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Abstract

In this paper we propose a new area-based convexity measure. We assume that convexity evaluation of
an arbitrary planar shape is related to the total influence of dents of the shape, and discover that those
attributes of the dents, such as the position, area, and depth with respect to the Geometric Center of Convex
Hull (GCCH) of the shape, determine the dent influence. We consider that the convex hull of the shape
consists of infinitely small patches, to each of which we assign a weight showing the patch influence. We can
simply integrate all the patch weights in any regions within the convex hull to calculate their total influence.
We define this operation as the Distance Weighted Area Integration, if the weight is associated with the
Euclidean distance from the patch to the GCCH. Our new measure is a distance weighted generalization
of the most commonly used convexity measure, making this conventional measure fully replaceable for the
first time. Experiments demonstrate advantages of the new convexity measure against the existing ones.

Keywords: Shape analysis, shape representation, convexity

1. Introduction

Shape is a common feature extensively used by human beings to perceive, study, recognize, describe,
and represent the visual world, while convexity is a holistic scalar widely adopted to describe and represent
geometric shapes. In practice, shape representation is hampered from time to time by shape position, size,
orientation as well as noise. To this end, a shape descriptor robust enough against translation, scaling,
rotation, and noise is desired. Traditionally, 2D shape representation algorithms can be classified into
space domain methods and scalar transform methods Loncaric (1998): The former map shapes into space
domains, such as graphs and images, and typical examples of the space domain methods involve chain code
and medial axis transform, etc.; the latter convert shapes into scalars or vectors in a numeric fashion, for
example Fourier descriptors and moments, etc. There exist some scalar transform methods that describe
and measure geometric shapes in a neat and holistic manner with only one scalar value. These methods,
which are also learning-free, when employed in applications such as shape retrieval and classification, are
computationally more efficient than learning-based methods as well as those requiring extra operations such
as pose registration, feature correspondence, or model fitting. The holistic scalars commonly used to describe
and measure geometric shapes involve compactness Bribiesca (2008); Zunic et al. (2010), rectangularity
Rosin (1999, 2003), ellipticity Proffitt (1982), rectilinearity Lian et al. (2010); Zunic and Rosin (2003),
concavity Lien and Amato (2006), convexity Lian et al. (2012); Rahtu et al. (2006), and so on. Among
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them convexity has been most widely studied and used in classification Rahtu et al. (2006); Zunic and Rosin
(2004); Rosin (2009), retrieval Lian et al. (2012); Li et al. (2017), non-photorealistic rendering Song et al.
(2013), figure/ground separation Pao et al. (1999), and shape decomposition Asafi et al. (2013); Ghosh et al.
(2013); Liu et al. (2010); Zhou et al. (2013); Lien and Amato (2007); Attene et al. (2008).

Current mainstream 2D convexity measures can be divided into three categories: Boundary-based Zunic
and Rosin (2004), probability-based Rahtu et al. (2006); Rosin and Zunic (2007), and area-based Rosin and
Mumford (2006) convexity measures. In general a planar shape S is considered as convex if and only if
the line segment between any two points in S belongs to S. This notion of convexity can be easily used to
derive some probability-based measures, and these probability-based measures may characterize either area-
based Rahtu et al. (2006) or boundary-based measures Rosin and Zunic (2007). However, the probability-
based measures may suffer from computational infeasibility or range shrinkage of the convexity value. The
boundary-based measures suitable for applications that need a strong response to slight shape changes are
sensitive to noise and insensitive to dent translation Rosin and Zunic (2007). The area-based measures are
robust against noise and can be used in classification of noise distorted shapes. Due to its computational
simplicity and robustness against noise, the most commonly used measure is an area-based measure Zunic
and Rosin (2004), which defines the convexity of a planar shape as a ratio of shape area to its convex hull
area. Nevertheless, this area-based measure is insensitive to dent translation and rotation. Although another
area-based convexity measure has been proposed afterwards Rosin and Mumford (2006), it cannot eradicate
the above problems of the most commonly used measure. Note that previous research has shown that a
well-defined convexity measure should be sensitive to shapes with dents under affine transformations such
as translation and rotation Zunic and Rosin (2004); Rosin and Zunic (2007). Therefore, being sensitive to
dent translation and rotation is a key criterion to evaluation of the convexity measures in this paper.

