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Dissertaধon abstract

The rise of empirical population genetics and more recently the genomic revolution have given

us the tools to explore completely new questions in ecology and evolution. Based on only a

single temporal sample of individuals, genetics now allows us to glimpse into the demographic

history of a species and gain insights into its population dynamics during the last glacial period

or the impact of recent bottlenecks caused by human exploitation. Measuring genetic variation

is also key to exploring the forces shaping phenotypic variation, which are well understood

for some traits but are completely unknown for many others. Among the latter are chemical

and bacterial phenotypes, which are so complex in themselves that it is not clear how they are

determined by an animals’ genotype. Nevertheless, a better knowledge of the interconnectivity

between animal genetics, chemicals and microbiota has the potential to drastically change

our understanding of ecological and evolutionary processes. However, very few studies have

bridged the gap between population genetics, chemical ecology and microbiology in wild

populations.

Pinnipeds are an extraordinary group of marine mammals for exploring such wide-ranging

questions. From the tropical waters of the Central Pacific to the wild seas of the Southern Ocean,

pinnipeds inhabit nearly every marine environment in the world. They show a remarkable

variety of life-history adaptations where chemical communication and host-microbe interactions

play a potentially critical role, such as the flawless mother-pup recognition in fur seals or the sex-

specific feeding strategies in Northern elephant seals. Pinnipeds also differ greatly in their recent

demographic histories, as large-scale commercial exploitation by 18th and 19th century sealers

brought many species to the edge of extinction, while others remained largely untouched. In

my dissertation, I elucidate the origins of genetic variation among pinnipeds using demographic

inference, but I also explore some of the more unknown consequences of genetic variation:

chemical and microbial phenotypes, and their potential functions. Lastly, inspired by the open

science movement, I developed three scientific packages in R which emerged from the analyses

in this dissertation. My thesis is divided into the following chapters:

xvi



In chapter 1, I give an overview of the historical context and main questions of this disserta-

tion and describe the pinnipeds as a study system. In chapter 2, I present a comparative genetic

analysis of the demographic consequences of commercial exploitation. We found that around

one-third of all pinnipeds underwent severe genetic bottlenecks and that these were mediated

by both ecology and life-history. Moreover, genetic diversity seems to be largely determined

by contemporary population size and reduced only by very severe bottlenecks. Chapter 3

presents the first genomic investigation of the demographic history of the Northern elephant

seal. Using a novel genome sequence and restriction-site associated DNA sequencing, we infer

both an extreme recent bottleneck and a likely post-glacial expansion of the species. In chapter

4, we characterise the chemical basis of olfactory mother-offspring recognition in Antarctic fur

seals. The skin chemical profiles were surprisingly diverse, with chemical compounds differ-

ing between populations and mother-offspring pairs and correlating with heterozygosity and

genetic relatedness. Chapter 5 explores the development of gut microbiota in young Northern

elephant seals. Using a diet-controlled setting, we show that gut microbiota of young seals are

already highly complex and change radically within only a few weeks. Furthermore, we show

that gut microbiota are highly sex-specific and linked to genotype in males but not in females.

In chapter 6, we describe GCalignR, an R package for aligning gas chromatography data

across many individuals for field studies in animal ecology and evolution. Chapter 7 presents

inbreedR, an R package for analysing inbreeding and inbreeding depression using genetic and

genomic markers. The rptR package described in chapter 8 quantifies intra-class coefficients

or repeatabilities for Gaussian and non-Gaussian traits in a mixed model framework. Lastly,

chapter 9 puts the findings of this thesis in a broader context, discusses its limitation with

respect to the neutral theory of molecular evolution and the complexities of assigning function

to chemical compounds and microbes in wild organisms and outlines future directions.

To summarise, my dissertation provides novel insights into how recent and historical de-

mography shaped the genetic makeup of contemporary populations, thereby contributing to

the old riddle of the determinants of genetic diversity. Moreover, I show that individual genetic

variability shapes complex chemical signatures and gut microbial communities in the wild and

explore the potential mechanisms by which these could be intertwined with pinniped ecology

and evolution. Lastly, I hope that both the openly available and documented analytical pipelines

as well as the R packages that have emerged from this dissertation will help to facilitate scientific

progress and replicability.
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Zusammenfassung der Dissertaধon

Die Errungenschaften der empirischen Populationsgenetik haben Ökologen und Evolutionsbi-

ologen eine komplett neue Perspektive auf die Natur ermöglicht. Mithilfe der Genetik kann man

heutzutage zum Beispiel anhand von aktuellen Blutproben einer Tierart Einsichten in deren

evolutionäre Vergangenheit gewinnen, von der Populationsgröße während der letzten Eiszeit

bis hin zu den Folgen der kommerziellen Ausbeutung durch den Menschen. Die Population-

sgenetik ist aber ebenso wichtig um zu verstehen, warum sich Tiere und Menschen überhaupt

in ihrem Erscheinungsbild oder Phänotyp unterscheiden. Obwohl für manche Merkmale, wie

beispielsweise Haarfarbe, die zugrunde liegenden Gene relativ gut bekannt sind, wissen wir

nahezu nichts über die Gene oder die Erblichkeit von vielen komplexeren Merkmalen. Zwei

dieser Merkmale, welche ich in dieser Doktorarbeit untersuche, könnten unser Verständnis der

Biologie grundlegend erweitern. Zum einen geht es um die chemischen Moleküle und Sub-

stanzen, die sich auf der Haut eines jeden Lebewesens befinden und welche von grundlegender

Wichtigkeit für die ältesten aller Sinne sind: Die chemischen Sinne, Riechen und Schmecken.

Zum anderen geht es um die Millionen und Abermillionen von Mikroben, die, wie wir mittler-

weile wissen, jedes Lebewesen bevölkern und von denen manche für ihren Wirt lebensnotwenig

sind, und andere lebensgefährdend. Die komplexen Zusammenhänge zwischen Genen und

chemischen Substanzen sowie Mikroben wurden bisher kaum bei Tieren in freier Wildbahn

untersucht, obwohl sie unser Verständnis vieler biologischer Phänomene erweitern könnten.

Die Robben (Pinnipedia) sind Meeressäuger mit einer enormen Vielfalt an ökologischen

und physiologischen Besonderheiten, was sie zu interessanten Studienorganismen macht, um

weitreichende populationsgenetische Fragen zu erforschen. Sie sind in nahezu allen aquatischen

Lebensräumen weltweit zu finden, von den tropischen Wassern Hawaiis bis hin zu den eisigen

Strömungen des Südpolarmeeres, und haben sich im Laufe der Evolution dementsprechend

an ihre jeweiligen Lebensräume angepasst. So brauchen zum Beispiel Antarktische Seebären-

mütter einen exzellent ausgeprägten Orientierungs- Hör- und Geruchssinn, um ihre Jun-

gen nach der Futtersuche im Meer zwischen tausenden von anderen Tieren in der Kolonie
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wiederzufinden. Auf der anderen Seite des Äquators haben Männchen und Weibchen der

Nördliche Seeelefanten erstaunlich unterschiedliche Lebenslaufstrategien entwickelt, wodurch

sie sich zum Beispiel in ihren Jagdrevieren und ihrer Beute stark unterscheiden, und was

potenziell eine Kovolution von geschlechterspezifischen Darmbakterien zur Folge haben kön-

nte. Viele Robbenarten wurden industriell bejagt, da im 18. und 19. Jahrhundert sowohl ihr

Fell als auch ihre dicke Fettschicht (für die Produktion von Ölen zur Beleuchtung oder für

Kosmetik) stark nachgefragt waren. Manche Arten wurden komplett ausgerottet, andere an

den Rand des Austerbens gebracht, und wieder andere hatten das Glück, nie in die Fänge der

Robbenjäger zu kommen. Im ersten Teil dieser Arbeit beschäftige ich mich mit den genetis-

chen Konsequenzen dieser unterschiedlichen demografischen Vergangenheiten, zum Beispiel

mit der Frage ob die Bejagung die genetische Diversität der verschiedenen Robbenarten re-

duziert hat. Im zweiten Teil untersuche ich dann die genetischen Grundlagen sowohl der

chemischen Kommunikation bei Antarktischen Seebären wie auch der Interaktion zwischen

Wirt und Darmbakterien in Nördlichen Seeelefanten. Inspiriert von der Open-Science Be-

wegung habe ich außerdem auf Basis der Analysen in diesen Studien drei wissenschaftliche

Softwarepakete in der Programmiersprache R entwickelt. Die vorliegende Arbeit teilt sich in

folgende Kapitel:

In Kapitel 1 gebe ich einen Überblick über die historische Entwicklung der Populations-

genetik als Wissenschaft, beschreibe die Hauptfragestellungen und stelle die Robben als Haupt-

studienorganismen dieser Arbeit vor. Kapitel 2 enthält eine vergleichende, genetische Analyse

der demografisch-genetischen Konsequenzen der Robbenjagd, in der wir zeigen, dass ein Drit-

tel aller Robbenarten in Folge der Bejagung an den Rand des Aussterbens gebracht wurde,

was für manche Spezies eine starke genetische Verarmung zur Folge hatte. In der Studie in

Kapitel 3 benutzen wir neueste genomische Technologien um die demografische Vergangen-

heit einer ganz besonderen Art zu untersuchen, des Nördlichen Seeelefanten. Der Seeelefant ist

mittlerweile in so gut wie jedem Biologie Lehrbuch als Musterbeispiel für einen sogenannten

’Genetischen Flaschenhals’ zu finden, einer starken genetische Verarmung aufgrund des drastis-

chen Rückgangs der Population. Die Art wurde vor gut einhundert Jahren nahezu komplett

ausgerottet, hat sich aber innerhalb kürzester Zeit wieder erholt, wobei mittlerweile wieder mehr

als 200,000 Exemplare an der Pazifikküste Nord- und Mittelamerikas leben. In dieser Studie

untersuchen wir aber nicht nur die genetischen Folgen der Bejagung, sondern fanden auch erste

Belege, dass die Art während der letzten Eiszeit nur eine relativ kleine Population hatte, welche

sich nach dem Rückgang der Gletscher aber stark ausbreitete. In Kapitel 4 analysieren wir

die verschiedenen chemischen Substanzen auf der Haut von Antarktischen Seebären, welche

an der Geruchskommunikation beteiligt sein könnten. Erstaunlicherweise fanden wir Belege,

xix



dass diese Substanzen überaus komplexe Informationen enthalten können, sowohl über die

jeweilige Population, die familiäre Verwandtschaft als auch über die genetische Diversität der

Tiere. Kapitel 5 beschreibt eine Studie zur Entwicklung der verschiedenen Darmmikroben

von jungen Seeelefanten auf dem San Benitos Archipel im nordöstlichen Pazifik. Säugetiere

werden nahezu ohne Darmmikroben geboren, aber innerhalb kürzester Zeit nach der Geburt

bevölkern viele verschiedene Spezies den Darm. Die Ergebnisse dieser Studie zeigen, dass

völlig verschiedene Bakterienarten die Därme von Männchen und Weibchen bevölkern, und

dass die Gene des Wirtes zum Teil die Bakterienkolonien beeinflussen, welche sich während

der Entwicklung bilden. In den letzten drei Kapiteln stelle ich verschiedene Softwarepakete

vor, geschrieben in der Programmiersprache R, welche neue Analysemethoden für zukünfige

Forschungsprojekte implementieren. Kapitel 6 beschreibt GCalignR, eine Software, die Wis-

senschaftlern ermöglicht, komplexe chemische Daten von vielen verschiedenen Tieren oder

Proben zu vergleichen. In Kapitel 7 stelle ich inbreedR vor, ein Paket, das die Analyse von In-

zuchtverhalten mithilfe genetischer Methoden vereinfacht. Kapitel 8 stellt schließlich rptR vor,

ein Paket, das sogenannte Intra-Klassen-Koeffizienten berechnet, welche gebraucht werden,

um die Stabilität von wissenschaftlichen Messungen zu berechnen aber auch um biologische

Phänomene zu untersuchen, wie zum Beispiel in der Persönlichkeitsforschung. In Kapitel 9

diskutiere ich die Studien meiner Dissertation in ihrem größeren Zusammenhand und erörtere

potentielle zukünftige Forschungsansätze. Alles in allem hat meine Doktorarbeit zu neuen

Einsichten über den Zusammenhang von genetischer Diversität und Demografie geführt, und

zeigt insbesondere wie menschliche Einflüsse die natürliche genetische Diversität der Robben

bereits verringert haben. Eine weiter wichtige Erkenntnis ist jedoch, dass nur Populationen,

welche auf sehr wenige Individuen reduziert wurden, tatsächlich eine starke genetische Ve-

rarmung erfahren. Das bedeutet im Rückschluss auch, dass der Schutz von nur wenigen

hundert Individuen einer Art ausreichen kann um deren erfolgreiche Erholung zu garantieren.

Ich habe außerdem in dieser Arbeit gezeigt, dass auch komplexe Phänotypen, wie chemische

Substanzen und Darmbakterien, von der Genetik des Tieres bzw. Wirtes abhängen. Diese

Ergebnisse könnten einige Fragen der Ökologie und Evolutionsbiologie in einem neuen Lichte

erscheinen lassen, zum Beispiel, was denn eine biologische Einheit ausmacht, welche sich unter

dem Druck der natürlichen Selektion befindet: Sind alle Lebewesen nur ihre Gene und Pro-

teine, oder vielleicht doch ein deutlich komplexeres Geflecht aus chemischen Substanzen und

Bakterienkolonien? Schlussendlich hoffe ich, dass auch die in meiner Dissertation entwickelten

Methoden und Software ein wenig helfen werden, sowohl den wissenschaftlichen Fortschritt als

auch die Replizierbarkeit von wissenschaftlichen Studien, ganz im Sinne der aufkommenden

Open-Science Bewegung, voranzubringen.
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Introducধon

The stuff of life and how it varies 1

It is the year 1869, around ten years after Charles Darwin published his groundbreaking work

‘On the Origin of Species’ and only three years after Gregor Mendel discovered the principles

of inheritance. A young and highly ambitious Swiss scientist named Friedrich Miescher works

in a cold, stony laboratory in a castle high above Tübingen, with no less of a goal than

to unravel the cellular foundations of life. He conducts a series of chemical experiments to

split leucocytes from the pus in surgical bandages into proteins, which he thinks are key to

understanding how cells work. Yet, during these tests, a curious side effect catches Miescher’s

attention. A white substance consistently precipitates from the solution when adding acid and

dissolves again when adding alkali. Who could have guessed at that time, that this seemingly

inconspicuous process was the first isolation of deoxyribonucleic acid, or DNA, which would

later shape our understanding of life like few other discoveries. Miescher called the substance

nuclein, as it came from the nucleus of cells (Miescher, 1871). However, his finding received

little attention and certainly was not connected to matters of heredity until half a century after

his death (Dahm, 2005). While it took humanity 200,000 years to isolate the centerpiece of

biological information, and a further 80 years to recognize that DNA actually carries genetic

information (Avery et al., 1944; Hershey and Chase, 1952), and to figure out that it’s a double

helix (Franklin and Gosling, 1953; Watson and Crick, 1953), the following decades saw an

unparalleled scientific progress in the field of genetics. These efforts culminated in the largest

collaborative biological project ever conducted, which started out in 1990 to sequence the first

human genome. After eleven years of work from thousands of people, the complete human

genome sequence was eventually published (Venter et al., 2001) at an overall cost of around

2.7 billion dollars.

Of course, there is no such thing as the human genome. Every human genome is different

– although to only around 0.1% (Altshuler et al., 2012) – and this variation among genes is

the key to understanding traits and evolution. Consequently, the rise of genetics was not just

confined to single genomes or humans. In the 1960s, the first two studies appeared which

described genetic variation at multiple loci in both humans and natural populations of the fruit

fly Drosophila melanogaster (Harris, 1966; Lewontin and Hubby, 1966); the birth of empiri-

cal population genetics. Starting with studies using allozymes that simply quantified genetic

variation, rapidly advancing sequencing technologies soon made it possible to sequence mito-

chondrial DNA (mtDNA) by the end of the 1970s, followed by microsatellites in the 1990s

and single nucleotide polymorphisms (SNPs) in the 2000s (Allendorf, 2017). With these new

1Heading inspired by Bill Bryson’s chapter on DNA in ‘A short history of nearly everything’
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Introducধon

molecular markers, completely novel questions opened up in the fields of ecological and evo-

lutionary genetics. In the 1960s it was merely possible to quantify genetic variation. Then, the

analysis of mtDNA enabled the characterization of sex-specific gene flow and phylogeography

whilst microsatellites made it possible to measure population structure, genetic relatedness and

effective population sizes. Now, with access to tens to hundreds of thousands of SNPs scattered

across the genome, modern population genomics is able to detect loci under selection, estimate

historical demography, precisely estimate inbreeding and much more (Allendorf, 2017; Kardos

et al., 2015; Lukic and Hey, 2012; Nielsen et al., 2007).

With these possibilities, modern population genetics has become a field with close ties to

many other disciplines, such as microbial biology, chemical ecology and population biology,

but also statistics and bioinformatics. More than merely a mathematical framework, population

genetics provides the building blocks for modern ecological and evolutionary science. The

studies in this dissertation reflect the opportunities emerging from the interdisciplinary and

data-driven field of population genetics but also from the fascinating ecological and evolutionary

questions surrounding the diverse group of pinnipeds as a study system.

Causes of geneধc diversity

A short history

The degree of genetic polymorphism varies between species but also between individuals and

even within genomes. We know now that understanding the causes of genetic variation is key

to understanding evolution. However, before genetic polymorphism could be measured, it was

entirely unclear to which degree species vary. For the ancient Greek philosophers, all variation

among material bodies was only an imperfection around the ideal form (Ellegren and Galtier,

2016), rather than a functional adaptation. The first scientist who really challenged this view

was probably Charles Darwin, who recognized that variation was an essential feature of natural

systems (Darwin, 1859), rather than a deviation from the ideal. The genetic component was

introduced by Gregor Mendel during his famous pea plant experiments. This was a major step

in evolutionary genetics and biology as a whole, as it allowed him to formulate expectations for

the variation among the offspring of peas (Mendel, 1886). Later on, the theory of population

genetics emerged based on the work of Ronald A. Fisher, John B.S. Haldane and Sewall Wright,

which, together with Darwin’s and Mendel’s theories, led to the modern evolutionary synthesis.

Genetic diversity was now understood to emerge due to gradual changes in gene frequencies.

However, as genetics could not be directly measured yet, it was still entirely unclear how much
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variation there actually is.

The first theories on this question were contrasted by Theodosius Dobzhansky as the

‘classical’ and the ‘balance’ theory (Dobzhansky, 1957). The classical theory argued that most

individuals are homozygous for an ‘optimal’ wild-type gene. Then, when new mutations

occur, natural selection would either quickly select against deleterious alleles or quickly favor

advantageous alleles, leading to their fixation. According to this theory, genetic diversity in

populations would be very low. By contrast, the balance theory suggested that most loci

are heterozygous and contain many alleles. Selection then maintains these high levels of

diversity through a form of balancing selection, such as over-dominance or frequency dependent

selection. Consequently, the balance theory predicted much higher levels of genetic variation

within and among natural populations than the classical theory.

When the first technology for quantifying genetic diversity was invented in the 1960s, the

high degree of variation quickly became evident. Although initially this could have been seen

as support for the balance theory, a new idea emerged and changed the field drastically. Motoo

Kimura formulated the neutral theory of molecular evolution, which stated that most alleles

were actually selectively neutral (Kimura, 1983). This theory was further developed into the

nearly neutral theory by Tomoko Ohta (Ohta, 1973), which also allowed slightly deleterious

mutations to segregate in populations at frequencies inversely proportional to their population

sizes. This theory largely reflects our current view on genetic diversity (Ellegren and Galtier,

2016). We know now that substantial parts of the genome are likely to be non-functional and

hence neutral, and that diversity in such regions will reflect processes other than selection. In

particular, genetic diversity is assumed to arise as a consequence of the demographic history of

a species, which can be understood as its effective population size (Ne) over time. However, it

remains unclear how exactly demography and genetic diversity are linked (Leffler et al., 2012).

This is one of the objectives tackled in Chapter 2 of this thesis.

Demographic inference

With these questions in mind, characterizing population histories from genetic and more re-

cently genomic data has been an important theme in evolutionary biology for decades. Un-

derstanding the demography of a species is interesting in its own right, but can also be used

to answer fundamental questions ranging from exploring the determinants of genetic diver-

sity (Ellegren & Galtier, 2016) to practical efforts in conservation (Shafer et al., 2015b) or

to disentangling demographic from selective effects (Nielsen et al., 2007). The insight that

contemporary neutral diversity can be understood as the consequence of Ne in the past has
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motivated researchers to combine simulations with empirical genetic data for decades and has

led to the development of a multitude of methods for modeling past population size changes.

The key advantage of combining demographic simulations and genetic data is that it becomes

possible to infer the demographic history of a species from only a single, contemporary sam-

ple. At their core, most of these methods work with the same principle: First, the observed

genetic or genomic data is summarized by one or more summary statistics. These can range

from simple statistics such as allelic richness, allelic range, heterozygosity-excess (Cornuet and

Luikart, 1996) and M-ratio (Garza and Williamson, 2001) to more complex statistics which

summarize genome-wide data such as the site frequency spectrum (Salmona et al., 2017).

Second, genetic data is simulated under one or more demographic scenarios of interest. This

is possible as theoretical frameworks such as the coalescent theory (Kingman, 1982) allow to

explore the genetic diversity resulting from infinitely complex demographic histories and have

been implemented in a variety of software (Excoffier and Foll, 2011; Hudson, 2002). Lastly,

the observed and simulated genetic data are compared to infer the best fitting demographic

scenario and its most likely parameters. The variety of methods developed based on this idea

are now having a tremendous impact on how we understand human demography (e.g. Gravel

et al. 2011; Gronau et al. 2011; Lukic and Hey 2012)but are also starting to reveal novel insights

into the history of wild animal population (Foote et al., 2016; Pedersen et al., 2018; Peery et al.,

2012; Trucchi et al., 2014). Depending on whether smaller panels of genetic markers or large-

scale genomic data are used, two methodological frameworks have established themselves as

the prevailing ways of demographic inference: Approximate Bayesian Computation for genetic

data and site frequency spectrum-based methods for genomic data.

Demographic inference from geneধc data
- Approximate Bayesian Computaধon

Arguably, the most flexible and powerful framework for demographic inference based on

smaller panels of genetic markers (e.g. microsatellites) is Approximate Bayesian Computation

(ABC, Beaumont et al. 2002). ABC goes back to the rejection algorithm (Tavaré et al., 1997),

and the idea is as follows: First, a large number of datasets are simulated under an evolutionary

scenario, based on probability distributions (Figure 1.1A). Second, these data are then reduced

to genetic summary statistics and different simulations are accepted or rejected based on the

distance between the simulated and the observed summary statistics (Figure 1.1B, C). Third, the

sub-sample of accepted simulations can then be used to directly infer the values of the under-

lying model parameters and evaluate their uncertainties (histogram in Figure 1.1D). The power
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of ABC is only limited by the versatility of the underlying demographic simulation software,

but tools like ms (Hudson, 2002) or fastsimcoal (Excoffier and Foll, 2011) can now be used

to simulate data under very complex scenarios and are even able to incorporate recombination.

Figure 1.1: The four steps of ABC. Panel A shows simulated summary staধsধcs generated under different
values of a model parameter in a demographic model. Panel B shows the simulated summary staধsধcs
together with the value of the empirical, observed summary staধsধc S(emp). Panel C shows the rejecধon
algorithm, which accepts all simulated summary staধsধcs that are within a tolerance range (-tol, +tol)
to the empirical value. Panel D shows how the posterior distribuধon of the model parameter is inferred
based on the values of the accepted summary staধsধcs. Figure adapted from Csilléry et al. 2010

Therefore, ABC makes it possible to select the best fitting among several demographic

models and to estimate the underlying model parameters. Hence, it is not surprising that

ABC has led to major insights into the demographic histories of species ranging from humans

(Fagundes et al., 2007), chimpanzees (Wegmann and Excoffier, 2010) and Drosophila (Duchen

et al., 2013) to pinnipeds (Hoffman et al., 2011; Shafer et al., 2015a). In Chapter 2, we use ABC

for the first time in a large-scale comparative context to explore the demographic consequences

of the commercial exploitation of pinnipeds.
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Demographic inference from genomic data
- the site frequency spectrum

With the advent of next-generation sequencing technologies and more recently the large-scale

availability of affordable sequencing, novel approaches to infer demographic histories have

emerged. The main challenge with genomic data containing thousands to millions of genetic

markers is to summarize these data in a way that captures the key information which reflects

the demography or Ne of a species. A genomic summary statistic which is highly sensitive

to demographic change and hence uniquely suited to the task of demographic inference is the

site frequency spectrum (SFS), sometimes called the allele frequency spectrum (Evans et al.,

2007a; Fisher, 1931). The SFS represents the distribution of alleles by classes of frequency

(i.e. singletons, doubletons) and has been called the ‘most fundamental yet under-appreciated

aspect of genomic data’ (Salmona et al., 2017). To illustrate how the SFS represents different

demographic histories, I used coalescent-simulations to create SFS for an expanding, a stable

and a bottlenecked population (Figure 1.2). The expanding population shows an excess of

rare alleles (Frequency = 1 or 2), which is caused by a large proportion of new mutations

due to a strong population growth. The bottlenecked population, on the other hand, shows

a completely flat SFS. During the bottleneck, all rare alleles have been lost and all frequency

classes are equally abundant. Finally, the SFS of the stationary population is somewhere in the

middle of the two.

Figure 1.2: Simulated site frequency spectra for expanding, boħlenecked and staধonary populaধons.
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There are several major advantages to using the SFS for inferring demography. Its prop-

erties are well understood and can be simulated in the major population genetic frameworks,

such as the coalescent (Fu, 1995; Kingman, 1982). Demographic inferences are equally com-

putationally intensive, independent of the amount of underlying genomic data, and it has

been shown that demographic models can be inferred correctly based on a small number of

polymorphisms (Shafer et al., 2015a) and even from low-coverage data (Korneliussen et al.,

2014).

The site frequency spectrum has become the foundation of a large body of knowledge on

human historical demography (Li and Durbin, 2011; Malaspinas et al., 2016), but is increas-

ingly being used to elucidate demography, ecology and evolution of wild organisms. Recently

for example, inference based on the SFS shed light on the post ice-age expansions of the

the king penguin (Trucchi et al., 2014), historical European-African admixture in Drosophila

(Duchen et al., 2013), genome-culture co-evolution in killer-whales (Foote et al., 2016) and

the geographical origin of the plains zebra (Pedersen et al., 2018). However, all studies to

date use genomic data to infer historical or even ancient demographic histories and it is not

well understood how and whether genomic data can be used to infer contemporary demo-

graphic changes (Nunziata and Weisrock, 2018). However, drastic species declines due to

anthropogenic exploitations and habitat destruction are now occurring within only years and

decades (Ceballos et al., 2017; Li et al., 2016) and it is vital that we quantify these declines.

The question of whether genomics can help to elucidate contemporary demography will be

addressed in Chapter 3 based on the example of the iconic northern elephant seal and its drastic

decline due to the 19th century sealing industry.

Consequences of geneধc diversity

Bacterial and chemical phenotypes

The consequences of genetic variation among organisms can be non-existent in the case of

neutral variation (Kimura, 1983), maladaptive when new mutations cause deleterious protein

changes (Kryukov et al., 2007; Sunyaev et al., 2001), or adaptive when causing variation in a

phenotypic trait. When bringing together a genotype and its phenotype, it is the genotype that

is traditionally more complex whilst the phenotype is usually more straightforward to measure.

For most traits, it is unclear whether they are caused by many loci with small effects, few loci

with large effects or a mixture of both, and where in the genome the causal loci are located.

This has led to the extensive use and development of genome-wide association studies (GWAS)
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to elucidate the complex genetic basis of traits (Bush and Moore, 2012).

However, certain complex traits exist, for which it is still unclear whether they can even be

considered a trait and as such a consequence of a genotype or not. Two particular interesting

examples with the potential to greatly widen our understanding of ecology and evolution

are animal-associated chemical compounds and bacteria. During the last decade, it has been

increasingly recognized that animals live in both a chemical world (Wyatt, 2014a) and a bacterial

world (McFall-Ngai et al., 2013), and that both domains are critical to our understanding of

eco-evolutionary systems. However, the complexity of both chemical and bacterial traits has

so far prevented a good understanding of them – particularly in wild organisms – due to

technological and statistical problems. As in studies elucidating the genetic basis of traits,

measuring chemical traits and animal-associated bacterial communities will result in hundreds,

if not thousands of chemical compounds or bacterial species, of which only a proportion will

be associated with a measured trait. Disentangling the chemicals or bacteria which represent

the important variation in such complex phenotypes is the main challenge and requires new

study designs and statistical methods. In this thesis, I elucidate the genetic basis and potential

function of: (1) Skin chemical profiles (Chapter 4), which are likely an integral part of olfactory

communication in mammals and (2) gut microbiota (Chapter 5), which might be critical for

their host’s health and life-history adaptations.

Genotype, skin chemicals and olfactory communicaধon

The chemical senses are probably the oldest senses among animals, shared by all organisms and

critical for fundamental processes such as olfactory communication. Consequently, they play a

key role in important ecological processes like kin recognition and mate choice (Wyatt, 2014a).

The chemical basis of olfactory communication can now be studied using metabolomics tools

such as Gas Chromatography-Mass Spectrometry (GC-MS) which facilitate the quantification

of chemical compounds underlying olfactory signals. Despite the importance of olfactory

communication and the availability of technologies to measure its chemical basis, very little

is known about the link between chemical signals and genotypes (Hurst and Beynon, 2010).

Establishing such a connection is especially difficult in wild animals, as an individual’s mixture

of skin surface chemicals used for olfactory communication is likely a product of not just

genes but also hormones, microbes or simply the environment (Hurst and Beynon, 2010).

In Chapter 4, I dissect the potential factors shaping skin chemicals in Antarctic fur seals by

using a study design which allowed us to partially disentangle environmental from intrinsic

factors together with a novel combination of statistical methods in a system where olfactory
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communication likely plays an important role in kin recognition (Dobson and Jouventin, 2003)

and mate choice (Hoffman et al., 2007a).

Genotype and gut microbiota

During the last few decades, the development of large-scale sequencing technologies has re-

vealed a bacterial world which is fundamentally changing our understanding of animal biology.

It is clear now that we are not alone, but that any animal and virtually any living organism lives

in a strong interdependency with hordes of associated microbes (Gilbert et al., 2012). Efforts

to combine Darwinian and Mendelian principles and the modern evolutionary synthesis with

novel insights on host-microbe relationships have led to the concept of a hologenome (Bor-

denstein and Theis, 2015). The hologenome is defined as the sum of the genes of a host and

its associated microbiota, with the idea that both together can lead to variation in phenotypes.

As a consequence, the hologenome can be shaped by natural selection or experience genetic

drift, and can be seen as the new unit of selection (Bordenstein and Theis, 2015).

Arguably the most complex and functional of bacterial communities inhabit the gastroin-

testinal tract and are collectively called the ‘gut microbiota’. Gut microbiota are key to their

hosts’ development, dietary function and immune system (Cheesman et al., 2011; Diaz Heijtz

et al., 2011; Lathrop et al., 2011; Zhu et al., 2011) and when disturbed, can lead to severe

health problems for the host (Candon et al., 2015; Cho et al., 2012; Macpherson and Harris,

2004; Russell et al., 2012). The gut microbiota are thus a highly interesting candidate to elu-

cidate host-microbe interactions and explore the implications of the hologenome. However,

a fundamental link in the chain of argumentation is still largely unexplored; most bacteria are

not inherited directly, and the mammalian gut is thought to be largely sterile before birth

(Perez-Muñoz et al., 2017). Most of the gut microbiota will hence only colonise the gut after

an individual is born. Therefore, for a hologenome theory to make sense, there must be an

association between the host genotype and its microbiota. Put another way, certain bacteria

should preferably colonise individuals with a certain genotype.

Most insights on how host genetics shape microbiota to date come from studies in humans

and captive mice (Kurilshikov et al., 2017). However, we cannot learn a great deal about the

ecological and evolutionary function of microbiota from these studies, as human microbiota are

drastically altered by different life-styles (David et al., 2014a) and captive animals have very dif-

ferent gut microbial communities compared to their wild relatives (Hird, 2017). Consequently,

we need studies in wild animals which provide insights into the early bacterial colonization

of the gut and explore associations with host genetics, but these are rare. One such study is
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presented in Chapter 5, where I investigate the relationship between Northern elephant seals

and their gut microbiota in a diet-controlled and longitudinal study during a critical phase in

their early development. Within this study design, I explore the intrinsic factors shaping gut

microbiota, such as development, genotype and sex.

Inbreeding depression

The most severe and immediate consequences of genetic variation result from its absence, and

this phenomenon has been extensively studied in the framework of inbreeding depression.

The detrimental consequences of inbreeding have fascinated scientists since Darwin showed

that self-fertilization greatly reduces fitness in plants (Darwin, 1876). One and a half centuries

later, we know that inbreeding depression is a ubiquitous feature in all diploid organisms.

Furthermore, evidence for its critical impacts on a broad range of traits, individual fitness and

population viability has been documented from throughout the animal and plant kingdoms

(Charlesworth, 2009; Crnokrak and Roff, 1999; Joshi et al., 2015; Keller, 2002). In the course

of the 21st century and beyond, inbreeding depression will become an ever more severe issue

in wild animal populations, which are declining at an unprecedented pace (Ceballos et al.,

2017), leading to higher and higher inbreeding rates in smaller and smaller populations. On

an individual level, the decline in fitness is a function of the proportion of the genome which is

identical by descent (IBDG) or homozygous and hence reveals the effects of deleterious reces-

sive alleles, which are considered to be the main driver of inbreeding depression (Charlesworth

and Charlesworth, 1999). In principle, IBDG can be estimated from a pedigree (Pemberton,

2004), but pedigrees are not available for most non-model organisms. Moreover, we know

now that estimating an individuals’ IBDG from a pedigree will be imprecise as recombina-

tion and Mendelian segregation during meiosis cause stretches of the genome to be inherited

together which causes the realized IBDG of an individual to differ substantially from the

pedigree expectation (Hill and Weir, 2011).

A solution to this problem is to measure IBDG directly using genetic markers. While

smaller marker panels have been used for decades to estimate inbreeding coefficients (Coltman

and Slate, 2003), next-generation sequencing now allows us to measure IBDG using many

thousands of markers resulting in estimates even more precise than pedigrees (Kardos et al.,

2015). However, a major question arises when measuring inbreeding and inbreeding depres-

sion: Are the genetic markers actually reflecting inbreeding? This is critical, as variation in

marker homozygosity could also reflect variation due to stochastic processes or adaptations. It

is therefore important to quantify whether there is variation in inbreeding in the population and
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how well homozygosity at a given panel of genetic markers reflects genome-wide homozygos-

ity or IBDG. To provide a solution to this problem, I implemented an extensive theoretical

framework around inbreeding and inbreeding depression (Szulkin et al., 2010) in the inbreedR

package, which is described in detail in Chapter 7.

Study system: Pinnipeds

An outstanding opportunity to study the demographic origins of genetic diversity as well

as the intricate details of chemical communication, host-microbe interactions and inbreeding

depression is provided by the pinnipeds (Figure 1.3), a monophyletic and highly diverse group

of marine mammals comprising the three families Phocidae (true seals), Otariidae (eared seals)

and Odobenidae (the walrus).

Pinnipeds inhabit nearly every marine environment across the globe, from the icy shores

of the Antarctic to the rocky caves of the Mediterranean. Naturally, these habitats have led

to dramatic differences in their ecological and life-history adaptations (Ferguson and Higdon,

2006). The pinnipeds show drastic differences in body sizes, from only around one meter

in Baikal seals (Pusa sibirica) to sometimes over five meters in adult Southern elephant seal

bulls (Mirounga leonina), which translates into a 40 times difference in weight (Wilson and

Mittermeier, 2014). These enormous size differences are linked to a large variation in mating

systems which range from slightly polygynous in most phocids to some of the most polygynous

mating systems we know in most otariids, the walrus and the two elephant seal species (Cassini,

1999). In these polygynous systems, males guard harems of dozens of females to mate with

during the breeding season (see Figure 1.4) (Lindenfors et al., 2002). Both size differences

and mating systems are intertwined with a third trait upon which pinnipeds vary strongly, their

sexual size dimorphism (see Figure 1.4). While in many phocids, males and females are equally

large and heavy, in some otariids and the elephant seals, males can be up to four to six times

heavier than females. These are some of the most extreme examples of sexual dimorphism

among all vertebrates and have likely evolved due to both sexual selection and ecology (Krüger

et al., 2014).

What all pinnipeds have in common is their fur and a thick layer of blubber, which are

critical for their aquatic lifestyles but which also exposed them to severe commercial exploitation

during the 18th and 19th century (Wilson and Mittermeier, 2014). While seal fur was in high

demand for clothing, seal blubber was processed into oils which were an important component

of lighting and cosmetics at that time (Wilson and Mittermeier, 2014). This has led to the drastic

decline of many species as a consequence of over-exploitation, ultimately leading the extinction
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Figure 1.3: Cladogram based on a phylogeny from the 10K trees project. Shown is the phylogeneধc rela-
ধonship between the extant pinniped species and their families. Abbreviaধons: FS for fur seal and SL for
sea lion. Illustraধons depict (from leđ boħom to right boħom) the Crabeater seal, Northern elephant seal,
Hawaiian monk seal, Mediterranean monk seal, Galapagos fur seal, Guadalupe fur seal, Antarcধc fur seal,
South American sea lion, California sea lion, Walrus, Grey seal, Ringed seal, Harbour seal. Illustraধons
kindly provided by Rebecca Carter for use in this thesis.

of two species, the Japanese sea lion and the Caribbean monk seal. Most extant species

however, managed to recover with the introduction of international sealing bans (Wilson and

Mittermeier, 2014) and are now thought to have recolonized much of their former ranges

from small remaining colonies (e.g. Humble et al. 2018). Nevertheless, some pinniped species

are on the decline again (Atkinson et al., 2008; Forcada and Hoffman, 2014; Robertson and

Chilvers, 2011) or are still endangered due to intensive anthropogenic disturbances and limited

habitats such as the Mediterranean monk seal (Karamanlidis et al., 2016) and the Hawaiian

monk seal (Baker and Johanos, 2004).
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Figure 1.4: Sexual weight dimorphism (male weight / female weight) and average harem sizes of pin-
nipeds. A correlaধon between both is reflecধng an increase in size and size dimorphism due to the poten-
ধal of some species to monopolize large harems of females and increasing male-male compeধধon. Data
from Lindenfors et al. (2002).

