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Abstract 

The process of selecting appropriate maintenance strategy to enhance the operational 

efficiency of marine and offshore machinery under an uncertain environment is challenging 

due to the many criteria that need to be considered and modelled. In addition, the design of 

such complex machinery on-board a vessel consists of many subjective and imprecise 

parameters contained in different quantitative and qualitative forms. This paper proposes a 

strategic multi-attribute group decision-making (MAGDM) methodology for the concise and 

straightforward selection of an appropriate maintenance strategy. The decision support 

structure allows the use of multiple decision makers to incorporate and aggregate their 

subjective opinions transparently. In the analysis, a Technique for Order Preference by 

Similarity to Ideal Situation (TOPSIS) was employed to rank the maintenance strategies 

with respect to costs and benefits for their subsequent implementation. The purpose of 

using MAGDM in this paper is to aggregate and synthesise opinions of experts, thus, 

guiding them in decision making when they are planning to implement a cost effective 

maintenance investment. 

 

Keywords: Maintenance strategy, multi-attribute group decision making, run-to-failure 

maintenance, preventive maintenance, condition based maintenance, reliability-centred 

maintenance. 
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1 Introduction 

In 1979, the Massachusetts Institute of Technology (MIT) carried out an extraordinary 

milestone study in which it estimated that over $200 billion was spent annually on 

maintenance in North America. Moreover, approximately one third of this expenditure was 

determined to be unnecessary. Maintenance, and in particular the effect of mal-lubrication, 

is still one of the few remaining areas of a company’s expenditure that can be significantly 

improved upon. Many modern engines contain a number of complex systems and thus 

require a variety of maintenance procedures for reliable, cost effective operation. The 

increasing cost, complexity of maintenance, other uncertainties, and their effect on 

production has initiated a need for adequate and proper planning, management, and 

omission of the maintenance process (Toms and Toms, 2008). Almost all modern 

maintenance programs include a variation of one or more of the following general 

maintenance procedures: Run-to-Failure Maintenance, Preventive Maintenance, Condition-

Based Maintenance, and Reliability Centred Maintenance. 

Therefore, the assessment of the cost of the planned maintenance (PM) strategies may 

require an advanced cost benefit analysis and a powerful tool for risk management 

methodology to aid in decision-making. Decision-making can be characterised as a process 

of selecting a sufficient alternative from a set of alternatives to attain a goal. Many decisions 

involve uncertainty. In order to overcome the uncertainty and risk that threatens the 

maintenance, it is important to design a robust expert system that will cater for all the above 

maintenance procedures. 

In this paper, decision makers’ opinions are expressed through a process of multi-attribute 

group decision making and aggregated to obtain the performance rating with respect to all 

of the attributes for each maintenance procedure alternative. Decision makers’ decision 

matrixes are used and converted into an aggregated decision matrix to determine the most 

preferable choice among all possible alternatives. Multi-attribute decision-making (MADM) 

is a tool that is suitable for group decision making under a uncertain environment (Li, 2007). 

There are a number of Multiple Criteria Decision Making (MCDM) methods in literature, 

such as Technique for Order Preference by Similarity to Ideal Situation (TOPSIS) (Chen, 

2000). A novel method for multi-attribute group decision-making (MAGDM) will be proposed 

in this paper. In this method, the linguistic terms will be used during the evaluation process, 

and then TOPSIS is used to rank the alternatives. This novel MAGDM technique can 

efficiently resolve the uncertain information by decreasing its uncertainty level, is capable 

of reducing the computation time, and can provide reasonable and robust ranking results.  
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2 Literature Review 

Over the past few decades, the decision making process has evolved into an increasingly 

more sophisticated approach that includes expert judgements, cost-benefit analysis, risk 

analysis, and many other methods for collaborative modelling of complex socio-technical 

systems under a uncertain environment. This evolution has led to an improved range of 

decision making aids, which have resulted in the development of MCDA tools that offer a 

scientifically sound decision analysis framework for group decision making in a ductile 

approach.  

According to Reichert et al. (2007) as cited in John et al. (2014), decision analysis 

techniques were originally developed to support individual decision makers in carefully 

considering all aspects of the decision making process. Nonetheless, Ananda and Herath 

(2003) and Marttunen and Hamalainen (1995) are of the view that because these 

techniques are used to structure the problem under consideration and to make clear the 

expectations about outcomes and preferences, they can also be used to support group 

decisions as well as communicating decisions.  

The significant issues described in literature for the effective application of MCDM revolve 

around the information and data available to characterize a piece of equipment, and the 

related uncertainties that affect the models and parameters supporting the decision 

process. Several decision-making problems involve uncertainty; thus, methods that 

facilitate better and optimum management decisions must account for variations in decision 

makers’ preferences for attributes and conflicting interests in a systematic fashion. As the 

complexity of decisions increases in complex machineries, it becomes more challenging for 

decision makers to identify appropriate alternatives. As a result, robust but flexible analytical 

tools that can account for these difficulties are required to consider the numerous criteria 

and decision outcomes (John et al., 2014).  

Several methods of MCDM have been developed, with even small variations to existing 

methods causing the creation of new branches of research (Velasquez and Hester, 2013). 

Among these methods are: Multiple Attribute Decision Making (MADM), Multiple Objective 

Decision Making (MODM), Multi-Attribute Utility Theory (MAUT), Analytic Hierarchy Process 

(AHP), Fuzzy Set Theory (FST), Case-based Reasoning (CBR), Data Envelopment 

Analysis (DEA), Simple Multi-Attribute Rating Technique (SMART), Goal Programming 

(GP), Elimination and Choice Expressing Reality (ELECTRE), Preference Ranking 

Organization Method for Enrichment of Evaluations (PROMETHEE), Simple Additive 

Weighting (SAW), TOPSIS, etc. These methods are the most important branches of 

decision making under uncertainty and involve decision makers’ subjective judgements. 
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2.1 Analysis of Multiple Attribute Group Decision Making Methods  

MADM methods are designed to evaluate and select the desired alternative from a set of 

alternatives, which are characterised by multiple criteria. If more than one person is 

interested in the same MADM problem, it then becomes a MAGDM problem (Yang et al., 

2014). For both MADM and MAGDM problems, consistency among the preference relations 

is crucial to the result of the final decision. Guo (2013) perceives MAGDM as one of the 

most common activities in modern society, involving the selection of the optimal option, from 

a finite set of alternatives with respect to a collection of predefined criteria, by a group of 

experts with a high collective knowledge level on these particular criteria.  

Moreover, as stated in Bozóki (2008), the determination of attribute weight is also a key 

issue to be considered when using the MAGDM approach. In many decision cases, some 

attributes are considered to be more important in the experts’ judgment than the others. 

However, for these vital attributes, the preference relation provided by experts may be quite 

similar for all alternatives. Even for the attribute with the highest weight, the degree of 

influence on the final decision could be very small. Consequently, Wang and Fan (2007) 

regard this kind of attribute as being unimportant to the final decision. Thus, during the 

multiple attribute group decision process, the following five guidelines should be noted: 

1. Different assessment types need to be considered concurrently. 

2. Experts' preference relations that have been provided need to be consistent. 

3. Diverse expert’s opinions need to be taken into consideration. 

4. The weight of each attribute needs to be determined. 

5. All alternatives need to be carefully ranked. 

MADM is an algorithm deployed to solve problems involving selection from a list of 

alternatives. It specifies how criteria or attribute information can be processed in order to 

arrive at a choice suitable for investment. MADM methods generally require comparisons 

of criteria with respect to alternatives for efficient trade-offs. In a MADM process, each 

decision table (also called decision matrix) has four main parts; these can be summarised 

as follows: 

 Alternatives. 

 Criteria or Attributes. 

 Weight of experts or relative importance of each attribute. 

 Performance measure of alternatives with respect to criteria. 

Based on the analysis of MCDA methods, the basic information in a MADM model can be 

represented in the matrix as presented in Equation 1. 
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                  𝐶1        𝐶2    ⋯   𝐶𝑚 
                 (𝑤1        𝑤2    ⋯   𝑤𝑚) 

𝑍 =  

𝐴1
𝐴2
⋮
𝐴𝑛 [
 
 
 
𝑦1,1 𝑦1,2 ⋯ 𝑦1,𝑚

𝑦2,1 𝑦2,2 ⋯ 𝑦2,𝑚
⋮
𝑦𝑛,1

⋮
𝑦𝑛,2

⋮
⋯

⋮
𝑦𝑛,𝑚

 

]
 
 
 
                 (1) 

where 𝐴𝑖  (𝑖 = 1, 2, …𝑛) is the 𝑖𝑡ℎ alternative; 𝐶𝑖 (𝑖 = 1, 2, …𝑚) is the 𝑖𝑡ℎ set of criterion with 

which each alternative’s performances can be measured; 𝑦𝑖.𝑗 (𝑖 = 1, 2, …𝑛); (𝑗 = 1, 2, …𝑚) 

is the measure of performance of the 𝑖𝑡ℎ alternative with respect to the 𝑚𝑡ℎ criterion; and 

𝑤𝑗 (𝑗 = 1, 2, …𝑚) is the 𝑗𝑡ℎ criterion weight. It is important to stress here that all the elements 

in the decision matrix must be normalised to the same units, so that all the possible 

attributes in the decision problem can be dealt with easily to eliminate any computational 

difficulty. 