In this paper we bridge the above technical gaps by presenting a new area-based convexity measure,
which is built on the most commonly used one but excels it by resolving its extant problems for planar
shapes. Moreover, the new measure robust against shape translation, scaling, rotation as well as noise may
offer a holistic and efficient way for applications where shape representation is required. Our new measure is
based on the following assumptions and easy to understand. We assume that dents of an arbitrary nonconvex
shape are formed by region collapsing from its convex hull, and observe that those attributes of dents, such
as the position, area, and depth with respect to the geometric center of convex hull of the shape, influence
the computation of convexity. Therefore, the philosophy behind our convexity measure is that the convexity
of an arbitrary planar shape is computed by subtracting the total influence of all the dents from that of
the convex hull of the shape, and then by dividing the subtracted result by the whole influence of convex
hull of the shape for normalization. Moreover, the influence of dents is evaluated in association with the
aforementioned dent attributes. Generally, the less the influence of their dents, the more convex the shape.
For a completely convex shape the influence of its dents is apparently null and its convexity thus reaches the
maximum. This paper is dedicated to an implementation of the above analysis based on a notion named
the Distance Weighted Area Integration (DWAI) for influence evaluation. The major contributions of this
paper are summarized as follows:

1. For the first time have we ameliorated the most commonly used convexity measure by turning it into
a problem of influence evaluation through the DWAI, making it fully replaceable.

2. We have mathematically showed the connections of our new measure to the most commonly used by
deducing some new properties.

3. Experiments have showed that the new measure has advantages over the mainstream competitors in
many aspects.

Before we review some typical convexity measures that can sufficiently represent the current state of the
art, it must be clarified that there are four properties that every convexity measure must hold:

1. the convexity measure is a number between (0,1];

2. the convexity measure of a given shape equals 1 if and only if this shape is convex;

3. there are shapes whose convexity measure is arbitrary close to 0;

4. the convexity measure of a shape is invariant under similarity transformations of this shape.
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2. Related work

We start this section by looking at a simple definition of boundary-based convexity measurement below.

Definition 1. For a given planar shape S, its convexity is measured as

C1 (S) =
Per2 (CH (S))

Per2 (S)
, (1)

where CH(S) indicates the convex hull of S, Per2(CH(S)) and Per2(S) are the Euclidean perimeters of
CH(S) and S, respectively.

C1 is insensitive to dent rotation within the convex hull of the shape. To address this issue Zunic et al.
presented an improved boundary-based convexity measure with the idea of boundary projection Zunic and
Rosin (2004):

Definition 2. For a given planar shape S, its convexity is measured as

C2 (S) = min
ϕ∈[0,2π]

Per2(R(S, ϕ))

Per1(S, ϕ)
, (2)

where Per1(S) is perimeter of S calculated in Manhattan distance. R(S, ϕ) denotes the minimal bounding
rectangle with its edges parallel to the coordinate axes, where S is rotated around the origin by an angle ϕ.

As reviewed previously, the boundary-based methods are sensitive to noise and insensitive to dent trans-
lation. Some convexity measures make use of probabilistic interpretation. For example, C3 is defined as the
probability that for any randomly chosen points X and Y from S all points on the line segment [X,Y ] also
belong to S, under the assumption that X and Y are chosen uniformly.

Definition 3. For a given planar shape S, its convexity is measured as C3(S) = P ([X,Y ] ∈ S)

In practice, C3 is difficult to compute, even if S is a polygon Zunic and Rosin (2004). To this problem,
Rahtu et al. Rahtu et al. (2006) improved this measure by using point probability rather than line segment
probability. Their measure Cα is defined as the probability of a point belonging to a line segment [X,Y ]:

Definition 4. For a given planar shape S, its convexity is measured as Cα(S) = P (αX + (1 − α)Y ∈ S),
where α determines the location of the point on the line segment with 0 < α < 1.

Since evaluating Cα by sampling is impractical, Rahtu et al. have proposed to calculate Cα with the
Fourier transform. This approximation with the Fourier transform makes the convexity value calculated by
Cα unreasonably higher than expected, and such examples of Cα can be found in Fig.12. Moreover, Cα is
insensitive of slim protrusions, as shown in Fig.11.

Due to computational simplicity and robustness against noise, the most commonly used measure defines
the convexity of a planar shape as a ratio of shape area to its convex hull area Zunic and Rosin (2004).

Definition 5. For a given planar shape S, its convexity based on the area can be measured as

C4(S) =
Area(S)

Area(CH(S))
. (3)

C4 only considers the area of S and CH(S), and its ratio cannot precisely represent the real convexity.
For example, in Fig.1 shape S2 is perceptually more concave than S1. However, the convexities of S1 and
S2 calculated by C4 are 0.9620 and 0.9714.