The extent to which pinniped species were affected by the sealing industry differed dras-

tically, with some species such as the Northern elephant seal having been decimated to near

extinction and others having never been hunted at all, such as the crabeater seal in the Antarc-

tic. As consequence, there is an extreme level of variation in the recent demographic histories

of pinnipeds, which provides an unprecedented opportunity to evaluate the power of genetic

demographic inference using techniques such as ABC, but also to explore recent demography

as a determinant of genetic diversity in contemporary populations (Leffler et al., 2012). In

Chapter 2, I explore the demographic histories of most extant pinniped species in a large com-

parative genetic framework to evaluate the genetic consequences of commercial exploitation

and the role of both ecology and life-history.

A major life-history difference between the three families are differences in maternal care

strategies. While in all pinnipeds the mother alone cares for her pup, the maternal care strate-

gies vary drastically and can typically be categorized into ‘aquatic nursing’, ‘foraging cycle’ and

‘fasting’ strategies (Boness and Bowen, 1996). The foraging cycle strategy is reminiscent of

that found in mammals and birds where the mother leaves her young to forage. Otariids such
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as the Antarctic fur seal go through a cycle where mothers come ashore, give birth and then

alternate between foraging at sea and nursing their young ashore. As Antarctic fur seal colonies

are large and dense aggregations of individuals, well-developed mother-offspring recognition

mechanisms have developed, which involve a three step mechanism using knowledge of the

location, vocal distance cues and olfactory close-range recognition (Dobson and Jouventin,

2003). Consequently, it is likely that skin chemicals provide an important means of commu-

nication between mothers and pups in fur seals. Moreover, olfactory cues can also explain

mate choice for genetic characteristics in this species (Hoffman et al., 2007a). In Chapter

4, I explore these possibilities through identifying the potential signals in skin chemicals of

Antarctic fur seals.

A very different maternal care strategy is followed by most phocids, where mothers and

pups stay together during nursing, forcing the mother to fast for up to a month in species such

as the Northern elephant seal. After this nursing period, the mother abandons her offspring,

and the newly weaned young stay ashore for up to two months to develop physiologically

and behaviorally until they depart to the sea themselves. In Chapter 5, we used this strategy

as an opportunity to explore the development of gut microbiota in young Northern elephant

seals. We identified newly abandoned pups and used the critical time after weaning as a

unique opportunity to study the intestinal microbiota of young elephant seals, which do not

yet feed by themselves during this time. The maternal care strategy in the elephant seal hence

provides a chance to study gut microbiota in a wild animal while largely controlling for major

confounding factors such as differences in diet, which is a key part of the study in Chapter 5.

Looking for tagged individuals in a dense group of Northern elephant seal weaners on the San Benitos Archipelago, Mexico.
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Objecধves of the thesis

The broader aims of the thesis are threefold. First of all, I use genetic and genomic data to shed

light on the demographic causes of genetic diversity across pinnipeds, with a special emphasis

on recent demographic declines caused by commercial seal hunting and more historical post-

glacial expansions. Second, I elucidate some of the intricate mechanisms by which genotypic

variation underpins variation in complex chemical and microbial phenotypes using both the

Antarctic fur seal and the Northern elephant seal as study species. Third and lastly, I present

three R packages, which were developed during this dissertation and will hopefully facilitate

both scientific progress and reproducibility. More specifically, the objectives of the chapters are

as follows:

Chapter 2 - Demography and geneধc diversity in pinnipeds
This chapter describes a large-scale comparative genetic study involving more 11,000 individuals

from 30 pinniped species. The goal of the study was to estimate the extent to which over-

exploitation by the 19th century sealing industry caused genetic bottlenecks across pinnipeds.

Moreover, we explore the potentially mediating effects of life-history variation such as mating

system, and ecological variation such as breeding habitat. This is probably the first study to

estimate the recent demography across a whole group of species, which made it possible to

gain novel insights into how severely population declines impact genetic diversity.

Chapter 3 - Genomics and the demographic history of the Northern elephant seal
This chapter explores the demographic history of the Northern elephant seal using a newly

sequenced genome and restriction-site associated DNA (RAD) sequencing data from 80 in-

dividuals. The Northern elephant seal was presumably hunted to near extinction, but neither

the strength nor the duration of the bottleneck have ever been estimated using genomic data.

Going further back in the species’ history, we also use genomic inference based on the site

frequency spectrum to provide a glimpse into the unknown, pre-sealing demography of the

species.

Chapter 4 - Chemical communicaধon and geneধcs
This chapter aims to shed light on the chemical basis of olfactory communication in Antarctic

fur seals. In particular, we use GC-MS and microsatellite genotyping to elucidate whether skin

chemicals encode potential information for olfactory mother-offspring recognition and mate

choice by linking chemical with genotype data. Using different statistical approaches, we further
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explore in detail which specific compounds might be involved in chemical communication in

fur seals.

Chapter 5 - Chemical communicaধon and geneধcs
This chapter presents a longitudinal investigation of gut microbiota in Northern elephant seal

pups. The study took place immediately after weaning where we started quantifying gut

microbiota across a critical developmental period of up to two months. As pups do not yet

feed by themselves during this period, the study naturally controlled for the impacts of diet

on the gut microbiota and allowed us to explore the more subtle and intrinsic factors shaping

early microbial communities, such as genotype and sex.

Chapter 6 - GCalignR: Alignment of Gas-Chromatrography data.
This chapter describes GCalignR, an R package for aligning highly variable Gas-Chromatrography

(GC) data obtained in ecological and evolutionary studies. The package aims at streamlin-

ing and automating the alignment process, therefore avoiding manual biases and making the

process transparent and reproducible. It emerged from a simpler version of the algorithm

developed to align Antarctic fur seal GC profiles in Chapter 4.

Chapter 7 – inbreedR: Measuring inbreeding with geneধc markers
This chapter describes inbreedR, an R package for investigating inbreeding using genetic and

genomic markers. The package provides functions to measure variation in inbreeding, to

plan inbreeding studies in terms of marker number and sample size using simulations, and

to evaluate the power of different sets of microsatellite or SNP markers to estimate genome-

wide inbreeding based on an established theoretical framework. Within this dissertation, it was

used to quantify variation in inbreeding in Chapter 4 and 2 and will build the foundation for

upcoming genomics projects on inbreeding depression in Northern elephant seals and Antarctic

fur seals.

Chapter 8 – rptR: Repeatability esধmaধon for Gaussian and non-Gaussian data
This chapter presents rptR, an R package for calculating intra-class coefficients or repeatabilities

in a mixed model framework. Notably, the package allows one to calculate the repeatability of a

trait or measurement while controlling for other variables (adjusted repeatability) for Gaussian,

Binomial and Poisson data. Moreover, it implements parametric bootstrapping and permu-

tation tests for quantifying confidence intervals and determining the statistical significance of
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repeatability estimates. The package was used to compare the repeatability of genetic diver-

sity and bottleneck measurements across different datasets in Chapter 2 and to quantify the

repeatability of microbial diversity in Chapter 5.

A note on scienধfic sođware development, reproducible research and
science.

Modern science has problems. While most scientific findings might even be false (Ioannidis,

2005), there is certainly a problem in the replicability of research. Although systematic problems

relating to replicability were initially revealed in psychology (Aarts et al., 2015) and cancer

biology (Begley and Ellis, 2012), these issues are likely to be commonplace in all empirical

sciences (Baker, 2016). The replicability of scientific findings using independent investigators

and methods is the standard by which all science should be evaluated but can be hindered

by various aspects of the implementation of a study. These aspects start with the researchers’

degrees of freedom in planning and running a study (Wicherts et al., 2016) to issues with the

statistical analyses, in particular p-hacking (Benjamin et al., 2018; Halsey et al., 2015; McShane

et al., 2017; Peng, 2015). One of the most critical points however, is that the analytical pipeline

from raw data to published results is not reproducible, due to a lack of open data and/or

documented code (Peng, 2011).

Overall, reproducibility critically relies on code-based analyses instead of point and click

software and on frameworks which are widely used and provide all relevant analytical methods

in a field. The R language (R Core Team, 2015) provides such a framework. Virtually all

established methods in biology are available as R packages from the two major repositories

CRAN and Bioconductor (Gentleman et al., 2004). Furthermore, R provides all relevant

tools for reproducible research, starting from dplyr for data wrangling (Wickham et al., 2014),

to ggplot2 for visualization (Wickham, 2009) and knitr for documenting code (Xie, 2014).

Importantly, R provides the tools for developing scientific packages in order to make new

methods readily available to the community (Wickham et al., 2013). The studies in this thesis

are accompanied by both complete and documented analytical pipelines (available at https:
//github.com/mastoffel) which generally focus on effect size and confidence interval

based statistical reporting (Nakagawa and Cuthill, 2007). Moreover, the three scientific R

packages presented in the Chapters 6, 7 and 8 were developed with the idea to fill substantial

gaps in the availability of scientific methods and are hopefully of use for the scientific community.
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Only a very small number of Guadalupe fur seals survived commercial exploitation on the remote Guadalupe island. It took

nearly a hundred years until the species started to expand its breeding grounds to the San Benitos Islands again.
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Abstract

A central paradigm in conservation biology is that population bottlenecks reduce genetic di-

versity and negatively impact population viability and adaptive potential. In an era of un-

precedented biodiversity loss and climate change, understanding both the determinants and

consequences of bottlenecks in wild populations is therefore an increasingly important chal-

lenge. However, as most studies have focused on single species, the multitude of potential

drivers and the consequences of bottlenecks remain elusive. Here, we used a comparative

approach by integrating microsatellite data from over 11,000 individuals of 30 pinniped species

with demographic, ecological and life history data to elucidate the consequences of large-scale

commercial exploitation by 18th and 19th century sealers. We show that around one third of

these species exhibit strong genetic signatures of recent population declines, with estimated

bottleneck effective population sizes reflecting just a few tens of surviving individuals in the

most extreme cases. Bottleneck strength was strongly associated with both breeding habitat and

mating system variation, and together with global abundance explained a large proportion of

the variation in genetic diversity across species. Overall, there was no relationship between bot-

tleneck intensity and IUCN status, although three of the four most heavily bottlenecked species

are currently endangered. Our study reveals an unforeseen interplay between anthropogenic

exploitation, ecology, life history and demographic declines, sheds new light on the determi-

nants of genetic diversity, and is consistent with the notion that both genetic and demographic

factors influence population viability.

Introducধon

Unravelling the demographic histories of species is a fundamental goal of population biol-

ogy and has tremendous implications for understanding the genetic variability observed today

(Salmona et al., 2017; Ellegren and Galtier, 2016). Of particular interest are sharp reductions

in the effective population size (Ne) known as population bottlenecks (Nei et al., 1975; Tajima,

1989), which may negatively impact the viability and adaptive evolutionary potential of species

through a variety of stochastic demographic processes and the loss of genetic diversity (Lande,

1988; Frankham et al., 1999; Spielman et al., 2004; Frankham, 2005). Specifically, small bottle-

necked populations have elevated levels of inbreeding and genetic drift, which decrease genetic

variability and can lead to the fixation of mildly deleterious alleles and ultimately drive a vortex

of extinction (Frankham et al., 1999; Frankham, 2005; Mills and Smouse, 1994; Lande, 1994).

Hence, investigating the bottleneck histories of wild populations and their determinants and
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consequences is more critical than ever before, as we live in an era where global anthropogenic

alteration and destruction of natural habitats are driving species declines on an unprecedented

scale (Li et al., 2016; Ceballos et al., 2017).

Unfortunately, detailed information about past population declines across species is sparse

because historical population size estimates are often either non-existent or highly uncertain

(Wilson and Mittermeier, 2014; Lotze and Worm, 2009). A versatile solution for inferring

population bottlenecks from a single sample of individuals is to compare levels of observed

and expected genetic diversity, the latter of which can be simulated under virtually any de-

mographic scenario based on the coalescent (Kingman, 1982; Hudson, 2002). A variety of

approaches based on this principle have been developed, one of the most widely used being

the heterozygosity-excess test, which compares the heterozygosity of a panel of neutral genetic

markers to the expectation in a stable population under mutation-drift equilibrium (Cornuet

and Luikart, 1996). Although theoretically well grounded, these methods are highly sensitive

to the assumed mutation model, which is seldom known (Peery et al., 2012). A more sophisti-

cated framework for inferring demographic histories is coalescent-based Approximate Bayesian

Computation (ABC) (Beaumont et al., 2002). ABC has the compelling advantages of making

it possible to (i) compare virtually any demographic scenario as long as it can be simulated, (ii)

estimate key parameters of the model such as the bottleneck effective population size and (iii)

incorporate uncertainty in the specification of models by defining priors. Due to this flexibility,

ABC has become a state of the art approach for inferring population bottlenecks as well as

demographic histories in general (Beaumont et al., 2002; Csilléry et al., 2010; Wegmann and

Excoffier, 2010; Hoffman et al., 2011; Shafer et al., 2015a; Csilléry et al., 2012; Chan et al.,

2006; Xue and Hickerson, 2015; Duchen et al., 2013; Chan et al., 2014).

Although the widespread availability of neutral molecular markers such as microsatellites

has facilitated numerous genetic studies of bottlenecks in wild populations, the vast majority

of studies focused exclusively on single species and were confined to testing for the presence

or absence of bottlenecks. We therefore know very little about the intensity of demographic

declines and how these are influenced by anthropogenic impacts as well as by factors intrinsic

to a given species. For example, species occupying breeding habitats that are more accessible

to humans would be expected to be at higher risk of declines, while species with highly

skewed mating systems tend to have lower effective population sizes (Charlesworth, 2009)

and might also experience stronger demographic declines as only a fraction of individuals

contribute towards the genetic makeup of subsequent generations. Consequently, to disentangle

the forces shaping population bottlenecks, we need comparative studies incorporating genetic,

ecological and life history data from multiple closely related species within a consistent analytical
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framework.

Another question that remains elusive due to a lack of comparative studies is to what extent

recent bottlenecks have impacted the genetic diversity of wild populations. While a number of

influential studies of heavily bottlenecked species have indeed found very low levels of genetic

variability (Houlden et al., 1996; Hoelzel et al., 2002; Pinsky and Palumbi, 2014; O’Brien, 1994)

others have reported unexpectedly high genetic variation after supposedly strong population

declines (Hoffman et al., 2011; Hailer et al., 2006; Dinerstein and McCracken, 1990; Busch

et al., 2007; Roman and Palumbi, 2003). Hence, it is not yet clear how population size changes

contribute towards one of the most fundamental questions in evolutionary genetics - how and

why genetic diversity varies across species (Lewontin, 1974; Ellegren and Galtier, 2016; Leffler

et al., 2012; Romiguier et al., 2014). To tackle this question, we need to compare closely

related species because deeply divergent taxa vary so profoundly in their genetic diversity due

to differences in their life-history strategies that any effects caused by variation in Ne will be

hard to detect and decipher (Leffler et al., 2012; Romiguier et al., 2014).

Finally, the relative contributions of genetic diversity and demographic factors towards

extinction risk remain unclear. While historically there has been a debate about the immediate

importance of genetic factors towards species viability (Lande, 1988; Spielman et al., 2004)

there is now growing evidence that low genetic diversity increases extinction risk (Frankham,

2005; Saccheri et al., 1998) and on a broader scale that threatened species tend to show reduced

diversity (Spielman et al., 2004). Nevertheless, due to a lack of studies measuring bottlenecks

consistently across species, it remains an open question as to how the loss of genetic diversity

caused by demographic declines ultimately translates into a species extinction risk, which can

be assessed by its International Union for Conservation of Nature (IUCN) status.

An outstanding opportunity to address these questions is provided by the pinnipeds, a

clade of marine carnivores inhabiting nearly all marine environments ranging from the poles

to the tropics and showing remarkable variation in their ecological and life-history adaptations

(Ferguson and Higdon, 2006). Pinnipeds include some of the most extreme examples of

commercial exploitation known to man, with several species including the northern elephant

seal having been driven to the brink of extinction for their fur and blubber by 18th to early

20th century sealers (Wilson and Mittermeier, 2014). By contrast, other pinniped species

inhabiting pristine environments such as Antarctica have probably had very little contact with

humans (Wilson and Mittermeier, 2014). Hence, pinnipeds show large differences in their

demographic histories within the highly constrained time window of commercial sealing and

thereby represent a unique ‘natural experiment’ for exploring the causes and consequences of

recent bottlenecks.
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Here, we conducted a broad-scale comparative analysis of population bottlenecks us-

ing a combination of genetic, ecological and life-history data for (Charlesworth, 2009) pin-

niped species. We inferred the strength of historical declines across species from the genetic

data using two complimentary coalescent-based approaches, heterozygosity-excess and ABC.

Heterozygosity-excess was used as a measure of the relative strength of recent population de-

clines, while a consistent ABC framework was used to evaluate the probability of each species

having experienced a severe bottleneck during the known timeframe of commercial exploita-

tion, as well as to estimate relevant model parameters. Finally, we used Bayesian phylogenetic

mixed models to investigate the potential causes and consequences of past bottlenecks while

controlling for phylogenetic relatedness among species. We hypothesised that (i) extreme vari-

ation in the extent to which species were exploited by man should be reflected in their genetic

bottleneck signatures; (ii) ecological and life-history traits could have an impact on the strength

of bottleneck signatures across species; (iii) past bottlenecks should reduce contemporary ge-

netic diversity; and (iv) heavily bottlenecked species with reduced genetic diversity will be more

likely to be of conservation concern.

Results

Geneধc data.

We analysed a combination of published and newly generated microsatellite data from 30

pinniped species, with a median of 253 individuals and 14 loci per species (see Methods and

Supplementary Table 1 for details). Measures of genetic diversity, standardised across datasets

as the average per ten individuals, varied considerably across the pinniped phylogeny, with

observed heterozygosity (Ho) and allelic richness (Ar) varying by over two and almost five-

fold respectively across species (Supplementary Table 2). Both of these measures were highly

correlated (r = 0.92) and tended to be higher in ice breeding seals, intermediate in fur seals

and sea lions, and substantially lower in a handful of species including northern elephant seals

and monk seals (Figure 2.1A).

Boħleneck inference.

We used two different coalescent-based approaches to infer the extent of recent population

bottlenecks. First, the amount of heterozygosity-excess at selectively neutral loci such as mi-

crosatellites is an indicator of recent bottlenecks because during a population decline the number
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of alleles decreases faster than heterozygosity (Nei et al., 1975). Recent bottlenecks therefore

generate a transient excess of heterozygosity relative to a population at equilibrium with an

equivalent number of alleles (Cornuet and Luikart, 1996). Here, we quantified the proportion

of loci in heterozygosity-excess (prophet−exc) for each species, which was highly repeatable

across a range of mutation models (see Methods and Supplementary Table 3). Consequently,

we focused on a two-phase model with 80% single-step mutations (TPM80), which is broadly

in line with mammalian mutation model estimates from the literature (Ellegren, 2004) as well

as posterior estimates from our ABC analysis (Supplementary Table 4B, Supplementary Figure

5). Figure 2.1B shows a heatmap of prophet−exc across species, which is bounded between

zero (all loci show heterozygosity-deficiency, an indicator of recent expansion) and one (all

loci show heterozygosity-excess, an indicator of recent decline) whereby 0.5 is the expectation

for a stable population. Considerable heterogeneity was found across species, with northern

and southern elephant seals, grey seals, Guadalupe fur seals and Antarctic fur seals show-

ing the strongest bottlenecks signals. By contrast, the majority of ice-breeding seals exhibited

heterozygosity-deficiency, consistent with historical population expansions.

Second, we used ABC to select between a bottleneck and a non-bottleneck model as

well as to estimate posterior distributions of relevant parameters. To optimally capture recent

population size changes across species, we allowed Ne to vary from pre- to post-bottleneck in

both models within realistic priors (see Methods for details) while the bottleneck model also

included a severe decrease in Ne to below 500 during the time of peak sealing. Therefore, both

models incorporate longer-term declines or expansions within realistic bounds for all species

but only the bottleneck model captures a recent and severe decrease in Ne due to anthropogenic

exploitation. ABC was clearly able to distinguish between the two models, with simulations

under the bottleneck model being correctly classified 85% of the time and simulations under

the non-bottleneck model being correctly classified 89% of the time (Supplementary Figure 1).

A small amount of overlap between the models and therefore misclassification is unavoidable

because both models were specified using broad priors to optimally fit a variety of species with

vastly different population sizes. For each species, however, the preferred model showed a good

fit to the observed data (all p-values > 0.05, Supplementary Table 5) (Lemaire et al., 2016). As

another indicator of model quality, posterior predictive checks (Csilléry et al., 2010; Gelman

et al., 1995) showed that the preferred models across all species were largely able to reproduce

the relevant observed summary statistics (Supplementary Figure 2). The posterior bottleneck

model probability (pbot) varied substantially across species and was strongly but imperfectly

correlated with prophet−exc (posterior median and 95% credible intervals; β = 0.17 [0.04,

0.28], R2
marginal = 0.32 [0.03, 0.59], see Supplementary Figure 3). For eleven species, the
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bottleneck model was supported with a higher probability than the non-bottleneck model (i.e.

pbot > 0.5, see Supplementary Table 3). Subsequent parameter estimation was therefore based

on the bottleneck model for eleven species and on the non-bottleneck model for the other 19

species.

Under the bottleneck model, prediction errors from the cross-validation were well below

one for the bottleneck effective population size (Nebot, Supplementary Table 4A and Supple-

mentary Figure 4) and mutation rate (µ, Supplementary Table 4A) indicating that posterior

estimates contain information about the underlying true parameter values. Similarly, under the

non-bottleneck model, µ (Supplementary Table 4B) and the parameter describing the pro-

portion of multi-step mutations (GSMpar, Supplementary Table 4B) were informative. By

contrast, although the pre-bottleneck effective population size (Nehist) also had a prediction

error below one in both models, visual inspection of the cross-validation results revealed high

variation in the estimates and a systematic underestimation of larger Nehist values, so this

parameter was not considered further. Figure 2.2 shows the eleven bottlenecked species ranked

in descending order of estimated posterior modal Nebot (see also Supplementary Table 4A).

The parameter estimates were indicative of strong bottlenecks (i.e. 200 < Nebot < 500) in

seven species including both phocids and otariids, while even smaller Nebot values (i.e. Nebot

< 50) were estimated for four phocids comprising the landlocked Saimaa ringed seal, both

monk seal species and the northern elephant seal. Mutation rate estimates were remarkably

consistent across species, with modes of the posterior distributions typically varying around 1

x 10-4 (Supplementary Figure 5 and Supplementary Table 4), while GSMpar across species

typically varied between around 0.2 and 0.3 (See Supplementary Figure 6 and Supplementary

Table 4B). Therefore, although studies of individual species are usually limited by uncertainty

over the underlying mutation characteristics, our ABC analyses converged on similar estimates

of mutation model and rate across species, allowing us to appropriately parameterise our bot-

tleneck analyses.

To explore whether our results could be affected by population structure, we used STRUC-

TURE (Pritchard et al., 2000) to infer the most likely number of genetic clusters (K) across all

datasets (see Supplementary Table 6). For all of the species for which the best supported value

of K was more than one (n = 12), we recalculated genetic summary statistics and repeated the

bottleneck analyses based on individuals comprising the largest cluster. Using the largest ge-

netic clusters did not appreciably affect our results, with repeatabilities for the genetic summary

statistics and bottleneck signatures all being greater than 0.9 (see Supplementary Table 7 for

repeatabilities and Supplementary Figure 7, which is virtually identical to Figure 2.1.

Furthermore, we tested all loci from each dataset for deviations from Hardy-Weinberg
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Figure 2.1: Paħerns of geneধc diversity and boħleneck signatures across the pinnipeds. The phylogeny shows 30 species with branches colour
coded according to breeding habitat and ধp points coloured and sized according to their IUCN status and global abundance respecধvely. Panel
A shows two geneধc diversity measures, allelic richness (Ar ) and observed heterozygosity (Ho), which have been standardised by randomly sub-
sampling ten individuals from each dataset 1000 ধmes with replacement and calculaধng the corresponding mean. Panel B shows the proporধon
of loci in heterozygosity-excess (prophet−exc) calculated for the TPM80 model (see Methods for details). Panel C summarises the ABC model
selecধon results, with posterior probabiliধes corresponding to the boħleneck versus non-boħleneck model. The raw data are provided in Supple-
mentary Tables 2 and 3.



Comparaধve demography

equilibrium (HWE, see the Methods for details). Overall, 6% of loci were found to deviate

from HWE in both χ2 and exact tests after table-wide Bonferroni correction for multiple testing.

To investigate whether including these loci could have affected our results, we recalculated the

genetic summary statistics and repeated our bottleneck analyses after excluding them. The results

remained largely unaltered, with repeatabilities all being greater than 0.97 (see Supplementary

Table 8 and Supplementary Figure 8).

Finally, we considered the possibility that our inference of recent bottlenecks could have been

confounded by events further back in a species’ history. In particular, increased ice cover during

the last glacial maximum (LGM) could have reduced habitat availability and consequently

population sizes (Coyer et al., 2003; Burbrink et al., 2008; Liu et al., 2006; Burbrink et al.,

2016; Gehara et al., 2017). We therefore tested whether small population sizes during the

LGM followed by expansions could result in similar genetic patterns across pinnipeds to recent

bottlenecks caused by anthropogenic exploitation (for details, see Supplementary Information).

Specifically, we used ABC to simulate two additional demographic scenarios that were identical

to the bottleneck and non-bottleneck models but which also incorporated a small population size

during the LGM and subsequent expansion. ABC was not able to reliably distinguish between

the alternative bottleneck models: correct classification rates were substantially lower at 64% for

the bottleneck model and 60% for the bottleneck model incorporating post-glacial expansion.

Similarly, the two non-bottleneck models had relatively poor classification rates (60% for the

non-bottleneck model and 66% for the non-bottleneck model incorporating expansion). These

rates are much lower than in our main analysis based on two models, indicating that ABC

cannot reliably distinguish on the basis of our data between broadly equivalent models that

do and do not include ice age effects. Regardless, all eleven of the species that supported the

bottleneck model in the main analysis again showed the highest probability for one of the two

models that incorporated a recent bottleneck (Supplementary Table 11). The fact that none of

these species supported the non-bottleneck model with post-glacial expansion indicates that the

reduction in genetic diversity produced by a recent bottleneck can be clearly distinguished from

the reduction in diversity due to a small population size at the end of the last ice age. This

is to be expected as many of our summary statistics such as the M-ratio are sensitive towards

recent population size changes (Garza and Williamson, 2001).

Factors affecধng boħleneck history.

Conceivably both ecological and life-history variables could have impacted the extent to which

commercial exploitation affected different pinniped species. We therefore investigated the effects
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Figure 2.2: Esধmated boħleneck effecধve populaধon sizes. Posterior distribuধons of Nebot are shown
for eleven species for which the boħleneck model was supported in the ABC analysis, ranked according
to the modes of their density distribuধons which reflect the esধmated most likelyNebot. Prior distribu-
ধons are not shown as Nebot was drawn from a uniform distribuধon with U[1, 500]. For each species,
parameter values for 5,000 accepted simulaধons are presented as a sinaplot, which arranges the data
points to reflect the esধmated posterior distribuধon. Superimposed are Tukey boxplots with light grey
points represenধng maximum densiধes.

of four different variables on bottleneck signatures. First, we hypothesised that breeding habitat

would be important as ice-breeding species are less accessible and more widely dispersed than

their land breeding counterparts. Second, we considered sexual size dimorphism (SSD) an

important life history variable as species with a high SSD aggregate in denser breeding colonies,

making them more valuable to hunters, and polygyny reduces effective population size. Third,

the length of the breeding season may have impacted the vulnerability of a given species to

exploitation and finally, generation time could potentially mediate population recovery. We

found clear differences between ice- and land-breeding seals in both prophet−exc and pbot,
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with land-breeders on average showing stronger bottleneck signatures (Figure 2.3A, B). In

addition, prophet−exc was positively associated with SSD but not with with pbot (Figure

2.3C) and the former relationship was robust to the exclusion of the southern elephant seal

(Supplementary Figure 9). However, we did not find the expected positive relationships with

either breeding season length or generation time (see below).

To investigate this further, we constructed two Bayesian phylogenetic mixed models with

prophet−exc and pbot as response variables respectively and breeding habitat, SSD, breeding

season length and generation time fitted as predictors (see Methods for details). Both models

explained an appreciable amount of variation (prophet−exc R2
marginal = 0.58, CI [0.22, 0.92];

pbot R2
marginal = 0.38, CI [0.08, 0.62], Figure 2.3D). As the four predictor variables show

some level of multicollinearity (Supplementary Table 9), we reported both standardised model

estimates (β) and structure coefficients (r(Ŷ , x)), which represent the correlation between each

predictor and the fitted response independent of the other predictors. Breeding habitat showed

the largest overall effect size in both models (Figure 2.3E, Supplementary Table 9). By contrast,

structure coefficients showed that breeding habitat and SSD were both strongly correlated to

the fitted response in the prophet−exc model, while SSD indeed had a much weaker effect in

the pbot model (Figure 2.3F, Supplementary Table 10). Thus, breeding habitat and SSD explain

variation in prophet−exc whereas only breeding habitat explains variation in pbot. We did not

find a relationship between breeding season length and bottleneck signatures, with R2, β and

structure coefficients all being low with broad CIs overlapping zero (Figure 2.3D, E and F).

While the structure coefficient of generation time in the prophet−exc model did not have CIs

overlapping zero, a negative relationship is contrary to expectations and probably reflects the

longer generation times of ice-breeding seals (Supplementary Figure 10) rather than a genuine

relationship.

Determinants of geneধc diversity.

To investigate the determinants of contemporary genetic diversity across pinnipeds, we con-

structed a phylogenetic mixed model of allelic richness (Ar) with log transformed global abun-

dance, breeding habitat and SSD fitted as predictor variables together with the two bottleneck

measures prophet−exc and pbot (Figure 2.4). In order to avoid over-fitting the model, we did

not include breeding season length and generation time, as these variables were not individu-

ally associated with Ar (breeding season: β = 0.01 CI [-0.03, 0.01], generation time: β = 0.00

CI [0.00, 0.01]). A substantial 75% of the total variation in Ar was explained (Figure 2.4C,

R2
marginal = 0.75, CI [0.52, 0.91]). Specifically, Ar decreased nearly five-fold from the species
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Figure 2.3: Ecological and life-history effects on boħleneck signatures. Shown are the results of phy-
logeneধc mixed models of prophet−exc and pbot with breeding habitat and SSD fiħed as fixed effects.
Panels A and B show differences between ice- and land-breeding species in prophet−exc and pbot re-
specধvely. Raw data points are shown together with standard Tukey box plots. Panel C shows the re-
laধonship between sexual size dimorphism (SSD) and prophet−exc, with individual points colour coded
according to the ABC boħleneck probability (pbot) and the line represenধng the predicted response from
the prophet−exc model. Marginal and unique R2 values, standardized β coefficients and structure coef-
ficients are shown for models of prophet−exc (filled points) and pbot (open points) in panels D–F, where
they are presented as posterior medians with 95% credible intervals. Species abbreviaধons are given in
Figure 2.1 and Supplementary Table 1.

with the lowest pbot to the species with the highest pbot (β = -1.80, CI [-3.10, -0.42] Figure

2.4A), increased by nearly five-fold from the least to the most abundant species (β = 1.38, CI

[0.21, 2.47], Figure 2.4B), and was on average 27% higher in ice than in land-breeding seals (β

= 1.76, CI [0.10, 3.14], Figure 2.4B). Due to multicollinearity among the five predictor variables

(Supplementary Table 9), standardized β estimates (Figure 2.4D) can be hard to interpret be-

cause of potential suppression effects (Ray-Mukherjee et al., 2014). This is reflected by the low

unique R2 values of the predictors relative to the marginal R2 of the full model (Figure 2.4C).

However, the structure coefficients (Figure 2.4E) also revealed strong associations between

the fitted model response and breeding habitat ((r(Ŷ , x) = 0.54, CI [0.20, 0.76]), abundance

(r(Ŷ , x) = 0.73, CI [0.54, 0.91]) and pbot (r(Ŷ , x) = -0.78, CI [-0.91, -0.62]) indicating that

32



Comparaধve demography

all three variables are associated with the response.

Figure 2.4: Determinants of contemporary geneধc diversity across pinnipeds. Panel A shows a scat-
terplot of Ar versus pbot with the with the grey line represenধng the model predicধon. Panel B shows
the relaধonship between global abundance and allelic richness (Ar) with the lines represenধng model
predicধons for ice- and land-breeding seals respecধvely. Marginal and unique R2 values, standardised β

esধmates and structure coefficients for the model are shown respecধvely in panels C–E, where they are
presented as posterior medians with 95% credible intervals. Species abbreviaধons are given in Figure 2.1
and Supplementary Table 1.

Conservaধon status, boħleneck signatures and geneধc diversity.

To investigate whether population bottlenecks and low genetic diversity are detrimental to

species viability, we asked whether contemporary conservation status is related to the strength

of past bottlenecks and Ar . Based on data from the IUCN red list (IUCN, 2018), we clas-

sified species into two categories; the first of these, which we termed ‘low concern’ comprised

species listed as ‘least concern’ and ‘near threatened ’, while the second combined species listed as

‘vulnerable’ or ‘endangered ’ into a ‘high concern’ category. Using a phylogenetic mixed model,
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we did not find any clear differences in either heterozygosity-excess or pbot with respect to

conservation status (Figure 2.5A, B). By contrast, average Ar was around 1.2 alleles lower in

the high concern category, although there was considerable uncertainty with the 95% credible

interval of β ranging from -0.08 to 2.56 (Figure 2.5C).

Figure 2.5: Conservaধon implicaধons of boħlenecks and geneধc diversity. All pinniped species were
classified into either a low concern or a high concern category depending on their current IUCN status as
described in the main text. Shown are the raw data for each category together with standard Tukey box
plots for (A) prophet−exc, (B) pbot. and (C) Ar . Marginal R2 and standardised β esধmates are shown for
Bayesian phylogeneধc mixed models with standardized predictors (see Methods for details).

Discussion

To explore the interplay between historical demography, ecological and life-history variation,

genetic diversity and conservation status, we used a comparative approach based on genetic

data from over 80% of all extant pinniped species. To model bottleneck strength, we used two

approaches that capture different but complementary facets of genetic diversity resulting from

population bottlenecks. Using ABC, we contrasted a bottleneck model incorporating a severe

decrease inNe during the time of peak sealing in the 18th and 19th centuries with a non-bottleneck

model. The resulting bottleneck measure, pbot is the probability (relative to the non-bottleneck

model) that a species’ observed genetic diversity is similar to the diversity of a population that

experienced a severe reduction in Ne below 500, and therefore provides an absolute bottleneck

measure. By contrast, heterozygosity excess (prophet−exc) theoretically captures sudden recent

reductions in Ne even in fairly large populations (Cornuet and Luikart, 1996) and therefore

provides a relative bottleneck measure. Concretely, given the average sample size of individuals
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and loci used in this study, we would expect to detect an excess of heterozygosity at the majority

of loci (i.e. prophet-exc > 0.5) when a 100- to 1000-fold reduction in Ne occurred, regardless

of the magnitude of Ne (see simulations in Cornuet and Luikart 1996).

We specifically focused on two simple ABC models reflecting only recent demographic

histories to test a clear hypothesis-large scale commercial exploitation caused severe bottlenecks

and reduced the genetic diversity of many pinnipeds. This focus on a short time-frame and

well known sealing history allowed us to clearly define our models around reasonable priors.

Furthermore, although the genetic diversity simulated based on models of recent demographic

history could in principle also be generated by more ancient bottlenecks, these are unlikely

to be detected reliably using microsatellite data when a subsequent recovery occurred (Hoban

et al., 2013).

ABC analysis supported the bottleneck model for more than a third of the species. The

strongest bottlenecks (Nebot <50) were inferred for the northern elephant seal, a textbook

example of a species that bounced back from the brink of extinction (Hoelzel, 1999), as

well as for the two monk seals and the Saimaa ringed seal, species with very small geographic

ranges and a long history of anthropogenic interaction (Wilson and Mittermeier, 2014). Slightly

weaker bottlenecks were estimated for seven further species including Antarctic and Guadalupe

fur seals, both of which share a known history of commercial exploitation for their fur (Wilson

and Mittermeier, 2014). At the other end of the continuum, several Antarctic species that

have not been commercially hunted such as crabeater and Weddell seals showed unequivocal

support for the non-bottleneck model in line with expectations. Surprisingly, several otariid

species known to have been hunted in the hundreds of thousands (e.g. South American sea

lions) to millions (e.g. northern fur seals) did not show support for a bottleneck as strong

as simulated in our analyses. This suggests that sufficiently large numbers of individuals must

have survived despite extensive sealing, possibly on inaccessible shores or remote islands (Bonin

et al., 2013).

A number of factors could potentially impact our inference of the strength of recent bottle-

necks across pinnipeds. First of all, population structure and deviations from HWE can affect

population genetic inference. However, we found that our measures of genetic diversity as well

as bottleneck signatures were highly consistent when we repeated our analyses using the largest

genetic clusters or after removing loci that were out of HWE. Second, demographic events

deeper in a species’ history could potentially confound our inference of recent bottlenecks.

However, we believe this is unlikely given the results of our supplementary analysis of post-

glacial expansion models and the fact that we chose our summary statistics including the M-ratio

to be informative about recent population size changes. Importantly, all 11 species showing
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strong signatures of recent bottlenecks in our main analysis did so regardless of whether these

bottlenecks were preceded by reduced population sizes followed by expansions towards the

end of the late Pleistocene. Moreover, for these species, models incorporating small popula-

tion sizes during the LGM did not explain the observed genetic variation better than a recent

bottleneck model. A third possibility, which will affect any demographic reconstruction from

genetic data, is that some of the genetic markers could be linked to loci under selection. In this

case, selection would have to operate in the same direction across multiple loci within species

and across species to explain our comparative patterns. However, it is not necessary to invoke

selection to explain the broad-scale patterns we found across pinnipeds.