There are four means of normalisation in a MADM problem (Lavasani et al., 2012). The two 

most popular methods are summarised as follows: 

 Linear Normalisation: This method divides the rating of 𝑛 attribute by its maximum 

value. Usually, the normalised value of 𝑝𝑖,𝑗 can be obtained using Equation 2. 

𝑝𝑖,𝑗 = 
𝑦𝑖,𝑗

𝑦𝑗
∗ , 𝑖 = 1, 2, …𝑚                 (2) 

where 𝑦𝑗
∗ is the maximum value of 𝑦𝑖,𝑗 . 𝑝𝑖.𝑗 values range between 0 to 1 (0 ≤ 𝑝𝑖,𝑗  ≤ 1). 

 Vector normalisation: This method divides the ratings of each attribute by its 

average, so that each normalised rating of 𝑦𝑖,𝑗 can be obtained by Equation 3. 

𝑝𝑖,𝑗 = 
𝑦𝑖,𝑗

√∑ 𝑦𝑖,𝑗
2𝑛

𝑖=1

 , 𝑖 = 1, 2, …𝑛; 𝑗 = 1, 2, …𝑚               (3) 

Both Equations 2 and 3 are used for cost and benefit criteria respectively. Normally, an 

alternative in a MADM problem is often described using qualitative variables expressed by 

decision makers. However, when no criteria evidence or information is available, the 

preferred approach is to use fuzzy set theory, which has the capability of handling such a 

situation under varying constraints (John et al., 2014).  

One of the theoretical approaches to preference relations used for MADM problems is fuzzy 

preference relations. The majority of real-life complex problems have fuzzy information 

about the alternatives with respect to criteria, and it is usually difficult for crisp numerical 

values to be provided by the subjective opinions of decision makers due to their inadequate 

knowledge, and the intrinsic complexity and uncertainty within the decision-making 
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environment. The Fuzzy Multiple Attribute Decision Making (FMADM) technique can then 

be used to handle these complex decision making problems, which are incomplete and 

unquantifiable. FMADM is an attractive approach, as it is able to actualise decision-making 

processes for complex equipment that has uncertainty in its operational procedures.  

Hypotheses, approximations and judgments of experts are very often required in studies 

involving complex machineries, in order to handle the imprecision and vagueness 

associated with making strategic decisions about the operations of these machineries under 

uncertain conditions. Obviously, criteria values information is presented in the form of 

linguistic variables, which are generally calibrated from fuzzy scales. According to Yang et 

al. (2011), the calibration of this information from fuzzy scales is due to the fact that fuzzy 

logic provides the needed flexibility to represent vague information that results from a lack 

of data or knowledge of the piece of equipment under investigation.  

Several studies have been conducted on how to handle the aforementioned challenges in 

managing incomplete information and to linguistically model these machineries in a 

systematic manner (Cabrerizo et al., 2009). Although the results of these studies have 

shown some advantages in dealing with imprecise and incomplete information for MCDM 

problems, the research has been widely criticised because of the complex computational 

algorithm involved, which makes it difficult to use for analysts who are not knowledgeable 

in modern computational analysis. Therefore, there is a need for a user-friendly fuzzy 

decision support algorithm that can guide effective decisions in a simplified manner. 

A FMCDM problem can be defined as follows: 

Let 𝐴 = {𝐴𝑖, for 𝑖 = 1, 2, 3..., m} be a (finite) set of decision alternatives and G = {𝑔𝑗, for j = 

1, 2, 3…, n} be a (finite) set of goals according to which the desirability of an action is judged. 

Determine the optimal alternative 𝐴+ with the highest degree of desirability with respect to 

all relevant goals 𝑔𝑗 (Zimmermann, 1991). 

According to Hipel et al. (1993), a decision problem is said to be complex and difficult where 

the following conditions apply:  

1. Multiple criteria exist, which can be both quantitative and qualitative in nature.  

2. There may be multiple decision makers.  

3. Uncertainty and risk is involved. 

4. Decision (input) data may be vague, incomplete or imprecise.  
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The FMCDM is applied in this model due to the fact that the decision-making process for 

the selection of an ideal maintenance strategy for a piece of equipment in a marine and 

offshore environment involves a subjective analysis of uncertain and/or incomplete data. 

2.2 Fuzzy TOPSIS  

Fuzzy TOPSIS (FTOPSIS) is a fuzzy extension of TOPSIS. It was modelled to efficiently 

handle the fuzziness of the data to be applied in the decision-making process. According to 

Sodhi and Prabhakar (2012), the FTOPSIS method can help in objective and systematic 

evaluation of alternatives on multiple criteria. It has been demonstrated to be a robust tool 

for handling complex and real-life problems (Vahdani et al., 2011) for collaborative 

modelling and decision-making processes in an uncertain environment. A fuzzy approach 

to TOPSIS is useful because it assigns the relative importance of attributes using fuzzy 

numbers instead of precise numbers (Kabir and Hasin, 2012).  

Linguistic preferences can easily be converted to fuzzy numbers and TOPSIS allows for the 

use of these fuzzy numbers in the calculation (Pam, 2013). FTOPSIS is widely applied in 

many areas such as landfill site selection (Beskese et al., 2015), failure mode and effect 

analysis (FMEA) (Shan and Shao, 2015), and fire and explosion in the process industry 

(Yazdi et al., 2018). In order to apply FTOPSIS to a MCDM problem, selection criteria have 

to be monotonic. A monotonic relationship is a relationship that does one of the following: 

(1) as the value of one variable increases, so does the value of the other variable; or (2) as 

the value of one variable increases, the other variable value decreases. Monotonic criteria 

could be classified as either benefits (B) or costs (C). A criterion can be classified as a 

benefit if the more desirable the candidate, the higher its score versus this criterion. On the 

contrary, cost criteria see the least desirable candidate scoring at the lowest. In FTOPSIS, 

the cost criteria are defined as the most desirable candidates scoring at the lowest, while 

the benefit criteria are described as the most desirable candidate scoring at the highest.  

Other advantages of the FTOPSIS technique as highlighted in Bottani and Rizzi (2006), 

Kore et al. (2017) and Puente et al. (2015) include the fact that: 

1. Fuzzy logic is conceptually easy to understand. 

2. The mathematical concepts behind fuzzy TOPSIS are simple. 

3. It is a realistic compensatory modelling method which includes or excludes 

alternative solutions based on hard cut-offs. 

4. With any given system, it is easy to layer on more functionality without starting again 

from scratch.  

Trapezoidal fuzzy numbers are applied in the FTOPSIS used in this study. This is 

because it is intuitively easy for the decision-makers to use and calculate 
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(Dagdeviren et al., 2009). Secondly, modelling using trapezoidal fuzzy numbers has 

proven to be an effective way to formulate the decision making problem where the 

information is subjective and inaccurate (Dagdeviren et al., 2009).  

Based on Figure 1, a trapezoidal fuzzy membership function can be described as 

follows: 

 

𝜇𝐴(𝑥) =  

{
 
 

 
 
0, 𝑥 ≤  𝑎1                 
𝑥−𝑎1

𝑎2−𝑎1
, 𝑥 ∈ [𝑎1, 𝑎2]

1, 𝑥 =  [𝑎2, 𝑎3]         
𝑎4−𝑥

𝑎4− 𝑎3
, 𝑥 ∈  [𝑎3, 𝑎4]

0, 𝑥 ≥  𝑎4                         

               (4) 

where 𝑎2 and 𝑎3 are the modal, and the upper and lower boundaries are 𝑎1 and 𝑎4 

respectively. 

 

Insert Figure 1 here 

 
While the uncertainty issue is tackled by means of fuzzy logic, the application of TOPSIS 

makes it possible to appraise the distances of each decision option from the positive ideal 

solution and the negative ideal solution (Nadaban et al., 2016). The capability and efficiency 

of FTOPSIS in handling complex engineering solutions, simultaneously considering positive 

and negative ideal solutions, having flexibility in computational analysis, and providing 

systematic and logical results’ evaluation, make it useful for strategic decisions to select the 

most ideal maintenance strategy for marine and offshore machinery.  

Moreover, the way linguistic ratings and weights are given is very straightforward. A Fuzzy-

TOPSIS approach has been applied in this study in order to support the evaluation of 

decision-making criteria and attributes. Thus, the FTOPSIS framework is being incorporated 

and presented in the following section. 

3 Methodology 

The proposed methodology and hierarchical structure describing the decision making 

process of selecting an ideal maintenance strategy for marine and offshore machinery is 

graphically illustrated in Figure 2. The first stage is the identification of decision making 

alternatives for marine equipment maintenance. The decision alternatives and evaluation 

criteria are literature-based and have been derived from various literature reviews. The 
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evaluation process is conducted by decision analysts based on their subjective knowledge 

and judgment on marine equipment maintenance practice.  

The second stage in the methodology is the identification of the evaluation criteria for the 

identified proto-type maintenance strategies. In the third stage, the AHP methodology is 

applied to obtain the importance weights of the evaluation criteria. In the fourth stage, 

FTOPSIS is applied to obtain performance ratings of the various decision alternatives. The 

importance weights obtained through the AHP are incorporated into the FTOPSIS analysis 

to obtain performance ratings of the decision alternatives.  

A Microsoft Windows Application (Excel) is used to compute the performance ratings of 

these alternatives. Results of the decision analysis are ranked in their order of preference 

by the analysts for a final selection and adaptation by the decision-makers (e.g. 

Maintenance Engineer on-board) or end-users within the marine and offshore industry.  

