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Abstract
Aims/hypothesis Low physical activity levels and sedentary behaviour are associated with obesity, insulin resistance and type 2
diabetes. We investigated the effects of a short-term reduction in physical activity with increased sedentary behaviour on
metabolic profiles and body composition, comparing the effects in individuals with first-degree relatives with type 2 diabetes
(FDR+ve) vs those without (FDR−ve).
Methods Forty-five habitually active participants (16 FDR+ve [10 female, 6 male] and 29 FDR−ve [18 female, 11 male]; age 36
± 14 years) were assessed at baseline, after 14 days of step reduction and 14 days after resuming normal activity. We determined
physical activity (using a SenseWear armband), cardiorespiratory fitness (V

:
O2peak), body composition (dual-energy x-ray

absorptiometry/magnetic resonance spectroscopy) and multi-organ insulin sensitivity (OGTT) at each time point. Statistical
analysis was performed using a two-factor between-groups ANCOVA, with data presented as mean ± SD or (95% CI).
Results There were no significant between-group differences in physical activity either at baseline or following step reduction.
During the step-reduction phase, average daily step count decreased by 10,285 steps (95% CI 9389, 11,182; p < 0.001), a
reduction of 81 ± 8%, increasing sedentary time by 223 min/day (151, 295; p < 0.001). Pooling data from both groups, following
step reduction there was a significant decrease in whole-body insulin sensitivity (Matsuda index) (p < 0.001), muscle insulin
sensitivity index (p < 0.001), cardiorespiratory fitness (p = 0.002) and lower limb lean mass (p = 0.004). Further, there was a
significant increase in total body fat (p < 0.001), liver fat (p = 0.001) and LDL-cholesterol (p = 0.013), with a borderline
significant increase in NEFA AUC during the OGTT (p = 0.050). Four significant between-group differences were apparent:
following step reduction, FDR+ve participants accumulated 1.5% more android fat (0.4, 2.6; p = 0.008) and increased
triacylglycerol by 0.3 mmol/l (0.1, 0.6; p = 0.044). After resuming normal activity, FDR+ve participants engaged in lower
amounts of vigorous activity (p = 0.006) and had lower muscle insulin sensitivity (p = 0.023). All other changes were reversed
with no significant between-group differences.
Conclusions/interpretation A short-term reduction in physical activity with increased sedentary behaviour leads to a reversible
reduction in multi-organ insulin sensitivity and cardiorespiratory fitness, with concomitant increases in central and liver fat and
dyslipidaemia. The effects are broadly similar in FDR+ve and FDR−ve individuals. Public health recommendations promoting
physical activity should incorporate advice to avoid periods of sedentary behaviour.
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Abbreviations
1H-MRS Proton magnetic resonance spectroscopy
Adipo-IR Adipose tissue insulin resistance
DBP Diastolic BP
DXA Dual-energy x-ray absorptiometry
FDR+ve Individuals with a first-degree relative

with type 2 diabetes
FDR−ve Individuals with no first-degree relatives

with type 2 diabetes
IHCL Intrahepatocellular lipid
IMCL Intramyocellular lipid
METS Metabolic equivalents
SBP Systolic BP
TEE Total energy expenditure
VIF Variance inflation factor

Introduction

There is an abundance of epidemiological evidence which in-
dicates that physical inactivity (defined as an insufficient phys-
ical activity level to meet physical activity guidelines) and sed-
entary behaviour (defined as any waking behaviour
characterised by an energy expenditure <1.5 metabolic

equivalents (METS), while in a sitting, reclining or lying pos-
ture) are major causal factors in the development of obesity,
insulin resistance and type 2 diabetes [1–4]. However, such
data provide no mechanistic insight into these pathophysiolog-
ical changes. One plausible paradigm suggests that a transition
to physical inactivity and/or increased sedentary time causes a
reduction in skeletal muscle insulin sensitivity, contributing to
a repartitioning of energy substrates into storage, increasing
central fat accumulation and ectopic storage within the liver
and other organs, causing further insulin resistance [5–9]. As
peripheral insulin resistance progresses, continued ectopic fat
accumulation within the liver and pancreas precipitates devel-
opment of the metabolic syndrome, a progressive decline in
beta cell function and, ultimately, type 2 diabetes [10].

To date, mechanistic studies in humans pertaining to re-
duced physical activity levels have used extreme experimental
models including prolonged bed rest [11], limb immobilisa-
tion [12] and cessation of exercise in exercise-trained volun-
teers [13]. These models are not physiologically representa-
tive of habitual activity levels in free-living individuals, and
thus should be interpreted cautiously. More recently, an alter-
native experimental model has been developed in which ac-
tive (~10,000 steps/day) healthy volunteers, who do not par-
ticipate in regular exercise, transition to an inactive lifestyle

•
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•

•

•
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(reducing to ~1500 steps/day) for brief periods (~14 days).
This approach reflects societal changes in physical activity
levels (i.e. reduced physical activity and more sedentary time)
[14, 15]. Step-reduction models have demonstrated that re-
duced physical activity results in detrimental physiological
changes, including reduced cardiorespiratory fitness, accumu-
lation of central fat, loss of skeletal muscle mass with associ-
ated anabolic resistance, and reductions in peripheral insulin
sensitivity [16–20]. These changes are reversible with re-
sumption of normal activity in young [18], but not older adults
[20]. Importantly, such research provides a mechanistic basis
for the consequences of increased sedentary behaviour and
aids our understanding of the development of metabolic
disease.

