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Ficolins are innate pattern recognition receptors (PRR) and play integral roles within the innate immune response to numerous
pathogens throughout the circulation, as well as within organs. Pathogens are primarily removed by direct opsonisation
following the recognition of cell surface carbohydrates and other immunostimulatory molecules or via the activation of the
lectin complement pathway, which results in the deposition of C3b and the recruitment of phagocytes. In recent years, there
have been a number of studies implicating ficolins in the recognition and removal of numerous bacterial, viral, fungal, and
parasitic pathogens. Moreover, there has been expanding evidence highlighting that mutations within these key immune
proteins, or the possession of particular haplotypes, enhance susceptibility to colonization by pathogens and dysfunctional
immune responses. This review will therefore encompass previous knowledge on the role of ficolins in the recognition of
bacterial and viral pathogens, while acknowledging the recent advances in the immune response to fungal and parasitic
infections. Additionally, we will explore the various genetic susceptibility factors that predispose individuals to infection.

1. Introduction

Ficolins are innate pattern recognition receptors (PRRs) sim-
ilar to the collectin, the mannose-binding lectin (MBL), and
the surfactant proteins (SP). Like the collectins, ficolins con-
sist of an N-terminal rich in cysteine residues, a collagen-like
domain composed of glycine-X-Y repeats, and a neck region.
However, in the ficolins, the carbohydrate-recognition
domain (CRD) of the collectins is replaced by a C-terminal
fibrinogen-like domain (FBG; Figure 1(a)). In their native
form, ficolin monomers assemble to form trimers via their
collagen-like domains, before further assembling into oligo-
meric bouquet-like structures of between 4 and 6 trimers.
In humans, there are three ficolins termed M-, L-, and
H-ficolin (also referred to as ficolin-1, ficolin-2, and ficolin-3)
whereas rodents only possess two, termed ficolin-A and -B,
which are the orthologues of human L- and M-ficolin,

respectively. The H-ficolin gene is present in rodents as a
pseudogene [1].

Ficolins function within innate immunity via the recog-
nition of pathogen-associated molecular patterns (PAMPs)
on microbial pathogens. Binding to acetylated polysaccha-
rides on microbial pathogens, in particular N-acetylglucosa-
mine (GlcNAc) and N-acetylgalactosamine (GalNAc), is a
common characteristic shared amongst the ficolins. How-
ever, ficolins have also been observed to recognise specific
microbial patterns such as sialic acid, lipopolysaccharides,
bacterial peptidoglycan, and fungal 1,3-β-D-glucan [2–6].
Following the recognition of cell surface structures during
infection, ficolins can function as opsonins, potentiating the
functions of leukocytes and the lung epithelium [7–9].

To date, all of the human and rodent ficolins have
been observed to activate the lectin-complement pathway
(Figures 1(b) and 1(c)) following the association with
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Figure 1: Ficolin structure and the lectin complement pathway. (a) MBL is composed of a cysteine-rich region, a MASP-interacting
collagenous region, and a pathogen-binding carbohydrate recognition domain. Ficolins have structural similarity to MBL, albeit the
carbohydrate recognition domain is replaced by a fibrinogen-like domain. (b) There are three main pathways of complement activation:
the classical, lectin, and alternative pathways. Ficolins interact with MASPs to cleave C4 and C2 to form the C3 convertase C4bC2a. This
results in the cleavage of C3 into C3a and C3b. C3b then functions as an opsonin or enters the alternative pathway forming an
amplification loop. Each pathway can also result in the formation of the membrane attack complex following the cleavage of C5 by the C5
convertases C4bC2aC3b or C3BbC3b and subsequent association with C6, C7, C8, and C9.

2 Journal of Immunology Research



MBL-associated serine proteases (MASPs), a characteristic
shared with MBL and the recently discovered collectin-11
(CL-11) [10–17]. Ficolins associate with three serine prote-
ases, MASP-1, MASP-2, and MASP-3, in addition to two
nonenzymatic fragments MAp19 and MAp44 [18–20].
Ficolin-MASP complexes can then cleave C4 and C2 to form
the C3 convertase C4bC2a [11, 21]. Following the deposi-
tion of C3b on C4bC2a, C2a gains C5 convertase activity
leading to the production of C5a and C5b. C3b itself acts
as a marker to facilitate phagocytosis, and C5b initiates the
formation of the membrane attack complex (MAC) in col-
laboration with C6, C7, C8, and C9, which directly lyses
pathogens [22].

In this review, we describe updates on the opsonic activ-
ity of human and rodent ficolins and explore their role within
innate immune responses against pathogens. Moreover, we
briefly discuss the effects of single nucleotide polymorphisms
on pathogen susceptibility.

2. The Ligand-Binding Properties of Ficolin
Fibrinogen-like (FBG) Domains

The FBG of ficolins is composed of a number of different
binding sites that can work synergistically or alone in a com-
plex interaction that allow ficolins to distinguish nonself
structures from self. This allows ficolins to play an integral
role in the opsonisation of various pathogens whereby they
can recognise a vast number of ligands on the microbial
cell-surface.

