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ABSTRACT 

The prevalence of type 2 diabetes (T2D) has increased steadily over the last thirty years and 

has now reached epidemic proportions. The secondary complications associated with T2D 

have significant health and economic impacts worldwide and it is now regarded as the 

seventh leading cause of mortality. Therefore, understanding the underlying causes of T2D 

is high on government agendas. The condition is a multifactorial disorder with a complex 

aetiology. This means that T2D emerges from the convergence between genetics, the 

environment and diet, and lifestyle choices. The genetic determinants remain largely elusive, 

with only a handful of identified candidate genes. Genome-wide association studies 

(GWAS) have enhanced our understanding of genetic-based determinants in common 

complex human diseases. To date, 120 single nucleotide polymorphisms (SNPs) for T2D 

have been identified using GWAS. Standard statistical tests for single and multi-locus 

analysis, such as logistic regression, have demonstrated little effect in understanding the 

genetic architecture of complex human diseases. Logistic regression can capture linear 

interactions between SNPs and traits however it neglects the non-linear epistatic interactions 

that are often present within genetic data. Complex human diseases are caused by the 

contributions made by many interacting genetic variants. However, detecting epistatic 

interactions and understanding the underlying pathogenesis architecture of complex human 

disorders remains a significant challenge.     

This thesis presents a novel framework based on deep learning to reduce the high-

dimensional space in GWAS and learn non-linear epistatic interactions in T2D genetic data 

for binary classification tasks. This framework includes traditional GWAS quality control, 

association analysis, deep learning stacked autoencoders, and a multilayer perceptron for 

classification.   

Quality control procedures are conducted to exclude genetic variants and individuals that do 

not meet a pre-specified criterion. Logistic association analysis under an additive genetic 
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model adjusted for genomic control inflation factor is also conducted. SNPs generated with 

a p-value threshold of 10−2 are considered, resulting in 6609 SNPs (features), to remove 

statistically improbable SNPs and help minimise the computational requirements needed to 

process all SNPs. The 6609 SNPs are used for epistatic analysis through progressively 

smaller hidden layer units. Latent representations are extracted using stacked autoencoders 

to initialise a multilayer feedforward network for binary classification. The classifier is fine-

tuned to discriminate between cases and controls using T2D genetic data. The performance 

of a deep learning stacked autoencoder model is evaluated and benchmarked against a 

multilayer perceptron and a random forest learning algorithm. The findings show that the 

best results were obtained using 2500 compressed hidden units (AUC=94.25%). However, 

the classification accuracy when using 300 compressed neurons remains reasonable with 

(AUC=80.78%). The results are promising. Using deep learning stacked autoencoders, it is 

possible to reduce high-dimensional features in T2D GWAS data and learn non-linear 

epistatic interactions between SNPs while enhancing overall model performance for binary 

classification purposes.
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 Introduction 

 Preamble 

The prevalence of Type 2 Diabetes (T2D) throughout the world has reached epidemic 

proportions. In 2012, the World Health Organization (WHO) (World Health Organization 

2016) estimated that 1.5 million deaths were directly attributed to diabetes, and by 2030 

diabetes will be the seventh leading cause of mortality worldwide (Mathers & Loncar 2006). 

T2D is the most predominant form of diabetes (World Health Organization 2016) and is 

regarded as a multifactorial disorder, caused by the convergence of genetics, the 

environment, and a sedentary lifestyle (Lyssenko et al. 2008). There is strong evidence that 

genetic factors play a significant role in T2D susceptibility (Prasad & Groop 2015). T2D is 

a polygenetic disorder that is caused by a complex interaction among multiple genes. As 

such, an in-depth investigation into the T2D pathogenetic architecture is needed to help 

researchers and professionals understand the aetiology of T2D. 

 Genome-Wide Association Studies (GWAS) 

Genes influence all human diseases and yet the genetic foundation of many complex diseases 

is still unknown. With the availability of cheaper genotyping technologies (Behjati & Tarpey 

2013), genome-wide association studies (GWAS) have seen widespread use within genetic 

research. In recent years, GWAS have succeeded in identifying genetic variants that 

demonstrate evidence of increased susceptibility in a wide range of complex diseases, 

including Schizophrenia, Epilepsy, Obesity, Cardiovascular Disease, Hypertension and T2D 

(Guo et al. 2014; Bush & Moore 2012). GWAS have also been used to detect the genetic 

effects associated with phenotypes (disease trait) in population-based studies using single-

locus statistical tests. In these studies each single nucleotide polymorphism (SNP) is 

explored separately for association with particular diseases or traits (Clarke et al. 2011). The 

genetic variants identified so far have helped to explain a relatively small proportion of 
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heritability, however, the question remains about how missing heritability can be better 

explained (Blanco-Gómez et al. 2016; Manolio et al. 2009). More importantly, it is generally 

believed that the underlying cause of complex human diseases does not rely on single genetic 

variations but instead on a contribution of many interactions between genetic loci (Morris et 

al. 2012; Robinson et al. 2014; Lee et al. 2012); referred to as epistasis. 

In this thesis the term epistasis refers specifically to the latent interactions between multiple 

SNPs and their effects (Wei et al. 2014). This is a topic studied in molecular biology, 

particularly genetic biomolecules. The primary goal is to understand the underlying 

pathogenesis architecture linked with common complex disorders. Epistasis arises due to 

non-linear interactions between genetic variants. Detecting epistatic interactions and genetic 

interactive effects, however, remains a significant challenge in large-scale GWAS data. This 

is due to various factors that include genetic heterogeneities, low penetrance, small 

epidemiology sample sizes, polygenic inheritance, and the large number of genetic variants 

often considered in GWAS studies. 

Consequently, complex non-linear relationships between genotypes and the phenotype are 

not investigated in GWAS. Standard parametric multi-variable statistical approaches, such 

as logistic regression, which is used in GWAS, are more suited to capturing linear 

interactions between genotypes and phenotype in much simpler diseases like cystic fibrosis 

which is known to only have one associated SNP (Cutting 2015). 

Existing studies using GWAS data have focused on the use of data mining and machine 

learning algorithms (Botta et al. 2014; López et al. 2018; Nguyen et al. 2015; Chen et al. 

2008). These techniques have been used to model complex relationships and interactions 

between features (SNPs) and their association with phenotypes. Data reduction approaches 

like multifactor dimensionality reduction have also been successfully applied to detect 

putative interactions between loci for a wide variety of human diseases (Barna et al. 2018; 

Andrew et al. 2008; Oh et al. 2012; R De et al. 2015). Ensemble methods, such as the random 
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forest algorithm, have been broadly applied for genomic data analysis to detect SNP 

correlations (Botta et al. 2014), disease risk prediction (López et al. 2018), and feature 

selection (Nguyen et al. 2015). Support Vector Machines (SVMs) have been used to detect 

gene-gene interactions (Chen et al. 2008) and disease classification (Vanitha et al. 2015). 

Artificial Neural Networks (ANNs) have been utilized to detect SNP correlations as 

demonstrated in (Koo et al. 2013; Motsinger-Reif et al. 2008). Although, these machine 

learning algorithms are competent in handling complex correlations and interactions among 

a small number of features, they do not scale to a very larger number of SNPs, which is often 

the case in GWAS (genotypes of almost one million SNPs and thousands of samples). In 

particular, using machine learning algorithms for epistatic analysis with a few hundred loci 

becomes computationally very difficult. Furthermore, traditional machine learning 

algorithms suffer with multicollinearity (Waaijenborg & Zwinderman 2009) and the curse 

of dimensionality (Sharma & Saroha 2015). 

Therefore, an alternative approach to model high-dimensional GWAS data and handle non-

linear epistatic interactions between SNPs is needed. In this thesis we investigate the use of 

unsupervised deep learning (DL) since it can deal with big data and the detection of complex 

features and associated non-linear interactions. More specifically we explore the use of deep 

learning stacked autoencoders as a way of learning the epistatic interactions that exist 

between SNPs. To evaluate the approach, learned features are used to initialise the weights 

of a fully connected multilayer perceptron (MLP) before it is fine-tuned to classify 

observations as either case or control in a T2D GWAS dataset. 

 Computational Biology 

A fundamental challenge in molecular biology networks, particularly in genetics, is to 

identify and understand the underlying interactions between genetic variants (SNPs) and 

how they contribute to human disease and complex phenotypic traits. The main goal is to 
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pinpoint genetic markers that can be used to predict an individuals’ predisposition to 

developing a particular disorder. 

In large-scale GWAS data, despite the use of advanced statistical methods and computational 

strategies to detect SNPs interactions, they cannot deal with large combinatorial analysis, 

scalability, and low statistical power. As advances in high-dimensional GWAS data 

generation continues, it is becoming increasingly more important to develop more powerful 

methodologies to analyse and examine epistatic interactions in complex, unstructured, and 

large datasets. 

 Scope of Research 

The research question is whether complex interactions between SNPs (epistasis) can be 

learnt using deep learning stacked autoencoders to classify T2D risk in humans. The 

approach follows a traditional GWAS quality control and association analysis methodology 

where the most significant SNPs are selected and used in subsequent analysis. This helps to 

manage computational demands. Stacked autoencoders are implemented as a feature 

extraction/learning technique to capture the salient relationships that exist between SNPs, 

thus capturing epistatic interactions. The final set of features is used to initialise the weights 

of a fully connected multilayer perceptron (MLP) which is then fine-tuned to classify case 

and control GWAS observations. 

 Aims and Objectives of the Thesis 

The main aim of this thesis is to investigate the aetiology of T2D through effective use of 

bioinformatics and state-of-the-art machine learning algorithms. The approach provides a 

robust framework for processing high-dimensional genetic data to model and classify case-

control individuals using a GWAS dataset. More precisely, the framework allows us to 

capture the genetic architecture of epistasis in T2D genomic data and to investigate its 
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influence in disease susceptibility. In order to fulfil the research aims, several key objectives 

have been set: 

• Investigate open source databases including the Genotype and Phenotype (dbGap) 

database which contains genetic and clinical information for case-control 

individuals. 

• Identify and remove low quality genetic markers and samples to produce a reliable 

subset for subsequent association analysis. 

• Apply Genome-wide association analysis to test for associations between genetic 

markers and T2D in a population-based study. 

• Filter genetic markers (SNPs) using a simple statistical approach to select a subset of 

SNPs for subsequent interaction analysis. SNPs are selected based on the strength of 

independent effects and are ranked using pre-specified thresholds. 

• Perform non-linear dimensionality reduction to retain important SNPs and learn the 

cumulative non-linear epistatic interactions between them using deep learning 

stacked autoencoders. 

• Classify and evaluate T2D high-dimensional genetic data using advanced machine 

learning techniques. 

• Classify and evaluate genetic and non-genetic (environmental, sociodemographic 

and clinical) risk factors using linear and non-linear traditional machine learning 

algorithms and explore the contribution and the effects of these factors in T2D 

susceptibility. 

• Design and implement a framework for the proposed project to produce an effective 

data analytic system to fulfil the aims of this study. 

 Novel Contributions 

This thesis presents a novel framework for the binary classification of high-dimensional T2D 

using case-control GWAS data. Using deep learning stacked autoencoders we can extract 
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SNPs and latent relationships in large scale biological data structures. Acting as a feature 

learning step, features are used to initialise the weights of a fully connected multilayer 

feedforward softmax classifier and fine-tune it to classify T2D observations. To the best of 

our knowledge, this is the first comprehensive study of its kind that uses stacked 

autoencoders to capture the epistatic interactions between SNPs in T2D GWAS data. 

Existing studies in the genomic field depend heavily on manual feature engineering using 

labelled data. The greedy layer-wise learning algorithm solution performed with stacked 

autoencoders in this thesis is based on training the network layer-by-layer using unlabelled 

data. The results show that this is a very efficient way to convert high-dimensional GWAS 

data into low-dimensional data to allow us to discover the non-linear structures that exist 

between SNPs. These reduced, compressed features act as an abstract representation of the 

original feature space. The ability to automatically extract latent representation of SNPs 

related to T2D GWAS data enhances the quality of experimental investigations, allowing 

researchers to discover and investigate the pathogenesis architecture of T2D further. 

1.6.1 Literature Review 

In this thesis, an up to date biomedical literature review of current works in the field of T2D 

GWAS study is collected from PubMed, the United States National Library of Medicine and 

the National Center for Biotechnology Information (NCBI) that provides resources for 

genomic, genetic and biomedical research. 

T2D with its aetiology in addition to the application of GWAS in T2D in different cohorts 

and ethnic groups are reviewed. The state-of-the-art in machine learning approaches used to 

predict risk susceptibility to T2D and to detect and explore SNPs correlations is also 

presented. 

Furthermore, parts of the materials and results presented in this thesis have contributed to 

the literature as shown in (Abdulaimma et al. 2017; Abdulaimma et al. 2018) where an 
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association mapping approach was investigated with our dataset to identify potential 

candidate SNP to T2D predisposition. In addition, the investigation is conducted in 

(Abdulaimma et al. 2018) to evaluate the predictive capacity of several machine learning 

algorithms in discriminating between cases and controls in T2D GWAS Data. Collectively, 

this review and our publications contribute to current genetic research in T2D which 

provides up to date information in the biomedical and bioinformatics research fields. 

1.6.2 Stacked Autoencoders 

A stacked autoencoder, which is an unsupervised learning process, is adopted in this thesis. 

Stacked autoencoders offer a method to automatically learn features from unlabelled data. 

This is an efficient method to reduce and compress high-dimensional GWAS data, producing 

an abstract representation of the original data space. Stacked autoencoders can discover the 

non-linear structures in complex, large, unstructured data as is the case in GWAS. This 

allowed us to extract the non-linear epistatic interactions between SNPs which is an 

important topic in understanding missing heritability and predisposition in many complex 

disorders. 

Our work has been published in IEEE/ACM Transaction on Computational Biology and 

Bioinformation, which demonstrates stacked autoencoders can be applied successfully to 

learn the abstract representation of SNP data and to study epistatic interactions between 

SNPs (Fergus et al. 2018). The results are encouraging and show that stacked autoencoders 

are an effective method for dealing with high-dimensional GWAS data and detecting 

epistatic interactions between SNPs. 

1.6.3 Combined Framework 

Quality control, logistic regression association analysis, and deep learning stacked 

autoencoders were combined to constitute the components of our proposed methodology. 

Various stringent quality control assessment steps followed by logistic regression and 

association analysis adjusted for genomic control were performed for single-SNP analysis. 
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Statistically significant SNPs identified via association tests were used as input features for 

deep learning stacked autoencoders. The output from the stacked autoencoders comprised 

an abstract representation of the input features which were in turn used to initialise the 

weights of a fully connected multilayer feedforward softmax classifier, fine-tune it to 

classify T2D observations. 

1.6.4 Decision Support Tool for Early Detection of T2D Susceptibility 

Our GWAS classification method could be considered as an early screening tool for the 

identification of people with a genetic disposition to T2D. This would aid physicians to 

identify pre-diabetic individuals with high-risk of developing the condition much earlier thus 

allowing appropriate actions to be administered to mitigate long-term effects. 

Early detection could reduce premature death and the risk of developing secondary 

complications associated with the condition. A study conducted by Herman et.al (Herman et 

al. 2015) investigated the benefits of early screening, diagnosis, and treatment of T2D and 

compared the results with those who had no screening and late treatment using the 

ADDITION-Europe population. The study found that cardiovascular risk, which is one of 

the common complications associated with T2D, can be reduced with early screening and 

diagnosis. In another study (Olafsdottir et al. 2016) also revealed that cumulative retinopathy 

prevalence and severity could be reduced with early detection of T2D. 

The current protocol used by physicians in hospitals and clinics is based on a blood sugar 

and/or oral glucose tolerance test (American Diabetes Association 2018). Physicians make 

their decision based on plasma glucose criteria, even though the test is normal this may not 

eliminate the possibility of T2D. Therefore, adopting our GWAS classification system could 

act as an early screening intervention to provide physicians with an additional source of 

information alongside existing tests to aid decision making. 
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 Thesis Structure 

The remainder of this thesis is structured as follows. Chapter 2 provides a brief overview of 

human genetic structures, components, mechanisms and functionalities. A discussion on 

T2D including its aetiology and risk factors are also presented including a comprehensive 

discussion relating to genome-wide association studies and associated quality control 

procedures used in T2D analysis. This chapter is concluded with a comprehensive literature 

review of existing GWAS in T2D studies. 

Chapter 3 introduces bioinformatics and advanced machine learning algorithms. The chapter 

begins with a discussion on epistasis and its challenges, followed by a comprehensive 

literature review of existing epistatic applications before artificial neural networks are 

described. This is followed by a discussion on the state-of-the-art in deep learning. This 

includes a brief overview on supervised and unsupervised learning across six machine 

learning algorithms and their use in T2D studies. 

Chapter 4 introduces the framework and proposed methodology. This includes a discussion 

on data acquisition and a description on the data quality control procedure, and association 

testing with genetic variants. The discussion emphasises the novel contributions made in the 

proposed methodology along with the theoretical aspects of deep learning and stacked 

autoencoders. Furthermore, this chapter examines the clinical and genetic factors on the 

predictive discriminatory power of T2D modelling using machine learning. Finally, the 

performance metrics for each of the machine learning models used are evaluated. 

Chapter 5 presents the results for the various experiments conducted in the investigation. 

While chapter 6 discusses the results and draws on conclusions and recommendations 

derived from the study. The thesis is concluded in Chapter 7 before the future directions for 

this study are presented.                     
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 Background 

 Introduction 

This chapter begins with an overview on human genetics followed by a discussion on T2D, 

including the diseases aetiology and associated risk factors. This chapter also discusses 

genome-wide association studies and includes the quality control steps needed and the 

statistical methods used. The chapter is finally concluded with a review of genome-wide 

association studies in T2D. 

 Human Biology Background 

In biology, genome is defined as a cell’s total genetic information (Alberts et al. 2015). A 

cell is a fundamental and basic unit of life (Alberts et al. 2014). Living organisms are divided 

into two types including unicellular organisms and multicellular organisms. Multicellular 

organisms, like humans, are made up of a large number of specialized cells that work 

together to perform different functions. Human bodies are composed of millions of cells and 

each one contains a complete copy of an individual’s genetic information (Alberts et al. 

2015). 

In each cell, there are 23 pairs of chromosomes and they are situated in the cell nucleus 

(Alberts et al. 2015). The chromosome consists of very long strands of Deoxyribonucleic 

Acid (DNA) along with the proteins responsible for folding and packaging the DNA string 

into a compact structure. The DNA is a molecule that carries most of the genetic information 

and is the hereditary material found in all living organisms (Alberts et al. 2014). DNA is 

made of four chemical monomers known as nucleotides. Each nucleotide contains 

deoxyribose (sugar with phosphate) and a base. This base is adenine (A), guanine (G), 

cytosine (C), and thymine (T) and they are linked together in a long linear sequence to form 

a DNA strand that is known as the polynucleotide. DNA molecules consist of two 

antiparallel polynucleotides joined together through the process of complementary base 
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pairing, where A pairs with T and C pairs with G, to form the DNA double helix which 

encodes all genetic information (Alberts et al. 2015). Figure 2.1 illustrates the human DNA 

structure, from the cell through the chromosome to the DNA components. 

 
Figure 2.1: Human DNA Structure. Cell, Chromosome, DNA 

DNA molecules contain a linear sequence of many genes. Each gene is a segment of DNA 

and represents a functional unit for the production of specific proteins (Alberts et al. 2015). 

The human genome contains over 3 billion base pairs (nucleotides). Only a small percentage 

of the entire DNA is composed of genes (International Human Genome Sequencing 

Consortium 2004). There are over 21,000 genes in the entire human genome (International 

Human Genome Sequencing Consortium 2004), and these contain the information necessary 

to produce proteins. An alternative form of a gene is known as an allele (Alberts et al. 2015). 

Each gene contains two alleles, a dominant allele and a recessive allele. Each allele pair is 

located at a similar locus on homologous chromosomes (one chromosome comes from the 

male parent and the other one comes from the female parent). The dominant trait is expressed 

if the gene is heterozygous, i.e. possesses both dominant and recessive alleles. The recessive 

trait is expressed if the gene is homozygous, i.e. both alleles are recessive. 

The combination and pairing of alleles for a specific gene is referred to as a genotype 

(Alberts et al. 2015). A genotype is either homozygous or heterozygous as explained 

previously. The genotype is responsible for expressing an organisms’ characteristics in the 
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form of a phenotype (Alberts et al. 2015). The phenotype focuses on a trait, which is 

expressed as the appearance, behaviour or medical condition of an individual. 

The central dogma in molecular biology defines the flow of genetic information in cells from 

Deoxyribonucleic Acid (DNA) through Ribonucleic Acid (RNA) to proteins (Alberts et al. 

2015). This transformation process occurs thousands of times every second in all living cells. 

This describes the mechanisms by which cells copy segments of DNA into RNA, through a 

process called transcription, followed by the synthesis of proteins from RNA through a 

process called translation as illustrated in Figure 2.2. 

 

Figure 2.2: The Central Dogma of Molecular Biology 

There are 20,000 proteins made in humans and they are responsible for regulating the 

structure of the cell and executing the majority of the functions cells provide (Alberts et al. 

2015). Proteins determine the biological instructions contained in DNA that are necessary 

for building and maintaining an organism. 

 Human Genetic Variations 

All humans have small variations in their genetic code (Alberts et al. 2014) and it is not 

possible for any two people to have the same genomic sequence. Since the completion of the 

Human Genome Project in 2003, researchers have confirmed that among the 3 billion base 

pairs that comprise DNA, 99.9% are very similar (International Human Genome Sequencing 

Consortium 2004). However, the remaining 0.1% makes each individual unique (Alberts et 
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al. 2014). More importantly, this variation explains the differences among people and their 

susceptibility to particular diseases. 

Genetic variations, also called mutations, can occur due to the substitution of a single base-

pair (nucleotide) and this is termed a Single Nucleotide Polymorphism (SNP). Typically, 

an SNP is defined as single base-pair change in the genetic code (DNA sequence) and it is 

the main cause of human genetic variability (Durbin et al. 2010). Figure 2.3 illustrates the 

genetic variation in the same region of the genome for three different individuals. Another 

source of genetic variation can result from duplications, deletions and insertions of large 

segments of the DNA molecule. These types of mutation are known as Copy Number 

Variations (CNVs) (Alberts et al. 2015) which have been implicated in several human traits, 

including hypertension, and colour blindness. 

Individual 1   ATGCGATCGATACTCGATAACTCCCGA ...

Individual 2   ATGCGATCGATACGCGATAACTCCCGA ...

Individual 3   ATGCGATCGATACACGATAACTCCCGA ...

SNP

 
Figure 2.3: Genetic Variation (SNPs) among Three Individuals 

Most of these mutations are common and have no functional significance, thus they are 

relatively harmless (Alberts et al. 2015). However, there are single nucleotide changes that 

can alter gene production and change regulatory DNA sequences. When this occurs it can 

have a profound effect on human health, behaviour, and physiology and can be the cause of 

serious diseases (Alberts et al. 2014). While there are a large number of variants, a relatively 

small number affect us functionally. The challenge in human genetics, however, is to 

discover those that are harmful to us. 