First-degree relatives of individuals with type 2 diabetes
(FDR+ve) have a threefold increased risk of developing the
disease compared with those without a family history (FDR
−ve) [21]; this risk can further be increased with low physical
activity levels [22]. No previous studies have employed a
step-reduction protocol to examine whether individuals genet-
ically predisposed to type 2 diabetes are more susceptible to
the adverse metabolic consequences of an inactive lifestyle
compared with those who are not. Given that group-specific
physical activity guidelines have been proposed for other
high-risk groups (e.g. South Asians) and that the exercise
dose–response curve clearly differs between populations
[23], this is a very pertinent research question. Furthermore,
only two studies have investigated whether the detrimental
effects of step reduction are reversed when habitual physical
activity is resumed: one induced overfeeding during step re-
duction [18] and the other was conducted in older adults [20].

The primary aim of this study was to investigate the meta-
bolic consequences of short-term decreased physical activity
with increased sedentary behaviour in free-living individuals
and determine whether more metabolic decompensation is
observed in FDR+ve individuals.

Methods

Participants

Habitually active participants with no history/current engage-
ment in regular structured exercise (>2 h/week) or highly
physical employment (determined by questionnaire) were re-
cruited from local advertisements across hospital departments
and university campuses. Exclusions included: cardiovascu-
lar, respiratory, kidney, liver and/or endocrine complications,
smokers and those consuming >14 units/week of alcohol con-
sumption. A first-degree relative was classed as a parent, sib-
ling or child, and participants were divided into two groups:
the FDR+ve group included participants with a first-degree
relative diagnosed with type 2 diabetes according to medical

records; the FDR−ve group included those with no first-
degree relative diagnosed with type 2 diabetes.

The study conformed to the Declaration of Helsinki and
was approved by the local research ethics committee (14/
NW/1147 and 14/NW/1145). All participants were informed
of the methods verbally and in writing before providing writ-
ten informed consent prior to any assessments being per-
formed. Prior to each visit, participants were required to fast
overnight for >8 h, abstain from alcohol and caffeine for 24 h
and from exercise for 48 h.

Study design

Physical activity was assessed in participants’ free-living envi-
ronment. A mean daily step count >10,000 was required for
participants to be eligible. Screening was blinded and consisted
of monitoring from midnight to midnight on 4 consecutive
days, including 1 weekend day. If eligible, participants
underwent their initial assessment visits before being instructed
to reduce their activity to ~1500 steps for 14 days, after which
the assessments were repeated. Habitual activity was then re-
sumed for a further 14 days before participants underwent their
final assessment visits (Fig. 1). There were two assessment
visits at each time point: (1) at University Hospital Aintree
for anthropometry, fasting bloods, OGTT and V

:
O2peak; and

(2) at University of Liverpool for dual-energy x-ray absorpti-
ometry (DXA) and proton magnetic resonance spectroscopy
(1H-MRS). The study took place between December 2014
andAugust 2017, and 16 FDR+ve and 29 FDR−ve participants
successfully completed the intervention with all measures
available (Fig. 2). Dietary records were taken in the 4 days
preceding an assessment visit; participants were instructed to
maintain their usual dietary habits throughout the study.

Experimental measures

Anthropometric measurements Weight, height and waist and
hip circumferences were measured. Participants then rested
for 5 min before BP was determined from an average of three
measures.

Biochemical measurements Blood samples were collected
and analysed using the Olympus AU2700 analyser
(Beckman Coulter, High Wycombe, UK) with standard pro-
prietary reagents as follows: glucose with hexokinase, total
cholesterol and HDL-cholesterol with cholesterol esterase/
oxidase and triacylglycerol with glycerol kinase. LDL-
cholesterol was calculated according to the Friedewald formu-
la. Insulin was measured using radioimmunoassay
(Invitrogen, Paisley, UK). HOMA-IR was calculated using
fasting glucose and insulin concentrations [24]. NEFA was
measured using a NEFA assay kit (Randox Daytona, County

Diabetologia



Antrim, UK). Fasting NEFA and insulin concentrations were
used to estimate adipose tissue insulin resistance (adipo-IR) [25].

OGTT After fasting blood samples were collected, a 75 g glu-
cose solution was consumed within 5 min and post-ingestion
blood samples were drawn at 30, 60, 90 and 120 min. Glucose,
insulin and NEFA responses were calculated as AUC. Matsuda
indexwas calculated to estimate whole-body insulin sensitivity;
indices of hepatic insulin resistance and skeletal muscle insulin
sensitivity were determined as previously described [26, 27].

Cardiorespiratory fitness A V
:
O2peak cardiopulmonary exercise

test (CPET) was performed on a treadmill (Model 77OCE,
RAM Medisoft Group, Manchester, UK) in a temperature-
controlled room. The CPET provided breath-by-breath moni-
toring and analysis of expiratory gases and ventilation as well as
continuous electrocardiographic monitoring (Love Medical
Cardiopulmonary Diagnostics, Manchester, UK). Themodified
Bruce protocol was employed: after an initial 2 min warm up at
2.2 km/h on a flat gradient, stepwise increments in speed and
gradient were employed each min. V

:
O2peak was determined by

any of: respiratory exchange ratio > 1.15; heart rate > 90%

predicted maximum; plateau in V
:
O2; or exhaustion. V

:
O2peak

data acquired includes: absolute (l/min), relative to total body
mass (ml min−1 kg−1), and relative to lean body mass
(ml min−1 kg−1; termed ‘V

:
O2peak lean’).