We hypothesised that not all pinniped species were equally affected by commercial ex-

ploitation partly due to intrinsic differences relating to a species’ ecology and life-history. In

line with this, we found a strong influence of breeding habitat on bottleneck signatures, with

both prophet−exc and pbot being higher in species that breed on land relative to those breed-

ing on ice. A likely reason for this is that terrestrially breeding pinniped species were more

profitable due to their generally higher population densities and accessibility, and therefore

probably experienced more intense hunting. We also found that heterozygosity-excess was

strongly linked to sexual size dimorphism (SSD), with highly polygynous species like elephant

seals and some fur seals showing the strongest footprints of recent decline. While this could

reflect the increased ease of exploitation and thus higher commercial value of species that pre-

dictably aggregate in very large numbers to breed, species with higher SSD also have highly

skewed mating systems making them potentially more vulnerable to severe decreases in Ne

when key males are taken out of the system. By contrast, we did not find an effect of SSD

on the ABC bottleneck probability pbot, suggesting that although sexually dimorphic species

experienced the greatest declines, these were not necessarily as severe as simulated in the ABC

analysis (Ne < 500). This is probably because many species reached ‘economic extinction’ well

above this threshold, when populations became too small to sustain the sealing industry.

Although vast numbers of species are declining globally at unprecedented rates (Ceballos

et al., 2017) we still lack a clear understanding of how recent declines in Ne affect contemporary

genetic diversity in wild populations (Ellegren and Galtier, 2016; Leffler et al., 2012). Here, we

explained a large proportion of the five-fold variation in allelic richness (Ar) observed from

the most to the least diverse pinniped species. First, Ar was strongly associated with pbot but

not with prophet−exc, in agreement with the theoretical expectation that populations have to

decline to a very small Ne (Nei et al., 1975), as was simulated in our ABC analysis, to lose

a substantial proportion of their diversity. Second, we showed that global abundance across

36



Comparaধve demography

species was tightly linked to Ar despite the likely impact of bottlenecks and the limited time-

window for the recovery of genetic diversity. As differences in genetic diversity across species are

largely determined by long-term Ne (Ellegren and Galtier, 2016), this implies that contemporary

population sizes across pinnipeds must to some extent resemble patterns of historical abundance,

and hence that many bottlenecked species have to a large extent rebounded to occupy their

original niches. Third, Ar was higher in ice-breeding relative to land-breeding seals. However,

a low unique R2 of breeding habitat in our model suggests that this probably reflects the more

intense bottleneck histories of land-breeding seals rather than a true ecological effect.

Finally, we compared genetic diversity and bottleneck strength between species that are cur-

rently classified by the IUCN as being of conservation concern versus those that are not. We

found that Ar was on average around 21% lower in species within the high concern category,

consistent with previous evidence from a broad range of species (Spielman et al., 2004). While

three out of the four pinniped species with the strongest estimated bottlenecks are currently

listed as endangered, species from both categories did not overall differ in their bottleneck

signatures. Our comparative study of population bottlenecks is therefore encouraging: pop-

ulation bottlenecks do not necessarily result in reduced genetic diversity, population viability

and adaptive potential. As shown here, global bans on commercial sealing at the beginning of

the 20th century allowed many surviving pinniped populations to recover in abundance. Those

that have not sufficiently rebounded illustrate the two fundamental conservation challenges,

especially as biodiversity loss and climate change continue at unprecedented rates: halting

population declines and promoting population recovery.

Methods

Geneধc data.

We obtained microsatellite data for a total of 30 pinniped species including three subspecies

of ringed seal (summarised in Supplementary Table 1). First, we conducted systematic lit-

erature searches to identify previously published microsatellite datasets for 25 species (see

Supplementary Information for details). Second, we generated new data for five species (see

Supplementary Information for details). Sample sizes of individuals ranged between 16 for the

Ladoga ringed seal to 2386 for the Hawaiian monk seal, with a median of 253 individuals.

The number of loci genotyped varied between five and 35 with a median of 14.
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Phylogeneধc, demographic, life history and conservaধon status data.

Phylogenetic data were downloaded from the 10K trees website (Arnold et al., 2010) and

plotted using ggtree (Yu et al., 2017). The three ringed seal subspecies were added according

to their separation after the last ice age (Sipilä and Hyvärinen, 2014). Demographic and life-

history data for each species were obtained from (Krüger et al., 2014). While most data stayed

untransformed, we calculated sexual size dimorphism (SSD) as the ratio of male to female

body mass, and log-transformed abundance across species to account for the several orders of

magnitude differences in population sizes. Data on conservation status were retrieved from the

IUCN website (http://www.iucnredlist.org/, 2017) (IUCN, 2018).

Data cleaning and preliminary populaধon geneধc analyses.

In order to maximise data quality, we checked all datasets by eye and generated summary

statistics and tables of allele counts to identify potentially erroneous genotypes including ty-

pographical or formatting errors. In ambiguous cases, we contacted the authors to verify the

correct genotypes. As several of the datasets included samples from more than one geographical

location, we used a Bayesian approach implemented in STRUCTURE version 2.3.4 (Pritchard

et al., 2000) to infer the most likely number of genetic clusters (K) across all datasets. For

computational and practical reasons, we used the ParallelStructure package in R (Besnier and

Glover, 2013) to run these analyses on a computer cluster. For all of the species for which

the best supported value of K was more than one, we recalculated genetic summary statistics

and repeated the bottleneck analyses based on individuals comprising the largest cluster and

calculated repeatabilities including 95% confidence intervals (CIs) for all variables using the

rptGaussian function in the rptR package (Stoffel et al., 2017). We also tested all loci from

each dataset for deviations from Hardy-Weinberg equilibrium (HWE) using χ2 and exact

tests implemented in pegas (Paradis, 2010) and applied Bonferroni correction to the resulting

p-values.

Geneধc diversity staধsধcs.

In order to examine patterns of genetic diversity across species, we calculated observed het-

erozygosity (Ho) and allelic richness (Ar) with strataG (Archer et al., 2016) as well as the

proportion of low frequency alleles (LFA), defined as alleles with a frequency of <5%, using

self-written code. For maximal comparability across species with different sample sizes, we
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randomly sampled ten individuals from each dataset 1000 times with replacement and calcu-

lated the corresponding mean and 95% CI for each summary statistic. We did not attempt to

standardise our genetic diversity measures by the number of microsatellites, as differences in

the number of loci are not expected to systematically bias the mean of any summary statistic

across loci.

Heterozygosity-excess.

We quantified heterozygosity-excess using the approach of Cornuet and Luikart (Cornuet

and Luikart, 1996) implemented in the program BOTTLENECK version 1.2.02 (Piry et al.,

1999). BOTTLENECK compares the heterozygosity of a locus in an empirical sample to the

heterozygosity expected in a population under mutation-drift equilibrium with the same number

of alleles as simulated under the coalescent (Kingman, 1982; Hudson, 2002). Microsatellites

evolve mainly by gaining or losing a single repeat unit (Bonin et al., 2013) (the Stepwise

Mutation Model, SMM), but occasional larger jump mutations of several repeat units also

occur (Di Rienzo et al., 1994). Consequently, BOTTLENECK allows the user to specify

a range of mutation models, from the strict SMM through two-phase models (TPMs) with

varying proportions of multi-step mutations to the infinite alleles model (IAM) where every new

mutation is novel. We therefore evaluated the SMM plus three TPM models with 70%, 80%
and 90% single-step mutations respectively and the default variance of the geometric distribution

(0.30). For each of the mutational models, the heterozygosity of each locus expected under

mutation-drift equilibrium given the observed number of alleles (Heq) was determined using

10000 coalescent simulations. The proportion of loci for which He was greater than Heq

(prophet−exc) was then quantified for all of the mutation models. To quantify consistency of

the measure across mutation models, we calculated the repeatability of prophet−exc using the

rptR package (Stoffel et al., 2017) in R with 1000 bootstraps while adjusting for the mutation

model as a fixed effect. Although the relative pattern across species was very consistent across

mutation models (repeatability = 0.81, CI = [0.71, 0.89]), absolute values of prophet−exc

within species decreased with lower proportions of multistep mutations (means for the TPM70,

80, 90 and SMM were 0.63, 0.58, 0.49 and 0.27, respectively). Given our posterior estimates

(Supplementary Figure 6) and in line with previous studies, we therefore based our subsequent

analyses on prophet−exc from the intermediate TPM80 model.
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Demographic models.

As a second route to inferring historical population declines, we contrasted two alternative de-

mographic scenarios (Figure 2.6) using a coalescent-based approximate Bayesian computation

(ABC) framework (Kingman, 1982; Beaumont et al., 2002; Tavaré et al., 1997; Pritchard et al.,

1999). To address the hypothesis that commercial exploitation from the 18th to the beginning

of the 20th century led to population bottlenecks, we first defined a bottleneck model, which

incorporated a severe reduction in population size within strictly bound time priors reflecting

the respective time period. This model also allowed us to capture realistic changes from the pre-

to post-bottleneck effective population size as both priors were drawn independently from the

same distribution. Therefore, the model incorporates not only the bottleneck, but also longer

term declines or expansions within realistic bounds as described below. For comparison, we

defined a model that did not contain a bottleneck but which was identical in all other respects,

which we called the non-bottleneck model. This model still allowed the population size to

vary over time within a defined set of priors and thus captures realistic longer term variation in

population size, but it does not include a severe recent bottleneck due to human exploitation.

Genetic data under both models were simulated from broad enough prior distributions

to fit all 30 species while keeping the priors as tightly bound as possible around plausible

values. The bottleneck model was defined with seven different parameters (Figure 2.6A). The

current effective population size Ne and the historical (i.e. pre-bottleneck) effective population

size Nehist were drawn from a log-normal distribution with Ne ∼ lognorm[logmean = 10.5,

logsd = 1] and Nehist ∼ lognorm[logmean = 10.5, logsd = 1]. This concentrated sampling

within plausible ranges that fitted most species (i.e. with effective population sizes ranging

from thousands to tens of thousands of individuals) while also occasionally drawing samples

in the hundreds of thousands to fit the few species with very large populations. The bottleneck

effective population size Nebot was drawn from a uniform distribution between 1 and 500

(Nebot ∼ U[1, 500]) while the bottleneck start and end times tbotstart and t + botend

were drawn from uniform distributions ranging between ten and 70 (tbotstart ∼ U[10, 70])

and one and 30 (tbotend ∼ U[1, 30]) generations ago respectively. Hence, the bottleneck

time priors encompassed the last four centuries for all species, as their estimated generation

times vary between approximately 7 and 19 years (Supplementary Table 1). The microsatellite

mutation rate µ was refined after initial exploration and drawn from a uniform prior with µ

∼ U[10-5, 10-4] which lies within the range of current empirical estimates (Ellegren, 2004;

Selkoe and Toonen, 2006). The mutation model was defined as a generalized stepwise mutation

model with the geometric parameter GSMpar reflecting the proportion of multistep mutations,
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uniformly distributed from GSMpar ∼ U[0, 0.3]. The non-bottleneck model was defined with

five parameters (Figure 2.6B). Ne, Nehist, µ and GSMpar were specified with the same priors

as previously defined for the bottleneck model and the time parameter corresponding to the

historical population size thist was drawn from a uniform distribution ranging between 10 and

70 generations ago (thist ∼ U[10, 70]). All population size changes are therefore modeled as

instantaneous changes at times tbotstart, tbotend or thist.

Figure 2.6: Schemaধc representaধon of two contrasধng demographic scenarios and the parameter pri-
ors defining the models. All priors were drawn independently from each other, so the currentNe can
be smaller or larger than Nehist for a given species. This allowed both models to capture pre- to post-
boħleneck variaধon in populaধon size. WhileNe and Nehist were drawn from lognormal priors, all other
parameters were specified using uniform priors. All prior distribuধons are also shown as small figures
next to the respecধve parameter. The exact priors and the mutaধon model are given in the Methods.

ABC analysis.

ABC analysis. We simulated a total of 2 x 107 datasets of 40 individuals and 10 microsatel-

lite loci each under the two demographic scenarios using the fastsimcoal function in strataG

(Archer et al., 2016) as an R interface to fastsimcoal2 (Excoffier et al., 2013), a continuous-

time coalescent simulator. For both the simulated and empirical data, we used five different

summary statistics for the ABC inference, all calculated as the mean across loci. Allelic richness

(number of alleles), allelic size range, expected heterozygosity (i.e. Nei’s gene diversity Nei
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(1973)), the M-ratio (Garza and Williamson, 2001) and the proportion of low frequency alleles

(i.e. with frequencies < 5%). The summary statistics for the empirical datasets were computed

by repeatedly re-sampling 40 individuals with replacement from the full datasets and calculating

the mean across 1000 subsamples (for the Ladoga ringed seal and the Baltic ringed seal which

had sample sizes smaller than 40, the full datasets were taken). As a small number of loci in

the empirical data exhibited slight deviations from constant repeat patterns (i.e. not all of the

alleles within a locus conformed to a perfect two, three or four bp periodicity), we calculated

the M-ratio as an approximation using the most common repeat pattern of a locus to calculate

the range of the allele size r and subsequently the M-ratio with M = k/(r + 1) where k is

the number of alleles. All statistics were calculated using a combination of functions from the

strataG package and self-written code. For the ABC analysis, we used a tolerance threshold of

5 x 10-4, thereby retaining 5000 simulations with summary statistics closest to those of each

empirical dataset. For estimating the posterior probability for each scenario and each species,

we used the multinomial regression method (Beaumont et al., 2002; Fagundes et al., 2007) as

implemented in the function postpr in the abc package (Csilléry et al., 2012) where the model

indicator is the response variable of a polychotomous regression and the accepted summary

statistics are the predictors. To construct posterior distributions from the accepted summary

statistics for the model parameters, we used a local linear regression approach (Beaumont et al.,

2002) implemented in the abc function of the abc package.

Evaluaধon of model specificaধon and model fit via cross-validaধon.

We evaluated whether ABC could distinguish between the two models by performing a leave-

one-out cross validation implemented by the cv4postpr function of the abc package. Here, the

summary statistics of one of the existing 107 simulations were considered as pseudo-observed

data and classified into either the bottleneck or the non-bottleneck model using all of the

remaining simulations. If the summary statistics are able to discriminate between the models, a

large posterior probability should be assigned to the model that generated the pseudo-observed

dataset. This was repeated 100 times and the resulting posterior probabilities for a given model

were averaged to derive the rate of misclassification. We furthermore used a hypothesis test

based on the prior predictive distribution (Lemaire et al., 2016) implemented in the gfit function

in the abc package to check for each species that the preferred model provided a good fit to the

observed data. Specifically, we used the median distance between the accepted and observed

summary statistics as a test statistic, whereby the null distribution was generated using summary

statistics from the pseudo-observed datasets. Hence, a non-significant p-value indicates that the
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distance between the observed summary statistics and the accepted summary statistics is not

larger than the expectation based on pseudo-observed data sets, i.e. the assigned model provides

a good fit to the observed data.

Evaluaধonof the accuracyof parameter esধmates via cross-validaধon.

In order to determine which parameters (i.e. population sizes, times and mutation rates and

models) could be reliably estimated, we used leave-one-out cross validation implemented in

the cv4abc function from the abc package to determine the accuracy of our ABC parameter

estimates. For a randomly selected pseudo-observed dataset, parameters were estimated via

ABC based on the remaining simulations using the rejection algorithm and a prediction error

was calculated. This is possible because we know the ‘true’ parameter values from which a

given pseudo-observed dataset was simulated. This procedure was repeated 1000 times and

a mean prediction error ranging between 0 and 1 was calculated, where 0 reflects perfect

estimation and 1 means that the posterior estimate does not contain any information about the

true parameter value (Csilléry et al., 2012).

Posterior predicধve checks.

To further confirm the fit of the preferred models, we conducted posterior predictive checks

(Csilléry et al., 2010; Gelman et al., 1995) for each species. First, we estimated the posterior

distribution of each parameter using ABC. Second, we sampled 1000 multivariate parameters

from their respective posterior distributions and used those to simulate summary statistics a

posteriori based on the preferred model. Last, we plotted those summary statistics as histograms

and superimposed the observed summary statistics across all species (Csilléry et al., 2010).

Bayesian phylogeneধc mixed models.

Finally, we used Bayesian phylogenetic mixed models in MCMCglmm (Hadfield, 2010) to

evaluate the ecological and life-history variables affecting bottleneck strength and genetic diver-

sity, and to test whether bottleneck history and genetic diversity are predictive of contemporary

conservation status. Details of all the models are given in the Supplementary Table 10. All of

the response variables were modelled with Gaussian distributions, while the predictors were

fitted as fixed effects and the phylogenetic covariance matrix as a random effect. Predictors in

models containing binary fixed effects were standardised by two standard deviations to allow

a direct comparison between the effect sizes (Gelman, 2008; Schielzeth, 2010). In models
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without binary fixed effects, the predictor variables were standardised by one standard devi-

ation. For all models, we report the marginal R2 as in (Nakagawa and Schielzeth, 2013).

Some of the predictors in our models were correlated and multicollinearity might lead to sup-

pression effects and make the interpretation of regression coefficients difficult (Ray-Mukherjee

et al., 2014). We therefore reported standardized β estimates, structure coefficients, r(Ŷ , x)

and unique R2 values for all variables in all models. The structure coefficients represent the

correlation between a predictor and the fitted response of a model independent of the other

predictors, and therefore reflect the direct contribution of a variable to that model. On the

other hand, the unique R2 is the difference between the marginal R2 of a model including

and a model excluding a predictor, which will be small when another predictor explains much

of the same variation in the response (Ray-Mukherjee et al., 2014). All model estimates were

presented as the posterior median and 95% credible intervals (CIs). We used uninformative

priors with a belief (shape) parameter v = 1 for the variance-covariance matrices of the random

effects and inverse-Wishart priors with v = 0.002 for residual variances. For each model, three

independent MCMC chains were run for 110,000 iterations, with a burn-in of 10,000 iterations

and a thinning interval of 100 iterations. Convergence was checked visually and by applying

the Gelman-Rubin criterion to three independent chains. All of the upper 95% confidence

limits of the potential scale inflation factors were below 1.05.

Data and code availability.

All data wrangling steps and statistical analyses except for the heterozygosity-excess tests (Piry

et al., 1999) were implemented in R (R Core Team, 2015). The documented analysis pipeline

along with the raw data can be accessed via GitHub (https://github.com/mastoffel/
pinniped_bottlenecks) and is fully reproducible.
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An dominant Northern elephant seal bull has spotted a potential competitor.
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Abstract

Understanding the demographic histories of species is key to unravelling the patterns shaping

genetic and phenotypic diversity and for the management of endangered species. While re-

searchers have combined simulations and genetic data to explore simple demographic scenarios

for decades, the genomic revolution has now given us the tools to infer far more complex de-

mographic histories for virtually any species. However, as most genetic diversity is shaped by

long-term demographic processes, the possibility of using genomic data to infer recent popu-

lation size changes such as bottlenecks has rarely been studied, although recent demography

is arguably more important for population viability and conservation. One of the most iconic

examples of a recent population bottleneck is the case of the Northern elephant seal, which

was nearly entirely wiped out by the 19th century sealing industry, but then underwent an un-

paralleled recovery to over 200,000 individuals nowadays. However, all knowledge about the

species’ recent history comes from either historical sealing records or from genetic studies using

only handfuls of genetic markers. Moreover, close to nothing is known about the Northern

elephant seal’s history prior to the 19th century. Here, we used a newly sequenced Northern

elephant seal genome and restriction-site associated DNA (RAD) sequencing of 80 individuals

together with extensive coalescent simulations based on the site frequency spectrum to reveal

the details of the species’ demographic history. We show an extreme distortion of the site fre-

quency spectrum which is likely a consequence of a severe genetic bottleneck with an effective

population size of a few individuals and a duration of more than five generations. Moreover,

the elephant seal exhibits an excess of low-frequency alleles, which is indicative of a strong

post-glacial expansion preceding the bottleneck. Our results provide a detailed explanation for

the near absence of genetic variation previously found with a variety of genetic markers and

give the first genomic insights into the species’ pre-sealing demography. Our results are among

the first to show that genomic data can be used to shed light on recent bottlenecks, which has

important implications for demographic inferences on contemporary timescales.
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Introducধon

A thorough understanding of a species’ demographic history is necessary to distinguish de-

mographic from selective effects across the genome (Nielsen et al., 2007) and eventually to

understand the evolutionary forces shaping genetic and phenotypic diversity (Mitchell-Olds

et al., 2007; Nielsen et al., 2009). As the detailed demographic histories of a species are

seldom known, a variety of methods have been developed to infer demography from genomic

diversity (e.g. Excoffier et al. 2013; Gutenkunst et al. 2010; MacLeod et al. 2013. While tra-

ditionally restricted to human populations where high density genomic data was available, the

decreasing costs of next-generation sequencing have now made it possible to understand the

demographic history of virtually any organism. For example, genomic data have been used

to infer the the origins of ecological speciation in killer whales (Foote et al., 2016), post-ice

age expansion of the king penguin (Trucchi et al., 2014), historical population sizes of fly-

catchers (Kardos et al., 2017) and the geographical origin of the plains zebra (Pedersen et al.,

2018). However, most studies to date infer demography on evolutionary timescales, while

recent events are arguably more important for a species’ viability and adaptive potential. In

particular, human impacts and climate change are causing global population declines on an

unparalleled scale (Ceballos et al., 2017), but it nevertheless remains unclear whether genomic

data can be used to infer recent declines or population bottlenecks Nunziata and Weisrock

(2018).

The generation of vast amounts of genomic data has facilitated the development of a range

of methods for inferring demographic histories. Among these, some of the most flexible and

powerful methods use either coalescent simulations (Excoffier et al., 2013; Kingman, 1982) or

diffusion approximation (Gutenkunst et al., 2010) and are based on a comparison between

simulated and observed site frequency spectra (SFS). The SFS is the distribution of allele

frequencies of a given set of loci (such as SNPs) in a sample (Evans et al., 2007b; Fisher, 1931)

and has been termed the most fundamental yet unappreciated feature of genomic data (Salmona

et al., 2017). Indeed, demographic inference based on the SFS has several advantages. For

example, a reliable estimate of the SFS can be gained from a genomic sample containing a low

number of polymorphisms (Shafer et al., 2015a) and is reliable even when inferred from a small

subset of the genome (Excoffier et al., 2013) or when based on low coverage data (Korneliussen

et al., 2014). Moreover, recent methodological developments such as the composite-likelihood

approach implemented in fastsimcoal2 Excoffier et al. (2013) facilitate the reliable estimation

of even very complex demographic models based on the SFS.
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Very few species’ demography’s have been of greater interest than the history of the North-

ern elephant seal (NES). The species was severely hunted for its blubber by 19th century sealers

and was assumed to be extinct for decades. However, some individuals survived and within

just a century the population rebounded from presumably only a handful of animals to over

200,000 individuals in the north-east Pacific nowadays (Lowry, 2014). Not many species have

been driven so close to extinction and shown such an unparalleled and exponential recovery.

This is why the NES has become the focus of many studies trying to elucidate the strength of

the genetic bottleneck and its consequences, particularly the potential loss of genetic variation.

The evidence so far is unambiguous whereby genetic diversity has been shown to be low at

mtDNA (Hoelzel et al., 1993), allozymes (Bonnel and Selander, 1974; Hoelzel et al., 1993)

MHC (Weber et al., 2004) and microsatellites (Stoffel et al., 2018). Furthermore, a recent

study comparing 30 pinniped species revealed that the NES exhibits some of the lowest ge-

netic diversity of the whole clade, and that the species likely underwent an extremely severe

genetic bottleneck (Stoffel et al., 2018). However, all studies to date have been conducted based

on just a handful of genetic markers, but genomic data is entirely lacking. Critically, this has

prevented insights into more detailed and complex aspects of the species’ demography. For

example, how large were the effective population sizes during and before the bottleneck and

how long did the bottleneck last?

Moreover, due to decades of intensive slaughter, very little is known about NES abundance

or distribution prior to the mid-nineteenth century (Le Boeuf and Laws, 1994). Curiously, the

only source of knowledge are archaeological studies reporting a dearth of elephant seal remains

relative to other pinnipeds of the north-east pacific (Jones et al., 2002; Lyman, 2011; Rick

et al., 2011). A testable hypothesis could be that the Northern elephant seal lacked appropriate

breeding habitat due to glaciation during the last glacial maximum (LGM), but subsequently

expanded with the retreat of the ice cover until it reached its pre-sealing population size. Such

post-glacial expansions have indeed been commonly reported in species of the Neartic realm

(Burbrink et al., 2016), while testing these historical demographic changes was not possible

for the Northern elephant seal with the genetic data available so far.

Here, we developed a novel genomic toolkit for the Northern elephant seal, which includes

a high-quality genome assembly developed from 10x chromium sequencing and large-scale

restriction-site association DNA sequencing (RAD) data for 80 individuals. Using this toolkit,

we combine extensive coalescent simulations and a composite maximum likelihood method to

shed new light on both the recent and ancient demography of the Northern elephant seal. In

particular, we hypothesized that (1) the severe genetic depletion found in the Northern elephant

seal is a result of an extreme and long-lasting bottleneck due to commercial overexploitation
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and (2) that the elephant seal, similar to many other species in the Nearctic, experienced a

strong population expansion after the LGM.

Methods

Genome sequencing and assembly

To generate the Northern elephant seal genome, a muscle sample was collected from a male

Northern elephant seal that had stranded in Mendocino, California, USA (Lat: 39.00938,

Long: -123.695275), on 4 April 2015. High molecular weight DNA was extracted from the

muscle using a Qiagen MagAttract HMW DNA Kit, and large fragment size was confirmed

through gel electrophoresis. The DNA was prepared for sequencing using the 10X Genomics

Chromium Genome Kit, which isolates DNA molecules and attaches identical barcodes to

fragments derived from the same DNA molecule. Sequencing was then performed on two lanes

of an Illumina HiSeq X, using paired-end sequencing of 150bp reads. The Northern elephant

seal genome was assembled de novo using the 10X Genomics Supernova (v2) software. This

software uses the molecule-specific barcodes on each sequencing read to infer the proximity of

two given reads on the same original DNA molecule. This method of linked-read sequencing

allows for the high-confidence assembly of large genomic scaffolds from short read data. The

Supernova de novo assembly produced a genome of approximately 2.25 Gb, slightly smaller

than the current assembly for the closely related Hawaiian monk seal (2.40 Gb). The median

effective coverage for the assembly was ∼45X. The size of the scaffold N50 was 1.06 Mb.

Sample collecধon for RAD sequencing

Tissue samples for 80 Northern elephant seals were generously provided by the Marine Mam-

mal Center (MMC) in Sausalito, California. These samples were collected from both male and

female pups between March 2006 and March 2012. Samples were stored in 90% ethanol and

at −20°C. Genomic DNA was then extracted using a standard phenol-chloroform protocol.

RAD sequencing

The preparation of RAD libraries followed the protocol used in (Etter et al., 2011) with mod-

ifications as described in (Humble et al., 2018). After quality control using FastQC v0.112

all reads were trimmed to 225 bp and demultiplexed using process_radtags in STACKS v2.0
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(Catchen et al., 2013). The reads were then mapped to the newly sequenced Northern ele-

phant seal genome with BWA MEM v.0.7.10 (Li, 2013) using the default parameters. Reads

which could not be mapped to the genome were removed using SAMtools v1.1 (Li, 2011).

Subsequently, we used Picard Tools to sort the SAM files, add read groups and remove PCR

duplicates. As a last step in the bioinformatics pipeline, we performed indel realignment to

minimize errors due to mismatching bases using RealignerTargetCreater and IndelRealigner in

GATK 3.6.

Genotype likelihood inference and site frequency spectrum

Based on the bam files from GATK, we calculated genotype likelihoods using ANGSD v.0918

(Korneliussen et al., 2014). Within ANGSD, we used several filters: (1) we kept only sites

present in all 80 individuals, (2) a minimum depth of coverage at a site of 240 across all

individuals, (3) a maximum depth of coverage at a site of 1600 across all individuals, (4)

minimum mapping quality of 20 (5) a minimum base quality of 30, and (6) a polymorphism

p-value threshold of 10-4. We then used the obtained genotype likelihoods as input for the

realSFS method in ANGSD to estimate the site frequency spectrum (SFS). As we did not have

ancestral state information, we calculated the folded SFS.

Demographic simulaধons

As it is unclear how recent demographic changes affect the SFS, we used coalescent simulations

in fastsimcoal2 (Excoffier et al., 2013) to simulated expected SFS under two different demo-

graphic models: (1) a model including only a recent bottleneck and (2) a model including

recent bottleneck and a population expansion after the last glacial maximum (LGM) (see Figure

3.1). For both models, we simulated SFS for varying bottleneck durations, ranging from one

to ten generations and for different NeBot ranging from five to 50 individuals. As we were

mainly interested in the shape of the simulated SFS in relation to the empirical SFS rather than

the overall rate of polymorphism across the genome, we assumed the following parameters to

be fixed: (a) current effective population size NeCur = 10,000, (b) pre-bottleneck effective

population size NeHist = 20,000 (c) mutation rate = 2.5 x 10-8. For the ice age expansion

model, we fixed (d) the start of post-glacial expansion at 1,500 generations in the past, and (e)

the effective population size during the last glacial maximum NeLGM at 2000 individuals.

54



Elephant seal demography

Demographic modeling

Subsequently, we used the composite maximum likelihood method in fastsimcoal2 for demo-

graphic modeling. In a nutshell, the program simulates SFS under a given demographic model

and optimizes the parameters of the model (such as population sizes or timings of historical

events) to reach the highest possible agreement between the simulated and the observed SFS.

The results of the program include both the estimated model parameters and a likelihood for

the model itself which can be used to compare different demographic scenarios (Excoffier et al.,

2013). To select a best model according to our main hypotheses, we compared the likelihood

of three different demographic models which are depicted in Figure 3.1. First, we defined a

model including a recent bottleneck, which broadly spans the peak of commercial exploitation

of elephant seals in the 19th century. Given a generation time of 8.7 years (IUCN, 2018), the

bottleneck was hence fixed between 20 and 30 generations ago. In addition, we specified initial

search ranges for the current effective population size NeCur, the pre-bottleneck effective pop-

ulation size NeHist and the bottleneck effective population size NeBot (see Figure 3.1A for

the detailed parameter ranges). Second, we defined a model including both a recent bottleneck

with the same parameters and in addition a population expansion after the last glacial maximum

(LGM). Therefore, we specified two additional parameters, the start of the expansion after the

LGM and the effective population size during the LGM, termed NeLGM (see Figure 3.1B for

the detailed parameter ranges). Third, we specified a neutral model which neither included a

recent bottleneck nor an ice-age expansion as a control scenario. We defined the neutral model

based on two parameters, NeHist and NeCur which were specified with the same ranges as

in the other models (see Figure 3.1C for the detailed parameter ranges). For all models, we

used a fixed mutation rate of 2.5 x 10-8 which is consistent with marine mammal mutation rate

estimates from the literature (Dornburg et al., 2012). Importantly, all parameters are defined as

initial search ranges, and the final parameter estimates can exceed the upper ranges (Excoffier

et al., 2013).

Model selecধon

For all models, we used a total of 50 replicate runs of the maximum likelihood optimization,

each including 40 estimation loops with 100,000 coalescent simulations, according to the rec-

ommendation of the fastsimcoal2 authors (Excoffier et al., 2013). Of the 50 replicate runs

for each model, the run with the highest maximum likelihood was used for selecting the best

of the three models. To do so, we calculated Akaike’s information criterion (AIC) with the

following formula:
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AIC = 2 ∗ ln(likelihood) + 2 ∗K (Eq. 7.1)

Where ln is the natural logarithm, likelihood is the maximum likelihood of the model and K

equals the number of estimated parameters in the model.

Parameter esধmaধon and uncertainty

After determining the best fitting model, we used non-parameteric bootstrapping to estimate

the model parameters and quantify their uncertainty. Specifically, we used ANGSD to generate

100 bootstrapped SFS by subsampling loci with replacement from the SFS. We then used

fastsimcoal2 to re-estimate parameters for the best model based on 10 replicate runs for each of

the 100 bootstrapped SFS. For each SFS, the two runs with the highest maximum likelihood

were retained. Finally, we quantified the median of the distribution and its 2.5th and 97.5th

percentile as a 95% confidence interval.

Results

Genomic data reveal an extreme site frequency spectrum

Paired-end 250 bp RAD data mapped to the new elephant seal reference genome resulted in an

average of 2,361,524 mapped reads per individual (range = 1,447,403 - 4,716,551). Genotype

likelihood inference using ANGSD yielded information for 22,394,982 sites present in all

80 individuals, with only 0.1% variable positions. After applying a polymorphism p-value

threshold in addition to several other filters (see Methods) in ANGSD, we retained 13,080 high

quality polymorphic positions present in all 80 individuals which were subsequently used to

infer the observed site frequency spectrum (SFS, Figure 3.2). The SFS of a population with

a stable sample size is expected to show a decline in the number of SNPs with increasing

frequencies (Hartl and Clark, 1997). However, the SFS of the Northern elephant seal shows a

pattern which differs drastically from such an expectation. SNPs with only one individual that

carries the alternative allele (singletons) are the most frequent form of polymorphism in our

sample, followed by doubletons. All other frequencies, however, are nearly equally abundant.

Moreover, the SFS reveals an excess of rare variants, so-called singletons and doubletons.
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Figure 3.1: Schemaধc representaধon of the three demographic scenarios. For all models, the mutaধon
rate was fixed to 2.5 x 10-8. Furthermore, all ধme points were fixed, with the recent boħleneck rang-
ing from 30 to 20 generaধons ago (see Panel A), and the last glacial maximum (LGM) ending 1,500 gen-
eraধons ago (see Panel B). All Ne’s define iniধal search ranges for the maximum composite likelihood
method in fastsimcoal2. Consequently, the program is able to esধmate parameter values which exceed
these iniধal search ranges, as they only define the starধng point of the opধmizaধon.

SFS simulaধons hint towards an ice-age expansion followed by an ex-
treme recent boħleneck

We conducted a series of coalescent simulation in fastsimcoal2 to explore the parameters which

potentially result in an SFS as extreme as in the Northern elephant seal. First of all, we simu-

lated SFS under a recent bottleneck model. We varied both the bottleneck effective population

size (NeBot) and the duration of the bottleneck (TBot) in generations, while keeping al-

lotherparametersconstant (see Methods). The resulting SFS based on all 16 combinations of

NeBot and TBot are shown in Figure 3.3. Most importantly, we looked for a pattern similar

to the observed SFS, where all SNPs except for singletons and doubletons show the same

abundance. Based on Figure 3.3, only the most extreme bottlenecks (right upper corner in

Figure 3.3), where the population is reduced to as little as NeBot = 5 or 10 and the bottleneck

spans at least 5 or 10 generations (TBot = 5 or 10) can disturb the SFS strongly enough to
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Figure 3.2: Observed site-frequency spectrum of the Northern elephant seal esধmated from genotype-
likelihoods.

show a pattern as flat as the observed SFS. However, an intricate detail does not yet fit. Dou-

bletons, marked in orange across all plots, are much more abundant than SNPs with higher

alternative allele frequencies in the observed SFS (Figure 3.2). We hypothesized that this could

be the result of a population expansion in the past which caused an excess of rare alleles such

as singletons and doubletons, a pattern previously observed in human populations (Coventry

et al., 2010; Keinan and Clark, 2012).

Consequently, we repeated the simulations based on a more complex model, which included

a recent bottleneck and in addition a population expansion starting from the end of the last

glacial maximum (LGM, Figure 3.4). Here, we see a much larger proportion of doubletons

relative to higher frequency variants (right upper corner), a pattern very similar to the observed

SFS. However, the flat tail of the SFS can still only be observed when the expansion is followed

by an extreme recent bottleneck with NeBot at around 5 or 10 individuals and a duration TBot

longer than five generations.

The best model includes a post-LGM expansion and a severe boħle-
neck

Based on the simulations, we used the composite maximum likelihood method in fastsimcoal2

for a formal comparison of three alternative models, (1) a recent bottleneck model, (2) a model
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Figure 3.3: Simulated site-frequency spectra based on a model which only includes a recent boħleneck.
The plot shows SFS for different boħleneck intensiধes. NeBot specifies the simulated effecধve popula-
ধon size during the boħleneck and TBot specifies the duraধon of the boħleneck in generaধons.

including a recent bottleneck and an expansion after the last glacial maximum (LGM) and (3)

a neutral model (see Methods for details). As expected, both scenarios which included a recent

bottlenecked showed a higher likelihood compared to the neutral model, as reflected in a much

lower AIC value (see Table 3.1). Moreover, as indicated by the initial simulations (Figure 3.4),

the model including a post-LGM expansion and a severe recent bottleneck showed a higher

likelihood than the model only incorporating a recent bottleneck, which is also reflected in a

substantially lower AIC (Table 3.1). Consequently, the Northern elephant seal SFS is likely a
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Figure 3.4: Simulated site-frequency spectra based on a model incorporaধng an ice age expansion and
a recent boħleneck. The plot shows SFS for different boħleneck intensiধes. NeBot specifies the simu-
lated effecধve populaধon size during the boħleneck and TBot specifies the duraধon of the boħleneck in
generaধons.

consequence of both a post-LGM expansion and a recent bottleneck.

Parameter inference reveals an Ne at the very brink of exধncধon

We then used non-parametric bootstrapping of the SFS to estimate the underlying model

parameters of the LGM + Bottleneck model and their uncertainties Figure 3.5. Consistent with
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Table 3.1: Likelihood and AIC values based on the composite maximum likelihood esধmaধon in fastsim-
coal2 for all three demographic models.

Model Max(log10(likelihood))* No. of parameters AIC

LGM & Boħleneck -10134.46 4 46678.91

Boħleneck -10155.12 3 46772.06

Neutral -10565.83 2 48661.45
*Based on the best likelihood among the 50 independent runs

knowledge about the hunting history of the NES and previous genetic studies, the bottleneck

was estimated extremely severely (median NeBot = 2, 95% CI [1.5, 2]). The estimate for the

current effective size had a considerable higher uncertainty (median NeCur = 4582.5, 95% CI

[3640.5, 10402]) and was estimated substantially lower than the pre-bottleneck size (median

NeHist = 8041, 95% CI = [5277, 15168.5]). Lastly, the effective size during the last glacial

period was estimated to be around 10 to 20 times lower than the pre-sealing population size

(median NeLGM = 355, 95% CI [267.5, 851]).

Figure 3.5: Parameter esধmates from non-parametric bootstrapping of the SFS. Shown is the distribuধon
of 200 non- parametric bootstrap esধmates using the composite-maximum likelihood method in fast-
simcoal2 including 95% confidence intervals indicated as black horizontal lines for (A) Current effecধve
populaধon size (B) Boħleneck effecধve populaধon size (C) Pre-boħleneck effecধve populaধon size and
(D) Last glacial maximum effecধve populaধon size. All esধmates are presented as diploidNe’s.
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Discussion

Here, we developed a novel genomic toolkit which we used in combination with extensive

coalescent simulations based on the SFS to explore the demographic history of the NES. We

showed that the observed pattern of genomic variation in the NES can only be explained by

a severe and long lasting recent bottleneck with an Ne of as little as two individuals and a

duration of 10 generations.

