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Artificial Neural Networks in Freight Rate Forecasting 

 

Abstract 

Reliable freight rate forecasts are essential to stimulate ocean transportation and ensure stakeholder 

benefits in a highly volatile shipping market. However, compared to traditional time series 

approaches, there are few studies using artificial intelligence techniques (e.g. artificial neural 

networks - ANNs) to forecast shipping freight rates, and fewer still incorporating forward freight 

agreement (FFA) information for accurate freight forecasts. The aim of this paper is to examine the 

ability of FFAs to improve forecasting accuracy. We use two different dynamic ANN models, 

NARNET and NARXNET, and we compare their performance for one, two, three and six months 

ahead. The accuracy of the forecasting models is evaluated with the use of Mean Squared Error 

(MSE), based on actual secondary data including historical Baltic Panamax Index (BPI) data 

(available online), and primary data on Baltic Forward Assessment (BFA) collected from the Baltic 

Exchange. The experimental results show that, in general, NARXNET outperforms NARNET in all 

forecast horizons, revealing the importance of the information contained in FFAs in improving 

forecasting accuracy. Our findings provide better forecasts and insights into the future movements of 

freight markets and help rationalise chartering decisions..  

Keywords: Freight rate forecasting, ANN, FFA, maritime risk, maritime transport 

 

1. INTRODUCTION 

Maritime transport is the cornerstone of globalisation and the main contributor of international 

transport networks that enable international trade and underpin supply chains (UNCTAD, 2016). 

According to UNCTAD data (UNCTAD, 2016), seaborne trade volumes, for the first time, surpassed 

10 billion tons in 2015. Nevertheless, the increase in shipping capacity was only 2.1%, a slower pace 

than its historical average. In 2015, world seaborne trade volumes accounted for 80% of world 

merchandise trade (UNCTAD, 2016). Moreover, the cost of ocean freight represents, on average, 6% 

of either the import value or the shelf price of consumer goods, which shows that shipping provides 

low transport costs to consumers (Nomikos and Doctor, 2013).  



For the prosperity of shipping investors, of utmost importance is the level of freight rates and their 

possible future movements. The capability of forecasting freight rates is key for shipping investors, 

comprising shipowners -who undoubtedly need good forecasts to successfully plan their business-, 

bankers lending money, rating agencies involved in risk assessments, shipyards, vendors of marine 

equipment, ports developing new facilities and other participants (Stopford, 2009). Freight rate 

forecasting is the most demanded type of forecasting in the shipping industry, because it provides the 

best insight into future trends and movements of the whole industry (Stopford, 2009). However, such 

forecasting is of a high research challenge, for important factors influencing forecasting accuracy are 

usually not predictable. For instance, future freight rates are determined by the number of ships 

ordered, a behavioural variable, which is very difficult to predict, especially at the extremes of 

shipping cycles (Stopford, 2009). In addition, features of the market such as seasonality, cyclicality, 

high volatility and capital intensiveness, further complicate the forecasting task (Zhang et al., 2014). 

Nevertheless, Li and Parsons (1997) acknowledge the importance and necessity of searching for new 

forecasting techniques, of higher accuracy and reliability.  

The aim of this paper is to use artificial neural networks (ANNs) to establish whether forward freight 

agreements (FFA) can enhance the forecasting accuracy of future freight rates. Two ANN models 

with and without the involvement of FFA data are constructed for comparative purposes. The first 

ANN model only uses historical BPI data1, while the second employs FFA prices2 as an exogenous 

variable in a NARXNET (Non-linear Autoregressive Neural Network with External input) model. 

The performance of the models, in terms of predicting future freight rates of one, two, three and six 

months ahead is compared, to evaluate their forecasting accuracy and assess the impact of FFA 

information on freight forecasting.  

To achieve the aim, Section 2 presents the relevant literature, including different methods for 

forecasting freight rates, as well as background information on Baltic Indices and primary functions 

of FFAs. Section 3 outlines the methodology, detailing the employed ANN models and their 

parameters. Section 4 presents the sources of primary data and the descriptive statistics of the data 

                                                           
1 Baltic assessment for the BDI is not available, and the Baltic Panamax Index (BPI), representing 25% of BDI, is used 

here. Is it a barometer just because of the volumes transported? BDI indicator of economic activity??? For whom? Boing 

and Airbus? General Motors and Volkswagen? Should I know what is a Baltic assessment of BDI? Paper already looks 

like a rejection. 

2 FFA data is collected from the Baltic Exchange. 



used. Section 5 presents the results of our analysis and discusses the relevant research implications. 

Finally, Section 6 concludes the findings of this research. 

 

2. LITERATURE REVIEW 

Forecasting the behaviour of non-linear processes, such as the movement of freight rates, necessitates 

correct and effective forecasting methods. The relevant papers in the maritime forecasting literature 

show the rising profile of the freight rate forecasting research, including Veenstra & Franses, 1997; 

Bachelor et al., 2007; Duru et al., 2012; Randers & Goeluke, 2007; Zhang et al., 2014; Munim & 

Schramm, 2017; Gavriilidis et al., 2018. .  

In general, forecasting models using time-series can be divided into two groups, i.e. traditional 

methods and artificial intelligence methods (Yu et al., 2017). Conventional linear methods, such as 

linear regression, generalised autoregressive conditional heteroscedasticity (GARCH), univariate and 

multivariate statistical methods, and autoregressive integrated moving average (ARIMA), have been 

used in oil prices predictions and freight rate forecasting (Yu et al., 2017). To deal with the non-linear 

nature of the time-series, non-linear statistical models are also employed, including the regime 

switching models. Self-exciting threshold auto regression (SETAR), autoregressive fractionally 

integrated moving average (ARFIMA), and functional coefficient regressive (FCAR) models. On the 

other hand, artificial intelligence (AI) techniques, such as ANNs, genetic algorithms (GA) and fuzzy 

time series (FTS), with their strong self-learning potential, have been recognised as important time-

series forecasting methods.  Despite the advantages of AI techniques, however, they are more used 

as a supplementary tool to traditional forecasting methods, rather than as a standalone method to 

actually replace them (Montgomery et al., 2015); this is well reflected in the studies of freight rate 

forecasting, and/or freight market analysis, employing conventional methods alone, or a hybrid of AI 

and conventional methods together (Besster et al, 2008; Zhang et al., 2014; Kasimati and Veraros, 

2017).  