Physical activity monitoring Physical activity was tracked
throughout using a SenseWear mini armband (BodyMedia,
Pittsburgh, PA, USA). Instructions were that the armband
was to be worn at all possible times, and the inclusion criterion
was >90% wear time, which was monitored using SenseWear
Professional software (version 8.0). Data collected from the
armband included: daily average step count; total energy ex-
penditure; active energy expenditure; and time spent in do-
mains of physical activity, including sleep, lying, sedentary
(<1.5 METS), light (1.5–3 METS), moderate (3–6 METS),
vigorous (6–9 METS) and very vigorous (>9 METS).

Dietary analysis Total energy consumption, carbohydrate, pro-
tein and fat content were determined from dietary records by a
registered nutritionist (KLM) using Nutritics (Nutrition
Analysis Software for Professionals; https://www.nutritics.
com/p/home; accessed 17 July 2017).
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Fig. 1 Study design for step-
reduction intervention. Complete
objective assessment of physical
activity throughout screening
(baseline), step reduction and
resumption of normal activity; x-
axis represents study day and y-
axis daily average steps

Screened for eligibility n=156  

Completed intervention n=29 

FDR+ve 

>2 h exercise week n=64  

Unable to commit n=18  

Medical exemption n=9

Withdrew n=2 

Excluded n=1 

FDR-ve 

Completed intervention n=16  

Screened for intervention n=65  

<10,000 steps daily 

FDR+ve n=5 

FDR-ve n=8

Withdrew n=3 

Excluded n=1 

Fig. 2 Screening, recruitment,
retention and completion
numbers of FDR+ve and FDR−ve
individuals in the study
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DXAWhole-body scans were performed in line with manufac-
turer’s guidelines using Lunar iDXA (GE Healthcare,
Amersham, UK) and were analysed using the instrument’s
software (version 13.60.033) to determine body fat, lean body
mass and bone mineral density. Each scan session was pre-
ceded by a calibration routine, using multiple quality-control
phantoms that simulate soft tissue and bone.

1H-MRS Liver and skeletal muscle fat were determined using a
1.5 T Siemens Symphony MRI scanner (Siemens Medical
Solutions, Erlangen, Germany) as previously described
[28–30]. In brief, intrahepatocellular lipid (IHCL; liver fat) is
expressed as the percentage of CH2 lipid signal amplitude
relative to water signal amplitude and intramyocellular lipid
(IMCL; skeletal muscle fat) is expressed as CH2 lipid ampli-
tude relative to total creatine amplitude.

Sample size calculation

The primary outcome variable for this study was the differ-
ence in insulin sensitivity change between the two groups.
Based on previous data [18], using Minitab 16 (https://www.
minitab.com/en-us/products/minitab/), a sample size of 50
was calculated to have ≥80% power to detect a standardised
mean difference of 0.89 for insulin sensitivity using Matsuda
index with 5% significance level, assuming a 20% drop-out
rate (20 participants per group required).

Statistical analysis

All data were explored for normality using visual inspection
of frequency distribution, and logarithmically transformed
where appropriate. Independent t tests were used to determine
baseline differences between FDR+ve and FDR−ve individ-
uals. BMI, waist circumference, hip circumference, fasting
insulin, HOMA-IR and adipo-IR were significantly different;
coefficient of determination (R2) was calculated from Pearson
correlation coefficients to evaluate collinearity between these
variables using the variance inflation factor (VIF). BMI had
evidence of collinearity with body mass (R2 = 0.645; VIF =
2.8), waist circumference (R2 = 0.703; VIF = 3.4) and hip cir-
cumference (R2 = 0.719; VIF = 3.6); BMI was selected as a
representative covariate. HOMA-IR had evidence of collin-
earity with fasting insulin (R2 = 0.943; VIF = 17.5) and
adipo-IR (R2 = 0.639; VIF = 2.8); HOMA-IR was selected as
a representative covariate. The groups’ responses to the inter-
vention were compared by calculatingΔ values and analysed
using a two-factor between-groups (group × time) ANCOVA
with respective baseline data, BMI and HOMA-IR values en-
tered as covariates. The term intervention refers to step reduc-
tion and resumption of normal activity. Statistically significant
interactions were assessed using the least significant differ-
ence (LSD) approach to multiple pairwise comparisons, and

interactions were used to explore within-group change over
time and between-group differences at the specific time points
(i.e. step reduction and resumption of normal activity).

We performed sensitivity analysis on significant outcomes
using the Bonferroni procedure and found limited variation in
variables being adjusted from statistically significant to non-
significant.

Paired sample t tests were used to assess differences be-
tween baseline and resumption of activity because baseline
data was entered as a covariate in the ANCOVA models.
The α level of statistical significance was set at p < 0.05.
Data are presented as mean ± SD or (95% CI). Data are pre-
sented as outcomes for the entire study group (pooled FDR+
ve and FDR−ve); differences between and within groups and
changes over time are explicitly noted. Where required, data
were logarithmically transformed using log10. Data were back
transformed to original units for reporting. Statistical analysis
was performed using SPSS forWindows (Version 24.0, SPSS,
Chicago, IL, USA).