There are two important implication of this result. First, from a methodological point of

view, the applicability of genomic demographic inference over contemporary timescales is still

questioned (Nunziata and Weisrock, 2018), as it is unclear to which degree declines in census

population sizes are immediately followed by changes in Ne which are reflected by genomic

variation. A recent simulation study showed that genomic data such as RADseq can indeed

lead to reliable demographic inference for population size changes as close as 10 generations

in the past (Nunziata and Weisrock, 2018). In line with these simulations, we showed that

the NES experienced a drastic decline in Ne only some tens of generations ago, which can be

reliably inferred from the SFS.

Second, our results shed novel light on a large body of research on NES demography by

providing reliable estimates of both bottleneck intensity and duration. Based on the sealing

literature, it was guessed that only 10 or 20 seals survived the commercial exploitation towards

the end of the 19th century (Hoelzel, 1999). In particular, over the course of half a decade,

from around 1880 to 1922, only a handful of seals have been observed and subsequently killed,

although frequent expeditions set out for extensive searches (Hoelzel, 1999). Consequently,

our estimates for both bottleneck Ne of less than five individuals and a bottleneck duration

of around ten generations fit to the expectations based on sealing records. Moreover, severe

depletions of genetic diversity in the NES have been reported based on nearly all types of

genetic markers (Bonnel and Selander, 1974; Hoelzel et al., 1993; Hoelzel, 1999; Stoffel et al.,

2018; Weber et al., 2004) and a reduction in diversity was also shown using a comparison of

pre- to post bottleneck samples (Weber et al., 2000). From a theoretical point of view, a severe

loss of diversity as observed in the NES is only expected from strong Ne declines which are

not directly followed by a recovery (Nei et al., 1975). This supports our inference of a severe

and long-lasting recent genetic bottleneck in the NES.

Despite a close fit of the empirical SFS to recent bottleneck models, our initial simulations

revealed an intricate detail which required further exploration: The excess of rare variants, so-

called singletons and doubletons, relative to all other frequency classes. A pattern of excessive

rare alleles is usually a consequence of recent and strong population growth (Coventry et al.,
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2010; Keinan and Clark, 2012), but could conceivably also be caused by immigrants into the

population which carry novel alleles. However, NES has very likely expanded from just a single

breeding colony on Guadalupe island after the recent bottleneck (Le Boeuf and Laws, 1994),

which is why a pre-bottleneck expansion seems the more likely explanation. Both coalescent

simulations and the maximum likelihood maximization method showed that SFS patterns very

similar to the observed SFS can be a consequence of a long-term post-glacial expansion of

the species, starting from a population size around ten to twenty times as small as the current

census size. We conclude that it is likely that the NES had a smaller population size during

the LGM, and expanded with the retreat of glaciation in the Nearctic realm (Hewitt, 2000), a

pattern which has previously been found in many species both across Europe (Hewitt, 1999)

and America (Burbrink et al., 2016). The population size of the Northern elephant seal might

have been small during the LGM for two main reasons. First, massive ice-sheets during the

Quaternary glaciation can have simply decreased potential breeding and molting habitats for

the elephant seal, preventing a larger population. Second, hauling out on sand and gravel

beaches could have made the species vulnerable to both prehistoric Native American hunters

and non-human predators such as grizzly bears and mountain lions, and potentially restrained

their habitats to remote offshore islands (Erlandson et al., 1998). The latter explanation is also

consistent with a more in-depth archaeological study of the NES which found that most of the

species’ Holocene abundance might have been scattered across remote islands, further away

from human settlements and predation (Rick et al., 2011). Moreover, the authors also reported

that most elephant seal specimens come from the late-Holocene (3500 yrs ago-present) which

again either suggests a more recent population growth consistent with post-glacial expansion

(Rick et al., 2011).

Limitaধons

Whilst we are providing strong evidence that genomic data has the power to estimate both recent

and historical population size changes, there are still a number of important limitations. First

of all, while RADseq can theoretically provide an unbiased estimate of the SFS, genotype calls

might be inaccurate when the coverage or the allelic frequencies are low (Fountain et al., 2016;

Han et al., 2014). To circumvent this problem, we avoided calling genotypes before estimating

the site frequency spectrum and instead relied on genotype likelihoods, which incorporate

uncertainty inherent to sequencing errors, coverage and alignment quality and result in an

accurate SFS even with very low coverage data (Korneliussen et al., 2014). However, as lower
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coverage can lead to strong biases in singletons (Han et al., 2014), we excluded this SFS class

from the analysis. Moreover, the non-parametric bootstrapping results suggest that most model

parameters could be estimated reliably.

Second, different demographic histories can lead to the same site frequency spectrum

(Myers et al., 2008), a problem inherent to all genetic demographic inference, which is why

a clear theoretical expectation of the underlying demography is important. In the case of the

NES, the recent bottleneck is an unquestioned part of its recent history (Le Boeuf and Laws,

1994) and hence provides a theoretically sound model to test. While the post-glacial expansion

is only one of several potential scenarios causing an excess of rare alleles in the SFS of the NES,

such a scenario is probably the most parsimonious and well-grounded, given the large body

of research which provide similar evidence on post-glacial expansions (Burbrink et al., 2016;

Hewitt, 2000) and the archaeological evidence of small population sizes during the Holocene

(Rick et al., 2011).

Finally, demographic modeling based on optimization procedures such as the maximum

composite likelihood method used in this study, optimizes the fit of simulated and observed

SFS without evaluating an overall goodness-of-fit of a model. Such a goodness-of-fit can for

example be evaluated based on a visual comparison between the optimized simulated SFS and

the observed SFS. Here, we show that the simulated SFS based on our own simulations and

the optimized SFS resulting from the estimated model parameters are highly similar to the

NES SFS, therefore providing visual evidence for a good fit of these models to our data.

Conclusions and future studies

The NES has experienced an extremely severe bottleneck, the genetic consequences of which

have now been confirmed with a range of genetic and genomic data. However, the degree to

which the bottleneck impacted neutral or functional genomic variation is still to be discovered

with higher-density genomic data than used in the present study. This might shed new light

on the mechanisms which allowed the NES to recover so rapidly despite the apparent genomic

depletion. Moreover, deeper sequencing and higher coverage will make it possible to increase

the reliability in which rare variants are detected and might uncover further details of the post-

glacial demography which have only been unraveled on the surface in the present study.
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An Antarctic fur seal pup waiting for its mother to return her feeding trip at sea. Photo: Oliver Krüger
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Significance

Understanding olfactory communication in natural vertebrate populations requires knowledge

of how genes and the environment influence highly complex individual chemical fingerprints.

To understand how relevant information is chemically encoded and may feed into mother-

offspring recognition, we therefore generated chemical and genetic data for Antarctic fur seal

mother-pup pairs. We show that pups are chemically highly similar to their mothers, reflecting

a combination of genetic and environmental influences. We also reveal associations between

chemical fingerprints and both genetic quality and relatedness, the former correlating positively

with substance diversity and the latter encoded mainly by a small subset of substances. Dis-

secting apart chemical fingerprints to reveal subsets of potential biological relevance has broad

implications for understanding vertebrate chemical communication.

Abstract

Chemical communication underpins virtually all aspects of vertebrate social life, yet remains

poorly understood because of its highly complex mechanistic basis. We therefore used chemical

fingerprinting of skin swabs and genetic analysis to explore the chemical cues that may underlie

mother-offspring recognition in colonially breeding Antarctic fur seals. By sampling mother-

offspring pairs from two different colonies, using a variety of statistical approaches and geno-

typing a large panel of microsatellite loci, we show that colony membership, mother-offspring

similarity, heterozygosity, and genetic relatedness are all chemically encoded. Moreover, chem-

ical similarity between mothers and offspring reflects a combination of genetic and environ-

mental influences, the former partly encoded by substances resembling known pheromones.

Our findings reveal the diversity of information contained within chemical fingerprints and

have implications for understanding mother-offspring communication, kin recognition, and

mate choice.
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Introducধon

The chemical senses are the evolutionarily oldest and arguably most widespread means of

interacting with the outside world. Olfaction in particular is fundamental to animal commu-

nication, mediating social interactions as varied as territorial behavior, kin recognition, and

mate choice (Wyatt, 2014b). Metabolomic tools, such as gas chromatography-mass spectrom-

etry (GC-MS) have made it possible to generate individual-specific chemical ‘fingerprints.’ By

separating compounds and quantifying their relative abundances, these fingerprints provide a

wealth of information, even though not all compounds can necessarily be identified. Both

volatile and contact cues are potentially hidden within the extreme complexity of chemical pro-

files, which is why a mechanistic understanding of chemical communication is still lacking in

natural vertebrate populations (Hurst and Beynon, 2010).

In particular, ‘surprisingly little progress’ has been made in understanding the link between

vertebrate chemical fingerprints and genotype (Hurst and Beynon, 2010). Experimental stud-

ies have shown that females of several species are capable of discriminating potential partners

based on olfactory cues (Wedekind and Füri, 1997; Radwan et al., 2008; Olsson et al., 2003).

However, very few studies have demonstrated a convincing link between the molecular compo-

sition of chemical fingerprints and genetic traits, such as heterozygosity (a measure of genetic

quality) and relatedness (Boulet et al., 2009; Charpentier et al., 2008; Crawford et al., 2010;

Leclaire et al., 2012). These studies were almost exclusively conducted on a captive population

of lemurs, a species known for its conspicuous use of scent marking.

A functional understanding of how genotype is chemically encoded also requires knowl-

edge of how many and which types of substances are involved. This is challenging because,

especially in natural populations, an individual’s mixture of surface chemicals is not only the

product of its genotype but may also be mediated by hormones, the microbial flora, body con-

dition, and environmental factors (Hurst and Beynon, 2010). Thus, analyses based on overall

chemical fingerprints may overlook subtle genetic signatures and make little if any headway

toward identifying the specific substances involved. A second less-appreciated problem is that

the modest panels of around 10-15 microsatellite loci typical of most studies may be underpow-

ered to detect genetic associations because they provide relatively imprecise estimates of both

heterozygosity and relatedness (Balloux et al., 2004; Hoffman et al., 2004).

In arguably the only study to report a convincing link between chemical fingerprints and

genotype in a natural vertebrate population, Leclaire et al. Leclaire et al. 2012 used principle

component analysis (PCA) to reduce chemical complexity. The authors identified a principle

component in kittiwakes that correlated significantly with heterozygosity in both sexes and
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another that correlated with relatedness, but only in adult males. However, PCA iteratively

maximizes the explained variance per component instead of seeking to capture the underlying

structure and dimensionality of the data, which makes the resulting components hard to interpret

(Fabrigar et al., 1999). A better approach could be factor analysis (FA), a method from the

field of psychology that estimates the latent variable structure of a dataset by dividing the total

variability into that common to variables and a residual value unique to each variable (Eid et al.,

2010). Statistical developments that allow FA to be applied to data with more variables than

observations (McFerrin, 2015) have only recently made this approach amenable to studying

chemical fingerprints.

Pinnipeds are an important group of marine mammals that provide an unusual opportunity

to reveal insights into the basis of chemical communication. Studies of Steller’s sea lions and

harbor seals have revealed a large repertoire of functional olfactory receptor genes (Kishida

et al., 2007) and remarkably high olfactory sensitivity (Kowalewsky et al., 2006), respectively.

Individuals of many pinniped species also have a strong musky smell that has been attributed

to secretions of facial sebaceous and apocrine glands (Ling, 1972). These glands are known to

hypertrophy during the mating season in at least two species (Hardy et al., 1991), suggesting

that olfactory cues may be particularly important during the reproductive phase of the life cycle.

Females of many otariid species breed in dense colonies and alternate lactation ashore

with foraging trips at sea, necessitating accurate mechanisms for offspring localization and

recognition (Insley et al., 2003). Although otariids use a combination of geographical, visual,

auditory, and olfactory cues to find and recognize their pups (Insley et al., 2003), olfactory

recognition is particularly important because females of many species accept or reject pups

based on naso-nasal inspection (Dobson and Jouventin, 2003; Phillips, 2003). Furthermore, a

recent experiment on Australian sea lions (Pitcher et al., 2011b) suggests that female pinnipeds

are capable of discriminating filial from nonfilial pups using olfaction in the absence of other

cues.

Antarctic fur seals (Arctocephalus gazella) provide a highly tractable model system for study-

ing the importance of chemical cues in a free-ranging marine mammal. On Bird Island, South

Georgia (Southwest Atlantic), a colony of fur seals has been studied intensively for over two

decades (Doidge et al., 1984). In this species, olfaction is known to be important for the

close-range recognition of pups (Dobson and Jouventin, 2003). However, females also show

active mate choice for males who are both heterozygous and unrelated to themselves (Hoff-

man et al., 2007b), raising the possibility that chemical cues might be involved not only in

mother-offspring recognition, but also in mate choice.

Here, we combined GC-MS fingerprinting of skin swabs and genetic analysis to explore the
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chemical basis by which Antarctic fur seal mothers may recognize their pups. Because females

of this species appear capable of choosing males based on heterozygosity and relatedness,

we hypothesized that genotype should be chemically encoded and that this could provide a

mechanism by which females could identify their pups. We therefore sampled mother-offspring

pairs from two discrete but genetically indistinguishable colonies (see ‘colony differences’ in

Results), which in principle allows genetically encoded substances to be disentangled from

those influenced by environmental differences between colonies. We also deployed over 40

microsatellite loci to enhance the power to detect associations between chemical fingerprints and

genotype. Finally, we used FA together with a variety of nonparametric approaches to explore

the structure of the chemical data and to uncover specific subsets of compounds associated with

chemical differences between the colonies, mother-offspring similarity, and genetic relatedness.

Results

Chemical and Geneধc Data.

Chemical fingerprints and multilocus microsatellite genotypes were obtained for 41 mother-

offspring pairs from two breeding colonies at Bird Island, South Georgia (Figure 4.1). After

removing compounds present in the control sample or only in a single individual, the total

number of substances in each individual’s chemical fingerprint averaged 35.9 and did not differ

significantly between mothers and offspring (paired t test, t = -0.05, P = 0.96). All of the

animals were genotyped at 43 highly polymorphic microsatellite loci, 41 of which did not deviate

significantly from Hardy-Weinberg equilibrium (HWE) in either mothers or offspring after

table-wide false-discovery rate (FDR) correction, and were therefore retained for subsequent

analyses (Table S1). The mother-offspring pairs all had match probabilities of 100% (Table

S2).

Colony Differences.

Multivariate statistical analysis of the relative proportions of each substance revealed highly

significant differences between animals sampled from the two colonies, both overall (Figure

4.2A) [analyses of similarities (ANOSIM), global R = 0.57, P < 0.0001] and separately for

mothers (ANOSIM, global R = 0.58, P < 0.0001) and offspring (ANOSIM, global R =

0.56, P < 0.0001). Bayesian structure analyses of the genetic data yielded the highest average

log-likelihood value for K = 1 in both mothers and pups (Figure S1), indicating a lack of

71



Chemical fingerprints

Figure 4.1: Map of the study area showing the two breeding colonies from which Antarcধc fur seal
mother-offspring pairs were sampled. The red and blue areas demarcate freshwater beach and the special
study beach, respecধvely.

population structure. By implication, chemical differences between the colonies appear to

reflect environmental influences (see Discussion).

Mother-Offspring Similarity.

Pups were significantly more similar to their mothers in their chemical fingerprints than ex-

pected by chance (Figure 4.2B), both overall (ANOSIM, global R = 0.67, P < 0.0001) and

within each of the colonies (special study beach: ANOSIM, global R = 0.53, P < 0.0001;

freshwater beach: ANOSIM, global R = 0.45, P < 0.0001). Chemical similarities between

mothers and offspring could be encoded by shared genes or might simply reflect their spatial

proximity. However, we found no relationship between chemical similarity and geographic

distance within the special study beach, where pupping locations are recorded to the nearest

square meter, either for mothers (Mantel’s r = 0.008, n = 20, P = 0.44) or offspring (Mantel’s

r = 0.06, n = 20, P = 0.31). This finding suggests that chemical similarity is not associated

with geographic proximity per se.
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Figure 4.2: Two-dimensional nonmetric mulধdimensional scaling plots of chemical fingerprints of 41
Antarcধc fur seal mother-offspring pairs. Bray-Curধs similarity values were calculated from standard-
ized and log(x+1)-transformed abundance data; (a) color-coded by colony (red points: freshwater beach;
blue points: special study beach); (b) ploħed by mother-offspring pair, with each pair being denoted by
a different symbol/color combinaধon. The scales of the two axes are arbitrary. The closer the symbols
appear on the plot, the more similar the two chemical fingerprints are.
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Figure 4.3: Relaধonship in mothers between sMLH and the number of compounds in an individual’s
chemical fingerprint.

Genotype and Overall Chemical Fingerprints.

To determine whether genetic relatedness is reflected in chemical similarity, we tested for an

association between pairwise r (see Table S3 for summary statistics) and Bray-Curtis similarity.

A highly significant relationship was obtained when all of the animals were analyzed together

(Mantel’s r = 0.07 n = 82, P = 0.005) but nonindependence of both chemical and genetic data

for mothers and offspring may introduce pseudoreplication. We therefore repeated the analysis

separately for mothers and offspring, finding no significant relationships (mothers, Mantel’s r

= 0.06 n = 41, P = 0.10; offspring, Mantel’s r = 0.030 n = 41, P = 0.25).

To test for a chemical signal of genetic quality, we regressed the number of compounds

in an individual’s chemical fingerprint, a measure of chemical complexity, on standardized

multilocus heterozygosity (sMLH). A significant positive correlation was found in mothers

(Figure 4.3) (F1,40 = 5.26, P = 0.026) but not in offspring (F1,40 = 0.50, P = 0.483). The

strength of correlation also increased steadily with the number of microsatellites deployed in

mothers and to a lesser extent in offspring (Figure 4.4A). Conversely, the estimation error of the

parameter g2, which quantifies the extent to which heterozygosities are correlated across loci,

decreased with increasing marker number (Figure S2). Overall, g2 was significantly positive

(0.0022, P = 0.032 based on 1,000 iterations of the dataset), indicating that heterozygosity is

correlated across the genome.
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Figure 4.4: Dependency of the strength of geneধc associaধons on the number of randomly sampled
microsatellite loci. Strength of associaধon was quanধfied as the correlaধon coefficient (r) between (A)
sMLH and the number of compounds in an individual’s chemical fingerprint (gray symbols) and the sum
of an individual’s factor 1 and factor 2 values (black symbols), ploħed separately for mothers (circles) and
offspring (squares); (B) relatedness and Bray-Curধs similarity at the 10 best substances in mothers (see
Methods for details). Mean ± SE of five resamplings of the data are shown for each point. The dashed
lines represent significance thresholds.

Factor Analysis.

Chemical fingerprints are highly complex and may contain numerous compounds influenced

by nongenetic factors. We therefore used principal axis FA to decompose the multidimensional

chemical data into four factors (see Methods for details). Fitting the scores of all four factors

together in a generalized linear model (GLM) of maternal heterozygosity, factors 1 and 2 were

retained as significant predictor variables (Table 4.1, mother’s sMLH) and together explained

almost twice as much deviance as the number of compounds in an individual’s chemical

fingerprint (23.4 vs. 11.9%, respectively). A simple GLM of sMLH fitting the sum of the two

factors as a single explanatory variable explained roughly the same amount of deviance (23.4%,
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Table 4.1: Generalized linear models of sMLH in mothers and the colony from which an animal was sam-
pled.

Term Slope F df P

Mother’s sMLH (n = 41, total explained deviancs = 23.40%
Factor 1 0.028 5.69 1 0.022

Factor 2 0.028 5.83 1 0.021

Colony (n = 82, total explained deviance = 56.26%
Factor 4 0.38 102.88 1 <0.0001

F1,39 = 11.91, P = 0.001). In contrast, none of the factors were significantly associated with

offspring heterozygosity.

To test whether any of the factors are also associated with genetic relatedness, we used

partial Mantel tests to derive the statistical significance of each factor while controlling for

the others (see Methods for details). Factor 1 was significantly correlated with relatedness in

mothers (Mantel’s r = -0.123, n = 41, P = 0.028) (Figure S3) but not in offspring (Mantel’s r

= 0.024, n = 41, P = 0.65). None of the other factors correlated significantly with relatedness

in either mothers or offspring. As with the signal of heterozygosity, the strength of association

between factor 1 and relatedness increased steadily with marker number (Figure 4.4B).

We next constructed a GLM to test for differences in the values of each of the four factors

between the two colonies (Table 4.1, colony). Factors 1, 2, and 3 did not differ significantly,

whereas factor 4 exhibited a highly significant difference between the colonies (Figure 4.5).

Thus, factors 1 and 2 both show correlations with genetic traits as well as overlapping dis-

tributions between colonies, factor 3 is not significantly associated with any of the variables

we measured, and factor 4 represents substances that discriminate the two colonies and must

therefore be environmentally influenced.

Idenধficaধon of Important Substances.

To identify substances that contribute most strongly toward chemical similarity within mother-

offspring pairs, we used the ‘similarity percentages’ routine (SIMPER, see Methods). Selecting

the two most important compounds for each of the 41 mother-offspring pairs, we identified a

total of 12 substances (Table S4, mother-offspring similarity). These substances yield a much

stronger pattern of within-pair mother-offspring similarity (ANOSIM, global R = 0.68, P <

0.0001) than was obtained for the full dataset. Similarly strong patterns were obtained separately

for each of the colonies (special study beach: ANOSIM, global R = 0.53, P < 0.0001; freshwater

beach: ANOSIM, global R = 0.31, P = 0.001).
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Figure 4.5: Distribuধon of factor scores of individuals sampled from the two seal colonies. Factors 1,
2, and 4 are shown in A, B, and C, respecধvely. Freshwater beach is shown in red and the special study
beach is shown in blue
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We also used SIMPER to search for substances accounting for most of the chemical dis-

similarity between the two colonies. This approach identified a total of 15 substances (Table S4,

colony dissimilarity) that collectively yield a much higher global R value (ANOSIM, global R

= 0.77, P < 0.0001) than was obtained for all of the chemicals. To identify substances associated

with genetic relatedness, we used the BIO-ENV procedure embedded in a bootstrap framework

(see Methods for details). We obtained a subset of 10 substances (Table S4, relatedness) that

consistently occurred within the ‘best’ subsets (i.e., maximizing the relationship between chem-

ical similarity and relatedness) over all 10 x 106 bootstrap samples and collectively maximized

the relationship between chemical distance and relatedness (Figure S4). Chemical similarity

based on these 10 substances was significantly associated with genetic relatedness (Mantel’s r =

0.164, n = 41, P = 0.001).

Finally, we cross-referenced the three lists of substances to evaluate any potential overlap.

Of the 12 compounds carrying the strongest signal of mother-offspring similarity, 9 also oc-

curred in the subset of chemicals that differ between the two colonies, implying that they may

be influenced by environmental conditions ashore. Remarkably, an additional two compounds

overlapped with the best subset of chemicals associated with genetic relatedness. The mass spec-

tra and Kovats indices of these substances indicate close resemblance to the known pheromones

ethyl-9-hexadecenoate and heptadecanoic acid (see Discussion and Table S4, relatedness).

Discussion

Although mother-offspring recognition is under strong selection in many species, little is known

about its chemical basis, particularly in natural populations of nonmodel organisms. We show

that fur seal pups are highly similar to their mothers in their chemical fingerprints and that

this similarity is largely encoded by a handful of substances that also carry information about

either colony or genotype. Our findings provide intriguing insights into how females could use

chemical information to recognize their offspring and may also help to explain how fur seals

appear capable of exercising mate choice for heterozygous and unrelated partners (Hoffman

et al., 2007b).

Our study was partly motivated by the discovery that female Australian sea lions can identify

their pups using only olfactory cues (Pitcher et al., 2011b). In most vertebrate species, chemical

fingerprints show marked differences by sex, age, and reproductive status (Caspers et al., 2011),

a pattern that is partly reflected in our data because it is only the mother’s chemical fingerprints

that encode genotype. However, the overall chemical fingerprints of mothers and offspring
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are still very similar, raising the possibility that self-referent phenotype matching (Blaustein,

1983) could be used in mother-pup recognition. This is a conceptually simple mechanism by

which the own phenotype is a representation or template used for the recognition of relatives.

Self-referent phenotype matching has been demonstrated in a variety of mammalian, bird, and

fish species (Hauber and Sherman, 2001). However, further experimental evidence would be

needed to show that mother-offspring recognition in fur seals relies on self-matching rather

than social learning. Interestingly, allosuckling rates vary considerably among pinniped species,

from 6% in New Zealand sea lions to up to 90% in Hawaiian monk seals, suggesting that

mother-pup recognition abilities may vary among species (Pitcher et al., 2011a). The Antarctic

fur seal has one of the lowest observed rates of allosuckling (Hoffman et al., 2005), which is

consistent with the strong pattern of chemical similarity we find between mothers and their

pups.

Although chemical fingerprints are widely assumed to encode genetic traits, such as re-

latedness and individual heterozygosity, only a handful of studies have reported the expected

associations. Moreover, chemical profiles typically change with age and reproductive status

(Caspers et al., 2011) and genetic correlations have, to our knowledge, only been detected in

breeding adults (Boulet et al., 2009; Charpentier et al., 2008). Analyzing the relationship be-

tween heterozygosity and chemical complexity separately for mothers and pups shows a clear

correlation that increases with the number of loci for mothers, a pattern that is weak or lacking

in pups (Figure 4.4A). Because of the consistency of our results with the literature, we believe

this reflects a genuine functional difference between the chemical fingerprints of mothers and

pups.

We also find a marked difference in the way that heterozygosity and relatedness are encoded

in chemical fingerprints. Heterozygosity is detectable in the overall fingerprint, as it is correlated

with the number of chemicals, whereas relatedness is encoded by a small subset of chemicals,

whose signal is diluted by analyzing the overall chemical fingerprint. The diversity of chemicals

reflected in heterozygosity could be the result of genetic polymorphisms in the enzymes involved

in the synthesis of semiochemicals (Boulet et al., 2009) but may also be influenced by condition

dependent factors (see below). In contrast, it makes sense that genetic relatedness could be

encoded by a small subset of chemicals that potentially reflect certain genes, such as the MHC,

a highly polymorphic cluster of immune genes detectable through scent (Yamazaki et al., 1979;

Wedekind et al., 1995).

In natural populations, environmental effects on chemical fingerprints are likely to be par-

ticularly strong. The only study of a free-ranging, natural population to have detected an as-

sociation with genotype used PCA to reduce the dimensionality of the chemical data (Leclaire
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et al., 2012). However, this approach is not ideally suited to detecting such signals because a

principal component that explains maximal variance may not necessarily provide an optimal

representation of the underlying genotype. We applied PCA to our dataset but obtained no

significant correlations between any of the resulting principal components and relatedness, and

a weaker signal of heterozygosity than was obtained using FA. This result could be because of

the so called ‘simple structure’ that is obtained by rotation of the factors within FA (Preacher

et al., 2013). This results in each substance loading primarily on a single factor and not on

the others, meaning that the factors represent subsets of variables that covary and are therefore

likely to have a shared basis, such as genes or the environment.

FA was considerably more successful than PCA at detecting patterns relating to genotype

within our chemical dataset. Factors 1 and 2 together explained almost twice as much of the

deviance in heterozygosity as a simple regression on the number of substances, and relatedness

was significantly associated with factor 1 but not with Bray-Curtis similarity based on the overall

fingerprints. Because each factor mostly represents a subset of the total pool of chemicals,

this finding is consistent with Hurst and Beynon’s suggestion that the selective assessment of

specific semiochemicals may allow individuals to assess genotype more accurately than from

entire chemical fingerprints (Hurst and Beynon, 2010).

It is unclear why factor 1 carries information about both heterozygosity and relatedness,

whereas factor 2 correlates only with heterozygosity. One possibility is that heterozygosity and

relatedness are to some extent signaled by the same substances, potentially deriving from the

MHC. As the substances loading on factor 2 are essentially uncorrelated with those loading

on factor 1, we speculate that heterozygosity may influence the chemical fingerprint through

two or more different pathways. Factor 1 could thus represent a direct pathway from genes

to the chemical fingerprint, whereas factor 2 may represent an indirect pathway where body

condition or the microbiome could be possible mediators. Future work will aim to explore

these possibilities.

An important strength of our study was a sampling design that facilitated disentangling

genetically encoded substances from those influenced by the environment. We found that

factors 1 and 2, which both encode some aspect of genotype, did not differ significantly in

the distribution of factor scores between the colonies, whereas factor 4, which carried no

discernible genetic information, showed a highly significant difference. These differences could

either be a result of environmental chemicals that directly contribute toward the profile, or could

reflect alterations to the chemical fingerprint caused by different conditions on the beaches (e.g.,

temperature, wind, solar radiation). We would need to sample more colonies to determine the

concrete causes.
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Another important aspect of our study design was the unusually high genetic resolution

provided by 41 microsatellites. Most studies use around 10-15 loci, which for our dataset was

insufficient to detect a significant correlation between maternal heterozygosity and compound

richness (Figure 4.4A). However, the strength of correlation increased steadily as more mi-

crosatellites were deployed until a highly significant relationship was obtained with the full

marker panel. Similarly, the error with which the parameter g2 was estimated from the genetic

data decreased steadily with increasing marker number. This finding is consistent with the

suggestion that, as long as heterozygosity is correlated across the genome (as is the case where

appreciably inbred individuals are present), increasing the number of markers should improve

the estimation accuracy of genome-wide heterozygosity, leading to a strengthening of effect

size (Balloux et al., 2004; Hoffman et al., 2010). A similar pattern was also obtained for genetic

relatedness, suggesting that, if many thousands of genetic markers could be deployed, an even

greater proportion of the chemical variance should be explicable by genotype (Hoffman et al.,

2004).

In many species, heterozygosity is associated with fitness (Hansson and Westerberg, 2002).

In Antarctic fur seals, multilocus heterozygosity at nine microsatellites correlates with early

survivorship and breeding success in females (Forcada and Hoffman, 2014), as well as repro-

ductive success in males (Hoffman et al., 2004). Females of this species also appear to exert

mate choice based on their partner’s genotype (Hoffman et al., 2007a) but it is unclear how

this could be achieved. The finding that heterozygosity and relatedness are both encoded in

mother’s chemical fingerprints lends support to the hypothesis that chemical cues could be

involved, although unfortunately we were not able to include adult males in this study be-

cause they are challenging to capture and sedate. Nevertheless, as male fur seals emit a strong

musky odor (Ling, 1972), which has been proposed to attract females during the mating sea-

son (Hamilton, 1956), it seems plausible that genotype could also be encoded in adult male

chemical fingerprints.

To explore the extent to which genes and the environment influence mother-offspring

similarity, we first attempted to identify the most important substances associated with mother-

offspring similarity, colony dissimilarity, and genetic relatedness. We obtained relatively small

subsets of 12, 15, and 10 chemicals, respectively. In the case of mother-offspring similarity and

relatedness, these subsets yielded much stronger associations than were obtained for the overall

fingerprints. This result suggests that SIMPER and BIO-ENV were successful in identifying

important chemicals within the total set of 213 substances, although this does not preclude

additional chemicals playing a lesser role. It is also noteworthy that as many as 10 or more

chemicals appear to encode relatedness, given that a single locus is expected to provide little

81



Chemical fingerprints

power to distinguish anything other than close relatives (Hurst and Beynon, 2010).

Evaluating the overlap between the subsets of chemicals associated with mother-offspring

similarity, colony dissimilarity, and genetic relatedness revealed an interesting pattern. Of the

top 12 substances accounting for the similarity between mothers and their pups, 9 also oc-

curred in the subset of chemicals that showed the greatest differences between the two colonies.

Although our analysis is not exhaustive, as we focused only on the most important substances,

this nevertheless suggests that chemical similarity within mother-offspring pairs is strongly in-

fluenced by the local environment. A further two substances also overlapped with the subset

of chemicals associated with genetic relatedness, implying that mother-offspring similarity also

has a genetic basis. Both of these substances reveal similarity to known pheromones, consistent

with the previous suggestion that pheromone-like chemical signals may play an important role

in mother-offspring recognition across a variety of taxa (Vaglio, 2009).

Little is currently known about the specific chemicals that signal genetic relatedness in

vertebrates (Hurst and Beynon, 2010). Although we were only able to putatively identify three

of the top 10 substances encoding relatedness using the National Institute of Standards and

Technology (NIST) database, the mass spectra and Kovats indices of these compounds reveal

close resemblance to the known pheromones ethyl 9-hexadecenoate, heptadecanoic acid and

ethyl stearate (Table S4, relatedness). According to the pherobase database, all three of these

substances are part of the chemical communication system of a variety of different taxa, ranging

from bumblebees to badgers. Heptadecanoic acid, for example, is a known pheromone of 33

different species, including 26 vertebrate taxa. However, to act as a pheromone in a given

species, a chemical must meet a number of strict criteria (Wyatt, 2015), which would require

experimental evidence (see below).

Although we captured a large number of substances of varying volatility, we only recovered

compounds soluble in ethanol and which could be detected by GC-MS. Extraction with other

solvents was not possible because of logistic reasons. Nevertheless, even though our sampling

of chemicals is likely to be incomplete, our analyses revealed a number of statistically significant

and potentially biologically relevant patterns. In addition, we detected a number of chemicals

that may carry important information. However, because some of these substances may have

been further metabolized after extracting them from the skin (Theis et al., 2013), we cannot

exclude the possibility that some of the putatively identified compounds could be breakdown

products.

Finally, biologically relevant chemical cues can be transferred in a variety of ways, from

volatile substances recognized by olfaction to chemicals that act when two individuals are in
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physical contact (Wyatt, 2014b). Because adult female fur seals and their pups conduct naso-

nasal inspections during the recognition procedure (Dobson and Jouventin, 2003), it is possible

that some of the chemicals may act through contact. To unequivocally determine the biological

relevance of the chemicals we have identified, as well as their precise mode of action, would

require behavioral assays in the field. This will be challenging, but our results provide the basis

for testable hypotheses on potential chemical signals and the substances involved.

Methods

Study Site and Field Methods.

Forty-four mother-offspring pairs were sampled from two breeding colonies: freshwater beach

and special study beach, separated by ~200 m (Figure 4.1) on Bird Island, South Georgia

(54°00’ S, 38°02’ W). Breeding females and their pups were captured and restrained on land

using standard methodology (Gentry et al., 1982). Seal capture and restraint were part of annual

routine procedures of the Long Term Monitoring and Survey program of the British Antarctic

Survey. We obtained chemical samples by rubbing the cheek, underneath the eye, and behind

the snout with a sterile cotton wool swab. Each swab was individually preserved in a glass vial

in 60% (vol/vol) ethanol stored at −20°C. All of the samples were obtained immediately after

capture by the same team of two seal scientists at both colonies. Tissue samples for genetic

analysis were collected as described by Hoffman et al. (Hoffman et al., 2003) and stored

individually at −20°C in the preservative buffer 20% (vol/vol) DMSO saturated with salt.

Fieldwork was approved by the British Antarctic Survey Ethics Review Committee. Samples

were collected and retained under permits issued by the Department for Environment, Food

and Rural Affairs (DEFRA), and in accordance with the Convention on International Trade

in Endangered Species of Wild Fauna and Flora (CITES).

Chemical Analyses.

We first took 1 mL of each sample and allowed the ethanol to evaporate at room temperature

under a fume hood for a maximum of 12 h before resuspending in 50 µL dichlormethane

for subsequent processing. The samples were then analyzed on a GC equipped with a VF-

5 ms capillary column (30 m size x 0.25 mm inner diameter, DF 0.25, 10-m guard column;

Varian) and coupled to a quadrupole mass spectrometer (Focus GC-DSQ MS system, Thermo
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Electron). A blank sample (control with cotton wool and ethanol) and an alkane mix (C8-

C28) were analyzed as well. One microliter of each sample was injected into a deactivated

glass wool-packed liner at an inlet temperature of 225°C and processed in a splitless mode.

Carrier gas (He) flow rate was held at 1.2 mL/min. The GC run was initiated at 60°C for

3 min then ramped at 10°C/min to 280°C, where it remained for 20 min. The transfer line

temperature was set to 280°C and mass spectra were taken in electron ionization mode at 70 eV

with five scans per second in full-scan mode (50-500 m/z). GC-MS data were processed using

the program Xcalibur (Thermo Scientific). To ensure that the scoring of compounds was as

objective as possible, we wrote a custom R script (available on request) that compensated for

minor shifts in retention times among chromatograms by maximizing the number of shared

components between samples through very small (≤0.03 ms) shifts in the retention time. To

double-check the reliability of the scoring, ~10% of compounds were selected at random and

scored by eye.

Geneধc Analysis.

Total genomic DNA was extracted from each sample using a standard phenol-chloroform

protocol and genotyped at 43 highly polymorphic microsatellite loci (see Table S1 for details).

These were PCR-amplified in eight separate multiplexed reactions using a Type It Kit (Qiagen)

as described in Table S1. The following PCR profile was used: one cycle of 5 min at 94°C; 24
cycles of 30 s at 94°C, 90 s at Ta°C and 30 s at 72°C; and one final cycle of 15 min at 72°C (see

Table S1 for Ta). Fluorescently labeled PCR products were then resolved by electrophoresis on

an ABI 3730xl capillary sequencer and allele sizes were scored automatically using GeneMarker

v1.95. To ensure high genotype quality, all traces were manually inspected and any incorrect

calls were adjusted accordingly.

Genepop (Raymond and Rousset, 1995) was used to calculate observed and expected het-

erozygosities and to test for deviations from HWE, separately for mothers and pups, specifying

10,000 dememorizations, 1,000 batches, and 10,000 iterations per batch. Two loci that devi-

ated from HWE in either mothers or pups after table-wide correction for the FDR using

Q-value (Storey, 2002) were excluded from subsequent analyses, leaving a total of 41 loci

(Table S1). Because milk stealing is common in fur seals and can lead to errors in the as-

signment of mother-offspring pairs in the field (Hoffman et al., 2005), we used the program

Colony v2.0.5.0 (Jones and Wang, 2010) to verify that all of our mother-offspring pairs were

genuine. Coancestry v1.0.1.2 (Wang, 2011) was then used to generate a pairwise relatedness

matrix based on Queller and Goodnight’s statistic, r (Queller and Goodnight, 1989). Each

84



Chemical fingerprints

individual’s heterozygosity was expressed as sMLH, which is defined as the total number of

heterozygous loci in an individual divided by the sum of average observed heterozygosities in

the population over the subset of loci successfully typed in the focal individual (Coltman et al.,

1999). The two-locus heterozygosity disequilibrium g2, which measures the extent to which

heterozygosities are correlated across loci, was then computed using the method of David et al.

