Positive 

controls were also used to provide further confidence in our results. The following PCR 

protocol was used: 50 cycles of incubation at 92°C for 15s (denaturation) then annealing 

and extension at 60°C for 1min. Lastly, genotype was determined using Rotor-Gene Q 

Software 2.3.1. All samples and positive controls were analysed in duplicate to ensure there 

was 100%.  

 

Table 5-2 Tested Gene Polymorphisms. 

Symbol Gene rs-number EA>
ALT 

Chromosome 
(Position) 

EAF 

ACTN3  Actinin Alpha 3 rs1815739 C>T 11(66,560,624) 0.62 

AGT Angiotensinogen rs699 C>T 1(230,710,048) 0.54 

CCL2 C-C Motif Chemokine Ligand 2 rs2857656 G>C 17(34,254,988) 0.75 

COL1A1 Collagen Type I Alpha 1 Chain rs1800012 G>T 17(50,200,388) 0.83 

  rs2249492 T>C 17(50,185,660) 0.54 

COL2A1 Collagen Type II Alpha 1 Chain rs2070739 G>A 4(47,974,193) 0.92 

COL5A1 Collagen Type V Alpha 1 Chain rs12722 T>C 9(134,842,570) 0.52 

DES Desmin rs12621188 G>C 2(219,423,170) 0.60 

IGF2-AS  IGF2 Antisense RNA rs4244808 A>C 11(2,141,880) 0.51 

IL6 Interleukin 6 rs1800796 C>G 7(22,727,026) 0.42 

MMP3 Matrix Metallopeptidase 3 rs679620 G>A 11(102,842,889) 0.44 

MYLK Myosin Light Chain Kinase rs2700352 G>A 3(123,831,616) 0.78 

  rs28497577 G>T 3(123,793,780) 0.90 

NOS3 Nitric Oxide Synthase 3 rs2070744 T>C 7(150,992,991) 0.63 

PAX7 Paired Box 7 rs485874 G>A 1(18,746,432) 0.56 

TNF Tumour Necrosis Factor rs1799964 T>C 6(31,574,531) 0.79 

TRIM63 Tripartite Motif Containing 63 rs2275950 A>G 1(26,058,512) 0.77 
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TTN-AS1 Titin Antisense RNA 1 rs1001238 A>G 2(178,599,800) 0.72 

  rs3731749 G>A 2(178,541,464) 0.82 

VDR Healthy untrained men and women 
 

Vitamin D Receptor rs2228570 C>T 12(47,879,112) 0.63 

EA/ALT - Effect allele and alternative allele; Trait; EAF - Effect allele frequency in this study. 
Chromosome positions are based on NCBI 151. The alleles all refer to the forward strand. 

 

5.3.10 Total Genotype Score (TGS) Calculation 

Using a two-level approach to compute a TGS (Williams and Folland, 2008), ten previously 

EIMD-associated SNPs (ACTN3 C>T, rs1815739; COL1A1 G>T rs1800012; COL1A1 T>C 

rs2249492; COL2A1 G>A, rs2070739; COL5A1 T>C, rs12722; IGF2-AS A>C, rs4244808; 

IL6 C>G, 1800796; MYLK G>A, rs2700352; MYLK G>T, rs28497577; TRIM63 A>G, 

rs2275950) (Clarkson et al., 2005b, Devaney et al., 2007a, Yamin et al., 2008, Baumert et 

al., 2017, Baumert et al., 2018), plus ten so far EIMD-non-associated SNPs (AGT C>T, 

rs699; CCL2 G>C; DES G>C, rs12621188; MMP3 G>A, rs679620; NOS3 T>C, rs2070744; 

PAX7 G>A, rs485874; TNF T>C rs1799964; TTN-AS1 A>G, rs1001238; TTN-AS1 G>A, 

rs3731749; VDR C>T, rs2228570) were investigated for an association with the EIMD 

intervention on an individual basis, while controlling for multiple comparisons. Therefore, a 

total of 20 SNPs were analysed. Heterozygote genotypes were pooled with one of the two 

homozygotes which showed a similar pattern except for SNPs possessing rare 

homozygotes n ≤ 2 (COL1A1, rs1800012; COL2A1, rs2070739; MYLK, rs28497577; MYLK, 

rs2700352), for which a recessive model was used. Single nucleotide polymorphisms that 

showed an interaction with the response to the EIMD intervention following the application 

of a 20% false discovery rate (FDR) (Benjamini and Hochberg, 1995), were then used to 

calculate our TGS-A model (Williams and Folland, 2008). Each genotype from each SNP 

was, therefore, given a score between 0 and 2 based on the response to the EIMD-

intervention. For each SNP, the homozygote genotype that showed a beneficial effect was 

given a score of 2 and the homozygote genotype associated with a detrimental effect was 

given a score of 0. The heterozygote genotype received a score of 1. Combining the scores 

of each significant SNP gave a total genotype score within a range between 0 – 100, with 
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the best possible polygenic genotype score defined as 100, and the worst possible as 0. 

Based on the TGS-A distribution, we divided the cohort into three categories, namely a 

“preferential genetic” (PG; high score), “moderate” (MG), and “non-preferential genetic” 

(NPG; low score) profile. The thresholds of these three TGS-A groups were determined 

according to the 𝑥̅ of the total genotype score ± 1SD (i.e. NPG < 𝑥̅ -1SD; MG 𝑥̅-1SD to 

𝑥̅+1SD; PG ≥ 𝑥̅+1SD).  

 

5.3.11 Muscle Stem Cell Cohort (in vitro Study) 

Twelve recreationally active and healthy young female Caucasians participated in this 

study. Prior to starting the study, a pre-biopsy screening (including venous blood samples 

were obtained from all participants for genotyping purposes) as approved by a physician 

was obtained from each participant. The following candidate SNPs, which demonstrated a 

genotype X intervention interaction with markers of EIMD in the G-REX cohort, were 

assessed for parameters in the muscle cell culture study: ACTN3, rs1815739; COL1A1, 

rs1800012; COL1A1, rs2249492; COL2A1, rs2070739; COL5A1, rs12722; IGF-AS, 

rs4244808; MMP3, rs679620; NOS3, rs2070744; PAX7, rs485874; VDR; rs2228570; 

TRIM63, rs2275950; and TTN, rs3731749.  

 

5.3.12 Muscle Cell Culture 

The methodological approach has been described in detail in section 4.3. 

 

5.3.13 Data Analysis 

Each SNP was tested for compliance with the Hardy-Weinberg equilibrium by using a χ2 

test. All parameters were normally distributed according to the Shapiro-Wilk test and by 

inspection of the Q-Q plots. Linkage disequilibrium (LD) was analysed via LDlink suite and 

data from the 1000 Genomes Project European ancestry populations (Machiela and 

Chanock, 2015, Consortium, 2012). Recent investigations revealed that pruning for LD 
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regarding polygenic approaches does not essentially change the results (Vrieze et al., 

2013). Therefore, SNPs with LD were still included in the TGS-A. We recruited young, 

healthy men and women to increase both the external validity and sample size of the in vivo 

study, and the muscle stem cells did not show significant differences between sex for any 

of the investigated parameters (see Chapter 4). However, because there is limited evidence 

for sex-specific differences in the response eccentric exercise (Sewright et al., 2008), we 

initially analysed the data according to sex. All data were analysed for interactions and main 

effects for sex (sex groups: between subjects factor) and time (within subjects factor: PRE, 

POST, POST48) using two-way-mixed analysis of variance (ANOVA).  As an interaction 

was found between sex and time regarding MVC normalised to body mass (please see 

below), All subsequent analyses were performed using two-way-mixed analysis of 

covariance (ANCOVA), with genotype (genotype groups: between subjects factor), time 

(within subjects factor: PRE, POST, and POST48) with sex (male/female) included as a 

covariate. For post hoc analyses, either, independent t-tests, or one-way ANOVAs were 

used where appropriate. Regarding the primary muscle stem cells study, linear regression 

analyses were used to analyse the relation between the following parameters: proportion of 

myoblast to fibroblasts, migration dynamics (total cell migration, proportion inner/ outer 

segment), and myotube formation (total myotubes, myotube length, average diameter, 

myotube area and CK activity). Standard guidelines concerning violation of the sphericity 

assumption to adjust the degree of freedom of the F-test by the Huynh-Felt epsilon if epsilon 

is greater than 0.75 and to use the more stringent Greenhouse-Geisser adjustment if 

epsilon is less than 0.75 were followed (Girden, 1992). All MVC torque values were 

normalised to body mass unless otherwise stated and analysed with AcqKnowledge 

software 4.4 (Biopac-Systems Inc., Goleta, USA) and SPSS 23 Software (IBM Inc., Armonk, 

NY: IBM Corp) was used for statistical analysis. Results were expressed as mean ± SD 

except otherwise stated, with statistical significance set at p < 0.05.  

 



 143 

5.4 RESULTS 

5.4.1 Effect of EIMD-Intervention on Biomarkers According to Sex 

5.4.1.1 Isometric and Isokinetic MVC 

There was an interaction between sex and time for normalised isometric (F2,126=4.13, 

P=0.018) and isokinetic MVC torque (F2,126=8.06, P=5.08x10-4; Table 5-3). Therefore, 

subsequent genetic analyses included sex as a co-variate.  

5.4.1.2 Muscle Soreness  

There was no main effect of sex (F1,63=0.15, P=0.701) and no interaction between sex and 

time (F value and P value) following EIMD (F2,126=1.19, P=0.309).  

5.4.1.3 Blood Biomarkers 

There were no main effect of sex (F1,36=2.77, P=0.105) and no interaction between time and 

sex regarding changes in either serum IL-6 concentration (F2,72=0.66, P=0.521) regarding 

changes in either serum IL-6 concentration. There were also no main effect of sex 

(F1,36=3.51, P=0.069) and no interaction between time and sex regarding serum CK activity 

(F2,72=1.67, P=0.202).  

 

5.4.2 Effect of EIMD-Intervention on Biomarkers  

Isometric and isokinetic MVC, muscle soreness (all P<0.001) and serum CK activity 

(P=0.009) showed a main effect of time, indicating EIMD had occurred (Table 5-3). 

Specifically, both isometric and isokinetic MVC decreased pre- to post-EIMD (both P<0.05) 

and remained lower than baseline at 48 h post-EIMD (both P<0.05). Muscle soreness and 

serum CK activity increased pre- to post-EIMD (both P<0.05) and remained elevated post-

EIMD compared to baseline (both P<0.05). However, serum IL-6 concentration did not show 

any changes at POST and POST48 compared to PRE EIMD-intervention (P>0.05). 
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Table 5-3 Values for dependent variables in response to muscle damaging exercise between sex 

   Time points 

Test Sex Participants PRE POST POST48 

IMS (N∙m) Male 26 3.44 ± 1.16 2.24 ± 0.77  2.81 ± 1.08* 

 Female 39 2.66 ± 0.77 1.90 ± 0.59  2.26 ± 0.75* 

IKS (N∙m) Male 26 2.66 ± 0.83 1.71 ± 0.59 2.15 ± 0.74* 

 Female 39 2.15 ± 0.57 1.61 ± 0.56 1.83 ± 0.56* 

VAS (cm) Male 26 0.39 ± 0.50 3.73 ± 2.49 3.17 ± 2.68 

 Female 39 0.40 ± 0.65 3.45 ± 2.42 3.85 ± 2.15  

ROM (°) Male 13 121.5 ± 10.4 109.4 ± 13.8 118.3 ± 13.8 

 Female 27 120.7 ± 10.2 110.8 ± 11.6 114.2 ± 9.14 

CK (mU/mL) Male 15 14.7 ± 13.4 38.9 ± 70.0 42.5 ± 58.6 

 Female 23 9.04 ± 3.91 12.3 ± 8.17 22.7 ± 18.7 

IL6 (pg/mL) Male 15 1.52 ± 2.20 3.18 ± 5.35 2.83 ± 3.95 

 Female 23 1.22 ± 1.49 1.75 ± 2.74 1.24 ± 1.12 

IMS – normalised isometric Strength; IKS – normalised isokinetic Strength; VAS – Leg muscle 

soreness; ROM – Range of Motion; CK – Creatine kinase activity; IL6 – Interleukin-6 

concentration. Values represent means ± SD. * Interaction effect between gender, P<0.05. 

 

5.4.3 Hardy-Weinberg Equilibrium and Linkage Disequilibrium 

The genotypes of all 20 SNPs were in Hardy-Weinberg equilibrium, except for COL2A1 

rs2070739 (X2=6.04, P=0.014) and PAX7 rs485874 (X2=5.15, P=0.023). Linkage 

disequilibrium calculations revealed that the following SNPs were in LD: both COL1A1 

(rs1800012 and rs2249492) SNPs (D`=0.736 and R2=0.077, P<0.001); MMP3 (rs679620) 

and ACTN3 (rs1815739) SNPs (D`=0.068 and R2=0.004, P=0.046); both MYLK (rs2700352 

and rs28497577) SNPs (D`=0.482 and R2=0.08, P<0.001); PAX7 (rs485874) and TRIM63 

(rs2275950) SNPs (D`=0.134 and R2=0.004, P=0.004); and both TTN-AS1 (rs1001238 and 

rs3731749) SNPs (D`=1.0 and R2=0.472, P<0.001).  
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5.4.4 SNP Associations with Biomarkers of EIMD  

From the 20 SNPs analysed, seven displayed significant interactions with time (Table 5-4) 

regarding muscle soreness (COL2A1, rs2070739; COL5A1, rs12722; and TTN, 

rs3731749), ROM (COL5A1, rs12722; IGF2-AS, rs4244808; VDR; rs2228570; and 

TRIM63, rs2275950) and isometric torque (MMP3, rs679620). There were no significant 

SNP associations with either serum CK activity or IL-6 concentration. Also, the following 

SNPs did not show either any interaction or main effect with any outcome variable 

intervention after correction for multiple testing: AGT rs699, CCL2 (rs2857656), DES 

(rs12621188), IL6 (rs1800796), both MYLK (rs2700352 and rs28497577), NOS3 

(rs2070744), TNF (rs1799964), and TTN-AS1 (rs1001238). The responses of the G-REX 

cohort for both COL1A1 (rs1800012 and rs2249492), COL2A1 (rs2070739), COL5A1 

(rs12722) and TRIM63 (rs2275950) SNPs to the eccentric exercise regimen have been 

previously reported (Baumert et al., 2017, Baumert et al., 2018). However, for each SNP in 

the present study, we pooled the heterozygote group with the homozygote group that 

showed a similar response to the heterozygote group. For this reason, the TRIM63 

rs2275950 SNP now shows an interaction between time x genotype (minor G homozygotes 

compared to A-allele carriers) regarding ROM, but no significant interaction in regard to 

soreness [as reported in Baumert et al. (2017)], where the three  genotypes were analysed 

separately. 