Results

Baseline characteristics

A total of 45 healthy participants (28 female, 17 male) were
included: 16 FDR+ve (10 female, 6 male) and 29 FDR−ve (18
female, 11 male) (Table 1). The mean age of all the partici-
pants was 36 ± 14 years, with no statistical difference between
the two groups (p = 0.166). FDR+ve participants had signifi-
cantly higher overall body mass, BMI, waist circumference
and hip circumference (p < 0.05). Fasting insulin, HOMA-IR
and adipo-IR were significantly higher in FDR−ve partici-
pants. No other variables were statistically different.

Changes in pattern of physical activity

Mean daily step count was similar between the two groups at
baseline: FDR+ve, 12524 ± 2137 vs FDR−ve, 13036 ± 2481
steps (p = 0.391). The intervention induced significant chang-
es in all activity measures (Fig. 3). During the step-reduction
period, average daily step count decreased by 10285 steps
(95% CI 9389, 11182; p < 0.001), a reduction of 81 ± 8%. In
parallel, daily sedentary time increased by an average of
223 min (151, 295; p < 0.001) and daily total energy expen-
diture (TEE) decreased by an average of 2697 kJ (3008, 2385;
p < 0.001). All activity >1.5 METS (i.e. light, moderate and
vigorous) decreased during the step-reduction period (all
p < 0.001). There were no statistical differences between the
groups in average daily step count, TEE or sedentary, light or
moderate activity at any of the time points (p > 0.05). Time
spent sleeping was not significantly different between groups
and did not change throughout (p > 0.05). Vigorous activity
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was significantly higher in FDR−ve participants (p = 0.001);
when explored, the between-group difference was not present
at step reduction (p = 0.988) but rather at resumption of activ-
ity (p = 0.006), with FDR−ve participants increasing their vig-
orous activity more than FDR+ve participants at this stage
(Fig. 3f).

There were no significant differences in any of the physical
activity measures between baseline and following resumption

of activity, suggesting habitual physical activity levels were
successfully restored (p > 0.05).

Dietary analysis

Total energy consumption did not change throughout (p =
0.330) and there was no difference between groups (p =
0.372). Mean ± SD macronutrient percentages were 56 ±

Table 1 FDR+ve and FDR−ve
participant characteristics at
baseline

Characteristic FDR+ve FDR−ve p value
(n = 16) (n = 29)

Clinical
Age (years) 40 ± 14 33 ± 13 0.166
Body mass (kg) 79.3 ± 13.4 68.9 ± 9.8 0.011*

BMI (kg/m2) 27 ± 5 24 ± 3 0.018*

Waist circumference (cm)a 93 ± 13 84 ± 10 0.029*

Hip circumference (cm)a 103 ± 11 95 ± 8 0.015*

Waist:hip ratio 0.91 ± 0.09 0.89 ± 0.07 0.052
SBP (mmHg) 122 ± 14 121 ± 14 0.932
DBP (mmHg) 74 ± 8 76 ± 10 0.438

Glucose regulation
Whole-body ISb 4.1 ± 1.9 3.2 ± 1.9 0.155
Muscle IS index 0.07 ± 0.06 0.06 ± 0.04 0.749
Hepatic IR index 33.4 ± 9.7 40.5 ± 9.4 0.058
NEFA AUC (mmol/l × min) 27 ± 12 24 ± 11 0.422
Fasting glucose (mmol/l) 5.0 ± 0.6 5.0 ± 0.5 0.994
Fasting insulin (pmol/l)a 83 ± 35 139 ± 63 0.002*

HOMA-IRa 2.8 ± 1.1 4.3 ± 2.1 0.003*

Adipo-IRa 41.6 ± 26.4 88.2 ± 55.6 0.004*

Glucose AUC (mmol/l × min) 780 ± 235 799 ± 177 0.928
Insulin AUC (pmol/l × min) 57368 ± 27486 63833 ± 20069 0.468

Lipid profile
Cholesterol (mmol/l) 5.1 ± 1.1 4.9 ± 0.8 0.681
Triacylglycerol (mmol/l) 1.0 ± 0.5 1.0 ± 0.6 0.524
HDL-cholesterol (mmol/l) 1.8 ± 0.6 1.8 ± 0.5 0.907
LDL-cholesterol (mmol/l) 2.8 ± 1.1 2.6 ± 0.8 0.475
Cholesterol:HDL-cholesterol ratio 3 ± 1 3 ± 1 0.400

Body composition
Total body fat (%) 33 ± 10 30 ± 8 0.279
Android fat (%) 36 ± 12 30 ± 11 0.134
Gynoid fat (%) 35 ± 11 34 ± 9 0.581
Total lean mass (kg) 50.5 ± 9.1 46.1 ± 8.9 0.150
Leg lean mass (kg) 17.5 ± 3.3 16.0 ± 3.3 0.164
Arm lean mass (kg) 5.8 ± 1.8 5.5 ± 1.6 0.352
IHCL (%)a 3.0 ± 3.6 0.7 ± 1.0 0.064
IMCL (%) 9.1 ± 5.0 6.4 ± 2.6 0.109

Cardiorespiratory fitness and physical activity
V
:
O2 (l/min) 2.5 ± 0.4 2.4 ± 0.6 0.676