2007. Sensitivity of this estimate to the number of loci was explored by randomly selecting

different sized subsets of loci and recalculating g2 1,000 times.

To test for population structure, Bayesian cluster analysis of the microsatellite dataset was im-

plemented using Structure v2.3.3 (Pritchard et al., 2000). Structure uses a maximum-likelihood

approach to determine the most likely number of genetically distinct clusters in a sample (K) by

subdividing the dataset in a way that maximizes HWE and minimizes LD within the resulting

clusters. Separately for mothers and pups, we ran five independent runs for each value of K

ranging from 1 to 10 using 1 x 106 Markov chain Monte Carlo iterations after a burn-in of 1 x

105, specifying the correlated allele frequencies model and assuming admixture. The most likely

K was then evaluated using the maximal average value of Ln P(D), a model-choice criterion

that estimates the posterior probability of the data.

Staধsধcal Analysis Framework.

Any chemicals appearing in the control sample or present in only one sample were excluded

from further analyses, leaving a total of 213 substances. To explore the completeness of our

sampling, we estimated the maximum number of substances present in the population using the

Michaelis-Menten Function, based on a permutation procedure (9,999 iterations). Up to 229

substances might be expected in a larger sample of individuals, suggesting that we have sampled

around 95% of all potential substances. Analyses were conducted on the relative proportion

of each substance (%) to the total amount of substances (Sun and Müller-Schwarze, 1998).

We then used a three-step analytical framework to: (i) visualize and statistically analyze overall

patterns of chemical fingerprint similarity in relation to breeding colony, mother-offspring pair,

relatedness, and heterozygosity; (ii) tease out subsets of chemicals containing genotypic and

environmental information; and (iii) identify specific compounds involved. Computer code

and documentation are provided as a PDF file written in Rmarkdown (Dataset S1) together

with the data (Dataset S2).
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Overall Paħerns of Chemical Similarity.

The chemical fingerprint data were visualized using nonmetric multidimensional scaling (Clarke,

1999) based on a matrix of pairwise Bray-Curtis similarity values calculated from the log(x+1)-

transformed data. This approach allows visualization of a high-dimensional chemical similarity

space by placing each individual in a 2D scatterplot such that ranked between-individual dis-

tances are preserved, points close together representing individuals with relatively high chem-

ical similarity. Differences between a priori defined groups (i.e., the breeding colonies and

mother-offspring pairs) were then analyzed through nonparametric ANOSIM (Clarke, 1999)

using 99,999 iterations of the dataset. ANOSIM is a permutation test that provides a way

to evaluate whether there is a significant difference between two or more groups of sampling

units without the need for assumptions concerning data distribution or homoscedasticity. These

analyses were implemented in R using the vegan package (Oksanen et al., 2017).

Factor Analysis.

To dissect apart genetic from environmental components, we performed a principal axis FA

on the chemical data. We used an oblique rotation technique (promax), which allows the

factors to be correlated. This type of rotation was used because it is possible that certain

compounds within the chemical fingerprint may encode more than one genetic characteristic

(e.g., heterozygosity and relatedness) and could thus be correlated with more than one factor.

FA cannot be applied when a dataset has more variables than observations (D»N) because

the covariance matrix is singular and an inverse cannot be computed. We therefore used the

function factor.pa.ginv() from the R package HDMD, which uses a generalized inverse matrix

(McFerrin, 2015). An important step in factor analysis is choosing a reasonable number of

factors to represent the data (Preacher et al., 2013). As our dataset is complex and contains

many zero entries, some common methods like parallel analysis may lead to an impracticably

large number of factors. Consequently, we applied two methods for determining the optimal

number of factors. First, we used the Bayesian Information Criterion, which optimizes the

trade-off between model complexity and model fit, and second we used a scree plot, which

visually depicts the drop in the factor eigenvalue course (Preacher et al., 2013; Cattell, 1966).

Both methods suggested four factors.
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Generalized Linear Models.

To explore the contributions of each of the four factors toward the signal of heterozygosity,

we constructed separate GLMs of mother and offspring sMLH, in which we fitted all four

factors together and specified a Gaussian error structure. We then tested for factors that differ

significantly between the two colonies by constructing a GLM with colony as the response

variable (modeled using a binomial error structure) and the values of the four factors fitted as

predictors. For each GLM, we initially implemented a full model containing all of the predictor

variables and then used standard deletion testing procedures based on F tests (Crawley, 2002)

to sequentially remove each term unless doing so significantly reduced the amount of deviance

explained.

Parধal Mantel Tests.

To test for associations between each of the factors and genetic relatedness, we used the related-

ness matrix based on all 41 loci as the response variable and fitted as predictor variables matrices

of pairwise similarity at each of the four factors using a Partial Mantel test implemented in the

ecodist package (Goslee and Urban, 2007). This randomizes the rows and columns of one

dissimilarity matrix but leaves the others unpermuted. Separate models were constructed for

mothers and offspring, each using 10,000 permutations of the dataset. Finally, we computed

the Spearman rank correlation (Mantel’s r) and two-tailed P value for the association between

relatedness and a factor matrix given the other factors as covariates.

Idenধficaধon of Chemicals.

We next attempted to identify specific chemicals associated with breeding colony, mother-

offspring similarity, and genetic relatedness. First, we assessed the contributions of specific

substances to the similarity within groups, using the ‘similarity percentages’ routine (SIMPER)

(Clarke and Warwick, 2001). This process decomposes all Bray-Curtis similarities within a

group into percentage contributions from each compound, listing the compounds in decreasing

order of importance. As groups, we specified (i) the two breeding colonies and (ii) the 41

different mother-offspring pairs.

Second, to explore the contributions of individual chemicals to the signal of genetic re-

latedness, a continuously distributed variable, we used the BIO-ENV procedure (Clarke and

Warwick, 2001) to identify the ‘best’ subset of compounds within the chemical abundance
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matrix that maximizes the rank correlation between pairwise Bray-Curtis similarities and relat-

edness. However, with over 200 different chemicals being present in the chemical data matrix,

it seems likely that this approach could yield spurious associations, especially given that some

of the chemicals were present only in a few individuals. For this reason, we embedded the

BIO-ENV procedure in a bootstrap analysis as follows: (i) we randomly subsampled 20 of

the 41 mothers 20,000 times; (ii) for each subsample, we randomly selected 10 chemicals, each

500 times; (iii) for each of the resulting 10 x 106 subsamples, comprising 20 individuals and

10 compounds, we applied the BIO-ENV procedure and saved the compounds present in the

best subset. We then summed up the occurrences of every chemical throughout all of the

subsets and sorted them in decreasing order to represent their relative importance. The basic

assumption of our approach is that random correlations will not be consistent over the different

subsamples of individuals and compounds, whereas compounds that genuinely encode relat-

edness should be recovered consistently across many subsets. This procedure was conducted

in R using the bio.env() function in the sinkr package (Taylor, 2015).

Identification of putative substances encoding mother-pup similarity, colony differences,

and relatedness were based on two steps: (i) comparing the mass spectrum of a specific

substance with the best match of the NIST library (NIST 2005 and 2008) and (ii) calcu-

lating the Kovats Retention Index and comparing this to the literature value (obtained from

urlwww.Pherobase.com and urlwww.chemspider.com). Kovats Indices (Kováts, 1958) were

calculated by running a sample of linear alkanes (C8-C28) under the identical GC-MS condi-

tions as described above.
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Young elephant seals are making friends and start gathering in groups after being abondoned by their mothers.
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Abstract

Throughout their life-histories, sexually dimorphic males and females often face extremely

different challenges, which manifest themselves in a variety of sex-specific adaptations. Most

attention to date has been given to visibly dimorphic features such as body size or colour

patterns, and little is known about sexual dimorphism of more complex or subtle phenotypes.

A promising new avenue for a broader understanding of life-history adaptations is the study

of the microbial communities which inhabit all organisms. Despite the variety of potential

adaptive functions of microbiota, studying host-microbe interactions in the wild is difficult,

as environmental factors such as diet strongly shape individual microbial communities and

potentially mask more subtle intrinsic influences. Here, we studied the gut microbiota of

young northern elephant seals in the post-weaning period, a critical developmental time frame

of several weeks where elephant seals are abandoned by their mothers and are not yet able to

feed by themselves. We show that the gut microbiota changes substantially after weaning despite

the absence of food, but that each individual has a core microbiota. Notably, the change in

microbiota includes a substantial decrease in Bacteriodes and an increase in Prevotella, a pattern

that has previously been observed in young pigs and reflects a major dietary change from

milk feeding to solid food. Unlike other studies in wild organisms, we found that both alpha-

and beta-diversity are highly sex-specific, with males harbouring different and more diverse

microbial communities. Moreover, genetic relatedness correlated with microbial similarity in

males, where a large number of taxa contribute to the signal, but not in females. Importantly,

our study design controlled for dietary effects, suggesting that bacterial dynamics over time,

early sex-differences and host-genetic effects could be co-evolved adaptive mechanisms rather

than caused by differences in diet. Our study provides a careful examination of the early host-

microbe relationship in the northern elephant seal and suggests that gut microbiota can reflect

an early adaptation to markedly different sex-specific life-histories in one of the most sexually

dimorphic animals on earth.

Introducধon

Vertebrates are inhabited by vast amounts of microbes that increasingly emerge as key players

in their host’s biology and evolution (Bik et al., 2016; Ley et al., 2008; McFall-Ngai et al.,

2013; Moeller et al., 2014). The richest and arguably most complex microbial communities

are those that populate the gastrointestinal tract and are collectively termed the ‘gut microbiota’.

Gut microbes benefit their host in many ways, such as promoting the development of organs,
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helping with nutrient uptake and supporting the immune system (Cheesman et al., 2011;

Diaz Heijtz et al., 2011; Lathrop et al., 2011; Zhu et al., 2011). A disturbed gut microbiota can

result in a series of severe consequences for the host, ranging from autoimmune diseases and

infections to obesity (Giongo et al., 2011; Round and Mazmanian, 2009; Turnbaugh et al.,

2008). Moreover, the gut microbiota is highly dynamic across time and space and is influenced

by many factors. At a broader scale, the strongest determinants of the gut microbiota seem to

be phylogeny and diet, both of which lead to remarkably different bacterial communities across

host species (Bik et al., 2016; Ley et al., 2008; Muegge et al., 2011). At a finer scale, differences

in the gut microbiota within species are shaped by a combination of environmental factors such

as diet, location and season, behavioural factors such as social networks, and heritable factors

such as host genetics (Benson et al., 2010; Kurilshikov et al., 2017; Moeller et al., 2014; Ren

et al., 2017; Tung et al., 2015). Despite a growing body of studies investigating gut microbiota,

a big gap in the literature is marked by the scarcity of studies on wild organisms (Hird, 2017).

Most research to date focuses on humans and captive animals. Captivity, however, drastically

alters microbial communities due to controlled and less diverse diets (Hird, 2017) which makes

it difficult to make ecological and evolutionary inferences. Consequently, little is known about

the composition, development and function of the gut microbiota in the wild, despite its

potential to contribute to our fundamental understanding of ecology and evolutionary biology

of mutualistic symbiotic relationships (Hird, 2017; Zilber-Rosenberg and Rosenberg, 2008).

The mammalian gut is considered to be largely sterile in the womb (Perez-Muñoz et al.,

2017), but gets rapidly colonised by various microbes during and after birth. During these early

stages of life, the gut microbiota is of tremendous importance, and disturbances can impact host

development and impair metabolism, health and immunity (Candon et al., 2015; Cho et al.,

2012; Cox et al., 2014; Macpherson and Harris, 2004; Russell et al., 2012). It is therefore of

interest to identify and quantify which microorganisms populate the gut during an individual’s

development. Across the life-span of an organism, ontogeny appears to affect the composition

of the gut microbiota of a number of species (Clark et al., 2015; Langille et al., 2014; O’Toole

and Jeffery, 2015). However, the patterns of change can differ drastically depending on the

host. Bacterial diversity, for example, increases during development in humans, chickens, pigs

and ostriches (Ballou et al., 2016; Frese et al., 2015; Kundu et al., 2017; Videvall et al., 2018),

but decreases during maturation in zebrafish and African turquoise killifish (Smith et al., 2017;

Stephens et al., 2016). A mixed pattern has been observed in mice, where an early drop of

diversity after the initial transmission of maternal microbiota is followed by an increase after

the introduction of solid food (Pantoja-Feliciano et al., 2013). To our knowledge, patterns

of microbial colonisation during early development in wild animals are as yet unknown (Ren
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et al., 2017).

Every species’ life-history is determined by a series of challenges to which it must adapt, both

through physiological development and behaviour. A key element facilitating these adaptations

might be mutualistic or commensal microbiota. A particularly strong factor that might drive the

variation of microbial communities is sex, as males and females often experience very different

selection pressures due to differences in behaviour and physiology (Tarka et al., 2018). Several

of these differences could be directly and indirectly associated with the gut microbiota, such as

sex-specific immune responses (Klein and Flanagan, 2016) or sex-specific foraging behaviour

(Boeuf et al., 2000; Boinski, 1988; Lewis et al., 2002). Curiously, despite the important role of

sex-specific microbiota in humans (Markle et al., 2013), the impact of sex on the gut microbiota

of wild vertebrates seems to be non-existent or very small (Bennett et al., 2016; Bobbie et al.,

2017; Maurice et al., 2015; Ren et al., 2017; Tung et al., 2015; Videvall et al., 2018). However,

microbiota studies in wild populations are likely to be impacted by environmental factors, such

as diet or social group, which might mask the effect of intrinsic factors, such as sex.

Another largely open question for natural populations is how host genetics impacts the

microbiota. Most insights to date come from twin studies in humans or from different strains

of laboratory mice and suggest that the influence of host genetics is modest compared to

environmental effects (Kurilshikov et al., 2017). In contrast to inbred laboratory animals, wild

animals are likely to exhibit greater genetic variation and more complex microbiota, potentially

leading to stronger covariation. However, quantifying the impact of host genetics on gut

microbiota in the wild is even more difficult due to strong environmental effects (Bik et al., 2016;

Perofsky et al., 2017; Tung et al., 2015) which might blur the genetic signal. Consequently,

whether host genetics influences gut microbiota in the wild is unknown, despite the importance

of the question in the light of host-microbe evolution.

A particularly suitable species to investigate the intrinsic factors than shape the gut micro-

biota is the northern elephant seal (Mirounga angustirostris). This species combines an extreme

lifestyle with a predictable breeding season during which the animals stay ashore and can be

individually traced. Northern elephant seals are among the most sexually dimorphic mammals

on earth, with males being up to 3-4 times as heavy as females (Wilson and Mittermeier,

2014). This adaptation goes hand in hand with a highly polygynous mating system, in which

a single male can mate with dozens of females in a given season (Le Boeuf and Laws, 1994).

Consequently, males and females face very different challenges: during the breeding season,

males must continuously defend their harems against competitors, while females need to invest

substantial amounts of energy into nursing their pups. Neither males nor females feed during

the breeding seasons, with some males fasting for up to three months and females up to one
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month, despite the high energetic investment to provide high-fat milk to their young (LeBoeuf

and Ortiz, 1977). Outside the breeding season, elephant seals spend most of their lives at sea,

and even there, sex differences are striking. Males and females have very different foraging

strategies, with males feeding on benthic prey along the continental margin of North America,

and females feeding widely on pelagic prey in deeper waters (Boeuf et al., 2000). Therefore,

elephant seals have developed a series of sex-specific adaptations to these diverging life-histories,

but we do not know yet whether the gut microbiota is involved in these adaptations.

Here, we studied the gut microbiota of young elephant seals immediately from weaning

and during a 35-day period. This is an exceptional period to study gut microbiota, as all young

seals share one month of nursing and will spend the remaining seven weeks without feeding

until they leave the rookery (Reiter et al., 1978). Consequently, variation in gut microbiota will

be largely intrinsic rather than caused by different diets, behaviours or habitats. Within this

setting, we used repeated sampling of rectal swabs in combination with host genetic markers

to investigate (1) the core gut microbiota of the northern elephant seal, (2) the development

of microbiota across time, (3) sex-specific effects on the microbiota which could reflect early

life-history adaptations, and (4) whether host genetics shapes the early gut microbiota. To

our knowledge, this study is the first to investigate changes in gut microbiota during early

development in a truly wild mammalian population and to have a diet-controlled setting to

shed light on intrinsic impacts on microbiota in the wild.

Results

We investigated the development of the gut microbiota in young northern elephant seals

throughout their weaning period. Specifically, we sampled rectal swabs from 40 animals,

starting immediately after their mothers stopped nursing and returned to the sea (time point

T1) and repeatedly sampling each individual after two (T2) and four weeks (T3). The dif-

ferent time points therefore reflect different age classes. As a few animals were lost or found

dead during the study period, we ended up with 112 rectal swabs across three time points for

which we quantified bacterial communities using 16s rRNA sequencing. After assembling the

raw reads into amplicon sequence variants (ASVs) with DADA2 (Benjamin J. Callahan et al.,

2016) we retained 1063 ASVs with an average of 286 ± 67 ASVs (mean ± sd) per sample.

Furthermore, to quantify host genotypes, we took a small skin sample from the flipper of each

pup for microsatellite genotyping.

95



Gut microbiota

Broad characterizaধon of the gut microbiota

Overall, the main phyla were typical mammalian gut microbiota (Figure 5.1), with the majority

of ASVs belonging to the phyla Bacteroidetes (mean ± sd = 34% 2%), Firmicutes (mean ±
sd = 29% 1%), Fusobacteria (mean ± sd = 19% 3%), and Proteobacteria (mean ± sd = 13%
1%). Across time, the relative abundances of these four phyla remained relatively stable, except

for Fusobacteria, which drastically reduced during weaning (Figure 5.1). However, on a finer

taxonomic scale, we found drastic changes across the three time points (see below).

Figure 5.1: Relaধve abundance of the six most abundant bacterial phyla of the Northern elephant seal
pup gut (mean and SD across individuals) within three sampling points and across all sampling points.
ASVs with less than 50 reads in each category were discarded for this plot, reducing the dataset to six
Phyla and the Tenericutes Phylum to a single esধmate across all ধme points.

The core microbiota across individuals at different ages

We characterised the core microbiota at different developmental stages during the weaning

period by extracting ASVs that appeared in at least 95% of samples at each time point (Sup-

plementary Table 1 - 3). Directly after weaning (T1), we identified 21 core ASVs, with only

two ASVs from the genera Fusobacterium and Bacteroides making up more than 25% of the

average relative abundance across individuals. This pattern changed drastically at T2 and T3.

Here, we identified 15 and 35 core ASVs respectively, but the dominance of the two ASVs
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from T1 disappeared. Instead, a taxon not present during T1 became the most dominant ASV

during T2 and T3 (with an average of 4% relative abundance) and is part of the genus Ezakiella.

This is a recently discovered genus, of which only two species have been described; one from

fecal samples of a coastal human indigeneous Peruvian population (Patel et al., 2015) and one

from the human female genital tract (Diop, Raoult, Bretelle, & Fenollar, 2017). Closer to the

time of nutritional independence (T3), a peculiar shift happened. One taxon from the genus

Prevotella was the most successful colonizer and became the second most abundant genus. On

the other hand, the second most abundant taxon from the genus Bacteroides decreased substan-

tially (Figure 5.2). Both of these genera have previously been linked to diet-specific functions,

with many Bacteroides species being important for breaking down milk oligosaccharides and

Prevotella being associated with plant polysaccharide consumption (Gorvitovskaia, Holmes, &

Huse, 2016; Wu et al., 2011).

Figure 5.2: Relaধve abundance of northern elephant seal pup gut core microbiota across age and sex,
ploħed on the genus level. Shown are all taxa that appear within the top 10 core microbiota (See Sup-
plementary table 1-3) within any of the three sampling points. Before visualizaধon on the log scale, taxa
with relaধve abundances below 0.01% within a sample were discarded. One genus, which could not be
assigned, was excluded from the plot.
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Microbiota composiধon changes with age and differs between sexes
and individuals

To quantify the major determinants of gut microbiota similarity across samples (beta diversity),

we used a multidimensional scaling plot (MDS) of the Bray-Curtis similarities between bacterial

samples for visualisation and PERMANOVA (Anderson, 2001) for the statistical analysis. The

MDS revealed three factors that had a strong impact on variation in the gut microbiota (Figure

5.3 and Figure 5.4). Figure 5.3 reveals strong effects of sex and age of individuals (time points).

Along the first axis, which accounted for 28.5% of the multidimensional spread in the data,

there is a clear transition in microbial composition from the moment of weaning (T1) to the

last sampling point (T3) shortly before the young seals depart to the sea, with samples from T2

being intermediate. A strong separation is also visible along axis 2, which accounted for 13.4%
of the variation and reveals differences between the two sexes across the three age stages. The

third determinant of microbiota similarity across samples was the host itself, which is reflected

in the close clustering of samples taken from the same individual (Figure 5.4).

To statistically analyse the observed group differences, we used PERMANOVA as a model

based, non-parametric method to fit age, sex, and individual in a single model. Overall, age

and sex each explained 15% of the variation in microbial similarities (age: R2 = 0.15, p < 0.001,

sex: R2 = 0.15, p < 0.001), while between-individual differences accounted for 40% of the

variation (R2 = 0.40, p < 0.001). After fitting the model with all samples, we compared specific

time points post-hoc using PERMANOVA, while still controlling for sex and individual in the

model. The transition from T1 to T2 explained 10.3% of the variation (R2 = 0.10, p < 0.001)

while 4.1% was explained due to microbial differences between T2 and T3 (R2 = 0.04, p <

0.001). The PERMANOVA assumption of multivariate homogeneity of group variances was

met across all tests, as none of the contrasted groups differed in their dispersions (all p > 0.05).

Consequently, all PERMANOVA results reflect differences in mean values across groups rather

than differences in group dispersions (see Materials and methods).

Differenধal abundance of specific taxa across age and between sexes

At a finer scale, we used boxplots and raw data to visualize trends across time and sex for

different hierarchical taxonomic ranks, from genus (Figure 5.2) to phylum, class, and order

(Supplementary Figures 1-3). Here, it becomes apparent that the dynamics are quite complex,

with multiple colonization and extinction events and different patterns depending on the rank.

To resolve this problem, we quantified how many and which ASVs or taxa are differentially
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Figure 5.3: Gut microbiota similarity of northern elephant seal pups across sex and ধme. Mulধdimen-
sional scaling (MDS) plot of Bray-Curধs distances between 113 Northern elephant seal samples across
three ধme points (color) and the two sexes (shape). All samples were normalized using the variance stabi-
lizing normalizaধon implemented in DeSeq2 and axes were length-scaled to reflect the Eigenvalues of the
underlying principle coordinates.

abundant across time points and sexes using the DESeq2 method (Love, Huber, & Anders,

2014). We provide a detailed description of all differential abundances including figures in the

Supplementary Material 2. Overall, the majority of significant changes in bacterial abundance

of both males and females happens between T1 and T2 (F: n = 100, M: n = 106) with less

than half as many taxa changing in abundance from T2 to T3 (F: n = 43, M: n = 26). Most

of these changes happen in taxa belonging to the Clostridia and Bacteroidia in both sexes and

both age transitions (see Supplementary Figure 7).

The number of taxa with significant differential taxa between males and females was high at

all time points (T1: n = 96, T2: n = 102, T3: n = 80, see Supplementary Figure 8), and more

than a third of them belonged to the Clostridia Family XI and the family Ruminococcaceae.

These numbers also reflect that microbiota differences between the sexes were fairly stable

during the sampling period (cf Figure 5.2).
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Figure 5.4: Gut microbiota similarity of samples from the same host. Shown is the same MDS as in Fig-
ure 5.1, which was split into four plots to avoid over-ploষng. Consequently, each plot is showing only a
quarter of the samples, while samples from the same individual are shown in the same color within each
subplot.

Beta diversity of gut microbiota is repeatable for individual hosts

To investigate the stability of individual gut microbiota during development, we calculated the

repeatability of microbiota beta diversity. We found that the gut microbiota beta diversity of

individuals shows a low but significant repeatability (r = 0.32, 95% CI [0.1, 0.54] which is

also apparent in the similarity between samples from the same host depicted in Figure 5.3.

Consequently, Northern elephant seal pups host individually distinct gut microbiotas, but those

are still changing drastically throughout the weaning period, as detailed in Figure 5.2 and below.

Alpha diversity is constant over ধme, higher for males and not repeat-
able

Bacterial diversity is frequently quantified in microbiota studies and is usually found to change

quite drastically during the development of mammals (Clark et al., 2015; O’Toole and Jeffery,

2015). As a measure of alpha diversity we quantified the Shannon diversity, which takes into

account both species richness but also the relative abundances of different species. To investigate

the factors impacting microbial diversity, we constructed a Gaussian mixed model of Shannon
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diversity with sex and time point as fixed effects as well as host as random effect to investigate

patterns of change across sexes. The model explained little variation overall (R2 = 0.06, 95% CI

[0.01, 0.18]), but revealed a higher diversity for males than for females (β = 0.20, 95% CI [0.03,

0.39]). Shannon diversity however did not change between any two time points (T2 vs. T1:

(β = 0.12, 95% CI [-0.10, 0.34], T3 vs. T1: β = 0.12, 95% CI [-0.07, 0.34]). These patterns are

also shown as boxplots alongside the raw data in Figure 5.5. Contrary to individual microbial

composition (beta diversity), the alpha diversity of individuals was also not repeatable (r = 0.1,

95% CI [0.00, 0.3]).

Figure 5.5: Gut microbiota diversity of Northern elephant seal pups across sex and ধme. Shown is the
Shannon diversity of untransformed and unfiltered reads across three successive sampling-points during
the weaning period of northern elephant seals, split by sex. The beige triangles are samples from males
and the blue circles are samples from females. Also shown are Tukey boxplots.

Geneধc relatedness is correlated with bacterial similarity, but only in
males

A fundamental theme in microbial ecology is the importance of host genotype for the formation

of the gut microbiota. We approached this question by quantifying the correlation between

host genetic relatedness and microbial similarity (Figure 5.6). Surprisingly, Mantel tests showed

a significant association in males (r = 0.26, CI [0.17, 0.34], p = 0.0013), and this relationship

was visible across all three time points (Supplementary Figure 1). In contrast, we found no

relationship in females (r = 0.06, CI [0.00, 0.12], p = 0.41) and this also appeared to hold

true within each time point (Supplementary Figure 4). We followed up with a more in-depth
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investigation and explored how many taxa might be influenced by host genetics. Therefore, we

calculated the mantel correlation between genetic relatedness and microbial similarity based on

an increasing number of taxa, starting with the two most abundant (relative abundance) and

iteratively increasing the number by the next two most abundant taxa until we reached the full

dataset (Figure 5.7). For females, the pattern across all subsets reflects the results from the full

dataset and does not show a significant association between genetic relatedness and bacterial

similarity. For males however, an interesting pattern was revealed. Relatively few taxa contribute

strongly to the overall correlation and a peak was not reached until the 300 most abundant

taxa were included in the analysis. This might reflect that a large proportion of taxa are at least

slightly impacted by the host genotype as they contribute iteratively to an increasingly strong

correlation.

Figure 5.6: Relaধonship between pairwise gut microbiota dissimilariধes and geneধc relatedness
of Northern elephant seal pups. For every individual, the microbial data across all ধme points have
been merged by summing up taxa abundances. These data were then transformed using the variance-
stabilising transformaধon in DEseq2 before calculaধng Bray-Curধs dissimilariধes. Geneধc relatedness
was calculated based on microsatellite markers using the Loiselle esধmator, with higher values represent-
ing higher geneধc relatedness.

Discussion

Microbiota studies in wild populations are key to gain an understanding of the eco-evolutionary

role of animal-microbe relationships (Hird, 2017). However, these studies can be difficult to

interpret as environmental factors, such as diet (David et al., 2014b) can overshadow biological

effects. Here, we conducted an in-depth investigation of the gut microbiota, its development,
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Figure 5.7: Correlaধon between gut microbial similarity and geneধc relatedness of Northern elephant
seal pups for an increasing number of bacterial taxa, split by pup sex. Each data point shows the cor-
relaধon between the microbial Bray-Curধs dissimilarity and geneধc relatedness with 95% confidence
intervals calculated by non-parametric bootstrapping of samples. Bray-Curধs dissimilariধes were cal-
culated based on an increasing number of bacterial taxa, starধng with the two taxa yielding the highest
relaধve abundances across all samples and iteraধvely increasing the number always by the next two most
abundant taxa up to 1064, the complete dataset.

host-genetic effects, and sex-specific composition in weaned northern elephant seals. In partic-

ular, we designed our study to control for differences in diet, habitat, and behaviour, making

it possible to shed light on the more intricate and intrinsic factors shaping the gut microbiota.

We found four main factors which impact early gut microbiota, including age, sex, host, and

the genetic relatedness between hosts.

First of all, we showed that the gut microbiota at the time of weaning is already fairly

complex with an average of nearly 300 taxa per individual from 14 different phyla. Four of

these phyla are highly abundant, the Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria,

and have previously been shown to be the main phyla in most pinniped gut microbiota (Bik

et al., 2016; Glad et al., 2010; Nelson et al., 2013; Numberger et al., 2016). However, their

relative contribution varies drastically across studies, and this is likely to be a consequence of

differences in sampling methods, age of the study individuals, and a lack of longitudinal studies.

The patterns of development of early gut microbiota are difficult to compare with other
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mammals, as very few studies have conducted longitudinal sampling of gut microbiota during

early life. One mammalian system where the gut microbiota has been studied before and

during the weaning period is that of pigs, and the similarities with our results are striking.

First of all, the most abundant phyla in weaned pigs, as in this study, were Firmicutes and

Bacteroidetes (Alain B Pajarillo et al., 2014). Second, the dietary transition from nursing to

weaning was found to be reflected in a strong decrease in the genus Bacteroides combined with

a substantial increase in Prevotella (Frese et al., 2015; Alain B Pajarillo et al., 2014). Bacteroides

have been shown to break down milk oligosaccharides and are therefore important during

nursing (Marcobal and Sonnenburg, 2012; Marcobal et al., 2011), while Prevotella are associated

with plant polysaccharide consumption and are potentially important for the digestion of solid

food (Ivarsson et al., 2014). We found precisely the same pattern, with strongly decreasing

Bacteroides and substantially increasing Prevotella, which became the second most abundant

genus at T3. However, there are several interesting points here: (1) while Bacteroides decreased

in both males and females, Prevotella increased much more markedly in males than in females.

This might simply be due to a slower gut microbiota development in females but could also

reflect a sex-specific adaptation. (2) In pigs, an increase in Prevotella was associated with the

transition to a non-milk diet (Frese et al., 2015), but elephant seal weaners only start feeding at

sea and have not yet transitioned to a solid diet yet. Consequently, diet cannot be the cause of

an increase in Prevotella. This hints towards a case of co-evolution between host and microbe

but will require further study. (3) Unlike pigs, northern elephant seals are not omnivorous but

rather feed on squid and fish, which is why the increase in Prevotella is puzzling in the light

of current knowledge about the genus as a harvester of plant based fibers and polysaccharides

(Gorvitovskaia et al., 2016; Wu et al., 2011). However, we do not know how different the

Prevotella species and their associated functions are between these two studies.

Despite these substantial changes in the structure of gut microbial communities, which

include abundance changes, but also colonisation and extinction events, the alpha diversity of

gut microbiota was highly stable during the weeks after weaning. This is surprising as alpha

diversity across longitudinal microbe samples is usually found to change drastically within both

short and longer time scales (Ballou et al., 2016; Frese et al., 2015; Kundu et al., 2017; Videvall

et al., 2018). Consequently, the stability observed in this study might reflect the absence of

diet during our sampling period, which can be a major source of new microbial diversity

(Pantoja-Feliciano et al., 2013).

Patterns of beta and alpha diversity are frequently used to gain fundamental insights into

the structure of microbial communities and the factors impacting them. Nevertheless, none

of these measures provide direct insights into the stability of individual gut microbiota across
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time. This is a question that is usually addressed by calculating intra-class coefficients or re-

peatabilities. However, while the repeatability of alpha diversity can be readily calculated using

existing methods (Nakagawa and Schielzeth, 2010), the repeatability of beta diversity is a more

complex measure quantified as a distance matrix rather than a one-dimensional vector. Here,

we established a novel method by using the estimated multivariate sum of squares from a PER-

MANOVA (Anderson, 2001) model to calculate an ANOVA based repeatability (Nakagawa

and Schielzeth, 2010). Interestingly, while the individual repeatability of gut microbial compo-

sition, measured as beta diversity, was relatively low but clearly present, the alpha diversity of

individual gut microbiota was not at all repeatable. As a consequence, each individual elephant

seal pup appears to harbour a unique core gut microbiota, although this uniqueness is not

reflected in its diversity but rather in the continuous presence of core microbiota.

To understand the role of host-microbe interaction for ecology and evolution it is critical

to examine not just the environmental effects on microbiota composition, but also individual

specific effects that could provide mechanisms for co-evolution. A particularly strong factor

among which individuals of a species differ is their sexual identity. However, sex differences on

gut microbiota seem to be negligible or non-existent in wild populations (Bennett et al., 2016;

Bobbie et al., 2017; Maurice et al., 2015; Ren et al., 2017; Tung et al., 2015; Videvall et al.,

2018). This is surprising, given that the two sexes usually face very different selection pressures

which manifest in strong sex-specific adaptations. In stark contrast to the literature, we found

sex to be a strong and early determinant of gut microbiota variation in elephant seals and that

this difference is likely to be caused by intrinsic rather than environmental factors. Before our

first sampling, all elephant seal pups remained close to their mothers to nurse, so there would be

little variation in behaviour, diet, or social interactions. However, even directly after weaning,

males and females host very different gut microbiotas, despite the sexes not yet differing in

body size or secondary sexual features. Consequently, sex-specific microbiotas could be due

to very early intestinal or immunological adaptations related to extremely different life-histories

of male and female elephant seals. Whether the sex-specific bacteria are directly related to

different adult feeding strategies or immunological challenges will need to be examined in

future studies. However, given that sexually mature males presumably face more non-native

bacteria and pathogens while feeding along their longer migratory routes than females, it is

possible that our results are indicative of higher immune tolerance in the enteric mucosa of

male pups compared to females.

An unanswered question to date is how strongly host genetics impact the composition of

the gut microbiota in wild populations. In humans and mice, genome-wide association studies

revealed that at least a small proportion of the microbiota is genetically determined (Goodrich
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et al., 2016; Kurilshikov et al., 2017). At a broader scale, it has been found that genetically

more similar humans harbour more similar gut microbial communities (Ak, 2001), a pattern

which seems to be difficult to replicate in wild populations (e.g. Degnan et al. 2012 In the

wild, however, environmental factors such as diet, habitat or social behaviour are strong and

are likely to mask the smaller and more intricate effects of genetics. We we found that host

genetic effects are strong and sex-specific. More closely related males hosted a more similar gut

microbiota. However, genetic relatedness and microbial similarity were uncorrelated in females.

To exclude the chance of a false positive finding, we showed that given our number of genetic

markers, the Loiselle relatedness estimator was unbiased (Supplementary Figure 6). Moreover,

the sex-specific correlation between genetic relatedness and microbiota similarity held true even

when replicated within each sampling time point. One explanation for the observed pattern

could be that males show a faster development of traits relevant to their future life-histories,

and that these include the gut microbiota. In this case, a correlation should also occur in

females, but later in life. Another explanation could be that males and females have different

selection pressures on gut microbiota. In particular, as a consequence of a highly-skewed

mating system, males face great energetic and immunological challenges during the breeding

season. This might facilitate stronger balancing selection on genes and potentially microbiota

among males than among females, which is reflected in the strong correlation found in this

study.

Overall, our study paves the way for future research on the more intricate ecological,

evolutionary and genetic bases of host-microbe interactions in the wild. By controlling for

variation in environmental factors such as diet and habitat, we were able to attribute microbial

variation to intrinsic factors such as sex and genetics. Previous studies have failed to find

differences in gut microbiome diversity between sexes. However, detectable effects are much

more likely to occur in organisms with extensive intra-specific differences in life-histories such

as the northern elephant seal, which provide an exceptional opportunity to study potential

adaptive functions of the microbiota. Our results add light to current understanding of the

symbiotic relationship between animals and their microbiota.

Materials and Methods

Study design and sample collecধon

We marked forty northern elephant seal pups and their mothers during the breeding season in

February/March 2017 at Benito del Oeste, the westernmost island of the San Benito Archipelago
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off the west coast of Baja California, Mexico. We observed mother-offspring pairs to determine

pup weaning date, which occurs close to 28 days after birth (Reiter et al., 1978). At this moment

we sampled the newly weaned pup (time point T1). To analyse the distal gut microbiota

composition, we took rectal swabs using FLOQSwabs™, which were immediately stored in

70% EtOH, frozen at −20°C within a few hours after collection and subsequently stored at

−80°C two months after the end of the field season. To analyse the microbiota composition

with respect to the genetic relatedness of the individuals, we collected a small skin sample (9

mm2) from the flipper of each pup and stored it in sterile cryogenic vials with 70% EtOH.

The vials were frozen at −20°C within a few hours after collection and subsequently stored at

−80°C. During the T1 sampling period, we collected rectal swabs and skin samples from 40

pups, which were marked with plastic flipper tags with a unique ID number. Subsequently,

we observed the pups on a daily basis and captured them after 15 days (T2) and 30 days

(T3) to collect two additional second rectal swabs. The entire sampling scheme spanned the

around two months long fasting period during which the weaned pups stay ashore (Reiter

et al., 1978). Throughout the field season, we lost six of the marked pups, as one died between

T1 and T2, one between T2 and T3, one was not found after T1 and three pups were lost after

T2, despite intensive searching effort. Thus, sample sizes were 40 pups at T1, 38 at T2, and 34

at T3. All sampling was conducted by approval of the Bioethics Committee and IACUC of the

Autonomous University of Queretaro, and all capture and sampling procedures were carried

out under permit DGVS 00091/17 issued by the Mexican Secretariat of the Environment and

Natural Resources.