More importantly, the genetic roots for common complex diseases is more difficult to 

understand (Mitchell 2012). Instead of a single allele or single gene, many complex 

disorders, referred to as polygenetic conditions, stem from the interactions and contributions 
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of multiple SNPs or genes. For these types of conditions, which include Diabetes, 

Schizophrenia, Epilepsy, Obesity, Cardiovascular Disease, and Hypertension, understanding 

SNP interactions and environmental risk factors is fundamentally important. Typically, 

environmental factors have vital effects from the outset and they significantly influence the 

severity of conditions (Korkiakangas et al. 2009; Cooper et al. 2012). By investigating the 

effects of these multiple factors, it will help us to improve both medicine and our 

understanding of human biology. 

 Diabetes 

The World Health Organisation (WHO) reported that over the past few decades, both 

Diabetes’ cases and prevalence have been progressively growing (World Health 

Organization 2016). Diabetes is a serious, chronic disease that occurs either when the 

pancreas does not produce enough insulin or when the body cannot effectively use the insulin 

it produces. According to the International Diabetes Federation (IDF) the number of diabetic 

people worldwide is expected to rise from 366 million in 2011 to 552 million by 2030 

(Whiting et al. 2011). One in 11 adults had diabetes in 2015 with this figure expected to be 

one in 10 adults by 2040. 

Additionally, in 2015, Diabetes UK1 announced that there were 3.9 million people in the UK 

living with diabetes. This figure shows that there were approximately 125,000 more adults 

with diabetes compared with the previous year. This indicates that there is a dramatic 

increase in diabetic cases. Diabetes is one of the leading causes of death (2.7%) worldwide. 

In 2012, the WHO revealed that diabetes killed 1.5 million people worldwide (World Health 

Organization 2016). The main types of diabetes are type 1 and type 2, and gestational 

diabetes (GDM). However, nine other subtypes do exist (World Health Organization 2016). 

                                            
1https://www.diabetes.org.uk/About_us/News/39-million-people-now-living-with-diabetes/ 

https://www.diabetes.org.uk/About_us/News/39-million-people-now-living-with-diabetes/
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Type 2 diabetes is the most predominant form of diabetes around the world and is the 

category studied in this thesis. 

2.4.1 Key Facts about Type 2 Diabetes 

According to the WHO, T2D accounts for the vast majority of people with diabetes 

worldwide (World Health Organization 2016). It is estimated that people diagnosed with 

T2D constitute 90% of all reported diabetic cases. Until recently, T2D was recognized only 

in people over the age of 40 but have now found in young children (Farsani et al. 2013). 

T2D remains the leading cause of serious long-term health conditions. It is responsible for 

most cases of blindness (Diabetic retinopathy), kidney failure and lower limb amputation. 

Moreover, high glucose levels (raised blood sugar levels) or Hyperglycaemia in the 

bloodstream can damage blood vessels which increases the likelihood of atherosclerosis 

(cardiovascular disease) and stroke and can cause nerve damage (Inzucchi et al. 2012). In 

the UK, the annual direct cost of T2D to the National Health Service (NHS) in 2035 is 

estimated to be £15 billion - the indirect costs will be close to £20.5 billion (Hex et al. 2012). 

2.4.2 Type 2 Diabetes Phenomena 

T2D, which is known as insulin resistance, is a chronic disease that occurs when the pancreas 

does not produce enough insulin or the insulin produced does not interact with the body’s 

cells (World Health Organization 2016). Consequently, glucose remains in the blood and the 

body cannot effectively use it for energy. Researchers believed that T2D is a multifactorial 

disorder with a complex aetiology (Lyssenko et al. 2008). The condition is said to result 

from the convergence of genetics, the environment, diet and lifestyle risk factors (Lyssenko 

et al. 2008). These risk factors include obesity and overweight (with a body mass index 

(BMI) of 30 or more), family history, old age (people over the age of 40), ethnicity, and 

physical inactivity (Lewis et al. 2010)  

There is a complementary role for conventional factors modulating the genetic predisposition 

of such a complex disease, that emerged from the National Health Service Diabetes 
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Prevention Program (DPP) (Wise 2018). In a large randomized cohort of lifestyle 

interventions including weight loss, exercise and dietary modification, 58% of the overweight 

adults with mean BMI 31kg/m2 achieved a reduction in the incidence of T2D (Tudies et al. 

2012). In another study results from lifestyle intervention school-based programs suggested 

that the reduction in the prevalence of overweight and obesity among adolescents may 

decrease the risk of childhood-onset of T2D (The HEALTHY Study Group 2010). 

Twin studies have shown that the concordance rate of T2D in monozygotic twins is 

approximately 70% compared with 20% to 30% in dizygotic twins (Medici et al. 1999). 

Furthermore, the lifetime risk of developing the disease in individuals if one parent is 

affected is about 40%, while it increases to 70% if both parents are affected (Köbberling & 

Tillil 1982). In addition, a study of parental transmission of T2D showed that the influence 

of first-degree relatives in the risk of developing T2D is varied. The risk of developing the 

disease in offspring who have one diabetic parent is about 3.5-fold higher and is 6-fold higher 

if both parents are affected compared to the general population (offspring without parental 

diabetes) (Meigs et al. 2000). However, these risk ratio figures vary in different cohort and 

population studies. The studies performed in (Al-Sinani et al. 2014; Medici et al. 1999; 

Köbberling & Tillil 1982; Meigs et al. 2000) indicate that there is consistent evidence to 

show which genetic determinants are an important factor in modifying an individual 

predisposition to T2D. Thus, the potential influence of genetics on T2D risk is significant 

with predicted heritability between 20 and 70 percent. 

A relatively small proportion of diabetic cases occur due to a mutation in a single gene. 

These cases are classified as either monogenic diabetes, neonatal diabetes mellitus (NDM), 

or maturity-onset diabetes of the young (MODY) (Philippe et al. 2015). T2D on the other 

hand is known to be a polygenic disorder. This indicates that T2D occurs due to complex 

interactions between multiple SNPs or genes. Over the past decade, advances in genotyping 

technology have made it possible to discover the genetic constituents associated with T2D. 



17 
 

Several loci, identified before the widespread use of genome-wide association studies 

(GWAS), include calpain 10 (CAPN10) and transcription factor 7 like 2 (TCF7L2) - genes 

that were discovered using linkage analysis (Prasad & Groop 2015). These were the only 

two genes associated with T2D. Linkage analysis failed to detect genes involved in complex 

polygenic disorders. In candidate gene studies several genes have been found to be 

associated with T2D including Peroxisome proliferator-activated receptor gamma (PPARG), 

Insulin receptor substrate 1 (IRS1) and (IRS-2), potassium inwardly rectifying channel, 

subfamily J, member 11 (KCNJ11), and Wolfram syndrome 1 (WFS1) (Ali 2013). These two 

approaches have detected a number of T2D risk genes. However, alternative techniques are 

required to detect variants that candidate gene and linkage analysis cannot identify. 

To date there are more than 120 susceptibility loci for T2D that have been identified using 

GWAS (Prasad & Groop 2015; Wang et al. 2016). A review conducted by Prasad and Groop 

(Prasad & Groop 2015) provides a complete list of T2D risk SNPs. Genetic markers 

identified in pre-GWAS studies have also been confirmed by GWAS. TCF7L2, which was 

proved to be associated with T2D via linkage studies, is the most significant and repeatedly 

replicated gene discovered via GWAS (Ali 2013). Several other genes have been 

consistently identified among multiple populations as being associated with T2D such as 

Hematopoietically-expressed homeobox (HHEX), Solute carrier family 30 (zinc transporter) 

member 8 (SLC30A8), Cyclin-Dependent Kinase Inhibitor 2A/B (CDKN2A/B), and Insulin-

like growth factor 2 mRNA-binding protein 2 (IGF2BP2) (Tudies et al. 2012). 

The discovery of these genes has served as a rigorous foundation to understand the regulation 

of glucose metabolism and the development of T2D. It is hoped that these investigations 

could yield a comprehensive understanding of the mechanisms that regulate insulin secretion 

and action and help to understand the changes that cause an increased risk to T2D. These 

findings may ultimately lead to improve diagnostic testing, prevention of disease onset, and 
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future treatments underpinned by advances in personalized medicine. This could help 

mitigate the progression of the disease and its complications. 

 Genetic Association Studies 

Genetic association studies are used to detect genetic susceptibility (or susceptibility loci) to 

specific medical disorders (Lewis & Knight 2012). There are several approaches in genetic 

association studies: linkage studies (Ott et al. 2015), candidate gene (CG) studies (Foulkes 

2009), and genome-wide association study (GWAS) (Bush & Moore 2012). All approaches 

are based on the co-inheritance of genetic markers associated with disease allele. 

2.5.1 Linkage Studies 

Linkage studies focus on identifying rare alleles (variants) correlated with the phenotype of 

interest within a pedigree (Ott et al. 2015). The study design for this approach is family-

based association which uses genotypes of candidate individuals with his/her parents. This 

type of study is more costly than other approaches and parents need to be part of the study 

(Ott et al. 2015). Despite these limitations, family-based association studies are immune to 

population stratification (SNP allele frequencies vary among different population ancestry) 

that occurs in other approaches. Family-based association studies can offer a method to 

assess mendelian genetic errors (Teare & Koref 2014). 

2.5.2 Candidate Gene Studies 

Candidate gene studies (CG) focus on identifying risk alleles associated with a particular 

disease within population studies (Patnala et al. 2013). The study design for this approach is 

based on case-control subjects. In case-control studies, the investigators compare DNA 

samples of individuals who have a disease (cases) with individuals who do not have the 

disease (controls). The candidate gene approach uses genes previously identified and thus 

this approach is initiated with prior knowledge of gene function (Patnala et al. 2013). While 

CG has proved to be useful, it fails to discover new genes or combinations and interacting 

genes (Amos et al. 2011). In addition, the fact that unrelated case-control samples are 
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recruited makes the study more susceptible to population stratification issues that occur due 

to variable ancestral backgrounds. This can lead to false positive outcomes. 

2.5.3 Genome-Wide Association Studies 

With the completion of the Human Genome Project in 2003 (Green et al. 2015) and the 

International HapMap Project in 2005 (Gibbs et al. 2003; Manolio & Collins 2009), genome-

wide association studies are more widely used in genetic studies. GWAS have been used in 

a broad range of disease type studies to detect statistically significant SNPs and investigate 

the genetic architecture of human disease in the entire genome (Bush & Moore 2012). 

GWAS are a population-based approach where the study design utilises unrelated case-

control observations. In this thesis GWAS data is utilised, consequently a more in-depth 

discussion on GWAS is presented below. 

 Genome-Wide Association Studies Overview 

The primary objective in GWAS is to identify genetic risk factors for common complex 

diseases (Bush & Moore 2012). Proponents claimed that GWAS would significantly 

enhance our understanding of genetic-based determinants for common complex diseases, 

such as, T2D, Schizophrenia, Epilepsy, Obesity, Cardiovascular Disease, and Hypertension 

(Bush & Moore 2012; Guo et al. 2014). More specifically, to determine if SNPs occur more 

frequently in individuals affected with a particular disease, than in individuals unaffected by 

the disease. In other words, GWAS was developed to discover direct and indirect 

associations between SNPs and specific diseases (Bush & Moore 2012; Balding 2006). 

Direct (causal) association refers to the SNP that directly influences the biological 

configurations found to be statistically associated with a phenotype (Balding 2006). Indirect 

(non-causal) association describes influential SNPs that are not directly genotyped (Balding 

2006). There are other SNPs known as tag SNPs are genotyped and statistically associated 

to the trait, located in a region of high linkage disequilibrium (LD) with the influential SNPs 

(Bush & Moore 2012). LD is a non-random association between allelic variants at different 
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loci on the same chromosome in a given population, typically the two alleles are either 

inherited or correlated (Lewis & Knight 2012). Therefore, significant SNPs from GWAS are 

not always assumed to be causative variants but instead they may require further 

investigation to map the actual location of influential SNPs. In other words, significant SNPs 

in a genetic association study are more likely to be indirect. Figure 2.4 illustrates direct and 

indirect associations between SNPs and the disease phenotype. 

 
Figure 2.4: Direct and Indirect Association 

Since GWAS is a population-based method that consists of a large number of unrelated 

samples (case-control), most GWAS are well developed to find associations with common 

variants (>5%) and less for detecting low allele frequency variants (Sebastiani & Solovieff 

2011; Fadista et al. 2016). This highlights the common disease - common variant (CD-CV) 

hypothesis (Shields 2011) indicating that common diseases are probably influenced by 

genetic markers that are relatively common in the population. Under this hypothesis, 

phenotype associated alleles are more likely established using common genetic markers, 

specifically SNPs that have been detected and compared with affected and unaffected 

samples. However, there is disagreement among researchers as they suggested that common 

diseases cannot be caused by common alleles but rather they are influenced by rare variants 

(Cirulli & Goldstein 2010). 

Genotyping technology has facilitated rapid progress in genome-wide association studies. 

These technologies have been specifically designed to assay more than one million SNPs. 
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However, it is now possible, to sequence the entire human genome within a single day 

(Behjati & Tarpey 2013). The most recent DNA sequencing technology is Next Generation 

Sequencing (NGS) (Behjati & Tarpey 2013), which provides tools to sequence DNA and 

RNA. NGS is cost effective with rapid performance compared to the previously used Sanger 

Sequencing Technology (Pareek et al. 2011; Xuan et al. 2013). Currently, there are two 

platforms utilized in GWAS - the Illumina and Affymetrix platforms (Bush & Moore 2012). 

Each technique offers a different approach to measure and detect genomic variation (alleles). 

2.6.1 Choice of Significance Test 

GWAS studies often test millions of independent SNPs for associations with particular 

diseases. Thus, to find SNPs that are statistically significant and to limit type I errors (false-

positives) a very stringent statistical threshold is used 𝑝 < 5 × 10−8 (Panagiotou & 

Ioannidis 2012). This threshold is called a Bonferroni-corrected genome-wide significance 

threshold (Panagiotou & Ioannidis 2012) and it has become a standard in most GWAS. The 

Bonferroni correction offers a method to control family-wise error rates (FWER) (Zeng et 

al. 2015). FWER is the probability of rejecting at least one null hypothesis when all the nulls 

are correct (Zhang et al. 2012). An SNP is considered statistically significant if its p-value 

is less than the Bonferroni-corrected genome-wide significance level. Bonferroni correction 

is a conservative threshold (Zeng et al. 2015) and it may be highly likely that none of the 

SNPs under investigation reach such a small threshold. Therefore, as recommended in 

Duggal’s study (Duggal et al. 2008) a suggestive association threshold  𝑝 < 1 × 10−5  

should be utilized. A suggestive threshold is less conservative, and it is generally used to 

detect SNPs for consideration in follow-up studies. 

2.6.2 Challenges Associated to GWAS Approach 

Although, GWAS have significantly impacted the field of human genetics, there are still 

challenges associated with computational and statistical methods. These challenges include 

scalability, missing markers and complex traits (Zhang et al. 2012). Usually GWAS datasets 
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contain millions of SNPs across thousands of individuals. Therefore, to perform GWAS, the 

algorithms need to be extremely efficient and scalable to avoid issues with computational 

resources and to minimise the time required to conduct GWAS. In addition, missing markers 

need to be appropriately handled. One approach to handle missing markers is to use 

imputation (Howie et al. 2012) to impute unidentified markers using an accessible SNPs 

database such as the 1000 Genome (Adam 2015) and International HapMap Projects (Gibbs 

et al. 2003). 

Another major limitation with GWAS is that, while being successful at detecting single 

SNPs relating to phenotype traits, its ability to find SNPs associated with complex 

traits/diseases. Complex traits are more likely to be affected by multiple SNPs which 

separately may have a weak association with the disease but cumulatively have a much more 

important part to play in the development of complex diseases. In this case it is extremely 

difficult for an SNP with low marginal effects to be identified using single-locus methods. 

Consequently, an alternative approach such as multi-locus analysis needs to be conducted 

(Bush & Moore 2012). 

2.6.3 Hypothesis Testing for GWAS 

In biomedical research the most popular tool for statistical analysis is hypothesis testing 

(Penrod & Moore 2014). Hypothesis testing is used to determine if the evidence that is 

available in the data is adequate to conclude that a particular condition (the question being 

asked) is true for that population (Taeger & Kuhnt 2014). There are two contrasting 

hypotheses relating to the population - the null hypothesis and the alternative hypothesis. 

The null hypothesis is tested, and based on the outcome, is either acceptance or rejection. 

The alternative hypothesis on the other hand is the hypothesis that challenges the null 

hypothesis (Taeger & Kuhnt 2014). 

Generally, significance testing, also known as a p-value, is conducted. The p-value is defined 

as the probability of seeing a value of a test statistic as equal to or larger than the one that 
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was observed in a dataset, assuming the null hypothesis is true (Bush & Moore 2012).  In 

academic research the significance threshold (α) of 0.05 is widely used. Typically, this 

indicates that the analysis probably has a type I error rate (false positive) of 5%. This in turn 

means that there is a 5% chance of making an error in rejecting the null hypothesis when it 

was in fact true. Meanwhile, type II errors (false negatives) also need to be measured to 

calculate the probability of accepting the null hypothesis when it is in fact false. The 

statistical power of the study is calculated using the formula (1-type II error). In general, if 

the power of the study is 80% or more, this indicates that the study is sufficiently powered. 

More specifically, saying that the power is 80%, means that 80% of the time the null 

hypothesis will be rejected when it is false (Penrod & Moore 2014). 

For GWAS the null hypothesis represents a situation where there is no association between 

the genotype and phenotype of interest. The alternative hypothesis on the other hand 

indicates that there is at least a single SNP (genotype) associated with the disease of interest 

in the given dataset (Bush & Moore 2012). 

2.6.4 False Discovery Rate in GWAS 

The traditional multiple hypothesis testing based on FWER provides a strong control on false 

positives however it is too conservative - using very small p-value threshold. In GWAS 

setting, the main goal is to identify as many true positive findings as possible, while 

controlling against any single false positive occurring. The false discovery rate (FDR) 

method proposed by Soric (Soric 1989) is designed to measure such type of trade-off. FDR 

is used to evaluate the statistical significance of multiple hypothesis tests based on the 

proportion of false positives among the claimed rejected hypotheses (positives). Storey and 

Tibshirani (Storey & Tibshirani 2003) proposed the q-value statistical method to estimate 

FDR based measure of significance. They defined q-value to be the minimum FDR at which 

the particular test (p-value) is called significant: 𝑞(𝑝𝑖) = min
𝑡≥𝑝𝑖

 𝐹𝐷𝑅(𝑡) where 𝑡 is the 

threshold and all 𝑡 ≥ 𝑝𝑖 .  
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The FDR and its related estimation method (q-value) have been widely used in GWAS 

analysis (Hind et al. 2017; Kotnik et al. 2018; LeBlanc et al. 2016; Heller & Yekutieli 2014) 

in which a number of individual hypothesis tests are performed simultaneously, resulting in 

combinations of true and false null hypotheses.   

2.6.5 Visual Presentation for GWAS 

Data visualization tools in GWAS facilitate the interpretation of genome-wide association 

study outcomes. Various visual tools for GWAS have been developed which include 

Manhattan and Q-Q plots (Turner 2018). 

2.6.5.1 Manhattan Plot 

Manhattan plots are designed to visualize GWA significance levels (p-values) by 

chromosome position. This plot highlights any regions of significance. Manhattan plots are 

generated by plotting the p-value in the vertical axis which represents the −𝑙𝑜𝑔10 scale and 

the physical position of the SNPs in each chromosome in the horizontal axis. This plot uses 

a Bonferroni corrected genome-wide significance threshold to highlight statistically 

significant SNPs, which highlight potential disease-associated SNPs. 

2.6.5.2 Quantile-Quantile Plot 

Quantile-Quantile (Q-Q) plots are used to show the relationship between the expected 

distribution of p-values (null hypothesis) and the observed distribution of p-values in test 

statistics. Q-Q plots are typically used to detect if there is any evidence of systematic bias 

such as population stratification. Doing so is good practice in robust analysis that assures the 

quality and the validity of the data used in the study. Q-Q plots are produced by plotting the 

observed p-value obtained in test statistics (Chi-Squared statistic or logistic regression test) 

against the theoretical expected values under the null hypothesis of no association. The plot 

should go along the diagonal linearly with a slight deviation towards the top. In a scenario 

where there is evidence of population stratification the plot may deviate too early from the 

diagonal. 
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 Quality Control and Filtering for GWAS Data 

Quality control (QC) is used in GWAS to identify and eliminate low quality DNA samples 

and markers prior to association analysis (Laurie et al. 2010). QC is a critical element in 

GWAS analysis, and it is essential to avoid spurious GWAS results. There are two 

fundamental areas of QC: Individual-Based Quality Control measures and Marker-Based 

Quality Control measures (Perreault et al. 2013) as explained in the following sections. 

2.7.1 Individual-Based Quality Control 

Individual-based QC is performed to select and discard subjects (individuals) who do not 

meet specific criteria for GWAS analysis. There are four essential measures required which 

include Gender Ambiguity (inconsistency) check, Missingness Rate per Individual, 

Duplicated or Relatedness Individuals, and Population Stratification. 

2.7.1.1 Gender Ambiguity Check 

Gender ambiguity typically arises from sample handling errors. Homozygosity rate 

calculation can be used to detect individuals, who have been reported as male/female, but 

were their existing sex information does not match with genotype gender information. This 

calculation is applied across all X-chromosome markers for each individual in the study and 

compared to the expected homozygosity rate (less than 0.2 for female, more than 0.8 for 

male) (Anderson et al. 2010). 

2.7.1.2 Missingness Rate per Individual 

Missingness rate per individual also known as an individual call rate or genotyping 

efficiency per individual is an indicator of individual DNA quality. The call rate per 

individual presents the percentage of SNPs genotyped in each sample (S. Turner et al. 2011). 

A low genotyping call rate describes an issue with a poor quality DNA sample or low sample 

concentration. Samples with poor genotyping efficiency need to be removed. The 

recommended call rate threshold is between 98 and 99 percent (S. Turner et al. 2011). This 

threshold is an approximation and the exact threshold depends on various factors (i.e. 
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genotyping platform and DNA sample quality) and this may vary between different studies. 

The call rate threshold depends on the objective of the study whereby a balance between 

increasing genotypic efficiency and sample size is considered. 

2.7.1.3 Individuals Duplicated or Relatedness 

Duplicated and sample relatedness is measured to examine the identity and pedigree integrity 

between individuals by comparing genomic data with self-reported relationships among 

subjects in the study. The family relationship between two samples can be quantified by 

estimating the degree of identity-by-descent (IBD) - in other words the extent to which 

alleles among relatives are shared (Anderson et al. 2010). IBD is defined as the segments of 

the genome that come from the same ancestral source - they are copies of the same ancestral 

chromosome (Thompson 2013). Typically, the expected IBD sharing degree for a related 

pair is estimated based on their pedigree relationship. Thus, duplicated samples or 

monozygotic twins share two alleles, first degree relatives are more likely to share half of 

their alleles, second degree relatives share 0.25, third degree relatives share 0.125 and 

unrelated samples share zero alleles (Duggirala et al. 2015; Browning & Browning 2012). 