Another area-based convexity measure is defined as the ratio of the area of MCS(S) to that of the
original shape S, where MCS(S) denotes a convex subset of S with the maximum area:

Definition 6. For a given planar shape S, its convexity can be measured as

C5(S) =
Area(MCS(S))

Area(S)
. (4)

Since MCS(S) is difficult to calculate, C5 has been rarely used in practical applications.

3



Figure 1: An unreasonable example of C4.

Figure 2: (a) and (b) are two nonconvex shapes. Shape (a)
can be thought of as a combination of a rectangle with a
protrusion part while Shape (b) as a rectangle with a dent.
We can regard both of the shapes as collapsed from their
convex hulls, with the black arrows implying the collapsing
directions.

Figure 3: The depth values of the dents in Shape (a) and (b) are equal and the areas of the dents in Shape (a) and (c) are
equal.

3. A new convexity measure

We start the new convexity measurement by defining two concepts repeatedly mentioned in the paper.
GCCH: For a given planar shape S, its geometric center is the arithmetic mean position of all the points

in S. Similarly, the Geometric Center of its Convex Hull CH(S) of S is the arithmetic mean position of all
the points in CH(S). As the term, Geometric Center of Convex Hull of the shape, is frequently referred in
this paper, we instead adopt its abbreviation GCCH for the sake of simplicity.

DWAI: For a given planar shape S, all the points in S can be weighted in some way. The integration
of all the weighted points is defined as the Weighted Area Integration (WAI). In this paper a way called
the Distance Weighted Area Integration (DWAI) is used to weight all the points in the planar shape with
respect to their Euclidean distance to the GCCH.

3.1. Analysis

The new convexity measure is based on an intuitive observation that any planar nonconvex shape S,
no matter with a protrusion or dent, as shown in Fig.2, can be regarded as collapsed from its convex hull.
Thus, we assume that the convexity computation of an arbitrary shape is related to the total influence of
dents collapsed from the convex hull of the shape, and consider that those attributes of dents, such as the
position, area, and depth with respect to the GCCH of the shape, directly decide the influence of dents.

Some intuitional examples are given in Fig.3. In Fig.3, it can be observed that (b) is lower in convexity
than (a). This distinction cannot be sensed by C2. The convexities of Shape (a) and (b) computed by C2 are
both 0.714, while the convexities of Shape (a) and (b) computed by C1 are 0.739 and 0.762, also a negative
example. It is also observed that (a) is lower in convexity than (c). However, the convexities of (a) and
(c) computed by C4 hold the same value 0.920, and thus fail to reflect the difference. Similarly, although
the dent, as it moves in Fig.7 (a), remains identical in area and depth, it influences the shape variably. C5

and Cα can sense this distinction while C1, C2, and C4 not. As suggested above, all the position, area, and
depth of dents with respect to the GCCH of the shape will influence the convexity measurement.
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3.2. Definition of the new convexity measure

We assume that the convex hull of a shape consists of infinitely small patches and every patch has an
influence on and contributes to the calculation of convexity. Note that in this case the infinitely small patch
is the equivalent of a point or a discrete pixel in a digital image. We assign each patch a weight associated
with the Euclidean distance from the patch to the GCCH to measure the patch influence. The closer a patch
to the GCCH, the more it contributes to the convexity. For example, there are many dents on the boundary
of S1 in Fig.1, but these dents impose little influence on the shape. Therefore, the total influence of dents
I(D) can be measured by the WAI as

∫∫
D
W (r)dσ, where D symbolizes the region that dents cover, and

W (r) is the integrand indicating the weight of each infinitely small patch, dσ. The influence of shape S,
I(S), is the result of subtracting I(D) from that of its convex hull, I(CH(S)), which can be written in terms
of WAI as

∫∫
CH(S)

W (r)dσ −
∫∫
D
W (r)dσ, and can be rewritten as

∫∫
S
W (r)dσ for simplicity. In order to

confine the result to (0, 1], we divide I(S) by I(CH(S)) for normalization.

Definition 7. For a given planar shape S, its convexity measure Cβ is defined as

Cβ(S) =
I(S)

I(CH(S))
=

∫∫
S
W (r)dσ∫∫

CH(S)
W (r)dσ

, (5)

where
W (r) = 1− β · r

rmax
, (6)

with 0 6 β 6 1. r represents the Euclidean distance between a patch and the GCCH; and rmax is the
maximum one of all rs.