In recent years, it has been discovered that the binding
range of M-ficolin is a lot broader than was first anticipated,
and the tethering of M-ficolin to the leukocyte surface is due
to the recognition of sialic acid by the FBG, in particular
9-O-acetylated sialic acid [2, 23–25]. Moreover, like other
ficolins, M-ficolin can bind to a vast range of acetylated moi-
eties including N-acetylglucosamine (GlcNAc), N-acetylga-
lactosamine (GalNAc), N-acetyllactosamine (LacNAc),
N-acetylcysteine (CysNAc), and acetylated human serum
albumin [10, 23, 26]. A glycan array further advanced our
knowledge on the recognition properties of M-ficolin and
highlighted two novel ligands in the form of gangliosides
and sialylated biantennary N-linked type glucans [25].
M-ficolin has also recently been implicated in neutrophil
responses, including cell polarization, adhesion, aggregation,
and complement activation, following interaction with the
membrane sialoprotein CD43 [27]. The M-ficolin recogni-
tion domain has been studied in great detail. The structure
is similar to the other ficolins; however, within a predicted
ligand-binding site, the peptide bond between Asp282 and
Cys283 is in a normal trans conformation, compared to the
cis conformation exhibited by the other ficolins [28]. The dif-
ference between active and nonactive function was suggested
to be due to a cis-trans isomerization of the Asp282 and
Cys283 peptide bond [29], with an acidic environment gear-
ing M-ficolin towards the nonfunctional trans conformation.
Using various histidine mutants, the protonation of His284
was found to be associated with the trans to cis change to a
functional conformation and the ability to regulate GlcNAc
binding [30, 31].

L-ficolin is the best characterised of all of the ficolins and
binds to a wide range of antigens, thus allowing L-ficolin to
recognise an array of microorganisms. L-ficolin shares a
common binding specificity to GlcNAc and GalNAc but also
binds to a wider range of structures such as lipoteichoic acid
(LTA), 1,3-β-D-glucan, N-glycans, hemagglutinin (HA), and
neuraminidase [5, 6, 32–34]. Due to the large recognition
spectrum of L-ficolin, the incorporation of sites other than
the S1 binding site, termed S2-S4, is of great importance.
The S1 site, important in the recognition of GlcNAc for the
other ficolins, contains a phenylalanine residue in place of a
GlcNAc stabilising tyrosine in L-ficolin and is less involved
[35]. Alternatively, GlcNAc, CysNAc, and neutral galactose
were found in the S2 site; various N-acetylated structures in
the S3 site and a cooperation of the S3 and S4 sites were
involved in the recognition of 1,3-β-D-glucan, altogether
producing a unique recognition surface for the recognition
of pathogens [35].

H-ficolin shares common binding specificities with the
other ficolins, namely, the recognition of the acetylated poly-
saccharides GlcNAc and GalNAc, but, additionally D-fucose
and galactose [3, 35]. Structurally, H-ficolin shares character-
istics with L-ficolin such as the common cis conformation of
the Asp282 and Cys283 peptide bond [35, 36]. Garlatti et al.
[35] characterised the binding of H-ficolin and elucidated the
S1 site which was involved in binding to both D-fucose and
galactose. As in the other ficolins, this site lies within the
vicinity of the Ca2+-binding site and is homologous to the
GlcNAc-binding site in tachylectin 5A, involving Cys235,
Tyr236, Tyr254, and Val264 residues [35]. Zacho et al. [37]
further characterised the binding profile of H-ficolin report-
ing binding to acetylsalicylic acid, N-acetylglycine (GlyNAc),
and CysNAc and reporting the Ca2+ dependence of H-ficolin
binding. However, the sites involved in this recognition need
to be investigated further.

3. The Role of M-Ficolin in Immunity to
Pathogenic Microorganisms

3.1. Bacteria. As a consequence of its recognition spec-
trum (Table 1), it has been suggested that M-ficolin
could be involved in immunity against bacterial infection.
Dose-dependent binding of serum M-ficolin has been
observed to capsular Streptococcus agalactiae serotype VI,
which presents sialic acid as the terminal side-chain residues
of the capsular polysaccharides, but does not bind to the
noncapsulated strain B848/64 [38]. This concentration-
dependent binding was inhibited following the addition of
GlcNAc or treatment of bacteria with sialidase. Recombi-
nant M-ficolin also exhibited the same binding preferences
and activated complement only on serotype VI streptococci
[38]. The same group reported that M-ficolin was unable to
bind to either the capsulated or noncapsulated strains of
Staphylococcus aureus, contradicting a previous observation
by Liu et al. [26]. To further characterize M-ficolin binding,
more than 100 different strains of Streptococcus pneumoniae
and Streptococcus mitis were screened for M-ficolin binding.
M-ficolin was only observed to bind to three strains: the
pneumococcal serotypes 19B and 19C and a single S. mitis
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strain [39]. This binding exhibited the common characteris-
tic of GlcNAc inhibition and in conjunction with MASP-2,
mediated the cleavage of C4. Kjaer et al. [39] postulated
that binding to these pneumococcal strains was via an
N-acetylmannosamine residue linked by glycoside linkage
only present in serotypes 19B and 19C. In addition,
M-ficolin can function as an opsonin and enhance the
action of phagocytes, as phagocytosis of Escherichia coli
by U937 cells was observed to be inhibited by antibodies
against M-ficolin [23].