In population based case-control association studies, independence between observations is 

assumed (Bush & Moore 2012) - in other words the observed genotypes come from unrelated 

samples. If duplicated, or first or second-degree relatives are found then the distribution of 

the samples’ genotypes will not be appropriately represented within the population. This 

over representation of genotypes may cause bias in the study and increase type I and type II 

errors. Therefore, the extent of relatedness in the entire population must be reduced to second 

degree relatives (0.25) (Anderson et al. 2010). 

2.7.1.4 Population Stratification 

Population stratification occurs when case-control study samples contain multiple groups of 

individuals who do not share the same genetic ancestry (S. Turner et al. 2011). When this is 

the case, studies carry different allele frequencies due to population diversity as each 
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population has a unique genetic fingerprint. Thus, allele frequency diversity between 

individuals is not necessarily associated with any specific disease causing spurious 

associations  (Cardon & Palmer 2003). This is the major cause of confounding factors  in 

GWAS analysis (Anderson et al. 2010). Therefore, in order to avoid introducing bias to the 

study due to population stratification, it is important to conduct the analysis using a dataset 

from a relatively homogenous population (Bush & Moore 2012). 

There are a number of methods to detect and characterise population stratification in GWAS. 

These include Genomic Control (GC), Structured Association, and Principal Component 

Analysis. The GC (S. Turner et al. 2011) method is based on calculating and estimating an 

inflation factor 𝜆 and dividing and adjusting all of the test statistics downward by this 

inflation factor. Inflation factor values greater than 1 indicate inflation, therefore population 

stratification exists, and correction is applied to bring the value closer to 1. 

The structured association (Sebastiani & Solovieff 2011) method is a model-based clustering 

technique that groups samples into clusters using a subset of SNPs and performing 

association tests among each inferred group. The method can identify individuals that do not 

cluster with the majority of samples and eliminate these individuals from the study. 

Principal component analysis (PCA) (Hotelling 1933) is a multivariate statistical approach 

used to summarise and produce principal components of uncorrelated variables obtained 

from a data matrix consisting of samples with a number of potentially correlated variables. 

PCA is a widely used method in GWAS due to its computationally convenient manner 

(Anderson et al. 2010). Typically, a PCA model is constructed using genotype data obtained 

from populations of known ancestry such as the reference panel of HapMap phase III data 

which contains four different ancestral populations including Europe, Asia (Chinese and 

Japanese populations), and Africa. The method is used to cluster samples from GWA data 

in terms of ancestry alongside the HapMap samples to produce principal component scores 

for GWA samples. 
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2.7.2 Marker-Based Quality Control 

Marker-based quality control also consists of several key steps: identifying SNPs with 

excessive missing genotype, SNPs showing a significant deviation from Hardy-Weinberg 

Equilibrium (HWE), and finally identifying markers with very low Minor Allele Frequency 

(MAF). Removing SNPs from the study is critical as each SNP may correlate with disease 

risk (Laurie et al. 2010). Therefore, caution needs to be taken when deciding what thresholds 

to use to remove SNPs from the study. 

2.7.2.1 Missingness Rate Per Marker 

Missingness rate per marker also known as marker genotyping efficiency or call rate is an 

informative indicator of marker quality. The call rate per marker represents the proportion 

of individuals with a genotype call for each SNP (Weale 2010). Typically, this step is 

conducted to remove SNPs if they are missing in a large number of samples. This is a good 

indicator for a poor quality marker that is more likely to induce false associations. The 

authors in (Donaldson et al. 2016) indicate that the recommended threshold for removing 

markers with low call rates is 98-99 percentage. This means that if the SNP is missing in 

more than 1 or 2 percentage of samples, it will be removed from the study. However, this 

recommended threshold may vary between studies. 

2.7.2.2 Minor Allele Frequency (MAF) 

Minor allele Frequency refers to the frequency of the less common allele at a given SNP 

(Bush & Moore 2012). More specifically, if a particular SNP (for example C) appears in 

30% of a population that means this SNP is classified as a minor allele, while the more 

common allele (major allele) can be found in 70% of the same population (Bush & Moore 

2012). Filtering SNPs based on MAF is an important step toward increasing statistical 

power. Generally, the statistical power for rare SNPs is considerably low therefore it has 

been recommended to exclude any extremely rare SNPs (Winkler et al. 2014). For instance, 

if an SNP demonstrates variation in only 1 of the 82 samples, this proportion is inadequate 

statistically and should be discarded from the study. 
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Furthermore, to remove SNPs with MAF, the threshold limit is chosen by considering the 

samples size in the study. In some instances, SNPs have been removed for which the MAF 

is less than 1% while in other studies with a small sample setting a higher threshold such as 

5% as a cut-off point is chosen (Tabangin et al. 2009). 

2.7.2.3 Hardy-Weinberg Equilibrium (HWE) 

Hardy-Weinberg Equilibrium assumes that, allele and genotype frequencies remain constant 

from one generation to the next, in the absence of other evolutionary influences such as 

mutation, natural selection, migration, and associative mating (Wigginton et al. 2005). 

Departure from this equilibrium can indicate the occurrence of potential genotyping errors, 

and the existence of population stratification (Graffelman & Weir 2016). In study-based 

case-control approaches, it is necessary to conduct HWE in controls separately as a departure 

in cases can be indicative of true association to the trait under investigation (Anderson et al. 

2010). In the literature, various significance thresholds between 0.001 (McCaughan et al. 

2013) and 5.7 × 10−7(Burton et al. 2007) to identify markers in HWE have been reported. 

However, values do vary between studies. Checking markers for HWE is the last step in 

quality control analysis and is a common practice to remove SNPs that show deviation from 

HWE. 

Table 2.1 presents the commands used in PLINK (Purcell et al. 2007) to fulfil QC for 

samples and markers prior to association analysis. 

Table 2.1: QC Command for Samples and Markers 

Command Description of the Command 

--check-sex Check for sample identity problems 

--genome Examine pedigree integrity 

--missing - Check genotype efficiency for each sample 

- Check genotype efficiency for each marker 

--mind Remove samples with low call rate 

--geno Remove markers with low call rate 

--freq Report minor allele frequency for each marker 
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--maf Remove extremely rare markers 

--hardy Examine markers for Hardy-Weinberg Equilibrium  

--hwe Remove markers showing departure from Hardy-

Weinberg Equilibrium 

 Association Analysis 

Association analysis in case-control studies compares the frequency of alleles or genotypes 

at genetic marker loci (SNP) between cases and controls in a given population (Clarke et al. 

2011). This analysis is used to detect statistically significant differences in the frequency of 

alleles between individuals in the study. These alleles (genetic markers) are used to test 

associations with the phenotype (disease trait) (Clarke et al. 2011). In other words, 

association analysis is a series of single-locus statistical tests, that explore each SNP 

separately and their likely association with a particular phenotype. 

Genetic association mapping can be performed using several statistical methods including 

Pearson’s Chi-Squared test (𝑥2), Fisher’s exact test, linear model test, logistic test, and 

transmission/disequilibrium test (TDT) (Cortes et al. 2013). The use of one of these tests 

depends on the type and the size of a dataset where the dataset is either family-based or 

population-based (Zhang et al. 2012). For example, Fisher’s exact test is more appropriate 

with small sample sizes (Zhang et al. 2012) compared with Pearson’s Chi-Squared test (𝑥2) 

which is often used with much bigger sample sizes. TDT (Montana 2006) is used in family-

based association testing whereas, for population-based association (unrelated samples), 

Pearson’s Chi-Squared testing (𝑥2) and linear/logistic regression are used. 

2.8.1 Statistical Methods of a Case-Control Study 

In a case-control study, the association between a single SNP and disease status can be based 

on standard contingency table tests for independence (Balding 2006). Contingency tables 

are widely used to display genetic markers (SNPs) in the format of genotype or allele 

frequency by disease status (case-control) (Clarke et al. 2011).  
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For each single SNP: 

{

𝑎 𝑖𝑠 𝑎 𝑚𝑖𝑛𝑜𝑟 𝑎𝑙𝑙𝑒𝑙𝑒 𝑖𝑛 𝑁 𝑐𝑎𝑠𝑒 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝐴 𝑖𝑠 𝑎 𝑚𝑎𝑗𝑜𝑟 𝑎𝑙𝑙𝑒𝑙𝑒 𝑖𝑛 𝑁 𝑐𝑎𝑠𝑒 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑓𝑜𝑟 𝑎 𝑎𝑛𝑑 𝐴, ∃  𝐹 𝑤ℎ𝑒𝑟𝑒 𝐹 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 𝑡𝑎𝑏𝑙𝑒
𝑜𝑓 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑚𝑜𝑑𝑒𝑙

 

F can be represented (X. Wang et al. 2016) as: 

{

2 × 3  𝑡𝑎𝑏𝑙𝑒 𝑜𝑓 𝑁 𝑐𝑎𝑠𝑒 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑦

  𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑐𝑜𝑢𝑛𝑡𝑠 (𝐴𝐴, 𝐴𝑎, 𝑎𝑎)

2 × 2 𝑡𝑎𝑏𝑙𝑒 𝑜𝑓 2𝑁 𝑐𝑎𝑠𝑒 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑦

𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑠 (𝐴, 𝑎) 

 

The contingency table for case and control analyses using genotypic and allelic genetic 

models of penetrance is summarized in Table 2.2, where DF represents the degrees-of-

freedom in genetic models and is calculated based on the (number of rows in the contingency 

table – 1) × (number of columns in the contingency table – 1) (Bland 2015). 

Whereas 𝑂𝑖𝑗 refers to the observed frequency of individuals in cases and controls, 𝑖  refers 

to the row number and 𝑗 represents the column number. For example, in a genotypic model 

test 𝑂11 refers to the observed frequency of individuals in cases when genotype aa occurs. 

Table 2.2: Contingency Table for Genetic Models 

Test DF Contingency table representation 

Genotypic test 2 

 aa Aa AA 

Cases O11 O12 O13 

Controls O21 O22 O23 

Allelic test 1 

 a A 

Cases O11 O12 

Controls O21 O22 

2.8.2 Association Analysis Method 

The principal formulation for association testing is defined in Definition 1. 

Definition 1. Let {𝑋1, … , 𝑋𝑢} be a set of 𝑈 SNPs for 𝑁 individuals. Let phenotype =

{𝑦1, … , 𝑦𝑛}. Assume the genomic data for each SNP has minor allele 𝑎 and major allele 𝐴. 

To represent the homozygous major allele 𝐴𝐴, heterozygous allele 𝐴𝑎 and homozygous 

minor allele 𝑎𝑎, numbers such as 0, 1, and 2 are used respectively. Consequently, 𝑋𝑢𝑛 ∈

{0, 1, 2}, (1 ≤ 𝑢 ≤ 𝑈, 1 ≤ 𝑛 ≤ 𝑁). 



32 
 

For case-control studies the phenotype can be represented as a binary variable, 0 referring to 

controls and 1 referring to cases. The association test within genetic data is to test for the 

null hypothesis (no association between the SNP and phenotype of interest (disease status)) 

in the contingency table. Pearson’s Chi-Squared test (𝑥2) can be used to test for association. 

The principle of Chi-Squared test (𝑥2) is to compare the distributions of observed and 

expected values with their contingency tables (Zhongxue Chen et al. 2014). Chi-Squared test 

summarises the differences between the observed frequency values and the expected 

frequency values at single genetic marker loci (SNP) across cases and controls. The 

calculation of a Chi-Squared test (𝑥2) is formulated in Definition 2. 

Definition 2. The standard Chi-Squared test for the independence of rows and columns in 

the contingency table considering a genotypic model for association (X. Wang et al. 2016) 

is defined as: 

 𝑥2 = ∑ ∑
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)

2

𝐸𝑖𝑗
𝑗𝑖

 (2.1) 

where 𝐸𝑖𝑗 is the expected frequency of the allele or genotype in cases and controls and is 

defined as: 

 𝐸𝑖𝑗 =
𝑂𝑖.𝑂.𝑗

𝑁
  

(2.2) where 𝑂𝑖. = ∑ 𝑂𝑖𝑗

𝑗

 

and  𝑂.𝑗 = ∑ 𝑂𝑖𝑗

𝑖

 

where 𝑂𝑖𝑗 refers to the observed frequency of individuals whose 𝑋𝑢equals 𝑖 and 𝑌 equals 𝑗. 

Following the calculation of a Chi-Squared test, the 𝑝-value for Chi-Squared is determined 

based on the degrees of freedom used in the test. Formally, the 𝑝-value is defined as the 

probability of seeing a value (Chi-Squared statistic test) as equal to or larger than the one 

that was observed in a given dataset, assuming the null hypothesis (no association) is true 



33 
 

(Bush & Moore 2012). More specifically, the 𝑝-value represents the degree of association 

between the SNP and the phenotype across the entire sample set. 

2.8.3 Logistic Regression 

Logistic regression (Cox 1958) is defined as a statistical method for predicting binary 

outcomes. Logistic regression modelling can be used to analyze the contingency table for 

independence, where disease status is a binary trait (0/1) with 0 indicating a control and 1 

indicating a case (Clarke et al. 2011).  Let 𝑌 ∈ {0,1} be a binary variable for case and control 

status and let 𝑋 ∈ {0,1,2} be a genotype at a particular SNP. Assuming that 0, 1, 2 represent 

homozygous major allele 𝐴𝐴, heterozygous allele 𝐴𝑎 and homozygous minor allele 𝑎𝑎  

respectively. Logistic regression modelling is therefore given as (X. Wang et al. 2016): 

The conditional probability of 𝑌 = 1 is 

 𝜃(𝑋) = 𝑃(𝑌 = 1|𝑋) (2.3) 

The logit function, which is the inverse of the sigmoidal logistic function, is represented as:  

 𝑙𝑜𝑔𝑖𝑡(𝜃(𝑋)) = ln (
𝜃(𝑋)

1 − 𝜃(𝑋)
) (2.4) 

The logit is given as a linear predictor function as follows 

 𝑙𝑜𝑔𝑖𝑡(𝜃(𝑋)) = 𝛽0 + ∑ 𝛽𝑖 . 𝑋𝑖

𝑖

 (2.5) 

where 𝛽0 represents the intercept and 𝛽𝑖 denotes the regression coefficient.   

Logistic regression modelling is a predominant method for investigating each SNP 

separately and to capture the linear associations between SNPs and the phenotype. Logistic 

regression can be readily expanded to allow for covariates such as other SNPs, 

sociodemographic and clinical factors. Other genetic models including Allelic, Genotypic, 

Dominant, and Recessive are available however logistic regression is the preferred approach. 

2.8.4 Odds Ratio of Disease for Case-Control Study 

In a case-control study, the strength of an association is measured by the odds ratio (OR) 

(Clarke et al. 2011). OR is the ratio of the odds of disease in the exposed group (risk mark-
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positives) compared with those in the non-exposed group (risk mark-negatives) (Clarke et 

al. 2011). For example, based on the variables provided in Table 2.2, the allelic OR measure 

for the association between disease and allele, is the odds of disease if allele A (major allele) 

is carried compared with the odds of disease if allele a (minor allele) is carried. The 

following formula is used to estimate the allelic OR for allele A (Li 2007). 

 𝑂𝑅𝐴 =
𝑜𝑑𝑑𝑠 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑤𝑖𝑡ℎ 𝐴 𝑎𝑙𝑙𝑒𝑙𝑒

𝑜𝑑𝑑𝑠 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑤𝑖𝑡ℎ 𝑎 𝑎𝑙𝑙𝑒𝑙𝑒
 (2.6) 

Based on the variables in the contingency table for an allelic test, the OR is estimated as 

follows: 

 
𝑂𝑅𝐴 =

(𝑂12 𝑂22⁄ )

(𝑂11 𝑂21⁄ )
  

 (2.7) 

therefore 𝑂𝑅𝐴 =
𝑂12𝑂21

𝑂11𝑂22
 

The strength of the association for allele A is estimated based on the value of OR as explained 

in Table 2.3. An OR = 1 signifies that the condition under study appears equally in both 

groups (case and control). However, an OR > 1 indicates that the condition occurs in the 

case group more than in the control group. An OR < 1 indicates that the condition is more 

likely in the control group. 

Table 2.3: The Description of Odds Ratio Numerical Value 

Odds Ratio Description of the OR Value 

𝑂𝑅𝐴 = 1 Indicates no association between 

genotype and disease 

𝑂𝑅𝐴 > 1 Indicates that there is a risk 

association between allele A and 

disease  

𝑂𝑅𝐴 < 1 Indicates a protective association 

for allele A 

 The Application of GWAS into T2D 

Recently, several GWAS and meta-analysis studies have been performed in different cohorts 

and/or ethnic groups. The studies have described associations between genetic variants and 
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T2D in different populations. In Qiu’s study (Qiu et al. 2014), association analysis was 

performed in a case-control study to investigate the role of potassium inwardly-rectifying-

channel, subfamily-J, member 11 (KCNJ11) variation particularly E23K polymorphism 

(rs5219) in susceptibility to T2D. In this study, 56,349 T2D cases, 81,800 controls, and 483 

family trios were collected from 48 published studies. The statistical methods used within 

the approach included The Standard Q-statistic test, and subgroup analysis (ethnicity, sample 

size, BMI, age and sex) to explore whether variation in these studies was due to 

heterogeneity. Furthermore, the odds ratio with its 95% confidence interval of KCNJ11 

E23K polymorphism was calculated to measure the association with T2D. Dominant and 

Recessive genetic models were applied to examine the association between the KCNJ11 

E23K polymorphism and T2D risk. The results suggest that the KCNJ11 E23K allele for 

rs5219 (OR = 1.12, 𝑝 < 10−5) was significantly associated with T2D risk. For heterozygous 

and homozygous alleles with (OR = 1.09, < 10−5 ) and (OR = 1.26, 𝑝 < 10−5 ) respectively, 

a significant increase of T2D risk was observed. This study suggested that there is a modest 

but statistically significant effect of the 23K allele of the rs5219 polymorphism in 

susceptibility to T2D, particularly in East Asians and Caucasians. The contribution of these 

genetic variations to T2D in other ethnic populations (e.g. Indian, African, American, Jews, 

and Arabian), appear to be relatively low. For Dominant and Recessive genetic models, 

similar results were obtained. 

Seven novel T2D susceptibility loci were identified in Mahajan’s work (Mahajan 2014) 

using several published meta-analysis GWAS. The studies contain 26,488 cases and 83,964 

controls of East Asian, South Asian, European, Mexican, and Mexican American ancestry. 

By combining GWAS across ancestry groups using Trans-ethnic meta-analysis, it was 

possible to observe significant improvement in the detection of novel complex trait loci for 

the disease. Furthermore, with this approach, there was an enhancement in the fine-mapping 
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resolution of causal variants by leveraging differences in local linkage disequilibrium 

structure between ethnic groups. 

In Phani’s study (Phani et al. 2014), the authors performed a case-control study using 400 

T2D cases and controls from a South Indian population to analyse and outline the association 

of Potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) genes and the 

risk of T2D. The study conducted a systematic review and meta-analysis for KCNJ11 

(rs5219) polymorphism in 3,831 cases and 3,543 controls that were aggregated from 5 

published reports from South Asian and East Asian populations. In this case OR was used 

as a measure of association of KCNJ11 polymorphisms (rs5219, rs5215, rs41282930, 

rs1800467) and T2D with its corresponding 95% Confidence Interval (CI). Moreover, 

Cochran’s Q, I2 statistics were utilized to assess heterogeneity within and between the 

eligible studies. The resulting evidence therefore showed that KCNJ11 rs5215, C-G-C-C 

haplotype and two loci (rs5219 vs rs1800467) had a significant association with T2D. 

However, Copy Number Variations (CNV) analysis did not show significant variation 

between T2D case and control subjects. Furthermore, meta-analysis of the study suggested 

that KCNJ11 (rs5219) polymorphism is associated with the risk of T2D in East Asian and 

Global populations but not in the South Asian population. 

In Cheema’s work (Cheema et al. 2015) the authors performed a case-control study to 

investigate the differences in the association of peroxisome proliferator activated receptor, 

gamma, coac- tivator 1 alpha (PPARGC1A) genes and T2D risk among populations from 

African origins. The study includes adults aged >30 years old from African Americans (cases 

= 124, controls = 122) and Haitian Americans (cases = 110, controls = 116). The statistical 

methods used within this study included standard summary statistics such as the Chi-Squared 

goodness-fit test that was employed to check genotype counts for each SNP for Hardy-

Weinberg Equilibrium. Furthermore, the t-test was used to compare demographics (age, sex, 

BMI, smoking status) between cases and controls, and clinical information. Logistic 
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regression was also used to calculate adjusted and unadjusted OR with a 95% CI. The results 

indicated that SNP rs7656250 (OR = 0.22, p-value = 0.005) and rs4235308 (OR = 0.42, p-

value = 0.026) showed protective association with T2D in Haitian Americans using adjusted 

logistic regression. While in African Americans, SNP rs4235308 (OR = 2.53, p-value = 

0.028) showed significant risk association with T2D. Furthermore, the study concluded that 

the differences in genetic associations of PPARGC1A with T2D among Haitian Americans 

and African Americans were due to the contribution of differences in ancestry (Black race). 

The reproducibility of previously identified single SNP associations in case-control studies 

of T2D among the Singapore Chinese population was conducted in Chen’s study (Zhanghua 

Chen et al. 2014). The study contained 2338 T2D cases and 2339 controls with 507,509 

genotyped SNPs. The statistical methods employed included two sample t-tests to compare 

the mean differences for variables with normal distributions, the Wilcoxon rank sum test to 

compare median differences for variables with skewed distributions, and Pearson’s Chi-

Squared test (𝑥2) to test the different frequency distributions for categorial variables between 

T2D cases and controls. Furthermore, the authors interrogated the combined effects of 

several loci on disease risk using the National Human Genome Research Institute (NHGRI) 

GWAS Catalog to identify SNPs associated with T2D. Among the 55 indexed SNPs 

obtained from the NHGRI GWAS Catalog, 15 SNPs were replicated (at p-value < 0.05). 

Moreover, Conditional fine-mapping analysis was used to search regions near GWAS alleles 

for additional and new disease associations. SNPs in regions ± 100 kb around each index 

SNP were interrogated for associations with T2D. The results highlight two SNPs located in 

linkage disequilibrium close to rs10923931 and 5 new candidate SNPs located close to 

rs10965250 and rs1111875. Nonetheless, these SNPs only explain a small proportion (2.3%) 

of the disease risk in the Singapore population. 