Eq.(5) and (6) explains our notion of the DWAI. When r = rmax, we have a minimal weight, 1 − β.
When r = 0, we have a maximum weight, 1. Therefore, the range of W (r) is [1 − β, 1]. By adjusting β
we can control the influence of different attributes. For example, if we want to emphasize the influence of
the dent position, we can increase β to lower the weights of distant patches. If we want to emphasize the
influence of the dent area, we can decrease the value of β to degrade the weight influence of each patch.
For example, when we decrease β to 0, every patch will have an identical weight, and the new measure will
degenerate into the traditional area-based convexity measure C4, the measurement of which only depends
on the dent area. Generally, the form of W (r) is versatile enough to be explored. We make it open for
further study here.

The following theorem summarizes the four desirable properties that every convexity measure must hold.

Theorem 1. For a given planar shape S,

1. 0 < Cβ(S) 6 1;

2. Cβ(S) = 1 if and only if S is convex;

3. infS∈
∏(Cβ(S)) = 0, where

∏
denotes the set of all planar shapes;

4. Cβ(S) is invariant under similarity transformations.

Proof. For a given planar shape S, assume that it has n dents denoted as D1, D2 · · ·Dn. The corresponding
influences of dents D1, D2, · · · , Dn are

∫∫
D1
W (r)dσ,

∫∫
D2
W (r)dσ, · · · ,

∫∫
Dn

W (r)dσ, respectively, and can

be simplified as I(D1), I(D2), · · · , I(Dn). Thus, Cβ(S) can be rewritten as

Cβ(S) =
I(S)

I(S) +
n∑
j=1

I(Dj)
. (7)

It is easy to show that 0 < Cβ(S) < 1. If there is no dent, that is
n∑
j=1

I(Dj) = 0, then Cβ(S) = 1.This means

that S coincides with its convex hull. To this end, S is convex. For a toroidal shape in Fig.4, if the value
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Figure 4: Shape S is a torus and its inner radius and outer radius are γ1 and γ2, respectively.

(a) (b) (c)

Figure 5: The dents in (a) are relatively distant from the GCCH of the shape. According to Properties 2 and 3, increasing β
will enlarge the difference between µ(D) and µ(CH(S)) and increase the value of Cβ .

of γ2 − γ1 tends to be infinitesimally small, and the area of S also approaches 0, then I(S) will approach 0,
that is lim

γ2−γ1→0
Cβ(S) = 0.

For translation and rotation of the shape, because the relevant distance between each patch and the
GCCH remains the same, and the size of the shape and dents remains unchanged, the convexity remains
the same. When the shape is scaled, the distance between each patch and the GCCH changes. Taking the
GCCH as the origin to establish the coordinate system, we can compute the convexity before the scaling as

Cβ(S) =

∫∫
S

(1− β · r/rmax)dxdy∫∫
CH(S)

(1− β · r/rmax)dxdy
. (8)

Assume that S is scaled by a coefficient k, the convexity of the new shape in the new coordinate system
is written as

Cβ(S′) =

∫∫
S′ (1− β · r′/r′max)dx′dy′∫∫

CH(S)′
(1− β · r′/r′max)dx′dy′

=

∫∫
S

(1− β · kr/krmax)k2dxdy∫∫
CH(S)

(1− β · kr/krmax)k2dxdy

= Cβ(S),

(9)

where the prime symbol indicates those corresponding parameters after scaling.

3.3. Properties of the new convexity measure

Now we discover some new properties of Cβ by showing its mathematical connections to C4.

Property 1. For a given nonconvex planar shape S, letting µ(D) and µ(CH(S)) be the average weights of
its dents and convex hull, respectively, then

Cβ(S)− C4(S)

 > 0, ifµ(D) < µ(CH(S))
= 0, ifµ(D) = µ(CH(S))
< 0, ifµ(D) > µ(CH(S)).

(10)
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(a) (b) (c)

Figure 6: The dent in (a) embraces the GCCH of the shape. According to Properties 2 and 3, increasing β will enlarge the
difference between µ(D) and µ(CH(S)) and reduce the value of Cβ .

Proof.

Cβ(S)− C4(S) =
I(S)

I(CH(S))
− Area(S)

Area(CH(S))

=
Area(D)

Area(CH(S))
− I(D)

I(CH(S))

=
Area(D)

Area(CH(S))
· (1− µ(D)

µ(CH(S))
).

(11)

From Property 1 we can see that when dents are distant from the GCCH of S, µ(D) will be less than
µ(CH(S)), and the result of the new measure will be larger than C4(S). If dents are close to the GCCH,
µ(D) will be larger than µ(CH(S)), and the result of the new measure will be less than C4(S). When µ(D)
is equal to µ(CH(S)), Cβ(S) will be equal to C4(S).