2.1 CONVENTIONAL METHODS FOR FREIGHT MARKET ANALYSIS AND 

FORECASTING 

Freight market volatility is in principle the result of developments in the global economy, volume of 

sea-borne trade and available ship tonnage (Chen et al., 2012). Political events like the closures of 

the Suez Canal, the Korean and Gulf wars, or government policies, have also often caused marked 



fluctuations in different shipping segments. However, an important finding is that freight rate 

volatility in the handy-size segment is more contained, compared to the other segments of the dry 

bulk market, mainly due to the fact that these ships can be employed in more varied trades and routes 

than the larger ships, and they are thus less affected by adverse events. Kavussanos (1996) suggests 

that, if one’s objective is purely risk reduction, shipping investors invest in smaller ships. However, 

rational economic behaviour should be analysed by considering the investor’s behavioural 

framework, where both risks and returns influence their decision. Bigger ships usually bring higher 

profits, when there is high demand for transport services. Therefore, it would be more useful to offer 

shipping investors forecasts of market movements, expected trade flows, or reveal to them the 

relationships between the different freight market segments, and their variables, all of which can help 

make the right decisions, rather than simply suggesting investments in the least volatile shipping 

sector(s).  

In this regard, Veenstra and Haralambides (2001) use multivariate autoregressive time series models 

to forecast sea-borne trade flows, based on a supply-demand equilibrium concept. Tsioumas and 

Papadimitriou (2016) employ cointegration analysis, Granger causality tests and impulse response 

analysis to investigate the link between dry bulk markets and the prices of major bulk commodities. 

In a similar study, Tsioumas and Papadimitriou (2015) investigate the lead-lag relationship between 

Chinese steel production and dry bulk freight rates, in four vessel segments. Kavussanos and Alizadeh 

(2001) investigate seasonality patterns in freight rates, determined by the commodities transported by 

dry bulk carriers. Papalias et al. (2017) test the cyclical properties of the BDI and find a strong cyclical 

pattern, represented by a simple trigonometric regression.  

Veenstra and Franses (1997) use multivariate time series (a number of ocean bulk freight rate series) 

to model shipping freight rate movements. Chen, et al. (2012) reveal that there is no long-run 

relationship between spot freight rates and either trading routes, or their investigated ship sizes (i.e. 

Capesize, Panamax and handy-size). In their study, a vector autoregressive model with exogenous 

variables (VARX), achieves the best forecasting performance in one-period ahead. Tsioumas et al. 

(2017) employ VARX to improve the forecasting accuracy of BDI. Duru and Yoshida (2009) explore 

the efficiency of judgmental forecasting methods in the dry bulk freight market. Their results suggest 

that expert-based and Delphi-based studies significantly out-perform statistical methods, given that 

judgmental methods can better capture marketplace behaviour and psychology.  



Prompted by the fast development of the freight derivatives markets, Kavussanos and Nomikos 

(2003) investigate the relationship between futures and spot freight rates, with a particular focus on 

the lead-lag relationship between future returns and underlying spot returns. Kavussanos and Visvikis 

(2004) examine the market interactions between spot and forward freight markets, by examining how 

one market reflects new information relative to the other, and how well both markets are linked. 

Furthermore Kavussanos et al., (2004) find that FFA prices at one and two months prior to maturity 

are un-biased predictors of spot freight rates in all of the examined routes, while three-month FFA 

prices are not un-biased for all routes. Later, Batchelor et al., (2007) reveal the performance of time-

series models in terms of forecasting spot and forward rates in main shipping freight routes. 

According to Visvikis (2002), if the FFA market is speculatively efficient, then FFA prices would 

incorporate all the available information regarding future spot rates, and provide a good basis for 

forecasting future spot rates.  Therefore, FFAs help in predicting spot rates (Bessler et al., 2008; 

Zhang, et al., 2014; Kasimati and Veraros, 2017). 

Examining and analysing information transmission across different shipping markets is an important 

tool for market participants attempting to predict shipping freight rates. Li et al. (2014) investigate 

the spillovers between spot and derivative prices (tanker FFAs) by employing multivariate 

generalised autoregressive heteroscedasticity (MGARCH) models. Gong and Lu (2016) examine the 

volatility spillovers in the Capesize FFA market, while Kavussanos, et al., (2010) investigate if 

spillover effects exist between freight and commodity derivatives prices, as well as their volatilities 

in the Panamax segment. 

2.2 ARTIFICIAL INTELLIGENCE METHODS FOR FORECASTING FREIGHT RATES 

Li and Parsons (1997) investigate the performance of ANNs in short- to long-term forecasts of 

monthly tanker freight rates. Lyridis et al. (2004) examine the benefits of using ANNs to predict spot 

freight rates of very large crude oil carriers (VLCC). They establish that ANNs, with the correct 

architecture and training, can be a useful tool for decision-makers in volatile markets. For longer-

term forecasts (e.g. 3, 6, 9, 12 months), ANNs significantly outperform traditional time-series models. 