Table 5-4 SNP interaction with EIMD-intervention following correction for multiple comparisons. 

   Group Response (n)   

Symbol rs-number Interaction Beneficial Detrimental F-Test P 

Value 

COL2A1 rs2070739 Muscle Soreness GG (56) GA+AA (9) F2,124 = 

6.63 

0.002 

COL5A1 rs12722 Muscle Soreness CC+CT (49) TT (16) F2,124 = 

4.48 

0.013 

  Range of Motion CC+CT (32) TT (8) F2,74 = 

3.42 

0.038 

IGF2-AS  rs4244808 Range of Motion AA+AC (35) CC (5) F2,74 = 

3.99 

0.023 
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MMP3 rs679620 Isometric Torque AA (12) GG+GA (53) F2,124 = 

5.10 

0.007 

VDR rs2228570 Range of Motion CC+CT (36) TT (4) F2,74 = 

5.10 

0.028 

TRIM63 rs2275950 Range of Motion AA+AG (38) GG (2) F2,74 = 

3.38 

0.039 

TTN-AS1 rs3731749 Muscle Soreness GG (45) GA+AA (20) F2,124 = 

6.83 

0.002 

 

 

In addition to the interactions reported in Table 5-4, there were also main effects (Table 5-5) 

regarding the following SNPs for isometric torque (COL1A1, rs1800012; COL1A1, 

rs2249492; TRIM63, rs2275950), for isokinetic torque (ACTN3, rs1815739; COL1A1, 

rs1800012; COL1A1, rs2249492; MMP3, rs679620; TRIM63, rs2275950), for muscle 

soreness (NOS3, rs2070744; TTN-AS1, rs3731749) and for ROM (PAX7, rs485874).  

Table 5-5 Main effect for genotype following correction for multiple comparisons. 

   Group Response (n)   

Symbol rs-number Main Effect Beneficial Detrimental F-Test P 

Value 

ACTN3 rs1815739 Isokinetic Torque CT+TT (37)  CC (28) F1,62 = 

4.65 

0.035 

COL1A1 rs1800012 Isometric Torque GG (45) GT+TT (22) F1,62 = 

7.24 

0.009 

  Isokinetic Torque   F1,62 = 

5.82 

0.019 

COL1A1 rs2249492 Isometric Torque  CC (11)  TT+TC (54) F1,62 = 

6.02 

0.017 

  Isokinetic Torque   F1,62 = 

6.41 

0.014 

MMP3 rs679620 Isokinetic Torque AA (12) GG+GA (53) F1,62 = 

3.99 

0.05 

NOS3 rs2070744 Muscle Soreness TT (40) TC+CC (25) F1,62 = 

5.72 

0.02 

PAX7 rs485874 Range of Motion AA (10) AG+GG (30) F1,37 = 

7.29 

0.01 

TRIM63 rs2275950 Isometric Torque AA+AG (60) GG (5) F1,62 = 

6.63 

0.012 
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  Isokinetic Torque   F1,62 = 

5.60 

0.021 

TTN-AS1 rs3731749 Muscle Soreness GG (45) GA+AA (20) F1,62 = 

6.42 

0.014 

 
 

5.4.5 Artificial Wound Healing Model to Assess Repair and Regeneration and 

Genetic Variations  

The COL2A1 G>A (rs2070739), MMP3 G>A (rs6796200), TRIM63 A>G (rs2275950), TTN 

G>A (rs3731749), and VDR C>T (rs2228570) SNPs did not show any interaction or main 

effect with any parameters for the in vitro artificial wound healing assay (all P>0.05). There 

were main effects (Table 5-6) regarding the following SNPs for the artificial wound healing 

model in vitro: ACTN3, rs1815739; COL1A1, rs1800012; COL1A1, rs2249492; COL5A1, 

rs12722; IGF2-AS, rs4244808; PAX7, rs485874.  

Table 5-6 Main effect for genotype regarding the artificial wound healing model. 

Symbol rs-number Main Effect Group 

Response 

(n)  

Values F-Test P 

Value 

ACTN3 rs1815739 Myoblast:Fibroblast 

ratio (%) 

CC (7)  36.1 ± 18.8 F1,10 = 

9.26 

0.012 

   CT+TT (5) 61.8 ± 20.9   

COL1A1 rs1800012 Total Myotubes (n) GT+TT (2) 14.0 ± 2.47 F1,10 = 

11.4 

0.007 

   GG (10) 7.77 ± 2.37   

  CK activity 

(mU/mL) 

GT+TT (2) 325.7 ± 1.36 F1,9=6.

96 

0.027 

   GG (9) 151.8 ± 97.4   

COL1A1 rs2249492 Myoblast:Fibroblast 

ratio (%) 

TT+TC (10) 52.7 ± 20.3 F1,10 = 

5.50 

0.041 

   CC (2) 17.5 ± 5.9   

COL5A1 rs12722 Myotube length 

(µm) 

TT (3) 257.4 ± 48.6 F1,10 = 

6.06 

0.034 

   CC+CT (9) 345.9 ± 55.2   

  CK activity 

(mU/mL) 

TT (3) 76.4 ± 49.3 F1,9 = 

5.76 

0.040 
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   CC+CT (8) 223.6 ± 

102.3 

  

IGF2-AS rs4244808 Total Myotubes (n) CC (1) 15.75 ± 0.00 F1,10 = 

7.63 

0.020 

   AA+AC 

(11) 

8.13 ± 2.53   

PAX7 rs485874 Total Myotubes (n AG+GG 

(11) 

8.18 ± 2.63 F1,10 = 

7.62 

0.020 

   AA (1) 15.75 ± 0.00   

 

There was a trend for an interaction between the ACTN3 (rs1815739) SNP and time 

regarding migration rate (F1.3,18=3.34, P=0.086). There was a tendency for more cells with 

the RR genotype (n=7; 24h: 18.4 ± 2.03 %; 48h: 26.9 ± 1.81 %) tended to  migrate into the 

inner segment of the artificial injury compared to cells with the X allele (n=5; 24h: 13.1 ± 

6.52 %; 48h: 24.8 ± 5.2 %). There was an interaction for COL1A1 (rs1800012) SNP and 

time regarding migration rate (F2,18=4.33, P=0.029). More cells with the G genotype (n=10; 

24h: 17.6 ± 4.23 %; 48h: 26.7 ± 3.5 %) migrated into the inner segment of the artificial injury 

compared to cells with the T allele (n=2; 24h: 9.3 ± 0.69 %; 48h: 22.5 ± 1.46 %). There was 

an interaction between TTN-AS1 (rs1001238) genotype and time regarding total cell 

migration into the wound zone (F2,18=6.79, P=0.006). More cells with the AA genotype (n=8; 

24h: 66.1 ± 9.56 cells; 48h: 96.9 ± 10.0 cells) migrated into the wound compared to the cells 

with the G allele (n=4; 24h: 57.0 ± 6.00 cells; 48h: 78.8 ± 10.1 cells). There was a trend for 

NOS3 (rs2070744) SNP and time regarding CK activity measured at day 0 and day 10 

(F1.,9=5.01, P=0.052). There was a tendency that cells with the C allele showed increased 

CK activity (n=8; D0: 65.5 ± 21.4 mU/mL; D10: 222.5 ± 103.6 mU/mL) compared to cells 

with the TT genotype (n=3; D0: 53.1 ± 13.3 mU/mL; D10: 79.3 ± 53.0 mU/mL).  

 

5.4.6 Effect of Total Genotype Score on Biomarkers of EIMD  

The seven SNPs (COL2A1, rs2070739; COL5A1, rs12722; IGF2-AS, rs4244808; MMP3, 

rs679620; VDR, rs2228570; TRIM63, rs2275950; and TTN-AS1, rs3731749) that presented 

significant interactions with either muscle soreness, isometric torque or ROM (Table 5-4) 
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were used for the TGS-A analyses. Individuals were divided into three groups, depending 

on their TGS-A [see “Total Genotype Score calculation”, above, i.e. PG: n=10 (females=6; 

males=4); MG: n=37 (females=22; males=15); and NPG: n=18 (females=11; males=7)] 

Subsequently, there was a main effect for isometric (F2,61=8.78, P=4.45x10-4, Figure 5-1) 

and isokinetic (F2,61=7.82, P=9.51x10-4) MVC torque. Individuals of the NPG (1.93 ± 0.81 

Nm/kg) and MG group (2.28 ± 0.69 Nm/kg) revealed weaker baseline isokinetic MVC torque 

values compared to PG group (2.73 ± 0.59 Nm/kg; P=0.005).  

 

 

Figure 5-1 Main effect for normalised isometric maximal voluntary contraction (MVC) torque in 
regard to the polygenic profile. PG – Preferential Genotype Group; MG – Moderate Genotype Group; 
NPG – Non-Preferential Genotype Group. # One-Way ANOVA, NPG and MG are significant different 
compared to PG, P<0.05; * One-Way ANOVA, significant differences between each group, P<0.05, 
mean ± SEM. 

 

There was a TGS-A group x time interaction in regard to muscle soreness (F4,122=4.21, 

P=0.003, Figure 5-2), with higher muscle soreness reported for NPG compared to MG and 

PG at POST (F2,61=4.87, P=0.011) and 48POST (F2,61=6.42, P=0.003). Concerning ROM, 

there was a TGS-A x time interaction (F4,72=3.40, P=0.006), whereby NPG showed greater 

ROM PRE-EIMD compared to MG and PG (NPG: 135.0 ± 8.66°; MG: 118.3 ± 9.69°; PG: 
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122.6 ± 8.70°; F2,36=5.13, P=0.011). However, the EIMD-intervention resulted in a reduced 

ROM for the NPG group and, therefore, the NPG showed the same level of flexibility POST- 

and POST48-EIMD as the MG and PG group (P>0.05). 

 

Figure 5-2 Gene-Interaction effect (polygenic profile x time) for muscle soreness. PG – Preferential 
Genotype Group; MG – Moderate Genotype Group; NPG – Non-Preferential Genotype Group; * 
One-Way ANOVA, NPG are significant different compared to MG and PG, P<0.05, mean ± SEM. 

 

5.5 DISCUSSION 

The aim of the current study was to investigate whether a combination of previously 

selected candidate SNPs could distinguish between high and low responders following a 

maximal eccentric exercise intervention. To achieve this aim, a total genotype score 

(Williams and Folland, 2008) was applied to each participant of the G-REX cohort, based 

on their genetic profile for the following seven candidate SNPs that demonstrated 

individually a genotype X intervention interaction with, at least, one EIMD-biomarker 

following the application of FDR. The G-REX cohort was then divided into three sub-groups, 

according to their TGS-A. The main finding of the current study is that the NPG group (i) 

demonstrated greater muscle soreness and greater loss of ROM following the EIMD-

intervention, respectively; and (ii) were generally weaker compared to MG and PG groups. 
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Contrary to our hypothesis, we could not observe any TGS-A X intervention interaction with 

(i) changes in strength regarding our polygenic profile; and (ii) the concentration or activity 

of blood-borne biomarkers of EIMD following the intervention, neither on an individual SNP 

or polygenic basis. Among the individual SNPs that demonstrated an interaction with the 

EIMD-intervention, there were three distinct functional groups regarding the response to the 

EIMD-intervention. Here we discuss the potential influence of the individual SNPs that 

demonstrated an interaction or main effect with EIMD in vivo and with the wound healing 

assay in vitro, as well as the polygenic profile. 

 

5.5.1 Functional Group of SNPs Related to Muscle Soreness 

The first functional group of the protein related-SNPs comprise COL2A1 (rs2070739), 

COL5A1 (rs12722), and TTN-AS1 (rs3731749). The SNPs are located within genes, which 

contribute to the elastic properties of the MTU and may have a crucial role in storing and 

releasing energy during fast movements and/or stretch shortening cycles (Turrina et al., 

2013). The strong type II collagen (the pro-alpha-1 chain of type II collagen is encoded by 

the COL2A1 gene) fibrils are commonly expressed in cartilage (Gustafsson et al., 2003). 

However, chronic stress can induce an upregulation of COL2A1 in tendon, indicating a 

(mal)adaptation to chronic overuse training (Archambault et al., 2007). Collagen type V (the 

pro-alpha-1 chain of type V collagen is encoded by COL5A1) is predominantly present in 

the endomysium (surrounding muscle fibres) and epimysium (surrounding the muscle) of 

the muscle ECM (Nakamura et al., 2007). The giant protein titin (encoded by the TTN gene) 

extends between the Z-line and the M-line (Bang et al., 2001) and is essential for the 

structure and elasticity of the sarcomere. The risk alleles of these three SNPs [A-allele of 

COL2A1 (rs2070739); TT genotype of COL5A1 (rs12722); A-allele of TTN-AS1 

(rs3731749)] demonstrated an interaction between perceived muscle soreness and time 

regarding the EIMD-intervention. In addition, participants of the COL5A1 TT genotype also 

reported an impaired recovery of ROM in vivo and decreased myotube length and CK 

activity in the artificial wound healing model in vitro compared to the C-allele carriers, 
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presumably due to an elevated fibroblast activity. Fibroblasts are essential for efficient repair 

and regeneration of the ECM within muscle and tendon (Goetsch et al., 2003, Davis et al., 

2013, please see Chapter IV). However, the three SNPs might affect the expression 

rate/stability of the corresponding gene (Lin et al., 2018, Tarpey et al., 2013, Posthumus et 

al., 2011). This appears to negatively influence the elastic components of the MTU with a 

subsequent decreased capacity to store and release energy (Stafilidis and Arampatzis, 

2007, Turrina et al., 2013). An increased stiffness of the elastic components of the MTU 

might increase stress on the contractile components making NPGs more prone to EIMD 

during eccentric MVC compared to PGs. Overstretched cytoskeleton/muscle ECM may 

result in an increase of extracellular inflammatory mediators, which might trigger the 

nociceptor response within the muscle, leading to elevated muscle soreness (Hyldahl and 

Hubal, 2014, Hucho and Levine, 2007). 