Property 2. For a given nonconvex planar shape S, increasing β will enlarge the absolute difference between
Cβ(S) and C4(S).

Proof.

|Cβ(S)− C4(S)| = | Area(D)

Area(CH(S))
− I(D)

I(CH(S))
|

= |
Area(CH(S))

∫∫
D

βr
rmax

dσ −Area(D)
∫∫
CH(S)

βr
rmax

dσ

Area2(CH(S))−Area(CH(S))
∫∫
CH(S)

βr
rmax

dσ
|.

(12)

From Eq.(12) we can see that when β = 0, Cβ(S) and C4(S) will be equal. When β > 0, the numerator
and denominator of the equation can be divided by β, and then we can easily find that increasing β will
enlarge the absolute difference between Cβ(S) and C4(S):

|Cβ(S)− C4(S)|

= |
Area(CH(S))

∫∫
D

r
rmax

dσ −Area(D)
∫∫
CH(S)

r
rmax

dσ

1
βArea

2(CH(S))−Area(CH(S))
∫∫
CH(S)

r
rmax

dσ
|.

(13)

Property 2 shows that if dents are distant from the GCCH of S, that is µ(D) < µ(CH(S)), increasing
β will enlarge the value of Cβ(S). If dents are close to the GCCH, that is µ(D) > µ(CH(S)), increasing β
will reduce the value of Cβ(S). When β decreases to 0, Cβ will degenerate into C4. The above cases are
exemplified in Fig.5 and Fig.6. In practical applications, if we want to depress the influence of boundary
noise, we can choose a large β. If there exist irregular non-noise boundaries, a small β may be adopted for
better performance.
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Figure 7: (a)When t changes from 0.1 to 0.8, Cβ(S(t)) monotonically decreases at first and then monotonically increases, as
shown in the right graph of Cβ(S(t)) for t ∈ [0.1, 0.8]. (b)The gradual increase of t seems to hollow out S(t) and this explains
the rationality of the descending of Cβ(S(t)), as shown in the right graph of Cβ(S(t)) for t ∈ [0.0, 0.8].

3.4. Implementation

For the implementation of Cβ , we use a discrete version of Definition 7, where the integral symbols can
be replaced by summations and discrete pixels in the image domain can be thought of as the infinitely small
patches. Algorithm 1 shows the pseudocode of the new measure.

Algorithm 1 DWAI(S, β)

Input: A shape, S, and a weighting parameter, β;
Output: Convexity value, Cβ .
1: compute the convex hull of S, CH(S);
2: Nch ← the number of pixels in CH(S);
3: Ns ← the number of pixels in S;
4: compute the position of the GCCH of CH(S);
5: compute the Euclidean distances, r[Nch], between pixels in CH(S) and the GCCH, and the longest one

is marked as rmax;
6: compute the weight of every pixel in CH(S), W [Nch];
7: for i = 1 to Nch do
8: W [i] = 1− β · r[i]/rmax;
9: end for

10: compute the influence of S, I(S);
11: for pixel, i ∈ S do
12: I(S)+ = W [i];
13: end for
14: compute the influence of CH(S), I(CH(S));
15: for pixel, i ∈ CH(S) do
16: I(CH(S))+ = W [i];
17: end for
18: return I(S)/I(CH(S)).

4. Comparisons

This section is dedicated to comparisons of the convexity measures mentioned in this paper on some
representative shapes with their dents under affine transformations.

4.1. Comparisons with the area-based measures

Convexity values computed by C4 for shapes with an identical ratio of shape to convex hull areas but
different dent depths are identical, as shown in Fig.3 (a) and (c). Instead the convexities of Shape (a), (b),
and (c) in Fig.3 calculated by Cβ are 0.9181, 0.8365, and 0.9398, respectively, which are in line with our
human perception. It is worth noting that without specification, the parameter β is set to 1 by default in
this paper. C5 is based on the MCS that considers the area difference between the shape and its maximum
convex subset. Generally speaking, it is difficult to compute the MCS of an arbitrary shape and to justify its
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Figure 8: (a) and (b) have the same area and MCS, leading
to the same C5 values, but (b) is apparently more concave
than (a).

Figure 9: Convexities of the three shapes calculated by C1

are identical, 0.7250; the convexity values calculated by C2

are also the same, 0.5312. Therefore, they cannot sense the
shrinking trend of the shapes. Underneath are their convexity
values calculated by the new measure Cβ .