Bartlomiejczyk and colleagues also demonstrated
M-ficolin binding toMycobacterium bovis andM. tuberculo-
sis, although this binding had little effect on biological
responses [40].

3.2. Viruses. Verma et al. [41] identified that M-ficolin could
recognise and inhibit the infectivity of the Phil82 and PR-8
strains of the influenza A virus (IAV) to levels comparable
to L-ficolin. H-ficolin in this study was also capable of
inhibiting the infectivity of the pandemic Cal09 H1N1
strain. Furthermore, M-ficolin was also observed to interact
with acute phase proteins which could potentiate the
immune response against pathogens. Using surface plasmon

resonance spectroscopy and electron microscopy, the
interaction of M-ficolin with the long pentraxin, pentraxin
3 (PTX3), was investigated. M-ficolin was shown to bind
PTX3 in a Ca2+-dependent manner in an interaction
inhibited by GlcNAc. The M-ficolin-PTX3 interaction
was attributed to sialic acid, and the activation of the
lectin-complement pathway was observed [42]. Function-
ally, the M-ficolin-PTX3 interaction has been observed to
decrease the infectivity of the PR-8 and Phil82 strains of
IAV [41]. Conversely, interactions of M-ficolin with the
mucin-like domain of the Zaire Ebola virus glycoprotein
results in enhanced infectivity of host cells [43].

3.3. Fungi. Until recently, there had been no reports of
M-ficolin binding to A. fumigatus; however, Jensen et al.
[44] identified that M-ficolin can interact with chitin and
β-1,3-glucans, contributing to complement activation and
potentiation of IL-8 from a lung epithelial cell line. The abil-
ity of M-ficolin to recognise such key components of the fun-
gal cell wall, as well as its production by peripheral blood
leukocytes and type II alveolar cells, is suggestive that its
importance in antifungal immunity will be further unveiled
in time.

Table 1: Expression, sugar specificity, and target pathogens of human and rodent ficolins.

Tissues of
origin

Gene
localization

Sugars PAMPs
Endogenous/artificial

ligands
Pathogen interactions

Human

M-ficolin
Cell

surface,
serum

9q34

GlcNAc, GalNAc,
LacNAc, SiaLacNAc,
CysNAc, sialic acid,

gangliosides

Ebola virus
glycoprotein,
chitin, β-1,
3-glucans

Acetylated human
albumin CD43

S. agalactiae, S. aureus, S.
pneumoniae, S. mitis, E. coli,

IAV, T. cruzi, Zaire Ebola virus,
A. fumigatus

L-ficolin Serum 9q34

GlcNAc, GalNAc,
ManNAc, CysNAc,
GlyNAc, NeuNAc,
acetylcholine, elastin

β-1, 3-glucans,
N-glycans, HA,
neuraminidase,
teichoic acid,

LPS

Acetylcholine, elastin,
corticosteroids

S. aureus, S. pyogenes, S.
agalactiae, B. subtilis, S.
typhimurium, E. coli, S.

pneumoniae, L. monocytogenes,
M. bovis BCG, M. tuberculosis,
M. smegmatis, E. faecalis, A.

fumigatus, HCV, IAV, T. cruzi,
G. intestinalis, Leptospira

biflexa, Pasteurella
pneumotropica

H-ficolin

Serum,
bronchus,
alveolus,
bile

1p36.11

GlcNAc, GalNAc,
fucose, glucose,

acetylsalicylic acid, sialic
acid, D-mannose,
GlyNAc, CysNAc

LPS, PSA, Ag85 —

S. typhimurium, S. minnesota, E.
coli O111, Hafnia alvei, A.
fumigatus, IAV, T. cruzi, G.
intestinalis, P. pneumotropica,
M. bovis BCG, M. kansasii

Rodent

Ficolin-A Serum 2A3 GlcNAc, GalNAc LPS Fibrinogen

S. pneumoniae, S. aureus, E. coli
O157:H7, P. aeruginosa, C.
neoformans, A. fumigatus, A.
flavus, A. terreus, A. niger

Ficolin-B
Peritoneal

MØ
2A3

GlcNAc, GalNAc,
LacNAc, SiaLacNAc,

LDL, NeuNAc
— LDL, fetuin Nk

BM, bone marrow; GlcNAc, N-acetylglucosamine; GalNAc, N-acetylgalactosamine; LacNAc, N-acetyllactosamine; SiaLacNAc, sialylated N-acetyllactosamine;
CysNAc, N-acetylcysteine; ManNAc, N-acetylmannosamine; GlyNAc, N-acetylglycine; NeuNAc, N-acetylneuraminic acid; HA, hemagglutinin; LPS,
lipopolysaccharide; IAV, influenza A virus; LDL, low-density lipoprotein; LTA, lipoteichoic acid; HCV, hepatitis C virus; Nk, not known.
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3.4. Parasites. There has been a paucity of information
regarding the role of ficolins in immunity to parasites, but
due to its recognition spectrum, it would seem likely that
M-ficolin would interact with parasites and is an area that
needs to be explored.