In another work conducted by Li (Li et al. 2013), the authors performed a case-control 

GWAS and replication study in the Chinese Hans population. The study comprised three-
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stage GWAS independent sample sets. In the first GWAS, 1999 T2D case and 1976 

nondiabetic control subjects of Chinese Hans from Shanghai and Beijing ethnic populations 

were included in the study with 657,366 genotyped SNPs. In the second study, a replication 

study was conducted using 96 SNPs selected from the first GWAS analysis. In phase three, 

an independent Chinese Hans population from Beijing, Guizhou, and Hubei with 6570 T2D 

cases and 6947 controls subjects were used. In the last stage, 10 candidate SNPs selected 

based on the findings of a large-scale GWAS that combined the first and second phase 

analysis were used for a second replication study. The study contained 3410 T2D cases and 

3412 controls of Chinese Hans from Shanghai in addition to 6952 T2D cases and 11865 

controls from an East Asian population. The initial association analysis was implemented 

using logistic regression under an additive genetic model adjusted for age, sex, BMI, and the 

first two principal components in PCA analysis. Genomic control inflation factor to adjust 

for potential population stratification was performed. The SNP selection for the remaining 

analysis was based on the smallest p-values and a set of SNPs in linkage disequilibrium at 

r2  ≥ 0.1 with the most associated SNPs. In addition, the Cochran Q statistic was used to 

assess the heterogeneity across studies. Two novel T2D loci were identified in this study 

including rs10886471 in the G-protein-coupled receptor kinase 5 (GRK5) gene with p-

value=7.1 × 10−9 and rs7403531 in the RAS guanyl releasing protein1 (RASGRP1) gene 

with p-value=3.9 × 10−9. The authors further confirmed seven established T2D loci and 

they concluded that their study not only contributes to the pathophysiology of T2D but may 

emphasise and highlight the ethnic differences in T2D susceptibility. 

Two novel T2D susceptibility variants were identified in Tsai’s study (Tsai et al. 2010). The 

authors conducted a two-stage genome-wide association analysis in a Han Chinese 

population, in which 995 T2D cases and 894 controls with 516737 genotyped SNPs were 

used in GWAS analysis. For the replication stage, 1803 T2D cases and 1473 controls with a 

set of SNPs identified by the initial GWAS analysis (p-value < 10−5) were considered. T2D 
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association analysis was carried out using various genetic models including genotypic, 

allelic, trend, dominant, and recessive. The study chose the most significant test statistic 

attained from the five genetic models and the SNPs with p-value < 2 × 10−8 were 

considered to be statistically significant. The study also applied Fisher’s exact test to 

combine p-values for joint analysis. The first significant new variant was found for 

rs17584499 located in and around protein tyrosine phosphatase receptor type D gene 

(PTPRD) with (p-value = 8.54 × 10−10, OR = 1.57, 95% confidence interval [CI]=

1.36 − 1.82). The second significant variant was rs391300 (p-value = 3.06 × 10−9, OR =

1.28, 95% confidence interval [CI]= 1.18 − 1.39). The results suggest that identifying two 

novel T2D susceptibility variants in the Han Chinese population may lead to a better 

understanding of the ethnic differences in the molecular pathogenesis of T2D. 

Despite the success of GWAS in revealing genetic variants that are associated with complex 

disorders in populations, GWAS is still in its infancy and further studies to explore the 

genetic components of complex diseases are needed. 

 Summary 

T2D has reached epidemic proportions. Therefore, understanding the underlying causes of 

T2D is of significant importance. A strong body of evidence has suggested that genetic 

factors contribute significantly to the predisposition of T2D. GWAS have succeeded in 

identifying genetic variants that show evidence of increased susceptibility to T2D, however 

GWAS is more suitable for capturing linear interactions between genetic variants ignoring 

the non-linear interactions (epistatic interactions), of multiple genetic variants that exist in 

polygenetic disorders like T2D. 

This chapter presented an overview of T2D aetiology and associated risk factors. This is 

followed by a discussion on genome-wide association analysis and its contribution to T2D 

studies. The next chapter will provide a comprehensive review of epistatic interactions and 
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the approaches used for detecting epistasis in the context of GWAS. Furthermore, artificial 

neural networks, which is the adopted approach posited in this thesis to detect epistasis in 

T2D GWAS, will be discussed.
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 Computational Biology 

 Introduction 

In computational biology, the accumulation of biological data and the need for its storage, 

analysis, annotation, interpretation, visualization, systematization, and integration into 

database management systems and biological networks is the main reason bioinformatics 

emerged. Bioinformatics is a rapidly evolving, multidisciplinary field that provides 

applications, analysis tools, and methods to explore and understand biological data (i.e. 

genomic and proteomic) (Abdurakhmonov 2016; Gauthier et al. 2018; Bartlett et al. 2017). 

Bioinformatics brings expertise from different fields, such as biology, chemistry, physics, 

mathematics, computer science, statistics and engineering to develop theoretical models for 

biological data analyses (Can 2014; Searls 2010). 

Nowadays there is a movement from traditional biostatistical approaches towards a more 

integrated approach that provides advanced methods to handle the complexity of biological 

data analysis as well as the structural interactions between biomolecules. The application of 

bioinformatics in biomedical research has become fundamentally important to advance 

research within the genomic domain (Abdurakhmonov 2016). 

In biomedical research, understanding the aetiology of complex diseases is complicated. It 

has been thought that complex diseases involve multiple genetic constructs and the 

interactions that occur between them (Wang et al. 2014). Genetic factors do not act 

independently but rather in conjunction with other factors such as the environmental and 

sociodemographics. Moore et.al (Moore et al. 2010) suggested that traditional parametric 

statistical approaches, such as linear modelling frameworks (i.e. logistic regression), have 

limited power for modelling the complexity of non-linear interactions between SNPs or 

genes. Yet, these non-linear interactions are necessary to discover the aetiology of complex 

diseases. More specifically, the linear modelling framework examines each SNP 
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independently to discover associations with the phenotype, while ignoring epistatic 

interactions (SNP-SNP interactions) and environmental exposure. Consequently, the 

challenges associated with traditional approaches have led to alternative methods, 

particularly those that incorporate machine learning techniques. 

Advances in machine learning algorithms have enabled further development and 

improvement in the genomic research domain. Using advanced machine learning techniques 

allows us to model the non-linear interaction between genetic variants, the environmental 

and clinical factors. Thus, enhancing our understanding of molecular biology, and complex 

disease susceptibility. 

In this chapter, we introduce the concept of epistatic interactions which is one of our main 

features considered in this thesis. This is followed by the theoretical discussion on artificial 

neural networks, more specifically the state-of-the-art in deep learning which is the adopted 

approach posited in this thesis for detecting epistatic interactions between SNPs. The chapter 

also presents a discussion on six traditional machine learning algorithms used in our 

methodology as a comparison to discover the contribution of non-genetic risk factors to help 

explain disease susceptibility. 

 Understanding Epistasis 

The genetic architecture in complex diseases is not caused by an individual allele or gene. It 

is increasingly apparent that in order to understand the genetic contributions in complex 

disorders, the interactions between SNPs and genes must be considered. This type of latent 

interaction between genetic markers is called epistasis. Epistatic analysis has been reported 

in the literature since it was first coined by William Bateson in 1909 (Bateson 1909). Since 

then, there has been no clear explanation on the meaning of the word “interaction” which 

varies between scientists in the field of biology and statistics. Consequently, the two most 
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common ways to describe epistasis is biological epistasis and statistical epistasis (Evans 

2011). 

Biological epistasis was defined originally by Bateson to describe the masking effect one 

gene has on another. This means a variant at one locus masks the phenotypic expression 

generated by another locus. A simple example is the coat colour of a dog. Assume that there 

are two primary loci that control the coat colour of a dog - black/brown locus (B/b) and a 

white locus (W/w) (Cordell 2002). The black allele is dominant to a brown allele therefore 

if the dog possesses heterozygous genotype (Bb) at this locus the dog will have a black coat 

colour. However, the phenotype expression at the black/brown locus is also controlled by 

the genotype at the white locus. If the dog possesses a homozygous recessive genotype for 

the allele “w” at the white locus, the dog will have a white coat colour regardless of their 

genotype at another locus. This implies that the homozygous recessive genotype of the white 

locus masks the effect of the black/brown locus. In other words, the white locus is said to be 

epistatic to the effect at the black/brown genotype. 

Statistical epistasis was defined by Ronald Fisher in 1918 (Fisher 1918) to describe the joint 

effect of risk alleles at both loci in which the effect is much larger or smaller than implied 

by their individual single-locus additive effect. This simply means any statistical departure 

from the additive combined effect of two loci. For example, consider two genes G1 and G2 

that cause increased body weight. The contribution of each gene separately is a 1-pound 

increase in body weight. Suppose that there is an individual carrying both genes who shows 

a 2-pound increase. This means interaction between the two genes does not exist. In addition, 

the effect of both genes on the phenotype implies a normal additive model of inheritance. 

However, if the joint effect of both genes on an individual showed a 5-pound weight gain or 

even weight loss we could conclude that epistatic interaction must exist. 

Phillips (Phillips 2008) reviewed the essential role of gene interactions in the structure and 

evolution of genetic systems. In his review three different forms were highlighted to describe 
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the concept of epistatic interactions - functional epistasis, compositional epistasis, and 

statistical epistasis. Functional epistasis addresses molecular interactions such as protein-to-

protein interactions. Compositional epistasis refers to what William Bateson originally 

defined as biological epistasis. Statistical epistasis was attributed to the definition by Ronald 

Fisher. Phillips suggested that compositional and statistical epistasis are complementary to 

one another (Phillips 2008). When two genes interact statistically it is more likely that they 

also interact physically (VanderWeele 2010). The physical molecular interactions occur 

between various genes (VanderWeele 2010). Therefore, statistical epistasis can provide 

useful information in the biological understanding of genetic architectures that underlie 

complex disease. 

While genome scans have helped to unravel and identify the genetic risk factors involved in 

common and complex human disease (Visscher et al. 2012), association studies have used 

statistical methods to analyse and explore individual SNPs one at a time. Consequently, they 

do not consider possible interactions present between genetic markers. GWAS have been 

unsuccessful at detecting epistasis as they commonly focus on identifying the main genetic 

associations with additive effect. However, it has been hypothesized that the non-additive 

effects between genes, particularly epistatic interactions, could contribute to our 

understanding of the underlying genetic architecture of phenotypic variation (Phillips 2008). 

Current attempts to study such interactions in complex human disorders have focused on the 

interactions between pre-identified genes that exist in candidate regions (Rishika De et al. 

2015; Rose & Bell 2012). This is an important area of research given that it has been 

suggested that epistasis might account for the remaining unexplained heritability within 

many common complex disorders (Manolio et al. 2009). In particular, Maher (Maher 2008) 

describe such epistatic interactions as “underground networks” in which missing heritability 

could be concealed.   
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 Epistasis Challenges 

It is difficult to detect epistasis or SNP-SNP interactions in large-scale genome-wide 

settings, for three fundamental reasons as outlined by Ritchie (Ritchie 2013). In particular, 

variable selection, model building, and model interpretation in the context of human biology 

have been the primary focus in many research initiatives. 

Identifying appropriate SNPs and evaluating increasingly higher-order combinations from 

very high-dimensional data (of which GWAS is) is computationally difficult. The 

International HapMap Consortium reported that to capture most of the relevant genetic 

markers across the human genome, they needed approximately 300,000 carefully selected 

SNPs (Olivier 2005). Under this assumption, Gilbert-Diamond and Moore (Gilbert-

Diamond & Moore 2011) highlighted that with 300,000 SNPs the generated pairwise 

combinations of SNPs would be 4.5 × 1010. This exhaustive evaluation without high 

performance computing resources would be computationally infeasible. As such, a 

computational algorithm to filter the genome-wide datasets into smaller subsets is often 

needed. 

The second challenge is model building. This involves the development of robust 

computational and statistical methods to model the relationship between high-order SNP 

combinations and disease susceptibility. Traditional parametric-based statistical approaches, 

such as logistic and linear regression, are ineffective at dealing with the problem of 

exponentially increased dimensionality associated with multi-locus testing. The 

epidemiological sample in the study must be exponentially larger to allow for enough 

subjects to be tested with the generated genotype combination for the genetic effects to be 

accurately detected. Therefore, non-parametric approaches more specifically data mining 

and machine learning methods such as Multifactor Dimensionality Reduction, Neural 

Networks, Random Forest, and Support Vector Machines have proven to be more powerful 
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approaches than parametric statistical approaches. Nonetheless, they are not without their 

own limitations. 

The third challenge is the interpretation of epistasis models and their biological context. 

Making biological inferences from computational statistical models can be more challenging 

than detecting and characterizing epistatic interactions. Cordell (Cordell 2009) suggested 

that inferring biological mechanisms from statistical model results is complex and limited. 

Cordell argues that statistical interaction does not necessarily reflect interaction on a cellular 

level and that it is possible for biological epistasis to arise in the absence of statistical 

epistasis. The relationship between statistical and biological epistasis has been discussed in 

detail by Moore and Williams (Moore & Williams 2005). They proposed two significant 

questions “First, when does statistical evidence of epistasis in human populations imply 

underlying biomolecular interactions in the aetiology of disease? Second, when do 

biomolecular interactions produce patterns of statistical epistasis in human populations?” 

They concluded that the relationship between biological and statistical epistasis is difficult 

to comprehend. 

Yet, interpreting statistical epistasis results at a biomolecular level in the context of human 

health and diseases will help provide a central framework for employing genetic information 

to improve diagnosis, prevention, and treatment strategies. 

 Strategies for Detecting Epistasis in Genome-Wide Association Studies 

Despite the spectacular effort in developing statistical methods and computational strategies 

to detect SNP interactions in large GWAS data, epistasis analysis in GWAS remains in its 

infancy. Perhaps one of the reasons is the logistical difficulties associated with large 

combinatorial analysis in high-order SNP interactions. This is in addition to the low 

statistical power caused by small sample sizes in GWAS cohorts (Cordell 2009). Various 

statistical methods have been developed to exhaustively search pairwise or high-order 

interactions between SNPs to detect epistatic effects in genome-wide case-control studies. 
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The pairwise method of interaction involves two loci while high-order interactions require 

three or more loci that interact jointly (Cordell 2009; Taylor & Ehrenreich 2015). These 

methods employ different searching strategies that include exhaustive search (Cordell 2009), 

search based on probability (Prabhu & Pe’er 2012), candidate region search (Rishika De et 

al. 2015), and search based on the filtering (Ding 2014) of interesting SNPs selected through 

a priori knowledge. Moreover, these statistical methods vary in the way they select 

biomolecule units to test for interactions, such as SNPs, genes, and/or proteins. 

3.4.1 Exhaustive Search of Pairwise Interaction 

Pairwise interaction is arguably one of the simplest methods to perform when detecting 

interactions in genome-wide data (Cordell 2009). This method is used to test all possible 

pairs of loci across the genome and implement interaction tests for each two-locus 

combination. Although, pairwise search is computationally feasible, it is in practice, an un-

scalable and time-consuming process. Given the number of genetic markers routinely 

generated in genome-wide studies (anything between 500,000 and 1 million SNPs), it is clear 

to see this approach has limited utility, particularly in complex diseases where many 

interacting SNPs are the route cause. Therefore, performing such a large number of statistical 

tests may suffer from low statistical power (Cordell 2009). However, the evolution and 

availability of parallel processing facilities, i.e. banks of Graphical Processing Units (GPUs), 

will make such tasks possible within a reasonable time frame (Chatelain et al. 2018; Hemani 

et al. 2011). 

3.4.2 Exhaustive Search of Higher-Order Interaction 

In the context of genome-wide data, implementing an exhaustive search over higher-order 

interactions, i.e. third and fourth-order, poses a significant challenge (Sailer & Harms 2017). 

There are an enormous number of multiple tests generated and these are proportional to order 

level interactions. Consequently, the number of comparisons required increases 

exponentially and thus the time required to perform such analysis (Taylor & Ehrenreich 
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2015). In addition, the fact that higher-order interaction analysis requires many degrees of 

freedom will potentially reduce statistical power in studies (Cordell 2009). It has been 

suggested that in order to mitigate such issues a two-stage procedure should be employed 

(Faye & Bull 2011; Nguyen et al. 2015). The first stage focuses on a subset of loci identified 

through single-locus threshold analysis, and the second stage, using this subset to perform 

the exhaustive search of all possible interactions between these loci. There is a debate for 

selecting loci at the first stage. This concern is that while some loci are truly associated with 

the phenotype, they are often discarded due to threshold selection. This is particularly true 

for loci with no marginal effects. The selection process of loci based of single-locus 

thresholds could be altered to select loci based on a priori knowledge of biology, genetic 

impact and pathway information, but this would discount the hypothesis-free nature of 

genome-wide analysis (Herold et al. 2009). 

3.4.3 Computational Statistical Approaches for Epistasis Detection 

It is critical to model complex interactions between genetic markers if epistasis is to be 

detected. The challenge of identifying epistatic interactions in large-scale GWAS case-

control data has attracted a great deal of research interest. Up to now, there are almost one 

hundred computational software tools designed and developed for epistasis detection. The 

omictools website provides a full list of tools to be used with GWAS data analysis 

(https://omictools.com/epistasis-detection-category). In this section the focus will be on 

software methods that have become popular and shown particular promise for identifying 

epistasis in genome-wide case-control studies using the statistical epistasis definition. 

Zhang and Liu (Zhang & Liu 2007) developed Bayesian Epistasis Association Mapping 

(BEAM), which uses a Bayesian partitioning model to model disease-associated markers 

and their interactions. BEAM computes the posterior probability that each individual marker 

set is related with the disease via Markov chain Monte Carlo. Zhang et al. (Zhang et al. 2010) 

proposed Tree-Based Epistasis Association Mapping (TEAM), using an exhaustive search 
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pairwise algorithm for fast detection of SNP-SNP interactions in GWAS settings. This 

program utilizes permutation tests over the common Bonferroni correction adjustment 

method to control family-wise error and false discovery rates. In addition, TEAM applies 

minimum spanning tree structures that significantly increase the performance and accelerate 

the process of epistasis detection in GWAS data. Wan et al. (Wan et al. 2010) developed the 

BOolean Operation-based Screening and Testing (BOOST) software tool, which is a 

computationally and statistically feasible and fast program for the detection of all pairwise 

epistatic interactions. BOOST was designed based on a Boolean representation of genotype 

data that uses fast logic operations (bitwise) to generate contingency tables that promote 

space and CPU efficiency. In addition, this program was developed using a two-stage search 

method; screening and testing. The selected SNPs in the screening stage are forwarded to 

the testing stage to measure the interaction effects of SNP pairs by employing the likelihood 

ratio statistic and log-linear model. To further improve computation time, a GPU-based 

version of BOOST was introduced called GBOOST (Yung et al. 2011). Wang et al. (M. H. 

Wang et al. 2016) introduced a fast and powerful W-test for identifying pairwise epistatic 

interactions. The test is particularly powerful when using low frequency variants, in which 

MAF is between 1 and 5 percent in GWAS data. The test is advantageous over alternative 

methods. First, it is model-free such that no assumptions are made about the genetic effect 

model. Second it incorporates a Chi-Squared distribution that has data-adaptive degrees of 

freedom, allowing for robust association testing in genome scans. Herold et al. (Herold et 

al. 2009) introduced the INTERSNP tool for genome-wide interaction analysis that 

considers two and three-markers for association tests. INTERSNP selects combinations of 

SNPs for interaction analysis based on a priori information including statistical evidence for 

single-marker association, genetic relevance of SNP genomic location, and the biological 

relevance of SNP function and pathway information. The authors concluded that the 

proposed tool can help elucidate the actual relevance of gene interactions in complex 

diseases and demonstrate the potential and feasibility of completing three-marker interaction 
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analysis. Recently, Fang et al. (Fang et al. 2017) developed a technique based on high-

dimensional grouped variable selection, called Two-Stage Grouped Sure Independence 

Screening (TS-GSIS) for detecting SNP-SNP interactions with or without marginal effects 

as well as identifying causal SNP effects within a certain gene and their corresponding SNP-

SNP interaction effects. Moreover, Lasso regression is used with the TS-GSIS approach to 

select important SNPs in candidate genes to reduce the dimension of data by determining 

the size of candidate genes in models. This is a powerful characteristic to balance model 

complexity and predictive performance. 

Terada et al. (Terada et al. 2016) proposed a software tool named LAMPLINK for the 

detection of statistically significant high-order interactions from genome-wide case-control 

data. The authors incorporate Limitless Arity Multiple-testing Procedure (LAMP) (Terada 

et al. 2013), a statistical method to list statistically significant combinatorial effects that 

consist of three or more SNPs in each combination using PLINK (Purcell et al. 2007) to 

perform association analysis for GWAS. LAMPLINK is limited to dominant and recessive 

models neglecting the additive genetic model which might provide new insights into the 

missing heritability problem. In terms of time performance, LAMPLINK outperforms 

existing traditional techniques such as logistic regression and multifactor dimensionality 

reduction when performing combinatorial interaction analysis. 

Although, these above-mentioned techniques have been widely used for the detection of 

SNP-SNP interactions they are often criticised for their inability to deal with high-

dimensional data. Consequently, these approaches are not scalable and will likely become 

redundant as the number of SNPs sequenced significantly increases over time. 

3.4.4 Data Mining and Machine Learning Approaches for Epistasis Detection 

A variety of data mining approaches, including data reduction and data recognition, have 

been used to detect interactions between genes in large-scale genetic studies. Data reduction 

approaches involve the transformation of data to a lower dimensional space (Rehman et al. 
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2016). There are several examples of data reduction approaches including the restricted 

partition method (RPM) (Culverhouse 2010), Combinatorial partitioning method (CMP) 

(Nelson 2001), set association (Ott & Hoh 2003), and multifactor dimensionality reduction 

(MDR) (Ritchie et al. 2001). Advances have also been made in pattern recognition studies, 

where patterns and regularities in the data can be used to classify and discriminate between 

groups using high-decisional data sets, such as GWAS (Nandy & Padariya 2016). This has 

been achieved using several traditional machine learning algorithms that include support 

vector machines (SVMs), artificial neural networks (ANNs), and random forests (RF). 

3.4.4.1 Data Reduction Approach 

Multifactor dimensionality reduction (MDR) has been successfully applied to detect 

common interactions between loci for a wide variety of human diseases including T2D 

(Barna et al. 2018), Bladder Cancer (Andrew et al. 2008), Bipolar Disorder (Oh et al. 2012), 

Alzheimer (Martin et al. 2006), Obesity (R De et al. 2015), and Sporadic Amyotrophic 

Lateral Sclerosis (Greene et al. 2010). 

MDR is a feature or attribute constructive induction algorithm (Moore 2007) that performs 

data reduction by converting high-dimensional data, e.g., multi-loci data, into one-dimension 

with two levels: high and low risk. The process of attribute construction is performed by 

pooling a new single attribute from multiple variables, e.g., a single SNP from multiple SNPs 

so that a new attribute acts as a function of two or more other attributes (Moore 2007). MDR 

was developed to detect interactions between loci in the absence of marginal effects. In 2001 

(Ritchie et al. 2001), MDR became a breakthrough approach and an alternative solution to 

parametric regression paradigms such as logistic regression where interactions are explored 

exclusively among loci that exhibit statistically significant effects. 

MDR was one of the earliest approaches developed to facilitate the detection, 

characterization, and interpretation of epistatic interactions in genetic studies of human 

disease. This approach was evaluated using Sporadic Breast Cancer in population-based 
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studies (Ritchie et al. 2001). The study revealed statistically significant high-order 

interactions among four polymorphisms from three different Estrogen-Metabolism genes. 

This was the first report of such interactions associated with a common complex multifactor 

human disorder (Ritchie et al. 2001). 