Santos, et al. (2014) utilise ANNs to forecast period charter rates of VLCC. They employ two 

different ANNs to benchmark the performance of an ARIMA model. Duru et al. (2010) use a long 

term fuzzy inference system to forecast the freight market. The results suggest that ANN modelling 

outperforms the ARIMA model. Uyar et al., (2016) introduce a genetic algorithm-based, to train 

recurrent fuzzy neural network (GA-based RFNN) for long term forecasting of the BDI. Through an 



empirical study, the genetic-based NN has shown more accurate BDI forecasting results than the other 

NN approaches. Duru (2010) apply a fuzzy integrated logical forecasting model (FILF) and extended 

(E-FILF), in short-term forecasting of the BDI. Empirical studies are also conducted to prove that the 

proposed method can deliver a reliable short-term BDI forecasting results.  Bao et al. (2016) use the 

support vector machine (SVM), combined with Correlation-based Feature selection (CFS), also for 

forecasting the BDI. The result shows that the SVM model has good performance in terms of both 

freight market trend and freight rate accuracy. Leonov and Nikolov (2012) propose a new hybrid 

model of wavelets and ANNs, for forecasting the Baltic Panamax route 2A, and the Baltic Panamax 

route 3A. The result suggests that when the model is applied in modelling the implied volatility of 

derivative contracts, it is useful for spot price prediction. Zeng et al. (2016) apply a novel technique, 

incorporating empirical mode decomposition (EMD) and ANN, also in forecasting the BDI. Lyridis 

et al. (2013) suggest that the use of ANN in forecasting the progression of freight derivatives may 

become a valuable tool for making successful investments. By applying the model, investors are 

informed which position to take in the derivatives market. 

FFA information and ANNs have been studied separately in the current freight forecasting literature. 

The use of FFAs in ANNs for improving freight forecasting accuracy has so far been rather scanty 

(e.g. Lyridis et al., 2013), revealing a research gap to be fulfilled.  Furthermore, the studies carried 

out in the relevant areas have not yet utilised daily FFA prices to compare their corresponding daily 

spot freight rate realisations in  various periods (e.g. one, two, three and six months ahead). Therefore, 

the question as to how the FFA information can be better used to forecast freight rates remains 

unclear. 

 

3. METHODOLOGY 

3.1 INTRODUCTION 

FFAs have two primary functions, i.e. risk management through hedging, and price discovery by 

reflecting the expectations of market participants regarding future freight rates. It has also been 

ascertained that FFAs are unbiased predictors of future spot freight rates in one- and two-months prior 

to maturity. However, direct comparison of FFAs with the actual realisation of future freight rates 

has shown that the forecasting potential of  FFAs is limited, particularly for long term forecasts. To 



investigate, therefore, the impact of FFAs on the accuracy of long-term forecasting, we incorporate 

here FFA information (as a variable) into dynamic ANNs.      

The objective of this paper is to forecast BPI movements, using historical time-series data and ANNs. 

ANNs present a layered structure consisting of one input, one output and one or more hidden layers, 

situated between the input and output layers (Li and Parsons, 1997). Each layer consists of neurons, 

which are the main formational elements of the ANNs. Neurons are interconnected by signal paths 

(with weights), with each neuron calculating its output through its activation function (transfer 

function), which can be linear or non-linear (usually sigmoidal). A neuron’s input is a transformed 

linear combination of the outputs of the neurons in the layer under it (Montgomery et al., 2015).  

Various recent studies have demonstrated the classification and predictive power of ANNs (e.g. 

Oancea and Ciucu, 2013).  ANNs present a data-driven and self-adaptive method, which can learn 

from examples, and apprehend subtle functional relationships, especially when these relationships 

are unspecified. Moreover, ANNs are suitable in cases where there is a large number of relevant 

datasets, but the solution to the problem is difficult to specify (Zhang et al., 1998). ANNs can 

generalise, and thus draw correctly the inferences of the unseen part of the data, even when the sample 

data contains noisy information. ANNs are thus universal functional approximators, and can 

approximate any continuous function to the desired level of accuracy. A neural network has been 

shown to be a flexible technique, containing many parameters, and having the advantage of fitting 

well any historical model. Conventional forecasting models, instead, have restrictions in determining 

the underlying function, because of the convolution of the involved real system. In this regard, ANNs’ 

universal function approximation capability is a valuable alternative in addressing such restrictions 

(Zhang et al., 1998). In order to analyse the forecasting performance of FFAs, two different models 

of dynamic NNs (Hagen et al., 2014) are employed and compared3 in Section 3.2. In this paper, the 

Neural Network Toolbox Version 17a, in MATLAB’s numerical computing environment and 

programming language, is used to facilitate the calculation of future freight rates. Output and input in 

ANN models refer to outcomes obtained from the models and input data for training the models, 

respectively.  

 

 

                                                           
3 The detailed information on static and dynamic ANN is also provided in Appendix A.  



3.2 NARNET AND NARXNET MODELS 

NARNET stands for the non-linear autoregressive dynamic network, and it is suitable for forecasting 

financial instruments, without the use of companion time series. NARNET can be trained to forecast 

a time series using past values and it is therefore employed here to predict BPI, given the availability 

of this index’s past values. NARNET is a recurrent dynamic network with feedback arrangements. 

Output is fed back to the input of the feedforward network. Consequently, the feedback of the true 

output is used, instead of the estimated output, which makes the feedforward architecture more 

accurate (Patil et al., 2013). The classic architecture of a feedforward network is presented in Figure 

2.  

 

 
Figure 2. A feed forward NN 
Source: Patil et al. (2013) 

 

The NARNET can be written as in Eq (2), where the future values of the time series 𝑦(𝑡) are predicted 

from its past values 𝑦(𝑡 − 𝑖) (𝑖 = 1, 2, … 𝑑) (in this case, BPI data). The output of the NAR network 

is fed back to the input of the network, through delays. 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑑))                   (2) 

 

The second model is the non-linear autoregressive with external (exogenous) input (NARXNET) and 

the exogenous input in this case is represented by the  Baltic Forward Assessment (BFA) prices on 

the Panamax routes. NARXNET has been widely used in various applications, due to its potential to 

represent a variety of non-linear dynamic behaviour (Wang et. al, 2015). This is a kind of 

autoregressive model, commonly used in time series modelling, having a powerful potential for 



describing complex dynamic processes (Wang et. al, 2015). A NARXNET model is applied by 

employing a feedforward neural network to approximate a function. The NARXNET, like the 

NARNET, is a recurrent dynamic network, with feedback connections enclosing several layers 

(Hagan, et al., 2014). Its architecture is shown in Figure 3.  