Figure 10: When increasing θ, where θ ∈ [π
6
, 5π

6
], Cβ(S(θ))

monotonically decreases at first and then monotonically in-
creases. The diameter of the circular dent is 0.1. The length
of the string linking the dent and the middle point of one
shape boundary is 0.35, and the string width is ignorable.

Figure 11: An unreasonable estimation by the probability-
based measure Cα, where lim

h→0
Cα(S(t, h)) = 1 for any fixed

t.

convexity measurement results. Here a human crafted negative example is given in Fig.8, where the results
calculated by C5 are identical and both equal to 0.9260, while the convexities calculated by Cβ are 0.9973
and 0.6981. In Fig.7(a), the convexity becomes smaller when the dent approaches the GCCH. When the
dent arrives at the GCCH, it imposes the maximum influence, and Cβ(S(t)) reaches the minimum value.
C5(S(t)) has a similar performance. However, the values calculated by C4(S(t)) will not change.

4.2. Comparisons with other convexity measures

In Fig.7(a), Cα(S(t)) has a similar performance to ours, while the values calculated by C1(S(t)) and
C2(S(t)) will not change as t varies. Note that without specification, α in Cα is set to 0.5 by default, a value
originally adopted in Rahtu et al. (2006).

As for Fig.7(b), the widening of t gives a sense that S(t) is being hollowed out. This can be verified by
Cβ(S(t)). However, neither C1 nor C2 senses this change and the convexity values calculated by them are
invariable. Moreover, Fig.9 illustrates that C1 and C2 cannot distinguish the shapes in the figure, and this
is, however, against the human perception that the convexity should decrease as the central square of the
shape shrinks. This common sense can be verified by Cβ instead.

Fig.10 illustrates that when θ increases, the convexity calculated by Cβ will first decrease and then
increase. When θ = π

2 , Cβ will reach the minimum. Cα has a similar performance, while C2 reaches the
minimum when θ = π

4 or θ = 3π
4 . However, the convexity values calculated by C1 and C4 are invariable.

The probability-based measure Cα is insensitive to slim protrusions. For a given shape S(t, h) in Fig.11,
lim
h→0

Cα(S(t, h)) = 1 for any fixed t, which is unreasonable anyway. This means, when the area of the

protrusion approaches 0, Cα(S(t, h)) will be 1, regardless of the position and length of the protrusion. For
a fixed t = 0.5, the results calculated by C2, C4, and Cβ for Fig.11 are 0.8, 0.8, and 0.8720, respectively.
Moreover, convexity values computed by Cα usually appear larger than expected, and this can be seen in
the next section.
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Figure 12: Shapes used for the quantitative evaluation.

Figure 13: The shapes of various aquatics.

5. Experimental evaluations

In this section, we experimentally assess the performance of the convexity measures introduced in this
paper, involving Cβ , C2, C4, and Cα, and identify characteristics of each measure. Note that C5 is excluded
due to its computational difficulty while C1 and C3 are omitted in the experiments since they can be
experimentally replaced by C2 Zunic and Rosin (2004) and Cα Rahtu et al. (2006), respectively.

5.1. Quantitative comparison

We first perform a quantitative evaluation of different measures on a group of shapes shown in Fig.12. It
can be seen that the convexity values computed by C4 and Cβ are compliant with Property 1. Except Shape
4 and Shape 12, whose µ(D) > µ(CH(S)), all the nonconvex shapes have Cβ larger than C4, because their
dents are relatively distant from their GCCHs, resulting in µ(D) < µ(CH(S)). Observing the convexity
values of Shape 2 and Shape 4 calculated by C2 and Cα, we find that they both consider that Shape 2 is
more convex than Shape 4. However, C4 denies this fact. Although our measure stems from C4, it can
resolve this problem with the introduced DWAI. It can also be seen that C2 is too sensitive to downplay
the impact of those tiny and slight dents as well as the edge noise. For instance, Shape 7 and Shape 8
are the two most concave shapes measured by C2 because the convexity calculated by C2 is determined by
projecting the perimeter of the shape onto R(S, ϕ). For Shape 3 and Shape 11, all the convexity measures
consider that Shape 11 is much more concave than Shape 3 except C2. It can be seen that all the convexity
values computed by Cα are greater than 0.5, and there are seven shapes whose convexity values are even
greater than 0.9, which, however, cannot reflect the reality.