The popularity associated with the use of MDR in epistasis analysis was found due to the 

fact that the model is a non-parametric approach (Moore & Andrews 2015) in which no 

hypothesis about the value of a statistical parameter is made. It is a genetic model-free 

approach (Moore & Andrews 2015) that assumes no particular inheritance model. This is 

particularly useful for complex diseases in which the mode of inheritance is obscure and 

complex. MDR also uses a highly constructive induction algorithm to detect non-linear 

interactions among discrete genetic attributes. This is achieved by selecting two or more 

SNPs and reducing them to a single feature thus permitting interaction effects to be detected. 

Moreover, the integration of cross-validation resampling with MDR adds additional 

characteristics to the model. This is specifically important to avoid overfitting and minimize 

the false-positive rate in GWAS settings. 

MDR provides a comprehensive and powerful data mining approach for detecting, 

characterizing, and interpreting non-linear epistatic interactions by combining attribute 

selection, attribute construction, classification, cross-validation and visualization, but it does 

come with its own limitations. The main limitation is scalability (Bush et al. 2006). It does 

not scale up when a large number of predictor variables are used. In the case of GWAS 

analysis, the number of genetic markers (predictors) can be between 500,000 and 1 million 

and in some cases much higher. By performing pairwise search using MDR for GWAS 

settings this would seem impractical. MDR on more than a few hundred loci will be 

computationally difficult (Bush et al. 2006). Therefore, to apply MDR on GWAS data, the 

predictor variables need to be reduced. Variables for MDR analysis are often selected from 
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candidate gene studies or extracted from a large set of genetic markers using one of the 

filtering approaches (Ritchie 2013). 

Furthermore, MDR does not distinguish between marginal effects from pure interaction 

effects and this can make it difficult to interpret. More importantly, model power is reduced 

significantly when 50% genetic heterogeneity is present (Upstill-Goddard et al. 2013). 

Over the last two decades numerous extensions to MDR have emerged to improve and 

overcome some of the limitations evident in the original model. Extended MDR 

implementations include methods to handle unbalanced datasets (Yang et al. 2013; Velez et 

al. 2007), missing data (Namkung et al. 2009), covariate adjustment (Calle et al. 2008), and 

model-based MDR in the presence of noise (Cattaert et al. 2011). Additionally, others were 

developed to make large-scale analysis of epistasis tractable, i.e. MDR-based solutions that 

utilise GPUs (Greene et al. 2010) to accelerate epistasis analysis (Sinnott-Armstrong et al. 

2009). Unified model-based MDR approaches (UM-MDR) (Yu et al. 2016) have also helped 

to overcome the limitation of evaluating the significance of multi-locus models. Empirical 

Fuzzy MDR (EF-MDR) (Leem & Park 2017) was developed to avoid the difficulty in 

reflecting the uncertainty of high-risk and low-risk in binary classification settings. Although 

significant advances have been made, MDR and its variants are considered computationally 

prohibitive. 

3.4.4.2 Filtering Approach 

Because the search space in multivariate models of genomic datasets is large, due to the large 

number of features (SNPs) considered, detecting epistatic interactions remains a significant 

challenge. Thus, filtering approaches have seen widespread use to select important variables 

prior to epistasis analysis to improve efficiency in data mining and machine learning studies. 

Various methods have been proposed to perform feature selection. One such approach is 

ReliefF (Greene et al. 2009; Robnik-ˇSikonja & Kononenko 2003), which is an attribute 

quality estimator. ReliefF is based on detecting conditional dependencies between attributes 
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and searching for nearest neighbours. In addition to its natural interpretation, the algorithm 

is effectively scaled up to include a large number of examples and features. However, the 

algorithm can be sensitive to a large number of variants that are irrelevant to the 

classification of the trait. Mckinney et al. (McKinney et al. 2007) proposed an alternative 

approach named Evaporative Cooling (EC) for feature selection that overcomes ReliefF 

limitations. 

Recently, Verma et al. (Verma et al. 2018) proposed a collective feature selection approach 

to select true positive epistatic variables using various parametric, non-parametric, and data 

mining methods. Using this approach proves to be effective for selecting features with 

epistatic effects in the presence of incomplete penetrance, and polygenic inheritance. 

3.4.4.3 Pattern Recognition Approach 

As elucidated previously, pattern recognition is a complex process that deals with real and 

noisy data and recognizing patterns and regularities that can be used to classify and 

discriminate between groups using the full dimensionality of the data. One of the popular 

and appropriate pattern recognition approaches for large-scale genomic data analysis is 

random forest. 

Random forest (RF) is one of the non-parametric machine learning algorithms that is based 

on a randomized decision tree ensemble (Breiman 2001). It exhibits the potential to capture 

epistatic interactions through the process of variable selection (Chen & Ishwaran 2012; 

Kawaguchi 2012). It ranks variables using variable importance measures (Breiman 2001) 

and detects interactions between features (Strobl et al. 2008). The major limitation with RFs, 

however, is that the detection of gene–gene interactions depends on the presence of main 

effects (Kim et al. 2009). Thus, epistatic interactions with no marginal effects are often left 

undiscovered when RF analysis is performed. 

Another limitation with the RF algorithm is that was designed to analyse data with no more 

than a few thousands features (SNPs) on a standard machine (Qi 2012). Schwarz et al. 
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(Schwarz et al. 2010) developed a Random Jungle (RJ) algorithm based on an extension to 

RF. The RJ is a computational, and memory efficient method designed to handle large-scale 

GWAS datasets with hundreds and thousands of samples and SNPs. RJ is based on variable 

backward elimination while maintaining all other options provided by the original RF 

particularly the permutation importance measure. In addition, it uses multithreading and a 

Message Passing Interface (MPI) across processes that can be implemented on multiple 

CPUs simultaneously. A real GWAS dataset from a Crohn’s disease study consisting of 513 

cases and 515 controls with 317,503 genotyped SNPs was used to implement RJ. Analysing 

GWAS data using RJ seems to be feasible with respect to time and memory consumption 

and the results show that the RJ is a promising method for high-dimensional GWAS data. 

The application of RJ to GWAS may help to identify interacting SNPs that were not found 

using traditional parametric statistical approaches. 

Another extension to RF is SNPInterForest (Yoshida & Koike 2011). SNPInterForest was 

built based on a modification to the RF construction framework, which allows for either a 

combination of SNPs or a single SNP when choosing a split variable at each node. This 

prevents the important scores of SNPs with no marginal effects from being underestimated. 

Furthermore, the interaction score measurement is introduced to discover interacting SNP 

combinations. Thus, if a certain SNP combination appears frequently on a branch, the 

interaction strength is calculated based on the number of simultaneous appearances of SNP 

combinations in each branch of each tree. Accordingly, it is more likely that these SNPs for 

the corresponding SNP combinations can identify interactions between them. 

SNPInterForest has been evaluated on a real Rheumatoid Arthritis GWAS dataset from The 

Wellcome Trust Case Control Consortium (WTCCC), which contains 500,000 genotype 

SNPs and 3499 cases and controls (Yoshida & Koike 2011). The evaluation revealed that 

SNPInterForest achieved considerable improvements in detecting pure epistatic interactions 

in comparison to an RF ensemble learning algorithm. Furthermore, SNPInterForest 
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outperformed existing methods based on exhaustive search strategies, which include 

BOOST (Wan et al. 2010) and SNPHarvester (Yang et al. 2009). However, computational 

burden is considered one of the main limitations of SNPInterForest implementation, as is the 

case with many other similar approaches. 

In addition to RF, Neural Networks (NNs) and Support Vector Machines (SVMs) have 

shown excellent power in identifying epistatic interactions in complex human traits. Neural 

Networks with a feedforward, and backpropagation architecture are capable of dealing with 

large datasets (e.g. large-scale GWAS data). NN algorithms with advanced characteristics 

can sufficiently detect epistatic interactions including genetic heterogeneities, incomplete 

penetrance (high effect size), and polygenic inheritance. 

While SVM algorithms are as robust as NNs and demonstrate significant power when used 

to detect epistasis, in comparison to MDR, Chen et al. (Chen et al. 2008) conducted an 

experiment in a case-control Prostate Cancer study population employing SVM and MDR. 

The authors revealed that an SVM outperformed MDR under all the scenarios particularly 

in the presence of 5% genotyping error, 5% missing data, or a combination of both under 

different pairwise epistasis models with a variety of allele frequencies. The following 

sections discuss these approaches in more detail. 

 Artificial Neural Networks 

An artificial neural network (ANN) is a machine learning technique that is inspired by the 

way biological nervous systems (human brain) process information (Haykin 1994). The 

brain is a highly complex, non-linear, parallel computer system composed of millions of 

highly interconnected neurons organized to perform computation, e.g. pattern recognition, 

vehicle control, and human vision. Typically, these neurons have the ability to transmit and 

receive information (signals) and process inputs to produce any number of different outputs. 

In the human brain, connections between neurons transmit signals between interconnected 

neurons. The direction of these signals can be unidirectional or bidirectional. The learning 
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process in the human brain is based on experience (training). Learning in biological systems 

is achieved by making small compensatory adjustments to connections that exist between 

the neurons (tuneable weights) as well as changing neuron activation thresholds. 

ANN is a crude simulation that attempts to mimic the behaviour of our brain (Haykin 1994). 

Neural networks constructed from a group of interconnected neurons are organised into 

layers. Input, hidden, and output layers when combined describe the structure of the network. 

The input layer is the first layer, and its neurons receive information signals from external 

sources. The output layer is the last layer in the network, and its neurons present their output 

to the outside world. The middle layers are referred to as the hidden layers, and they are 

located between the input and output layers. The hidden neurons receive their inputs and 

transmit their outputs internally in the network. Every neuron in the network is a processing 

unit that takes an input signal with its weight and performs a fixed mathematical operation 

using an activation function. The activation function defines the output of the neuron and 

the scale based on predefined thresholds. In order for neural networks to learn and produce 

the desired output, the weights are adjusted during the learning or training process. 

Based on the theoretical definition of ANNs in (Anthony & Bartlett 1999), the basic 

computational units in neural networks are neurons, each neuron takes 𝑛 input values 

𝑥1, 𝑥2, … 𝑥𝑛, and a bias intercept term represented by +1 (not included in the input), which 

is a constant term used to overcome the problem with input patterns that are zero. The 

network outputs a hypothesis ℎ𝑊,𝑏(𝑥) where 𝑊 and 𝑏 are weight and bias parameters that 

can be learned from input data, 𝑥. The neuron output is defined as: 

 ℎ𝑊,𝑏(𝑥) = 𝑓(𝑊𝑇𝑥) = 𝑓(∑ 𝑊𝑖𝑥𝑖 + 𝑏)  
𝑛

𝑖=1
 (3.1) 

where 𝑓: ℝ ↦ ℝ represents the activation function. Figure 3.1 illustrates a basic example of 

a neuron. 
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Figure 3.1: Single Neuron 

There are various types of activation function; sigmoid function, hyperbolic tangent, rectifier 

linear unit, and maxout (Anthony & Bartlett 1999; Candel et al. 2018). The formal definition 

of these activation functions are as follows: 

• Sigmoid Activation Function: 

Sigmoid is the non-linear activation function that corresponds to the input-output 

mapping defined in logistic regression. Sigmoid is used to scale the neuron’s output 

to a range of [0,1]. The sigmoid function is represented as: 

 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

(3.2) 

where 𝑥 denotes the input to the neuron. Figure 3.2 (a) presents the graphical 

representation of a sigmoid function. 

• Hyperbolic Tangent Activation Function: 

The Hyperbolic Tangent (tanh) activation function is another common non-linear 

activation function and used to scale the output between [-1,1]. Hence, the tanh 

function is a rescaled version of the sigmoid function mainly used for classification. 

The tanh function is formulated as: 

 𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(3.3) 

where 𝑥 denotes the input to the neuron. Figure 3.2 (b) presents the graphical 

representation of a tanh function. 
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• Rectifier linear unit Activation Function: 

The rectifier linear unit (ReLU) is a very popular non-linear activation function in 

deep neural networks. The main reason is that not all the neurons are activated at the 

same time, allowing sparsity to be added to the network, which helps reduce 

computational overheads. It is used to scale the output between [0 and infinity]. This 

activation function has a zero threshold and is given as follows: 

 𝑓(𝑥) = max(0, 𝑥) (3.4) 

Hence,  

 𝑓(𝑥) = {
0  𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 (3.5) 

where 𝑥 denotes the input to the neuron. Figure 3.2 (c) provides a graphical representation 

of the ReLU function. 

• Maxout Activation Function: 

The maxout activation function is a generalized version of ReLU. It is the max of 

two inputs. Maxout does not suffer from dying neurons (transferring negative inputs 

to the ReLU function as zero). This means the gradient is zero and the neurons can 

never be activated in this region. Maxout is used to scale the output between [-infinity 

and infinity]. The maxout activation function is defined as follows: 

 𝑓(𝑤𝑇𝑥 + 𝑏) = 𝑚𝑎𝑥(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2) (3.6) 

where 𝑥 denotes the input to the neuron. 

   

a. Sigmoid b. Tanh c. ReLU 

Figure 3.2: Activation Functions Graphical Representation 
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It is often difficult to determine which activation function to adopt for your data; as each 

may outperform the other in different scenarios (Candel et al. 2018). Thus, grid search 

models are often used to compare activation functions and select the one that is best for your 

data. 

3.5.1 Characteristics of Artificial Neural Networks 

Using ANN offers various useful properties and capabilities (Haykin 1994). 

- A neural network is a non-linear model, where each neuron in the network is basically 

a non-linear unit. Neurons are used to construct the network. Non-linearity is a highly 

important characteristic in neural networks, particularly if underlying datasets are non-

linear. Moreover, non-linearity offers additional flexibility to the neural network in 

modelling real-world complex relationships. 

- Input-output mappings allow neural networks to learn using a supervised learning 

paradigm (labelled training data that corresponds to target responses). The training of the 

network is performed iteratively, and the weights modified until the network reaches a 

steady state. 

- Neural networks are considered data driven self-adaptive algorithms that can be 

effectively adapted to given datasets. They are designed to reject ambiguous patterns that 

arise in classification tasks and provide confidence values for decisions made. 

- ANNs are described as universal approximation functions that can approximate any 

complex non-linear function with arbitrary accuracy. 

- Neural networks are massively parallel systems, similar to the parallel distributed 

structure of the brain, and have the ability to capture truly complex behaviour in a highly 

hierarchical fashion. This feature makes ANNs appealing for solving large-scale and 

complex real-world applications. 
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3.5.2 Structure of Artificial Neural Networks 

 In ANN the communication links (connections) between neurons are responsible for 

information propagation (Haykin 1994). There are two common types of ANN architecture 

widely used for classification and prediction problems. These are feedforward neural 

networks and recurrent neural networks. In the former type, information is transmitted in a 

forward direction through the network layers, on a layer-by-layer basis, starting from the 

input layer through to the output layer. In the later type, the structure of the network 

integrates feedback loop connections in each neuron in the hidden layer to provide dynamic 

behaviour in the neurons. In this thesis only feedforward neural networks are considered, in 

particular multilayer perceptrons. 

3.5.3 Multilayer Feedforward Neural Networks 

Multilayer feedforward neural networks are also known as multilayer perceptrons (MLP). 

MLPs are distinguished by the presence of one or more hidden layers in their structure 

(Haykin 1994). Each hidden layer contains a number of hidden neurons. The function of 

hidden neurons is to interconnect input and output neurons. These hidden neurons enable the 

neural network to learn non-linear complex tasks by extracting meaningful features. 

Extracting higher order features is particularly valuable when the input vector is large 

(Haykin 1994). The neurons in MLPs exhibit a high degree of connectivity, as the output of 

one neuron is the input to all other neurons in the adjacent forward layer. The number of 

hidden layers and the number of the hidden neurons in each layer determines the 

performance of neural networks (Heaton 2008). Therefore, different neural network 

structures generate different outcomes. If a limited number of hidden neurons are used, this 

can lead to underfitting (Heaton 2008), where the model is unable to extract and learn the 

non-linear structure in complex high-dimensional datasets. On the other hand, using too 

many hidden neurons can lead to overfitting (Heaton 2008), where the network is tuned to 

the training data resulting in a network that cannot generalise using unseen data samples 

(Haykin 1994). 
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The backpropagation algorithm provides a computationally efficient method for training 

MLPs for supervised learning. The learning process minimizes a cost function in accordance 

with an error-correction rule (Haykin 1994). If the response of the network generates output 

not close to the desired response (target), the weights of the network are adjusted to minimize 

the error (cost function). 

3.5.4 Backpropagation Algorithm 

Backpropagation (Werbos 1982; Rumelhart et al. 1986; Werbos 1974; LeCun et al. 1998) is 

a learning algorithm for implementing gradient descent in weight space for neural networks 

and is widely used for training multilayer feedforward networks. The intuition behind this 

technique is to efficiently compute gradient vectors (partial derivatives) of the cost function, 

to minimize the overall cost function with respect to weights and bias. The backpropagation 

process contains two passes through the different layers of the network (forward pass and a 

backward pass) (Haykin 1994). During the forward pass, the input vector is fed forward 

through the network, layer by layer, to produce a set of outputs. The error term, which is the 

difference between the actual response from the network and the desired response (target), 

is calculated. In the backward pass, the error term is propagated backwards to the previous 

layers through the network to adjust the weights between the units. During this training stage 

the weights of the network are adjusted iteratively using gradient descent optimization to 

minimise cost function errors, i.e. the actual response becomes closer to the desired response. 

 Deep Learning 

Deep learning (DL) is an efficient fast-growing class of machine learning that has its 

foundation in artificial neural networks. Early deep learning networks were built using 

ANNs in the 1980s (Fukushima 1980). However, the popularity of DL was not seen till 

breakthroughs by Hinton began to appear in 2006 (Hinton & Salakhutdinov 2006). Since 

then, DL has been used across many domains, including image recognition (Krizhevsky et 
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al. 2012), speech recognition (Hinton et al. 2012), natural language processing (Collobert et 

al. 2011), and pharmaceutical formulation analysis (Ekins 2016). 

The basic structure of DL networks is an ANN with many hidden layers and neurons – 

typically more than three hidden layers. This offers better capacity for feature learning and 

extraction. DLs are known as representation learning methods that consume raw data and 

automatically discover deep abstract representations to learn complex functions (LeCun et 

al. 2015). A key aspect of deep learning is its ability to automatically learn features from 

data and the interactions between data points using a representation learning procedure (Min 

et al. 2017). This characteristic of DL has helped to make major advances in solving big data 

problems. However, ANNs with many hidden layers can cause gradient-based training of 

randomly initialised weights in deep neural networks to get stuck in the local minimum. 

Consequently, Hinton and Salakhutdinov (Hinton & Salakhutdinov 2006) proposed a greedy 

layer-wise pre-trained deep autoencoder to initialise the weights of networks layer-by-layer 

and learn reduced representations from raw data. This algorithm offers a good solution to 

the local minimum problem. In addition, this algorithm allows non-linear structures between 

features to be discovered and extracted in complex and large-scale datasets. 

3.6.1 Deep Learning Architecture 

The basic architecture in deep learning is a neural network architecture with many hidden 

layers and neurons. Different architectures have been proposed and many have been 

successfully used in various domains. Convolutional neural networks propose deep learning 

structures that are inspired by models of the human visual cortex, which have been widely 

utilised in image recognition (Krizhevsky et al. 2012) and natural language processing 

(Collobert et al. 2011). While recurrent neural networks,  that build dynamic behaviour into 

the neurons, have become the primary method for time series data (Graves et al. 2013). Other 

architectures based on restricted Boltzmann machines (RBMs) (Smolensky 1986) i.e. deep 

belief networks (DBNs) (Hinton et al. 2006), and deep autoencoders specifically stacked 
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autoencoders, have also gained popularity in dimensionality reduction and for pre-training 

deep networks (Hinton & Salakhutdinov 2006). Table 3.1 presents some common DL 

approaches. 

The learning process in deep learning is split into three main categories: 

-Networks for supervised learning: this type of learning process is designed to train 

networks using labelled data. It is mostly used for classification tasks. 

-Networks for unsupervised learning: designed to train networks with unlabelled data. This 

offers an efficient method to automatically learning features and capturing high-order feature 

interactions. 

-Networks for semi-supervised learning: designed to train networks using labelled and 

unlabelled data. The unlabelled data is used to initialise the weights of a fully connected 

network for classification tasks using labelled data. 

 



65 
 

Table 3.1: Different Architectures of DL 

Architecture Description 

Deep Neural Networks • Deep framework with fully connected input, output and multiple hidden layers. 

• Used for classification and regression tasks. 

• Automatically learn deep non-linear abstract representations from raw data. 

Stacked Autoencoder • Consists of multiple layers of single autoencoders. Aims to reconstruct the input vector. 

• Used for dimensionality reduction (feature extraction) and pre-training deep networks. 

• Mainly for unsupervised learning. 

• Training process based on a greedy layer-wise learning strategy to initialise the weights of fully 

connected networks. Then fine-tuned using backpropagation for classification tasks. 

Deep Belief Networks • Applied to supervised and unsupervised learning. 

• Consists of a composition of restricted Boltzmann machines. Each subnetwork hidden layer is 

connected to the visible layer of the next RBMs. 

• The top two layers have undirected connections and directed connections to the lower layers. 

• Training process based on a greedy layer-wise learning strategy to initialise the network using 

unlabelled data, followed by fine-tuned training for classification tasks. 

Convolutional Neural Networks • Consists of a sequence of convolutional and subsampling layers followed by a fully connected layer 

for classification. 

• Used for feature extraction in two and three-dimensional data such as images. 

• Unsupervised and Supervised learning process. 

Recurrent Neural Networks • Contains cyclic connection in hidden neurons to perform recurrent computation. 

• Includes two sources of input to hidden neurons: the past information stored in the hidden unit and 

the present input. 

• RNN has memory, therefore it is used in sequential applications where outputs depend on previous 

input computations. 

• Unlike other DL architectures, RNNs share the same weights in its forward computation. 
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3.6.2 Autoencoder 

An autoencoder (AE) is an artificial neural network that is utilized for unsupervised learning. 

AEs automatically learn features from unlabelled data (Le 2015; Ng 2011) and their primary 

application is in data reduction (Hinton & Salakhutdinov 2006). However, researchers have 

found that autoencoders can be used as a way to pre-train deep neural networks (Bengio et 

al. 2007; Erhan et al. 2010; Erhan et al. 2009). An Autoencoder consists of three or more 

layers: an input layer, a number of hidden layers, and an output or reconstruction layer. A 

shallow or simple structured autoencoder is a single hidden layer neural network that maps 

the original data (input values) to compressed data (lower dimensionality than the original 

data) through an encoding process which is in turn mapped to an output layer to approximate 

the original data through a decoding process (Le 2015). Basically, a shallow AE learns a 

low-dimensional representation similar to principal components analysis. AE computes the 

principal components of the input data, which is the optimal basis for linear dimensionality 

reduction. Figure 3.3 presents a single hidden layer AE, illustrating the encoding and 

decoding steps. 

 

Figure 3.3: Autoencoder 

This is a single layer autoencoder procedure. DL architectures have better capabilities when 

several autoencoders are stacked (Bengio et al. 2013). The following section explains 

stacked autoencoders in more details.  
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3.6.3 Stacked Autoencoders 

Stacked autoencoder (SAE) is a neural network comprising multiple layers of sparse 

autoencoders (Bengio et al. 2013). SAE trains each layer in turn, in a greedy layer-wise 

unsupervised fashion for pre-training the weights parameters of deep network (Bengio et al. 