 
Figure 3 NARXNET Architecture 
Source: Hagan, et al., 2014 

 

The future values of the time series 𝑦(𝑡) are predicted from its past values (i.e. BPI data), and the 

past values of the second time-series 𝑢(𝑡)  (i.e. BFA Panamax).   

The equation defining the NARXNET model is: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(𝑦 − 𝑛𝑢))  (3) 

where the next value of the output is regressed on previous values of the output and previous values 

of the exogenous variable (Hagan, et al., 2014). 

There are two possible configurations of the NARXNET model. In the first, the estimated output is 

fed back into the input of the feedforward network, which is a part of the conventional architecture 

of the NARXNET model. However, when the true output is available during the NN training, it can 

be used directly, instead of feeding back the estimated output. This creates a series-parallel structure. 

This means that the input to the network will be more accurate, and a purely feedforward architecture 

will be used (Hagan, et al., 2014). The conventional NARXNET model is a two-layer feedforward 

neural network, with tan-sigmoid transfer function in the hidden layer, and a linear transfer function 

in the output layer. In this paper, BPI data is available online and thus a standard series-parallel 

multilayer neural network is used to train the NARXNET model. The series-parallel form is also 

known as an open-loop form. 



 

3.3 NN ARCHITECTURE – IDENTIFICATION, TRAINING, VALIDATION AND TEST SETS 

Determining the right neural network structure, for a certain problem, is of utmost importance in any 

neural network application. The identification of a network structure, for prediction purposes, 

involves the following steps: 1) the selection of the right number of neurons, in the input and hidden 

layers; 2) The determination of the length of the tapped-delay lines (TDL); 3) Selection of network 

training algorithm; 4) Network validation and test.  

 

In this process, the data used for creating NN models are divided into three sets: training, validation 

and test. From the 825 time steps used for one-month ahead predictions, 577 steps were randomly 

selected for training, 124 for validation and 124 for testing. The validation error is recorded during 

the training process, and it usually decreases during the initial phase of the training; however, it starts 

to increase when the network begins to over-fit the data.  The test phase is used to check whether the 

trained network can produce desired outputs, over a set of data that it has not seen before.  

  

 

3.4 LEVENBERG-MARQUARDT BACKPROPAGATION ALGORITHM 

It is important to select the right training algorithm for a newly designed neural network.  In dynamic 

NNs, training is based on optimisation algorithms. A Levenberg-Marquardt Back-propagation 

algorithm (LMBPA) (Sapna, 2012) is chosen to train the NN in this paper, as it is the best performer 

in solving function approximation problems. For networks that contain up to a few hundred weights, 

it provides the fastest convergence, when accurate training is required (NN Toolbox, 2017). The 

LMBPA is a standard method for solving non-linear least squares problems, which arise when fitting 

a parameterised function to a set of measured data points. The algorithm reduces the sum of the 

squares of the errors between the function and the measured data points (Gavin, 2017). The LMBPA 

incorporates the steepest descent and Gauss-Newton methods together. Thus, when the present output 

is far from the right one, the algorithm acts as a steepest descent method, ‘slow, but guaranteed to 

converge’.  The choice of direction is where the function decreases most rapidly. The search starts 

with an optional point and then slide(s) down the gradient until the solution is close enough. When 

the present solution is close to the right one, it becomes a Gauss-Newton method (Lourakis, 2005). 



The Gauss-Newton method is used to solve non-linear least square problems, where the objective is 

to model a set of N data points (𝑎1, … , 𝑎𝑛), by a non-linear function.  

{(𝑥𝑖, 𝑦𝑖), (𝑖 = 1, … , 𝑁} 

𝑦 = 𝑓 (𝑥, 𝑎1, … , 𝑎𝑛)                (5) 

There are M model parameters 𝑎 =  [𝑎1, … , 𝑎𝑀] so that the sum of squared errors is minimised 

𝜀(𝑎) = ∑ 𝑟𝑖2𝑁
𝑖=1 =  ∑ [𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎)]2 = ∑ [𝑦𝑖 − 𝑓𝑖(𝑎)]2𝑁

𝑖=1
𝑁
𝑖=1       (6) 

𝑓𝑖(𝑎) = 𝑓(𝑥𝑖, 𝑎) and 𝑟𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖, 𝑎) = 𝑦𝑖 − 𝑓𝑖(𝑎) is the residual error. 

𝜀(𝑎) = ∑ 𝑟𝑖2𝑛
𝑖=1 =𝑟𝑇𝑟 = ‖𝑦 − 𝑓(𝑎)‖2 

The optimal parameter, a, that minimises 𝜀(𝑎), has to satisfy the equation in which the gradient vector 

is equal to zero. 

𝜕

𝜕𝑎𝑗
𝜀(𝑎) =

𝜕

𝜕𝑎𝑗
∑ [𝑦𝑖 − 𝑓𝑖(𝑎)]2 = −2𝑁

𝑖=1 ∑ [𝑦𝑖 − 𝑓𝑖(𝑎)]
𝜕𝑓𝑖(𝑎)

𝜕𝑎𝑗

𝑁
𝑖=1 = −2 ∑ [𝑦𝑖 − 𝑓𝑖(𝑎)]𝐽𝑖𝑗𝑁

𝑖=1   (7) 

or in a vector form, it can be written as in Eq (8): 

𝑔(𝜀(𝑎)) =
𝑑𝜀(𝑎)

𝑑𝑎
=

𝑑

𝑑𝑎
‖𝑦 − 𝑓(𝑎)‖2 = −2𝐽𝑇(𝑦 − 𝑓(𝑎)) = 0   (8) 

where J is the Jacobian matrix with its component 𝐽𝑖,𝑗 =
𝜕𝑓𝑖(𝑎)

𝜕𝑎𝑗
  (i=1, ….., N, j=1, …, M) 

The Levenberg-Marquardt algorithm utilises the approximation to the Hessian matrix 𝐻 = 𝐽𝑇𝐽 

(second order differentiation of the performance function), without having to compute it, in Eq (9) 

(Kisi and Uncuoglu, 2005). 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒   (9) 

where J is the Jacobian matrix, which contains the first order differences of the network errors and e 

is a vector of network errors. 