 

5.5.2 Functional Group of SNPs Related to Delayed Muscle Regeneration  

The second functional group of SNPs, which are related to enzymes of the skeletal muscle 

catabolic (MMP3, rs679620; TRIM63, rs2275950) and anabolic (VDR, rs2228570; also 

referred to as FOK1) signaling pathways, were associated with markers of EIMD 48 h after 

the exercise intervention. Matrix metalloproteinases (MMPs) are enzymes which 

breakdown components (e.g. collagen) synthesised and secreted by fibroblasts. Fibroblasts 

are essential for efficient repair and regeneration of the ECM within muscle and tendon 

(Goetsch et al., 2003, Davis et al., 2013, please see Chapter IV). The G-allele of the 

missense MMP3 (rs679620) G>A SNP is thought to decrease MMP3 transcription (Foster 

et al., 2012, Ye, 2006, Taylor et al., 2008), which might supress the activity to degrade 

collagen III and other substrates (Sternlicht et al., 1999). The ubiquitin E3 ligase, muscle 

RING finger-1 (MuRF-1, expressed by the TRIM63 gene), plays an important part in muscle 

atrophy via the ubiquitin–proteasome pathway (Bodine et al., 2001a). Further, recent 

investigations suggest that MuRF-1 interacts with one of titin’s three strain-sensing 

locations at the M-line of the sarcomere (Centner et al., 2001, Baumert et al., 2017). Vitamin 



 153 

D and the vitamin D receptor (VDR), are involved in immune function, calcium homeostasis, 

bone health and muscle function (Owens et al., 2018). Several polymorphisms within the 

VDR gene have been associated with changes in muscle function (Grundberg et al., 2004, 

Barr et al., 2010) and with the severity of musculoskeletal injuries in professional football 

players (Massidda et al., 2015). (Arai et al., 1997). 

It is possible that the preferential alleles of three of these SNPs [A-allele of MMP3 

(rs679620); A-allele of TRIM63 (rs2275950); C-allele of VDR (rs22285700)] exert their 

beneficial effect by increasing the expression rate of their transcript following EIMD 

compared to their corresponding non-preferential alleles (Foster et al., 2012, Ye, 2006, 

Taylor et al., 2008) (Arai et al., 1997). The increased response potentially promotes repair 

and supports successful skeletal muscle remodeling mirrored by a faster recovery of ROM 

(TRIM63 and VDR SNPs) and muscle strength (MMP3 SNP) 48 h following EIMD. Further, 

the preferential allele of two of these three SNPs (MMP3 and TRIM63 SNPs) showed 

generally higher strength values. Increased gene expression of the preferential alleles and 

a subsequent increased degradation activity of the corresponding enzymes after intense 

exercises might lead to a better turnover of the target proteins and, therefore, to a higher 

stability of the ECM, thus potentially explaining the generally higher strength values of the 

G-REX participants. Regarding the VDR SNP, it seems that the non-preferential T-allele 

‘protects’ non-exercising individuals against loss of muscle strength and free-fat mass 

(Windelinckx et al., 2007, Hopkinson et al., 2008, Roth et al., 2004). The increased VDR 

activity of the C-allele might lead to a higher risk of chronic low-grade inflammation resulting 

in accelerated muscle strength loss of sedentary elderly. However, the elevated gene 

activity supports muscle regeneration following EIMD, i.e. via elevated skeletal muscle 

myogenesis (Owens et al., 2015, Stratos et al., 2013). Therefore, in older, sedentary 

individuals, the C-allele is likely disadvantageous in terms of muscle function but in 

physically active people (young and old), this allele could be beneficial in terms of aiding 

the muscle recovery process following exercise.   
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The CC homozygotes of the insulin-like growth factor-II antisense (IGF2-AS; rs4244808) 

A>C SNP was the only signalling-related SNP that demonstrated a further reduction in ROM 

immediately post EIMD. Expression of IGF2 might not change following an EIMD-

intervention per se but IGF-II concentration might be generally higher in CC homozygotes 

(due to lower IFG2-AS gene activity) (Zhao et al., 2017). Increased IGF2 expression might 

increase ECM deposition, causing a detrimental ECM structure (Keller et al., 1999, Baumert 

et al., 2016a), which is more prone to EIMD (Porter et al., 2002). Further, the CC genotype 

revealed a higher number of formed myotubes post damage in vitro, indicating an elevated 

sarcomerogenesis. This could lead to more sarcomeres in series (Wisdom et al., 2015), 

which  potentially explains the generally greater ROM in vivo in CC homozygotes. 

 

5.5.3 No Interaction of the Polygenic profile with Strength Loss following 

EIMD 

It is thought that muscle force is transmitted predominantly laterally via the perimysium 

(surrounding muscle fascicles) to the tendon and ultimately to the bone (Ramaswamy et al., 

2011). Collagen type I is predominantly present in the perimysial tissue, which becomes 

continuous with the tendon (Passerieux et al., 2007, Hughes et al., 2015, Gillies and Lieber, 

2011). α-Actinin-3 (ACTN3) might play an exceptional role in the MTU, as α-actinin-3 

anchors actin to the Z-line, which might play functionally an important role in muscle force 

transmission, both longitudinally and laterally (Hughes et al., 2015). The preferential alleles 

of the structure-related SNPs [X-allele of ACTN3 (rs1815739); GG homozygotes COL1A1 

(rs1800012); and CC homozygotes of COL1A (rs2249492)] showed a main effect for a 

greater MVC torque generating capacity in vivo. CC homozygotes of COL1A1 (rs2249492) 

demonstrated a higher proportion of fibroblasts to myoblasts in vitro, and COL1A1 GG 

homozygotes (rs1800012) showed a lower number of total myotubes, which is 

accompanied with decreased CK activity. The beneficial alleles of both COL1A1 SNPs 

might have an increased fibroblast activity, which might cause stiffer components and 

subsequently lead to better longitudinal and lateral force transmission. Apart from that, the 
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interaction of the COL1A1 SNPs with parameters of the in vitro study further indicates that 

that the collagen SNPs do not only effect the function of the tendon, but also of the muscle 

ECM. However, the X-allele of the nonsense ACTN3 R577X SNP showed a higher myoblast 

to fibroblast ratio in vitro and a non-significant tendency for a greater strength loss following 

the EIMD-intervention (unadjusted P = 0.022, data not shown) compared to R-allele 

homozygotes, supporting the literature that the X-allele is associated with an increased 

susceptibility to muscle damage (Seto et al., 2011, Broos et al., 2018). The absence of the 

stiff α-actinin-3 in fast-twitch fibres (Broos et al., 2012, North et al., 1999) might decrease 

the stability and rigidity of type II fibres of the X-allele carrier. Intriguingly, others found 

increased fibrosis and strength loss of mice with overexpression of ACTN3 after post-natal 

gene editing (Garton et al., 2018a), which is in line with our results of a higher ratio of 

fibroblast to myoblasts in RR carriers in vitro. It needs further investigation whether this 

mirrors a lower amount of a subpopulation of muscle stem cells, which are associated with 

slow twitch fibres type I (Biressi and Rando, 2010). That might give a mechanistically 

explanation of a lower capability for an increase of muscle mass in these slow twitch fibres 

of R-allele carrier and, therefore, an attenuated increase of muscle strength following 

chronic resistance training in untrained individuals (Clarkson et al., 2005a). 

Nonetheless, the polygenic profile could not detect strength loss following the EIMD-

intervention indicating that the investigated SNPs might not have covered those linked 

genes, which encoded proteins are involved in the MVC change after the EIMD-intervention. 

The MMP3 (rs679620) SNP was the only individual SNP, which demonstrated an interaction 

with MVC measurements. The preferential allele of MMP3 SNP might increase the enzyme 

activity to degrade proteins (such as collagen type III within the perimysium) leading to a 

higher turnover of ECM proteins. Together with other enzyme-related SNPs such as 

TRIM63 (rs2275950), potentially this mechanism results in an increased MTU integrity and 

a better force transmission in the long term. However, the interaction effect of the MMP3 

SNP was masked when the SNP was combined with the six other SNPs in the polygenic 

profile. 
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Recent investigations reported an important role of the ECM regarding muscle injuries and 

it seems that appropriate damage to the perimysium differentiates between EIMD and 

muscle strains (Balius et al., 2018, Mueller-Wohlfahrt et al., 2012). We therefore 

hypothesise that EIMD-interventions induced by an IKD with low-speed eccentric MVC are 

potentially not able to cause substantial damage to the stiff components of the perimysium 

(such as the collagen type I fibrils), and that the MVC strength loss might be more 

associated with damage to structural components of the myofibrillar apparatus, particularly 

those involved in the longitudinal force transmission (e.g. titin and nebulin) (Trappe et al., 

2002). In contrast, repeated high external forces involved with high-speed contractions, 

such as sprinting might have a greater risk of damage to components of the perimysium 

(Chapter 3) compared to the current EIMD-intervention with low eccentric MVCs. 

Insufficient recovery of previously damaged muscle fibres might increase the risk of muscle 

strains (potentially caused primarily by damage to the perimysium) on a clinically relevant 

scale (Malone et al., 2016, Chumanov et al., 2011, Duhig et al., 2016).  

The different phenotypic outcomes of the different interventions and of the SNP clusters 

might contribute to a deeper understanding of the mechanism of EIMD. The endo- and 

epimysium might have an important function to store and release elastic energy and to 

protect the remaining MTU from overstretching. SNPs which keep the endo- and epimysium 

elastic, might attenuate damage within the MTU. Other SNPs associated with the 

activity/function of enzymes, which are linked with the EIMD response, might support the 

recovery response (and potentially the maintenance of muscle quality in the long term). The 

stiff components of the MTU (e.g. of the perimysium) transmit force and simultaneously are 

the major contributor to the passive force of skeletal muscles at high strain (Gillies and 

Lieber, 2011). SNPs associated with the integrity of these stiff components might change 

the EIMD/muscle strain injury risk.  
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5.5.4 Limitations 

We acknowledge that we have recruited both male and female participants and there is 

some limited evidence that men and women respond differently to eccentric exercise  

(Sewright et al., 2008). However, the majority of studies attempting to address this question 

have shown no sex differences in in the susceptibility to ultrastructural muscle damage 

(Sayers and Clarkson, 2001, Thompson et al., 1997, Stupka et al., 2001, Wüst et al., 2008). 

Furthermore, although our male participants were stronger than our female subjects in both 

absolute and relative (to body mass) terms, when the change in MVC at time points POST 

and 48POST was reported as a percentage change from baseline MVC, we observed no 

difference in strength loss between men and women. We, therefore, used absolute strength 

normalised to body mass with the covariate sex, so we were able to analyse strength 

differences between genotype/allele for each SNP. Moreover, each of our three polygenic 

groups contained a similar ratio of men to women, so it is highly unlikely that any sex 

differences influenced the outcome of our results. Finally, serum IL-6 levels did not increase 

significantly over time following the muscle damage intervention. Peak serum IL-6 values 

were probably not observed as the IL-6 is expected to peak between 6 and 24 hours after 

an eccentric-exercise intervention (Willoughby et al., 2003). Therefore, our study may have 

benefitted from additional time points for blood analyses to acquire a more comprehensive 

and accurate representation of the time course of the serum IL-6 response to our EIMD 

intervention.  

 

5.6 CONCLUSION/ PERSPECTIVE 

A fundamental challenge for exercise-related science is to determine the high inter-

individual variability in the response to exercise for the development of inexpensive 

individualised health management to prevent injuries and diseases. Our study suggests that 

seven SNPs in seven different genes, both on an individual and combined (polygenic) basis, 

can anticipate the response to muscle-damaging exercises regarding different EIMD-
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biomarkers (i.e. muscle soreness and ROM). The most striking outcome was that 

individuals possessing a non-preferential genetic profile concerning muscle changes in 

muscle soreness and ROM were also generally weaker than individuals with a preferential 

genetic profile, which is a potentially important clinical finding. Further investigations are 

necessary to determine whether NPGs (i) have an increased likelihood to sustain a muscle 

injury; (ii) also reveal an attenuated response to chronic resistance training, indicating where 

the anabolic signaling pathway may be impaired; (iii) might show change in the activation 

of the catabolic signaling pathway; and (iv) whether these differences in strength between 

the polygenic groups are further amplified with ageing, where size, strength and quality of 

the muscle and of the muscle ECM are diminished and the negative response to EIMD 

appears to be augmented (Jiménez-Jiménez et al., 2008, Manfredi et al., 1991). This 

knowledge will potentially help to develop personalised health management by providing 

the most suitable and effective activity plan specific to an individual as personalised 

exercise medicine becomes more widely accepted as an inexpensive health intervention to 

prevent injury and disease and maintain/improve physical performance in young and older 

individuals. 
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6 A common Polygenic Profile Linking the Acute and 

Chronic Responses to Resistance Exercise 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is noted that the neuromuscular physiology data (pre/post training) of the Genetics of 

RESIStance Training (G-ResisT) cohort have been published previously (Erskine et al., 

2010a; 2010b; 2011; 2014), and constituted part of Dr Robert Erskine’s PhD Thesis (2010). 

To investigate whether the genetic profile identified in Chapter 5 was also associated with 

the adaptations to chronic resistance training, the DNA samples from G-ResisT were re-

analysed for the SNPs investigated in Chapter 5. .  
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6.1 ABSTRACT 

Introduction The study aims were to investigate the hypotheses that (i) a polygenic profile 

(total genotype score, TGS) comprising a combination of candidate single-nucleotide 

polymorphisms (SNPs) previously associated with the response to acute resistance 

exercise (RE) could anticipate high and low responders to chronic RE; and (ii) a new TGS 

that demonstrate an interaction with chronic RE could estimate the response to acute RE.  

Methods In cohort one (G-REX study, Chapter 5: 65 young, untrained men and women), 

maximal quadriceps strength, serum creatine kinase (CK) and interleukin-6 (IL-6) were 

measured before, after and 48 h after acute RE. In cohort two (51 young, untrained men), 

quadriceps muscle strength and size were assessed before and after nine weeks of chronic 

RE. Participants were genotyped for 20 candidate SNPs and TGSs were determined 

according to the response/adaptation to acute (TGS-A) and chronic (TGS-C) RE.  