2007). The greedy layer-wise training approach first involves training the first sparse 

autoencoder on the raw input vector of the network to obtain initial set of weights parameters 

for that first layer and to learn the first reduced representation of the raw input, resulting in 

first order features. This abstract representation of features in first layer acts as an input for 

the second sparse autoencoder, refers to second layer in SAE. The second layer is trained 

with similar manner, allowing to initialize weights parameters for that layer and produce 

reduced representation of features corresponding to the first order features. The process of 

training the parameters of each layer individually is repeated, using the output (the abstract 

representation) of each layer as input for the next layer, until the parameters for each layer 

are initialized (pre-trained). The last layer of SAE represents the deepest layer of the network 

and it contains the information of interest delivered by the activation vector. This activation 

vector presents the last and higher order features corresponding to the raw input vector of 

the network. The output of this last layer of SAE is linked to the softmax classifier. The 

softmax classifier is a supervised learning algorithm and it is commonly used in conjunction 

with the unsupervised deep learning for feature learning methods.  

Finally, following the unsupervised pre-training stage of SAE, the error term of softmax 

classifier is computed and then propagated backward into the stacked layers. The whole 

network is fine-tuned using backpropagation learning algorithm. During backpropagation 

training stage the weights of the network is adjusted iteratively using the gradient descent 

optimization until the errors of cost function is minimized so that the actual output vector, 

which is the network’s activation vector, becomes closer to desired output vector through 

the network. Chapter 4 (section 4.5.4) will explain SAE that is used with T2D GWAS data 
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in more details. Refer to Figure 4.11 for the entire process of SAE (unsupervised pre-training 

and supervised fine-tuning stages).         

This greedy layer-wise learning algorithm based on training the network layer-by-layer is 

nonetheless a very efficient way to convert high-dimensional data into low-dimensional data, 

allowing highly abstract non-linear structure between features to be discovered. 

Furthermore, this layer-by-layer greedy learning strategy allows weights to be initialised in 

regions near to a good local minimum, bringing better optimisation and generalisation 

(Bengio et al. 2007). 

In this thesis we use this greedy layer-wise learning algorithm to extract the non-linear 

epistatic interactions between SNPs in T2D GWAS data and to initialise the weights of a 

fully connected multilayer perceptron softmax classifier before it is fine-tuned for the binary 

classification of T2D as either case or control. 

3.6.4 Deep Learning Hyperparameters Optimisation 

In order to improve and accelerate the performance of neural networks and to achieve better 

generalization, various studies and investigations have been conducted to optimise the 

learning process in NNs. One of the primary elements is regularization, which is a strategy 

used to avoid overfitting and enhance performance. For example, dropout regularization 

(Srivastava et al. 2014), randomly removes hidden neurons from the network during the 

training process. Other researchers have developed different techniques to improve the 

training processes in NNs, such as tuning the learning rate and momentum term 

(Schmidhuber 2015). A complete description of tuning hyperparameters used to improve the 

training stage in neural networks in this thesis is provided in Table 3.2.  
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Table 3.2: Definition of Tuning Parameters used with Neural Networks 

Tuning Parameter Description of Tuning Parameter 

Input dropout ratio 

A fraction of the features for each training row to be removed from 

training. It is useful when the feature space is large and noisy. This can 

improve generalization. 

Stopping metric Is used to determine the metric to use for early stopping. 

Stopping tolerance 
Is used to set the relative tolerance for metric-based stopping to stop 

training when improvement is less than tolerance value. 

stopping rounds 
Is used to stop training if the option selected for the stopping metric 

doesn’t improve for the specified value for training rounds. 

Learning rate 

Is a function of the difference between the predicted value and the target 

value (step size of weight to update during training). Backpropagation is 

used to correct the output at each hidden layer. A large learning rate leads 

to oscillatory traps in the learning process thus passing the local 

minimum. While a small learning rate can result in training freezing in a 

local minimum. Learning rate controls how slowly or quickly an NNs 

model learns the problem.   

Rate annealing Is used to ensure the learning rate does not freeze into local minimum. 

Rate decay Is used to control the change of the learning rate throughout layers. 

Momentum start Is used to control the amount of momentum at the beginning of training. 

Momentum stable Is used to control the amount of learning for which momentum increases. 

Momentum ramp 
Is used to control the final momentum value reached after momentum 

ramp training samples. 

Max w2 

Is a maximum sum of the squared incoming weights in any single neuron. 

It is useful when the activation function is set to Rectifier. This helps 

stability when the Rectifier is used. 

L1 (Lasso), L2 (Ridge) 
Are regularization techniques to modify the cost function and minimize 

cost. This helps prevent overfitting and improve generalization. 

 Traditional Machine Learning Algorithms 

Technically machine learning algorithms are developed to either model linear or non-linear 

effects. In this thesis, the linear learning algorithm used is the Generalized Linear Model 

(GLM). The non-linear learning is based on decision trees (i.e. Recursive Partitioning and 

Regression Trees (RPART)), Random Forest (RF), Stochastic Gradient Boosting (GBM), and 

Support Vector Machines (SVMs) with Radial Basis Function Kernel. 

3.7.1 Generalized Linear Models 

Generalized linear models are statistical methods that extend linear modelling frameworks 

that allow for response variables that are not normally distributed (Nelder & Wedderburn 
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1972). GLM is commonly used to model binary data and consists of three components: 

random component, linear predictor, and the link function (Fox 2008). A random component 

specifies the probability distribution of the response variables. There are several statistical 

distributions referred to as an exponential family of distributions which include: Gaussian 

(normal), binomial, Poisson, gamma, and multinomial (Nelder & Wedderburn 1972). In a 

binary classification model, binomial (Bernoulli distribution) is commonly used where the 

output is either 1 or 0. 

The linear predictor assumes a linear mapping between independent variables and the 

response variables (outcomes) through a link function. The link function describes the 

relationship between the linear predictor and the mean (expectation of the response 

variables) of the probability distribution (Nelder & Wedderburn 1972). In GLM, to fit a 

dataset the maximum likelihood method is used. This method provides an estimate of the 

model parameters through an iteratively reweighted least-squares (IRLS) procedure to 

minimize the loss function (error) with respect to the weights of the independent variables 

(Fox 2008). 

In this thesis, logistic regression which is described as a GLM is utilized for binary 

classification tasks. A detailed explanation of logistic regression has already been provided 

in Chapter 2 when discussing association analysis in GWAS (section 2.8.3). 

3.7.2 Decision Trees 

A decision tree is a recursive partitioning algorithm that can be used in classification and 

regression tasks (Breiman 1984). The algorithm adopts a tree representation to create a 

training model to predict target variables (class) by learning decision rules inferred from 

training data. The decision tree constructs from; a root node, internal nodes, and terminal 

nodes or leaves. The tree has a single root node assigned to the whole training data, and each 

internal node corresponds to an attribute. Each terminal node corresponds to a class label 

(Berk 2016). 
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Technically, the tree is grown by splitting the source data into subsets (left and right 

branches) based on the attribute value test following a splitting rule, starting from the root 

node. This process is repeated in a binary recursive partitioning manner at each node, 

particularly internal nodes. The tree continues to grow until no additional splits can be 

created. Figure 3.4 illustrates an example decision tree workflow. 

 

Figure 3.4: Decision Tree Classifier 

The primary challenge in the construction of decision trees is to identify which attributes are 

required during the splitting process at each node and where the split should be imposed. 

This is defined using splitting rules (Buntine & Niblett 1992) in which node impurity is 

minimized and homogeneity is maximized using specific criteria. There are several 

commonly used splitting criteria for classification trees including information gain also 

known as entropy index, Gini index, and towing (Shih 1999). For example, during the 

splitting process the attribute with the highest information gain measure is selected. 

Another challenge in the construction of decision trees is tree growth (Moisen 2008). 

Essentially the growing process is stopped when no further splits can be enforced due to a 

lack of data at a node. This means that the tree continues to go deeper and deeper almost to 

the point where it fits the training data perfectly, resulting in overfitting and poor accuracy 

on unseen data. One way to solve this problem and obtain the optimal size of the tree is to 

use a pruning algorithm (Esposito et al. 1997). Pruning involves reducing the size of a tree 
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to the optimal size by removing splits that generate two terminal nodes which in turn do not 

improve the performance of the tree on test data. 

Overall, decision trees, offer a simplified method for the interpretation of complex tree 

results and are capable of handling missing values and outliers in data (Rokach & Maimon 

2005). 

3.7.3 Random Forests 

The random forest algorithm is a randomized decision tree-based ensemble developed for 

classification and regression tasks (Breiman 2001). RF uses a collection of trees rather than 

a single tree. These trees are typically grown from thousands of trees and each tree is grown 

using a bootstrap aggregation or bagging technique. Bagging (Breiman 1996) is one of the 

ensemble techniques that builds many independent models or learners to allow trees to grow 

independently. The classification results each tree produces are combined using a voting 

technique. Bagging is an ideal technique for high-variance data with low-bias (Hastie et al. 

2009) where noisy models are averaged, which removes biases and reduces variance. 

The random forest is constructed by generating several bootstrap samples using the original 

data. For each bootstrap sample, the tree is grown, and a random subset of predictor variables 

is selected to split the tree node. The best split is calculated using these randomly selected 

candidate variables. This process is continued until the tree is fully grown without pruning, 

resulting in a forest of decision trees. Each tree is trained on a particular bootstrap sample of 

observations. Observations not considered in a specific bootstrap are used as out-of-bag 

(OOB) observations. The OOB samples are used as a test dataset to estimate error and 

permutation-based variable importance measurement for variable selection. The prediction 

of unseen data is based on majority voting for classification. 

Given an 𝐹 feature set from the original data, 𝐹 consist of 𝑓𝐴1 … 𝑓𝑛𝑛, where 𝑛 represents 

the number of predictor features in the given dataset. The random forest starts by selecting 
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several bootstrap samples from the original data. A random split from the initial data, 𝑇, into 

several decision trees, 𝑇1, 𝑇2, … , 𝑇𝑡 using bootstrap samples is performed to construct the 

forest as illustrated in Figure 3.5. The classification result is obtained using a vote system to 

identify the most popular classes. 

 

Figure 3.5: Random Forest Workflow 

The RF classifier model is a highly recommended algorithm for high-dimensional data such 

as GWAS (Chen & Ishwaran 2012; Qi 2012). It has been successfully used in many genetic 

studies (Botta et al. 2014; López et al. 2018; Schwarz et al. 2010; Kursa 2014). This is 

because the algorithm is highly data adaptive and can handle correlations and interactions 

between features and can also rank variables using variable importance measures (Chen & 

Ishwaran 2012). In addition, deep trees promote low bias, while bootstrap aggregation 

improves the performance of the final model by de-correlating trees and reducing variance 

(Chen & Ishwaran 2012). 

3.7.4 Stochastic Gradient Boosting 

Gradient boosting is another ensemble tree-based method based on the combination of two 

powerful techniques including gradient-based optimization and boosting (Hastie et al. 2009). 

Gradient-based optimization computes the gradient to minimize a model’s loss function in 

training data. Boosting algorithms (Kearns 1988) sequentially add new weak, base-learner 

models to the ensemble to create a strong learning system that obtains better performance 
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than a single model for predictive tasks. A weak learner is a learner whose error rate is only 

slightly better than random guessing (Hastie et al. 2009). A weak learner is represented by a 

decision tree model. 

The learning procedure of gradient boosting starts by additively fitting weak learners (new 

models) to obtain a more accurate estimate of the response variable. The results in a new 

model being trained based on an error from previous models in the ensemble, are trained 

during each iteration. The algorithm allocates weights to each resulting model and applies a 

weighted average to produce the final classification result. Figure 3.6 illustrates gradient 

boosting workflow. 

 
Figure 3.6: Gradient Boosting Workflow 

GBM is subjected to overfitting where generalization capabilities are decreased. This is a 

situation where new decision tree models are added to the ensemble until the training data is 

completely overfitted. There are a number of different approaches to prevent the GBM 

model’s overfitting. The technique adopted in this thesis is regularization through shrinkage 

(Natekin & Knoll 2013). Shrinkage also known as the learning rate is used to reduce the 

impact of each new model added to the ensemble. This means if the model’s error is high 

during one of the boosted iterations, its negative impact on the ensemble model can be 

corrected in subsequent steps. Setting shrinkage to a small value can improve the model’s 

ability to generalise on new data but at the cost of convergence speed. 

The Stochastic gradient boosting (Friedman 2002) algorithm is adopted in the 

implementation of this research work which is one of the gradient boosting methods 
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developed to incorporate randomness into the fitting procedure. Specifically, a randomly 

selected subsample of the training data is used to fit the base-learner model instead of the 

full training data. The subsampling procedure improves generalization and reduces 

computational burden (Natekin & Knoll 2013). 

3.7.5 Support Vector Machines 

Support vector machines (SVMs) are a supervised discriminative classifier formally 

developed to find decision boundaries represented by hyperplanes in an n-dimensional space 

(where n refers to the number of features) that classifies the data points samples (attributed 

to different classes). The original SVM (Vapnik & Lerner 1963) is a non-probabilistic binary 

linear separation that for a given set of training samples each point in space is marked as 

belonging to one of two classes. Typically, SVM chooses the optimal hyperplane with the 

maximum margin distance to the closest training data points (support vectors) of any class 

instances. In general, the generalisation error of the model improves with larger margin.  

For non-linear separation problem (Cortes & Vapnik 1995) SVM uses a technique called 

kernel. In kernel method (Mercer 1909; Aizerman et al. 1964) the data is transformed into 

another dimension, mapped into a higher dimensional feature space, that has a clear 

separating margin between the data points of different instances. This mapping is attained 

by using one of the kernel functions, i.e. hyperbolic tangent, polynomial, and radial basis 

function. For SVM algorithm to output the optimal hyperplane that possesses maximum 

margin, gradient decent optimisation along with the regularisation parameters are used to 

adjust the weights of the cost function and thus minimise the classification error on unseen 

data. Although SVM can be used to avoid the difficulties of using linear functions in the 

high-dimensional feature space by means of the kernel transformation, it lacks the 

transparency of model results and does not directly provide probability estimates. Figure 3.7 

demonstrates an example of a separable problem in features space with the optimal 

hyperplane and the maximum margin to the nearest support vectors of the two categories. 
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Figure 3.7: Support Vector Machine Example 

 Feature Selection 

Feature Selection is a technique designed to find an optimal subset of features from the 

original dataset (Saeys et al. 2007). This is in contrast to other dimensionality reduction and 

compression techniques where the original representation of the variables is abstracted and 

altered (Veerabhadrappa & Lalitha 2010). Feature selection has become a necessity in 

several application domains, offering manifold advantages. These advantages include 

providing less computationally intensive models, avoiding overfitting, optimized model 

performance, and model interpretation (De Silva & Leong 2015). There are various types of 

feature selection techniques and each differs in how they integrate the feature selection 

search in the model hypothesis space. 

Feature selection techniques can be arranged into three categories – filter, wrapper and 

embedded methods (Chandrashekar & Sahin 2014). Filter methods are based on calculating 

the feature relevance score and removing the ones that have the lowest scores. The search in 

the feature subset space is considered separately from the search in the hypothesis space, 

ignoring the interaction with the model selection and feature dependencies (redundant 

features may be nominated). In contrast, the wrapper methods incorporate the model 

hypothesis search within the feature subset search, allowing for the generation and 

evaluation of various subsets of features in addition to accounting for feature dependencies. 

Embedded methods are similar to wrapper methods as they are specific to a given learning 
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model with the advantage of dealing with computational complexity better than wrapper 

methods. 

In this thesis the Recursive Feature Elimination algorithm (RFE) is used (Dong et al. 2015). 

RFE is a wrapper method that recursively evaluates models by adding or removing features 

to search for an optimal combination of variables that improve and maximise model 

performance. The procedure is initiated by fitting an initial model to the training set using 

all features. During the process of feature selection, each feature is ranked using its 

importance to the model where the top ranked features are maintained. The model is refitted 

and its performance reassessed using this subset of top ranked features. To better estimate 

the performance of the model, a 10-fold cross-validation resampling can be used. Although 

resampling methods are computationally burdensome, incorporating them with RFE can 

advance the probabilistic assessment of feature importance and provide better performance 

estimation than using a single fixed dataset. 

 The Application of Machine Learning into T2D 

Machine learning has already been successfully applied to a wide range of medical 

applications to discover SNP interactions and investigate the discriminative capabilities of 

risk susceptibility to T2D. Zhu et al. (Zhu et al. 2013) considered the generalized multifactor 

dimensionality reduction (GMDR-GPU) approach for detecting gene-gene interactions. The 

study identified 24 core SNPs that appear to be important for T2D. Wang et al. (Wang et al. 

2014) investigated gene-gene interaction using the lasso-multiple regression (LMR) 

approach. Researchers found that the SNPs from genes CDKN2BAS and KCNJ11 are 

significantly associated to T2D. Random forest and T-Trees (TT) for T2D GWAS have been 

implemented in (Botta et al. 2014) for exploiting SNP correlations. The investigation 

suggested that the T-Trees method was able to recover most of the loci already reported in 

the literature. Furthermore, the T-Trees method outperformed RF with a classification 

prediction rate of 83.4% and 75.8% respectively. 
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Ban et al. (Ban et al. 2010) conducted a study using an SVM to identify combinations of 

SNPs for the prediction of individuals’ susceptibility to T2D. A subset of the best SNP 

combinations using 14 SNPs selected from possible candidate SNPs (408 SNPs) was used 

as features for the classification of disease risk. This work obtained a 65.5% classification 

prediction rate with 56.7%, and 73.9% for sensitivity and specificity respectively. 

Furthermore, the authors investigated subpopulation datasets by gender using similar 

techniques and found different SNP combinations. The results yielded slightly better 

accuracy rates of 70.9% (Sens = 71.4%, Spec = 70.4%) and 70.6% (Sens = 71.5%, Spec = 

69.6%) for men and women datasets respectively. The authors concluded that 

epidemiological evidence for sex differences exists in T2D. In the study conducted by López 

et al. (López et al. 2018), Random Forest, Support Vector Machine and Logistic regression 

algorithms were applied for learning predictive models for T2D, first using SNP data only 

and second using SNP data combined with clinical data. Using SNP data only, the results 

revealed that the RF produced an AUC = 85.3% which outperformed the LR and SVM 

methods with AUC = 83.5%, and AUC = 82.5% respectively. However, adding clinical data 

including sex, Body Mass Index and age the results suggested that the predictive ability of 

the models improved. The AUC for RF, LR increased to 89%, 84.4% respectively. The 

authors concluded that the RF is a useful technique for SNP data that can model feature 

interactions and deal effectively with overfitting and missing value. In the study conducted 

by Gül et al. (GÜL et al. 2014), the authors used binary logistic regression (LR) to investigate 

missing heritability and early risk prediction for T2D in two separate studies that considered 

genetic data only followed by genetic and clinical data analysis. The authors revealed that 

using 798 SNPs, the classification predictive rate of genotype analysis achieved 96.5%. 

However, the additive contribution of clinical data to the analysis, resulted in 98% 

classification accuracy. 
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Kim et al. (Kim et al. 2018) tested deep neural network (DNN) using several subsets of SNPs 

extracted through Fisher’s exact test and L1-penalized logistic regression. The results 

demonstrated that using 678 SNPs in male samples, it was possible to achieve 93.1% and 

85.7% predictive accuracy for DNN and LR respectively. Using the female datasets samples, 

DNN and LR achieved 92.8% and 90.2% respectively. While adding clinical data to the 

analysis, the results showed improvements in the predictive accuracy of the DNN with 

94.8% for males and 94.6% for females. LR produced 84.7% and 83.3% for males and 

females respectively. Malovini et al. (Malovini et al. 2012) proposed a Hierarchical Naïve 

Bayes (HNB) for the classification of T2D genetic data. The HNB model was designed to 

account for SNPs in linkage disequilibrium. The results showed that HNB classification 

performance was higher than those obtained using standard Naïve Bayes (NB) with 92% and 

90% respectively. Table 3.3 summarised the previous studies in T2D. 
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  Table 3.3: Previous Works in T2D 

Author Year  Model AUC Sens Spec Features Analysis 

Ban et al.  2010 SVM 

0.653 -Total 0.567 0.739   

0.709 -Male 0.714 0.704 Genetic Classification 

0.706 -Female 0.715 0.696   

López et al.  2018 

RF  0.853 

0.835     

0.825 

 

 
Genetic 

Classification 

LR 

SVM 

RF 

LR 

SVM 

0.89 

0.844   

0.825 

 Genetic and Clinical 

Malovini et al.  2012 
HNB 

NB 

0.92 

0.90 

0.89 

0.89 

0.93 

0.92 
Genetic Classification 

Kim et al.  2018 

DNN 

LR 

DNN 

LR 

0.931  

0.857  

0.948  

0.847 

 

Genetic 

Classification 

Genetic and Clinical 

DNN 

LR 

DNN 

LR 

0.928 

0.902 

0.946 

0.833 

 

Genetic 

Genetic and Clinical 

Gül et al.  2014 LR 
0.965  

0.980  
 

Genetic 

Genetic and Clinical 
Classification 

Zhu et al.  2013 GMDR-GPU    Genetic Gene-Gene Interactions 

Wang et al. 2014 LMR    Genetic Gene-Gene Interactions 

Botta et al.  2014 
RF 

TT 

0.758 

0.834 
  Genetic Gene-Gene Interactions 

-Male 

-Female 
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 Summary 

One of the challenges in computational biology is how to explore, understand and interpret 

complex, large biological data. More specifically, how to extract important information from 

the raw data, and use it to explain the underlying cause of complex diseases. This chapter 

presented and discussed deep learning and its effectiveness in converting high-dimensional 

data to low-dimensional data while maintaining and extracting important information. Deep 

learning is adopted in this thesis to explore T2D GWAS data. The next chapter will discuss 

the methodology used in this thesis to explore epistatic interactions in T2D GWAS using 

deep learning stacked autoencoders.   
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 Proposed Methodology 

 Introduction 

This Chapter discusses the proposed methodology. This includes the data authorisation 

process and a description of the Nurses’ Health Study and the Health Professionals Follow-

up Study in T2D obtained from the Database of Genotypes and Phenotypes. The data quality 

control procedures are also discussed, and the results are reported. Following the process of 

removing unreliable information (individuals and markers), the analysis conducted to 

perform logistic regression and association analysis for the population-based case-control 

study design is presented. 

Furthermore, this chapter presents the proposed novel framework posited in this thesis. It 

discusses the use of deep learning stacked autoencoders in large-scale GWAS as a feature 

extraction mechanism to pre-initialise a multilayer perceptron (MLP) for T2D case-control 

classification tasks. The classification and evaluation performance for a random forest and 

multilayer perceptron classifier are presented. This will be utilised in the results chapter to 

provide a set of baseline results for comparison with the proposed novel framework. 

The study investigates genotypic risk factors along with other risk factors that include 

clinical, environmental exposure, and sociodemographic factors for the classification of T2D 

in case-control cohorts. The classification and evaluation performance for five traditional 

supervised machine learning algorithms are presented. 