4. The Role of L-Ficolin in Immunity to
Pathogenic Microorganisms

4.1. Bacteria. L-ficolin is undoubtedly the most widely inves-
tigated ficolin, and studies have identified important roles
within infection and immunity. L-ficolin was first observed
to enhance the opsonophagocytosis of Salmonella typhimur-
ium leading to complement activation [7]. It should be noted
that in this study, L-ficolin was demonstrated to bind to the S.
typhimurium Ra strain lacking LPSO-specific polysaccharide
but not with the LPS smooth-type strain. L-ficolin recognises
LTA expressed by a range of staphylococcal and streptococ-
cal strains, including S. aureus serotypes 1, 8, 9, 11, and 12
and S. pneumoniae serotypes 11A, 11D, 11F, 20, 35A, and
35C, subsequently leading to activation of the lectin pathway
on some serotypes [5, 39]. This binding could be due to the
recognition of the pneumococcal surface virulence factors
of the choline-binding protein (Cbp) family by the FBG
domain [45]. Recent evidence has been provided which dem-
onstrates that L-ficolin recognises O-acetylated epitopes on
pneumococcal serotype 11A and contributes to reduced
invasiveness [46]. Further delineation of the binding specific-
ity led to the observation that L-ficolin could bind to the
PCho residue in teichoic acid [47]. An important study by
Ali et al. additionally provided evidence that L-ficolin can
activate the lectin pathway of complement via binding pneu-
molysin, a major toxin of S. pneumoniae [48].

Group B streptococci (GBS), in particular capsular poly-
saccharide (CPS) from serotypes Ib, III, V, VI, and VIII, is
also avidly recognised by L-ficolin, leading to a significant
increase in opsonophagocytosis and C3b deposition via the
lectin pathway working synergistically with the alternative
complement pathway [49, 50]. The binding of L-ficolin to
GBS is suggested to be irrespective of the amount of LTA
or group B-specific polysaccharide (GBPS) content but
shows a directly proportional decrease in binding following
the removal of N-acetylneuraminic acid (NeuNAc) [51].
L-ficolin and serotype-specific IgG from cord serum have
been observed to increase opsonophagocytic killing of sero-
type III and V [50]. However, recognition of GBS by
L-ficolin is a result currently under debate as another group
reported no binding to any serotypes investigated [38].
L-ficolin also binds to Enterococcus faecalis, Leptospira
biflexa, Listeria monocytogenes, Pasteurella pneumotropica,
and enteropathogenic or enteroaggregative E. coli; however,
the functional consequences of these interactions are
not fully elucidated [52, 53]. Recent evidence is indica-
tive that L-ficolin may play an important role in immunity
against enteroaggregative E. coli via activation of the
lectin-complement pathway [54]. Moreover, the interaction
of L-ficolin with C-reactive protein (CRP) significantly
enhanced the complement deposition on P. aeruginosa [55].

L-ficolin has arisen as an important defence molecule
within the liver in particular, whereby lower L-ficolin levels
are correlated with an increased incidence of bacterial infec-
tions and disease severity during sepsis [56–58].

Additionally, L-ficolin has been observed to bind to
mycobacteria. L-ficolin recognises Mycobacterium bovis
BCG, leading to complement activation and significant C3b
deposition [59]. In this case, C3b deposition could be
involved in the virulence ofM. bovis BCG to allow entry into
macrophages where they reside. Moreover, Luo and col-
leagues identified that L-ficolin could bind more effectively
to the virulent M. tuberculosis strain H37Rv, comparatively
to nonvirulent M. bovis BCG and M. smegmatis [60]. Nota-
bly, an insufficiency of L-ficolin in humans was attributed
to enhanced susceptibility to infection with TB [60].

4.2. Viruses. A role for L-ficolin in viral defence is now also
starting to emerge. Liu et al. [33] found that L-ficolin in
patients with hepatitis C virus (HCV) was elevated and was
able to bind to N-glycans of the envelope glycoproteins E1
and E2. This interaction further led to the activation of the
lectin pathway. Recent evidence has been provided which
displays the ability of L-ficolin to directly inhibit HCV entry
into cells and demonstrated that apolipoprotein E3 (ApoE3)
blocks this effect, mediating immune escape [61, 62]. Recent
evidence has indicated that L-ficolin concentrations are ele-
vated in the serum of chronic hepatitis B patients also [63].
Additionally, L-ficolin has been observed to bind to HA
and neuraminidase via their FBG and has been shown to
have an inhibitory effect on the invasion of kidney cells by
IAV in vitro [34]. Using mice deficient of the mouse ortholo-
gue of L-ficolin, ficolin-A, it was also observed that these
mouse demonstrated a greatly decreased survival rate in
comparison to WT. However, reconstitution of L-ficolin into
a ficolin-A knockout mouse could significantly reduce mor-
tality. Chimeric lectins whereby part of the L-ficolin
collagen-like domain was added in place of MBLs have
proven beneficial in defence against both the IAV and the
Ebola virus [64, 65].