Results TGS-A was not associated with any adaptations to chronic RE. However, TGS-C 

was associated with changes in strength but not muscle size following chronic RE. TGS-C 

was also inversely associated with increases in serum CK and IL-6 following acute RE. 

Conclusion A specific combination of genotypes appears to limit the damage/inflammatory 

response to acute RE, while also maximising strength gains following chronic RE. This 

offers a novel insight into the physiological mechanisms underpinning and linking the acute 

and chronic responses to RE. After independent replication, TGS-A and TGS-C may be 

used to anticipate an individual’s response/adaptation to acute/chronic RE, thus enabling 

RE to be prescribed on a personalised level. 

 

Keywords: resistance training; genetic variations; creatine kinase (CK); interleukin-6 (IL-

6); exercise-induced muscle damage (EIMD); extracellular matrix (ECM) 
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6.2 INTRODUCTION  

An acute bout of unaccustomed resistance exercise (RE) that involves muscle-lengthening 

(eccentric) maximal voluntary contractions (MVCs) can induce muscle damage (Clarkson 

and Hubal, 2002). The exercise-induced muscle damage (EIMD) is reflected by 

morphological changes, such as Z-line disturbance, an elevated inflammatory response 

including the release of muscle-specific proteins into the circulatory system [e.g. creatine 

kinase (CK) activity, and interleukin-6 (IL-6) concentration],  and prolonged MVC loss 

(Tidball, 1991, Garg and Boppart, 2016). In Chapter 3, we showed that a greater muscle 

physiological cross-sectional area (PCSA), which is a measure of the total area of muscle 

fibres perpendicular to their long axes (and is therefore the main determinant of maximum 

force capacity), protects against immediate MVC loss following acute RE. Chronic RE, i.e. 

resistance training, is a potent stimulus for increasing both muscle PCSA and strength 

(Harries et al., 2012, Granacher et al., 2016, Erskine et al., 2010b), therefore, there may be 

a relationship between the change in muscle PCSA with chronic RE and the ability to resist 

the damaging effect of an acute bout of RE. 

However, there is a large inter-individual variability in the response to acute RE (Nosaka 

and Clarkson, 1996, Damas et al., 2016a, Baumert et al., 2016a, Baumert et al., 2016b) as 

well as to chronic RE (Erskine et al., 2010a, Hubal et al., 2005), and recent investigations 

suggest that common genetic variations, e.g. single-nucleotide polymorphisms (SNPs), 

may play a role in explaining this variability (Harmon et al., 2010, Pistilli et al., 2008, Baumert 

et al., 2017, Baumert et al., 2018). In Chapter 5, we demonstrated that a combination of 

candidate SNPs (that each showed an interaction with the response to acute RE), can 

identify high and low responders to EIMD. Thus, by calculating a “total genotype score” 

(TGS) (Williams and Folland, 2008) based on the preferable/non-preferable genotype of 

each significantly associated SNP, we discovered that a polygenic profile (TGS-A) was 

associated with the variable response to acute RE. Participants with a non-preferable 

genetic profile (NPG), i.e. individuals with a low TGS-A, showed higher muscle soreness 

and decreased range of motion (ROM) following acute RE, and were generally weaker 
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compared to the preferable polygenic (PG) group. It has been suggested that increased 

muscle soreness following an acute bout of unaccustomed RE is linked to an elevated 

inflammatory response (Kanda et al., 2013), and that an elevated inflammatory response 

with chronic RE might be detrimental for muscle hypertrophy and strength gains (Mayhew 

et al., 2009). However, it is not known whether TGS-A NPGs with their genetic 

predisposition to an elevated inflammation following acute RE (Chapter 5) also demonstrate 

an attenuated adaptation to chronic RE in terms of gains in muscle strength and muscle 

size.  

Muscle force is predominantly determined by its PCSA (Powell et al., 1984, Close, 1972), 

and it is thought that the increase in muscle PCSA following chronic RE is the result of 

cumulative increases in myofibrillar muscle protein synthesis in response to each 

successive bout of RE (Moore et al. 2009b; Brook et al. 2015). However, there is a 

disproportionate increase in muscle strength and size following chronic RE (Erskine et al., 

2014a, Erskine et al., 2010b) and several SNPs have been linked with either chronic 

changes in muscle hypertrophy or muscle strength (Li et al., 2014, Harmon et al., 2010). 

Only a few investigations have revealed an interaction between certain SNPs and gains in 

both muscle mass and muscle strength, i.e. of the muscle-derived cytokine interleukin-15 

(Pistilli et al., 2008) and insulin-like growth factor 1 (Kostek et al., 2010) . Further, in recent 

years, the extracellular matrix (ECM) within the muscle-tendon unit (MTU) gained attention 

for its important role in providing a structural scaffold for muscle remodelling (Mackey et al., 

2017, Murphy et al., 2011) and in transmitting force laterally via the perimysium 

(surrounding muscle fascicles) to the tendon and bone (Ramaswamy et al., 2011). 

However, it is unknown whether certain SNPs might be associated with muscle ECM 

function and whether this might affect the response to chronic RE. 

Therefore, the purpose of the current study was to test the hypotheses that (i) NPGs, i.e. 

those with a low TGS-A, which demonstrated greater muscle damage and a slower recovery 

rate with respect to the response following acute RE (Chapter 5), would also show an 

attenuated adaptation to chronic RE; or (ii) whether a different TGS (TGS-C) would be 
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associated with the neuromuscular adaptations to chronic RE; and (iii) if this TGS-C would 

be associated with the response to acute RE. To investigate these aims, we included the 

following two independent exercise cohorts. The Genetics of Recovery after EXercise (G-

REX) cohort was included to compare the polygenic association with the effects of acute 

RE (Baumert et al., 2017, Baumert et al., 2018) with the adaptations to 9-weeks’ chronic 

RE in a separate [Genetics of Resistance Training (G-ResisT)] cohort (Erskine et al., 

2010b).  

 

6.3 METHODS 

6.3.1 General 

Data from 116 young, healthy untrained Caucasians were used in the present study (Table 

6-1).   Men and women  were recruited in the Genetics of Recovery after EXercise (G-REX) 

(Chapter 5), whilst only men participated in the Genetics of RESIStance Training (G-ResisT, 

data collection 2007 - 2009) cohort (Erskine et al., 2012). 

 

Table 6-1 Participant Characteristics of the two cohorts (mean ± SD). 

Cohort Sex Total (n) Age (years) Height (m) Body mass (kg) 

G-REX Females 39 22.3 ± 4.06 1.66 ± 0.07 65.5 ± 12.4 

 Males 26 22.8 ± 4.07 1.78 ± 0.07 78.6 ± 13.6 

G-ResisT Males 51 20.3 ± 3.13  1.78 ± 0.06 75.4 ± 10.6 

 

Written informed consent was obtained from each participant prior to starting the study, 

which complied with the Declaration of Helsinki and was approved by the responsible local 

committees (the Research Ethics Committee of Liverpool John Moores University for the 

G-REX, and the local ethics committee of the Manchester Metropolitan University for the 

G-ResisT cohort).  
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Participants were familiarised with all test procedures and equipment before the baseline 

measurements and participant inclusion criteria for the three cohorts comprised: (i) age 

between the range of 18–35 yr (18–39 yr for G-ResisT), (ii) no history of strength training 6 

months (12 months for the G-ResisT cohort) prior to the study, as determined via physical 

activity questionnaire and interview; (iii) no history of lower extremity musculoskeletal 

injuries 12 months prior to the study, as assessed via interview; (iv) no use of potentially 

anabolic supplements; and (v) considered not to be in ill health (determined by their 

responses to a health questionnaire). 

 

6.3.2 G-REX Cohort  

Please see Chapter 5 for a detailed methodology regarding these measurements in the G-

REX cohort. In brief, the G-REX separate cohort of 65 untrained young men and women 

(G-REX cohort) performed maximum voluntary isometric and isokinetic knee extension 

contractions (MVCs) on an isokinetic dynamometer before (PRE), immediately after (POST) 

and 48 h after (48POST) performing 120 eccentric knee extension MVCs. Further, at each 

time point, a 10 mL venous blood sample was taken from a superficial forearm vein to 

measure serum interleukin-6 (IL-6) concentration, creatine kinase (CK) activity, and to 

determine genotype of 20 SNPs.  

 

6.3.3 G-ResisT Cohort 

6.3.3.1 Experimental Design 

Maximum patellar tendon force, quadriceps femoris muscle volume, physiological cross-

sectional area (PCSA), and specific force were determined in the right limb (as described 

in method 2 of Ref. 8) before and after 9 wk of high-intensity unilateral knee extension RE 

(Erskine et al., 2010b) in 51 previously untrained young healthy men (G-ResisT, a separate 

cohort to G-REX). In addition, all participants had blood samples isolated, which were 

genotyped for all 20 candidate SNPs (see below).  
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6.3.3.2 Progressive Resistance Exercise 

The supervised chronic RE protocol has been described in detail elsewhere (Erskine et al., 

2010b). In summary. The chronic RE intervention comprised a supervised unilaterally knee 

extension for three times per week for 9 wk. At the beginning of the training programme, 

the maximum training load that could be lifted once only (1-RM) throughout the full range of 

knee extension (110° to 20° of knee flexion; 0°  full knee extension) was assessed. The 1-

RM was re-evaluated at the start of each week on a standard knee extension machine 

(Technogym, Gambettola, Italy) and, therefore, the training intensity progressively 

increased throughout the 9 wk of training, as the training intensity was adjusted in relation 

to the 1-RM. Each training session consisted of a warm-up set of 10 knee extension 

repetitions (40% of 1-RM), which was followed by four sets (2 min rest between each) of 10 

repetitions (80% of 1-RM). Each participant completed all 27 training sessions and, 

therefore, the compliance with the training protocol was 100%. 

 

6.3.3.3 Maximum Isometric Patellar Tendon Force 

The method used to assess maximum patellar tendon force has been explained in detail 

elsewhere (Erskine et al., 2009). In brief, participants performed isometric knee extension 

maximal voluntary contractions (MVCs) on an isokinetic dynamometer (Cybex Norm, Cybex 

International, Ronkonkoma, NY) at optimum knee strength angle  (optimal force-length 

relationship), which ranged from 70 to 90° knee flexion (0º = full knee extension). 

Participants were seated in an upright position and securely fastened with inextensible 

straps to the strength-testing chair. The hip joint angle was set to 85° (180° = supine 

position). Surface electromyographic (sEMG) activity was recorded from the biceps femoris 

long head to determine the extent of antagonist muscle co-activation during MVCs of the 

respective muscle group (Reeves et al., 2004a). Two bipolar silver chloride surface 

electrodes (Neuroline, Medicotest, Rugmarken, Denmark) were placed 20 mm apart along 

the sagittal axis over the muscle belly (the location was recorded on an acetate for further 
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tests) and one reference electrode was positioned over the lateral tibial condyle. The root 

mean square of the raw EMG signal was calculated over 1 s around the peak torque during 

each maximum voluntary isometric knee extension and flexion at optimum joint angle and 

the torque produced by the hamstrings during knee extension was estimated assuming a 

linear relationship between torque and EMG activity (Reeves et al., 2004a). The estimated 

antagonist torque was obtained at the optimum knee extension joint angle and then used 

to calculate the maximum overall knee extension torque. To measure voluntary quadriceps 

femoris muscle activation capacity via the interpolated twitch technique (Rutherford et al., 

1986), the participant received a supramaximal twitch (Digitimer stimulator model DS7, 

Welwyn Garden City, UK) via two (7.5 cm 12.5 cm) self-adhesive electrodes (Versastim, 

Conmed, New York, NY), which were placed distally (anode) and proximally (cathode) over 

the quadriceps femoris muscle, once before MVC (control twitch) and once during MVC. 

True maximum torque was calculated as  

True maximum torque =
MVC(C)  

1–  𝑡/T 
  

where t is the amplitude of the superimposed twitch, T is the value of the twitch before the 

MVC, and MVC(C) is MVC corrected for antagonist muscle co-activation.  

The patellar tendon moment arm (dPT) was determined using a 0.2-T magnetic resonance 

imaging (MRI) scanner (G-Scan, Esaote Biomedica, Genoa, Italy), as previously described 

(Tsaopoulos et al., 2006). Sagittal and coronal-plane knee scans were acquired using a 

Turbo 3D T1-weighted sequence (scanning parameters: time of repetition 40 ms; time to 

echo 16 ms; matrix 256 x 256; field of view 180 mm x 180 mm; slice thickness 3.4 mm; 

interslice gap 0 mm). The participant was in the supine position and the knee fully extended, 

when the knee was scanned at rest. Coronal scans were used to identify the appropriate 

sagittal scans, which were used to locate the centre of rotation, i.e., the midpoint of the 

shortest distance between the two femoral condyles and the tibial plateau, and dPT was 

defined as the perpendicular distance between the centre of rotation and the axis of the 

patellar tendon (Tsaopoulos et al., 2006). Previously reported ratios of dPT at full extension 

(0°knee flexion) to dPT at 70°, 80°, and 90° knee flexion (Baltzopoulos, 1995) were used to 
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calculate dPT at optimum knee joint angle in this study. Subsequently, maximum force 

resolved at the patellar tendon was calculated as 

Maximum force resolved at the patellar tendon =
True maximum torque   

𝑑PT 
  

  

6.3.3.4 Muscle Physiological Cross-sectional Area (PCSA) 

Quadriceps femoris muscle PCSA was determined from a method that has been described 

in detail previously [method 2 of (Erskine et al., 2009)]. Briefly, femur length, defined as the 

distance from the proximal origin of the vastus lateralis muscle to the tibiofemoral contact 

point, was assessed by ultrasonography (MyLab25, Esaote Biomedica, Genoa, Italy). The 

anatomical cross-sectional area was analysed of each of the four component quadriceps 

femoris heads via transverse MRI scans (at 40% femur length from the distal end). 

Quadriceps femoris muscle volume was then calculated by adapting a previously described 

method (Morse et al., 2007) that incorporated femur length, the anatomical cross-sectional 

area of each of the four constituent quadriceps femoris heads and a series of regression 

equations. Vastus lateralis muscle fascicle length and pennation angle were measured 

during knee extension MVC at optimum knee angle using ultrasonography at 50% of the 

muscle length along the midsagittal plane. Dividing quadriceps femoris muscle volume by 

vastus lateralis muscle fascicle length provided quadriceps femoris PCSA, as vastus 

lateralis fascicle length has been shown to be representative of the fascicle length for the 

whole quadriceps femoris muscle group (Erskine et al., 2009). 