 Data Acquisition 

The data utilised in this research was obtained following authorised access to the Database 

of Genotypes and Phenotypes (dbGaP) (Tryka et al. 2014). The Nurses’ Health Study (NHS) 

and the Health Professionals Follow-up Study (HPFS) in T2D (Study Accession: 

phs000091.v2.p1) are used to demonstrate the applicability of the proposed approach posited 

in this thesis. The NHS and HPFS cohorts are part of the Gene Environment Association 
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Studies initiative (GENEVA, http://www.genevastudy.org) funded by the trans-NIH Genes, 

Environment, and Health Initiative (GEI). The following sections provide an in-depth 

description of both datasets. 

4.2.1 Data Description 

The NHS (Nurses’ Health Study) was established in 1976, and the HPFS in 1986. NHS 

participants include 121,700 female registered nurses aged between 30 and 55 of age that 

reside within 11 U.S states. HPFS participants include 51,529 male health professionals aged 

between 40 and 75 years from 50 U.S states. The NHS and HPFS participants responded to 

a questionnaire requesting information related to their medical history and lifestyle 

characteristics. Since then, on a 2 to 4-year cycle, cohort members have been asked to 

provide dietary information using validated semi-quantitative food frequency 

questionnaires. Participants were also asked to provide blood samples, in which 32,826 

members of the NHS and 18,225 members of the HPFS responded. The case and control 

participants were selected from those who provided a blood sample. Case participants were 

identified as those who reported themselves to be affected by T2D and it was confirmed by 

a medical record validation questionnaire. Control participants were defined as those without 

diabetes. The DNA of case and control participants were genotyped at the Broad Centre for 

Genotyping and Analysis (CGA) using the Affymetrix Genome-Wide Human 6.0 array 

(Affymetrix is a DNA microarray technology that enables multiplex and parallel analysis of 

biological systems at the cell, protein, and gene level). 

A total of 6041 NHS and HPFS case-control subjects with genotype information across 

909622 SNPs successfully passed the initial quality control at the Broad CGA and were used 

in the final version of the dataset. The NHS subjects consist of 1581 T2D cases and 1854 

controls, and HPFS contains 1232 T2D cases and 1374 controls. Participants in the NHS 

dataset were identified as Hispanic or non-Hispanic and each belongs to one of four racial 

categories (White, African-American, Asian or Other). Participants were however mainly 
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White and non-Hispanic representing 97.4% in the NHS dataset. The HPFS participants 

belong to one of the four racial categories (White, African-American, Asian or Other). They 

were predominantly White representing 96% in the HPFS dataset. Table 4.1 summarises the 

NHS and HPFS subjects and their ethnicity. 

Table 4.1: NHS and HPFS Subject’s Ethnicity 

Racial Category NHS HPFS 

 Case Control Case Control 

White 1551 1779 1184 1283 

African-American 17 13 12 14 

Asian 6 11 12 14 

Other 7 7 24 27 

The NHS and HPFS datasets include clinical and dietary data, along with each participant’s 

age, gender, Body Mass Index (BMI), alcohol intake, smoking status, physical activity, 

height, weight, family history of diabetes among first degree relatives, high blood pressure, 

high blood cholesterol, polyunsaturated fat intake, magnesium intake, cereal fibre intake, 

and glycaemic load as demonstrated in Table 4.2. A comprehensive description for both the 

GENEVA NHS and HPFS datasets can be found in the quality control report in the GENEVA 

NHS and HPFS Type 2 Diabetes project (The Nurses’ Health Study 2009; The Health 

Professional Follow-Up Study 2009). 

Table 4.2: The Clinical Data for the GENEVA NHS-HPFS Datasets 

Variable Description Coded values 

idg GENEVA identification number  

age Age in years  

bmi BMI in kg/m2  

hisp Hispanic ethnicity 
1= Hispanic 

2= Not-Hispanic 

case Diabetes case status 

0= Control 

1= Case of T2D 

2= Uncertain diabetes type 

alcohol Alcohol intake  

smk Cigarette smoking 

1= Never cigarette smoker 

2= Past cigarette smoker 

3= Current cigarette smoker 

act Total physical activity  
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race Race variable for NHS 

1= White 

2= African American 

3= American Indian 

4= Asian 

5= Hawaiian 

woman Sex 
1= Woman 

2= Man 

race2 Race variable for HPFS 

1= White 

2= Other 

3= Asian 

4= African American 

ht Height in meters  

Wt Weight in kg at time of blood draw  

famdb 
Family history of diabetes among 

first degree relatives 

1= Yes 

0= No 

hbp 
Reported high blood pressure 

at/before blood draw 

1= With a history of hypertension 

0= No history of hypertension 

chol 
Reported high blood cholesterol 

at/before blood draw 

1= With a history of high cholesterol 

0= No history of high cholesterol 

pufa Polyunsaturated fat intake  

magn Magnesium intake  

ceraf Cereal fibre intake  

gl Glycaemic load  

4.2.2 Data Format 

Both the NHS and HPFS datasets are in PLINK format. Technically, files in the standard 

PLINK format are very large and computationally challenging. As such, converting very 

large files to binary format is recommended and often performed using the PLINK v1.9 

toolset. Binary formatted files considerably reduce the file size and significantly enhance 

computational efficiency. 

Standard flat files in the PLINK format include the ped and map files. The ped file contains 

information about each individual in the study including Family ID (Fam ID), Individual ID 

(Ind ID), Paternal ID (Pat ID), Maternal ID (Mat ID), Sex, Phenotype (Pheno), and the 

complete genotyped data. The genotyped data is represented as SNPs. Each SNP is bi-allelic, 

meaning it contains only two nucleotides coded as A, T, C, or G. The map file contains 

information about SNPs and associated rsNumbers (SNP), Chromosome (Chr), and the 

corresponding Base-Pair coordinate (physical position of SNP to chromosomal position) as 

well as Genetic Distance (Gen Dist) (the measure of genetic difference between species or 

between populations within a species, zero means no differences). Table 4.3 and Table 4.4 

show examples of standard flat files corresponding to ped and map files. 
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Table 4.3: Ped File 

Fam ID  Ind ID Pat ID Mat ID Sex Pheno rs1 rs2 rs3 … 

FAM_T2D 60444 0 0 1 -9 CC GG TT … 

FAM_T2D 166692 0 0 2 -9 GG GG TT … 

FAM_T2D 167773 0 0 1 -9 GC GG TT … 

FAM_T2D 167362 0 0 2 -9 CC GG TT … 

FAM_T2D 166960 0 0 2 -9 GC GG TT … 

Table 4.4: Map File 

Chr SNP Gen Dist Base-Pair 

2 SNP_A-1820282 0 24049 

2 SNP_A-2056638 0 43652 

2 SNP_A-1792446 0 49698 

2 SNP_A-2063286 0 64387 

2 SNP_A-2260913 0 76644 

Binary files include bim, bed, and fam files. The bim file contains information similar to that 

in the map file in addition to Allele1 and Allele2 for each SNP in the ped file. The fam file 

contains the identification information for each participant. The information in the fam file 

is similar to the columns described in the ped file excluding the genotype data. The bed file 

is the largest file of the three in this binary set of files and contains a binary genotype data. 

This file contains all the SNPs used in the study as well as the genotype for each SNP in 

each participant. Table 4.5, Table 4.6, and Table 4.7 provide examples of corresponding 

binary files of fam, bim, and bed files respectively. 

Table 4.5: Fam File 

Fam ID Ind ID Pat ID Mat ID Sex Pheno 

FAM_T2D 60444 0 0 1 -9 

FAM_T2D 166692 0 0 2 -9 

FAM_T2D 167773 0 0 1 -9 

FAM_T2D 167362 0 0 2 -9 

FAM_T2D 166960 0 0 2 -9 
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Table 4.6: Bim File 

Chr SNP Gen Dist Base-Pair Allele1 Allele2 

2 SNP_A-1820282 0 24049 G C 

2 SNP_A-2056638 0 43652 G A 

2 SNP_A-1792446 0 49698 T C 

2 SNP_A-2063286 0 64387 G G 

2 SNP_A-2260913 0 76644 C A 

Table 4.7: Bed File 

01101100 00011011 00000001 

00011101 00011100 10010001 

11111111 00111110 00011100 

11100001 00011000 00101100 

11001100 00000001 00110000 

 Data Quality Control 

Data quality control (QC) and preliminary analysis is performed using PLINK v1.07 and 

v1.9 (Purcell et al. 2007) for Windows. PLINK is also used to merge the NHS and HPFS 

datasets (NHS and HPFS participants were genotyped using the Affymetrix Genome-Wide 

Human 6.0 array) and subsequent filtering procedures. Before QC, the 0 Chromosome was 

removed, and non-T2D participants, i.e. other types of diabetes (65 NHS, 68 HPFS), the 

HapMap controls (44 NHS, 29 HPFS), and those belonging to ethnicity other than white (61 

NHS, 103 HPFS) were also excluded from the study. This study is restricted to white 

ancestry to reduce potential bias due to population stratification. The dataset was subjected 

to pre-established quality control protocols as recommended in (Anderson et al. 2010). In 

addition, quality control parameters are tuned to meet the requirements of the analysis 

presented in this study. Quality control assessments for individuals and genetic data are 

conducted separately. 
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4.3.1 Individual QC 

Individuals that met any of the following criteria were discarded from the analysis. Samples 

with discordant sex information were identified using the X-chromosome homozygosity rate 

calculation. The expected homozygosity rate was less than 0.2 for female, more than 0.8 for 

male resulting in 14 samples being removed from the dataset. Figure 4.1 represents the X-

chromosome homozygosity rate for female and male samples. 

 

 

Figure 4.1: X-Chromosome Homozygosity Rate for Female and Male 

Individuals with elevated missing data rates (genotype failure rate ≥ 0.05) and outlying 

heterozygosity rate (heterozygosity rate ±3 standard deviations from the mean) were 

identified resulting in 131 individuals being discarded from the analysis. Figure 4.2 

demonstrates the proportion of missing SNPs with respect to the heterozygosity rate. Dashed 

lines indicate quality control thresholds and the dots represent the observed samples. 
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Figure 4.2: Genotype Failure Rate vs. Heterozygosity Rate 

Duplicated or related individuals were identified by estimating Identity-by-descent for shared 

alleles. We have chosen to remove an individual from each pair with an IBD > 0.185, which 

is halfway between the IBD for third and second-degree relatives. Eight samples were found 

and excluded from the dataset. Figure 4.3 represents a histogram for the mean pairwise IBD 

distribution between all pairs of samples in the dataset. Vertical dashed lines indicate quality 

control thresholds (IBD >0.185). 

 

Figure 4.3: Histogram Showing the Distribution of Mean Pairwise IBD 

To visualize the degree of relatedness between a pair of individuals the proportion of loci 

sharing one allele IBD (parent-child pairs), represented by Z1 is compared with the 

proportion of loci sharing zero allele IBD (unrelated), presented by Z0, in the genome file. 

Each point on the plot represents the relationship type between a pair of individuals as shown 

in Figure 4.4. This figure shows that many individuals identified are unrelated (black points). 



90 
 

Blue points describe second, third, fourth, and fifth degree relatives while the green points 

represent duplicated and first-degree relatives that have subsequently been discarded from 

the dataset. 

 

Figure 4.4: Degree of Relatedness 

Individuals with divergent ancestry were identified using PCA. PCA is constructed using 

pruned genome-wide genotype data from a reference panel of HapMap phase III data 

consisting of four diverse ancestral populations including Europe (CEU), Asia (Chinese 

(CHB) and Japanese (JPT) populations), and Africa (YRI). The fact that there is large-scale 

genetic diversity between the four ancestral populations, means it is possible to use the first 

two principal components to separate and cluster samples from within the four groups. To 

identify samples with divergent ancestry in our dataset, these samples are clustered alongside 

the HapMap individuals. Using principal component scores, 51 individuals with a 2nd 

principal component score of less than 0.061 were removed. Figure 4.5 shows the principal 

component analysis plot for our dataset using HapMap phase III data for ancestry clustering. 

The black dots represent our dataset, CEU (red), CHB and JPT (purple) and YRI (green). 

The grey dashed line is the principal component score for identifying samples for removal. 

Furthermore, 101 individuals were removed due to missing genotype data rate of 0.05. 
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Figure 4.5: Principal Component Analysis 

4.3.2 Genetic Marker QC 

SNPs with excessively different (p < 0.00001) missing data rates between case and control 

samples were identified and removed, resulting in 29 SNPs being excluded from the analysis. 

Figure 4.6 shows a histogram of the missing genotype rate to specify the threshold used to 

elevate genotype failure rates. The dashed line indicates the quality control threshold used 

for genotype failure rates ≥ 0.05. 

 
Figure 4.6: Histogram of the Missing Genotype Rate 

In this analysis, SNPs that show extensive departure from HWE in control samples were 

excluded as these can be indicative of genotyping error. The significance threshold for 

identifying markers in HWE is set to p-value < 0.001. This resulted in 2248 variants being 

removed from the dataset. 
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All SNPs with a MAF threshold of <0.05 were identified in the dataset resulting in 178004 

variants being excluded. Whereas, markers with low genotyping efficiency (call rate) were 

identified using a missing genotype rate of 0.01 resulting in 116863 variants being excluded 

from the dataset. 

This concludes QC analysis. The final dataset used for subsequent analysis contained 5393 

individuals (2481 cases, 2912 controls) with 608342 markers each. Figure 4.7 summarises 

the quality control procedures used with the NHS-HPFS dataset to obtain a subset of reliable 

markers and samples for subsequent association analysis. 

 

Figure 4.7: Quality Control Workflow for NHS-HPFS Dataset
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 Association Analysis using Quality Controlled T2D Dataset 

In this section, population-based association mapping is presented. A standard case-control 

association analysis is conducted in an unrelated, white racial subpopulation to compare the 

frequency of genotypes at genetic marker loci (SNP) between cases and controls contained in 

the Geneva NHS and HPFS T2D datasets. Association analysis using logistic regression is 

performed with PLINK v1.9. This is a widely used approach within GWAS studies, under an 

additive genetic model to assess the association of all SNPs within the study with disease 

binary traits (0/1) for case and control subjects. Other models for disease penetrance are 

available including multiplicative, dominant and recessive models. However, additive models 

are the most commonly used in genetic association testing when the underlying genetic model 

is unknown and there are a large number of uncharacterised SNPs and outcomes (Clarke et 

al. 2011). Disease penetrance associated with a given variant (genotype) is defined as the risk 

of disease in individuals carrying that variant. In an additive genetic model of disease 

penetrance, an additive effect indicates that the risk of disease is increased y-fold for genotype 

𝐴𝑎 and 2y-fold for genotype 𝐴𝐴 (Clarke et al. 2011). 

Furthermore, logistic association testing is adjusted using Genomic Control (GC) to control 

population structure, and 𝑝-values are considered based on a GC inflation factor 𝜆. In 

addition, to detect statistically significant SNPs the Bonferroni-corrected genome-wide 

significance threshold 𝑝 < 5 × 10−8 is used as highlighted in (Dudbridge & Gusnanto 2008). 

Odds ratio with a 95% confidence interval (95% CI) was measured to evaluate the strength 

of associations between SNPs and T2D and to determine if there is risk association, no 

association or protective association between an SNP and the phenotype of interest (in this 

instance T2D). To report the context of the SNPs identified, the database of single nucleotide 

polymorphism (dbSNP) was used (Wheeler et al. 2007). This tool is developed and provided 

by the National Center for Biotechnology Information (NCBI) in collaboration with the 
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National Human Genome Research Institute (NHGRI) and it contains genetic background 

information for all identified genetic variations (Wheeler et al. 2007). 

 Classification for High-Dimensional T2D GWAS Data 

For Classification tasks using T2D GWAS data, state-of-the-art algorithms in machine 

learning including random forest and multilayer perceptron classifiers are used and 

benchmarked against a deep learning stacked autoencoder. The performance of these 

advanced machine learning methods is evaluated to assess their discriminating capabilities 

when classifying observations with T2D (cases) and without T2D (controls) using the 

GENEVA NHS-HPFS GWAS dataset. The analyses were conducted using R Studio utilizing 

the H2O package (Aiello et al. 2018; Candel et al. 2018). Figure 4.8 shows the proposed 

methodological framework for the approach posited in this thesis. 

 

Figure 4.8: Methodology Framework for High-Dimensional Data 

The following sections present the experimental configurations and our methodology in more 

detail. 

4.5.1 Extracting Groups of Features from Association Analysis 

Logistic regression association analysis is employed to assess the association between all 

SNPs and the T2D phenotype. Most GWAS genotypes between 500,000 and one million 

SNPs, and in some studies significantly more. Using such a large number of genetic variables 
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to train classification models is computationally difficult. One simple and common approach 

is to filter a subset of genotype SNPs to remove less useful information (Bush & Moore 

2012). This can be achieved by selecting a set of SNPs resulting from logistic association 

for single SNP analysis with different significance thresholds. 

In this study several p-value thresholds are considered including 5 × 10−8, 10−6, 10−5, 

10−4, 10−3, and 10−2 resulting in 7, 13, 23, 103, 766, and 6609 SNPs respectively. These 

subsets of SNPs are used to exhaustively evaluate the non-linear epistatic interactions in 

each subset and assess the predictive capacity of advanced machine learning in 

discriminating between cases and controls in T2D GWAS. 

4.5.2 Classification using Multilayer Perceptron 

A multilayer perceptron (MLP) that is trained with gradient descent optimization using the 

backpropagation learning algorithm is implemented in this analysis for binary classification 

tasks, based on the theoretical definitions in (LeCun et al. 2015; Candel et al. 2018; Ng 

2011). The MLP is constructed using input, hidden, and output layers containing a pre-

defined number of units (neurons) – depending on the evaluation. Let 𝑛𝑙 denote the number 

of layers in the network where 𝑙 is a layer and 𝐿𝑙 is a particular layer. Thus, 𝐿1 is the input 

layer and 𝐿𝑛𝑙
 is the output layer in the network. First the input vector is transmitted to the 

input neurons in the input layer and then the outputs from the input neurons are passed to 

the hidden neurons in the hidden layer, which is the second layer. This process is continued 

until the last layer of the hidden layers is reached. Then, the outputs of this last hidden layer 

are sent to the output neurons in the output layer. In addition to the layers and neurons, the 

neural network consists of several parameters including the weight and bias. The parameters 

(𝑊, 𝑏) = (𝑊(1), 𝑏(1), 𝑊(𝑛), 𝑏(𝑛)) where 𝑊𝑖𝑗
(𝑙)

 denotes the weight of the connection between 

unit 𝑗 in layer 𝑙, and unit 𝑖 in layer 𝑙 + 1. Additionally, the bias unit 𝑏𝑖
(𝑙)

, associated with unit 

𝑖 in layer 𝑙 + 1 is used with output value equal to +1. The number of units in layer 𝑙 is 

https://en.wikipedia.org/wiki/Feedforward_neural_network
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represented by 𝑠𝑙, and a bias unit 𝑏𝑖
(𝑙)

 which is not counted with 𝑠𝑙. The output value of unit 

𝑖 in layer 𝑙 is given by an activation vector 𝑎𝑖
(𝑙)

 which is equal to the total weighted sum of 

inputs (including the bias term), denoted by 𝑧𝑖
(𝑙)

. Thus, 𝑎𝑖
(𝑙)

= 𝑓(𝑧𝑖
(𝑙)

) where 𝑧𝑖
(𝑙)

 is given as: 

 𝑧𝑖
(𝑙+1)

= ∑ 𝑊𝑖𝑗
(𝑙)

𝑥𝑗 + 𝑏𝑖
(𝑙)

𝑛

𝑗=1

 (4.1) 

Given a fixed setting of parameters 𝑊, 𝑏 the neural network hypothesis is defined as ℎ𝑊,𝑏(𝑥) 

which gives the real number output as: 

 ℎ𝑊,𝑏(𝑥) =  𝑎𝑖
(𝑙)

= 𝑓(𝑧𝑖
(𝑙)

) (4.2) 

where 𝑓: ℝ ↦ ℝ represents the activation function. Basically, there are various types of 

activation function which include the sigmoid function, hyperbolic tangent, rectifier linear 

unit, and maxout. It is challenging to choose which activation function to adopt for our 

dataset, thus we let the network model select which of these activation functions best fits our 

dataset. 

Following the forward pass calculation of all the activations in layer 𝐿2 𝐿3, and so on up to 

the output layer 𝐿𝑛𝑙
 to compute the output value throughout the network, including the output 

value of the hypothesis ℎ𝑊,𝑏(𝑥), the error term for each unit in previous layers is computed 

using the backpropagation algorithm. The weights of the network are then adjusted through 

iterative updates using gradient descent. 

Given a fixed training set {(𝑥(1), 𝑦(1)), … , (𝑥(𝑚), 𝑦(𝑚))} of 𝑚 training samples, parameter 𝑥 

is a vector containing the input features for a sample and 𝑦 the outcome, the neural network 

can be trained using gradient descent optimization.  

The overall cost function when using the mean squared error cost function is defined as (Ng 

2011): 
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 𝐽(𝑊, 𝑏) = [
1

𝑚
∑ 𝐽(𝑊, 𝑏; 𝑥(𝑖), 𝑦(𝑖))

𝑚

𝑖=1

]  +
𝜆

2
 ∑ ∑ ∑  (𝑊𝑗𝑖

(𝑙)
)

2

 

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

 

𝑛𝑙−1

𝑙=1

 

(4.3) 

 = [
1

𝑚
∑ (

1

2
‖ℎ𝑊,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖2)

𝑚

𝑖=1

] +
𝜆

2
∑ ∑ ∑(𝑊𝑗𝑖

(𝑙)
)

2
𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

 

And in case of using the cross-entropy cost function, the overall cost function is defined as: 

 𝐽(𝑊, 𝑏) = [−
1

𝑚
∑ 𝐽(𝑊, 𝑏; 𝑥(𝑖), 𝑦(𝑖))

𝑚

𝑖=1

]  +
𝜆

2
 ∑ ∑ ∑  (𝑊𝑗𝑖

(𝑙)
)

2

 

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

 

𝑛𝑙−1

𝑙=1

 

(4.4) 

 

= [−
1

𝑚
∑ 𝑦(𝑖) log ℎ𝑊,𝑏(𝑥(𝑖)) + (1 − 𝑦(𝑖)) log (1 − ℎ𝑊,𝑏(𝑥(𝑖)))

𝑚

𝑖=1

]

+
𝜆

2
∑ ∑ ∑(𝑊𝑗𝑖

(𝑙)
)

2
𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

 

In cost function 𝐽(𝑊, 𝑏), The second term is a weight decay term which is a regularization 

term that penalizes large weights. The weight decay term (L2 regularization penalty) is used 

to add a penalty to the error function to reduce the magnitude of the weights. This makes the 

weight values to decay towards zero (but not exactly zero) and thus prevent overfitting. The 

weight decay parameter, 𝜆, is used to control the relative importance of the first and second 

terms of the cost function. Typical values of 𝜆 range between 0 and 0.1 (Kuhn & Johnson 

2013). Too small of a 𝜆 can lead to overfitting the data, while too large values of 𝜆 can lead 

to underfitting the data. Therefore, grid search is used to choose the optimised 𝜆 value.   