V
:
O2peak (ml min−1 kg−1) 32.1 ± 6.6 35.3 ± 6.7 0.136

V
:
O2peak lean (ml min−1 kg−1) 50.1 ± 5.3 52.6 ± 6.8 0.189

Energy expenditure (kJ/day) 12251 ± 2101 11383 ± 2913 0.408
Daily steps (steps) 12524 ± 2137 13036 ± 2481 0.391
Daily sedentary time (min) 606 ± 93 586 ± 116 0.528
Daily light activity (min) 231 ± 78 240 ± 76 0.650
Daily moderate activity (min) 130 ± 41 139 ± 61 0.306
Daily vigorous activity (min) 21 ± 27 24 ± 31 0.550

Data shown are mean ± SD and p values between groups
a Variables analysed following logarithmic transformation
bMatsuda index
* p < 0.05

IR, insulin resistance; IS, insulin sensitivity
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15% carbohydrate, 24 ± 10% protein, and 20 ± 9% fat, and
these did not change throughout (p = 0.235, p = 0.268, p =
0.924, respectively) and there was no difference between
groups (p = 0.660, p = 0.179, p = 0.177, respectively).

Whole-body insulin sensitivity

In both groups, the primary outcome measure of whole-body
insulin sensitivity (Matsuda index) significantly declined

following step reduction (p < 0.001), and this was accompa-
nied by a significant increase in glucose AUC (p = 0.025) and
insulin AUC (p < 0.001). However, no between-group differ-
ences in these measures were observed (Fig. 4).

Skeletal muscle insulin sensitivity

Muscle insulin sensitivity was significantly reduced following
step reduction (p < 0.001). Overall, there was a significant
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Fig. 4 Metabolic responses of FDR+ve and FDR−ve individuals at base-
line, following step reduction and resuming activity. Derived from 2 h
OGTT: glucose AUC (a), insulin AUC (b), NEFA AUC (c), whole-body
insulin sensitivity (Matsuda index) (d), muscle insulin sensitivity index

(e) and hepatic insulin resistance index (f). Data are presented as mean ±
SD. Grey circles, FDR+ve; white circles, FDR−ve. *p < 0.05 main effect
of time; †p < 0.05 between groups
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between-group difference of 0.015 (95%CI 0.006, 0.023; p =
0.001), with FDR+ve participants displaying lower levels of
muscle insulin sensitivity. Following resumption of activity,
there was a significant difference of 0.023 (0.003, 0.042; p =
0.023) between the two groups, with FDR+ve individuals
displaying lower muscle insulin sensitivity (Fig. 4e).

Adipose tissue insulin resistance

The intervention had a borderline significant effect on NEFA
AUC (p = 0.050; Fig. 4c).

Hepatic insulin resistance

The intervention had no significant effect on hepatic insulin
resistance in either group (p = 0.060), but hepatic insulin resis-
tance index was, on average, 3.8 greater in FDR+ve individuals
across the intervention (95% CI 1.7, 6.4; p = 0.007) (Fig. 4f).

Clinical characteristics

Body mass, BMI and waist to hip ratio did not change in either
group (p = 0.611, p = 0.553 and p = 0.385, respectively). Pooled
waist and hip circumferencemeasures increased by 0.7 cm (95%
CI 0.4, 1.0) and 0.4 cm (0.1, 0.7), respectively (p < 0.001) after
step reduction. Systolic BP (SBP) increased by 4 mmHg (0, 8;
p = 0.037) following step reduction, while diastolic BP (DBP)
remained unchanged (p = 0.982). There were no between-group
differences in any of the changes in clinical characteristic.

Fasting glucose metabolism

Fasting glucose (p = 0.294) and adipo-IR (p = 0.067) were not
significantly altered by the intervention. Fasting insulin
(p = 0.016) and HOMA-IR (p = 0.027) significantly changed
over time.

Lipid profile

Total cholesterol significantly increased by 0.5 mmol/l (95%CI
0.1, 0.9; p = 0.041) following step reduction: HDL-cholesterol
remained unchanged (p = 0.641) while LDL-cholesterol signif-
icantly increased by 0.3 mmol/l (0.1, 0.6; p = 0.013).
Triacylglycerol pooled outcomes also increased following step
reduction by 0.5 mmol/l (0.2, 0.7; p = 0.002) but a between-
group difference was present, with FDR+ve participants having
a 0.3 mmol/l greater change (0.1, 0.6; p = 0.044) (Fig. 4).

Body composition

Lean body mass Following step reduction, total lean mass
decreased by 0.3 kg (95% CI 0.1, 0.6; p = 0.005), and lower
limb lean mass by 0.2 kg (0.1, 0.3; p = 0.004), but there was
no significant change in arm lean mass (p = 0.502).

Regional fat mass Step reduction induced similar changes in
both groups: total body fat increased by 0.9% (95%CI 0.6, 1.3;
p < 0.001) (Fig. 5a), android fat increased by 1.7% (1.1, 2.3;
p < 0.001) (Fig. 5b), and gynoid fat increased by 0.6% (0.3,
0.8; p = 0.001) (Fig. 5c). A between-group difference was
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Fig. 5 Responses of FDR+ve and FDR−ve individuals following step
reduction and resumption of activity. Change in: (a) total body fat; (b)
android (waist) fat; (c) gynoid (hip) fat; (d) waist circumference; (e)

IHCL; and (f) plasma triacylglycerol. Data are presented as mean ± SD.
Grey circles, FDR+ve; white circles, FDR−ve. *p < 0.05 main effect of
time; †p < 0.05 between groups
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found, with FDR+ve individuals accumulating 1.5% more an-
droid fat (0.4, 2.6; p = 0.008) following step reduction.