 

6.3.3.5 In vivo Muscle Specific Force 

The method used to assess in vivo muscle specific force has been explained in detail 

elsewhere (Erskine et al., 2009). Briefly, in vivo specific force was determined by dividing 

maximum force resolved at the patellar tendon by the reduced quadriceps femoris PCSA, 

because quadriceps femoris muscle force is reduced when resolved along the patellar 

tendon according to the pennation angle. Therefore, quadriceps femoris PCSA was 
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multiplied by the cosine of vastus lateralis pennation angle, which provided the reduced 

quadriceps femoris PCSA.  

 

6.3.3.6 In vivo Peak Power Output 

The method used to determine in vivo peak power output (Wpeak) normalised to quadriceps 

femoris muscle volume (Wpeak/muscle volume) has been described in detail elsewhere 

(Erskine et al., 2011). Briefly, Wpeak of the lower right limb was assessed using a modified 

isokinetic cycle ergometer (Lode Standard, Groningen, The Netherlands), driven by a 2.24 

kW motor through a variable-speed gearbox and with strain gauges within the pedals 

registering the forces at right angles to the top surface of the pedal (Sargeant et al., 1981, 

Beelen et al., 1994). The test session started with a 5 min warm-up at a pedal frequency of 

90 r.p.m. and with the pedals connected to an external load of 60W. The external cranks 

were then connected to the electric motor, the external load set to 0W, and the participant 

performed isokinetic sprints at five predetermined, randomly assigned pedal frequencies 

(50, 70, 90, 110 and 130 r.p.m.), where the participant attempted (unsuccessfully) to 

accelerate the system by exerting maximal force during each revolution. Each sprint lasted 

for 6 s and was separated by a 5 min resting period. Although participants performed a two-

legged sprint, Wpeak was calculated in the right (trained) limb only. The calculation of Wpeak 

was adapted by a previously described (Beelen et al., 1994) and Wpeak was calculated 

according to the following equation: 

Wpeak (in watts)   =  peak tangential force ×  tangential velocity 

 

Peak tangential force and tangential velocity values were previously calculated by different 

equations incorporating the pennation angle of the pedal as well as both, the vertical and 

horizontal force and velocity, respectively. 
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6.3.3.7 Blood Sampling   

A 10-ml blood sample was drawn into 10-ml EDTA (for genotyping) or serum (for IL-6/CK 

analysis in the G-REX cohort only) collection tubes (BD Vacutainer Systems, Plymouth, 

UK) from a superficial forearm vein. The whole blood/serum was aliquotted into 2-ml tubes 

(Eppendorf AG, Hamburg, Germany) and stored at -80°C until subsequent analysis. 

 

6.3.3.8 DNA Extraction and Determination of Genotypes     

DNA extraction was performed either manually (for the G-REX cohort) or with a QIAcube 

(Qiagen, Crawley, UK; for the G-ResisT cohort) using the QIAamp DNA Blood Kit (Qiagen, 

Crawley, UK), following the QIAamp spin protocol for DNA purification from whole blood. 

Genotyping was performed at the Liverpool John Moores University as described previously 

(Baumert et al., 2018, please see Chapter V).  All samples, plus positive and negative 

controls were analysed in duplicate and there was 100% agreement between genotype for 

samples from the same participant. 

 

6.3.3.9 Total Genotype Score (TGS) Calculation   

Using a two-level approach to calculate a TGS (Williams and Folland, 2008), the 20 SNPs 

we investigated in Chapter 5 (ACTN3 C>T, rs1815739; AGT C>T, rs699; CCL2 G>C; 

COL1A1 G>T rs1800012; COL1A1 T>C, rs2249492; COL2A1 G>A, rs2070739; COL5A1 

T>C, rs12722; DES G>C, rs12621188; IGF2-AS A>C, rs4244808; IL6 C>G, 1800796; 

MMP3 G>A, rs679620; MYLK1 G>A, rs2700352; MYLK1 G>T, rs28497577; NOS3 T>C, 

rs2070744; PAX7 G>A, rs485874; TNF T>C rs1799964; TRIM63 A>G, rs2275950; TTN-

AS1 A>G, rs1001238; TTN-AS1 G>A, rs3731749; and VDR C>T, rs2228570) were 

investigated for an association with the adaptations to chronic RE on an individual basis, 

while controlling for multiple comparisons. Heterozygote genotypes were pooled with one 

of the two homozygotes that showed a similar pattern except for SNPs possessing rare 

homozygotes n ≤ 2 (COL1A1, rs1800012; COL2A1, rs2070739; MYLK1, rs28497577; 

MYLK1, rs2700352), in which case a recessive model was used. Single nucleotide 
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polymorphisms that showed an interaction with response particular adaptation to the 

chronic RE intervention following the application of a 20% false discovery rate (FDR) 

(Benjamini and Hochberg, 1995), were then used to calculate the different TGS (TGS-A, 

associated with the response to acute RE and TGS-C, associated with the adaptation to 

chronic RE) models (Williams and Folland, 2008). Each genotype from each SNP was, 

therefore, given a score between 0 and 2 based on the response to the RE intervention. 

For each SNP, the homozygote genotype that showed a beneficial effect was given a score 

of 2 and the homozygote genotype associated with a detrimental effect was given a score 

of 0. The heterozygote genotype received a score of 1. Combining the scores of each 

significant SNP gave a total genotype score within a range between 0 – 100, with the best 

possible polygenic genotype score defined as 100, and the worst possible as 0. The 

contributions of the different TGSs to the inter-individual variance in the chronic RE-induced 

change in maximum patellar tendon force, muscle specific force and in Wpeak were 

determined using linear regression analysis. As in Chapter 5, three groups were defined 

according to the 𝑥̅ of the TGS ± 1SD, i.e. non-preferential genotypes (NPG) < 𝑥̅ -1SD; 

moderate genotypes (MG) = 𝑥̅-1SD to 𝑥̅ +1SD; and preferential genotypes (PG) ≥ 𝑥̅+1SD.  

 

6.3.3.10 Data Analysis   

Each SNP was tested for compliance with the Hardy-Weinberg equilibrium by using a χ2 

test. All parameters were normally distributed according to the Shapiro-Wilk test and by 

inspection of the Q-Q plots. Linkage disequilibrium (LD) was analysed via LDlink suite and 

data from the 1000 Genomes Project European ancestry populations (Machiela and 

Chanock, 2015, Consortium, 2012). Recent investigations revealed that pruning for LD 

regarding polygenic approaches does not essentially change the results (Vrieze et al., 

2013). Therefore, SNPs with LD were still included in the TGS. Repeated-measures 

analysis of variance (ANOVAs) [within-subjects factor: time (pre- and post-chronic RE); 

between-subjects factor: genotype groups (2 group levels)] were used to detect 

associations between each SNP and 1-RM, isometric MVC knee joint torque, maximum 
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patellar tendon force, Wpeak, quadriceps femoris muscle PCSA and muscle specific force 

before and after training. For post hoc analyses, either, independent t-tests, or one-way 

ANOVAs were used where appropriate. Standard guidelines concerning violation of the 

sphericity assumption to adjust the degree of freedom of the F-test by the Huynh-Felt 

epsilon if epsilon is greater than 0.75 and to use the more stringent Greenhouse-Geisser 

adjustment if epsilon is less than 0.75 were followed (Girden, 1992). 1-RM, MVC knee joint 

torque, and maximum patellar tendon force were normalised to body mass, unless 

otherwise stated, and analysed with AcqKnowledge software 4.4 (Biopac-Systems Inc., 

Goleta, USA). Muscle fascicle length, quadriceps femoris muscle volume and PCSA were 

normalised to femur length; and Wpeak was normalised with quadriceps femoris volume. 

 

6.4 RESULTS 

6.4.1 Hardy-Weinberg Equilibrium and Linkage Disequilibrium 

The genotypes of all 20 SNPs were in Hardy-Weinberg equilibrium, except for COL2A1 

rs2070739 (X2=6.04, P=0.014) and PAX7 rs485874 (X2=5.15, P=0.023) in the G-REX 

cohort. Linkage disequilibrium calculations revealed that the following SNPs were in LD: 

both COL1A1 (rs1800012 and rs2249492) SNPs (D`=0.736 and R2=0.077, P<0.001); 

MMP3 (rs679620) and ACTN3 (rs1815739) SNPs (D`=0.068 and R2=0.004, P=0.046); both 

MYLK1 (rs2700352 and rs28497577) SNPs (D`=0.482 and R2=0.08, P<0.001); PAX7 

(rs485874) and TRIM63 (rs2275950) SNPs (D`=0.134 and R2=0.004, P=0.004); and both 

TTN-AS1 (rs1001238 and rs3731749) SNPs (D`=1.0 and R2=0.472, P<0.001).  

 

6.4.2 The Association of the Individual SNPs with the Response to Chronic 

Resistance Exercise  

From the 20 SNPs analysed with respect to the G-ResisT cohort, eight displayed significant 

interactions with time (pre to post chronic RE) after correction for multiple testing (Table 
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6-2). Five of these SNPs were associated with the change in muscle specific force (ACTN3, 

rs1815739; CCL2, rs2857656; COL1A1, rs1800012; COL1A1, rs2249492; and VDR, 

rs2228570) and three SNPs were associated with the change in Wpeak (AGT, rs699; MYLK1, 

rs2700352; and TNF, rs1799964).  

Table 6-2 SNP interaction with chronic resistance exercise following correction for multiple 
comparisons. 

   Group Response (n)   

Symbol rs-number Interaction Beneficial Detrimental F-Test P Value 

ACTN3 rs1815739 Specific force CT+TT (31) CC (20) F1,49 = 
5.50 

0.023 

AGT rs699 Wpeak CC+CT (27) TT (13) F1,38 = 
5.07 

0.030 

CCL2 rs2857656 Specific force CC (6) GG+GC (45) F1,49 = 
7.86 

0.007 

COL1A1 rs1800012 Specific force GT+TT (20) GG (31) F1,49 = 
4.68 

0.035 

COL1A1 rs2249492 Specific force CC (4) TT+TC (47) F1,49 = 
7.67 

0.008 

MYLK1 rs2700352 Wpeak AA+GA (19) GG (21) F1,38 = 
9.99 

0.003 

VDR rs2228570 Specific force CC+CT (43) TT (8) F1,49 = 
4.96 

0.031 

TNF rs1799964 Wpeak TT (20) CC+TC (20) F1,38 = 
5.59 

0.023 

 

In addition to the interactions reported in Table 6-2, there were also main effects (Table 6-3) 

regarding the following SNPs for patellar tendon force (TTN-AS1, rs1001238; TTN-AS1, 

rs3731749), for fascicle length (CCL2, rs2857656; COL5A1, rs12722, and TNF, 

rs1799964), for PCSA (CCL2, rs2857656), and for specific force (CCL2, rs2857656). The 

following nine SNPs were not significantly associated (neither interaction nor main effect) 

with any outcome variable of the G-ResisT cohort after correction for multiple testing: 

COL2A1 (rs2070739), DES (rs12621188), IGF2-AS (rs4244808), IL6 (rs1800796), MYLK1 
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(rs28497577), NOS3 (rs2070744), MMP3 (rs679620), PAX7 (rs485874), and TRIM63, 

rs2275950. 

Table 6-3 Main effect for genotype regarding chronic resistance exercise following correction for 
multiple comparisons. 

   Group Response (n)   

Symbol rs-number Main Effect Beneficial Detrimental F-Test P Value 

CCL2 rs2857656 fascicle length CC (6) GG+GC (43) F1,47 = 
15.97 

2.25 x10-4 

  PCSA GG+GC (45) CC (6) F1,49 = 
8.37 

0.006 

  specific force CC (6) GG+GC (45) F1,49 = 
9.22 

0.004 

COL5A1 rs12722 fascicle length TT (16)  CC+CT (33) F1472 = 
5.74 

0.021 

TNF rs1799964 fascicle length TT (26) CC+CT (23) F1,47 = 
5.47 

0.024 

TTN-AS1 rs1001238 patellar tendon 
force 

GG+GA (22) AA (29) F1,49 = 
7.14 

0.010 

TTN-AS1 rs3731749 patellar tendon 
force 

AA+AG (10) GG (41) F1,49 = 
10.18 

0.002 

 

 

6.4.3 The Correlation between TGS-A and the Response to Chronic 

Resistance Exercise 

There was no correlation between TGS-A and changes in 1-RM, MVC knee joint torque, 

maximum patellar tendon force, quadriceps muscle specific force, muscle fascicle length, 

quadriceps femoris muscle volume, PCSA or Wpeak following chronic RE. Two SNPs, which 

showed a beneficial outcome for the one allele [GG homozygotes for TTN-AS1 (rs3731749) 

regarding muscle soreness; GG homozygotes for COL1A1 (rs1800012) regarding MVC 

torque] following acute RE, demonstrated a detrimental association with the change in 
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patellar tendon force (TTN-AS1, rs3731749) and muscle specific force (COL1A1, 

rs3731749) following chronic RE .  

 

6.4.4 A new Polygenic Profile (TGS-C) to Anticipate the Response to Chronic 

Resistance Exercise 

Secondly, we calculated the TGS-C, which included all eight SNPs (ACTN3, rs1815739; 

AGT, rs699; CCL2, rs2857656; COL1A1, rs1800012; COL1A1, rs2249492; MYLK1, 

rs2700352; TNF, rs1799964; and VDR, rs2228570) that showed an individual interaction 

with the chronic RE intervention following correction for multiple comparisons. There was a 

linear correlation between TGS-C and % change in maximum patellar tendon force (Figure 

6-1 A). Participants with a higher TGS-C demonstrated a greater increase in force 

compared to participants with a low TGS (R2=0.08, F=4.53, P=0.038) after chronic RE. 

TGS-C also correlated positively with % change in muscle specific force (Figure 6-1 B), i.e. 

the higher the TGS, the greater the increase in muscle specific force (R2=0.10, F=5.31, 

P=0.025) after chronic RE. 