Insert Figure 2 here 

3.1  Identification of Decision-Making Alternatives (Step one) 

The four decision making alternatives (Run-to-failure, preventive maintenance, condition-

based maintenance, and reliability centred maintenance) described below have been 

identified and applied in this model. The maintenance strategies have been selected from 

the operations and maintenance best practices, as well as the machinery oil analysis, 

methods, automation, and benefits recommended by Sullivan et al. (2010) and Toms and 

Toms (2008), respectively. 

3.1.1  Run-to-failure maintenance (RTFM) 

Run-to-failure maintenance is basically the “run it till it breaks” maintenance approach. It is 

also known as reactive maintenance (Sullivan et al., 2010) or corrective maintenance (Toms 

and Toms, 2008). In this type of maintenance approach, no actions or efforts are taken to 

maintain the equipment, as the designer originally anticipated the use of the equipment until 

the design life is reached. However, Toms and Toms (2008) believe that this type of 

maintenance is the action of affecting repairs when some part breaks down or ceases to 

function properly. 

3.1.2 Preventive maintenance (PM) 

Preventive maintenance can be defined as an action performed on a time or machine-run-

based schedule that detects, prevents, or mitigates degradation of a component or system, 

with the aim of sustaining or extending its useful life through controlling degradation to an 



10 
 

acceptable level (Sullivan et al., 2010). It is a periodic component replacement. Preventive 

maintenance is not the optimum maintenance program, but it does have several advantages 

over that of a purely reactive program. By performing the preventive maintenance as the 

equipment designer projected, the life of the equipment can be extended nearer to design. 

Preventive maintenance that involves lubrication, a filter change, etc. will generally ensure 

the efficient running of the equipment and will result in cost savings (Sullivan et al., 2002; 

Kimos, 2009). While catastrophic equipment failures cannot be prevented, the number of 

failures can be decreased. Thus, minimizing failures can translate into maintenance and 

capital cost savings. 

3.1.3 Condition-based maintenance (CBM) 

Condition-based maintenance is a type of maintenance used in determining the optimum 

time at which to perform specific maintenance by monitoring the operation and condition of 

each component in a given application (Toms and Toms, 2008). According to Sullivan et al. 

(2010), CBM is also known as “Predictive Maintenance”, and can be described as an 

attempt to refine maintenance activities to only those times when they are functionally 

necessary, based on data collection, analysis, and (negative) trend determination from an 

established “healthy” base level. Condition-based maintenance is best used in situations 

where equipment is critical to operations and the appropriate monitoring system is reliable 

and economical. 

3.1.4 Reliability centred maintenance 

Reliability centred maintenance (RCM) is a systematic approach to evaluate a facility’s 

equipment and resources to a high degree of facility reliability and cost-effectiveness 

(Sullivan et al., 2010). The philosophy of RCM employs the three maintenance strategies 

mentioned above in an integrated manner to increase the probability that a piece of 

equipment / component will function as expected over its design life cycle with minimum 

maintenance. The goal of this philosophy is to provide the stated function of the facility, with 

the required reliability, and at the lowest cost. One of the prerequisites of RCM is that 

maintenance decisions be based on maintenance requirements supported by rigorous 

technical and economic justification. 

3.2 Identification of Evaluation Criteria (Step two) 

ABB (2016) and Toms and Toms (2008) identify reliability, cost effectiveness, operational 

safety, availability, and equipment downtime as the main attributes critical to enhancing the 

selection of an ideal maintenance strategy in an uncertain environment. These five 
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attributes, described below, have been applied in this model as evaluation criteria to reduce 

the elicitation process and to serve as a check for completeness and transparency. 

3.2.1 Reliability 

The study of component and process reliability is the basis of many efficiency evaluations 

in operation management (Carlo, 2015). Reliability has long been considered to be one of 

the three related attributes that must be taken into consideration when making, buying, or 

using a piece of equipment or component. It describes the ability of a system or component 

to function under stated conditions for a specified period of time. However, Toms and Toms 

(2008) identify reliability as the probability that an equipment system will operate at a 

specified performance level for a specific period. ABS (2016) also perceives reliability as 

the probability that an item will perform its intended function for a specified interval under 

stated conditions.  

3.2.2 Cost 

This cost includes equipment capital cost, cost due to unplanned downtime of equipment, 

labour cost, and cost involved with repair or replacement of equipment. An independent 

study conducted by Forrester Consulting on behalf of ABB Turbocharging reveals that 

organisations are under pressure to reduce cost, and that the three quarterly reports always 

consider the cost implications of parts and services (ABB, 2016). History, however, reveals 

that not all equipment operators utilize maintenance strategy in the most cost effective 

manner (Taylor, 1995). Decreasing unplanned downtime, and costs of maintenance, 

availability, and reliability are therefore significant considerations for investing in capital-

intensive machinery.  

3.2.3 Safety 

There are numerous definitions of safety among professionals and researchers in the safety 

and risk fields. For example, Leveson (1995, 2004) cited in Aven (2013) defines safety as 

“the absence of accidents, where an accident is defined as an event involving an unplanned 

and unacceptable loss”. Safety is also linked to risk and uncertainty as Moller et al. (2006) 

views safety as the opposite of risk, while, Aven (2013) considers epistemological 

uncertainty of great importance when discussing safety and safety matters, but argues that 

this uncertainty aspect is not reflected in many perceptions of risk.  

Safety can also refer to the control of recognized hazards in order to achieve an acceptable 

level of risk. Safe operation of marine and offshore equipment is very important, thus, the 

general safety guidance for equipment is to be adhered to at all times. Potential hazards of 

operating machines and equipment are numerous, and thus, machine and equipment 
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operators are encouraged to become familiar with the standards for safe machine and 

equipment operations relevant to their work (Toms and Toms, 2008). With this, it is 

envisaged that risks associated with the machines / equipment can be reduced to a feasible 

and acceptable level.  

3.2.4 Availability 

Availability, according to Carlo (2015) may be defined as the percentage of time that a 

repairable system is in an operating condition. Toms and Toms (2008) view equipment 

availability as the degree to which the machine / equipment in context is in a specified 

operable and committable state at the start of operation, when the operation is called for at 

an unknown (i.e. a random) time. This basically means that the machine / equipment is 

suitable and ready for use when needed. However, in literature, equipment availability 

depends on the reliability and maintainability of that equipment, and availability itself 

therefore, depends on the time between two consecutive failures, and how long it will takes 

to restore the system. The ability to measure and control costs of equipment deterioration 

has an obvious direct impact on equipment availability and operational costs (Toms and 

Toms, 2008). 

3.2.5 Equipment downtime 

A period during which an equipment or machine is not functional or cannot work is referred 

to as downtime. Downtime can occur due to technical failure, machine adjustment, 

maintenance, or non-availability of inputs such as materials, labour, and power (ABB, 2016), 

(Toms and Toms, 2008). An independent study for ABB Turbocharging found that 87 

percent of organizations work only or mostly with Original Equipment Manufacturers 

(OEMs) for maintenance support and spare parts procurement (ABB, 2016). Key benefits 

cited were reduced downtime and better parts availability according to the Forrester 

Consulting Technology Adoption Profile.  

3.3 Rating Phase - Determination of Importance Weights (Step three) 

As indicated in the model hierarchy for decision making, the rating phase deals with the 

determination of importance weights (which includes experts’ weights, the criteria’s weights 

with respect to the alternatives), defuzzifying the weights and normalising the decision 

matrix with respect to the goal. In the next step, the experts allocate linguistic variables to 

the criteria and the alternatives, respectively. The linguistic terms are calibrated into fuzzy 

triangular numbers for their fuzzy numbers. Then, FTOPSIS is adopted to aggregate the 

criteria and the alternative ratings to generate an overall score of the alternatives for ranking. 
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In fuzzy set theory, conversion scales are applied to transform the linguistic terms into fuzzy 

numbers for system modelling and analysis. In this study, a conversion scale proposed by 

Chen and Hwang (1992), is being adopted to rate the evaluation criteria with respect to the 

decision alternatives. As presented in Figure 3, both the performance score (𝑥) and the 

membership degree (𝜇𝑥) are in the range of 0 and 1. 

Insert Figure 3 here 

Considering Figure 3, when the performance score is between 0 and 0.2, the linguistic 

assessment is considered to be Very Low, and 0 to 0.1 performance score is considered to 

be 100% Very Low. Between 0.1 and 0.4 the linguistic assessment is considered to be Low, 

and 0.25 is considered to be 100% Low. Between 0.3 and 0.7 the linguistic assessment is 

considered to be Medium, and 0.5 is considered to be 100% Medium. Between 0.6 and 0.9, 

the linguistic assessment is considered to be High, and 0.75 is considered to be 100% High. 

Between 0.8 and 1, the linguistic assessment is considered to be Very High, with the range 

from 0.9 to 1 considered to be 100% Very High. 

The triangular fuzzy numbers in Figure 3 are converted to trapezoidal fuzzy numbers for 

easy computational analysis in this section, so that information can be represented in a 

concise and precise manner, as shown in Table 1. 

At this stage, a series of calculations are conducted on weights of the alternatives and 

experts used during the collaborative modelling process. To establish a decision matrix for 

the evaluation process, as shown in Figure 3, expert opinions on the decision alternative 

with respect to each criterion can be made using linguistic variables. Linguistic variables 

are often used when describing situations that are too complex and fuzzy to be analysed 

quantitatively (Vahdat et al., 2014a). Human judgements, including preferences, are often 

vague and their preferences cannot be indicated by an exact numerical value (Vahdat et 

al., 2014b), therefore, a more realistic approach may be to use linguistic assessments such 

as “very good”, “medium good” and “good” instead of numerical values. 