4.3. Fungi.L-ficolinhas been observed tobind to thepathogenic
fungus, Aspergillus fumigatus, leading to lectin-complement
pathway activation [66]. Complement activation can be fur-
ther potentiated by an L-ficolin-PTX3 complex. This group
also highlighted that the classical and lectin-complement
pathways can complement each other, with the classical
pathway the preferred method of initiation but the lectin
pathway capable of initiating complement in the absence of
anti-Aspergillus antibodies [67]. Additionally, we showed
that the recognition of A. fumigatus by the L-ficolin FBG also
enhances the association of A. fumigatus to the A549 type
II epithelial cell line, human primary neutrophils, and
monocyte-derived macrophages (MDM) [9, 68]. This inter-
action was observed to enhance fungal killing and modulate
the inflammatory cytokine response, leading to increased
production of IL-8 by epithelial cells, while conversely
decreasing the production of IL-1β, IL-6, IL-8, and TNF-α
from neutrophils and MDM in vitro. We have since observed
the presence of L-ficolin in the bronchoalveolar lavage fluid

5Journal of Immunology Research



of lung transplant patients with fungal lung infections, hint-
ing at an important role in antifungal defence [68]. Recently,
Genster et al. have highlighted that the absence of both the
rodent orthologues ficolin-A and ficolin-B sensitised mice
to A. fumigatus infections [69]. However, the absence of
either one alone was not sufficient to enhance susceptibility.
Furthermore, very little is understood about the recognition
of other pathogenic fungi by L-ficolin, and this could be an
important area to investigate, although it has been reported
that there is no association observed between levels of any
ficolin and intra-abdominal Candida albicans infection [70].

4.4. Parasites. Parasitic binding is also a characteristic of
L-ficolin. L-ficolin has been observed to bind to glycosylated
proteins on the cell surface of T. cruzi and recognise Giardia
intestinalis, leading to complement activation [71, 72].
Recent data has shown that T. cruzi is also able to manipulate
L-ficolin as a virulence factor. T. cruzi calreticulin can bind
L-ficolin directly and in doing so is observed to inhibit lectin
pathway activation in a dose-dependent manner [73].

5. The Role of H-Ficolin in Immunity to
Pathogenic Microorganisms

5.1. Bacteria. Early work from Sugimoto et al. [3] charac-
terised the ability of H-ficolin to induce agglutination of
human erythrocytes by recognition of lipopolysaccharides
(LPS) from S. typhimurium, Salmonella minnesota, and E.
coli O111 coated on their surface. Binding to bacteria has
proven to be restricted to only a few species, the most charac-
terised of these is binding to PSA, a polysaccharide of Aero-
coccus viridans, which is now often used as a control for
H-ficolin binding and complement activation [12, 74, 75].
However, even H-ficolin recognition of A. viridians and E.
coli is strain specific as binding to the strains A. viridans Ring
44 and E. coli 74285 was not observed [75]. Recent work by
Swierzko et al. [4] increased our current knowledge of
H-ficolin-bacteria interactions. They showed that LPS from
only four strains of Hafnia alvei was recognised by H-ficolin,
in particular via their O-specific polysaccharides, leading to
C4b deposition in a calcium and magnesium-dependent
manner. The interaction between H-ficolin and H. alvei has
since been investigated further, whereby H-ficolin can aug-
ment phagocytosis and promote bacterial killing [76]. In
stark contrast, H-ficolin has not been observed to recognise
any S. pneumoniae, S. agalacticae, S. mitis, or S. aureus strains
[38, 39, 75]. In addition, H-ficolin does not bind to other bac-
teria such as L. monocytogenes, Pseudomonas aeruginosa, and
Klebsiella pneumoniae [52]. Recently, H-ficolin binding has
been observed to Pasteurella pneumotropica and entero-
pathogenic and enteroaggregative E. coli [53]. Bartlomiejczyk
and colleagues demonstrated that H-ficolin could bind toM.
tuberculosis, M. bovis, and M. kansasii, with binding to the
former resulting in bacterial agglutination and enhanced
phagocytosis [40]. The mycobacterial antigen Ag85 has
arisen as a novel antigen for the ficolins, in particular H-fico-
lin, where it might influence the interaction of Mycobacte-
rium with the extracellular matrix [77].

5.2. Viruses. Observations regarding the role of H-ficolin
in the defence against viruses are encouraging. Recent
studies have exhibited the ability of recombinant H-ficolin,
H-ficolin from human serum, and from bronchoalveolar
lavage to bind to IAV, the mouse-adapted PR-8H1N1 and a
pandemic H1N1 strain [41]. Following recognition, a
decrease in the ability of IAV to cause infection in vitro was
observed. The role of sialic acid in these mechanisms was
suggested to be important, as following sialidase treatments
and removal of the sialic acid residues decorating H-ficolin,
inhibition of IAV was abolished [41]. In addition, H-ficolin
was capable of activating the lectin pathway on a surface
coated with IAV. As observed for M- and L-ficolin,
H-ficolin has the ability to interact with PTX3 in a
dose-dependent manner, although it exhibits the weakest
binding of the three [66]. This H-ficolin-PTX3 interaction,
as for M-ficolin, exhibited the ability to inhibit HA activity
and infectivity of IAV [41]. A more recent study further con-
solidated these earlier observations by demonstrating that
H-ficolin can inhibit the replication of pandemic IAV by
enhancing uptake and dampening TNF-α response in mono-
cytes [78].