 

Figure 6-1 Correlation between the polygenic profile TGS–C and maximum patellar tendon force (A) 
and muscle specific force (B). 
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6.4.5 New Polygenic Profiles Regarding Chronic RE Estimate the Individual 

Response to Acute RE 

Lastly, we investigated the association between the TGS-C groups and the changes in 

various parameters following acute RE (Chapter 5). Regarding the G-REX cohort, there 

was an interaction between TGS-C and time regarding serum CK activity (F4,68=7.51, 

P=4.3*10-5Figure 6-2 A). The serum CK activity for NPG was higher POST [for PG (n=7): 

17.2 ± 13.7 mU*mL-1; MG (n=29): 16.4 ± 27.1 mU*mL-1; NPG (n=2): 130.3 ± 174.6 mU*mL-

1] as well as POST48 [for PG (n=7): 27.7 ± 26.0 mU*mL-1; MG (n=29): 24.6 ± 21.0 mU*mL-

1; NPG (n=2): 125.8 ± 153.9 mU*mL-1] compared to MG and PG. There was an interaction 

between TGS-C and time regarding serum IL-6 concentration (F4,68=7.22, P=6.6*10-5; 

Figure 6-2 B). Serum IL-6 concentration was higher for NPG [(n=2): 13.1 ± 12.9 pg*mL-1] 

POST compared to MG [(n=29): 1.84 ± 2.46 pg*mL-1] and PG [(n=7): 1.18 ± 0.63 pg*mL-1].  

 

Figure 6-2 Interaction effect for serum CK activity (of the G-REX cohort) and time regarding the 
polygenic profile TGS-C (A), Interaction effect for serum IL-6 concentration (of the G-REX cohort) 
and the polygenic profile TGS-C (B); PG – Preferential Genotype Group; MG – Moderate Genotype 
Group; NPG – Non-Preferential Genotype Group. * NPG is significant different compared to MG and 
PG, P<0.05, mean ± SEM. 

 

6.5 DISCUSSION 

The aim of the current study was to investigate whether (i) NPGs of TGS-A, that was 

previously associated with biomarkers of EIMD and a slower recovery rate following acute 

RE (Chapter 5), would be associated with an attenuated adaptation to chronic RE; (ii) NPGs 

of a new TGS (TGS-C), calculated with respect to the individual associations of 20 
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candidate SNPs with adaptations to chronic RE, would demonstrate attenuated strength 

and muscle mass gains; and (iii) NPGs of the TGS-C would demonstrate a greater EIMD 

response to acute RE compared to their PG counterparts. Contrary to our first hypothesis, 

TGS-A was not related to any chronic RE adaptation. In line with our second hypothesis, 

however, TGS-C PGs showed greater adaptations to chronic RE compared to NPGs in 

terms of changes in maximum patellar tendon force and muscle specific force. In 

accordance with our third hypothesis, NPGs of TGS-C demonstrated a greater inflammatory 

response (indicated by IL-6 and CK activity) following acute RE.  

 

6.5.1 Using TGS-A to Anticipate the Adaptation to Chronic RE  

It is thought that the accumulation of repeated RE leads to an increase in muscle strength 

and mass. Less is known about whether muscle damage following acute RE triggers a 

cascade of events that can lead to muscle restructuring, greater strength gains and muscle 

hypertrophy (Roig et al., 2008). However, we did not find any association between TGS-A 

and chronic RE. The individual response following acute RE might be predominantly caused 

by SNPs, which are linked to the elastic components of the MTU (e.g. COL5A1 rs12722, 

TTN-AS1 rs3731749) and to inflammation and protein degradation (e.g. TRIM63 

rs2275950, MMP3 rs67962). This is in line with recent investigations, which found that 

acute RE does not correlate well with the long-term effect of chronic RE regarding both RNA 

expression (Phillips et al., 2013, Damas et al., 2018) and myofibrillar protein synthesis 

(Damas et al., 2016b). However, there is no investigation that has compared collagen 

protein synthesis responses following acute RE and chronic RE. It is thought that the elastic 

capabilities of the MTU are essential to protect the muscle fibres from mechanical strain 

during eccentric (muscle lengthening) contractions during RE (Gillies and Lieber, 2011, 

Turrina et al., 2013). However, as the SNPs are not linked to the stiff perimysium, but to 

other parts of the ECM, they might contribute to the force transmission to a lesser extent 

and, therefore, might be less relevant for strength gains following chronic RE. SNPs related 

to protein degradation pathways might be predominantly important for the capability to 
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repair ultrastructural damage following acute RE (Damas et al., 2016b). Interestingly, a 

GWAS study regarding the individual strength in a large cohort of UK residents between 40 

- 69 yrs demonstrated significant associations with FBXO32 SNPs (e.g. rs12548263) and a 

non-significant trend with SNPs of the TRIM63 gene (e.g. rs3008425 which is in strong LD 

with rs2275950) (Willems et al., 2017). Both genes are related to the ubiquitin-proteasome 

pathway, providing evidence of SNPs of these genes contributing to the individual 

differences in muscle strength over the life span of the general population (Willems et al., 

2017). However, protein degradation pathways might be less linked with strength gains 

following chronic RE (Brook et al., 2016, Phillips et al., 2013, Damas et al., 2018). It needs 

to be further investigated if this is also true with muscle hypertrophy in humans (Zillikens et 

al., 2017, Verbrugge et al., 2018). 

 

6.5.2 Using TGS-C to Estimate the Adaptation to Chronic RE  

A new polygenic profile (TGS-C), which was based on the adaption to chronic RE, included 

eight candidate SNPs (ACTN3, rs1815739; AGT, rs699; CCL2, rs2857656; COL1A1, 

rs1800012; COL1A1, rs2249492; MYLK1, rs2700352; TNF, rs1799964; and VDR, 

rs2228570) that showed an individual interaction with the chronic RE intervention. The TGS-

C was able to explain 8 % and 10% of the variability in changes of patellar tendon force and 

specific force following chronic RE, respectively. This is quite significant given that the 

heritability of maximum muscle strength is 50-70% (De Moor et al., 2007, Georgiades et al., 

2017, Thomis et al., 1998). As one candidate SNP is thought to account for only a small 

proportion of the heritability for complex traits (McCarroll et al., 2008), the data presented 

including multiple SNPs might be of scientific value to identify larger proportions of the 

heritability for RE adaptations. Given the challenges in performing these types of 

comprehensive genotype-phenotype interventions, the current study sheds new light on the 

complex mechanism underlying the individual response following acute and chronic RE. In 

comparison, the most comprehensive investigated human trait is stature, which is relatively 
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easy and quick to assess. About 17 million genetic variations have been implicated in 

explaining 56% of the variability for human height, for which the heritability is 60–70% (Yang 

et al., 2015). Further, among the individual SNPs that were associated with changes in 

strength following chronic RE, there were two distinct clusters.  

6.5.2.1 Cluster of SNPs Related to Wpeak 

The preferential alleles of three SNPs [C-allele of AGT (rs699); A-allele of MYLK1 

(rs2700352); TT genotype of TNF (rs1799964)] showed a beneficial interaction to Wpeak. 

The preferential alleles of the myosin light chain kinase 1 (MYLK1), which is expressed in 

skeletal muscle stem cells in the early phase of differentiation (Herring et al., 2000), and of 

the tumour necrosis factor (TNF) SNPs also demonstrated a non-significant trend for 

generally greater quadriceps muscle volume (unadjusted P=0.031, data not shown), and a 

generally longer fascicle length in the vastus lateralis, respectively. However, these three 

SNPs did not show any interaction to acute RE, although the genes linked to the SNPs are 

directly and indirectly associated with muscle wasting related effects (Brink et al., 2001, 

Tidball, 2011, Han et al., 2012). Recent investigations demonstrated that muscle stem cell 

proliferation and myoblast differentiation is positively regulated by TNF (Zhan et al., 2007, 

Yang and Hu, 2018) and by components of the renin–angiotensin system, which is linked 

to the AGT gene (which encodes the precursor protein angiotensinogen)  (Yoshida et al., 

2014, Johnston et al., 2011, Johnston et al., 2010). Further, MYLK1 contributes to cellular 

responses by its scaffolding activity to recruit macromolecular complexes, which might 

support the remodelling of the cytoskeleton (Khapchaev and Shirinsky, 2016, Wu et al., 

2003, Levinson et al., 2004, Gautel, 2011a). Since maximal muscle power is a product of 

force and contraction velocity, the preferential alleles of these SNPs might affect the 

expression rate/stability of the corresponding genes resulting in an improved Wpeak due an 

increased number of sarcomeres in parallel (thus increasing force) and in series (thus 

increasing contraction velocity).  
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6.5.2.2 Cluster of SNPs Related to Muscle Specific Force 

In the current study, individuals carrying the preferable alleles [CC genotype of CCL2 

(rs2857656), CC genotype of COL1A1 (rs2249492), the T-allele of COL1A1 (rs1800012), 

the C-allele of VDR (rs2228570)] of four SNPs demonstrated an increased muscle specific 

force following chronic RE, potentially by an enhanced RNA expression (He et al., 2017, 

Mann et al., 2001, Arai et al., 1997). Collagen type I (the pro-alpha-1 chain of type I collagen 

is encoded by COL1A1) is the predominant protein in the perimysium, which is thought to 

be involved in lateral force transmission (Ramaswamy et al., 2011), and recent 

investigations suggest that the CCL2 (Hara et al., 2013, Moore et al., 2005a) and the VDR 

(Potter et al., 2013) genes also contribute to changes of collagen type I expression. 

Intriguingly, the non-preferential alleles of the COL1A1 (G-allele homozygotes, rs1800012) 

and of the VDR (T-allele, rs2228570) SNPs demonstrate higher baseline muscle strength 

in untrained cohorts, as seen in the current acute RE and in other studies (Van Pottelbergh 

et al., 2001, Windelinckx et al., 2007, Hopkinson et al., 2008, Roth et al., 2004). These non-

preferential alleles of the COL1A1 and the VDR SNPs seem to ‘protect’ against loss of 

muscle strength in a non-exercising population in the long term, possibly due to a generally 

lower gene expression and, therefore, lower unfavourable ECM deposition. However, 

increased gene expression of the preferable alleles of the four SNPs might support the 

remodelling of the muscle ECM in active individuals, which subsequently lead to a stiffer 

perimysium of the ECM with better force transmission capabilities. The addition of 

connective tissue between muscle fibres, especially of the stiff perimysium, might serve to 

split muscle fibres up into multiple force generating units, thus increasing the muscle 

specific force, i.e. the force per cross-sectional area of muscle (Jones et al., 1989).  Further 

It is often observed that there is an additional increase of muscle strength compared to 

muscle size following chronic RE (Jones et al., 2008), which cannot be entirely explained 

by changes in PCSA, neural adaptation, tendon capability (Erskine et al., 2010b), or change 

in fibre type composition, or myofibrillar packing after chronic RE (Erskine et al., 2011).  The 

association between these four SNPs and the muscle ECM indicates that the 
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disproportionate gains in muscle strength and mass could be explained, at least in part, by 

muscle ECM remodelling following RE. 

Further, individuals carrying the minor X-allele of the nonsense ACTN3 C > T (rs1815739) 

SNP, which results in a stop codon rather the expression of the amino acid arginine (R-

allele) (Nowak et al., 1999), also demonstrated an additionally increase in muscle specific 

force following chronic RE, and they were generally stronger in the G-REX cohort (Chapter 

5). However, the X-allele also showed a non-significant tendency for a greater strength loss 

following acute RE (Chapter 5) and a non-significant tendency for a generally lower 

quadriceps femoris muscle volume in the G-ResisT cohort (unadjusted P=0.046, data not 

shown). Deficiency of α-actinin-3 results in a shift in fast-twitch fibres towards oxidative 

metabolism due to an enhanced activation of calcineurin (Seto et al., 2013). As untrained 

XX homozygotes tend to have a skeletal muscle fibre type distribution of more (slow) type 

I fibres (Ahmetov et al., 2011, Vincent et al., 2007) compared to R-allele carriers, smaller 

muscles of untrained X-allele carriers might be based on the generally higher ratio of type I 

(smaller CSA) to type II (greater CSA) muscle fibres (Broos et al., 2016, Gilliver et al., 2009, 

Vincent et al., 2007). However, calcineurin activity is associated with the increase of CSA 

predominantly of type I skeletal muscle fibres in humans following muscle overload (Hudson 

and Price, 2013, Sakuma and Yamaguchi, 2010). An increased calcineurin activity of X-

allele carrier, might lead to an enhanced capability to express growth factors (e.g. MyoD) 

for muscle remodelling (Sakuma and Yamaguchi, 2010, Vincent et al., 2010), and, 

subsequently, in an elevated CSA of type I fibres following chronic RE. The increased 

capability of muscle remodelling of X-allele carriers is mirrored by the elevated ratio of 

muscle stem cells to stem cells of the connective tissue in vitro compared to RR 

homozygotes (Chapter 5), which is in line with other results that found increased fibrosis 

and strength loss of mice with overexpression of ACTN3 after post-natal gene editing 

(Garton et al., 2018a). The lower ratio of muscle stem cells of R-allele carrier might mirror 

a decreased amount of a subpopulation of muscle stem cells of type I fibres (Biressi and 
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Rando, 2010), and, therefore might give a mechanistically explanation of a lower capability 

for an increase of CSA in these slow twitch fibres following chronic RE 

 

6.5.3 Using TGS-C to Anticipate the Response to Acute RE  

Lastly, we investigated whether TGS-C could estimate high and low responders to acute 

RE. TGS-C included all 8 SNPs, which interacted with the response to chronic RE on an 

individual basis, and was able to anticipate high responders (NPGs) regarding a larger 

increase in serum IL-6 concentration and CK activity in a separate (G-REX) cohort. It was 

unexpected that the TGS-C would be associated with serum CK activity and IL-6 

concentration following acute RE, as neither serum CK activity nor IL-6 concentration were 

associated with any individual SNP or with TGS-A in the G-REX cohort (Chapter 5). It 

seems that a high increase in serum CK activity and IL-6 concentration immediately after 

acute RE might be associated with attenuated adaptation regarding strength gains. 

Moreover, this link between an acute inflammatory/damage response and neuromuscular 

adaptations to chronic RE is linked to the same genetic profile. Thus, we provide evidence 

that genetic make-up drives the response to acute RE, which influences the longer-term 

adaptations to chronic RE.  