Insert Table 1 here 

3.3.1 Estimating weights of experts 

The weight of the expert can be determined in a simplified manner using established 

methods such as simple rating methods or more elaborate methods based on the weighting 

scores and factors. For this study, the weights of the experienced experts used are 

considered to be equal. 
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3.3.2 Estimating weights of criteria  

The weights of criteria have played a vital role in measuring the overall preference values 

of the alternatives in many MCDM models. Based on the different assumptions on 𝑈(𝑍(𝑥)) 

or 𝑈(𝑅(𝑥)), MCDM models have different aggregation rules that allow the use of the criteria 

weights in different ways. Moreover, distinct methods for assessing criteria weights are 

designed for different aggregation rules (Choo et al., 1999). In this study, the weights of the 

five criteria proposed are considered to be equal. 

3.3.3 Aggregation of experts’ opinions  

When carrying out collaborative modelling of large and sophisticated engineering 

machinery, experts may have different opinions; thus, it is essential to aggregate these 

opinions in a logical, systematic, and simplified manner. In line with the modelling approach 

presented in Hsu and Chen (1994), consider that each expert 𝐸𝑢 (𝑢 = 1, 2, 3, …𝑀) 

expresses their opinions on a particular criterion based on their expertise by a set of 

linguistic variables that are described by fuzzy numbers. The aggregation of the experts’ 

judgement can be obtained as follows: 

1. Calculate the degree of agreement (degree of similarity) 𝑆𝑢𝑣(�̌�𝑢�̌�𝑣) of the opinions 

𝛿𝑈 and 𝛿𝑣 of a pair of experts 𝐸𝑢 and 𝐸𝑣 where 𝑆𝑢𝑣(�̌�𝑢�̌�𝑣) ∈ (0, 1). Based on this 

approach, �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are trapezoidal fuzzy numbers. 

The degree of similarity between these two fuzzy numbers can be evaluated by the 

similarity function S defined as follows (Hsu and Chen, 1994): 

 

𝑆(�̌�, �̌�) = 1 − 
1

4
 ∑ |𝑎𝑖 − 𝑏𝑖|

4
𝑖=1                  (5) 

 

where 𝑆(𝑋,̌ �̌�) ∈ (0, 1). It is important to mention that the larger the value of 𝑆(�̌�, �̌�), the 

greater the similarity between two fuzzy numbers of �̌� and �̌� respectively. 

2. Calculate the degree of average agreement (AA) of expert 𝐸𝑢; this can be obtained 

using Equation (6). 

𝐴𝐴(𝐸𝑢) =  
1

𝑁−1
∑ 𝑆(𝛿𝑢, 𝛿𝑣)
𝑁
𝑢≠𝑣
𝑣=1

              (6)  

3. Calculate the relative agreement (RA) degree 𝑅𝐴(𝐸𝑢) of  experts 𝐸𝑢; this can be 

obtained as follows: 

𝑅𝐴(𝐸𝑢) =  
𝐴𝐴(𝐸𝑢)

∑ 𝐴𝐴(𝐸𝑢)
𝑁
𝑢=1

               (7) 

 
4. Calculate the consensus coefficient degree 𝐶𝐶 of experts 𝐸𝑢 (𝑢 = 1, 2, …𝑀); this can 

be analysed as follows: 

𝐶𝐶(𝐸𝑢) =  𝛽. 𝑤(𝐸𝑢) + (1 −  𝛽). 𝑅𝐴(𝐸𝑢)             (8) 
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where 𝛽(0 ≤  𝛽 ≤ 1) is a relaxation factor of the proposed approach. It highlights the 

importance of weight of expert 𝑤(𝐸𝑢) over 𝑅𝐴(𝐸𝑢). It is important to note that when 𝛽 = 0, 

no importance has been given to the weight of experts and, thus, a homogeneous group of 

experts is used. When 𝛽 = 1, then the consensus degree of an expert is the same as its 

importance weight. The consensus coefficient degree of each expert is a good measure for 

evaluating the relative worthiness of judgement of all experts participating in the decision 

making process. John et al., (2014) believe that it is the responsibility of the decision maker 

to assign an appropriate value of 𝛽. Moreover, a sensitivity analysis can be applied by 

varying 𝛽. 

5. The expert aggregation judgement �̌�𝐴𝐺 can be obtained as follows: 

�̌�𝐴𝐺 = 𝐶𝐶(𝐸1)  × �̃�1 + 𝐶𝐶(𝐸2)  ×  �̃�2 +⋯+⋯𝐶𝐶(𝐸𝑚)  × �̃�𝑛                      (9) 

where �̃�𝑖(𝑖 = 1, 2, …𝑛) is the subjective rating of a given criterion with respect to alternative 

by expert 𝐸𝑢(𝑢 = 1, 2, …𝑚). 

3.3.4 Defuzzification of the aggregated fuzzy results 

In order to rank the alternatives of the decision problem, all aggregated fuzzy numbers must 

be defuzzified. Each element of matrix �̃�𝑖 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) can be converted to a crisp value 

using Equation 10 proposed by Sugeno (1999) using the centre of area defuzzification 

technique. Equation 10 is adapted within this study because of the ease in the computation 

process compared to other techniques in the literature, such as Chen (2000). 

𝑋∗ = 
∫

𝑥−𝑎

𝑎2−𝑎1
𝑥𝑑𝑥+∫ 𝑥𝑑𝑥+∫

𝑎4−𝑥

𝑎4−𝑎3
𝑥𝑑𝑥

𝑎4
𝑎3

𝑎3
𝑎2

𝑎2
𝑎1

∫
𝑥−𝑎

𝑎2−𝑎1
𝑑𝑥+∫ 𝑑𝑥+∫

𝑎4−𝑥

𝑎4−𝑎3

𝑎4
𝑎3

𝑑𝑥
𝑎3
𝑎2

𝑎2
𝑎1

= 
1

3

(𝑎4+𝑎3)
2−𝑎4𝑎3−(𝑎1+𝑎2)

2+𝑎1𝑎2

𝑎4+𝑎3−𝑎1−𝑎2
          (10) 

3.4 Selection Phase - Application of FTOPSIS Approach to Obtain Performance Rating 

of Decision Alternatives (Step four) 

Selection of best maintenance strategies often requires analysts to provide both quantitative 

and qualitative assessments for determining the performance of each alternative with 

respect to each criterion. A modelling approach that will handle uncertain, imprecise, 

indefinite, and subjective data that often result from such assessments in a flexible manner 

is required. As a consequence of that, this study utilises a FTOPSIS algorithm (Yang et al., 

2009), (Lin and Chang, 2008), (Wang and Lee, 2007), (Jahanshahloo et al., 2006), and 

(Chen, 2000) due to the fact that fuzzy sets might provide the needed flexibility to represent 

the vague information resulting from the lack of data or knowledge. TOPSIS can reasonably 

deal with the multiplicity of the criteria in order to rank the alternatives based on the 

aggregated decision matrix and weight vector analysis. To carry out the assessment, 

consider 𝑥 possible alternatives 𝐴1, 𝐴2, 𝐴3… 𝐴𝑥 from which 𝐸𝑢 decision-makers 𝐸𝑢 =
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(1, 2, 3, …𝑚) have to make a credible decision on an appropriate maintenance strategy on 

the basis of 𝑛 sets of criteria 𝐶1, 𝐶2, 𝐶3, … 𝐶𝑛. The decision support procedure is achieved 

through the following steps: 

3.4.1 Fuzzy decision matrix construction 

This step involves choosing appropriate linguistic variables for the alternatives with respect 

to criteria. Suppose the aggregation rate of alternative 𝐴1(𝑖 = 1, 2, …𝑥) for criteria 𝐶1(𝑗 =

1, 2, …𝑛) is (𝑡𝑖𝑗). Therefore, TOPSIS can be expressed in a matrix format as follows: 

                                     𝐶1        𝐶2       ⋯    𝐶𝑛 

𝑍 = (𝑡𝑖𝑗)𝑦×𝑛 = 

𝐴1
𝐴2
⋮
𝐴𝑛

[

𝑡11 𝑡12 ⋯ 𝑡1𝑛
𝑡21 𝑡22 ⋯ 𝑡2𝑛
⋮
𝑡𝑥1

⋮
𝑡𝑥2

⋮
⋯

⋮
𝑡𝑥𝑛

 ]   𝑖 = 1, 2, … . , 𝑥;   𝑗 = 1, 2, … . , 𝑛                    (11) 

where, matrix 𝑍 is composed of 𝑥 alternatives and 𝑛 criteria. 

In the proposed model, the process for the estimation of the values for the best maintenance 

strategy for marine and offshore machinery will depend on expert knowledge and judgement 

of the decision analysts.  

3.4.2 Fuzzy decision matrix normalisation 

After producing the decision matrix for the alternatives, the fuzzy data obtained in the matrix 

are normalised in order to eliminate the units of criteria scores, so that numerical 

comparisons often associated with MCDM problems can be brought to the same perception. 

The process involves dividing the score within each criterion by the root-sum-of-squares for 

all the decision-making criteria. Normalisation has two main aims: 

1. For the comparison of heterogeneous criteria.  

2. To ensure that all triangular fuzzy numbers are ranged within the interval, 0 and 1 

(Wang and Chang, 2007).  

Since 𝑛 criteria may be measured in different ways, the decision matrix 𝑍 needs to be 

normalised. This step transforms various criteria dimensions into non-dimensional units, 

which allows for comparisons across the criteria. The normalised decision matrix can be 

obtained by using Equation 3. 