5.3. Fungi. Similar to L-ficolin, H-ficolin has been implicated
in the recognition of A. fumigatus. This interaction led to the
activation of the lectin pathway of complement, enhanced
association of conidia with A549 epithelial cells, and
increased IL-8 production [79]. Moreover, H-ficolin has been
shown to be recruited to the lungs during inflammation, and
we have observed increased concentrations of H-ficolin in
the lungs of transplant patients with proven or probable A.
fumigatus infection [79, 80].

5.4. Parasites. As for L-ficolin, H-ficolin has also recently
been observed to bind to the parasites T. cruzi and G. intesti-
nalis and play a role in complement activation [71, 72].
Depletion of ficolins and MBL led to a 70% decrease in C3b
and C4b deposition on T. cruzi [81].

6. The Role of Rodent Ficolin-A and Ficolin-B in
Immunity to Pathogenic Microorganisms

6.1. Bacteria. Until recently, the recognition spectrum of
ficolin-A with microorganisms was relatively unknown.
However, there has been much progress in characterising
the interaction of ficolin-A with pathogens. Hummelshøj
et al. [52] have greatly expanded current knowledge on
the pathogen specificity. They showed ficolin-A to recog-
nise a plethora of microorganisms including pathogenic
gram-positive and -negative bacteria such as S. aureus and
the pathogenic E. coli strain O157:H7. They also exhibited
the ability of ficolin-A to bind LPS from E. coli and P. aer-
uginosa. However, recognition of LPS did not equate to
protection or inflammatory modulation in an in vivo model
of LPS-induced systemic inflammation [82].

Ficolin-A has been observed to partake in the activa-
tion of the lectin-complement pathway via the association
with MASPs. Further interactions with fibrinogen and
thrombin have been observed to potentiate the activation
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of complement on S. aureus [83]. It has also proven to be an
essential activator of the lectin-complement pathway in the
defence against S. pneumoniae. Ficolin-A and -B opsonisa-
tion of S. pneumoniae leads to complement deposition in
the presence of ficolin-A and only weakly in its absence
[15]. The role of the lectin-complement pathway in pneumo-
coccal defence has been shown to be important [84].

6.2. Viruses. To date, there have been very few studies
implicating ficolin-A or -B in viral recognition. Pan et al.
[34] however did demonstrate that reconstitution of a
ficolin-A KO mouse with either L-ficolin or ficolin-A could
ameliorate the effects of IAV and protect against mortality
and inflammation.

6.3. Fungi. We have further characterised the interactions of
ficolin-A with Aspergillus spp. in vitro. Ficolin-A was
observed to recognise A. fumigatus, A. flavus, A. niger, and
A. terreus with its FBG in a calcium-independent manner.
In addition to this, recognition of the most pathogenic spe-
cies, A. fumigatus, was greatly increased in acidic conditions,
an interaction which led to enhanced association with the
lung epithelium and immobilisation of the fungus [9].
Ficolin-A has also been observed to enhance the phagocyto-
sis of A. fumigatus and A. flavus by RAW macrophages
(unpublished observation), neutrophils, and human macro-
phages [85]. As previously mentioned, Genster et al. have
elucidated an important role for ficolin-A in vivo against A.
fumigatus infection [69]. In addition to this, we have also
characterised the binding to the pathogenic yeast Cryptococ-
cus neoformans. This interaction shared many of the charac-
teristics of binding to Aspergillus such as pH dependence and
Ca2+ independence, in addition to increased epithelial cell
adherence [86].

We also recently elucidated a role of the lectin pathway of
complement in the defence against A. fumigatus in vitro. In
the absence of ficolin-A, complement was activated, but in
the absence of MBL-A and -C, no complement activation
could be observed. MBL-C but not MBL-A was able to bind
to A. fumigatus; therefore, we postulated that MBL-C could
be the activator of the lectin pathway in the defence against
Aspergillus [9]. Indeed, fungal clearance in ficolin-A knock-
out mice appeared to be independent of complement activa-
tion [69].

Ficolin-A has also exhibited both pro- and
anti-inflammatory potential. Recent evidence suggests that
ficolin-A may be capable of binding to LPS- and inhibiting
TLR-4-mediated inflammation on mast cells [87]. We have
previously observed that ficolin-A is capable of enhancing
IL-8 secretion from A549 cells challenged with A. fumiga-
tus and others have attributed decreased cytokine produc-
tion to be the cause of higher fungal burdens in knockout
mice [9, 69].

6.4. Parasites. Akin to its human orthologue, ficolin-A is also
important in the defence against parasites. In an in vivo
mouse model, ficolin-A was shown to enhance the immuno-
protective activity of the 19 kDa fragment of merozoite
surface protein-1 of Plasmodium berghei which led to a

reduction in invasion and an increase in mouse survival
[88, 89]. Conversely, upregulated transcripts of ficolin-A
were observed in macrophages obtained from mice with
tropical pulmonary eosinophilia [90].

The current knowledge on the role of ficolin-B in the rec-
ognition and defence against pathogens is largely unkown,
but Endo et al. [15] have suggested a synergistic role of
ficolin-A and -B in the defence against S. pneumoniae. [91].