Liver and skeletal muscle fat Following the period of reduced
activity, IHCL (liver fat) increased significantly by 0.7% (95%
CI 0.2, 1.2; p = 0.001). Changes in IMCL (skeletal muscle fat)
did not reach statistical significance (p = 0.094).

Cardiorespiratory fitness

The period of reduced physical activity significantly lowered
cardiorespiratory fitness across the study population. This was
the case whichever way fitness was expressed (absolute, rela-
tive to body weight or lean body mass): V

:
O2 by 0.3 l/min

(95% CI 0.5, 1.0; p = 0.002), V
:
O2peak per kg body mass by

2.2 ml min−1 kg−1 (0.9, 3.6; p = 0.002) and V
:
O2peak per kg

lean body mass by 2.9 ml min−1 kg−1 (0.9, 5.0; p = 0.006),
with no between-group differences for any of these measures.

Return to normal activity

All clinical, biochemical, body composition and cardiorespi-
ratory fitness measures returned to baseline on resumption of
habitual physical activity (Table 2).

Within-group comparisons

Several within-group responses were different in terms of
reaching statistical significance. All measures of cardiorespi-
ratory fitness (absolute, relative to body weight and relative to

Table 2 Change in variables for FDR+ve and FDR−ve individuals on step reduction and resumption of activity

Variable FDR+ve FDR−ve Between-group difference p value
Group [Time]

Δ Step
reduction

Δ Resuming
activity

Δ Step
reduction

Δ Resuming
activity

Step reduction Resuming

Clinical characteristics

Body mass (kg) −0.1 ± 1.0 −0.1 ± 1.2 0.1 ± 1.0 0.3 ± 1.2 −0.2 (−0.8, 0.5) −0.4 (−1.2, 0.4) 0.241 [0.611]

BMI (kg/m2) 0 ± 0.3 0 ± 0.4 0 ± 0.3 0 ± 0.4 0 (−0.3, 0.2) 0 (−0.4, 0.2) 0.369 [0.553]

Waist circumference (cm)a 0.6 ± 1.0 −0.3 ± 0.9 0.7 ± 1.0 −0.4 ± 0.8 −0.1 (−0.8, 0.6) 0.1 (−0.5, 0.7) 0.934 [<0.005]*

Hip circumference (cm)a 0.3 ± 0.5 −0.3 ± 0.6 0.1 ± 0.5 −0.1 ± 0.6 0.2 (−0.2, 0.5) −0.2 (−0.7, 0.2) 0.670 [<0.005]*

SBP (mmHg) −1 ± 9 −3 ± 8 2 ± 8 −4 ± 8 −2 (−8, 4) 1 (−4, 7) 0.654 [0.037]*

DBP (mmHg) −1 ± 8 −2 ± 9 −1 ± 8 −1 ± 8 1 (−5, 6) −1 (−7, 5) 0.846 [0.982]

Glucose metabolism

Fasting glucose (mmol/l) −0.1 ± 0.5 0.1 ± 0.4 −0.1 ± 0.5 −0.1 ± 0.4 0.1 (−0.3, 0.3) 0.2 (−0.1, 0.5) 0.171 [0.294]

Fasting insulin (pmol/l)a 34 ± 9 −35 ± 11 17 ± 8 −11 ± 11 18 (−24, 59) −25 (−79, 30) 0.669 [0.016]*

HOMA-IRa 1.1 ± 2.1 −1.1 ± 2.6 0.4 ± 2.1 −0.4 ± 2.6 0.7 (−0.7, 2.1) −0.7 (−2.5, 1.0) 0.911 [0.027]*

Whole-body ISb −0.7 ± 1.2 0.3 ± 2.3 −0.9 ± 1.2 1.3 ± 2.2 0.1 (−0.7, 1.0) −1.1 (−2.7, 0.5) 0.254 [<0.005]*

Lipid profile

Cholesterol (mmol/l) 0.2 ± 0.8 −0.2 ± 0.9 0.2 ± 0.8 −0.3 ± 0.8 −0.1 (−0.6, 0.4) 0.9 (−0.5, 0.7) 0.962 [0.041]*

HDL-cholesterol (mmol/l) −0.1 ± 0.3 0 ± 0.4 0 ± 0.3 0 ± 0.4 0 (−0.2, 0.2) 0 (−0.3, 0.2) 0.495 [0.641]

LDL-cholesterol (mmol/l) 0.8 ± 0.5 −0.1 ± 0.6 1.2 ± 0.5 −0.2 ± 0.5 −0.2 (−0.5, 0.2) 0.2 (−0.2, 0.5) 0.930 [0.013]*

Body composition

Total lean mass (kg) −0.6 ± 0.9 0.4 ± 1.2 −0.1 ± 0.9 0.4 ± 1.1 −0.4 (−1.0, 0.2) 0.2 (−0.6, 1.0) 0.598 [0.005]*

Leg lean mass (kg) −0.1 ± 0.4 0.2 ± 0.5 −0.2 ± 0.4 0.2 ± 0.5 0.2 (−0.1, 0.4) −0.1 (−0.4, 0.3) 0.589 [0.004]*