                                       𝐶1        𝐶2     ⋯    𝐶𝑛 

𝑅 = (𝑟𝑖𝑗)𝑦×𝑛 = 

𝐴1
𝐴2
⋮
𝐴𝑛

[

𝑟11 𝑟12 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟2𝑛
⋮
𝑟𝑥1

⋮
𝑟𝑥2

⋮
⋯

⋮
𝑟𝑥𝑛

 ]           (12) 
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3.4.3 Construction of weighted normalisation fuzzy decision matrix 

The weighting factors are a set of percentages that add up to 100%, with the most important 

alternative receiving the highest weighting factor. The process involves multiplying the 

importance weights of the alternative by the values in the normalised fuzzy decision matrix. 

Considering the different importance of each criterion, the weighted normalized fuzzy-

decision matrix �̃� can be constructed using Equations 13 and 14. 

𝑉 = ⌊𝑣𝑖𝑗⌋𝑚×𝑛
,    𝑖 = 1, 2, … ,𝑚;    𝑗 = 1, 2, … , 𝑛                        (13) 

𝑣𝑖𝑗 = 𝑟𝑖𝑗  ×  𝑤𝑗                            (14) 

where, 𝑤𝑗 denotes the importance weight of criterion 𝐶𝑗 . 

3.4.4 Determination of the fuzzy positive ideal reference point (FPIRP) and fuzzy 

negative ideal reference point (FNIRP) 

The FPIRP is obtained by identifying the best score in a criterion. Similarly, the worst score 

of a criterion is identified and recorded as the FNIRP. The FPIRP (𝐴+) [the benefit criterion] 

and FNIRP (𝐴−) [the cost criterion) are defined as follows: 

𝐴+ = (𝑣1
+, 𝑣2

+ , … , 𝑣𝑛
+)                           (15) 

𝐴− = (𝑣1
−, 𝑣2

− , … , 𝑣𝑛
−)                           (16) 

where, 

�̃�𝑗
+ = {𝑀𝑎𝑥 𝑣𝑖𝑗 , 𝑖 ∈  𝑗1;𝑀𝑖𝑛 𝑣𝑖𝑗, 𝑖 ∈ 𝑗2}              (17) 

�̃�𝑗
− = {𝑀𝑎𝑥 𝑣𝑖𝑗 , 𝑖 ∈  𝑗1;𝑀𝑖𝑛 𝑣𝑖𝑗 , 𝑖 ∈ 𝑗2}                         (18) 

where 𝑗1 and 𝑗2 are associated with the sets of benefit and cost criteria respectively. 

The distance of each alternative (maintenance strategy) from the FPIRP (𝐷𝑖
+) and FNIRP 

(𝐷𝑖
−) with respect to each criterion can be obtained by utilising Equations 19 and 20 

respectively. 

𝐷𝑖
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑖

+)2𝑥
𝑖=1 ,     𝑗 − 1, 2, … , 𝑛                                   (19)     

𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑖

−)2𝑥
𝑖=1 ,      𝑗 − 1, 2, … , 𝑛                                                                                  (20) 

The obtained 𝐷𝑖
+ and 𝐷𝑖

− values can then be used in obtaining the Closeness Coefficient 

(𝐶𝐶𝑖) of each alternative for ranking purposes. 
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3.4.5 Obtaining the closeness coefficient of each alternative  

The ranking of the alternative can be determined after the obtaining 𝐶𝐶𝑖. This allows the 

decision making experts to choose the most rational and appropriate alternative. To 

calculate the 𝐶𝐶𝑖 Equation 21 is used. 

𝐶𝐶𝑖 = 
𝐷𝑖
−

𝐷𝑖
++ 𝐷𝑖

−   𝑖 = 1, 2, … ,𝑚                          (21) 

3.4.6 Ranking the alternatives 

The different alternatives are ranked according to the closeness coefficient 𝐶𝐶𝑖 in 

decreasing order. It is important to note that the best alternative is closest to the FPIRP and 

farthest from the FNIRP. This means that the larger the 𝐶𝐶𝑖, the better the associated 

alternative. 

3.5 Perform Sensitivity Analysis (Final) 

Conducting a sensitivity analysis (SA) is an important aspect of the novel hybrid 

methodology presented in Section 3, as it is meant to provide a reasonable amount of 

confidence in the overall result of the study. Given that the final output result is dependent 

on the subjective judgements of the decision makers, it is essential to perform SA based on 

a set of scenarios that reflect different views on the relative importance of the attributes, in 

order to observe the stability and ranking order of the model’s output. Then, managerial 

attention is focused during implementation of the maintenance strategies for the decision 

making process. 

4 Application of Methodology to a Test Scenario 

The proposed model will be demonstrated in a decision making analysis of the selection of 

an on-board machinery (crane) maintenance strategy for ships operating under an uncertain 

environment, as presented in Section 3. The hierarchical model of this decision-making 

analysis process is as illustrated in Figure 4, with the goal of the decision problem in level 

0, decision alternatives in level 1, and evaluation criteria in level 2. It is important to note 

that the proposed model is applied for decision making in the selection of appropriate 

maintenance strategies for marine and offshore machineries.  

This representation is made to simplify the computational complexity associated with the 

analysis and to provide managerial insight to decision makers in a reasonable manner prior 

to their subjective evaluation of criteria with respect to alternatives. The analysis will be 

conducted through a robust literature review and brainstorming session with the experts. 

Insert Figure 4 here 
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The positions of the experts and their degree of competency in the industry are as shown 

in Table 7. The primary objective of the decision-making analysis is to identify the best, 

most appropriate and acceptable maintenance strategy to be adopted by the engineer on-

board ships and offshore installations. 

4.1 Identification of Decision Making Alternatives (Step one) 

This involves the identification of the decision making alternatives through a literature review 

of the machinery maintenance strategies on-board ships. As presented in Section 3.1, four 

(4) alternatives were established for this analysis. 

4.2 Identification of Evaluation of Criteria (Step two) 

Based on the expert opinions, the criteria or attributes that are critical to enhancing the 

selection of the best maintenance strategy in uncertain situations are stated in Section 3.2. 

It is evident that the criteria used for the selection procedure consist of two main categories: 

cost (C) (the lower the value, the more effective the alternative) and benefit (B) (the higher 

the value, the more robust or effective the alternative). As a consequence, the cost type 

criteria include the cost (equipment capital cost, labour cost, repair/replacement cost), 

downtime, and availability, while the benefit type criteria consist of safety (operational 

safety, environmental safety) and reliability. The assigned criteria are described in Table 2. 

Based on this, it is worth mentioning that maintenance strategy selection can be carried out 

with respect to three cost and two benefit criteria. 

Insert Table 2 here 

4.3 Rating Phase - Determination of Importance Weight (Step three) 

In order to show the relative important of each criterion, it is necessary to assign a weight 

to each (Reliability, Cost Effectiveness, Safety, Availability, and Downtime). There are two 

types of criteria for a selection problem involving complex networks of decision making. If 

an assessment of the criteria is made with respect to alternatives from field data or a 

literature review, the criteria are called ‘objective’; when such information is obtained using 

expert judgement in the form of fuzzy linguistic estimates, then the criteria are called 

‘subjective’. The assessment type used for all the criteria in this model is fuzzy linguistic 

estimates, thus, the criteria are subjective. Based on this, each subjective criterion is 

assessed with respect to each alternative by a group of three experts or decision makers 

(DMs), and their assessments are presented in Tables 3, 4, and 5, respectively. The 

experts’ backgrounds are presented as follows: 
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1. A senior maintenance engineer with a PhD who has been involved with marine and 

offshore machinery maintenance and services for over 25 years. 

2. A ship chief engineer officer with a class 1 marine certificate of competency (COC) 

who has been involved with machinery maintenance and operations on-board ship 

for over 25 years. 

3. A senior port maintenance engineer with a master’s degree who has been involved 

with the port equipment’s safety and operational services for over 30 years. 

 

Insert Tables 3, 4 and 5 here 

4.3.1 Estimating weights of experts 

The weights of the experts are determined based on the available information in Section 

3.3.1. Three experts were employed in this study, and the weights of their judgements are 

considered to be equal (0.333). 

4.3.2 Estimating weights of criteria 

For this model, equal weight values are assigned to the five identified evaluation criteria, as 

shown in Table 6. These weight values will then be applied in the assessment process to 

establish the fuzzy performance ratings of the model’s evaluation alternatives. 

Insert Table 6 here 

4.3.3 Aggregation of experts’ opinions 

This stage of the analysis involves a series of aggregation calculations of criteria ratings 

with respect to alternatives. Since decision making on maintenance strategies involves 

complex networks of group decision making in a fuzzy environment, it is important to 

emphasise that three experts are employed for this strategic evaluation; for this study, their 

weights are considered to be equal. When conducting the Fuzzy-TOPSIS process as 

applied in this model, the knowledge and judgement of analysts involved are to be 

considered. The four decision alternatives and five evaluation criteria shown in Table 9 will 

be used to develop the fuzzy TOPSIS decision matrix. 

Table 7 shows the decision alternatives and the evaluation criteria and their corresponding 

nomenclature respectively, while Tables 8, 9, and 10 show the corresponding fuzzy 

numbers of the alternatives with respect to the criteria by the three experts. The figures 

obtained are based on the membership functions of the linguistic variables developed in 

Figure 3 and the scale for the measurement of the evaluation criteria, as shown in Table 1. 