When 𝜇 = 0, the network uses a Gauss-Newton method, using the approximate Hessian matrix. 

When 𝜇 is large, it relies on a gradient descent method (Kisi and Uncuoglu, 2005). When the error is 

near a minimum, Gauss-Newton’s method performs better. 𝜇 is decreased after each successful step, 

which means that the performance function will be reduced at each iteration of the algorithm. 



Prediction accuracy is measured in terms of MSE in Eq (10), over the training, validation and test 

sets.  

𝑀𝑆𝐸 =
1

𝑚 
∑ (𝑋𝑡 − 𝑋𝑝𝑡)2𝑚

𝑡=1    (10) 

where 𝑋𝑡 and 𝑋𝑝𝑡 are the real and predicted values at time t respectively.  The resulting NARNET 

and NARXNET structures with a flowchart of the LMBPA are shown in Figures 4 and 5 respectively. 

 

 

Figure 4. NARNET structure. 



 

Figure 5. NARXNET structure 

3.5 MULTISTEP PREDICTIONS WITH NARNET AND NARXNET 

In this research, one-, two-, three- and six-month ahead predictions are performed. The employed 

ANNs (NARNET and NARXNET) are utilised to make multi-step predictions, by transforming the 

networks from open-loop to closed-loop modes. Dynamic networks are with feedback, and 

transformation between the two modes is possible. Network training is performed with the selected 

time-series data, in open-loop mode and then transformed into the closed-loop mode, to continue the 

simulation for the desired predictions in the future.  

Figures 6 and 7 represent the NARNET architecture, for one step ahead and multi-step ahead 

predictions respectively. 

 
Figure 6. NARNET for one-step ahead prediction 



Source: MATLAB17a 

 

 
Figure 7. NARNET closed-loop mode for multistep ahead prediction 
Source: MATLAB17a 

 

In the NARXNET model, the network is simulated in open-loop (series-parallel) mode, as long as 

there is known output. It is then transformed into closed loop (parallel) mode, to perform multi-step 

predictions, while providing only external input data (the exogenous variable). Therefore, all except 

the number of time steps, which have to be predicted, are provided to simulate the network in series-

parallel mode. Then, only the time steps of the exogenous variable are used to simulate the network, 

in closed-loop form, and do the multi-step ahead predictions. Figures 8 and 9 represent the 

NARXNET architecture for one step and multi-step ahead predictions respectively. 

 
Figure 8 NARXNET model for one-step ahead predictions 
Source: MATLAB17a 

 

 
Figure 9. NARXNET model in closed-loop mode for multistep predictions 
Source: MATLAB17a 

 

 

4. PRIMARY DATA AND DESCRIPTIVE DATA ANALYSIS 

In order to analyse how and to what extent FFAs can improve forecasting performance, we use 

historical time series data on BPI and FFA prices. While BPI data is available online (free access), 



FFA data has been provided by the Baltic Exchange and Lloyd’s List, in the form of daily FFA prices. 

The Baltic Exchange has provided data for all Panamax routes, for the period January 2013 to June 

2016: P1A(P1E) Transpacific round voyage; P2A(P2E) Continent trip Far East; P3A(P3E) 

Transpacific round voyage; and P4TC Panamax Timechater average of the four routes of Skaw-

Gibraltar transatlantic round voyage, Skaw-Gibraltar trip to Taiwan-Japan, Japan–South Korea transpacific 

round voyage, and Japan-South Korea trip to Skaw Passero. The following settlements have also been 

provided by the Baltic Exchange: PCURMON; +1MON; +2MON; +3MON; P+2Q.    

The Baltic Exchange data is used here, since it reflects the information provided by the panellists, 

and it is consistent with what BPI represents. The settlement periods provided by the Baltic Exchange 

match our needs, where one- to six-months ahead forecasts are carried out. The Panamax Index has 

been used because a) BFA for the BDI is not traded; b) the BFA Panamax (4 TC) is one of the most 

traded FFAs. BPI is the weighted average of the 4 time-charter Panamax routes (BPI 1A_03, BPI 

2A_03, BPI 3A_03 and BPI 4A_03) and thus the corresponding BFA Panamax is the BFA P4TC, 

which is used in this paper. The BPI is available online for the period January 2009 to March 2017 

(BPI, 2017). 

The summary statistics of BPI, BFA Panamax + 1MON, BFA Panamax + 2MON, BFA Panamax + 

3MON and BFA Panamax + 6MON (2Q) are presented in Table 1. 

Table 1 Primary Data Descriptive Statistics 

 BPI* BFA** 

4TC_P+1MON 

BFA** 

4TC_P+2MON 

BFA** 

4TC_P+3MON 

BFA** 

4TC_P+2Q 

Standard 

Deviation 
962 356 350 331 319 

Sample Variance 925409 126568 122362 109879 101640 

Kurtosis 0.90 0.30 -0.15 -0.16 -0.35 

Skewness 1.28 0.82 0.71 0.69 0.87 

Jarque-Bera 

teststatistic 

615.94 102.80 76.00 71.88 116.49 

p-value 0.00000 0.00000 0.00000 0.00000 0.00000 

Range 4340 1787 1625 1417 1249 

Min 282 321 403 484 555 

Max 4622 2108 2028 1900 1804 



Count 1996 885 885 885 885 

* BPI data were from Jan 2009 to March 2017 

** BFA data were from Jan 2013 to June 2016 

*** BPI data were used in the NARNET model while BFA, together with BPI, were used in NARXNET to test the 

increased accuracy of the addition of BFA. Forecasting accuracy is measured by MSE using the data (i.e. forecasted 

data and settlement data) in the same periods.   