Host DNA extracধon and microsatellite genotyping

Total genomic DNA was extracted from a sample of skin tissue for each individual using a

standard chloroform extraction protocol and genotyped at 21 previously developed microsatellite

loci (details in the Supplementary Information). We tested all microsatellite loci for deviations

from Hardy-Weinberg equilibrium (HWE) using exact tests based on Monte Carlo simulations

implemented in pegas (Paradis, 2010) and applied a false discovery rate correction (Benjamini

and Hochberg, 1995) of the resulting p-values. All 21 loci were retained in the final dataset as

no locus was out of HWE.
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Bacterial DNA extracধon, library preparaধon and sequencing

We extracted DNA from 112 swabs using the QIAamp PowerFecal DNA Kit (Qiagen), and

amplified a 300 bp of the V3 and V4 regions of the 16S rRNA gene. The amplicon libraries

were prepared as follows: 1-10 ng of DNA extract (total volume 1µl), 15 pmol of each forward

primer 341F 5’-NNNNNNNNNNTCCTACGGGNGGCWGCAG and reverse primer 785R

5’-NNNNNNNNNNTGACTACHVGGGTATCTAAKCC in 20 µL volume of 1 x MyTaq

buffer containing 1.5 units MyTaq DNA polymerase (Bioline) and 2 µl of BioStabII PCR

Enhancer (Sigma). For each sample, the forward and reverse primers had the same 10-nt

barcode sequence. PCRs were carried out for 30 cycles of 1 min 96°C pre-denaturation; 96°C
for 15 s, 50°C for 30 s, 70°C for 90 s. The DNA concentration of the amplicons of interest

was determined by gel electrophoresis. About 20 ng amplicon DNA of each sample were

pooled for up to 48 samples carrying different barcodes. The amplicon pools were purified

with one volume of AMPure XP beads (Agencourt) to remove primer dimer and other small

miss-priming products, followed by an additional purification on MiniElute columns (Qiagen).

About 100 ng of each purified amplicon pool DNA was used to construct Illumina libraries

using the Ovation Rapid DR Multiplex System 1-96 (NuGEN). Illumina libraries were pooled

and size selected by preparative gel electrophoresis. Sequencing was performed on an Illumina

MiSeq platform using V3 Chemistry - 2x300 bp read length (Illumina). DNA extraction,

library preparation and sequencing were carried out by LGC Genomics in Berlin.

Bioinformaধcs pipeline

The 16s sequences in FASTQ format were demultiplexed using the Illumina bcl2fastq 2.16.1.14

software while allowing up to 2 mismatches or Ns in the barcode. Reads were sorted according

to barcodes, allowing up to 1 mismatch per barcode and the barcode was then clipped from the

sequence. Reads with missing, one-sided, or conflicting barcode pairs were discarded. Adapters

were clipped using cutadapt 1.13 (Martin, 2011) and all reads smaller than 100 bp were filtered

out. Amplicon primers were detected while allowing for up to three mismatches, and primer

pairs (Forward-Reverse or Reverse-Forward) had to be present in the sequence fragments. If

primer-dimers were detected, the outer primer copies were clipped from the sequence and the

sequence fragments were turned into forward-reverse primer orientation after removing the

primer sequence. We used DADA2 1.8 (Callahan et al., 2016a) for further filtering, processing

and inferring Amplicon sequence variants (ASV), following the authors’ published workflow

(Callahan et al., 2016b). Unlike the traditional grouping into operational taxonomic units

(OTUs), ASVs are exact sequence variants and have the compelling advantages of higher
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taxonomic resolution as well as reproducibility and reusability across studies (Callahan et al.,

2017). After visually inspecting the quality profiles of all reads, we used DADA2’s filterAndTrim

function to trim R1 and R2 sequences to 220 and 230 base pairs respectively, and to filter all

reads with more than 2 expected errors (Edgar and Flyvbjerg, 2015). As DADA2 relies on

a parametric error model, we used the learnErrors function to learn the error rate from the

data and visually confirmed that the estimated error rates provided a good fit to the observed

rates using plotErrors (Callahan et al., 2016b). After dereplication with derepFastq, we used

the dada function for correcting substitution and indel errors, and for sample inference based

on the pooled samples. Subsequently, we merged forward and reverse reads with a minimum

overlap of 12 bp using mergePairs and constructed a sequence table with makeSequenceTable.

After inspecting the distribution of sequence lengths across samples and considering a median

full amplicon size of around 460 bp prior to primer clipping (Klindworth et al., 2013), primer-

clipped sequences of lengths between 380 and 450 bp were retained. As a last filtering step, we

removed chimeras with removeBimeraDenovo using the consensus method. We assigned taxa

to the ASVs using the assignTaxonomy and addSpecies functions based on the SILVA database

v128 (Quast et al., 2012). The resulting ASV table contained 2809 taxa in 112 samples.

Data processing and analysis

Microbial data

All subsequent analyses were conducted in R version 3.4.3 (R Core Team). As a first filter-

ing step after taxonomic assignment, we discarded taxa classified as Mitochondria (n = 3) or

Chloroplasts (n = 8) and taxa which could not be identified at the Class level (n =77), as

these are likely to contain sequencing errors. Depending on the analysis, we then used differ-

ent filters and transformations for the ASV count data. To evaluate alpha diversity, we used

the untransformed and unfiltered abundance of ASVs, and calculated Shannon diversities in

phyloseq (McMurdie and Holmes, 2013). Based on a visual assessment of taxa abundance and

prevalence (Supplementary Figure 5), we removed taxa that did not appear in at least three

samples (n = 982) or had a total read count below 30 across all samples (n = 683).

Overall, 1063 taxa were retained in the final filtered ASV dataset. Before analysing micro-

biota similarities across groups, we applied the variance stabilising transformation (VST) in

DESeq2 (Love et al., 2014), which uses a negative binomial mixed modelling approach to

account for differences in library size across samples and to disentangle the relationship be-

tween the variance and the mean inherent to count data. Compared to other normalisation and

transformation methods traditionally applied to microbiota data, the VST has the advantage
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of using all available data and is therefore preferable both to rarefying approaches (McMurdie

and Holmes, 2014) but also to a transformation into relative abundances, which still yield

the problem of heteroscedasticity (Love et al., 2014). Based on the VS transformed data,

we calculated Bray-Curtis dissimilarities (Bray and Curtis, 1957) between samples to visualise

group differences using principle coordinate analysis (PCoA). We then statistically evaluated the

microbiota composition across sexes, time points and individuals using a permutational mul-

tivariate analysis of variance (PERMANOVA, Anderson, 2001) and 1000 permutations with

the adonis function in vegan (Oksanen et al., 2017). This approach is analogous to a para-

metric analysis of variance in that it partitions distance matrices into sources of variation and

produces a pseudo-F value, the significance of which can be tested using a permutation test.

As group differences detected using a PERMANOVA can be caused by variation in dispersion

across groups rather than mean values (Anderson, 2001), we tested for homogeneity of group

dispersions using betadisper in vegan (Anderson, 2001; Oksanen et al., 2017) with post-hoc

comparisons between specific contrasts tested with Tukey’s ‘Honest Significant Differences’

method.

A main interest in microbial research is to determine the specific bacterial taxa that differ

among groups. To calculate theses differential abundances, we used the filtered but untrans-

formed ASV data in combination with the DESeq2 method (Love et al., 2014). DESeq2

models abundance data such as microbial counts using a negative binomial distribution, esti-

mates log fold changes between groups based on the specified model, and corrects the result-

ing p-values with a Benjamini and Hochberg false-discovery rate correction (Benjamini and

Hochberg, 1995). As our ASV count matrix contained at least one zero in every row, we cal-

culated the underlying size factors using the ‘poscounts’ estimator, which excludes zeros when

calculating the geometric mean. To extract the appropriate group-specific contrasts, we fitted

three different models and used a threshold of p < 0.01 to detect significant taxa. Specifically,

for analysing differential abundances between time points but within sex, the first two models

contained ASV data for just females and just males, respectively, while fitting both individual

and time point in the model. To analyse and extract between-sex contrasts within each sampling

time point, we constructed a third model by creating a new grouping factor as a combination

of time point and sex, which was then fitted as predictor variable in the model.

To assess the factors that shape alpha diversity we calculated Shannon indices based on

unfiltered and untransformed reads. We used a Gaussian mixed model in lme4 (Bates et al.,

2015) with Shannon diversity as response, sex and time point as fixed effects and individual as

random effect. We calculated the R2 based on Nakagawa and Schielzeth 2013 and assessed 95%
confidence intervals around the R2 and the model estimates using parametric bootstrapping
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with 1000 replications. The individual adjusted repeatability including 95% CI was estimated

with rptR (Stoffel et al., 2017), using the same model structure and 1000 bootstraps.

Geneধc relatedness and microbial similarity

Pairwise genetic relatedness based on 21 microsatellite loci was calculated using Demerelate 0.9.3

(Kraemer & Gerlach, 2013). We used the Loiselle estimator (Loiselle et al., 1995) which is

unbiased for small sample sizes and converged towards stable values for the number of loci used

in this study (Supplementary Figure 6). To match the microbial data to the pairwise genetic

relatedness matrix containing 40 individuals for further analyses, we merged the microbial data

across the three time points for every individual by summing up the abundances of taxa. The 40

merged microbiota samples were then transformed using the variance-stabilising transformation

in DEseq2 before calculating Bray-Curtis dissimilarities. Both the genetic relatedness matrix

and the microbial dissimilarity matrix were then split by sex to calculate their correlation with a

Mantel test using the ecodist 2.0.1 package (Goslee and Urban, 2007) using 10,000 bootstraps

with the default resampling level of 0.9 to calculate confidence intervals and 10,000 permutations

to test for statistical significance. As it is of major interest how many taxa are impacted by

host genetics, we did a subsampling exercise. Specifically, we started calculating microbial

similarities from the two most abundant taxa and calculated the correlation of the resulting

microbial similarity matrix with genetic relatedness. Iteratively, we repeated this procedure

while always adding the next two most abundant taxa up to the complete dataset containing

1064 taxa. Lastly, we wanted to know whether the correlation between genetic relatedness and

microbial similarity changed across the three time points and if it was different between sexes.

We therefore used the original unmerged dataset and subsetted both microbial data and genetic

data six times to calculate and visualize the correlation for all three time points and both sexes.

Data code and availability

The documented analysis pipeline along with the raw data can be accessed via GitHub (https:
//github.com/mastoffel/nes_microbiome) and is fully reproducible.
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This Supplementary Information contains Tables (5.1 - 5.4) and Figures (5.8 - 5.15) in

Supplementary Material 1, the analyses of differential abundance in Supplementary Material 2

and the genotyping methods in Supplementary Material 3.
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Supplementary Material 1 - Tables and Figures

Table 5.1: Core microbiome shared between at least 95% of samples during sampling ধme point one (T1). Every row represents an ASV, and a full table
including the exact sequences is provided as Supplementary data (core_microbiome_T1.txt). In some cases, a taxonomic level could not be assigned (NA).
Shown is also the mean relaধve abundance of each core ASV across all samples at T1.



Table 5.2: Core microbiome shared between at least 95% of samples during sampling ধme point two (T2). Every row represents an ASV, and a full table
including the exact sequences is provided as Supplementary data (core_microbiome_T2.txt). In some cases, a taxonomic level could not be assigned (NA).
Shown is also the mean relaধve abundance of each core ASV across all samples at T2



Table 5.3: Core microbiome shared between at least 95% of samples during sampling ধme point three (T3). Every row represents an ASV, and a full table
including the exact sequences is provided as Supplementary data (core_microbiome_T3.txt). In some cases, a taxonomic level could not be assigned (NA).
Shown is also the mean relaধve abundance of each core ASV across all samples at T3.
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Figure 5.8: Relaধve abundance of all bacterial taxa analysed in this study on the Phylum rank across ধme
and sex. Before visualizaধon on the log scale, taxa with zero abundance were discarded and 0.001 added
to all remaining relaধve abundances.
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Figure 5.9: Relaধve abundance of all bacterial taxa analysed in this study on the Class rank across ধme
and sex. Before visualizaধon on the log scale, taxa with zero abundance were discarded and 0.001 added
to all remaining relaধve abundances.
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Figure 5.10: Relaধve abundance of bacterial taxa analysed in this study on the Order rank across ধme
and sex. Before visualizaধon on the log scale, taxa with zero abundance were discarded and 0.001 added
to all remaining relaধve abundances. Shown is a subset of bacterial orders with interesধng paħerns
and/or high prevalence across samples.
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Figure 5.11: Correlaধon between microbial similarity and geneধc relatedness at three ধme points, split by
sex.
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Figure 5.12: Prevalence and total abundance of taxa split by phylum. The horizontal and verধcal dashed
line represent the cut-offs for filtering, with taxa present in less than three individuals and/or an overall
read count lower than 30 were discarded.
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Figure 5.13: Sensiধvity of the Loiselle relatedness esধmator to the number of loci used. Ploħed are the
mean and standard deviaধon (SD) of differences in pairwise geneধc relatedness against the number of
loci used. SDs were calculated from 1000 bootstrap replicates per locus number.

Supplementary Material 2 - Differenধal abundances of specific taxa

Differenধal abundance of specific taxa with age

Despite the apparent similarity of phyla across all three time points (Figure 1), on a finer scale

a large number of bacterial taxa changed in abundance over time (Supplementary Figure 7

and 8). Most significant changes happen early on, with a large number of taxa for each sex

varying from T1 to T2 (F: n = 100, M: n = 106) followed by a smaller number of significantly

different abundances of taxa between T2 and T3 (F: n = 43, M: n = 26). On a taxonomic

scale, most bacterial classes change drastically (Supplementary Figure 7). Between T1 and T2

most fluctuating bacteria belong to the Clostridia in both sexes (F: 47%, M: 44%), followed

by Bacteroidia (F: 18%, M: 20%) and Fusobacteria (F:13%, M: 12%), a pattern which is very

similar for the second transition between T2 and T3 in males (Clostridia 35%, Bacteriodia

19%, Fusobacteria 15%) while in females the Bacteriodia (37%) change most drastically, more

so than the Clostridia (30%) and Gammaproteobacteria (14%). Several interesting changes

happen also in the less abundant bacterial classes. While Deferribacteres go extinct over time,

the Spirochaetes increase largely in abundance in males (Supplementary Figure 3) and start to

colonise also females at T3. The Bacilli and the Fusobacteria deplete quickly over time, while

the Actinobacteria increase in their relative abundances by nearly 10-fold in females and more
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than five-fold in males (Supplementary Figure 2).

Sex specific paħerns of change

Bacterial communities in both sexes show similar dynamics throughout the weaning period,

although the ‘baseline’ abundances of many species differ substantially (Supplementary Figures

1-3, Supplementary Figure 8). On the phylum level, the microbial shift from T1 to T2 in

both females and males consists mostly of taxa belonging to the Firmicutes (F: 51%, M:

48%), followed by Bacteroidetes (F: 18%, M: 20%) and Fusobacteria in males (13%) but

Proteobacteria in females (14%). Interestingly, a few bacterial families change drastically in

abundance from T1 to T2 and make up a large part of significantly different taxa, especially

the Ruminococcaceae (F: 22%, M: 19%), followed by Fusobacteriaceae (F: 12%, M: 10%) and

Lachnospiraceae in females (12%) but Porphyromonadaceae in males (9%). Bacterial changes

between T2 and T3 mainly occurred in the phyla Bacteroidetes (37%), Firmicutes (32%) and

Proteobacteria (19%) in females and Firmicutes (46%), Bacteroidetes (19%), Fusobacteria

(15%) and Proteobacteria (15%) in males. Most differentially abundant taxa belonged, similar

to the first transition, to the Ruminococcaceae (F:12%, M:23%), Porphyromonadaceae (F:16%,

M:12%), and the Lachnospiraceae (12%) in females as well as the Leptotrichiaceae (12%) in

males.

Differenধal abundance of taxa across sexes

Despite similar dynamics over time, many taxa were significantly differentially abundant in males

and females within all three time points (T1: n = 96, T2: n = 102, T3: n = 80, see Figure 5 and

Figure 3). Although many phylogenetically different taxa contribute to these sex differences,

three families contributed disproportionally much. The Clostridiales Family XI contributed

15% of differentially abundant taxa at T1, 16% at T2, and 18% at T3. The Ruminococcaceae

contributed 15% of the taxa at T1, 19% at T2 and 13% at T3. The Porphyromonadaceae make

up large differences at T1 (13%) and T2 (12%) but much less so at T3 (4%).
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Figure 5.14: Differenধal abundance of taxa between sampling points, split by sex.

Figure 5.15: Differenধal abundance of microbes between sex, split by sampling points.
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Supplementary Material 3 - Genotyping methods

Total genomic DNA of 40 Mirounga angustirostris samples was extracted from each sample

using silica-gel membrane technology (DNeasy Blood and Tissue kit, Qiagen) and genotyped

at 21 previously developed microsatellite loci (see Supplementary Table 4 for details). The

microsatellite loci were amplified in singleplex or multiplex reactions. The following PCR

profile was used: one cycle of 3 min at 94°C; 30 cycles of 30 s at 94°C, 30 s at Ta °C and 40

s at 72°C; 8 cycles of 30 s at 94°C, 30 s at 47°C and 40 s at 72°C; and one final cycle of 10

min at 72°C (see Supplementary Table 4 for Ta). Magnesium concentrations varied among the

PCR mastermixes as shown in Supplementary Table 4. Fluorescently labelled PCR products

were resolved by electrophoresis on an ABI 3730xl capillary sequencer and allele sizes were

scored automatically using GeneMarker v1.85. To ensure high genotype quality, all traces were

manually inspected and any incorrect calls were adjusted accordingly.
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Table 5.4: Microsatellite loci genotyped in the Northern elephant seal. ‘Mulধplex’ denotes the PCR mas-
termix into which each locus was mulধplexed, ‘Mg’ denotes the concentraধon of magnesium used in the
PCR mastermix and ‘Ta’ denotes the annealing temperature used. Loci not assigned to PCR mulধplexes
were amplified individually.

Locus Literature source Mg (mM) Ta(°C)

71HDZ441 (Huebinger et al., 2007) 1.5 54

Hg4.2 (Allen et al., 1995) 1.5 56

Lw-8 (Davis et al., 2002) 1.5 47

ZcCgDh4.7 (Hernandez-Velazquez et al., 2005) 1.75 56

PV9 (Goodman, 1997) 2 53

ZzCgDh3.6 (Hernandez-Velazquez et al., 2005) 2 39

Hl-8 (Davis et al., 2002) 2 53

PVC1 (Garza and Williamson, 2001) 1.5 52

71HDZ301 (Huebinger et al., 2007) 1.5 42

ZzCgDh1.8 (Hernandez-Velazquez et al., 2005) 1.5 42

ZcwA12 (Hoffman et al., 2007b) 1.75 49

ZcwF07 (Hoffman et al., 2007b) 1.75 49

Ag-9 (Hoffman et al., 2008) 2 57

ZcwC01 (Hoffman et al., 2007b) 2 57

ZcwE04 (Hoffman et al., 2007b) 2 52

ZcwG04 (Hoffman et al., 2007b) 2 52

Mango01 (Sanvito et al., 2013) 1.5 55

Mango44 (Sanvito et al., 2013) 1.5 55

Mango43 (Sanvito et al., 2013) 1.5 55

Mango35 (Sanvito et al., 2013) 1.5 53

Mango06 (Sanvito et al., 2013) 1.5 55

Mango09E19 (Sanvito et al., 2013) 1.5 52

PV9.1 This study 1.5 53





An old male elephant seal is lying far apart from the colony. He is not strong enough anymore to compete for a territory.
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Abstract

Chemical cues are arguably the most fundamental means of animal communication and play

an important role in mate choice and kin recognition. Consequently, there is growing interest

in the use of gas chromatography (GC) to investigate the chemical basis of eco-evolutionary

interactions. Both GC-MS (mass spectrometry) and FID (flame ionization detection) are

commonly used to characterise the chemical composition of biological samples such as skin

swabs. The resulting chromatograms comprise peaks that are separated according to their

retention times and which represent different substances. Across chromatograms of different

samples, homologous substances are expected to elute at similar retention times. However,

random and often unavoidable experimental variation introduces noise, making the alignment

of homologous peaks challenging, particularly with GC-FID data where mass spectral data are

lacking. Here we present GCalignR, a user-friendly R package for aligning GC-FID data based

on retention times. The package was developed specifically for ecological and evolutionary

studies that seek to investigate similarity patterns across multiple and often highly variable

biological samples, for example representing different sexes, age classes or reproductive stages.

The package also implements dynamic visualisations to facilitate inspection and fine-tuning of

the resulting alignments and can be integrated within a broader workflow in R to facilitate

downstream multivariate analyses. We demonstrate an example workflow using empirical data

from Antarctic fur seals and explore the impact of user-defined parameter values by calculating

alignment error rates for multiple datasets. The resulting alignments had low error rates for most

of the explored parameter space and we could also show that GCalignR performed equally

well or better than other available software. We hope that GCalignR will help to simplify the

processing of chemical datasets and improve the standardization and reproducibility of chemical

analyses in studies of animal chemical communication and related fields.

Introducধon

Chemical cues are arguably the most common mode of communication among animals (Wyatt,

2014b). In the fields of animal ecology and evolution, increasing numbers of studies have

therefore been using approaches like gas chromatography (GC) to characterise the chemical

composition of body odours and scent marks. These studies have shown that a variety of cues

are chemically encoded, including phylogenetic relatedness (De Meulemeester et al., 2011),

breeding status (Caspers et al., 2011), kinship (Bonadonna and Sanz-Aguilar, 2012; Krause

et al., 2012; Stoffel et al., 2015) and genetic quality (Stoffel et al., 2015; Charpentier et al., 2010;
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Leclaire et al., 2012).

GC vaporises a chemical sample and retards its components differentially based on their

chemical properties while passing a gas through a column. The chemical composition of the

sample can then be resolved using a number of approaches such as GC coupled to a flame

ionization detector (GC-FID) or GC coupled to a mass spectrometer (GC-MS). GC-FID pro-

duces a chromatogram in which each substance is represented by a peak, the area of which is

proportional to the concentration of that substance in the sample (McNair and Miller, 2011).

Although GC-FID is a relatively inexpensive and high-throughput approach, the substances

themselves can only be characterised according to their retention times, so their chemical

composition remains effectively unknown. GC-MS similarly generates a chromatogram, but

additionally provides spectral profiles corresponding to each peak, thereby allowing putative

identification by comparison to databases of known substances. Both approaches have distinct

advantages and disadvantages, but the low cost of GC-FID, coupled with the fact that most

chemicals in non-model organisms do not reveal matches to databases containing known chem-

icals, has led to an increasing uptake of GC-FID in studies of wild populations (Boulay et al.,

2007; Foitzik et al., 2007; Johnson et al., 2008; Reichle et al., 2013). GC-FID is particularly

appropriate for studies seeking to characterise broad patterns of chemical similarity without

reference to the exact nature of the chemicals involved.

As a prerequisite for any downstream analysis, homologous substances across samples

need to be matched. Therefore, an important step in the processing of the chemical data is to

construct a so called peak list, a matrix containing the relative abundances of each homologous

substance across all of the samples. With GC-MS, homologous substances can be identified on

the basis of both their retention times and the accompanying spectral information. However,

with GC-FID, homologous substances can only be identified based on their retention times.

This can be challenging because these retention times are often perturbed by subtle, random

and often unavoidable experimental variation including changes in ambient temperature, flow

rate of the carrier gas and column ageing (Scott, 2003; Pierce et al., 2005).

Numerous algorithms have been developed for aligning MS data (reviewed by (Lange

et al., 2008) and (Smith et al., 2013)). To provide an overview of breadth of currently available

software that provide implementations of these algorithms for users, we conducted a literature

search. First, we screened the review papers described above and selected all peer-reviewed

manuscripts reporting programs that are publicly available. We excluded publications reporting

algorithms that are not implemented in software, that are described as ’available on request’

from the authors, or which could only be accessed via expired web links. Furthermore, we

conducted Web of Science searches in October 2017 using the search terms ‘retention time
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align*’, ‘peak align*’ and ‘peak match*’ and used the same search terms to interrogate the

list of packages deposited on CRAN and Bioconductor. We recovered a total of 25 programs,

which we characterised according to a number of relevant criteria, ranging from the type of data

for which they were designed through the programming environment to the dimensions that

are used for aligning peaks (S1 File). We found that the majority (92%) of these programs were

developed specifically for aligning MS data. Among these, a large proportion (87%) make use

of spectral information either by binning the data according to mass-over-charge values or by

directly taking mass information into consideration for the alignment method. Consequently,

these programs will not support GC-FID data due to the lack of spectral information, which

is a required part of the input.

Only three of the programs described in S1 File claim to support a peak list format lacking

MS data, thereby making them potentially suitable for aligning GC-FID data. However, two

of these programs (amsrpm (Kirchner et al., 2007) and ptw (Bloemberg et al., 2010)) may

not be well suited to GC-FID data for two main reasons. First, they conduct alignments

strictly pairwise with respect to a pre-defined reference sample, because in general the focus

is on a relatively small pool of substances that are expected to be present in most if not all

samples (Johnson et al., 2003). However, applied to wild animal populations, GC-FID often

yields high diversity datasets in which only a small subset of chemicals may be common to

all individuals (Stoffel et al., 2015; Jordan et al., 2011). Second, these algorithms are known

to be sensitive to variation in peak intensity, which is expected in GC-FID datasets and may

contain important biological information (Stoffel et al., 2015; Jordan et al., 2011; Breed et al.,

1995; Wong et al., 2014).

To tackle the above issues, a third program called GCALIGNER was recently written in Java

for aligning GC-FID data (Dellicour and Lecocq, 2013). This program appears to perform

well based on three test datasets, each corresponding to a different bumblebee species (Bombus

spp.). However, the underlying algorithm compares each peak with the following peak in the

same sample and therefore cannot align the last peak (Dellicour and Lecocq, 2013). Moreover,

with the increasing popularity of open source environments such as R, there is a growing need

for software that can be easily integrated into broader workflows, where the source code can be

modified and potentially further extended by the user, and where related tools like rmarkdown

(Allaire et al., 2016) can be applied to maximise transparency and reproducibility (Hoffman,

2016). Furthermore, especially for GC-FID data where spectral data are not available, a useful

addition would be to integrate dynamic visualisation tools into software to facilitate the eval-

uation and subsequent fine-tuning of alignment parameters. However, the vast majority of

currently available software (80%) lack such tools (S1 File).
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In order to determine which alignment tools are commonly used in the fields of ecology and

evolution, we conducted a bibliographic survey, focusing on the journals ‘Animal Behaviour’

and ‘Proceedings of the Royal Society B’, which recovered a total of 38 studies using GC-FID

or GC-MS to investigate scent profiles (see S2 File for details). None of these studies used

any form of alignment tool but rather aligned and called the peaks manually (e.g. (Greene and

Drea, 2014)), a time-consuming process that can be prone to bias (van Wilgenburg and Elgar,

2013) and detrimental to reproducibility.

To address the above issues, we developed GCalignR, an R package for aligning GC-FID

data, but which can also align data generated using other detectors that allow to characterise

peaks by retention times. The package implements a fast and objective method to cluster

putatively homologous substances prior to multivariate statistical analyses. Using sophisticated

visualisations, the resulting alignments can then be fine tuned. Finally, the package provides a

seamless transition from the processing of the peak data through to downstream analysis within

other widely used R packages for multivariate analysis, such as vegan (Oksanen et al., 2017).

In this paper, we present GCalignR and describe the underlying algorithms and their

implementation within a suite of R functions. We provide an example workflow using a previ-

ously published chemical dataset of Antarctic fur seals (Arctocephalus gazella) that shows a clear

distinction between animals from two separate breeding colonies (Stoffel et al., 2015). We then

compare the performance of GCalignR with GCALIGNER based on the same three bumblebee

datasets given in (Dellicour and Lecocq, 2013) and explore the sensitivity of GCalignR to

user-defined alignment parameter values. Finally, we compared our alignment procedure with

a very different approach —parametric time warping —which is commonly used in the fields

of proteomics and metabolomics (Bloemberg et al., 2010; Wehrens et al., 2015).

Materials & Methods

Overview of the package

Figure 6.1 shows an overview of GCalignR in the context of a workflow for analysing GC-FID

data within R. A number of steps are successively implemented, from checking the raw data

through aligning peak lists and inspecting the resulting alignments to normalising the peak

intensity measures prior to export into vegan (Oksanen et al., 2017). In brief, the alignment

procedure is implemented in three consecutive steps that start by accounting for systematic

shifts in retention times among samples and subsequently align individual peaks based on
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variation in retention times across the whole dataset. For simplicity, this procedure is embed-

ded within a single function align_chromatograms that allows the customisation of peak

alignments by adjusting a combination of three parameters. The package vignettes provide

a detailed description of all of the functions and their arguments and can be accessed via

browseVignettes('GCalignR') after the package has been installed.

Figure 6.1: Overview of the GCalignR workflow. The steps listed in the main text are numbered from
one to five and the filled boxes represent funcধons of the package (see main text for details).

Raw data format and conversion to working format

GC-FID produces raw data in the form of individual chromatograms that show the measured

electric current over the time course of a separation run. Proprietary software provided by

the manufacturers of GC-FID machines (e.g. ‘LabSolutions’, Shimadzu; ‘Xcalibur’, Thermo

Fisher and ‘ChemStation’, Agilent Technologies) are then used to integrate and export peaks

in the format of a table containing retention times and intensity values (e.g. peak area and

height). Figure 6.2A shows chromatograms of three hypothetical samples where peaks have

been integrated and annotated with retention times and peak heights. The corresponding input

format comprising a table of retention times and peak heights is also shown. The working

format of GCalignR is a retention time matrix in which each sample corresponds to a column

and each peak corresponds to a row (see Figure 6.2B).
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Figure 6.2: GC-FID data formats. A. Three hypotheধcal chromatograms are shown corresponding to
samples A, B and C. Integrated peaks (filled areas) are annotated with retenধon ধmes and peak heights.
B. Using proprietary sođware (see main text), retenধon ধmes and quanধficaধon measures like the peak
height can be extracted and wriħen to a peak list that contains sample idenধfiers (‘Sample_A’, ‘Sample_B’
and ‘Sample_C’), variable names (‘retenধon_ধme’ and ‘peak_height’) and respecধve values. Computaধons
described in this manuscript use a retenধon matrix as the working format.

Overview of the alignment algorithm

We developed an alignment procedure based on dynamic programming (Eddy, 2004) that

involves three sequential steps to align and finally match peaks belonging to putatively ho-

mologous substances across samples (see Figure 6.4 for a flowchart and Figure 6.3 for a more

detailed schematic representation). All of the raw code for implementing these steps is available

via GitHub and CRAN and each step is described in detail below. The first step is to align

each sample to a reference sample while maximising overall similarity through linear shifts of

retention times. This procedure is often described in the literature as ‘full alignment’ (Bloem-

berg et al., 2010). In the second step, individual peaks are sorted into rows based on close

similarity of their retention times, a procedure that is often referred to as ‘partial alignment’

135



GCalignR: R package

(Bloemberg et al., 2010). Finally, there is still a chance that homologous peaks can be sorted

into different, but adjacent, rows in different samples, depending on the variability of their

retention times (for empirical examples, see S3 File). Consequently, a third step merges rows

representing putatively homologous substances.

Figure 6.3: Overview of the three-step alignment algorithm implemented in GCalignR using a hypothet-
ical dataset. A. Linear shiđs are implemented to account for systemaধc driđs in retenধon ধmes between
each sample and the reference (Sample_A). In this hypotheধcal example, all of the peaks within Sam-
ple_B are shiđed towards smaller retenধon ধmes, while the peaks within Sample_C are shiđed towards
larger retenধon ধmes. B and C work on retenধon ধme matrices, in which rows correspond to putaধve
substances and columns correspond to samples. For illustraধve purposes, each cell is colour coded to
refer to the putaধve idenধty of each substance in the final alignment. B. Consecuধve manipulaধons of
the matrices are shown in clockwise order. Here, black rectangles indicate conflicts that are solved by
manipulaধons of the matrices. Zeros indicate absence of peaks and are therefore not considered in com-
putaধons. Peaks are aligned row by row according to a user-defined criterion, a (see main text for details).
C. Rows of similar mean retenধon ধme are subsequently merged according to the user-defined criterion,
b (see main text for details).
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Figure 6.4: A flow chart showing the three sequenধal steps of the alignment algorithm of the peak align-
ment method.
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Full alignment of peaks lists.

The first step in the alignment procedure consists of an algorithm that corrects systematic linear

shifts between peaks of a query sample and a fixed reference to account for systematic shifts

in retention times among samples (Figure 6.3A). Following the approach of Daszykowski et

al. (Daszykowski et al., 2010), the sample that is most similar on average to the other samples

can be automatically selected as a reference by choosing the sample with the lowest median

deviation score weighted by the number of peaks to avoid a bias towards samples with few

peaks:

1

n

n∑
i=1

[min(Refi −Query)] (Eq. 6.1)

where n is the number of retention times in the reference sample. Alternatively, the reference

can be specified by the user. Using a simple warping method (Bloemberg et al., 2013), the

complete peak list of the query is then linearly shifted within an user-defined retention time

window with an interval of 0.01 minutes. For all of the shifts, the summed deviation in retention

times between each reference peak and the nearest peak in the query is used to approximate

similarity as follows:

n∑
i=1

[min(Refi −Query)] (Eq. 6.2)

where n is the number of retention times in the reference sample. With increasing similarity,

this score will converge towards zero the more homologous peaks are aligned, whereas peaks

that are unique to either the query or the reference are expected to behave independently and

will therefore have little effect on the overall score. The shift yielding to the smallest score is

selected to transform retention times for the subsequent steps in the alignment (Figure 6.3B,

C). As the effectiveness of this approach relies on a sufficient number of homologous peaks

that can be used to detect linear drift, the performance of the algorithm may vary between

datasets.

Parধal alignment of peaks.

The second step in the alignment procedure aligns individual peaks across samples by com-

paring the peak retention times of each sample consecutively with the mean of all previous

samples (Figure 6.3B) within the same row. If the focal cell within the matrix contains a

retention time that is larger than the mean retention time of all previous cells within the same
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row plus a user-defined threshold (Eq. 6.3), that cell is moved to the next row.

rtm >

(∑m−1
i=1 rti
m− 1

)
+ a (Eq. 6.3)

where rt is the retention time; m is the focal cell and a is the user-defined threshold deviation

from the mean retention time. If the focal cell contains a retention time that is smaller than the

mean retention time of all previous cells within the same row minus a user-defined threshold

(Eq. 6.4), all previous retention times are then moved to the next row.

rtm <

(∑m−1
i=1 rti
m− 1

)
− a (Eq. 6.4)

After the last retention time of a row has been evaluated, this procedure is repeated for the next

row until the end of the retention time matrix is reached (Figure 6.3B).

Merging rows.

The third step in the alignment procedure accounts for the fact that a number of homologous

peaks will be sorted into multiple rows that can be subsequently merged (Figure 6.3C). How-

ever, this results in a clear pattern whereby some of the samples will have a retention time in

one of the rows while the other samples will have a retention time in an adjacent row (see

S3 File). Consequently, pairs of rows can be merged when this does not cause any loss of

information, an assumption that is true as long as no sample exists that contains peaks in both

rows, (Figure 6.3C). The user can define a threshold value in minutes (i.e. parameter b in

Figure 6.3C) that determines whether or not two such adjacent rows are merged. While the

described pattern is unlikely to occur in large datasets purely by chance for non-homologous

peaks, small datasets may require more strict threshold values to be selected.

Implementaধon of the alignment method

The alignment algorithms that are described above are all executed by the core function

align_chromatograms based on the user-defined parameters shown in Table 6.1. Of these,

parameters (max_linear_shift, max_diff_peak2mean and min_diff_peak2peak) can
be adjusted by the user to fine-tune the alignment procedure. There a several additional param-

eters that allow for optional processing and filtering of the data independently of the alignment
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Table 6.1: Mandatory arguments of the funcধon align_chromatograms.

Parameter Descripধon

data Path to a tab-delimited text file containing the chemical data. See the vigneħes for exam-
ples including alternaধve input formats

max_diff_peak2mean Numeric value defining the allowed deviaধon of the retenধon ধme of a focal peak from the
mean of the corresponding row during parধal peak alignment (See Eq. 6.3 and Eq. 6.4)

max_linear_shiđ Numeric value defining the range that is considered for the adjustment of linear shiđs in
peak retenধon ধme across samples

min_diff_peak2peak Numeric value defining the expected minimum difference in retenধon ধmes across sub-
stances. Rows that are more similar than the threshold value will be merged as long as no
conflict emerges due to the presence of peaks in more than one row within a single sample

rt_col_name Name of the variable containing peak retenধon ধmes. The name needs to correspond to
variable included in the input file

reference Name of the sample that will be used as reference to adjust linear shiđs in peak retenধon
ধmes across samples. By default, a reference is automaধcally selected (see Materials and
methods)

sep Field separator character. By default, a tab-delimited text file is expected. Within R, type
?read.table for a list of supported separators

procedure. For further details, the reader is referred to the accompanying vignettes (see S4

and S5 Files) and helpfiles of the R package.

Demonstraধon of the workflow

Here, we demonstrate a typical workflow in GCalignR using chemical data from skin swabs of

41 Antarctic fur seal (Arctocephalus gazella) mother-pup offspring pairs from two neighbouring

breeding colonies at South Georgia in the South Atlantic. Sample collection and processing are

described in detail in Stoffel et al. 2015. In brief, chemical samples were obtained by rubbing

the cheek, underneath the eye, and behind the snout with a sterile cotton wool swab and

preserved in ethanol stored prior to analysis. In order to account for possible contamination,

two blank samples (cotton wool with ethanol) were processed and analysed using the same

methodology. Peaks were integrated using ‘Xcalibur’ (Thermo Scientific). The chemical data

associated with these samples are provided in the file peak_data.txt, which is distributed

together with GCalignR. Additional data on colony membership and age-class are provided

in the data frame peak_factors.RData.
Prior to peak alignment, the check_input function interrogates the input file for typical

formatting errors and missing data. We encourage the use of unique names for samples

consisting only of letters, numbers and underscores. If the data fail to pass this quality test,

indicative warnings will be returned to assist the user in error correction. As this function is

executed internally prior to alignment, the data need to pass this check before the alignment
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can begin.

# load GCalignR
library (GCalignR)
# set the path to the input data
fpath <- system.file(dir = "extdata",
file = "peak_data.txt", package = "GCalignR")
# check for formatting problems
check_input(fpath)

In order to begin the alignment procedure, the following code needs to be executed:

aligned_peak_data <- align_chromatograms(data = peak_data,
rt_col_name = "time", max_diff_peak2mean = 0.02,
min_diff_peak2peak = 0.08, max_linear_shift = 0.05,
delete_single_peak = TRUE, blanks = c("C2", "C3"))

Here, we set max_linear_shift to 0.05, max_diff_peak2mean to 0.02 and

min_diff_peak2peak to 0.08. By defining the argument blanks, we implemented the removal

of all substances that are shared with the negative control samples from the aligned dataset.

Furthermore, substances that are only present in a single sample were deleted from the dataset

using the argument delete_single_peak = TRUE as these are not informative in analysing

similarity pattern (Clark, 2006). Afterwards, a summary of the alignment process can be

retrieved using the printing method, which summarises the function call including defaults that

were not altered by the user. This provides all of the relevant information to retrace every step

of the alignment procedure.