5.2. Robustness evaluation

In the second experiment, we test the robustness of the convexity measures in shape sorting with an
increasing noise density. We use 27 aquatic shapes illustrated in Fig.13 for this experiment. First, we
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Figure 14: (a) Convex hull of the original aquatic shape in green. (b) Convex hull of the noisy shape in red. (c) Spearman
rankings of using variant measures for the aquatic shapes with an increasing noise density. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

Figure 15: Samples of the 10 gesture categories.

compute the convexity values of the original aquatic shapes and sort them in order of convexity. Then we
use salt and pepper noise with an increasing density to degrade the shapes. Fig.14(b) shows such a noisy
aquatic shape with the noise density being 0.88. Next we compute the convexity values once more. After
that we sort the noisy shapes in order of convexity and measure how this order is correlated with that of
the original shapes. We use the convexity ranking data rather than the convexity values for estimating
the correlation. In order to calculate the correlation between the two groups of shapes, we make use of
the Spearman rank Lehmann and D’Abrera (2006) to estimate the correlation of two groups of data. As
shown in Fig.14(c), both C4 and Cβ perform far better than Cα, demonstrating the robustness of the area-
based measures against noise, and Cβ beats C4 as the noise density increases further. As the noise density
increases, some new dents and protrusions will be generated, which may change the convex hull of the shape,
as shown in Fig.14(a) and (b). A slight change of the convex hull may impact on the convex hull based
measures, such as C4. However, the new measure can reduce the impact made by the convex hull change.
Note that C2 is excluded in this experiment because when the noise density increases to a certain level, the
shape may be separated apart, and the codes of C2 can no longer tolerate such a shape with more than one
component.

5.3. Shape classification and retrieval

In the third experiment we apply the convexity measures to shape classification and retrieval with two
datasets. The first dataset used is extracted from the Thomas Moeslund’s Gesture Recognition Database,
consisting of 10 categories with 820 gesture images. Some classified samples are shown in Fig.15. We first
convert the input images into binary ones and then classify the binary images using different convexity
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Figure 16: Samples of the 10 leaf categories.

Table 1: Results of correct classification percentages using different convexity measures.

Convexity measures Cβ=0.0 Cβ=0.1 Cβ=0.2 Cβ=0.3 Cβ=0.4 Cβ=0.5

Hand gesture 69.4% 71.8% 76.5% 72.9% 74.1% 72.9%
Leaf 67.7% 67.7% 70.8% 70.2% 70.8% 69.6%

Convexity measures Cβ=0.6 Cβ=0.7 Cβ=0.8 Cβ=0.9 Cβ=1.0 Cα=0.1

Hand gesture 68.2% 72.9% 78.8% 75.3% 65.9% 61.2%
Leaf 67.1% 72.0% 67.1% 65.8% 63.3% 57.1%

Convexity measures Cα=0.2 Cα=0.3 Cα=0.4 Cα=0.5 C4 C2

Hand gesture 64.7% 71.8% 71.8% 71.8% 69.4% 62.4%
Leaf 49.7% 51.5% 52.8% 52.8% 67.7% 57.1%

measures. Classification is performed using the k-Nearest Neighbors classifier. In order to achieve a compre-
hensive assessment, the values of both α and β are allowed to vary at regular intervals. Although 0 < α < 1,
we need only to test a half range of Cα due to its symmetry. As can be seen in Table 1, Cβ=0.8 achieves
the best classification result. We also apply the convexity measures to shape retrieval. To help improve
the retrieval precision, we enjoy the privilege that Cβ can form different convexity measures by construct-
ing a new shape descriptor CS (Convexity Statistics) with the mean, variance, skewness, and kurtosis of 5
different values of Cβ with β = 0.6, 0.7, 0.8, 0.9, 1 Zimmer et al. (2013). Impartially we also calculate the
CS of five Cαs with α = 0.1, 0.2, 0.3, 0.4, 0.5. The retrieval performance is evaluated by four quantitative
measures (NN, 1-Tier, 2-Tier, DCG) Shilane et al. (2004). The results are shown in Table 2. The second
dataset tested in this experiment is extracted from the FLAVIA database Wu et al. (2007), consisting of 10
categories with 545 leaf images. Some classified samples are shown in Fig.16. The same classification and
retrieval tests are carried out, the results of which are respectively shown in Table 1 and Table 2.