 

It is interesting to observe that values of both standard deviation and sample variance decrease 

gradually from BFA 4TC_P+1MON to BFA 4TC_P+2Q. This implies that BPI volatility is difficult 

to predict, since BFA 4TC_P+1MON to BFA 4TC_P+2Q reflect market participants’ expectations 

from one to six months ahead. Skewness is significantly different from zero, and the distribution of 

all five datasets is right-skewed or positively-skewed. BPI skewness is greater than one, which means 

that the distribution is far from symmetrical. The values of the kurtosis are negative for BFA 

4TC_P+2MON to BFA 4TC_P+2Q, implying a flatter distribution than the normal distribution for 

these datasets. For BPI and BFA 4TC_P+1MON, however, the kurtosis is positive, which means that 

the distribution of these two datasets is more peaked than the normal distribution. Higher kurtosis 

also means that more results of variance are derived from  infrequent extreme deviations, as opposed 

to frequent, modestly-sized deviations. The Jarque-Bera test statistic and its p-value, calculated in 

Excel using CHISQ.DIST.RT (Jarque-Bera value, 2), where 2 is the degree of freedom, reconfirms 

that the data is not normally distributed for any of the time-series. These complexities necessitate the 

use of a non-linear tool, like ANNs, for forecasting future freight rates. 

 

5. RESULTS 

 

5.1 NARNET’S AND NARXNET’S PERFORMANCE 

Forecasting accuracy has been assessed by calculating the MSE. The predicted values for the BPI are 

directly compared with the post-sample data. Before recording the post-sample (multistep) forecasts, 

the models have been retrained, until reaching the best performance. The results of both models reflect 

the multi-step performances, reached with 10, 20, 30, 40 and 50 neurons in the hidden layer (Table 

4).  

Table 4 Results (out-of-sample MSE) 



 10 

NEURONS 

20 

NEURONS 

30 

NEURONS 

40 

NEURONS 

50 

NEURONS 

NARNET (1) 6574.474 1624.879 381.7666 189.0927 218.417 

NARNET (2) 22761.89 9243.433 4886.957 8349.553  

NARNET (3) 26579.71 6082.726 5595.668 15736.24  

NARNET (6) 144109.4 85022.54 80005.15 95008.92  

NARXNET (1) 813.6734 239.8962 86.743 1430.5  

NARXNET (2) 10824 7142.9 2800 2099.7 4209.9 

NARXNET (3) 15438 3684.6 3188.6 8411.8  

NARXNET (6) 129450 58753 13404 24095  

 

There is an obvious tendency of the MSE increasing, as the forecasting horizon increases, in both 

models. It means that the result accuracy of short-term shipping freight forecasting is in general better 

than long-terms ones. Another important trend is that the MSE decreases in all models, usually 

reaching its lowest level in models with 30 neurons in the hidden layer. The models perform the worst 

with 10 neurons and best with 30 or 40 neurons, in the hidden layer. The models that performed better 

with 40 neurons, compared to 30 neurons, are NARNET (1) and NARXNET (2); these have been 

trained with 50 neurons as well, but the MSE increased in both.From Figure 10, it can be seen that, 

overall, the best performance is reached with 30 neurons in the hidden layer. The ordinate presents 

the value of MSE, while the axis shows the corresponding number of neurons (Figure 10). The MSE 

for each number of neurons is estimated as the average of the MSEs reached, in both models, for all 

forecasted horizons. It reveals that when using ANNs in shipping freight rate forecasting, the optimal 

number of the used neurons should be between 30 and 40, but with a higher likelihood at 30.  



  

Figure 10. Validation of the number of neurons in the hidden layer 

Figures 11 -14 plot the predicted values, with NARNET (30) and NARXNET (30), against the 

accurate values of the BPI. One-month ahead predictions are presented in Figure 11. It can be seen 

that both models, NARNET and NARXNET, perform quite well. They are able to predict the initial 

direction of the post-sample data. A better performance is reached by NARXNET (30), as the model 

produces better forecasts for the first half of the month, and then the forecasts slightly deteriorate; 

however, it remains a better shape compared with NARNET (30). It discloses that in the shipping 

freight rate forecasting of one month ahead, using BPI data only or using the combination of BPI and 

FFAs can deliver reliable forecasting results. However, the incorporation of FFAs can provide a better 

result compared to the case of using BPI data solely, particularly in the first half (i.e. 15 days) of the 

prediction period.   
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Figure 11 One-month ahead predictions 

Figure 12 shows predictions of two-months ahead. The prediction capability of both models is 

reduced, compared to the 1-month ahead predictions. Both models predict correctly the initial 

direction of the BPI. Again, NARXNET (30) outperforms NARNET (30) in this first stage. The 

models converge at the 24th step and after that NARXNET still predicts correctly the direction 

(decrease of BPI) and the subsequent slight increase, while the NARNET (30) could not capture 

them.  As a result, NARXNET (30) outperforms NARNET (30), with around 75%, with respect to 

MSE. It indicates that in the shipping freight rate forecasting of two months ahead, the result accuracy 

decreases compared to the case of one month ahead in general. However, the addition of FFA data in 

the forecasting model can significantly increase result accuracy.  
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Figure 12. Two-month ahead predictions 

Three-month ahead predictions are shown in Figure 13. Neither model is able to produce well the 

general pattern shown in the post-sample data, nor to predict correctly the peaks and 

troughs.  Nevertheless, NARXNET (30) moves closer to the real values. Within the context of 

shipping freight rate analysis, having FFA data in the forecasting model of three months ahead can 

help improve the forecasting result accuracy, but not to a significant level.  