A common polygenic profile that links both the acute response and chronic adaptation to 

RE allows us to speculate about the molecular mechanisms underpinning these 

responses/adaptations. The TGS-C consisted of SNPs linked to the muscle ECM and was 

associated with CK activity response. It has been suggested that the intramuscular enzyme, 

CK, might leak into the circulation particularly in high responders, when the muscle ECM is 

disrupted immediately after the exercise (Newham et al., 1983, Baird et al., 2012). Further, 

CK might also leak into the blood stream in the days after EIMD, when activated satellite 

cells with fibroblasts interact to dissolve and reorganise the muscle ECM with the help of 

the proteolytic activity of matrix metalloproteinases (MMPs) for muscle remodelling (Mackey 

et al., 2004). An increase in circulating levels of IL-6 during chronic RE has also been 

negatively associated with muscle strength (but not with muscle mass) gains in the elderly 
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(Hangelbroek et al., 2018). IL-6 is strongly associated with glucose transport in human 

skeletal muscle (Glund et al., 2007) and the delayed peak of IL-6 concentration in the 

circulation (Fischer, 2006, Toth et al., 2011) might be an indication of a long lasting demand 

for energy to remodel the damaged muscle fibres and the surrounding connective tissue 

following acute RE. 

 

6.5.4 Limitations/ Perspective 

We acknowledge that the G-REX cohort comprised both male and female participants, 

whilst the G-ResisT cohort contained only males. Therefore, we normalised strength 

parameters to body mass for the intervention studies and used sex as a covariate for the 

G-REX cohort, so we were able to analyse strength differences between the alleles of each 

SNP independently of sex. Another limitation was the relatively small number of subjects 

included in each cohort. The current investigation suggests that the muscle ECM might play 

an important role with respect to the response/adaption to acute/chronic RE. As recent 

investigations have revealed that the muscle ECM is involved in the severity of muscle 

injuries (Balius et al., 2018), future studies should assess, whether the loading magnitude 

of RE, in particular, plays a key role for muscle ECM adaptation with respect to injury 

prevention and rehabilitation programmes. Nordic hamstring training might be an effective 

injury prevention exercise, as the eccentric component of this exercise modality might lead 

to a stiffer muscle ECM. Further studies should investigate SNPs that are linked specifically 

to other perimysium-related protein-encoding genes, such as proteoglycans (e.g. decorin 

and biglycan) (Nakano et al., 1997, Mercado et al., 2006), different collagen types (e.g. type 

XII and XIV) (Listrat et al., 2000, Gillies and Lieber, 2011) and of the ECM-muscle interface 

(Grounds et al., 2005).  
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6.6 CONCLUSION 

In conclusion, the current study demonstrated that a polygenic profile (TGS-A), which was 

based on a cohort performing an acute bout of unaccustomed eccentric RE, cannot 

anticipate the neuromuscular adaptations to chronic RE. TGS-A included SNPs that are 

linked to genes contributing to the elastic properties of the MTU and to muscle catabolic 

signalling pathways. These genes might have a crucial functional role regarding the 

response to acute RE, but are less important for long-term gains in muscle strength and 

hypertrophy. However, a different polygenic profile (TGS-C), based on a cohort, which 

performed chronic RE, was associated with changes in muscle strength (but not muscle 

mass), and this polygenic profile was also inversely associated with the muscle damage 

response in terms of blood biomarkers (CK activity and IL-6 concentration) following acute 

RE. Secondly, SNPs, which were associated with chronic RE, could be categorised into 

signalling- and muscle ECM-related (force transmission) clusters, indicating that muscle 

hypertrophy and muscle strength gains are, at least in part, based on independent 

molecular pathways. Our findings provide strong evidence for a common polygenic profile 

that influences both the acute and chronic responses to RE. Specifically, different 

combinations of particular genotypes appear to limit the damage response to acute RE, 

while maximising the adaptation to chronic RE. Thus, our findings further our understanding 

of the molecular mechanisms underpinning and linking the acute and chronic responses 

to RE. After independent replication, TGS-A and TGS-C may be used to estimate an 

individual’s response/adaptation to acute/chronic RE, thus enabling RE to be prescribed on 

a personalised level to improve muscle health and function. 

Our findings provide strong evidence for a common polygenic profile that influences both 

the acute and chronic responses to RE. Specifically, different combinations of particular 

genotypes appear to limit the damage response to acute RE, while maximising the 

adaptation to chronic RE. Thus, our findings further our understanding of the molecular 

mechanisms underpinning and linking the acute and chronic responses to RE. After 

independent replication, TGS-A and TGS-C may be used to anticipate an individual’s 
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response/adaptation to acute/chronic RE, thus enabling RE to be prescribed on a 

personalised level to improve muscle health and function. 
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7 Thesis Synthesis  
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7.1 GENERAL DISCUSSION 

The overall aim of this thesis was to investigate the physiological and genetic factors 

underpinning the response to exercise-induced muscle damage (EIMD). Here, we used a 

triangulation approach, where a combination of varying assessments from different 

research disciplines, including genetics, cell biology, muscle physiology and biomechanics 

was used to systematically investigate the mechanisms underpinning muscle damage and 

the variable response to EIMD. The following sections aims to discuss the key outcomes of 

the present thesis, the limitation of the investigations and provide practical 

recommendations. The outcomes of this thesis, and how they may help practitioners to 

prescribe “personalised exercise medicine” to their patients/athletes (thus optimising health 

and performance, and reducing the risk of injury), are discussed. 

 

The objectives of this thesis were therefore: 

1. To characterise the physiological mechanisms underpinning neuromuscular fatigue 

and the recovery pattern following intermittent maximal sprints, to acquire a better 

understanding of EIMD in an applied setting (Chapter 3). 

2. To determine the effect that inter-individual differences in the ratio of skeletal muscle 

myoblast to fibroblast composition has on skeletal muscle repair/recovery after an 

artificial wounding (scratch) assay using primary human skeletal muscle cells in 

vitro, and the association of this ratio with recovery after intermittent maximal sprints 

(Chapter 4).  

3. To ascertain whether a polygenic profile could distinguish between high and low 

responders following a controlled in vivo eccentric exercise (acute resistance 

exercise, RE) intervention in previously untrained individuals, and whether those 

genetic variations were also associated with the artificial wounding (scratch) assay 

in vitro (Chapter 5). This would, therefore, provide a genetic link between in vivo and 

in vitro muscle damage, thus potentially shedding new light on the aetiology of 

EIMD. 
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4. To determine whether the polygenic profile associated with acute RE from Chapter 

5 could anticipate individual adaptations to chronic RE, in terms of gains in muscle 

size and strength (Chapter 6) and 

5. To ascertain whether a new polygenic profile associated with the adaptations to 

chronic RE (gains in muscle size and strength) (Chapter 6) could estimate the 

individual responses to acute RE in Chapter 5 (e.g. loss of strength, increase in 

soreness, inflammation, etc.). Objectives 4 and 5 have implications for furthering our 

understanding of the genetic and physiological mechanisms underpinning and 

linking the acute and chronic responses to RE.    

 

7.1.1 The contribution of the non-contractile muscle tissue to the response 

to EIMD 

It was identified that immediate strength loss was associated with impaired hamstring 

muscle recruitment and markers of peripheral fatigue/damage, but the magnitude and 

sustained changes in maximal voluntary contraction (MVC) torque over time was 

predominately associated with indicators of peripheral fatigue/damage (Chapter 3; objective 

1, see above). The most striking finding was that biceps femoris long head (BFLH) fascicle 

length was not associated with the extent of hamstring fatigue between PRE and 

immediately POST. This finding was contrary to our hypothesis as fascicle length of the 

BFLH (together with Nordic hamstring muscle strength) was previously inversely correlated 

with non-contact muscle injury risk (Timmins et al., 2016). Instead, our data showed an 

inverse correlation between MVC torque loss and both BFLH muscle volume and (especially) 

BFLH physiological cross-sectional area (PCSA). These results indicate that the structure of 

the muscle (reflected by PCSA) protects the muscle against EIMD independently of force 

due to the fact that baseline hamstring MVC did not correlate with PCSA, and also not with 

relative hamstring MVC torque loss (measured between PRE and POST). Recent 

investigations reported an important role of the extracellular matrix (ECM) regarding muscle 

damage (Hyldahl and Hubal, 2014, Hyldahl et al., 2015) and muscle injuries (Balius et al., 

2018). The ECM consists of different layers of connective tissue and this non-contractive 
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structure surrounds the muscle fibres and fascicles (Kjær, 2004). More parallel fibres might 

be accompanied with more cross-sectional muscle ECM content that might have a 

protective effect against mechanical stress on the contractile components following 

eccentric lengthening contractions. Therefore, our results indicate that BFLH PCSA might be 

a better predictor for muscle strains rather than BFLH fascicle length, and we suggest that 

future prospective muscle strain studies should assess BFLH PCSA. 

As there is a lack of research of both the role of the muscle ECM and of the stem cells of 

this connective tissues (fibroblasts), we further analysed the components of the non-

contractile muscle tissue (Chapter 4; objective 2).  It was initially hypothesised that a high 

myoblast:fibroblast ratio would support muscle recovery in vivo following the IS-intervention 

and in the wound healing assay in vitro following the IS-intervention. Surprisingly, a low 

myoblast:fibroblast ratio was related with improved knee-flexion MVC torque muscle 

repair/recovery following EIMD, both in vitro and in vivo. However, contrary to our 

hypothesis, our results showed an ambiguous picture during the muscle repair process. A 

high myoblast:fibroblast ratio showed a delayed wound closure within the first 48 h, but a 

better myotube formation at seven days, and higher CK activity at ten days after the scratch 

assay, and a delayed knee-flexion MVC torque recovery following IS in vivo. The IS-

intervention of Chapter 3 induced muscle damage with a similar underlying mechanism 

comparing with incidences, when hamstring muscle strain injuries occur (Ekstrand et al., 

2011, Brooks et al., 2006, Woods et al., 2004). Dynamic (stretch-shortening) movements, 

such as IS, might have an additional damaging effect on the muscle ECM beyond traditional 

EIMD assessments e.g. with an isokinetic dynamometer, which potentially damage the 

myofibrillar content predominantly. Following IS, there was a significantly increased knee-

flexion MVC torque loss POST48 compared to the knee-extension. Interestingly, there was 

no significant correlation between the myoblast:fibroblast ratio and knee-extension MVC 

torque recovery (between POST and POST48) indicating that a certain damage in the 

muscle-tendon unit (MTU) is necessary to trigger fibroblast activation for muscle 

regeneration. That leads to the assumption that fibroblasts play an important part during 
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muscle recovery, when the muscle ECM is also involved in the structural damage after 

strenuous exercise. 

  

7.1.2 The association between genetic variations and the individual 

response/ adaptation to acute and chronic RE 

The studies of chapter 3 and 4 revealed high inter-individual differences in the response to 

EIMD, despite the homogeneous groups in vivo and in vitro. We next aimed to understand 

the functional relevance in terms of whether genetic variations are associated to changes 

in the response to EIMD and chronic RE (Chapter 5 and 6; objectives 3, 4 and 5, as outlined 

above). We identified that the NPG with the non-preferential polygenic profile of TGS-A (i) 

demonstrated greater muscle soreness and greater loss of range of motion following the 

EIMD-intervention, respectively; and (ii) were generally weaker compared to moderate 

(MG) and PG groups (Chapter 5; objective 3). As all participants performed the same 

relative intensity of exercise, these findings gives further evidence that genetic variations 

play a role in the individual response to EIMD. However, there was no interaction between 

genetic variations and (i) changes in strength; and (ii) the concentration or activity of blood-

borne biomarkers of EIMD following the intervention, neither on an individual SNP or 

polygenic basis of TGS-A.  

Chronic resistance exercise (RE) is a potent stimulus for increasing strength and muscle 

hypertrophy and it is increasingly recognised as a cornerstone for prevention of both muscle 

(Petersen et al., 2011) and ACL (Webster and Hewett, 2018, Petushek et al., 2018) injury. 

However, as non-contact injury rate is not completely eradicated in some athletes 

undertaking chronic RE, it can be suggested that prevention training has a variable effect 

on each athlete. However, TGS-A was not related with any adaptation to chronic RE 

(Chapter 5 and 6; objective 5). Against that, PGs of the new computed TGS-C showed 

increased adaptations to chronic RE in terms of changes in normalised force and muscle 

specific force (Chapter 6, objective 4). When the outcome of the G-REX participants 

(Chapter 5) were associated with the new TGS-C, NPGs demonstrated a greater 
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inflammatory response following acute RE (Chapter 5 and 6, objective 5). It was unexpected 

that the TGS-C would be associated with serum CK activity and IL-6 concentration following 

acute RE, as neither serum CK activity nor IL-6 concentration were associated with any 

individual SNP or with TGS-A in the G-REX cohort (Chapter 5). These findings imply that a 

high increase in serum CK activity and IL-6 concentration immediately after unaccustomed 

acute RE might be associated with attenuated adaptation regarding strength gains. 

Moreover, this link between an acute inflammatory/damage response and neuromuscular 

adaptations to chronic RE is linked to the same genetic profile. Thus, we provide evidence 

that genetic make-up drives the response to acute RE, which influences the longer-term 

adaptations to chronic RE. 

 

7.1.3 Genetic variations expand our understanding of the molecular 

mechanisms underpinning the individual response to acute and 

chronic RE 

There were several distinct functional groups regarding the response to the acute and 

chronic RE (Chapter 5 and 6). Some of the SNPs that were associated with EIMD in Chapter 

5 are located within genes, which contribute to the elastic properties of the MTU. An 

increased stiffness of the elastic components (e.g. endomysium) of the MTU might increase 

stress on the contractile components, which may result in an increase of extracellular 

inflammatory mediators and in an activation of the nociceptor of the overstretched 

cytoskeleton/muscle ECM leading to elevated muscle soreness (Chapter 5). Another 

functional group of SNPs associated with the acute RE intervention are related to enzymes 

of the skeletal muscle catabolic and anabolic signaling pathways. The beneficial alleles 

might increase the expression rate of their transcript following EIMD, potentially promoting 

MTU repair in the short term. However, as the majority of these SNPs are not associated 

with an increased muscle strength after chronic RE, proteins of both the elastic components 

of the muscle-tendon unit (MTU) and of the catabolic signaling pathway might be less 

important for chronic RE adaptation (Chapter 6). 