21 
 

Aggregation calculations are conducted using Equations 5, 6, 7, 8, and 9 for the experts’ 

judgement on reliability with respect to run-to-failure maintenance, as seen in Table 11. 

Similar, calculations were conducted on the other attributes and their fuzzy estimates are 

presented in Tables 12a and 12b. 

Insert Tables 7, 8, 9, 10, 11, 12a and 12b here 

4.3.4 Defuzzification of the aggregated fuzzy results 

Based on the aggregation results presented in Tables 12a and 12b, the fuzzy numbers are 

converted into crisp values using Equation 10 and the results are presented in Table 13. 

Insert Table 13 here 

4.4 Selection Phase - Application of FTOPSIS Approach to Obtain Performance Rating 

of Decision Alternatives (Step four) 

In order to obtain the performance rating for the decision alternatives, the FTOPSIS 

algorithm is applied in this section, as follows: 

4.4.1 FTOPSIS decision matrix construction 

Based on crisp values obtained for the four decision-making alternatives (A1 – A4) and five 

evaluation criteria (C1 – C5) obtained in Table 13, a Fuzzy-TOPSIS decision matrix, shown 

in Tables 14 is constructed.  

Insert Table 14 here 

4.4.2 Fuzzy decision matrix normalisation 

Based on Equation 3, the fuzzy decision matrix presented in Table 14 is normalised. The 

results are presented in Table 15. As an example, the normalised reliability (C1) with respect 

run-to-failure maintenance (A1) is presented as follows: 

 
0.675

[(0.6752+0.752+0.9252+0.9252)]
1
2

 = 0.409 

 

Insert Table 15 here 

4.4.3 Construction of weighted normalisation fuzzy decision matrix 

The normalized fuzzy numbers obtained in Table 15 are multiplied by the important weight 

values of the evaluation criteria given in Table 6. For example, the weighted normalized 

fuzzy number for A1 of C1 is given as follows: 
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𝑣1,1 = 0.409 x 0.2 = 0.082 

Similarly, the weighted normalized fuzzy numbers for other alternatives are calculated and 

presented in Table 16. 

Insert Table 16 here 

4.4.4 Determination of the fuzzy positive ideal reference point (FPIRP) and fuzzy 

negative ideal reference point (FNIRP)   

Determination of the FPIRP can be made by taking the largest element of each benefit 

criterion and the smallest element of each cost criterion. Ultimately, FNIRP is the reverse 

of the FPIRP in relation to this representation, as presented in Table 17.  

Insert Table 17 here 

The distances of each maintenance strategy from FPIRP and FNIRP values with respect to 

each criterion are calculated using Equations 17 and 18. As an example, the distance of 

alternative A1 to 𝐴+ is calculated as follows: 

𝐷+ = [(0.112 − 0.082)2 + (0.029 − 0.041)2 + (0.168 − 0.048)2 + (0.065 − 0.065)2 +

(0.021 − 0.192)2]
1
2⁄ = 0.211  

 
𝐷− = [(0.082 − 0.082)2 + (0.172 − 0.041)2 + (0.014 − 0.048)2 + (0.119 − 0.065)2 +

(0.192 − 0.192)2]
1
2⁄ = 0.146  

Similarly, and by applying Equations 17 and 18, the distances of other decision alternatives 

to FPIRP and FNIRP were determined and the results are presented in Table 18. 

Insert Table 18 here 

4.4.5 Obtaining the closeness coefficient and ranking of alternatives   

Based on the results obtained in Section 4.4.4, the closeness coefficient of each alternative 

can be calculated using Equation 21. The calculation of the CC value for alternative A1 is 

described as follows: 

𝐷1
+ = 0.211, and 𝐷1

− = 0.146 

𝐶𝐶1 =
0.146

0.211+0.146
= 0.408 

Similarly, the CC values for alternatives A2 to A4 can be calculated and the results are 

presented in Table 19. 
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Insert Table 19 here 

It can be observed in Table 19 that each instance of the hybrid approach produces different 

values for each maintenance strategy that correspond to the strategic decisions of experts. 

Obviously, the result of the calculations revealed that A3 and A2 scored the highest CC 

values compared to the remaining alternatives or strategies. The detailed results of the 

fuzzy TOPSIS analysis are presented in Table 20.  

Insert Table 20 here 

4.4.6 Ranking the alternatives 

Based on the evaluation of closeness coefficient above, by comparing the values of the four 

alternatives, as shown in Table 20, the ranking order of the maintenance strategies is given 

as A3 > A2 > A4 > A1. Additionally, Figure 5 is obtained based on the analysis result 

presented in Table 20. The graph depicts the sensitivity of the analytical result as being 

non-linear. It is noteworthy that the procedure outlined in the proposed framework revealed 

that A3 and A2 seem reasonable and appropriate choices for investment in the ship crane 

under investigation, in order to improve the performance of the crane’s operations. These 

maintenance strategies have closeness coefficient values of 0.659 and 0.597 respectively. 

Insert Figure 5 here 

4.5 Perform Sensitivity Analysis (Final) 

In order to validate and test the robustness of this model, a sensitivity analysis is conducted. 

The analysis is necessary in order to test the suitability and sensitivity of the model for 

decision analysis of the maintenance strategies (as decision alternatives), and for the 

interpretation and communication of results based on a sensitivity study so that managerial 

insight can correctly provide guidance for investment in maintenance strategies. Based on 

the input data presented in Section 4.4.1 (Table 14), the crisp values of each attribute are 

slightly varied while the resulting change and the final ranking of the alternatives are 

observed. This process of analysis is useful in situations of high uncertainties concerned 

with many factors that need to be modelled when investing in machinery maintenance 

strategies. Apparently, due to the vagueness surrounding the strategic decision making 

process, it is usually very challenging to predict and analyse the delivery of the analytical 

result in a fuzzy environment.  

The analysis is conducted under five conditions, as tabulated in Table 21. The first step in 

the sensitivity analysis process involves an increment of the cost values (i.e. C2, C4 and 
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C5) of each decision alternative by 10% and decreasing the benefit values (i.e. C1 and C3) 

by the same 10%. The next step is to determine the distance of each alternative to FPIRP 

and FNIRP, then obtain the CC values and observe the results of the final ranking, as 

described in Sections 4.4.4 and 4.4.5. 

Insert Table 21 here 

Based on Table 14 in Section 4.4.1, the values for 10% increment on the cost and 10% 

decrement on the benefit criteria are shown in Table 22, and their normalised and weighted 

normalised values are shown in Tables 23 and 24, respectively. 

Insert Tables 22, 23 and 24 here 

From Table 24, the distances of each alternative to the FPIRP (i.e. 𝐷+) and FNIRP (i.e. 𝐷−), 

and their corresponding CC values are obtained. The results of the sensitivity analysis (i.e. 

when the input values of the criteria are changed by 10%) are presented in Table 25. 

Insert Table 25 here 

5 Discussion of Results 

In this study, sensitivity analysis is implemented to see the effect in the output data given a 

slight change in the input data. From the results of the sensitivity analysis (Table 25), it can 

be observed that the ranking order of the four decision alternatives maintained a 

consistency when the cost category of the criteria (C2, C4, C5) was increased by 10%, and 

the benefit category (C1, C3) decreased by the same 10%. The analysis reveals that almost 

all the changes in the criteria input data do not change the final ranking of the maintenance 

strategies. For this model to be validated, this pattern in the results is to be expected. It can 

therefore be deduced that the model is reasonable and capable of being applied to the 

analysis of machinery maintenance strategy decision-making alternatives.  

Based on the result obtained from this analysis, the marine machinery (crane) under 

investigation can be enhanced by implementing A3 (i.e. condition based maintenance) 

strategy. However, implementing A2 (i.e. preventive maintenance), especially during follow-

up analysis (when improving maintenance process), can promote continuous improvement 

and enhance the crane’s performance under high uncertainty. Experience has shown that 

investing in maintenance selection strategies seems to be an important strategy to mitigate 

cost issues under a fuzzy environment. Therefore, the result of the analysis would help 

improve the decision-making process, thus allowing for a flexible response to operational 

uncertainties through a systematic approach.  
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The analysis result reflecting on A3 (condition based maintenance) as the recommended 

strategy certainly shows that expert judgement was based on increase in machinery 

operational life/availability, increase in machinery reliability, increase in cost for parts and 

labour, and decrease in machinery downtime. Minimizing maintenance costs seems to be 

an effective way to build up efficient maintenance, especially when one is required to work 

within a limited budget. When investments in maintenance have to be made to reduce the 

overall costs (i.e., operations costs), it seems logical to consider the minimization of total 

cost of ownership or the life-cycle costs instead. However, Goossens (2015) ascertained 

that the ultimate goal of maintenance cannot be cost reduction only and must be maintaining 

functionality (at the lowest cost). Nevertheless, how costs can best be interpreted in relation 

to the selection process of the best maintenance strategy remains to be further explored. 

The proposed methodology has been somehow validated through a sensitivity analysis. 

The difficulty in validating engineering related analysis methods has been well recognised. 

A ‘validation square’ has been proposed, consisting of the phases of method consistency, 

accepting example problems, accepting usefulness and accepting usefulness beyond 

examples (Pederson et al., 2000). In this study, the first three phases have been verified 

through the development of the proposed model and the described case study in this paper. 

The last phase may only be verified by conducting more case studies. 