 

Figure 13. Three-month ahead predictions 

Figure 14 shows the results for six-month ahead predictions. NARXNET (30) was able to produce, 

partly, the overall pattern of the post-sample data, with its peaks and troughs. The model also 
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predicted the peak and the subsequent trough at the end of the forecasted period. Although NARNET 

(30) predicted better the initial direction of the BPI, its overall performance was around five times 

worse, w.r.t. MSE. It is clear that NARNET (30) could not predict either any of the peaks or troughs, 

or the general pattern of the post-sample data when the forecasting horizon increased to 6 months. 

We find that only using historical BPI data cannot provide any useful insight in the shipping freight 

rata forecasting of six months ahead. However, when the FFA data is combined with historical BPI, 

the model of six months ahead can better predict the general pattern (e.g. the peaks and troughs) of 

future freight rates for guiding ship-owners/charterers’ investments.   

 

 

Figure 14. Six-month ahead prediction ns 

ANNs’ performance and regression plots, for all the scenarios, are also analysed. The optimal number 

of epochs indicates the iteration at which the validation performance reached a minimum, and stopped 

training before over-fitting. The regression plot represents a linear regression between the outputs 

and the corresponding targets in the open-loop mode during an ANN training process. The outputs 

match the targets perfectly in open-loop mode, because in all models and all sets (training, validation 

and test) the R-value (correlation coefficient) was ≥ 0.99. Based on the results from Figures 11, 12 

and 13, there is no significant evidence that NARXNET performs significantly better than NARNET, 

especially for forecasts of one-, two- and three months ahead. A significantly better forecast, however, 

is generated for six-months-ahead predictions. The analysis of the results from Figures 11-14 shows 

that having BFA data in addition to BPI can help improve forecasting accuracy, in the longer term 
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(i.e. 6 months), whenever BPI data alone does not work at all (indicated by a flat line in figure 14), 

and its impact in shorter terms (i.e. 1-3 months) is not significant. 

 

5.2 INTERPRETATION OF THE RESULTS 

In nearly all experiments, NARXNET provided better results compared to NARNET.  As expected, 

forecasting accuracy weakened as the forecast horizon increased. We prove, in a quantitative form, 

that having FFA in addition to BPI in shipping freight rate forecasting can improve the freight rate 

prediction accuracy, particularly in the case of six months ahead. The relative performance of 

NARXNET, compared to NARNET, decreased too, as the forecast horizon increased (Figure 15). 

Figure 15 presents the MSE relationship between the two models. NARNET’s MSE with 10 neurons 

was more than seven times higher, compared to NARXNET’s MSE. For one month ahead predictions, 

it is clear that the performance gap decreases as the number of neurons increases in both models. 

Moreover, NARNET (40) outperforms NARXNET (40) in one month ahead predictions. In the 

shipping freight rate forecasting of one month ahead, the stakeholders are suggested to use 40 neurons 

in their ANNs to reach the best forecasting results. Figure 15 also presents the correlation between 

inputs and outputs of the NARXNET model. The highest correlation, as expected, is for the inputs 

and outputs used for one month ahead predictions. The performances with 10, 20 and 30 neurons, for 

one-month ahead predictions, are in line with the assumption that, if cross-correlation between inputs 

and outputs is significant, NARXNET performs better. Although the best performance is reached 

with NARXNET (30) – 1, correlation between inputs and outputs will not always guarantee better 

results for NARXNET, as NARNET (40) – 1 outperformed NARXNET (40) - 1. This also suggests 

that, for short-term forecasts, NARNET can predict as accurately as NARXNET, subject to more 

neurons in the hidden layer. It is evidenced that in shipping freight rate forecasting of one month 

ahead, FFA data does not carry a heavy weight to improve forecasting freight rate accuracy. In this 

case, ship-owners and charterers shall take into account that the key factor lies in the use of a high 

number of neurons (i.e. 40) in the hidden layer in ANNs. For two-month ahead predictions, the 

performance gap decreases and so does the correlation between inputs and outputs. The biggest 

performance gap is observed with 40 neurons and the lowest with 20. This implies that the existing 

correlation, between inputs and outputs, does not allow NARXNET to outperform NARNET 

significantly, and changing the number of neurons did not reveal any general trend. Different with 

the forecasting of one month ahead, the number of used neurons in ANNs plays an insignificant role 



in improving freight rate prediction accuracy. The analysis result suggests that the stakeholders can 

simply rely on BPI data only in the ANN forecasting model; and the number of neurons has very 

limited effect on the forecasting accuracy, though using 30 neurons can very marginally outperform 

the others.  With regard to three-month ahead predictions, the performance gap between the models 

decreased further, and so did the correlation between inputs and outputs. Interestingly, nearly the 

same performance gap was observed with different numbers of neurons. The latter suggests that 

increasing the number of neurons in the hidden layer does not help the networks to perform better 

with low correlation between inputs and outputs. For six months ahead predictions, the correlation 

between inputs and outputs decreased significantly to 0.01, and so did the performance gap, with 10 

and 20 neurons. However, NARXNET with 30 neurons generated unexpectedly good forecasts, 

despite the low correlation between inputs and outputs. After comparison between the inputs in 

closed-loop mode and the forecasted outputs, a considerably higher correlation was discovered at 

0.49; this partially explains the obtained good forecasts. 

 

Figure 15 MSE Comparative Performance 

The outcome of our experiments supports similar findings from previous studies, as described below. 