 192 

There was no interaction between genetic variations and changes in strength following the 

acute RE (Chapter 5). It is thought that muscle force is transmitted longitudinally as a result 

of sarcomere shortening and laterally via the perimysium (surrounding muscle fascicles) to 

the tendon and ultimately to the bone (Hughes et al., 2015, Ramaswamy et al., 2011). The 

EIMD-intervention induced by an IKD with low-speed eccentric MVC was potentially not 

able to cause substantial damage to the stiff components of the perimysium (such as to the 

collagen type I fibrils), and the MVC strength loss might be more associated with damage 

to structural components of the myofibrillar apparatus, particularly those involved in the 

longitudinal force transmission (e.g. titin and nebulin) (Trappe et al., 2002). As no SNP, 

which showed an association to myoblast:fibroblast ratio in the in vitro scratch assay, 

demonstrated an interaction with strength, this gives further evidence that fibroblasts play 

a less important part in muscle recovery, when the muscle ECM is not substantially 

damaged. Repeated high external forces involved with high-speed (stretch-shortening) 

movements, such as with IS of Chapter 3, are potentially associated with a greater risk of 

damaging components of the muscle ECM/perimysium compared to EIMD-interventions 

with low-speed eccentric MVCs such as in Chapter 5 (objective 2; see section 7.1.1). 

Among the individual SNPs that were associated with improvements in muscle specific 

force following chronic RE (Chapter 6), were predominantly linked with proteins of the stiff 

part of the ECM. The association between the ECM-related SNPs and muscle specific force 

lead to the suggestion that the accumulation of recurring RE might lead to a better turnover 

of the proteins, and, therefore, subsequently to a stiffer perimysium of the muscle ECM with 

better force transmission capabilities.  

In terms of the role of the muscle ECM, several studies investigated global mRNA 

expression of skeletal muscle biopsies following acute and chronic RE (Damas et al., 2018, 

Phillips et al., 2013) and these investigations observed strong changes in gene expression 

related to the cytoskeleton and muscle ECM. Studies of the adaptive responses of the rates 

of protein synthesis to exercise have largely so far focused on myocellular fractions, 

excluding collagen. However, the response of the muscle ECM to RE was confirmed in 
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some investigations on the protein level (Moore et al., 2005b, Miller et al., 2005), in an 

immunohistochemical investigation (Mackey et al., 2011),  and in one metabolomics study 

(Fazelzadeh et al., 2016). This together with the results of this thesis indicates that strength 

gains might not only associated with improvements of the myofibrillar content and of the 

(patellar) tendon of the MTU, but that muscle ECM remodelling might play an important part 

in terms of strength gains following chronic RE. 

To conclude, we have investigated the role of genetic variations on the response to acute 

and chronic strenuous exercise interventions, including assessments from the DNA to the 

whole muscle-tendon complex. We believe that the findings of this thesis advance the 

knowledge of exercise genetics. However, research in the area of exercise genetics is in its 

infancy. Additional large cohorts, investigating the individual response to acute and chronic 

RE, needs to be established so that our model can be validated in these independent 

cohorts. If the polygenic profiles (e.g. TGS-C) can be validated in future, practical 

recommendations can be deducted from these findings. Potentially, the responsiveness of 

strength and power athletes can be estimated with one acute RE session together with a 

serum sample (assessing IL-6 concentration and CK activity). This might also have valuable 

information for practitioners to significantly improve prevention and rehabilitation 

programmes and to optimise muscle strengthening programmes. 

 

7.2 THESIS LIMITATIONS  
 
We acknowledge that there was a relatively small number of subjects included in the in vivo 

cohorts of Chapter 5 and 6 and also from the in vitro cohort of Chapter 4. However, given 

the difficulties in performing these types of intervention studies, the data presented is of 

great scientific value and should be utilised as a catalyst to reliably validate and replicate 

these findings. 

Further, we have recruited both male and female participants in Chapter 4 and 5, and there 

is some limited evidence that men and women respond differently to eccentric exercise  

(Sewright et al., 2008). However, the in vitro study of Chapter 4 and the majority of previous 
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investigations attempting to address this question have shown no sex differences in in the 

susceptibility to ultrastructural muscle damage (Sayers and Clarkson, 2001, Thompson et 

al., 1997, Stupka et al., 2001, Wüst et al., 2008). Furthermore, although our male 

participants were stronger than our female subjects in both absolute and relative (to body 

mass) terms, when the change in MVC at time points POST and 48POST was reported as 

a percentage change from baseline MVC, we observed no difference in strength loss 

between men and women. We, therefore, used absolute strength normalised to body mass 

with the covariate sex, so we were able to analyse strength differences between 

genotype/allele for each SNP. Moreover, each of our three polygenic groups contained a 

similar ratio of men to women, so it is highly unlikely that any sex differences influenced the 

outcome of our results.  

Eccentric exercise results in a delayed peak and a slower decrease of serum IL-6 during 

recovery between 6 and 24 h after EIMD (Willoughby et al., 2003, Pedersen and Febbraio, 

2008). Therefore, serum IL-6 expression immediately after the investigations indicates that 

intense exercise occurred but it cannot be assured that this marker indicates muscle 

damage in the current study. The generally low absolute value of CK activity of the in vivo 

studies (Chapter 3 and 5) of this thesis might be explained by the fact that we have used a 

different method involving venous blood, which will usually be conducted in in vitro 

investigations (Owens et al., 2015). Therefore, further interventions are necessary to 

compare CK activity assessments in vivo, and the investigations may have benefitted from 

additional time points for blood analyses to acquire a more comprehensive and accurate 

representation of the time course of e.g. serum IL-6 response and of additional muscle 

damage biomarkers to our EIMD intervention. 

Peripheral fatigue can be caused by metabolite perturbations such as the depletion of 

intramuscular glycogen (Bendiksen et al., 2012). However, despite the fact that participants 

were instructed to eat two hours before arrival, and to avoid strenuous exercise prior to the 

testing, the two in vivo EIMD-studies (Chapter 3 and 5) did not control for diet or assessed 

glycogen depletion during the intervention. Although the EIMD interventions lasted less than 



 195 

25 min, indicating that glycogen depletion might be only a minor factor which contributed to 

the impaired muscle function following the EIMD-interventions, future studies should assess 

and control the glycogen content of the muscles before and after EIMD-interventions. 

Recent studies suggest that fatigue alters the optimal angle during MVC in the hamstrings 

but not in the quadriceps (Coratella et al., 2015). This might have influenced the results of 

the isometric MVC test of the hamstring muscle group in Chapter 3. Further studies should 

confirm these results with isometric MVCs at different knee joint angles. Further, we have 

only measured muscle architecture and sEMG activity of the BFLH. During data collection, 

several published investigations (Kellis, 2015, Schuermans et al., 2016, Schuermans et al., 

2014) indicated that the other hamstring muscles might have an impact on hamstring fatigue 

and, potentially, on hamstring strain injury risk. We therefore suggest that further studies 

conducting IS should also take the other hamstring muscles into consideration. Other 

factors, such as skeletal muscle fibre type composition might also contribute to the 

prolonged recovery process following EIMD. 

We assumed that the myoblast:fibroblast ratio is similar between the vastus lateralis musle 

(from which we obtained the muscle biopsy) and the BFLH, as Terry et al. (2018) 

demonstrated a high similarity of transcriptome expression patterns in skeletal muscles of 

rodents, when the muscles consist of similar fibre type composition and of similar 

physiological functions, such as the BFLH (47.1% MHC-I, 35.5% MHC-IIA, and 17.4% MHC-

IIX) (Evangelidis et al., 2016) and the vastus lateralis (49-59% MHC-I, 26-35% MHC-IIA, 

and 16-28% MHC-IIX) (Mittendorfer et al., 2005, Taylor et al., 1997). However, gene 

expression patterns vary between rodents and human (Su et al., 2002), and there are is a 

gap of research between the intra-individual variability of the myoblast:fibroblast ratio 

between skeletal muscles. Therefore, further investigations needs to address this research 

gap to confirm our findings. 

Lastly, we distinguished the primary muscle cells in myoblasts (desmin-positive) and 

fibroblasts (desmin negative) with a desmin antibody in the in vitro study of Chapter 4 and 

5, as previous investigations have determined that the non-myoblasts fraction is highly 
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enriched in fibroblasts with up to 99 % of this fraction being fibroblasts (Agley et al., 2013, 

Mathew et al., 2011). For immnunohistochemistry analysis, we have fixed the cells with a 

low density of 30%, so that the cells could be easily distinguished from each other. The ICC 

(3, k) of 0.83 indicates a good reliability for the characterisation and the quantification of 

myoblasts and fibroblasts. However, analysing the entire well (instead of sub-sampling 

random areas of each well) and additional methodical approaches, such as cell sorting by 

flow cytometry, could have improved the accuracy of our myoblast:fibroblast ratio 

calculation. Future studies may use additional antibodies, such as DAPI (for staining nuclei) 

and TE7 (for staining fibroblasts), to validate our findings. 

7.3 FUTURE DIRECTIONS 

Previous investigations have identified over 200 genes, in which common genetic variants 

are located, involved in the genetic predisposition to physical performance (Moran and 

Pitsiladis, 2017). However, the small overlap of SNPs related to athletes/ performance and 

of GWAS studies of the general population including a wide range of age and lifestyle and 

behavioural exposures (Willems et al., 2017, Zillikens et al., 2017) indicating the importance 

of homogenous cohorts. Presumably, SNPs, which are associated with changes in muscle 

mass and strength in the normal population over different age ranges might be more 

influenced by SNPs regarding muscle atrophy and motor neuron genes. In future, large-

scale studies with homogeneous (young) cohorts should be conducted as an 

interdisciplinary and multi-centre project including several “omics” measurements such as 

transcriptome sequencing and metabolomics together with muscle biopsies to identify the 

cause and consequences of different recovery patterns of participants following acute and 

chronic RE. Here, large-scale investigations including primary human muscle stem cells 

derived from the same participants who performed the in vivo intervention, could shed light 

on the association between the myoblast:fibroblast ratio and the genetic variations on the 

response/adaptation following acute and chronic RE. 

The results of this thesis lead to the assumption that strength might be linked with muscle 

ECM remodelling following chronic RE. Further, the stiffness of the ECM can be seen as a 
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key sensor of external forces to appropriate respond and adapt to external stress, a process 

known as mechanotransduction (Gattazzo et al., 2014). Molecular skeletal 

mechanotransducers of the ECM (e.g. integrins and costameres) might be associated with 

muscle ECM remodelling and, subsequently, with the increased ECM stiffness following 

chronic RE. However, the investigation of the mechanoreceptors of the ECM was beyond 

the scope of the current thesis. As the mechanosensory pathway seems to be independent 

of the Akt/mammalian target of rapamycin/ S6K1 pathway (Eftestøl et al., 2016), and recent 

investigations revealed that increased ECM stiffness is accompanied with the activity of 

components (YAP/TAZ) of the Hippo Pathway (Engler et al., 2006, Piccolo et al., 2014), 

further investigations should assess the association between the mechanotransduction and 

muscle ECM remodelling following RE. Further, muscle strength declines during disuse at 

approximately three times the rate that muscle tissue is lost (Farthing et al., 2009). Future 

studies should investigate whether the loss of muscle ECM integrity plays a role of the 

disproportional loss of strength compared to muscle mass during disuse and they should 

replicate the SNPs of the GWAS studies regarding muscle strength (Willems et al., 2017) 

and muscle mass (Zillikens et al., 2017) in hypertrophy and atrophy interventions. 

There is evidence to suggest that there is a dose-response relationship  for training volume 

of RE and gain of muscle mass, but increases in muscle strength remain similar and seems 

not to be affected by the total number of repetitions (Schoenfeld et al., 2018). Muscle 

strength is further augmented by higher intensities, whereas exceeding a threshold of about 

40% of 1RM is a sufficient stimulus for increasing muscle mass (Lasevicius et al., 2018). 

Power athletes, usually exercising with high intensity and lower volume, demonstrate a 

smaller muscle fibre CSA but a higher fibre specific tension compared to body builders 

training with high volume but low/moderate intensity (Meijer et al., 2015). The investigations 

of this thesis suggest that the muscle ECM might play an important role in respect to 

changes in strength following acute and chronic RE. However, no studies exist about 

muscle ECM training so far. Further investigations need to assess, whether the current 

knowledge of tendon training (exercise regime with at least of 70% of 1-RM) (Bohm et al., 
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2015) can be extrapolated to muscle ECM training, and whether chronic RE potentially 

improve the material (remodelling) within the muscle ECM rather than a solely increase of 

CSA. 

Further, it is well known that a history of previous injuries is evidenced as a risk factor for 

future sport-related injuries (Freckleton and Pizzari, 2013). As recent investigations have 

revealed that muscle ECM is involved in the severity of muscle injuries (Balius et al., 2018), 

high recurrence rate of muscle strains might be partly caused of exercising only with low or 

moderate intensities during the rehabilitation exercise programmes, and, therefore, missing 

the intensity threshold of at least 70 % (1-RM) to exercise the muscle ECM. RE with high 

intensities might lead to a stiffer muscle ECM and to a higher ‘protection’ against structural 

ECM damage. We therefore suggest that future investigations in respect to rehabilitation 

exercise programmes should assess whether progressive RE, reaching high training 

intensities towards the end of the programme, decrease muscle re-injuries. 

 

7.4 FINAL CONCLUSION 

This thesis has generated novel findings as to the role genetic variation plays in the 

response to acute and chronic strenuous exercise. Further, by using a triangulation 

approach of combining different assessments from varying research disciplines, including 

genetic, cellular, physiological, and biomechanical analyses, this thesis sheds light onto the 

role of the muscle ECM regarding the response/adaptation following acute and chronic RE. 

There is evidence to suggest that fibroblasts have an important role in muscle remodelling, 

especially within the first days following eccentric exercises induced by fast and intense 

dynamic movements. The results of this thesis will help to identify individuals who are 

unlikely to respond to resistance exercise, or who require longer to recover from a bout of 

strenuous exercise. This may help practitioners to prescribe “personalised exercise 

medicine” to their patients/athletes, thus optimising health and performance, and reducing 

the risk of injury. The results will pave the way for public health services and sporting 



 199 

organisations to effectively manage their patients/athletes personalised programmes of 

prevention and rehabilitation in the future. 
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