5.4. Medical application

The importance of shape analysis in screening mammography has been frequently addressed in the
literature. In the fourth experiment, we apply the convexity measures to classify 54 mammographic mass
shapes selected from two well established mammogram databases, the MIAS and Screen Test databases
Rangayya et al. (1997) as shown in Fig.17, and four classified examples of which are displayed in Fig.18. In
this classification experiment, the nearest neighbor classifier is performed using the Euclidean distance. In
order to produce statistically correct results the leave-one-out test is employed. We assess the measures by
classifying them as malignant/benign and circumscribed/spiculated. The results are shown in Table 3. By
varying the value of β, Cβ=0 can achieve the same best classification rates as C4. Moreover, from Table 3 we
can also find a trend that the smaller the value of β, the higher the classification rate. This demonstrates
what we have discovered previously, that is, for mass shapes with irregular boundaries a small β achieves
better performance.
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Table 2: Retrieval performance of the convexity measures and convexity statistics evaluated on the hand gesture and leaf
datasets.

Hand gesture Leaf
NN 1-Tier 2-Tier DCG NN 1-Tier 2-Tier DCG

CS for Cβ 85.1% 69.9% 86.2% 90.4% 77.6% 65.4% 82.5% 88.0%
CS for Cα 81.6% 46.7% 64.2% 82.7% 51.7% 30.6% 53.3% 70.8%

C4 61.3% 58.2% 79.0% 83.1% 58.2% 54.3% 77.6% 81.1%
C2 48.5% 45.8% 70.5% 78.1% 53.6% 47.1% 71.4% 76.4%

Figure 17: The 54 mammographic mass shapes

6. Limitation

Although the new measure can resolve most problems of C4, it also shares a problem with C4, as the
new measure is derived from C4. In Fig.11, when t→∞, the values calculated by Cβ and C4 both approach
0, which are unreasonable. As t→∞, the dominant part of S(t, h) is the protrusion, which is convex. The
results of C1, C2, C3, C5, and Cα are 1, which are relatively more reasonable.

7. Conclusions

For the first time have we developed a new area-based convexity measure to improve C4, making the
most commonly used convexity measure fully replaceable. By turning the convexity measurement into a
problem of influence evaluation through the DWAI, the new measure resolves the major problems of C4

and, as an area-based measure, outperforms the mainstream competitors in many aspects. The examples
and experiments in the paper have also demonstrated the discovery that the attributes of dents, such as the
position, area, and depth with respect to the GCCH of the shape, dominate the convexity measurement.
Although we believe this idea is more reasonable than the existing hypotheses in convexity measurement, a
study or proof from cognitive or psychological point of view is still welcome in the future.

Moreover, similar to Cα, Cβ enables the area-based measure to construct a variety of convexity measures
by varying the value of β which, however, offers a great advantage over C4 in practical applications. Our
measure also leaves a large degree of freedom for further exploration. For example, this paper only considers
the DWAI, a derivative of WAI, but we believe the form of the WAI would be versatile enough to be explored
in the future.
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Figure 18: Four classified examples of the mammographic masses: Benign (Shape (a) and (c)), Malignant (Shape (b) and (d)),
Circumscribed (Shape (a) and (b)), Spiculated (Shape (c) and (d)). The masses are extracted from the mammograms in the
first row and rescaled for the sake of visibility.

Table 3: Results of correct classification percentages using different convexity measures for mammographic masses.

Convexity measures Cβ=0.0 Cβ=0.1 Cβ=0.2 Cβ=0.3 Cβ=0.4 Cβ=0.5

Mal./ben. 68.52% 66.67% 66.67% 62.96% 62.96% 62.96%
Circ./spic. 90.74% 90.74% 90.74% 90.74% 87.04% 85.19%

Convexity measures Cβ=0.6 Cβ=0.7 Cβ=0.8 Cβ=0.9 Cβ=1.0 Cα=0.1

Mal./ben. 62.96% 64.81% 62.96% 62.96% 62.96% 64.81%
Circ./spic. 85.19% 85.19% 85.19% 87.04% 85.19% 83.33%

Convexity measures Cα=0.2 Cα=0.3 Cα=0.4 Cα=0.5 C4 C2

Mal./ben. 57.41% 62.96% 66.67% 66.67% 68.52% 61.11%
Circ./spic. 90.74% 88.89% 85.19% 87.04% 90.74% 81.48%

In this paper the newly proposed convexity measure has been experimentally demonstrated in shape
classification and retrieval. In fact, there are more potential research areas which may benefit from the
new convexity measure. For example, a routine of shape decomposition is to divide a given polygon into
approximate convex components according to shape concavity Lien and Amato (2006, 2007). Nevertheless,
concavity neither has a well-accepted definition, nor is independent of polygon size Lien and Amato (2006).
Therefore, our convexity measure provides a possible solution to these problems.

We only consider 2D convexity measures for planar shapes. It is, however, straightforward to extend this
idea of influence evaluation to 3D shape analysis. We believe this will benefit the relevant research fields
further.
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