6 Conclusion 

This paper presented a collaborative modelling and strategic FMADM method that can be 

adopted for the selection of appropriate machinery maintenance strategies in a concise, 

logical, and transparent manner against multiple scenarios where the data available is 

subjective and imprecise. The strength of this strategic decision making approach is in the 

fact that both heterogeneous and homogeneous groups of experts can be utilised and their 

subjective opinions can be aggregated simply, with partial or incomplete information 

available.  

In the evaluation process, a fuzzy TOPSIS algorithm is implemented to rank the machinery 

maintenance strategies or alternatives in a way that is flexible and straightforward. To 

support a strategic decision on machinery maintenance strategy selection, fuzzy AHP 

(Anagnostopoulos et al., 2007) and fuzzy TOPSIS (Sodhi and Prabhakar, 2012) need to be 

utilised to handle multiple organisational objectives, complex decision making, and long 

term condition of machineries in an uncertain environment. The proposed approach can be 

applied to situations where both qualitative and quantitative data has to be integrated and 

synthesized for evaluation processes during complex and multiple decision making 

involving marine and offshore machinery operations. Since the result of the calculations is 
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sensitive to criteria and the number of experts engaged, these should be carefully chosen 

by maritime maintenance and safety analysts to avoid misrepresentation and information 

loss during the interpretation process. 

During this study, five factors – reliability, cost, safety, availability, and downtime – have 

converged to create a succinct and effective meaning. However, in practice, the 

interpretation and relations of these factors differ depending on which experts are involved. 

The research described in this paper can serve as a basis to further explore the roles of 

these factors for selection of an appropriate maintenance strategy. The relation between 

availability and reliability needs elaboration. Although clear definitions for both are 

presented in the literature, practitioners seem to have varying interpretations and views of 

what these two terms mean to their specific situation, and how they are related. To gain a 

better understanding of the interpretation differences and origin, and how these influence 

maintenance strategy selection, a structured experimental investigation needs to be 

considered. 

The role of safety within the maintenance strategy selection can also be misinterpreted 

since, according to Goossens (2015), by definition, absolute safety is impossible. As such, 

safety is considered to act as a pre-condition for maintenance strategy selection. 

Nevertheless, a balance between safety and availability or reliability can be desirable (or 

even possible). The exact role that safety currently has within machinery maintenance 

strategy selection, as well as the role it should have, is worth further investigation. The 

model developed in this study is by no means conclusive. It is subject to further modification, 

given the acquisition of new data or before its utilization by end-users in the industry. A 

sensitivity analysis was conducted to partially validate the developed model and establish 

its ability to respond to changes in input variables. 

The study conducted attempts to highlight a comprehensive analysis of the marine and 

offshore machinery planned maintenance strategy in relation to improvement of the 

machinery operations. The experience and knowledge proficiencies of domain experts are 

vital when the hierarchical framework of maintenance strategy selection is applied to real 

industrial case studies, as described in this work, and thus, careful selection of such experts 

is necessary in order to achieve reasonable outcomes. In other words, if domain experts 

who do not have the requisite knowledge or experience are selected and used for the 

analysis, the framework may produce poor outcomes, which may defeat the purpose of 

selecting an appropriate maintenance strategy and render the methodology ineffective. 

This study has provided a conceptual hierarchical model for selecting an appropriate 

maintenance strategy for efficient operation of offshore marine machinery under highly 
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uncertain environments. The following avenues to further enhance the implementation of 

the model that can be applied in a different context have been identified: 

 Application of this methodology to other machinery in complex and high reliability 

industries (e.g. nuclear, aviation, health care, etc.) could give rise to useful results 

that may further enrich the deficient literature of maintenance strategy selection for 

critical machinery. It can also give greater confidence and insight into the uses and 

limitations of this methodology. 

 Within this research, three experts were employed to conduct the assessment. 

However, it is recommended that the number of experts be increased for  

collaborative modelling of the system, from a range of different marine and offshore 

industries, to include  maintenance engineers, researchers, marine superintendents, 

and machinery operators. This will further enhance the collaborative design and 

effectiveness of the result obtained for use in its wider perspective. 

 Combination of diverse but powerful intelligent tools and algorithms from other fields 

and concepts will open promising new pathways for effective maintenance strategy 

selection for machinery operations under uncertainty. 
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Table 1: Fuzzy Linguistic Scale for Alternative Rating 

Linguistic Variables Corresponding Trapezoidal Fuzzy Numbers 

Very Low (0, 0, 0.1, 0.2) 

Low (0.1, 0.25, 0.25, 0.4) 

Medium (0.3, 0.5, 0.5, 0.7) 

High (0.6, 0.75, 0.75, 0.9) 

Very High (0.8, 0.9, 1, 1) 

Source: Hypothetical data [Chen and Hwang (1992)] 

Table 2: Criteria for Maintenance Strategy Selection 

Criteria Criteria Description Assessment Type Category 

C1 Reliability Linguistic Assessment  B 

C2 Cost Linguistic Assessment  C 

C3 Safety Linguistic Assessment  B 

C4 Availability Linguistic Assessment  C 

C5 Downtime Linguistic Assessment  C 
Source: Test case data 

Table 3: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 1 

 EXPERT 1 

RTFM PM CBM RCM 

Reliability H H VH VH 

Cost L VH M VL 

Safety L VH M VL 

Availability M VH VH VH 

Downtime H L VL VL 
Source: Test case data 

Table 4: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 2 

 EXPERT 2 

RTFM PM CBM RCM 

Reliability H H VH VH 

Cost VL H L VL 

Safety L VH M VL 

Availability M H VH VH 

Downtime H VL VL VL 
Source: Test case data 

 

 

 

 

 

 



Table 5: Linguistic Assessment of the Alternatives with Respect to Criteria by Expert 3 

 EXPERT 3 

RTFM PM CBM RCM 

Reliability M H VH VH 

Cost L H M L 

Safety L H M VL 

Availability M M VH H 

Downtime M VL VL L 
Source: Test case data 

Note: VL, L, M, H and VH stand for Very Low, Low, Medium, High, and Very High, respectively. 

Table 6: Weights of Criteria 

Criteria Assigned Weights 

Reliability 0.2 

Cost 0.2 

Safety 0.2 

Availability 0.2 

Downtime 0.2 

Source: Test case data 

Table 7: Decision Alternatives and Evaluation Criteria 

 Decision Alternatives  Evaluation Criteria 

A1 Run-to-Failure Maintenance C1 Reliability 

A2 Preventive Maintenance C2 Cost 

A3 Condition Based Maintenance C3 Safety 

A4 Reliability-Centred Maintenance C4 Availability 

  C5 Downtime 

Source: Test case data 

Table 8: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 1 

 Expert 1 

A1 A2 A3 A4 

C1 0.6, 0.75, 0.75, 0.9 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C2 0.1, 0.25, 0.25, 0.4 0.8, 0.9, 1, 1 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C3 0.1, 0.25, 0.25, 0.4 0.8, 0.9, 1, 1 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C4 0.3, 0.5, 0.5, 0.7 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C5 0.6, 0.75, 0.75, 0.9 0.1, 0.25, 0.25, 0.4 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 
Source: Test case data 

 

 

 



Table 9: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 2 

 Expert 2 

A1 A2 A3 A4 

C1 0.6, 0.75, 0.75, 0.9 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C2 0, 0, 0.1, 0.2 0.6, 0.75, 0.75, 0.9 0.1, 0.25, 0.25, 0.4 0, 0, 0.1, 0.2 

C3 0.1, 0.25, 0.25, 0.4 0.8, 0.9, 1, 1 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C4 0.3, 0.5, 0.5, 0.7 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C5 0.6, 0.75, 0.75, 0.9 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 
Source: Test case data 

Table 10: Fuzzy Numbers for Alternatives with Respect to Criteria by Expert 3 

 Expert 3 

A1 A2 A3 A4 

C1 0.3, 0.5, 0.5, 0.7 0.6, 0.75, 0.75, 0.9 0.8, 0.9, 1, 1 0.8, 0.9, 1, 1 

C2 0.1, 0.25, 0.25, 0.4 0.6, 0.75, 0.75, 0.9 0.3, 0.5, 0.5, 0.7 0.1, 0.25, 0.25, 0.4 

C3 0.1, 0.25, 0.25, 0.4 0.6, 0.75, 0.75, 0.9 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 

C4 0.3, 0.5, 0.5, 0.7 0.3, 0.5, 0.5, 0.7 0.8, 0.9, 1, 1 0.6, 0.75, 0.75, 0.9 

C5 0.3, 0.5, 0.5, 0.7 0, 0, 0.1, 0.2 0, 0, 0.1, 0.2 0.1, 0.25, 0.25, 0.4 
Source: Test case data 

Table 11: Aggregation Calculation for Reliability with Respect to RTFM 

Expert 1 H 0.6, 0.75, 0.75, 0.9 

Expert 2 H 0.6, 0.75, 0.75, 0.9 

Expert 3 M 0.3, 0.5, 0.5, 0.7 

S(Expert 1 & 2) = 1 - 
(0.6−0.6)+(0.75−0.75)+(0.75−0.75)+(0.9−0.9)

4
= 1 

S(Expert 1 & 3) = 1 - 
(0.6−0.3)+(0.75−0.5)+(0.75−0.5)+(0.9−0.7)

4
= 0.75 

S(Expert 2 & 3) = 1 - 
(0.6−0.3)+(0.75−0.5)+(0.75−0.5)+(0.9−0.7)