# verbal summary of the alignment
print(aligned_peak_data)

As alignment quality may vary with the parameter values selected by the user, the plot function

can be used to output four diagnostic plots. These allow the user to explore how the parameter

values affect the resulting alignment and can help to flag issues with the raw data.

# produces Fig 5
plot (aligned_peak_data)
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Figure 6.5: Diagnosধc plots summarising the alignment of the Antarcধc fur seal chemical dataset. A
shows the number of peaks both prior to and ađer alignment; B shows a histogram of linear shiđs across
all samples; C shows the variaধon across samples in peak retenধon ধmes; and D shows a frequency dis-
tribuধon of substances shared across samples.

The resulting output for the Antarctic fur seal chemical dataset, shown in Figure 6.5, reveals

a number of pertinent patterns. Notably, the removal of substances shared with the negative

controls or present in only one sample resulted in a substantial reduction in the total number of

peaks present in each sample (Figure 6.5A). Furthermore, for the majority of the samples, either

no linear shifts were required, or the implemented transformations were very small compared

to the allowable range (Figure 6.5B). Additionally, the retention times of putatively homologous

peaks in the aligned dataset were left-skewed, indicating that the majority of substances vary

by less than 0.05 minutes (Figure 6.5C) but there was appreciable variation in the number of

individuals in which a given substance was found (Figure 6.5D).

Additionally, the aligned data can be visualised using a heat map with the function gc_heatmap.
Heat maps allow the user to inspect the distribution of aligned substances across samples and

assist in fine-tuning of alignment parameters as described within the vignettes (see S4 and S5

Files).

gc_heatmap(aligned_peak_data)
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Peak normalisaধon and downstream analyses

In order to account for differences in sample concentration, peak normalisation is commonly

implemented as a pre-processing step in the analysis of olfactory profiles (Burgener et al., 2009;

Setchell et al., 2011; Cristina Lorenzi et al., 2011). The GCalignR function normalise_peaks
can therefore be used to normalise peak abundances by calculating the relative concentration

of each substance in a sample. The abundance measure (e.g. peak area) needs to be specified

as conc_col_name in the function call. By default, the output is returned in the format of a

data frame that is ready to be used in downstream analyses.

# extract normalised peak area values
scent <- norm_peaks (data = aligned_peak_data, rt_col_name = "time",
conc_col_name = "area", out = "data.frame")

The output of GCalignR is compatible with other functionalities in R, thereby providing a

seamless transition between packages. For example, downstream multivariate analyses can be

conducted within the package vegan (Oksanen et al., 2017). To visualise patterns of chemical

similarity within the Antarctic fur seal dataset in relation to breeding colony membership, we

used non-metric multidimensional scaling (NMDS) based on a Bray-Curtis dissimilarity matrix

in vegan after normalisation and log-transformation of the chemical data.

# log + 1 transformation
scent <- log (scent + 1)
# sorting by row names
scent <- scent[match(row.names(peak_factors),row.names(scent)),]
# Non-metric multidimensional scaling
scent_nmds <- vegan::metaMDS(comm = scent, distance = "bray")
scent_nmds <- as.data.frame(scent_nmds[["points"]])
scent_nmds <- cbind(scent_nmds, colony = peak factors[["colony"]])

The results results of the NMDS analysis are outputted to the data frame scent_nmds and

can be visualised using the package ggplot2 (Wickham, 2009).

# load ggplot2
library(ggplot2)
# create the plot (see Fig 6)
ggplot(data = scent_nmds, aes(MDS1,MDS2, color = colony)) +
geom_point() + theme_void() + scale_color_manual(values = c("blue", "red")) +
theme(panel.background = element_rect(colour = "black", size = 1.25, fill = NA),
aspect.ratio = 1,legend.position = "none")
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Figure 6.6: Two-dimensional nonmetric mulধdimensional scaling plot of chemical data from 41 Antarc-
ধc fur seal mother–offspring pairs. Bray-Curধs dissimilarity values were calculated from standardized
and log(x+1) transformed abundance data (see main text for details). Individuals from the two different
breeding colonies described in (Stoffel et al., 2015) are shown in blue and red respecধvely.

The resulting NMDS plot shown in Figure 6.6 reveals a clear pattern in which seals from the

two colonies cluster apart based on their chemical profiles, as shown also by Stoffel et al. 2015.

Although a sufficient number of standards were lacking in this example dataset to calculate

the internal error rate (as shown below for the three bumblebee datasets), the strength of the

overall pattern suggests that the alignment implemented by GCalignR is of high quality.

Evaluaধon of the performance of GCalignR

We evaluated the performance of GCalignR in comparison to GCALIGNER (Dellicour and

Lecocq, 2013). For this analysis, we focused on three previously published bumblebee datasets

that were published together with the GCALIGNER software (Dellicour and Lecocq, 2013).

These data are well suited to the evaluation of alignment error rates because subsets of chem-

icals within each dataset have already been identified using GC-MS (Dellicour and Lecocq,

2013). Hence, by focusing on these known substances, we can test how the two alignment

programs perform. Furthermore, these datasets allow us to further investigate the performance
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of GCalignR by evaluating how the resulting alignments are influenced by parameter settings.

Comparison with GCALIGNER

To facilitate comparison of the two programs, we downloaded raw data on cephalic labial

gland secretions from three bumblebee species (Dellicour and Lecocq, 2013) from http://
onlinelibrary.wiley.com/wol1/doi/10.1002/jssc.201300388/suppinfo. Each of
these datasets included data on both known and unknown substances, the former being de-

fined as those substances that were identified with respect to the NIST database (Linstrom and

Mallard, 2009). The three datasets are described in detail by (Dellicour and Lecocq, 2013).

Briefly, the first dataset comprises 24 Bombus bimaculatus individuals characterised for a total of

41 substances, of which 32 are known. The second dataset comprises 20 B. ephippiatus individ-

uals characterised for 64 substances, of which 42 are known, and the third dataset comprises

11 B. flavifrons individuals characterised for 58 substances, of which 44 are known.

To evaluate the performance of GCALIGNER, we used an existing alignment provided by

(Dellicour and Lecocq, 2013). For comparison, we then separately aligned each of the full

datasets within GCalignR as described in detail in S3 File. We then evaluated each of the

resulting alignments by calculating the error rate, based only on known substances, as the ratio

of the number of incorrectly assigned retention times to the total number of retention times

(Eq. 6.5).

Error =

[
Number of misaligned retenধon ধmes

Total number of retenধon ধmes

]
(Eq. 6.5)

where retention times that were not assigned to the row that defines the mode of a given

substance were defined as being misaligned. Figure 6.7 shows that both programs have low

alignment error rates (i.e. below 5%) for all three datasets. The programs performed equally

well for one of the species (B. flavifrons), but overall GCalignR tended to perform slightly

better, with lower alignment error rates being obtained for B. bimaculatus and B. ephippiatus.

145



GCalignR: R package

Figure 6.7: Alignment error rates for three bumblebee datasets using GCalignR and GCALIGNER. Error
rates were calculated based only on known substances as described in the main text.

Effects of parameter values on alignment results

The first step in the alignment procedure accounts for systematic linear shifts in retention

times. As most datasets will require relatively modest linear transformations (illustrated by the

Antarctic fur seal dataset in Figure 6.5), the parameter max_linear_shift (Table 6.1), which

defines the range that is considered for applying linear shifts (i.e. window size), is unlikely to

appreciably affect the alignment results. By contrast, two user-defined parameters need to be

chosen with care. Specifically, the parameter max_diff_peak2mean determines the variation

in retention times that is allowed for sorting peaks into the same row, whereas the parameter

min_diff_peak2peak enables rows containing homologous peaks that show larger variation

in retention times to be merged (see Material and methods for details and Table 6.1 for defini-

tions). To investigate the effects of different combinations of these two parameters on alignment

error rates, we again used the three bumblebee datasets, calculating the error rate as described

above for each conducted alignment. Figure 6.8 shows that for all three datasets, relatively low

alignment error rates were obtained when max_diff_peak2mean was low (i.e. around 0.01

to 0.02 minutes). Error rates gradually increased with larger values of max_diff_peak2mean,
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reflecting the incorrect alignment of non-homologous substances that are relatively similar in

their retention times. In general, alignment error rates were relatively insensitive to parameter

values of min_diff_peak2peak (see Figure 6.8). Higher error rates were only obtained when

max_diff_peak2mean was larger than or the same as min_diff_peak2peak, in which case

merging of homologous rows is not possible.

Figure 6.8: Effects of different parameter combinaধons on alignment error rates for three bumblebee
datasets (see main text for details). Each point shows the alignment error rate for a given combinaধon of
max_diff_peak2mean and min_diff_peak2peak.

Comparison with parametric ধme warping

In the fields of proteomics and metabolomics, several methods (usually referred to as ‘time

warping’ (Bloemberg et al., 2010)) for aligning peaks have been developed that aim to transform

retention times in such a way that the overlap with the reference sample is maximised (Wehrens

et al., 2015). The R package ptw (Bloemberg et al., 2010) implements parametric warping

and supports a peak list containing retention times and intensity values for each peak of a

sample, making it in principle suitable for aligning GC-FID data. However, parametric time

warping of a peak list within ptw is based on strictly pairwise comparisons of each sample to a

reference (Wehrens et al., 2015). Therefore, the sample and reference should ideally resemble

one another and share all peaks (Johnson et al., 2003; Bloemberg et al., 2013). By comparison,

GCalignR only requires a reference for the first step of the alignment procedure and should

therefore be better able to cope with among-individual variability. Additionally, although ptw
transforms individual peak lists relative to the reference, it does not provide a function to match

homologous substances across samples.
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In order to evaluate how these differences affect alignment performance, we analysed GC-

MS data on cuticular hydrocarbon compounds of 330 European earwigs (Forficula auricularia)

(Wong et al., 2014) using both GCalignR and ptw. This dataset was chosen for two main

reasons. First, alignment success can be quantified based on twenty substances of known

identity. Second, all of the substances are present in every individual, the only differences being

their intensities. Hence, among-individual variability is negligible, which should minimise

issues that may arise from samples differing from the reference. As a proxy for alignment

success, we compared average deviations in the retention times of homologous peaks in the

raw and aligned datasets, with the expectation that effective alignment should reduce retention

time deviation.

For this analysis, we downloaded the earwig dataset from https://datadryad.org/
resource/doi:10.5061/dryad.73180 (Wong et al., 2014) and constructed input files for

both GCalignR and ptw. We then aligned this dataset using both packages as detailed in sup-

porting information S3 File. Following fine-tuning of alignment parameters within GCalignR,
we obtained twenty substances in the aligned dataset and all of the homologous peaks were

matched correctly (i.e. every substance had a retention time deviation of zero). Consequently,

GCalignR consistently reduced retention time deviation across all substances relative to the

raw data (Figure 6.9). By comparison, parametric time warping resulted in higher deviation

in retention times for all but two of the substances (Figure 6.9). These differences in the

performance of the two programs probably reflect differential sensitivity to variation in peak

intensities.
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Figure 6.9: Boxplot showing changes in retenধon ধme deviaধon of twenty homologous substances
relaধve to the raw data ađer having aligned a dataset of 330 European earwigs within GCalignR and
ptw respecধvely (see main text for details).

Conclusions

GCalignR is primarily intended as a pre-processing tool in the analysis of complex chemical

signatures of organisms where overall patterns of chemical similarity are of interest as opposed

to specific (i.e. known) chemicals. We have therefore prioritised an objective and fast alignment

procedure that is not claimed to be free of error. Nevertheless, our alignment error rate calcula-

tions suggest that GCalignR performs well with a variety of example datasets. GCalignR also

implements a suite of diagnostic plots that allow the user to visualise the influence of param-

eter settings on the resulting alignments, allowing fine-tuning of both the pre-processing and

alignment steps (Figure 6.1). For tutorials and worked examples illustrating the functionalities

of GCalignR, we refer to the vignettes that are distributed with the package and are available

as supporting information S4 and S5 Files.
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Only a week after weaning, these young elephant seals differ substantially in their body weight. The thin pup looking towards the

camera has probably very little chance of surviving the following weeks of fasting.
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Summary
1. Heterozygosity-fitness correlations (HFCs) have been widely used to explore the im-

pact of inbreeding on individual fitness. Initially, most studies used small panels of

microsatellites, but more recently with the advent of next-generation sequencing, large

SNP datasets are becoming increasingly available and these provide greater power and

precision to quantify the impact of inbreeding on fitness.

2. Despite the popularity of HFC studies, effect sizes tend to be rather small. One reason for

this may be low variation in inbreeding levels among individuals. Using genetic markers,

it is possible to measure variance in inbreeding through the strength of correlation in

heterozygosity across marker loci, termed identity disequilibrium (ID).

3. ID can be quantified using the measure g2 formula, which is also a central parameter

in HFC theory that can be used within a wider framework to estimate the direct impact

of inbreeding on both marker heterozygosity and fitness. However, no software exists

to calculate g2 for large SNP datasets nor to implement this framework.

4. inbreedR is an R package that provides functions to calculate g2 based on microsatellite

and SNP markers with associated P-values and confidence intervals. Within the frame-

work of HFC theory, inbreedR also estimates the impact of inbreeding on marker

heterozygosity and fitness. Finally, inbreedR implements user-friendly simulations to

explore the precision and magnitude of estimates based on different numbers of genetic

markers. We hope this package will facilitate good practice in the analysis of HFCs and

help to deepen our understanding of inbreeding effects in natural populations.

Introducধon

Offspring of close relatives often show reduced fitness, a phenomenon referred to as inbreed-

ing depression (Charlesworth and Charlesworth, 1987; Charlesworth and Willis, 2009). This

decline in fitness among inbred individuals is a result of the increased proportion of loci in

the genome that are identical by descent (IBD). A homozygous locus is IBD or autozygous

when it carries two alleles that both originate from a single copy in a common ancestor. An

increased proportion of loci in the genome that are identical by descent IBDG may lead to

the unmasking of deleterious recessive alleles and a reduction in heterozygote advantage by

decreasing genomewide heterozygosity (Charlesworth and Charlesworth, 1987; Charlesworth

and Willis, 2009). In populations with unknown pedigrees, many studies have used genetic
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marker heterozygosity as a measure of IBDG. The result is a large and expanding litera-

ture describing heterozygosity-fitness correlations (HFCs) across a range of species and traits

(Coltman and Slate, 2003; Chapman et al., 2009; Szulkin et al., 2010).

Despite the large and growing number of HFC studies, effect sizes are usually small (Chap-

man et al., 2009) and there has been debate over their mechanistic basis (Balloux et al., 2004;

Slate et al., 2004; Hansson and Westerberg, 2008; Szulkin et al., 2010). This reflects the fact

that under many circumstances multilocus heterozygosity based on the 10-20 microsatellite

markers employed by most studies provides little power to estimate IBDG (Hansson and

Westerberg, 2002; Balloux et al., 2004; Szulkin et al., 2010; Hoffman et al., 2014). This is

why the pedigree-derived inbreeding coefficient (FP) has long been the gold standard for es-

timating IBDG (Pemberton, 2004, 2008). FP is defined as the probability of a given locus

in an individual’s genome being autozygous based on its pedigree. However, an individual’s

FP will differ from its IBDG as FP can be imprecise due to linkage among loci and down-

wardly biased due to incomplete pedigree information (Hill and Weir, 2011; Keller et al., 2011;

Kardos et al., 2015). Consequently, IBDG can vary substantially among individuals with the

same FP (Franklin, 1977; Hill and Weir, 2011; Forstmeier et al., 2012). In other words, even

FP derived from a perfect pedigree cannot fully capture the variance in genomic autozygosity

(σ2(IBDG)) among individuals, as it does not incorporate variation due to linkage.

Recent advances in next-generation sequencing technology (e.g. Baird et al. 2008; Peterson

et al. 2012) now allow many tens or even hundreds of thousands of single-nucleotide poly-

morphisms (SNPs) to be genotyped in virtually any organism. Applied to HFCs, these dense

marker panels provide much greater power then a small panel of microsatellites to quantify

the impact of inbreeding on fitness (Hoffman et al. 2014). Recent simulation and empirical

studies also suggest that inbreeding coefficients based on genomewide SNP data provide more

precise measures of IBDG and inbreeding depression than FP (Keller et al., 2011; Pryce et al.,

2014; Kardos et al., 2015; Huisman et al., 2016).

HFC theory

For marker loci to indicate inbreeding depression, their heterozygosity must be correlated with

the heterozygosity of functional loci in the genome (Szulkin et al., 2010). Such correlations

between marker loci and functional loci have been proposed to occur through two possible

mechanisms: The ‘general effect hypothesis’ on the one hand assumes that multilocus heterozy-

gosity (MLH) reflects genomewide heterozygosity. This association emerges because variation

in inbreeding causes heterozygosity to be correlated across loci, a phenomenon termed identity
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disequilibrium (ID) (Weir and Cockerham, 1973). Alternatively, the ‘local effect hypothesis’

states that one or a few of the markers are in linkage disequilibrium (LD) with a trait locus un-

der balancing selection, which creates a pattern whereby heterozygosity at the gene and marker

are correlated. However, ID and LD do not necessarily have to be considered as competing

hypotheses to explain HFCs as ID is a consequence and LD is a cause of variation in IBDG

(Bierne et al., 2000; Szulkin et al., 2010). Both mechanisms can therefore be united under an

inbreeding or general effect model (Bierne et al., 2000).

Variance in individual inbreeding levels can be caused by a variety of scenarios other

than systematic consanguineous matings (Szulkin et al., 2010). For example, in small or

bottlenecked populations, σ2(IBDG) and therefore ID can occur as a consequence of variation

in the relatedness of mating partners. Similarly, immigration and admixture can result in the

offspring of parents from different populations being relatively outbred, leading to an increased

σ2(IBDG) within a population (Tsitrone et al., 2001; Szulkin et al., 2010). In addition, in

small randomly mating populations, both genetic drift and immigration generate LD (Hill and

Robertson, 1968; Sved, 1968; Bierne et al., 2000), which in turn leads to ID (Szulkin et al.,

2010). All of these scenarios ultimately increase σ2(IBDG) and lead to ID, which is the

fundamental cause of HFCs according to the general effect model.

The general effect model assumes that HFCs arise due to the simultaneous effects of in-

breeding on variation among individuals in marker heterozygosity and fitness (David et al.,

1995; David, 1998; Bierne et al., 2000; Hansson and Westerberg, 2002). Specifically, inbreed-

ing affects the genome including the panel of genetic markers by increasing the proportion

of loci that are IBD and by causing ID. When the aim of a study is to infer the effects of

inbreeding on fitness from a panel of genetic markers, two related questions arise: (i) How

well does MLH at genetic markers reflect IBDG? and (ii) How large is the inbreeding load,

that is the correlation between inbreeding and fitness? These questions led to the development

of a model to estimate these relationships based on the inbreeding coefficient f defined as

individual IBDG (Bierne et al., 2000). This model was developed further to estimate how

well marker heterozygosity reflects FP, which itself is an imprecise measure of IBDG, but the

best that existed in pre-genomic times (Slate et al., 2004). Within this framework, Szulkin et al.

(2010) used g2 (David et al., 2007), a point estimate of ID, to measure σ2(IBDG). This

allows the derivation of formulae to estimate the correlations between inbreeding, MLH and

fitness purely from genetic marker data.
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Quanধfying effects of inbreeding on heterozygosity and fitness

The general effect model assumes that heterozygosity at genetic markers (h, here defined as

standardized MLH, Coltman et al. 1999), is correlated with genomic heterozygosity through

variation in individual inbreeding levels (f ) and that individual fitness (W ) declines as a linear

function of f, which is expected if deleterious mutations have non-epistatic effects (Bierne et al.,

2000). In other words, the correlation between W and h arises through the simultaneous

effects of inbreeding level on fitness (r(W, f)) and marker heterozygosity (r(h, f)) (Bierne et al.,

2000; Slate et al., 2004; Szulkin et al., 2010):

r(W,h) = r(h, f)r(W,f) (Eq. 5.1)

Although FP has been used as a measure of f in the above formula (Slate et al., 2004;

Szulkin et al., 2010), here we define the inbreeding coefficient f as a variable that explains all

of the variance in genomic heterozygosity (σ2(IBDG)) and therefore includes both variance

depending on an individual’s pedigree and the degree of linkage among loci (Bierne et al.,

2000). When it is not possible to directly measure an individual’s inbreeding level f, we can use

ID to characterize the distribution of f in a population. A measure of ID that can be related to

HFC theory is g2 (David et al., 2007), which quantifies the extent to which heterozygosities

are correlated across pairs of loci (see Appendix S1 for details). Based on g2 as an estimate of

ID, it is then possible to calculate the expected correlation between h and inbreeding level f as

follows (Szulkin et al., 2010):

r2(h, f) =
g2

σ2(h)
(Eq. 5.2)
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Finally, the expected squared correlation between a fitness trait W and inbreeding level f can

be derived by rearranging Eq. 5.1 (Szulkin et al., 2010):

r2(W,f) =
r2(W,h)

r2(h, f)
(Eq. 5.3)

Software is already available for calculating g2 from microsatellite datasets (David et al., 2007).

However, for larger (e.g. SNP) datasets, the original formula is not computationally practical,

as it requires a double summation over all pairs of loci. For example, with 15,000 loci, the

double summations take of the order of 0.2 × 109 computation steps. For this reason, it is

necessary to implement a computationally more feasible formula to calculate g2, which assumes

that the distribution of true heterozygosity is the same in missing data as in non-missing data,

i.e. that the frequency of missing values does not vary much between pairs of loci (Hoffman

et al., 2014). In turn, the g2 parameter builds the foundation for the implementation of the

above framework to analyse HFCs, which is recommended to be routinely computed in future

HFC studies (Szulkin et al., 2010; Kardos et al., 2014).

The package

inbreedR is an R package (R Core Team, 2015) that provides functions for analysing in-

breeding and HFCs based on microsatellite and SNP data. The main aims of the package

are to (i) calculate g2 and its confidence interval and P-value for both microsatellites and

large SNP datasets, (ii) estimate the influence of inbreeding on marker heterozygosity and

fitness through the derivation of r2(h, f) and r2(W,f) and (iii) explore the sensitivity of

g2 and r2(h, f) to marker number through user-friendly simulations. The overall workflow

is shown in Figure 7.1 and described below. For a more detailed description of the pack-

age and the functions, we have supplied a vignette for the package than can be accessed via

browseVignettes("inbreedR") once the package is installed.
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Figure 7.1: inbreedR workflow. For both microsatellite and SNP datasets, the program provides uধliধes
for data conversion and checking, esধmaধon of idenধty disequilibrium, derivaধon of key parameters
relaধng to HFC theory and exploraধon of sensiধvity to the number of loci deployed. Further details are
provided in the main text.

Example datasets

The functionality of inbreedR is illustrated using genetic and phenotypic data from an inbred

captive population of oldfield mice (Peromyscus polionotus, Hoffman et al. 2014). These mice

were paired over six laboratory generations to produce offspring with FP ranging from 0 to

0.453. Example files are provided containing the genotypes of 36 P. polionotus individuals at 12

microsatellites and 13,198 SNPs respectively. Data on body mass at weaning, a fitness proxy,

are also available for the same individuals.

library(inbreedR)
data("mouse_msats") # microsatellite data
data("mouse_snps") # snp data
data("bodyweight") # fitness data

Data conversion and checking

The working format of inbreedR is an individual × locus matrix or data.frame in which

rows represent individuals and each column represents a locus. If an individual is heterozygous

at a given locus, it is coded as 1, whereas a homozygote is coded as 0, and missing data are
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coded as NA. We provide a converter function from a common two-column-per-locus (allelic)

format to the working format, as well as a function to check for common formatting errors

within the input matrix. Guidelines for extracting genotype data from VCF files are given in

the vignette.

# transforms microsatellite data into (0/1)
mouse_microsats <- convert_raw(mouse_msats)
# check the data
check_data(mouse_microsats, num_ind = 36, num_loci = 12)
#> [1] TRUE
check_data(mouse_snps, num_ind = 36, num_loci = 13198)
#> [1] TRUE

Idenধty disequilibrium

The package provides functions to calculate g2 for both microsatellites and SNPs. The

g2_microsats() function implements the formula given in David et al. (2007). For large

datasets (e.g. SNPs) the g2_snps() function implements a computationally feasible formula

described in Appendix S1. For both microsatellites and SNPs, inbreedR also calculates confi-

dence intervals by bootstrapping over individuals (Table 7.1). It also permutes the genetic data

to generate a P-value for the null hypothesis of no variance in inbreeding in the sample (i.e.

g2 = 0). The g2_snps() function provides an additional argument for parallelization which

distributes bootstrapping and permutation across cores.

g2_mouse_microsats <- g2_microsats(mouse_microsats,
nperm = 1000, nboot = 1000, CI = 0.95)
g2_mouse_snps <- g2_snps(mouse_snps, nperm = 100,
nboot = 100, CI = 0.95, parallel = FALSE, ncores = NULL)

Table 7.1: Output of the g2 funcধons showing g2 values and their 95% confidence intervals, standard
errors and P-values for 36 mice genotyped at 12 microsatellites and 13,198 SNPs.

g2 Lower CI Upper CI SE P-value

Microsats 0.022 -0.008 0.065 0.019 0.076

SNPs 0.035 0.022 0.050 0.008 0.010
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Results of both functions can be plotted as histograms with CIs (Figure 7.2).

par(mfrow=c(1,2)
plot(g2_microsats, main = "Microsatellites",
col = "cornflowerblue", cex.axis = 0.85)
plot(g2_snps, main = "SNPs",
col = "darkgoldenrod1", cex.axis = 0.85)

Figure 7.2: Output of the g2 funcধons for the microsatellite and SNP datasets showing the distribuধon
of g2 esধmates from bootstrap samples over individuals together with their 95% CIs. The empirical g2
esধmate is marked as a black dot along the CI.

Another approach for estimating ID is to divide the marker panel into two random sub-

sets, compute the correlation in heterozygosity between the two and repeat this hundreds or

thousands of times in order to obtain a distribution of heterozygosity-heterozygosity correla-

tion coefficients (Balloux et al., 2004). This approach is intuitive and has been shown to be

equivalent to g2 in its power to detect non-zero variance in inbreeding (Kardos et al., 2014)

although it can be criticized on the grounds that samples within the HHC distribution are

non-independent. Moreover, g2 is preferable because it directly relates to HFC theory (Eq.

5.2). The HHC() function in inbreedR calculates HHCs together with confidence intervals,

specifying how often the dataset is randomly split into two halves with the reps argument.
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HHC_mouse_microsats <- HHC(mouse_microsats, reps = 1000)
HHC_mouse_snps <- HHC(mouse_snps, reps = 100)

The results can be outputted as text (Table 7.2) or plotted as histograms with CIs (Figure 7.3).

Table 7.2: Output of the HHC funcধon, showing mean HHCs with 95% confidence intervals and standard
deviaধons for 36 mice genotyped at 12 microsatellites and 13 198 SNPs.

Mean Lower CI Upper CI SD

Microsats 0.194 -0.062 0.453 0.128

SNPs 0.976 0.961 0.987 0.007

par(mfrow=c(1,2)
plot(HHC_microsats, main = "Microsatellites",
col = "cornflowerblue", cex.axis = 0.85)
plot(HHC_snps, main = "SNPs",
col = "darkgoldenrod1", cex.axis = 0.85)

Figure 7.3: Output of the HHC funcধon showing the distribuধon of heterozygosity-heterozygosity cor-
relaধon coefficients for the microsatellite and SNP datasets. Also shown are the mean HHCs as black
dots and their 95% CIs. The two distribuধons are very different, microsatellites being posiধve but with
the 95% CI overlapping zero, and SNPs being well in excess of 0.9 with a much greater precision. This
reflects the enhanced power of the larger SNP dataset to capture variance in f among individuals.
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HFC parameters

Assuming that HFCs are due to inbreeding depression, it is possible to calculate both the

expected correlation between heterozygosity and inbreeding level (r2(h, f)) and the expected

correlation between a fitness trait and inbreeding (r2(W,f)) as described in Eq. 5.1. These

calculations are implemented in inbreedR using the functions r2_hf() and r2_Wf(). Both
functions include an nboot argument to run bootstrapping over individuals and estimate con-

fidence intervals. Similar to the glm() function, the distribution of the fitness trait can be

specified using the family argument, as shown below:

# r^2 between inbreeding and heterozygosity
hf <- r2_hf(genotypes = mouse_microsats, nboot = 100, type = "msats")
# r^2 between inbreeding and fitness

Wf <- r2_Wf(genotypes = mouse_microsats, trait = bodyweight,
family = gaussian, nboot = 100, type = "msats")

Workflowfor esধmaধng the impact of inbreedingonfitness usingHFC

Szulkin et al. (2010) in their Appendix S1 provide a worked example of how to estimate

the impact of inbreeding on fitness within an HFC framework. Below, we show how the

required calculations can be implemented in inbreedR. We start with the estimation of identity

disequilibrium (g2) and calculation of the variance of standardized multilocus heterozygosity

(σ2(h)), followed by the estimation of the three correlations from Eq. 5.1. Example code for

the microsatellite dataset is shown below and the results for both microsatellites and SNPs are

given in Table 7.3.

Table 7.3: Parameters central to interpreধng HFCs for the microsatellite and SNP datasets. ĝ2 is the em-
pirical point esধmate of g2, σ̂2(h) is the variance in sMLH, β̂Wh is the regression slope of sMLH in a lin-
ear model of the fitness trait, r̂2Wh is the squared correlaধon of the fitness trait and sMLH, r̂2hf is the
expected squared correlaধon of sMLH and inbreeding, and r̂2Wf is the expected squared correlaধon be-
tween sMLH and fitness. 95% confidence intervals are shown in squared brackets for the esধmates from
the package. Note that r̂2hf is an expected correlaধon derived from the raধo of ĝ2/σ̂2(h) and may slightly
exceed one due to missing values; we therefore constrain the esধmate between 0 and 1.

ĝ2 σ̂2(h) β̂Wh r̂2Wh r̂2hf r̂2Wf

Microsats 0.022 [-0.01, 0.06] 0.078 1.601 0.121 0.280 [0, 0.52] 0.434 [0, 88]

SNPs 0.035 [0.02, 0.05] 0.033 2.634 0.139 1 [0.89, 1] 0.132 [0, 0.14]
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# g2 and bootstrap to estimate CI
g2 <- g2_microsats(mouse_microsats, nboot = 1000)
# calculate sMLH
het <- sMLH(mouse_microsats)
# variance in sMLH
het_var <- var(het)
#linear model
mod <- lm(bodyweight ~ het)
# regression slope
beta <- coef(mod)[2]
# r^2 between fitness and heterozygosity
Wh <- cor(bodyweight, predict(mod))^2
# r^2 between inbreeding and sMLH including bootstraps to estimate CI
hf <- r2_hf(genotypes = mouse_microsats, type = "msats"),
nboot = 1000)
# r^2 between inbreeding and fitness including bootstraps to estimate CI
Wf <- r2_Wf(genotypes = mouse_microsats, trait = bodyweight,
family = gaussian, type = "msats", nboot = 1000))

Sensiধvity to the number of markers

Sampling subsets of loci from an empirical genetic dataset and estimation of a statistic of

interest based on these subsets can give insights into the power provided by a given marker

panel (?Hoffman et al., 2014; Stoffel et al., 2015). However, although subsampling markers

(with replacement) from an empirical dataset allows exploration of trends in the magnitude

of a statistic, the precision (variation) of the same statistic will be biased. This is due to the

increasing non-independence of resampled marker sets as they approach the total number of

markers. For example, given a dataset of 20 genetic markers, repeatedly subsampling 18 markers

and calculating g2 will always lead to lower variation in the estimates than subsampling sets of 5

markers. To circumvent this problem, the simulate_g2() function simulates genotypes from

which subsets of loci can be sampled independently. The simulations can be used to evaluate

the effects of the number of individuals and loci on the precision and magnitude of g2. The

user specifies the number of simulated individuals (n_ind), the subsets of loci (subsets) to be

drawn, the heterozygosity of non-inbred individuals (H_nonInb, i.e. expected heterozygosity

in the base population) and the distribution of f among the simulated individuals. The f values

of the simulated individuals are sampled randomly from a beta distribution with mean (meanF)
and variance (varF) specified by the user (e.g. as in Wang 2011). This enables the simulation to

mimic populations with known inbreeding characteristics or to simulate hypothetical scenarios

of interest. For computational simplicity, allele frequencies are assumed to be constant across
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loci and the simulated loci are unlinked. Genotypes (i.e. heterozygosity/homozygosity at each

locus) are assigned stochastically based on the f values of the simulated individuals. Specifically,

the probability of an individual being heterozygous at any given locus (H) is expressed as

H = H0(1−f), where H0 is the user-specified heterozygosity of a non-inbred individual and

f is an individual’s inbreeding coefficient drawn from the beta distribution.

sim_g2_mouse_microsats <- simulate_g2(n_ind = 50, H_nonInb = 0.5,
meanF = 0.2, varF = 0.03, subsets = c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50),
reps = 100, type = "msats")
sim_g2_mouse_snps <- simulate_g2(n_ind = 50, H_nonInb = 0.5, meanF = 0.2,
varF = 0.03, subsets = seq(from = 1000, to = 10000, by = 1000), reps = 100,
type = "snps")

The results can be visualized by showing the mean and CI of g2 plotted against the number

of loci used (Figure 7.4).

par(mfrow = c(1,2), mar = c(5,5.15,3,1.2))
plot(sim_g2_microsats, main = "Microsatellites", cex.axis = 1.5,
cex.main = 1.5, cex.lab = 1.5)
plot(sim_g2_snps, main = "SNPs", cex.axis = 1.5,
cex.main = 1.5, cex.lab = 1.5)

Figure 7.4: Output of the simulate_g2() funcধon. Different sets of microsatellites and SNPs were sim-
ulated and stochasধcally drawn from distribuধons based on a mean (SD) inbreeding level f of 0.2 (0.03)
assuming that a non-inbred individual has a heterozygosity of 0.5. The two plots show the g2 staধsধcs
from all samples including their means and 95% CIs.

Bear in mind that g2 values calculated from the simulated data may overestimate precision due

to the assumption of unlinked loci. However, in practice, the number of linked SNPs in most
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real datasets will be small compared to the number of unlinked SNPs (Szulkin et al., 2010)

and hence g2 should not be substantially affected.

Finally, it is of interest to infer how well genetic marker heterozygosity reflects the inbreeding

level f and whether this correlation could be increased by genotyping individuals at a larger

set of markers. The simulate_r2_hf() function can be used to compare the precision

and magnitude of the expected squared correlation between heterozygosity and inbreeding

(r2(h, f)) for a given number of genetic markers.
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sim_r2_mouse_microsats <- simulate_r2(n_ind = 50, H_nonInb = 0.5,
meanF = 0.2, varF = 0.03, subsets = c(5, 10, 15, 20, 25, 30,
35, 40, 45, 50), reps = 100, type = "msats")

sim_r2_mouse_snps <- simulate_r2(n_ind = 50, H_nonInb = 0.5, meanF = 0.2,
varF = 0.03, subsets = seq(from = 1000, to = 10000, by = 1000), reps = 100,
type = "snps")

The results can again be plotted as a series of r2(h, f) estimates together with their means and

CIs (Figure 7.5).

par(mfrow = c(1,2), mar = c(5,5.15,3,1.2))
plot(sim_r2_microsats, main = "Microsatellites", cex.axis = 1.5,
cex.main = 1.5, cex.lab = 1.5)
plot(sim_r2_snps, main = "SNPs", cex.axis = 1.5, cex.main = 1.5,
cex.lab = 1.5)

Figure 7.5: Output of the simulate_r2_hf() funcধon. Different sets of microsatellites and SNPs
were simulated and stochasধcally drawn from distribuধons based on a mean (SD) inbreeding level f of
0.2 (0.03) assuming that a non-inbred individual has a heterozygosity of 0.5. The two plots show the
r2(W, f) values for an increasing number of markers including their means and 95% CIs. The expected
correlaধon between inbreeding and marker heterozygosity increases and is esধmated with higher preci-
sion when the number of markers is increased.
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Effects of LD under the general effect model

LD may affect the strength of an HFC because it increases σ2(IBDG) (Bierne et al., 2000).

This is because the variance in individual IBDG is explained by (i) a component that reflects the

different pedigrees of individuals and (ii) a component that reflects variation among individuals

with the same pedigree (Bierne et al., 2000). In the absence of linkage (i.e. if there were

infinitely many unlinked loci), an individual’s IBDG would solely depend on the pedigree.

However, loci do not segregate independently and LD and especially physical linkage will

therefore cause variation in IBDG among individuals with the same pedigree. Calculating

g2 and derived HFC statistics based on large SNP datasets, which are likely to include linked

markers, is therefore not a problem per se. As g2 does not incorporate any pedigree information

but purely quantifies correlated heterozygosity among genetic marker pairs, it is a direct measure

of σ2(IBDG). The only assumption needed is that IBD is equally frequent among marker

loci and fitness loci that are responsible for inbreeding depression. Put another way, the fitness

loci should have an equivalent genomic distribution to the genetic markers.

Increasing the total number of genetic markers should not affect the proportion of linked

markers and should thus not affect g2. To test this, we evaluated the sensitivity of g2 to marker

number by repeatedly sampling random subsets of between 100 and 13,000 SNPs from the full

mouse dataset and calculating the respective g2 values. For each subset, markers were sampled

without replacement to avoid non-independence, which is why the number of repetitions

decreases with increasing marker number. The mean g2 was found to be stable across all

subset sizes, suggesting that, for our dataset, the expected g2 does not vary appreciably with

marker density (Figure 7.6).

In general, the number of locus pairs in strong linkage is expected to be very low compared

to the number of non-linked pairs (Szulkin et al., 2010). As g2 averages over all pairs of loci,

this point estimate should therefore be relatively insensitive to the inclusion of linked markers

as long as all markers are broadly distributed across the genome. To test this, we conducted

LD pruning of our SNP dataset at various stringency thresholds to determine how linkage

among SNPs affects g2 estimates and their confidence intervals. We used the indep-pairphase

function in PLINK version 1.09 (Purcell et al., 2007) to remove one SNP from each pair with

an r2 above thresholds ranging from 0.5 to 0.99 with increments of 0.05 and a last increment

of 0.04. In order to account for our SNPs being on unplaced contigs, we assumed that all

SNPs were on the same ‘chromosome’ and used a sliding window spanning the full dataset.