Arm lean mass (kg) 0.1 ± 0.2 0.1 ± 0.2 −0.1 ± 0.2 0.1 ± 0.2 0.1 (−0.1, 0.2) 0.1 (−0.1, 0.2) 0.607 [0.502]

Cardiorespiratory fitness

V
:
O2 (l/min) −0.2 ± 0.3 0.3 ± 0.4 −0.1 ± 0.3 0.1 ± 0.4 −0.1 (−0.3, 0,1) 0.2 (−0.1, 0.5) 0.376 [0.002]*

V
:
O2peak (ml min−1 kg−1) −3.0 ± 4.8 3.6 ± 5.6 −1.4 ± 4.6 0.9 ± 5.5 −1.6 (−4.8, 1.6) 2.7 (−1.1, 6.7) 0.370 [0.002]*

V
:
O2peak lean (ml min−1 kg−1) −4.0 ± 7.3 4.9 ± 8.5 −1.9 ± 6.9 1.1 ± 8.1 −2.2 (−7.1, 2.7) 3.9 (−1.8, 9.6) 0.394 [0.006]*

Data shown are: mean change ± SD; between-group difference (95% CI); and p values for main group difference [pooled effect of time]. Values are
presented to the nearest accuracy of measurement; where values do not demonstrate a change, data are presented with one decimal place; ‘0’ is not
absolute 0 but values 0 ± 0.05
a Variables analysed following logarithmic transformation
bMatsuda index

IS, insulin sensitivity

Diabetologia



lean body) were significant in FDR+ve but not FDR−ve par-
ticipants. For fasting insulin: FDR+ve 70 ± 130 pmol/l
(p = 0.046) vs FDR−ve 27 ± 127 pmol/l (p = 0.278). For
NEFA AUC: FDR+ve 17 ± 29 mmol/l × min (p = 0.017) vs
FDR−ve 2 ± 30 mmol/l × min (p = 0.715).

Discussion

The results of this study demonstrate that a short-term reduc-
tion in physical activity with increased sedentary behaviour,
resulting in a decline in cardiorespiratory fitness, leads to
unfavourable changes in body composition with reduced low-
er limb lean body mass, accretion of body fat, particularly
centrally, and of liver fat. These changes are small, but never-
theless large enough to be clinically significant and thus to
pose a serious health threat over a longer term [31]. The met-
abolic sequelae of these changes include whole-body insulin
resistance and dyslipidaemia (increased triacylglycerol and
LDL-cholesterol). Importantly, participants in the FDR+ve
group demonstrated similar decompensation in whole-body
insulin sensitivity when compared with those in the FDR−ve
group. However, some differences were noted: greater rise in
plasma triacylglycerol, more android fat deposition and re-
duced skeletal muscle insulin sensitivity. Although the chang-
es observed in this short period were reversed on resumption
of normal physical activity, the pattern of the changes provides
mechanistic insight into how chronically increased sedentary
behaviour contributes to development of the metabolic syn-
drome, type 2 diabetes, non-alcoholic fatty liver disease and,
potentially, cardiovascular disease [32, 33].

Previous research has focused on increasing habitual phys-
ical activity or structured exercise, yet little is known about the
consequences of decreasing habitual physical activity. We
used validated measures of tissue-specific insulin sensitivity
to demonstrate that inactivity resulted in decreased skeletal
muscle insulin sensitivity. Skeletal muscle insulin sensitivity
was significantly altered in both groups; notably, in FDR+ve
participants, muscle insulin sensitivity did not return to base-
line levels on resumption of habitual activity. While this may
be an intrinsic defect, the FDR+ve individuals also had lower
levels of vigorous activity on resumption of activity. As vig-
orous activity induces greater uptake of skeletal muscle glu-
cose [34], this could have influenced this between-group
difference.

We also observed increased adipose tissue insulin resis-
tance with increased sedentary time, with lesser suppression
of lipolysis and greater release of NEFA during the OGTT.We
observed expansion of the adipose tissue mass and small but
important increases in liver fat. This peripheral insulin resis-
tance and accumulation of liver fat was accompanied by a rise
in plasma triacylglycerol, LDL-cholesterol and an increase in
BP, all components of the metabolic syndrome (although no

individuals developed it). These data are consistent with the
hypothesis that increased sedentary time results in a reduced
metabolic demand of skeletal muscle, leading to lower glu-
cose uptake (by the development of peripheral insulin resis-
tance) and repartitioning of energy substrates into storage in
adipose tissue and in the liver by ‘overspill’, so that energy
will be available when activity resumes [7]. This paradigm is
supported by measurements of postprandial muscle and liver
glycogen/lipid (13C/1H-MRS) and de novo lipogenesis (deu-
terated water, 2H2O), which show that skeletal muscle insulin
resistance promotes hepatic steatosis and hyperlipidaemia [5,
8]. Moreover, this process can be reversed with exercise [6].
We propose that increased sedentary time leads to central and
hepatic fat accumulation, development of insulin resistance
and emergence of components of the metabolic syndrome,
including dyslipidaemia, by a similar mechanism (Fig. 6).