7. Ficolin Single Nucleotide Polymorphisms and
Haplotypes Contribute to Pathophysiology

Single nucleotide polymorphisms (SNPs) can have signifi-
cant effects on the susceptibility to various infections by alter-
ing the function or concentration of ficolins found within
serum or organs. Early research in the Garred laboratory
indicated that there were large ethnic differences in the distri-
bution of SNPs [92]. Moreover, the number of SNPs found in
FCN3 was very low in comparison to FCN1 and FCN2. Many
SNPs were predicted to have a major effect on the function of
their respective proteins, with one in FCN3 for example,
completely disrupting the FBG. Since then, there has been
much evidence implicating the effects of SNPs within ficolins
(Table 2).

7.1. SNPs in FCN1. To date, there have been very few poly-
morphisms identified in the FCN1 gene, but polymorphisms
and haplotypes have been identified which are linked to anti-
bacterial immunity.

Polymorphisms in FCN1 have been directly associated
with M-ficolin levels, with the +7895T>C mutation resulting
in an inability to produce M-ficolin and a mutation at
-144C>A resulting in significantly increased levels [93]. The
same group identified two other nonsynonymous mutations,
one at position +6658G>A and the other at +7959A>G that
were associated with low M-ficolin levels, poor ligand-
binding capacity, and low binding to group B streptococcus
[93]. These observations were made using HEK293 cells
transfected with plasmids for the various mutated M-ficolin
receptors, albeit computational predictions were made that
suggested that these SNPs would be potentially damaging
in patients.

Cystic fibrosis patients heterozygous or homozygous for
mutant alleles for two SNPs in FCN1 at position 1981G>A
and +7918G>A were more susceptible to earlier colonization
by P. aeruginosa [94]. Moreover, patients heterozygous for
two further SNPs in FCN2 were also more susceptible to ear-
lier onset of colonization [94].

Boldt and colleagues [95] were the first to implicate FCN1
SNPs as a risk factor for mycobacterial infections. They
identified a combination of SNPs (FCN1∗-542A-144C) to
have an additive protective effect against M. leprae infec-
tion, albeit there was a negative association of the FCN1∗

3A haplotype with lepromatous leprosy. Genotyping of
Danish individuals with known M-ficolin levels highlighted
that the FCN1∗3A haplotype resulted in higher than aver-
age M-ficolin levels, which could be an explanation for
enhanced susceptibility.
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7.2. SNPs in FCN2. L-ficolin polymorphisms have been the
most widely reported, with polymorphisms in the FCN2 gene
contributing to susceptibility to numerous bacterial patho-
gens and some viruses.

Cedzynski and colleagues initially reported four poly-
morphisms that were linked to extremes in L-ficolin concen-
trations in a cohort of Polish children suffering from
recurrent respiratory infections [96]. Low L-ficolin levels
were associated with variant alleles for -64A>C and
+6424G>T but normal alleles for -4A>G and +6359C>T.
Conversely, high L-ficolin levels were associated with variant
alleles of -4A>G and +6359C>T. FCN2 polymorphisms were
not identified as major risk factors for community acquired
pneumonia, albeit there was an association between the
+6424G>T polymorphism and patient colonization with
Coxiella burnetii [97].

The FCN2 exon 8 +6359 C>T polymorphism has arisen
as an important SNP involved in susceptibility to bacterial
infections, especially following organ transplants [98, 99].
Wan and colleagues [98] correlated the SNP with increased
incidence of bacteraemia in kidney transplants, whereas de
Rooij et al. [99] demonstrated an increased incidence of sig-
nificant bacterial infections and mortality in liver transplant
patients. Moreover, the negative effects were cumulative if
patients also had SNPs in the lectin pathway components,
MBL-2 and MASP-2 [99].

The +6359C>T SNP was also reported as a significant
risk factor in patients on continuous ambulatory peritoneal
dialysis with a history of staphylococcal peritonitis [100],
potentially due to decreased ability to bind to staphylococci.

B acute lymphoblastic leukemia patients were observed
to be at a greater risk of bacterial infections and present
prolonged episodes of febrile neutropenia if they pos-
sessed a medium-/high-risk haplotype for FCN2 of
GGATG, GGACG, or AGACG (all haplotypes composed
of -986/-602/-4/+6359/+6424) [101]. Notably, the risk of

bacterial infections was further enhanced if patients pos-
sessed both a medium-/high-risk haplotype of FCN2 and
a medium-/high-risk genotype of MBL2 [101].

Following genotyping of 219 severely injured patients
admitted to a level 1 trauma centre over a period of 3 years,
a FCN2 +6424G>T SNP was identified that predisposed
patients to positive wound cultures and septic shock [102].
Additionally, this FCN2 SNP, but not the -4A>G or
-602G>A polymorphisms, was significantly associated with
chronic adenotonsillitis in young children [103].

Although the vast majority of SNPs are associated with
a negative output, three SNPs within FCN2 have been asso-
ciated with protection against pulmonary tuberculosis. In
this study, the frequency of the -557A>G, -64A>C, and
+6424G>T SNPs was found to be lower in the pulmonary
TB group in comparison to the control group [104]. In oppo-
sition, research from Chalmers et al. suggests that there is no
relationship between lectin pathway proteins and susceptibil-
ity to tuberculosis, leaving the subject open for debate [105].
Conversely, in a Chinese cohort of leprosy patients, genetic
variants of FCN2 (-557A>G and +6424G>T) in the promoter
region and exon 8, respectively, were linked to low L-ficolin
levels and had a positive association with leprosy susceptibil-
ity [106], which is in opposition to both H- and M-ficolin,
where higher concentrations of either of these results in
enhanced susceptibility [95, 107].