The magnitude and precision of g2 estimates was found to be stable across all LD pruned

datasets (Figure 7.7), suggesting that, for our dataset, g2 is relatively insensitive to the inclusion
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Figure 7.6: Mean and standard deviaধon of g2 derived from an increasing number of SNPs drawn at ran-
dom from the empirical mouse dataset (13,198 SNPs). The distribuধon of data points for each subset
size is based on sampling without replacement to obtain non-overlapping marker sets. For this reason,
the number of data points decreases from 131 for 100 markers to 1 for subsets larger than 6599 SNPs
. The mean g2 is stable across all subset sizes, which suggests that esধmaধng g2 from larger numbers of
markers does not introduce bias for our dataset.

of strongly linked SNPs.

Final remarks

The inbreedR package implements a framework to estimate the impact of variation in inbreed-

ing on marker heterozygosity and fitness, which has been suggested to be routinely reported

in HFC studies (Szulkin et al., 2010; Kardos et al., 2014). A good example is a recent study of

red deer, in which Huisman et al. (2016) quantified identity disequilibria through g2 in several

datasets to estimate the power of a genomic inbreeding measure to detect inbreeding depres-

sion. In addition to the quantification of ID and HFCs for empirical data, straightforward

simulations within inbreedR provide a way to explore the effect of the number of genetic

markers on g2 and the expected correlation between marker heterozygosity and inbreeding.

This is important for evaluating the power of a given dataset to measure inbreeding depression

and could also facilitate the planning of future projects by allow exploration of the effects of

sample size and marker number on the power to detect ID and HFCs.

169



inbreedR: R package

Figure 7.7: Esধmates of g2 with confidence intervals for subsets of SNPs pruned based on different LD
thresholds. We used PLINK to remove one SNP from each marker pair with an r2 above the respecধve
threshold. As we used a sliding window spanning the full dataset instead of local regions on a chromo-
some, the retained datasets contained a maximum of 4363 (r2 > 0.99) and a minimum of 1095 (r2 > 0.5)
SNPs. The magnitude and precision of g2 does not vary noধceably for our dataset when pruning strongly
linked SNPs.

Although g2 and related parameters can provide insights into whether an HFC is due to

inbreeding or not, the user should be aware that spurious HFCs can occur due to population

structure (Slate et al., 2004), which should therefore be appropriately dealt with beforehand.

For instance, genetically distinct populations could be analysed separately. Also, it is worthwhile

considering whether SNPs should be filtered based on their minor allele frequencies (MAF)

prior to analysis. One the one hand, genotyping by sequencing approaches rely on sufficient

depth of coverage to call SNPs with reasonable confidence. Thus, low MAF SNPs may be

disproportionately error prone when the depth of sequence coverage is not high enough to

capture multiple copies of the minor allele. On the other hand, filtering out low MAF SNPs

may distort the allele frequency spectrum and lead to the loss of valuable information (Hoffman

et al., 2014).

Finally, LD and ID have been seen as alternative hypotheses to explain HFCs (Hansson

and Westerberg, 2008). However, LD often goes hand in hand with ID and is therefore a

relevant variance component when the aim is to estimate σ2(IBDG) (Bierne et al., 2000;

Szulkin et al., 2010). As most HFC studies should be interested in estimating σ2(IBDG)

through g2, linked markers need not be pruned as long as the genomic distributions of the

marker and trait loci are comparable. However, if the goal of a study is to infer characteristics
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of a pedigree from g2 (such as self-fertilization rates), it might be useful to reduce physical

linkage among markers using PLINK (Purcell et al., 2007) or other methods to ensure their

independence (David et al., 2007). Further investigation would be needed to evaluate the

impact of pruning linked markers on selfing or inbreeding rates estimated through g2.

Computaধon ধmes

Computation times will be negligible for most microsatellite datasets but somewhat longer for

very large SNP datasets. On a standard laptop (Intel Core I5 2.60 GHz, 8 GB RAM), running

the g2_snps() function for our example SNP dataset (36 individuals genotyped at 13,198

loci) with 1000 bootstraps takes 1 min 12 s without parallelization and 38 s with parallelization

on three cores. For comparison, we also simulated a large SNP dataset with 3500 individuals

at 37,000 loci (similar to Huisman et al. (2016) and ran this on a 40 core server with 1000

bootstraps, which took 73 h.

Availability

The current stable version of the package requires R 3.2.1 and can be downloaded from CRAN

as follows:

install.packages("inbreedR")

In the future, we will aim to extend the functionality of inbreedR and the latest development

version can be downloaded from GitHub.

install.packages("devtools")
devtools:install_github("mastoffel/inbreedR")

Data accessibility

Both example datasets are included in the R package.
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A harbour seal pup yawns. In the background is a female adult Northern elephant seal. Four different pinniped species live on

San Benitos, also including California sea lions and Guadalupe fur seals.
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Summary
1. Intra-class correlations (ICC) and repeatabilities (R) are fundamental statistics for quan-

tifying the reproducibility of measurements and for understanding the structure of bio-

logical variation. Linear mixed effects models offer a versatile framework for estimating

ICC and R. However, while point estimation and significance testing by likelihood ratio

tests is straightforward, the quantification of uncertainty is not as easily achieved.

2. A further complication arises when the analysis is conducted on data with non-Gaussian

distributions because the separation of the mean and the variance is less clear-cut for

non-Gaussian than for Gaussian models. Nonetheless, there are solutions to approxi-

mate repeatability for the most widely used families of generalized linear mixed models

(GLMMs).

3. Here, we introduce the R package rptR for the estimation of ICC and R for Gaussian,

binomial and Poisson-distributed data. Uncertainty in estimators is quantified by para-

metric bootstrapping and significance testing is implemented by likelihood ratio tests

and through permutation of residuals. The package allows control for fixed effects and

thus the estimation of adjusted repeatabilities (that remove fixed effect variance from the

estimate) and enhanced agreement repeatabilities (that add fixed effect variance to the

denominator). Furthermore, repeatability can be estimated from random-slope models.

The package features convenient summary and plotting functions.

4. Besides repeatabilities, the package also allows the quantification of coefficients of deter-

mination R2 as well as of raw variance components. We present an example analysis to

demonstrate the core features and discuss some of the limitations of rptR.

Introducধon

Whenever quantitative measurements are hierarchically organized at multiple levels, intra-class

correlations ICC can be used to express the average correlation among measurements taken

from the same hierarchical level (McGraw and Wong, 1996). A classical application is the

quantification of the reproducibility of measurements from the same study object, and the

ICC is therefore also known as the repeatability R. In the context of ecology and evolution,

the repeatability typically represents the fraction of the total phenotypic variance VP in the

population of interest that can be attributed to variation among groups VG. The ratio of these
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variance components and can be written as R = V G
V G+V R , where VR represents the within-

group (residual) variance and VG + VR = VP. The term ‘group’ is used here in the statistical

sense and could represent various biological grouping, e.g. within individuals, families, social

groups, plots or years. In the study of animal behaviour, for example, repeatabilities are

frequently used as a measure of individual consistency with individual identities being the

grouping factor (Boake, 1989; Bell et al., 2009).

Notably, there can be repeatabilities at multiple levels in the same dataset: for example,

the repeatability of phenotypes in different years of measurements and the repeatability of

phenotypes within individuals. The coefficient of determination R2 is a similar statistic that

quantifies the proportion of variance explained by fixed effects (marginal R2 sensu Nakagawa

and Schielzeth 2013. R2 is therefore a complementary statistic for decomposing the phenotypic

variance. Both R and R2 represent standardized statistics in the sense that they are variance

components divided by the total phenotypic variance and are thus expressed as proportions of

the phenotypic variance. Sometimes, however, it is relevant to estimate the variance components

as they are, without standardization by the phenotypic variance. A convenient software tool

for decomposing phenotypic variances will thus allow for the estimating of repeatabilities at

multiple levels, offer flexibility in controlling for fixed effects, estimate the marginal R2 for fixed

effects and allow for the estimation of raw (unstandardized) variance components.

Repeatabilities can be estimated from a variety of sampling designs by a variety of sta-

tistical tools. The most widely used statistical framework for analyzing various designs are

mixed effects models that allow the estimation of the relevant variance components with the

possibility to control for fixed effect covariates (Nakagawa and Schielzeth, 2010). Non-normal

error distributions have represented a challenge for estimating repeatabilities, because of the

nonlinearity induced by the link function (de Villemereuil et al., 2016). However, we have

previously reviewed the equations for estimating repeatabilities and R2 from generalized linear

mixed effects models (GLMMs) (Nakagawa and Schielzeth, 2013). The challenge here is that

not all variance components necessary for calculating repeatabilities are part of the model out-

put. Another challenge is the quantification of uncertainty of variance components and ratios

of variance components (such as repeatabilities and R2). We have suggested the use of para-

metric bootstrapping for quantifying uncertainty of repeatabilities (Nakagawa and Schielzeth,

2010) and this can be easily applied to R2, too. Parametric bootstrapping quantifies the design-

specific sampling variance by simulating response values from the fitted model followed by a

re-estimation of the repeatability or R2. Under the assumption that the model is correctly

specified, the variance among replicated simulations thus represents the sampling uncertainty

of the estimate.
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There are a number of other R packages that can estimate certain aspects of ICC and

repeatabilities for more specific problems. The packages irr (Gamer et al., 2012), psy (Falissard,

2012) and psych (Revelle, 2016) with their functions icc and ICC allow the estimation of

rater agreement and consistency for simple (one- or two-way) designs. From the field of

ecology and evolution, the icc package (Wolak et al., 2012) allows the estimation of ANOVA-

based repeatability with a single response vector and a single grouping vector. Notably, the

icc package allows the exploration of optimized sampling designs. However, none of these

packages can estimate repeatabilities and their uncertainties for non-Gaussian models or control

for confounding effects. The MuMIn package (Barton, 2016) allows the quantification of

R2 from fitted generalized linear models, but does not allow the quantification of intra-class

correlations.

Here, we introduce the rptR package for the free software environment R (R Core Team,

2015). rptR provides general utilities for estimating adjusted and agreement repeatabilities

for Gaussian, binomial (binary and proportion) and Poisson models. The package relies on

mixed-effects models fitted by the lmer and glmer functions from the lme4 package (Bates

et al. 2015). Confidence intervals for repeatabilities are estimated by parametric bootstrapping

and statistical significance against H0: R = 0 is tested by likelihood ratio and permutation tests.

Moreover, it is also possible to estimate marginal R2 and raw variance components along with

their uncertainties and statistical significance.

Features

The package rptR as it is introduced here represents a complete rewrite of the rptR devel-

opmental package that we had written as part of our original repeatability review (Nakagawa

and Schielzeth, 2010). Compared to the developmental version of the package, the current

version now provides several new features: (i) The package allows for the estimation of ad-

justed repeatabilities for Gaussian and well as non-Gaussian data. Adjusted repeatabilities are

repeatabilities that control (adjust) for fixed effects (table 6 in Nakagawa and Schielzeth 2010

provides an overview of different types of repeatabilities). The variance explained by fixed

effect is excluded from the denominator. (ii) The package allows estimating what we here call

enhanced agreement repeatabilities. Enhanced agreement repeatabilities fit fixed effects, but

include their variance in the denominator. (iii) The package allows estimating marginal R2

along with repeatabilities. (iv) The package allows repeatability and marginal R2 estimation
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from random-slope models, using the approach introduced by Johnson 2014. (v) The pack-

age allows the estimation of raw (unstandardized) variances. (vi) The package provides new

plotting and summary functions as well as a detailed documentation in the form of a vignette

(which is accessible via vignette("rptR")). (vii) We added the option to conduct boot-

strapping and permutations in parallel for reduced waiting time, a progress bar for monitoring

and an update option for stepwise increases of bootstrapping and/or permutations.

The package now features the four core functions rptGaussian for Gaussian error dis-

tributions with identity link, rptPoisson for Poisson error distributions with log or square

root link, rptBinary for binary data with logit or probit link functions and rptProportion
for proportion data (in the form of counts of success and failure events) following binomial

distributions with logit or probit link. All functions can be called via the general rpt function

by specifying the datatype argument. Results are returned as S3 class rpt objects and can be

conveniently displayed via the generic print, summary, and plot functions. The package

now has a simplified and unified formula interface and is based on the popular lme4 package

(Bates et al. 2015) as the central model-fitting engine. Grouping factors of interest are fitted

as random effects and potentially confounding variables can be fitted as fixed effects. For non-

Gaussian models, the package internally adds an observational level random effect (with the

reserved term ‘Overdispersion’) for estimating overdispersion.

Likelihood ratio tests are returned by default. Randomization procedures are also imple-

mented, but since randomization is time-consuming, this option is deactivated in the default

state (argument npermut = 0). Randomization in the rptR package is implemented as a

permutation of residuals of the fitted null model (excluding the grouping factor of interest).

This ensures that the remaining data structure and effects are represented in the simulated data

while the dependence with the grouping factor of interest is broken.

Example Analysis

We will illustrate the features of rptR by estimating adjusted repeatabilities for Poisson data

with log link for a dataset that was generated for estimating R2 in GLMMs (Nakagawa and

Schielzeth, 2013). The data represent counts of eggs for an imaginary species of beetle and we

estimate repeatabilities at two hierarchical level of organization, among populations and among

housing containers, while controlling for an experimental food manipulation. The data are

distributed with rptR and can be loaded and analyzed by the following:

179



rptR: R package

library(rptR)
data(BeetlesFemale)

The repeatability can be estimated through the general rpt function or directly with the more

specialized rptPoisson function. The syntax for the formula argument is the same as for

the glmer function from the lme4 package. We here specify two random effects (population

and container) and aim to estimate the agreement repeatabilities at both levels simultaneously

(controlled by the grname argument).

rptPoisson(Egg~ 1+(1|Container)+(1|Population),
grname=c("Container","Population"),
data=BeetlesFemale, link="log")

The nboot argument controls the number of parametric bootstrap iterations for confidence

interval estimation and defaults to 500 bootstraps. It may be advisable to reduce this number

initially, but to increase the number to 1000 or more for the final analysis. The npermut ar-

gument controls the number of randomizations for permutation-based null hypothesis testing

and defaults to 0. We recommend starting with the default and to use a substantial number of

permutations (e.g. 1000) for the final analysis. More iterations for bootstrapping and permu-

tation can be added, using the update and rptObj arguments (see package documentation

for details).

With the example dataset, it is advisable to control for important design effects, in par-

ticular the nutritional treatment that may have inflated the phenotypic variance experimentally.

Therefore, we estimate adjusted repeatabilities by including a dummy coded binary predictor

as a covariate in the fixed part on the right-hand side of the formula argument (while using

the option parallel = TRUE for reduced waiting time).

rep1 <- rptPoisson(Egg ~Treatment+(1|Container)+
(1|Population), grname=c("Container","Population"),
data=BeetlesFemale, link="log",nboot=1000,
parallel=TRUE)

The output can be viewed using the generic print, summary and plot functions (Figure 8.1).

Unlike the agreement repeatability estimated above, the adjusted repeatability has removed the

variance explained by Treatment from the repeatability estimation. Adjusted repeatabilities

are also known as consistency repeatabilities, particularly in the psychological literature (Shrout

and Fleiss, 1979; McGraw and Wong, 1996), or as narrow sense repeatabilities (Biro and

Stamps, 2015). Depending on the sampling designs, adjusted repeatabilities are often, but not

always, larger than unadjusted (agreement) repeatabilities. The unadjusted repeatability without
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any control for systematic effects is also known as the broad sense or agreement repeatability

(Shrout and Fleiss, 1979; Nakagawa and Schielzeth, 2010; Biro and Stamps, 2015).

Plots can be customized by additional arguments handed over to plot.default (Figure

8.1):

print(rep1)
summary (rep1)
plot(rep1, grname="Population", scale="link",
cex.main=0·8, main="Population variance", las=1)
plot(rep1, grname="Container", scale="link",
cex.main=0·8, main="Container variance", las=1)

Figure 8.1: Examples for plots of rpt objects. The data show the analysis of a toy dataset of Poisson dis-
tributed count data analyzed with log link. Link scale repeatabiliধes are shown. CI = confidence interval.

Sometimes it is desired to fit models that include fixed effects, but to add the variance explained

by fixed effects in the denominator of the repeatability estimation. In rptR, it is possible to

estimate the variance explained by fixed effects as the variance in the linear predictor (i.e. the

variance in fitted values) and to include this variance in the repeatability estimation. This

functionality is controlled by the adjusted argument. By setting adjusted = FALSE, the
model estimates repeatabilities with the variance explained by fixed effect in the denominator.

We call this enhanced agreement repeatabilities.

rep2 <- rptPoisson (Egg~Treatment+(1 | Container)+
(1 | Population), grname=c("Container",
"Population"), data=BeetlesFemale, link="log",
nboot=1000, parallel=TRUE, adjusted=FALSE)
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Table 8.1: Examples of print and summary displays of an rpt object

Furthermore, it is sometimes of interest to estimate the variances directly rather than as ratios

of variances as represented by the repeatability. By setting the argument ratio = FALSE,
rptR will estimate raw variances rather than repeatabilities. There are three reserved terms

182



rptR: R package

to the grname argument, ‘Overdispersion’, ‘Residual’, and ‘Fixed’ that allow estimating the

overdispersion variance (on the latent scale modelled as an observation specific random effect),

residual variance (the sum of overdispersion and distribution-specific variance) and the variance

explained by fixed effects.

rep3 <- rptPoisson (Egg ~ Treatment +(1 | Container) +
(1 |Population), grname=c("Container", "Population",
“Fixed”, "Overdispersion", "Residual"),
data=BeetlesFemale, link="log", nboot=1000,
parallel=TRUE, ratio=FALSE, adjusted=FALSE)

Limitaধons

While point estimation is convenient and fast using rptR, the two Monte Carlo simulation steps

can be slow. For a large dataset with multiple random effects such as the beetle toy dataset,

a decent number of bootstraps or permutations can take several minutes. This time can be

substantially shortened by conducting the simulations on multiple cores in parallel. For many

applications, we suggest to initially fit the model with bootstrapping and permutations switched

off (nboot = 0, npermut = 0). The final analysis should be done with larger numbers of

bootstraps and permutations (possibly in separated steps, since computation times add up). It

is also possible to increase the number of bootstraps and permutations by calling the function

again with the arguments update = TRUE and the rpt object from the previous function call

being handed over to the rptObj argument.

With the focus on glmer from the lme4 package (Bates et al. 2015) as the central mixed-

model fitting engine, we are limited to modelling additive overdispersion models. We have

previously described repeatability estimation also for multiplicative overdispersion models (Nak-

agawa and Schielzeth, 2010), but since we find the model fits of glmer accurate, fast and

efficient, we currently do not see the need for implementing estimation based on multiplicative

overdispersion models.

The package does not work properly for data exhibiting underdispersion relative to the

chosen GLMM family. Since the additive overdispersion term cannot drop below zero, the total

residual variance cannot become smaller than the distribution�specific variance. What seems

like a limitation is in fact an unavoidable feature. While overdispersion can easily arise from

unmodelled confounding effects, underdispersion signifies that the GLMM family is simply not

appropriate. There is no formal warning build in in rptR for potential underdispersion, hence

users are advised to check their data themselves. The lack of any link-scale residual variance
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might, however, suggest potential underdispersion.

Availability

A stable version of the package (rptR 0.9.2 at the time of writing) can be downloaded from Com-

prehensive R Archive Network (CRAN, https://cran.r-project.org/package=rptR).
This version will run with the current version of R (R 3.3.3 at the time of writing) and will

provide the features introduced in this publication. At the same time, we aim to further develop

the package, potentially improving plot and display features as well as supporting additional

GLMM families. A developmental version will be available on Github (https://github.
com/mastoffel/rptR), where it will be tested before being released on CRAN. The cur-

rent stable Github version can be downloaded manually or via install_github from the dev-

tools suite of functions (Wickham & Chang 2016): install_github("mastoffel/rptR",
build_vignettes = TRUE).
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‘The great thing about population genetics is that you get to play in everyone’s back yard 1.’

From the demographic past, ecology and life-history of a species to the complex chemical and

microbial patterns associated with all living organisms, everything can be viewed in the light

of genetic variation. The highly mathematical discipline of population genetics in the time of

Wright, Fisher and Haldane has now transformed into a universal approach for understanding

biological phenomena which requires a whole range of scientific efforts, from field and lab

work to bioinformatics, mathematical modeling and statistics. To hold up with the demands

of modern biological science in general, and high-throughput technology in particular, both

reproducible research and methodological developments are the key to guarantee quality and

progress of the field. On that note, these are the main findings of my thesis:

Main findings

One third of pinnipeds show signatures of geneধc boħlenecks, which are mediated
by variaধon in ecology and life-history.

Large scale commercial exploitation of pinnipeds around the globe is known to have decimated

several species, yet it was largely unclear to what degree (IUCN, 2018; Wilson and Mittermeier,

2014). Although efforts had been made to infer population bottlenecks from genetic data for

several species (e.g de Oliveira et al. 2009; Hedrick 1995; Hoffman et al. 2011; Osborne et al.

2016), most of these studies only estimate the presence or absence of genetic bottlenecks without

any inference of their strength or associated population sizes. In Chapter 2, we showed that

genetic demographic inference based on the very same demographic model is possible for a

whole group of species and that one-third of pinnipeds underwent severe genetic bottlenecks

as a consequence of overexploitation, sometimes with effective population sizes of only a few

dozens of individuals. Furthermore, we provide evidence that a species’ demography in the

Anthropocene can be highly dependent on its ecology and life-history, with land breeding

species and highly polygynous species exhibiting stronger genetic bottleneck signals. While

land breeders were likely to simply be more accessible than ice-breeders, highly polygynous

species usually have very predictable breeding seasons, which probably made them easier targets

for the sealing industry. Lastly, Ne is known to be lower in highly polygynous species (Nunney,

1993), which will also might slow down a genetic recovery after a bottleneck as compared to

monogamous species.

1Words of the eminent statistician John Tukey, while ‘statistics’ was replaced with ‘population genetics.’
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Recent demography shapes geneধc diversity across species.

Changes in Ne over time are predicted to strongly affect genetic diversity across species (Alcala

and Vuilleumier, 2014; Ellegren and Galtier, 2016). Despite this prediction, the old riddle

about the role of demography as a determinant of genetic diversity has been neglected for a

long time (Leffler et al., 2012), which is likely due to the complexity and multitude of drivers

of genetic diversity which can only be disentangled with large-scale comparative genetic data.

In the largest effort so far, Romiguier et al. (2014) compared the genome-wide diversity of 76

animal species and revealed that life-history in the form of reproductive strategy is the main

driver of diversity across species, while recent fluctuations in Ne did not seem to play a strong

role. However, the relationship between demography and diversity has never been investigated

for a group of closely related species which show substantial variation in their recent Ne, such

as the pinnipeds (Leffler et al., 2012). In Chapter 2, we started filling this gap and showed that

only the most severe genetic bottlenecks substantially reduced genetic diversity and that both

demography and current population sizes explain much of the variation in genetic diversity

across the pinnipeds.

The Northern elephant seal was very close to exধncধon, but probably expanded
beforehand.

The question of how severely population bottlenecks affect genetic diversity is among the oldest

in the field of evolutionary genetics (Nei et al., 1975). The empirical evidence for a severe loss of

diversity as a consequence of bottlenecks is mixed, with some studies reporting lower diversity

(Hoelzel et al., 2002; Houlden et al., 1996; Pinsky and Palumbi, 2014) while others still find

unexpectedly high diversity after known population declines (Busch et al., 2007; Dinerstein and

McCracken, 1990; Hailer et al., 2006). The Northern elephant seal has probably experienced

one of the strongest declines among any vertebrate due to commercial overexploitation, and

previous genetic studies of the Northern elephant seal indeed found very low genetic diversity

(Hoelzel, 1999; Hoelzel et al., 2002; Weber et al., 2000). In Chapter 3, we used a newly

sequenced genome and RAD sequencing data for 80 individuals to study the elephant seal

bottleneck from a genomics perspective. In line with previous studies, we found that only an

extreme bottleneck can cause a distortion of the site frequency spectrum as extreme as observed

in the Northern elephant seal. Moreover, for the first time, genomic data made it possible to

precisely estimate that a bottleneck effective population size of only two individuals over a time

period of around ten generations is necessary to reduce diversity strongly enough to fit to the

observed pattern.
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Lastly, genomic analyses based on the SFS allowed us to investigate the pre-sealing demog-

raphy of the species, which is unknown except for some archaeological evidence of the species’

scarcity during the Holocene (Rick et al., 2011). We showed that the excess of rare alleles in

the SFS of this species can be explained by a 10-fold growth of the population starting after

the last glacial-period and lasting until the time of commercial sealing during the 19th century.

Although in principle excessive rare alleles can also be caused by different demographic his-

tories, there is strong evidence for post-glacial expansions in a wide range of species in the

Nearctic (Burbrink et al., 2016), and such a scenario also explains the archaeological evidence

of a small population size during the Holocene, with an increase in specimens during the last

3,500 years (Rick et al., 2011).

Skin chemical profiles encode a variety of informaধon.

The fact that odour-based mate choice is real appears to be common knowledge, at least since

the first studies on human preferences for genetically complementary mates using sweaty t-shirt

experiments (Wedekind and Füri, 1997; Wedekind et al., 1995). Later on, evidence for MHC-

dependent mate choice came from a variety of organisms, in particular mice and rats (Lanyon

et al., 2007; Singer et al., 1997; Yamazaki et al., 1999) but also sticklebacks (Aeschlimann et al.,

2003) and house sparrows Bonneaud et al. (2006). In the wild, similar olfactory mechanisms to

identify genotypes are expected not only for mate choice, but also for kin recognition, a critical

mechanism in many species (Hurst and Beynon, 2010). However, a functional understanding

of how genotypes can be chemically encoded in wild animals is largely lacking (Hurst and

Beynon, 2010). In Chapter 4, we investigated the potential chemical underpinnings of olfactory

communication in two colonies of Antarctic fur seals which likely have a strong olfactory

recognition mechanism for their offspring (Dobson and Jouventin, 2003) and potentially even

for finding mates (Hoffman et al., 2007a). We show that the skin chemicals of mothers

and pups are similar, and therefore provide a potential self-referent recognition mechanism.

Moreover, these chemical profiles, or fingerprints, appear to also encode individual genotypes

through associations with both heterozygosity and genetic relatedness. While experimental

studies are needed to confirm specific functions of skin chemicals, our analysis shows that

complex chemical phenotypes in the wild have the potential to encode information about

genotypes which could probably not be signalled by any other means.
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Gut microbes as early life-history adaptaধons.

The idea that all animals live in a microbial world has taken the scientific world by storm

(McFall-Ngai et al., 2013). Evidence for the immense importance of symbiotic microbes for

development, health and function of their hosts is unequivocal (Diaz Heijtz et al., 2011; Lathrop

et al., 2011; Pedersen et al., 2016; Zhu et al., 2011), but most research is based on humans or

laboratory mice whilst wild microbiome studies are lacking (Hird, 2017). In Chapter 5, we

examined the development of gut microbiota in young Northern elephant seals across a critical

developmental period of several weeks after weaning. Although elephant seals are fasting during

this period, we show that their gut microbiota are still complex and changing drastically, with

several species going extinct and others colonising the gut. Unlike virtually all other studies in

wild populations, we show that sex-differences in gut microbial communities are substantial,

which could be an early adaptation to vastly different life-histories in Northern elephant seal

males and females. Moreover, across all three sampling times, genotype is associated with gut

bacterial communities in males but not in females. Although this pattern could be a reflection

of a slower gut microbial development in females than in males, there is also a more functional

explanation. If certain parts of the males’ but not the females’ genomes are under balancing

selection, and these genes are linked to certain gut microbiota, this would only cause an

association between male genotypes and gut microbiota. Such genes could be involved in any

part of the male specific life-history, such as immunity or feeding patterns. Overall, our study

highlights the advantages of a diet-controlled microbiota study in the wild, as the results are in

stark contrast to existing studies in natural populations and reveal that intrinsic factors such as

sex and genotype can strongly shape gut microbiota in the wild. Our study gives some of the

first insights into the development of gut microbiota in a wild population with implications for

understanding host-microbe co-evolution.

Major methodological advancements of this thesis.

The studies in this thesis often dealt with unusual and complex data, which required the

development of novel methods. In the light of the current reproducibility crisis and to make

these methods readily available for the community, the complete and documented analytical

pipelines for all chapters are available at https://github.com/mastoffel. Moreover, some

of the analyses which seemed particularly useful for the community are summarized in the R

packages GCalignR, inbreedR and rptR and have together already been downloaded over

20,000 times (September 2018) from the official platform CRAN.
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A reproducible and fast method for aligning Gas-Chromatography data.

Chemical communication is emerging as a field of increasing interest in animal ecology and

evolution, and several studies have revealed chemical cues underlying fundamental signals and

behaviours (Wyatt, 2014a). Gas-Chromatography (GC) coupled with either a flame ionization

detector (GC-FID) or a mass spectrometer (GC-MS) is often the method of choice to quantify

the molecules in complex chemical samples obtained from wild animals. Before statistically

analysing GC samples however, a major obstacle must be overcome: Aligning homologous

substances across many samples. This is particularly demanding in samples obtained from

the field, which can differ substantially in their concentration. Due to a lack of appropriate

alignment software, manual alignment is common (see Chapter 6), which is time consuming,

prone to bias and makes a study impossible to reproduce. To address these problems, in

Chapter 6 we presented GCalignR, an R package based on an alignment algorithm developed

for Chapter 4, which allows the user to automatically align GC samples obtain from field studies.

GCalignR not only provides a tool to make chemical communication studies reproducible

but will decrease the time usually spent on manual alignment from weeks to only a few

hours. Moreover, GCalignR includes sophisticated visualisation tools to optimise and correct

alignments and evidently performs better than existing tools.

A framework for esধmaধng inbreeding and inbreeding depression based on geneধc
markers.

Inbreeding depression is a phenomenon recognized for centuries (Charlesworth and Charlesworth,

1987), but individual inbreeding coefficients could traditionally only been measured when a

detailed pedigree was available (Wright, 1922). When genetic markers became widely available,

marker heterozygosity was often used as a proxy for genome-wide homozygosity and resulted

a slew of so-called heterozygosity fitness correlations across many species (Chapman et al.,

2009). However, the degree to which a few markers represent genome-wide homozygosity or

identity by descent (IBDG) were unclear (Pemberton, 2004), and so were the explanations for

heterozygosity fitness correlations (Szulkin et al., 2010). Although a large number of genomic

markers certainly provide a more accurate representation of IBDG than a small number of

genetic markers (Kardos et al., 2015), it is still not straightforward to elucidate how strongly

individual inbreeding coefficients in a sample vary and how well this variation is reflected by

a homozygosity at a given set of markers. The inbreedR package described in Chapter 7

implements a theoretical framework around the concept of identity disequilibrium (Slate et al.,

2004) to address these questions. An identity disequilibrium is essentially a correlation of
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heterozygosity across loci in a given sample of individuals and occurs when there is variation

in inbreeding (David et al., 2007). Based on this framework, inbreedR provides functions to

analyse variance in inbreeding and to explore the power of a set of genetic and genomic mark-

ers to estimate inbreeding depression. Finally, the package implements simulations to plan the

number of genetic markers and sample sizes of future studies on inbreeding depression.

Calculaধng repeatabiliধes for Gaussian and non-Gaussian data.

The repeatability or intra-class coefficient is a very general statistic to describe how strongly

units of a group resemble each other, where a group can for example consist of different

individuals at one time point or measurements of one individual across many time points.

The repeatability is commonly used to quantify the reproducibility of measurements or in

biology to quantify animal personality. While formulas to calculate repeatabilities particularly

for non-Gaussian traits have previously been described (Nakagawa and Schielzeth, 2010), they

have not been implemented in user friendly software until the rptR package (Chapter 8) was

published. Moreover, rather than focussing on point estimates, rptR provides sophisticated

functions for parametric bootstrapping to quantify confidence intervals and permutation of

residuals to estimate statistical significance. Lastly, we also implemented the calculation of

repeatabilities in random slope models (Johnson, 2014), which will hopefully further increase

the usability of the package.

Limitaধons and future direcধons

The neutral theory is dead. Long live the neutral theory 2.

The genetic and genomic methods for demographic inference used in Chapter 2 and Chapter 3

are among the most cutting edge methods in the field (Beaumont, 2010; Excoffier et al., 2013).

However, all genetic methods for demographic inference rely on the assumption that variation

in the marker panel is shaped by changes in Ne rather than natural selection. While Kimura’s

neutral theory stated that most variation is selectively neutral (Kimura, 1983) and hence shaped

by Ne, it has recently become clear that many putatively neutral loci are linked to loci under

selection (Lohmueller et al., 2011). The degree to which the neutral theory is supported by

recent genomic evidence has been severely questioned in a recent paper (Kern and Hahn,

2018) which caused a hot debate between leading scientists in the field 3. Overall, it is not

2Quote from the title of Martin Kreitman’s paper from 1996 in BioEssays.
3https://www.molecularecologist.com/2018/05/is-the-neutral-theory-dead/
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entirely clear to what degree genetic markers are linked to loci under selection, and how this

might impact genetic demographic inference. To remedy this concern, we used a comparative

approach and compared the same two demographic models across 30 pinniped species in

Chapter 2. We had clear expectations of the extent to which land and ice-breeding species had

undergone population bottlenecks and these were largely matched by the genetic demographic

inference. Therefore, it seems unlikely that linked loci had much of an impact on the marker

panel in this study. Moreover, when using genomic data to infer the genetic bottleneck of the

Northern elephant seal in Chapter 3, the empirical site frequency spectrum (SFS) matched the

expected SFS from the simulations very closely, again indicating that selection had little impact

on the genetic markers.

I conclude that there are ways to escape the neutral marker dilemma, including compar-

ative approaches and precise theoretical expectations. However, future studies should aim to

validate genomic demographic inferences in an experimental setting using rapidly reproducing

organisms where population histories can be manipulated and are therefore precisely known.

Overall, the increasing ease of obtaining large scale genomic data will facilitate our knowledge

of the unknown parameters governing genetic variation, such as mutation and recombination

rates. Incorporating these parameters together with knowledge about loci under selection into

demographic simulations of neutral variation will certainly increase the reliability of genetic

demographic inference. To sum up, even if the major assumptions of the neutral theory might

not hold true in the genomics age (Kern and Hahn, 2018), it will still have its place in empirical

population genomics studies aiming to explore the demography of species.

The geneধc underpinnings of chemical communicaধon

The search for molecules involved in chemical communication, so called semiochemicals, and

their genetic basis, is not easy (Hurst and Beynon, 2010; Wyatt, 2014a). The discovery of

semiochemicals involves many steps, starting with field observations of a potential chemically

mediated behavior to bioassays to prove that a substance can actually induce a behavior (see

Figure 9.1). In Chapter 4, we only went half the way, from recognizing interesting behaviors

in the Antarctic fur seal to identifying a potential set of substances (black colored part in Figure

9.1). Consequently, future studies should aim to synthesize these substances and use behavioural

experiments to confirm their role as semiochemicals. Moreover, the subset of chemicals found

in the Antarctic fur seal is likely to be incomplete, as the cotton swab sampling method does

mostly capture non-volatile substances rather than volatiles (Kuecklich et al., 2017). I would

hence recommend future studies to sample body odours using a set of complementary methods,
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including cotton swabs for non-volatile substance and methods such as thermal desorption tubes

for volatiles (Weiss et al., 2018). Lastly, after specific semiochemicals have been identified,

modern genomic methods such as genome-wide association studies (GWAS) can be used to

explore their underlying genetic basis (Figure 9.1).

Figure 9.1: On the leđ side: The scienধfic efforts required to unambiguously idenধfy semiochemicals.
The depicted chemical structure is 7-dodecen-1-yl acetate, a sex pheromone in female Asian elephants
(Elephas maximus). On the right side: A Manhaħan plot represenধng a GWAS as a potenধal genomic ap-
proach to map the geneধc basis of semiochemicals.

The host-geneধc underpinnings of gut microbiota in the wild

While human studies now use large genomic datasets together with metagenomics analyses

of microbiota to unravel the genetic basis of microbial variation (Kurilshikov et al., 2017),

some questions can simply not be answered by studying humans or laboratory animals. These

questions include the role of host-microbe associations for life-history or ecological adaptions,

which need to be studied in wild animals. Nevertheless, studies in the wild will rarely reach the

sample sizes or financial power of human studies and hence need more sophisticated sampling

designs and approaches than the brute force large-throughput studies often conducted in human

populations. In Chapter 5, we found that gut microbial communities of young Northern

elephant seals differ strongly between the sexes and are linked to genetic relatedness in males.

As we designed the study to control for potential confounding effects such as differences in

diet, we concluded that differences in microbial communities might reflect different adaptions

to sex-specific life-histories. While this is a novel finding in a wild population, it will be

important for future studies to go one step further and elucidate the functional aspects of

microbial diversity. Using approaches such as metagenomics or meta-transcriptomics make it
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possible to quantify the genes or transcripts of gut microbiota, and their potential function can

then be identified using online databases such as Gene ontology (Ashburner et al., 2000). The

identified functional gene variation of microbiota can subsequently be linked to variation in their

host’s genome through GWAS and similar approaches. However, our study hopefully paved

the way for future research in showing that appropriate sampling designs (e.g. controlling

for environmental variation) and study species (e.g. sex-specific microbiota are expected in

the highly sexual dimorphic elephant seal) will drastically decrease the necessary sample sizes

to identify associations between gut microbiota and host genomes and will therefore make it

possible to gain a functional understanding of gut microbiota even in wild populations.

A last reflecধon

Science has changed fundamentally in the last centuries, from a science where a single polymath

such as Aristotle or Leonardo da Vinci could be a leading expert in physics, biology, geology

and the fine arts, to a science of highly specialized sub-disciplines, where a researcher can work

a whole career deciphering a single gene’s function. This dissertation probably falls somewhere

in between these two extremes. I certainly used a specific set of methods and perspectives, but

the studies in this thesis are nevertheless connected by very broad questions: Where does genetic

diversity come from (Chapters 2 and 3)? Is a biological unit only genes and proteins or a

much more complex structure, including chemicals and bacteria (Chapters 4 and 5)? What

are the consequences of human disturbances for the genetic variability in natural populations

(Chapters 2 and 3)? Science is also becoming more complex, data intensive and collaborative.

Scientific progress relies more than ever on the transparency and reproducibility of scientific

findings and their methodological advancements. However, the academic reward system does

not yet sufficiently encourage open research practices but puts scientists which spend time on

documenting and publishing code and data in a disadvantage (Nosek et al., 2015). Nevertheless,

the awareness for a new way of doing science, an open and truly collaborative way, where quality

weighs more than quantity, is on the rise. The open science movement is growing and the

studies in this dissertation are hopefully making a little contribution.
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