4
= 0.75 

AA(Expert 1) = 
1+0.75

2
= 0.875 AA(Expert 2) = 

1+0.75

2
= 0.875 AA(Expert 3) = 

0.75+0.75

2
=

0.75 

RA(Expert1) = 
0.875

0.875+0.875+0.75
=

0.35 

RA(Expert2) = 
0.875

0.875+0.875+0.75
=

0.35 

RA(Expert3) =  

0.75

0.875+0.875+0.75
= 0.3 

Expert aggregation Result  

�̃�𝐴𝐺 

0.35(0.6, 0.75, 0.75, 0.9) + 0.35(0.6, 0.75, 0.75, 0.9) + 0.3(0.3, 

0.5, 0.5, 0.7) = (0.51, 0.675, 0.675, 0.84) 

Source: Test case data 

Table 12a: Aggregation Results of Criteria Ratings with Respect to Alternatives 

  C1 C2 C3 

A1 0.51, 0.675, 0.675, 0.84 0.067, 0.167, 0.2, 0.333 0.1, 0.25, 0.25, 0.4 

A2 0.6, 0.75, 0.75, 0.9 0.662, 0.797, 0.828, 0.931 0.738, 0.853, 0.922, 0.969 

A3 0.8, 0.9, 1, 1 0.233, 0.417, 0.417, 0.6 0.3, 0.5, 0.5, 0.7 

A4 0.8, 0.9, 1, 1 0.035, 0.088, 0.153, 0.270 0, 0, 0.1, 0.2 
Source: Test case data 



Table 12b: Aggregation Results of Criteria Ratings with Respect to Alternatives 

  C4 C5 

A1 0.3, 0.5, 0.5, 0.7 0.51, 0.675, 0.675, 0.84 

A2 0.573, 0.722, 0.754, 0.871 0.031, 0.078, 0.147, 0.262 

A3 0.8, 0.9, 1, 1 0, 0, 0.1, 0.2 

A4 0.738, 0.853, 0.922, 0.969 0.035, 0.088, 0.153, 0.270 
Source: Test case data 

Table 13: Transformation of the Fuzzy Numbers into Crisp Values 

  C1 C2 C3 C4 C5 

A1 

(0.51+ 0.675 + 

0.675 + 0.84) / 

4 = 0.675 

(0.067 + 0.167 + 

0.2 + 0.333) / 4 = 

0.192 

(0.1 + 0.25 + 0.25 

+ 0.4) / 4 = 0.25 

(0.3 + 0.5 + 0.5 

+ 0.7) / 4 = 0.5 

(0.51+ 0.675 + 

0.675 + 0.84) / 

4 = 0.675 

A2 

(0.6 + 0.75 + 

0.75 + 0.9) / 4 = 

0.75 

(0.662 + 0.797 + 

0.828 + 0.931) / 4 

= 0.805 

(0.738 + 0.853 + 

0.922 + 0.969) / 4 

= 0.871 

(0.573 + 0.722 + 

0.754 + 0.871) / 

4 = 0.730 

(0.031 + 0.078 

+ 0.147 + 

0.262) / 4 = 

0.130 

A3 
(0.8 + 0.9 + 1 + 

1) / 4 = 0.925 

(0.233 + 0.417 + 

0.417 + 0.6) / 4 = 

0.417 

(0.3 + 0.5 + 0.5 + 

0.7) / 4 = 0.5 

(0.8 + 0.9 + 1 + 

1) / 4 = 0.925 

(0 + 0 + 0.1 + 

0.2) / 4 = 

0.075 

A4 
(0.8 + 0.9 + 1 + 

1) / 4 = 0.925 

(0.035 + 0.088 + 

0.153 + 0.270) / 4 

= 0.136 

(0 + 0 + 0.1 + 0.2) 

/ 4 = 0.075 

(0.738 + 0.853 + 

0.922 + 0.969) / 

4 = 0.871 

(0.035 + 0.088 

+ 0.153 + 

0.270) / 4 = 

0.136 

Source: Test case data 

Table 14: Fuzzy-TOPSIS Decision Matrix 

 C1 C2 C3 C4 C5 

A1 0.675 0.192 0.25 0.5 0.675 

A2 0.75 0.805 0.871 0.730 0.130 

A3 0.925 0.417 0.5 0.925 0.075 

A4 0.925 0.136 0.075 0.871 0.136 
Source: Test case data 

Table 15: Normalised Decision Matrix 

 C1 C2 C3 C4 C5 

A1 0.409 0.205 0.241 0.323 0.958 

A2 0.454 0.859 0.839 0.471 0.184 

A3 0.560 0.445 0.482 0.597 0.106 

A4 0.560 0.145 0.072 0.563 0.193 
Source: Test case data 

 

 

 



Table 16: Weighted Normalized Decision Matrix 

  C1 C2 C3 C4 C5 

A1 0.082 0.041 0.048 0.065 0.192 

A2 0.091 0.172 0.168 0.094 0.037 

A3 0.112 0.089 0.096 0.119 0.021 

A4 0.112 0.029 0.014 0.113 0.039 

Source: Test case data 

Table 17: Representation of FPIRP and FNIRP Values 

 Positive Ideal Solution Negative Ideal Solution 

Reliability (C1) 0.112 0.082 

Cost (C2) 0.029 0.172 

Safety (C3) 0.168 0.014 

Availability (C4) 0.065 0.119 

Downtime (C5) 0.021 0.192 
Source: Test case data 

Table 18: Distance of each Alternative to the FPIRP and FNIRP 

 A1 A2 A3 A4 

D+ 0.211 0.148 0.108 0.162 

D- 0.146 0.220 0.209 0.212 
Source: Test case data 

Table 19: CC Results and Ranking Order of the Maintenance Strategies 

 A1 A2 A3 A4 

CC 0.408 0.597 0.659 0.566 

Ranking 4 2 1 3 
Source: Test case data 

Table 20: Results of Fuzzy TOPSIS Analysis 

 Decision-Making Attributes 𝑫+ 𝑫− CC Values Ranking 

A1 Run-to-Failure Maintenance 0.211 0.146 0.408 4 

A2 Preventive Maintenance 0.148 0.220 0.597 2 

A3 Condition Based Maintenance 0.108 0.209 0.659 1 

A4 Reliability-Centred Maintenance 0.162 0.212 0.566 3 
Source: Test case data 

Table 21: Conditions for Changing Input Values by Percentages 

Condition Percentage 

1 Decrease C1 by 10% 

2 Increase C2 by 10% 

3 Decrease C3 by 10% 

4 Increase C4 by 10% 

5 Increase C5 by 10% 
Source: Test case data 

 



Table 22: Fuzzy-TOPSIS Decision Matrix when Criteria are changed by 10% 

  
10% 

Decrement 
10% 

Increment 
10% 

Decrement 
10% 

Increment 
10% 

Increment 

  C1 C2 C3 C4 C5 

A1 0.575 0.292 0.15 0.6 0.775 

A2 0.65 0.905 0.771 0.83 0.23 

A3 0.825 0.517 0.4 1.025 0.175 

A4 0.825 0.236 -0.025 0.971 0.236 

Source: Test case data 

Table 23: Normalised Decision Matrix when Criteria Values are changed 

  C1 C2 C3 C4 C5 

A1 0.395 0.264 0.17 0.344 0.901 

A2 0.447 0.817 0.874 0.476 0.267 

A3 0.567 0.467 0.454 0.588 0.203 

A4 0.567 0.213 -0.028 0.557 0.274 

Source: Test case data 

Table 24: Weighted Normalised Decision Matrix when Criteria Values are changed 

  C1 C2 C3 C4 C5 

A1 0.079 0.053 0.034 0.069 0.180 

A2 0.089 0.163 0.175 0.095 0.053 

A3 0.113 0.093 0.091 0.118 0.041 

A4 0.113 0.043 -0.006 0.111 0.055 

Source: Test case data 

Table 25: Sensitivity Analysis Results 

 Decision-Making Attributes 𝑫+ 𝑫− CC Values Ranking 

A1 Run-to-Failure Maintenance 0.212 0.131 0.383 4 

A2 Preventive Maintenance 0.143 0.214 0.599 2 

A3 Condition Based Maintenance 0.115 0.189 0.622 1 

A4 Reliability-Centred Maintenance 0.183 0.192 0.512 3 

Source: Test case data 

 



 

 

 

 

 

 

 

 

 

                   Figure 1: Membership Function of Trapezoidal Fuzzy Number 
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(1)   Identification of Decision-Making Alternatives for 

Crane Bearing/Gearbox Maintenance 

Run-to-Failure 
Maintenance 

Preventive 
Maintenance 
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Maintenance 

Reliability-Centred 
Maintenance 

(2)   Identification of Evaluation Criteria 

Reliability         Cost     Safety Availability Downtime 

(3)   Rating Phase - Determination of Importance Weights of 

Evaluation Criteria 

(4)   Selection Phase - Application of FTOPSIS Approach to 

obtain Performance Rating of Decision Alternatives 

(5)   Perform Sensitivity Analysis 

Figure 2: Hierarchical Model of Decision Making Analysis for Equipment 

Maintenance 
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Figure 4: Hierarchical Structure of Maintenance Strategy Selection 

Note: RTFM, PM, CBM, and RCM stand for Run-to-Failure Maintenance, Preventive 

Maintenance, Condition Based Maintenance, and Reliability Centred Maintenance, 

respectively. 
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Figure 3: Membership Degree for Linguistic Ratings  [ Chen and Hwang  ( 1992 )] 
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Figure 5: Ranking Order of the Maintenance Strategies 
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