SNPs in FCN2 have also been reported to be correlated
with a predisposition to parasitic infections, including,
leishmaniasis, malaria, Chagas disease, and schistosomiasis
[108–111].

Elevated levels of L-ficolin observed in leishmaniasis were
reported to be due to the +6359C>T structural variant [108].
Conversely, low L-ficolin levels were significantly associated
with Chagas disease, which could be attributed to increased
incidence of the Ala258Ser amino acid change (+6424G>T
in exon 8) [110]. Moreover, heterozygote -4A>G genotypes

Table 2: Single nucleotide polymorphisms in ficolin genes contributing to pathophysiology and colonization.

Ficolin gene rs number Position Gene region Amino acid change Reference

M-ficolin (FCN1)

rs2989727 -1981G>A Promoter — [93, 94]

rs10120023 -542G>A Promoter — [95]

rs10117466 -144C>A Promoter — [95]

rs148669884 +6658G>A Exon 8 Ala218Thr [93]

rs150625869 +7895T>C Exon 9 Ser268Pro [93]

rs1071583 +7918G>A Exon 9 Gln275Gln [94]

rs138055828 +7959A>G Exon 9 Asn289Ser [93]

L-ficolin (FCN2)

rs3124952 -986G>A Promoter — [111, 112]

rs3124953 -602G>A Promoter — [103]

rs3811140 -557A>G Promoter — [104, 106]

rs28969369 -64A>C Promoter — [96, 104]

rs175141136 -4A>G Promoter — [103, 111, 112]

rs17549193 +6359C>T Exon 8 Thr236Met [96, 98–100, 108]

rs7851696 +6424G>T Exon 8 Ala258Met [96, 97, 102, 104, 106, 110]

H-ficolin (FCN3)
rs28357092 +1637CdC Exon 5 Leu117fs [113, 114]

rs4494157 +4473C>A Intron 7 — [107]

8 Journal of Immunology Research



with the Ala258Ser variant were more frequent amongst the
patients with cardiodigestive symptoms [110].

Malaria patients were tested for polymorphisms known
to be associated with varying L-ficolin plasma levels, and,
although concentrations varied between mild and severe
cases of malaria, there was no significant association for
any of the haplotypes with disease severity [109].

Ouf et al., [111] identified that the -986G>AA and
-4A>G alleles were significantly associated with schisto-
somiasis. Patients heterozygous for -986G>A or -4A>G,
or those with the haplotype AGGG (composed of
-986/-602/-4/+6424), were most at risk for schistosomiasis,
whereas those homozygous for these mutations, or patients
with the haplotype GGAG, were protected against schistoso-
miasis. Notably, L-ficolin concentrations were higher in both
the controls and the GGAG patients.

SNPs in FCN2 have also been implicated in viral infec-
tions, participating in the pathophysiology of hepatitis B
infection [112]. There appeared to be significant haploty-
pic differences between hepatitis B patients and controls,
with the AGGG haplotype being found more frequently
in controls and the AAAG haplotype being associated
with higher L-ficolin concentrations (both composed of
-986/-602/-4/+6424) and increased viral loads [112]. Fur-
thermore, strong linkage was associated between the vari-
ant -986G>A and -4A>G.

7.3. SNPs in FCN3. As aforementioned, FCN3 was observed
to have fewer SNPs comparatively to FCN1 and FCN2, and
few have been implicated in pathogen susceptibility.

The first incidence of H-ficolin deficiency was highlighted
by Munthe-Fog et al. in 2009 [113], whereby they identified a
patient with recurrent infections that was homozygous for a
frameshift mutation (+1637CdC) and had undetectable
levels of H-ficolin in their serum. Furthermore, Michalski
et al. [114] reported a neonate with S. agalactiae infection
who was homozygous for this frameshift mutation and
completely H-ficolin deficient, suggesting an important role
of H-ficolin in antibacterial defence.

Recently, there has also been a link to leprosy. Although
there was no direct link observed between polymorphisms
in FCN3 and leprosy, H-ficolin levels were higher in patients
with the FCN3 +4473C>A ∗2B1 haplotype, in addition to
being higher in the leprosy and lepromatous patient’s com-
parative to controls [107], indicating that elevated H-ficolin
levels may help propagate the disease.

8. Conclusions

There has been ever increasing evidence that ficolins play
an integral role in a plethora of infectious diseases, addi-
tionally mutations within these proteins generally results in
enhanced susceptibility to infection. In recent years, there
has been a lot of interest in the role of ficolins within fungal
disease, with each of the human ficolins and rodent
ficolin-A proving beneficial to antifungal immunity. Further-
more, the recognition spectra of both M- and H-ficolin are
increasing, but compared to L-ficolin, are still relatively lim-
ited. Future research could therefore focus on further

exploration of the role of M-ficolin within antifungal immu-
nity and enhancing our knowledge on the roles of M- and
H-ficolin within innate immunity.
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