Our results are not only relevant, with regard to FFAs and their potential for increasing forecasting 

accuracy, but also with regard to the incorporation of exogenous variables, containing useful 

information, in forecasting models. The outcome quantitatively proves many statements in the 

relevant literature. For instance, the results support (Zhang et al., 2014), who have suggested that the 

incorporation of FFA prices could improve the forecasting performance of models, aiming at 

predicting future spot rates in the short-term. Batchelor et al. (2007) also stated that future freight 
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rates help to forecast future spot rates. In relation to this, albeit earlier, Kavussanos and Visvikis 

(2004) have demonstrated that FFAs have a similar feature to that of derivatives contracts in 

commodity and financial markets, and thus they can be used as a price-discovery tool. The correlation 

analysis in our study mirrors such findings. It also supports Kasimati and Veraros (2017), in which 

the ability of FFAs to forecast, in the longer-term, was considered to be of limited value.  In our study, 

the MSE values of NARXNET increase considerably, as the forecast horizon increases, nearly 154 

times (from 86.743 to 13404). Our findings also show certain differences with previous studies. For 

example, Kasimati and Veraros (2017) emphasised that FFAs cannot capture the turning points of the 

direction of freight rate movements. From Figures 11-15, our results indicate that, by employing 

ANNs, these turning points can be captured. The incorporation of FFA information in freight rate 

forecasting shows the importance of additional market information in improving forecasting 

accuracy. This mirrors the findings of Tsioumas et al. (2017), where forecasting improved by 

employing additional market information (Dry Bulk Economic Climate Index) in a VARX model. 

Overall, our results confirm that the incorporation of FFA information enhances forecasting accuracy. 

From the practical managerial perspective, shipowners can use FFA for traditional risk management 

(e.g. hedging), as well as new freight rate forecasting for exploring better business opportunities.   

  

6. Conclusions 

Baltic Indices are important to shipping market participants, as they reflect an assessment of the cost 

of sea-borne transport services, on different routes and types of vessels. The movement of the BDI 

and its constituent indices is highly volatile and depends on many variables (e.g. vessel size and age, 

bunker price, length and severity of global economic winters, and cyclicality), as well as on the 

peculiarities of the freight market mechanism (i.e. the equilibrium between demand and supply of 

shipping). This suggests that the forecasting of the Baltic Indices is a complex task, necessitating the 

application of complex techniques. We have  used two different ANNs to generate forecasts; they are 

highly accurate for one-month ahead predictions, gradually deteriorating as the forecast horizon 

increases. In general, NARXNET out-performs NARNET. This means that, by using market 

information, the NARXNET FFA forecasts are better than the NARNET model, purely on the basis 

of historical data. 

The results of the forecasting experiment reconfirm that the information contained in FFAs can 

improve forecasting accuracy. This has practical implications. As FFA prices are available for a 



certain period -one, two, three and six months-, market participants can obtain better forecasts and 

thus have better insight into future movements in the freight market. Moreover, as participants in the 

FFA market are diverse, compared to participants in the spot market, the speculative activity on FFA 

price formation incorporates valid information on future freight market movements, and justifies that, 

in a speculatively efficient derivatives market, the price discovery function of derivatives is more 

prominent. Nowadays, one of the most valuable assets is information and the speed of its 

transmission, which suggests that participants or companies that can make the maximum use of 

relevant sources of information, at any given time, have the chance of being more successful than 

their competitors. The findings of this paper contribute to knowledge in this regard. To further 

investigate the advantages of our proposed models, it would be beneficial to compare our results, with 

those obtained by other models (e.g. VECM, ARIMA) in future. 
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Appendix 1. Static and Dynamic ANNs 

Neural networks (NNs) can be classified as static and dynamic. In static NNs, the outcome is 

calculated instantly from the input data through feedforward connections while, in dynamic NNs, the 

output depends on both the current and the previous inputs (Hagan et al., 2014). Consequently, 

dynamic networks, working on a sequence of inputs, which contain delays and have memory, are 

more powerful than static ones, when it comes to modelling complicated non-linear dynamic systems 

(Wang et al., 2015). In classical NNs, dynamic networks consist of an input, hidden and output layers. 

The input layer receives the data and then all observations are used to train the network (Ghiassi et 

al., 2005). Dynamic networks are data driven, feedforward, of multilayer dynamic architecture. They 

are formed according to the concepts of learning and acquiring knowledge, then propagating and 

modifying this knowledge forward, reiterating these steps until reaching the desired performance 

(Ghiassi and Nangoy, 2009). Dynamic networks are used in this paper, because freight rate prediction 

is a form of dynamic filtering, where both historical rates and FFA information are used 

simultaneously in the model. 

In order to analyse the forecasting performance of FFAs, two different models of dynamic NNs are 

employed and compared. Firstly, both NN models have to be trained and the values of connection 

http://openaccess.city.ac.uk/7596/


weights and bias are estimated through a training algorithm (Patil et al., 2013). Training continues 

until training error between target and calculated outputs reaches the error goal, or until no further 

reduction in the error is achieved (Patil et al., 2013). The fundamental element of NN is the neuron, 

or node in Figure 1. Inputs are represented by 𝑎𝑖 and the output by 𝑂𝑗. The neuron processes these 

inputs and finishes with a single output signal. Every input is multiplied by its corresponding weight, 

𝑊𝑖,𝑗 and the neuron uses the sum of these weighted inputs and adds the bias 𝑏𝑗 (i.e. the node’s internal 

threshold). The bias is a randomly chosen value that determines the node’s net input in Eq (1): 

𝑢𝑗 = ∑ (𝑊𝑖,𝑗 ∗ 𝑎𝑖) + 𝑏𝑗
𝑛
𝑖=1           (1) 

Then, the neuron processes the sum through a transfer function and produces the output value 𝑂𝑗 of 

the neuron (Nasr Mahmoud et al., 2012).    

 
 

Figure 1 Single node anatomy 
Source: Nasr Mahmoud et al. (2012) 

 

Activation functions, defining the output of a given neuron in the different layers of the network, 

can be different (e.g. sigmoid, hyperbolic or linear). In this paper, the linear transfer function is used 

for the output neuron, where the output of the function is equal to its input. The sigmoid transfer 

function is used for the hidden neurons, in the multi-layer networks, in order to generate their 

output. For the NARNET and NARXNET models, the tan-sigmoidal transfer function is used. This 

function takes the input, which can be any value [-∞, +∞] and squashes the output into the range [-

1, 1]. The tan-sigmoidal transfer function is differentiable, which is a prerequisite for the training 

algorithm used; this provides a good compromise, where the speed of the NN is of critical 

importance. 



 

 