This step-reduction study somewhat corroborates previous
reports regarding the effects on cardiorespiratory fitness and
body composition [16, 17]. The effects of step reduction are
amplified when combined with overfeeding [18], leading to
undesirable metabolic changes, including impaired insulin
sensitivity independent of changes in body composition. In
our study, the detrimental changes were recovered on resump-
tion of habitual activity. However, with overfeeding, body
composition did not return to normal [18] and in older adults,
glycaemic control and myofibrillar protein synthesis remained
disrupted [20]. We believe our findings represent a significant
advance for several reasons. Previous step-reduction studies
have been limited in sample size, the largest comparable stud-
ies being in ten young men [16, 17]; the present study is more
representative of the general population, involving 45 individ-
uals, both male and female, with a mean age of 36 years. We
acknowledge their relatively high levels of habitual activity,
despite being formally untrained. Complete objective moni-
toring of physical activity throughout ensured that the baseline
criteria of >10,000 steps/day was met and likewise ~1500
steps/day (>80% step reduction) during inactivity; habitual
activity was monitored during the final 14 days, with no in-
struction or guidance; further, we characterised the time par-
ticipants spent in domains of activity. Moreover, the partici-
pants were comprehensively phenotyped, including all mea-
sures of the metabolic syndrome, region-specific distribution
and quantification of lean muscle and adipose tissue by DXA,
and liver fat was quantified by 1H-MRS, a highly sensitive
non-invasive method [35].

The study is also the first to examine whether FDR+ve
people are more susceptible to the detrimental effects of re-
duced physical activity than FDR−ve individuals. The find-
ings do not suggest that FDR+ve individuals show greater
adverse changes with decreased physical activity compared
with FDR−ve individuals when we consider the effects on
the primary outcome, whole-body insulin sensitivity.
However, there were differences in a subset of measures, with
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greater increases in triacylglycerol and android fat following
step reduction and a more marked change in cardiorespiratory
fitness. These differences may be important, not only associ-
ated with an increased risk for future development of insulin
resistance and type 2 diabetes, but also long term for cardio-
vascular disease and overall mortality [36]. The presence of
good metabolic health in these relatively active individuals at
baseline, the decline with increased sedentary time and resto-
ration after resumption of habitual physical activity all, to
some extent, validate current physical activity recommenda-
tions. The findings reinforce the importance of meeting the
physical activity recommendations for all participants.

We acknowledge limitations to the study and its design.
The target recruitment for FDR+ve participants was 20. The
difficulty recruiting for this study was noteworthy. Physically
active people were often reluctant to induce physiological
harm, even for a brief period; subsequently, between-group
comparisons may have been underpowered. We have present-
ed evidence of within-group variation to highlight where de-
gree of response is varied between the two groups, but recog-
nise that this does not constitute a between-group difference.
Furthermore, the practical intrusion of ‘real life’ (i.e. occupa-
tion, caring commitments) during the inactivity phase also
explains why not all individuals could precisely reduce to
1500 steps/day.

We note the lack of a control group: an additional group,
comprising participants who continue their habitual physical
activity and having the same serial measurements, would have
provided useful insight. Additionally, the gold standard mea-
sure of insulin sensitivity is the hyperinsulinaemic–

euglycaemic clamp. Owing to the participant burden of
conducting serial clamps, we opted to assess whole-body in-
sulin sensitivity from an OGTT using the Matsuda index,
which has been shown to correlate with hyperinsulinaemic–
euglycaemic clamp [26]. Calculations of hepatic insulin resis-
tance and skeletal muscle insulin sensitivity have also been
validated [27]. The indices derived from OGTT are valid,
repeatable and easily assessable measures of insulin sensitiv-
ity, which is advantageous for direct comparison with follow-
up studies. Future studies may wish to incorporate low- and
high-dose hyperinsulinaemic–euglycaemic clamps tomeasure
precisely hepatic and skeletal muscle insulin sensitivity and
consider dynamic measurements of de novo lipogenesis and
of VLDL triacylglycerol kinetics to determine effects on liver
fat and lipoprotein metabolism. These data provide a good
rationale to determine the molecular and tissue-specific adap-
tations in skeletal muscle and subcutaneous adipose tissue in
response to short-term physical inactivity.

In summary, by taking untrained individuals with a habit-
ually active lifestyle (>10,000 steps/day) and drastically re-
ducing their step count, this study provides direct evidence
of a number of unfavourable adaptations to body composition
and cardiometabolic risks with increased sedentary behaviour.
These changes are reversed with resumption of habitual activ-
ity. The data suggest a mechanistic framework for understand-
ing the deleterious cardiometabolic adaptations that occur
with chronic physical inactivity and sedentary behaviour.
Furthermore, both FDR+ve and FDR−ve individuals are sus-
ceptible to the risks of increased sedentary behaviour. The
study findings reinforce the health benefits of meeting

Habitual activity Chronic sedentary behaviour
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Insulin resistant/
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Fig. 6 Mechanisms of habitual activity vs chronic sedentary behaviour. A
consequence of sedentary behaviour is lack of AMP-activated protein
kinase (AMPK) activation and glucose uptake from skeletal muscle; this
triggers insulin resistance and provides a substrate for de novo lipogenesis
in adipose tissue and liver. Consequently, there is expansion of adipose
tissue mass, an increase in NEFA flux and serum NEFA, intra-hepatic

lipid accumulation and increased lipid exports as VLDL triacylglycerol
particles and serum triacylglycerol with systemic insulin resistance. On
the contrary, being habitually active promotes AMPK activation and up-
take of glucose in skeletal muscle; insulin sensitivity is therefore pre-
served and less glucose is diverted to metabolically unfavourable depots.
TG, triacylglycerol
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physical activity recommendations and emphasise the impor-
tance of reducing daily sedentary time.
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