To train the neural network model, random initialisation of parameter 𝑊𝑖𝑗
(𝑙)

 and each 𝑏𝑖
(𝑙)

 to 

a value close to zero is applied. This step is essential to stop hidden layer units learning the 

same function of the input. More specifically, if all the parameters 𝑊𝑖𝑗
(𝑙)

 and 𝑏𝑖
(𝑙)

 are initialise 

using the same values, activations and output values for all units will be the same (𝑎1
(2)

=

𝑎2
(2)

= 𝑎3
(2)

= ⋯) for any input 𝑥.  
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The gradient descent optimization algorithm is used to updates parameters 𝑊, 𝑏 as define 

below: 

 𝑊𝑖𝑗
(𝑙)

∶= 𝑊𝑖𝑗
(𝑙)

−  𝛼
𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏) 

(4.5) 

 𝑏𝑖
(𝑙)

∶= 𝑏𝑖
(𝑙)

−  𝛼
𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏) 

where 𝛼 represents the learning rate. 

The partial derivatives of the cost function are computed using the backpropagation 

algorithm (see Algorithm 1). Algorithm 1 describes how backpropagation computes the 

partial derivatives 
𝜕

𝜕𝑊𝑖𝑗
(𝑙) 𝐽(𝑊, 𝑏; 𝑥, 𝑦) and 

𝜕

𝜕𝑏𝑖
(𝑙) 𝐽(𝑊, 𝑏; 𝑥, 𝑦) for the cost function 𝐽(𝑊, 𝑏; 𝑥, 𝑦) 

for a single example (𝑥, 𝑦). 

The backpropagation algorithm first performs a feedforward pass to compute all the 

activations 𝑎𝑖
(𝑙)

 and the output value of ℎ𝑊,𝑏(𝑥) in the network. An error term 𝛿𝑖
(𝑙)

 is 

calculated for each node 𝑖 in layer 𝑙 to measure the contribution of this node to any errors in 

the output. For hidden nodes, the error term 𝛿𝑖
(𝑙)

 is computed using a weighted average 𝑧𝑖
(𝑙)

 

of the error terms of the nodes that use 𝑎𝑖
(𝑙)

  as an input. For an output node, the error term 

𝛿𝑖
(𝑛𝑙)

 (where 𝑛𝑙 is the output layer) signifies the difference between the network’s activation 

and the true target value. Then, the error term 𝛿𝑖
(𝑙)

 is propagated backwards to the previous 

layers through the network to adjust the weights for each node 𝑖 in layer 𝑙. 

Algorithm 1 Backpropagation Algorithm 

1: Perform a feedforward pass and compute the activations for 

𝐿2, 𝐿3, … , 𝐿𝑛𝑙
 (𝑛𝑙 is the output layer) 

2: for each output unit 𝑖 in layer 𝑛𝑙, do 

3:     𝛿𝑖
(𝑛𝑙)

= − (∇
𝑎

𝑖

(𝑛𝑙)𝐽) . 𝑓  ́(𝑧𝑖
(𝑛𝑙)

) 

4: end for 

5: for 𝑙 = 𝑛𝑙 − 1, … ,2, do 

6:     for each node 𝑖 in layer 𝑙, do 

7:        𝛿𝑖
(𝑙)

= (∑ 𝑊𝑗𝑖
(𝑙)𝑠𝑙+1

𝑗=1 𝛿𝑗
(𝑙+1)

)𝑓  ́(𝑧𝑖
(𝑙)

) 
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8:     end for 

9: end for 

10: Compute the desired partial derivatives: 

11: 
𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝑎𝑗
(𝑙)

𝛿𝑖
(𝑙+1)

 

12: 
𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿𝑖
(𝑙+1)

 

Once the partial derivatives of the cost function with respect to a single example (𝑥, 𝑦) have 

been computed, the derivative for the overall cost function 𝐽(𝑊, 𝑏) can be calculated as: 

 
𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏) = [
1

𝑚
∑

𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏; 𝑥(𝑖), 𝑦(𝑖))

𝑚

𝑖=1

] + 𝜆𝑊𝑖𝑗
(𝑙)

 

(4.6) 

 
𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏) =
1

𝑚
∑

𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏; 𝑥(𝑖), 𝑦(𝑖))

𝑚

𝑖=1

 

Thereafter, gradient descent is used to train the neural network as described in Algorithm 2. 

∆𝑊(𝑙) is a matrix with dimensions similar to 𝑊(𝑙), and ∆𝑏(𝑙) is a vector of similar dimension 

to 𝑏(𝑙). Algorithm 2 describes one iteration of gradient descent as follows: 

Algorithm 2 Gradient Descent Algorithm 

1: Set ∆𝑊(𝑙) ≔ 0, ∆𝑏(𝑙) ≔ 0 (matrix/vector of zeros) for all 𝑙. 

2: for 𝑖 = 1, … , 𝑚, do 

3: 
    Use backpropagation to compute ∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) and 

∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦). 

4:     Set ∆𝑊(𝑙) ≔ ∆𝑊(𝑙) + ∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦). 

5:     Set ∆𝑏(𝑙) ≔ ∆𝑏(𝑙) + ∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦). 

6: end for 

7: Update the parameters: 

8: 𝑊(𝑙) ≔ 𝑊(𝑙) − 𝛼 [(
1

𝑚
∆𝑊(𝑙)) + 𝜆𝑊(𝑙)] 

9: 𝑏(𝑙) ≔ 𝑏(𝑙) − 𝛼 [
1

𝑚
∆𝑏(𝑙)] 

The steps taken in the gradient descent optimization algorithm can be repeatedly applied to 

minimize the overall cost function 𝐽(𝑊, 𝑏). 
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Momentum training and learning rate annealing are advanced optimization tuning 

parameters that are used to modify backpropagation to allow previous iterations to influence 

the current version. The velocity vector is defined as follows: 

 𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝛼∇𝐿(𝜃𝑡) 
(4.7) 

 𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1 

where 𝜃 denotes the parameters 𝑊 𝑎𝑛𝑑 𝑏. The momentum coefficient is represented by 𝜇 

and the learning rate is 𝛼. 

Training the Baseline MLP Classifier 

The MLP is trained using a training set of labelled observations (𝑥(𝑖), 𝑦(𝑖)) where 𝑦(𝑖) ∈ ℝ2, 

extracted from the T2D case-control GWAS data and used for supervised learning. The 

parameter 𝑥 is a vector of input features obtained from the training samples which are 

extracted as described in section 4.5.1 (Extracting Groups of Features from Association 

Analysis). Six feature input vectors consisting of 7, 13, 23, 103, 766, and 6609 SNPs 

respectively were used to train six separate MLP models. The output 𝑦 was used for target 

outcomes (a sample with T2D and a sample without T2D respectively) among observations 

in the study. The network parameters 𝑊 and 𝑏 are randomly initialised close to zero before 

training is performed. The cost function is set to cross-entropy for binary inputs as defined 

in equation (4.4). 

Hyperparameters Configuration of MLP 

All MLP models are trained with several different layer and neuron configurations. In 

addition, parameters including L1 (Lasso) and L2 (Ridge) regularization penalties, learning 

rate, rate_annealing, momentum_start, momentum_stable, input_dropout_ratio, and early 

stopping criteria are configured for model optimisation. 

Finding optimal hyperparameters is challenging, yet fundamentally important for model 

accuracy. Therefore, Random Grid Search (RGS) (Bergstra & Yoshua 2012) is widely used 

to overcome this issue. The random grid search allows us to test various hyperparameter 
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combinations and choose configurations that maximise model accuracy (Bergstra & Yoshua 

2012). For RGS, a set of hyperparameters and search criteria must be specified. Each 

hyperparameter is defined with a range of possible values. Search criteria with 

stopping_metric, stopping_tolerance, and stopping_rounds are specified for early stopping to 

prevent model overfitting. Based on grid search results, the best model is selected. In some 

cases, the model with the lowest mean square error or lowest Logloss is considered the best 

option. While in another case the highest AUC is considered. 

In this analysis, RGS with a range of hyperparameter values is implemented to evaluate model 

accuracy. Figure 4.9 and Figure 4.10 present the R code snipped used to build random and 

automated search for different network configurations. The activation function coefficient is 

given several options including Rectifier, Tanh, Maxout, RectifierWithDropout, 

TanhWithDropout, and MaxoutWithDropout. Two hidden layer configurations are 

considered - three and four hidden layers. The number of neurons in each layer is set to ten, 

fifty, and a hundred. The remaining hyperparameters L1 and L2 regularization, dropout, 

learning rate, and momentum training are given several possible values. To avoid overfitting, 

early stopping is used to decide when the MLP is optimized and sufficiently accurate. There 

are several parameters to control early stopping including stopping metric, stopping rounds 

and stopping tolerance which are set to Logloss, 5, and 1e-2 respectively. The network is 

finally trained using 100 epochs. 

 

Figure 4.9: R Code – Hyperparameters Used with RGS in MLP 
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Figure 4.10: R Code – Search Criteria Used with RGS in MLP 

4.5.3 Classification using Random Forest Classifier 

A Random Forest classifier is implemented for the binary classification of case-control T2D 

GWAS data. Random Forest classifiers have been used extensively in genetic studies (Botta 

et al. 2014; López et al. 2018; Schwarz et al. 2010; Kursa 2014) given their ability to deal 

with high-dimensional data structures, such as GWAS (Qi 2012). Furthermore, it is a useful 

algorithm for uncovering correlations and interactions within and across a large number of 

features. In this study we train an RF algorithm using the same data splitting strategy 

(training, validation, and testing) with the same feature subsets (7, 13, 23, 103, 766, and 6609 

SNPs respectively). 

The RF algorithms use a randomized decision tree-based ensemble with the number of trees 

configured to 200 and the depth of each tree set to 20. Increasing the number of trees and 

their depth will adjust the weakness of each learner. To avoid overfitting, early stopping is 

used to decide when the RF is optimized and sufficiently accurate. The following parameters 

stopping metric, stopping rounds and stopping tolerance are set to Logloss, 4, and 1e-2 

respectively. 

4.5.4 Classification using Deep Learning Stacked Autoencoders 

Previous sections have discussed supervised learning for binary classification tasks in T2D 

GWAS data. However, high-dimensional data can be reduced by removing redundant 

information and converting the dataset to a lower dimension data using deep learning stacked 

autoencoders. SAEs use unsupervised feature learning or, more specifically, non-linear 

dimensionality reduction (Hinton & Salakhutdinov 2006). Unsupervised feature learning 

with SAE allows information about important features to be captured relating to non-linear 
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latent representations of these features. Hence, SAE provides a way to learn deep features 

from original SNP data by capturing information about important SNPs and the cumulative 

non-linear epistatic interactions between them. 

An autoencoder can be used to pre-train the neural network, where the target output values 

�̂� are approximately equal to the input values 𝑥 using backpropagation. This is achieved by 

minimizing the discrepancy between the input vector and its reconstruction (output vector). 

The AE attempts to learn a function ℎ𝑊,𝑏(𝑥) ≈ 𝑥, which means it is trying to learn an 

approximation to the identity function and consequently to output �̂� equal to 𝑥. The aim is 

to discover interesting structure in the data specifically correlations between input features. 

This is achieved by placing constraints on the network, such as limiting the number of hidden 

units in the hidden layer. In this case, the network will be enforced to learn a compressed 

representation of the input, given the vector of hidden unit activations 𝑎(2) ∈ ℝ𝑛, where n is 

the number of hidden units, and then try to reconstruct the input 𝑥. 

An alternative way to limit the number of hidden units is to use the sparsity of hidden units 

in the network. Sparsity is a useful constraint method particularly with large numbers of 

hidden units. In sparse autoencoders (Ng 2011), most neurons are inactive. A neuron is 

considered active if its output value is close to 1, while if it is close to 0 the neuron is 

considered inactive. Thus, with sparse autoencoders the data is constrained, allowing the 

network to discover interesting structure in the data, important features, which is then used 

during reconstruction. To establish the sparsity constraint on the autoencoder, the activation 

of a hidden unit in the network is denoted as 𝑎𝑗
(2)(𝑥) for a given input 𝑥. Let 

 �̂�𝑗 =
1

𝑚
∑[𝑎𝑗

(2)
(𝑥(𝑖))]

𝑚

𝑖=1

 (4.8) 

where �̂�𝑗 signifies the average activation of hidden unit 𝑗, averaged over 𝑚 training 

examples. Furthermore, the constraint is imposed such that �̂�𝑗 = 𝑝, where 𝑝 is a sparsity 
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parameter representing a small value near to 0. To meet this constraint, the activation of the 

hidden unit must almost be close to 0 (for example, 𝑝 = 0.05). 

To achieve this requirement of �̂�𝑗 = 𝑝, an extra penalty term based on Kullback-Leibler (KL) 

divergence is added to the cost function 𝐽(𝑊, 𝑏) that penalizes �̂�𝑗 when deviating 

significantly from 𝑝: 

 ∑ 𝑝 𝑙𝑜𝑔
𝑝

�̂�𝑗

𝑠2

𝑗=1

+ (1 − 𝑝)𝑙𝑜𝑔
1 − 𝑝

1 − �̂�𝑗
 (4.9) 

where 𝑠2 represents the number of units in the hidden layer, and 𝑗 is an index for summing 

the hidden units in the network. KL divergence which is a standard function used to measure 

how different two different distributions are, is used to impose the penalty term, refer to 

(4.9), as follows: 

 ∑ 𝐾𝐿(𝑝||�̂�𝑗)

𝑠2

𝑗=1

 (4.10) 

where 

 𝐾𝐿(𝑝||�̂�𝑗) = 𝑝 𝑙𝑜𝑔
𝑝

�̂�𝑗
+ (1 − 𝑝)𝑙𝑜𝑔

1 − 𝑝

1 − �̂�𝑗
 (4.11) 

Equation (4.11) represents the Kullback-Leibler divergence between two Bernoulli random 

variables with mean 𝑝 and �̂�𝑗. This can be equal to 0 if �̂�𝑗 = 𝑝, alternatively it increases 

monotonically as �̂�𝑗 diverges from 𝑝. Hence, after adding a sparse penalty term, the overall 

cost function can now be defined as: 

 𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) = 𝐽(𝑊, 𝑏) + 𝛽 ∑ 𝐾𝐿(𝑝||�̂�𝑗)

𝑠2

𝑗=1

 (4.12) 

where 𝐽(𝑊, 𝑏) is the mean squared error cost function defined in equation (4.3), and 𝛽 is 

used to control the sparsity penalty term’s weight. Typically, the activations of a hidden unit 

are dependent on 𝑊, 𝑏 parameters, therefore the term �̂�𝑗 which is the average activation of 

hidden unit 𝑗 depends on 𝑊, 𝑏. 
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In order to integrate the KL-divergence term into the derivative calculation during the 

backpropagation algorithm (see Algorithm 1) the error term can now be computed as: 

 𝛿𝑖
(𝑙)

= ((∑ 𝑊𝑗𝑖
(𝑙)

𝑠𝑙+1

𝑗=1

𝛿𝑗
(𝑙+1)

) + 𝛽 (−
𝑝

�̂�𝑖
+

1 − 𝑝

1 − �̂�𝑖
)) 𝑓  ́(𝑧𝑖

(𝑙)
) (4.13) 

This is a single layer autoencoder procedure. However, to form SAE several AEs are stacked. 

The concept of SAE is that the outputs of each hidden layer in AE are connected to the inputs 

of the subsequent AE layer, repeating this process for the next AE layers, and for the 

classification task the last hidden layer is linked to a softmax classifier. After greedy layer-

wise unsupervised pre-training, the resulting deep features can be used as input to a fully 

connected supervised neural network. 

Pre-Training the Stacked Autoencoders 

In this analysis, to train SAEs, unlabelled training samples are used. These were extracted 

from the T2D case-control GWAS dataset. A subset of input features consisting of 6609 SNPs 

was generated using a p-value threshold of 10−2. The SAE is based on the pre-training of 

weights for fully connected networks in a greedy layer-wise fashion, instead of using random 

weight values. For each single autoencoder the cost function is set to mean squared error, 

refers to equation (4.3), and the activation function coefficient is set to the hyperbolic tangent 

function (tanh) refers to equation (3.3). Epochs set to 1 and L1 regularization penalty is 

configured to 1e-5. The configuration of the SAE consists of four single autoencoders each 

containing a single hidden layer with 2500, 1500, 700, and 300 hidden neurons respectively. 

The configuration is described as follows: 

• The first SAE contains one autoencoder with 2500 hidden neurons to form a 6609-

2500 neural network. 

• The second SAE consists of two autoencoders with 2500 and 1500 hidden neurons 

and these are connected to form a 6609-2500-1500 neural network. 
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• The third SAE contains three autoencoders with 2500, 1500, and 700 hidden neurons 

and these are connected to form a 6609-2500-1500-700 neural network. 

• Finally, the fourth SAE includes four autoencoders with 2500, 1500, 700, and 300 

hidden neurons and these are connected to form a 6609-2500-1500-700-300 neural 

network. 

This SAE is used to learn the deep features contained within 6609 SNPs by gradually 

reducing the dimensionality of features to 300 units while only retaining the salient 

information from each layer. The input vector for the first autoencoder consists of 6609 

features and the number of hidden units is 2500. This network is trained to compress the 

6609 features using a single hidden layer with 2500 units to learn the salient features in the 

data and remove redundant information therefore reducing dimensionality. The trained 

hidden layer containing the 2500 neurons is then used as an input vector to the second 

autoencoder – again the data is compressed into 1500 hidden units and redundant 

information is once again removed. This process continues until a layer containing 300 

neurons is reached, the last hidden layer in this SAE. 

Training the MLP Softmax Classifier 

Following the training process of each layer of the network on unlabelled data for feature 

reduction, the weights parameters are now initialised at a better location in parameter space 

than if they were randomly initialised. The final hidden layer in SAE (300 deep features) is 

used to feed into an MLP softmax classifier for supervised binary classification of T2D 

GWAS data.  

In this analysis, to train an MLP softmax classifier, labelled training samples are utilised. 

The cost function associated with binary classification is set to cross-entropy as defined in 

equation (4.4). To optimize the predictive capacity of the MLP classifier and to prevent 

overfitting and improve generalization, a number of hyperparameters to control the 

configuration topology of the network were experimentally detected and tuned. The network 

architecture including the number of hidden layers and units were specified in addition to 
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the regularization parameters L1, L2, and dropout, were experimentally tuned. The activation 

function coefficient is given several options to determine which of these to adopt for our data. 

The adaptive learning rate was disabled to allow for momentum training and learning rate 

annealing to be experimentally detected. Moreover, to find the optimal combination of 

hyperparameters RGS was employed. Figure 4.9 and Figure 4.10 shown above lists the 

tuning parameters used with the MLP classifier along with their range of configuration 

values. Early stopping was also adopted to avoid overfitting. The optimal number of epochs 

was experimentally set to 100. 

Fine-Tuning the Entire Network 

SAEs train the parameters of each layer independently. To improve the performance results 

of SAEs fine-tuning strategy on labelled training samples (supervised fashion) can be used. 

To perform fine-tuning for the whole network, all layers of SAE are treated as a single model. 

Hence, in one iteration of fine-tuning all the weights of SAEs can be improved. Fine-tuning 

can be implemented using backpropagation algorithm with the aim of minimizing the error 

between the actual output and the expected output of the MLP softmax model. Cross-entropy 

cost function and gradient descent optimization defined in equations (4.4) and (4.5) are 

utilized respectively to update the parameters (𝑊, and 𝑏) for classification tasks of case-

control T2D GWAS data. Figure 4.11 illustrates the configuration used in the pre-training 

of the final stacked autoencoder network and the subsequent fine-tuning processes.  



108 
 

 

Figure 4.11: Configuration of Stacked Autoencoder for Feature Extraction and the Process of 

Fine-Tuning 

 Classification for Genetic and Clinical Data 

Classification has been used to evaluate the performance of various machine learning 

methods and their ability to discriminate between T2D case-control observations in the 

GENEVA NHS-HPFS GWAS dataset. In this analysis, genetic and clinical factors are 

considered to model T2D using five traditional supervised machine learning algorithms. 

These machine learning algorithms are used to model non-linear and linear effects. The non-

linear models include Stochastic Gradient Boosting (GBM), Support Vector Machines with 

Radial Basis Function Kernel (SVMs), Recursive Partitioning and Regression Trees 

(RPART), and Neural Networks (NNET). The linear model includes a Generalized Linear 

Model (GLM). For the evaluation of the predictive abilities of the classification models we 

used the caret package (Kuhn 2008) in R Studio. Figure 4.12 demonstrates the workflow for 

the classification of genetic and clinical data using traditional machine learning. 
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Figure 4.12: The Workflow for the Classification of Genetic and Clinical Data 

4.6.1 Genetic Data Analysis 

In the genomic data investigations, following association analysis, six common SNPs from 

logistic association analysis reached the Bonferroni correction genome-wide significance 

threshold (rs4132670, rs12243326, rs12255372, rs7901695, rs4506565, and rs2371765). 

These are considered as a set of features for the binary classification of T2D. 

4.6.2 Clinical Data Analysis 

In clinical analysis nine features were considered strong candidates in this investigation. 

These include Body Mass Index (BMI), alcohol intake (Alcohol), smoking status (SMK), 

physical activity (ACT), family history of diabetes (Famdb), high blood pressure (Hbp), high 

blood cholesterol (Chol), Age and Sex. These are consistent with those found in (Lyssenko 

et al. 2008; Wilson 2007), who suggest that BMI, SMK, Famdb, Hbp, Age, and Sex are 

stronge predictors of T2D. BMI, Age, ACT, and Alcohol are continuous variables in our 

study, and have been converted to a binary representation using the median of the variables 

(coded as 0, 1). The remaining variables are binary. 
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4.6.3 Genetic and Clinical Data Analysis 

In the joint effect of genetic and clinical data analysis, a combination of six genetic variables 

and the nine clinical variables are used as input features in the third analysis. The genetic 

and clinical features are similar to those identified and mentioned previously. The 

classification performance of the three experiments are evaluated and compared. In addition, 

variable importance for each specific model is also considered to measure the scale of 

importance and model performance. This approach is useful to determine which of the 

predictors (genetic and clinical) contribute more to better model performance. 

4.6.4 Feature Selection for Genetic and Clinical Data Analysis 

In this analysis, feature selection is conducted using the Recursive Feature Elimination 

algorithm (RFE) (Dong et al. 2015). The subset of top ranked features selected by RFE is 

presented as input to conduct three distinct evaluations using genomic data only, clinical data 

only, and lastly genetic and clinical data combined. These evaluations determine whether a 

reduced subset of features can improve on or maintain the previous performance results 

obtained using the original dataset. 

 Performance Evaluation Measurement 

There are various performance metrics that have been used for evaluating classifier 

performance. Each metric offers a different perspective on classifier model performance. 

Consequently, there is no agreed definition on which approach is best. One classifier can 

produce better results on one performance metric but not on others. Therefore, using several 

performance metrics to evaluate classifier performance is recommended (Seliya et al. 2009). 

In this study, the performance of each classifier is measured using sensitivity (true positives), 

also called the recall rate, specificity (true negatives), the Area Under the Curve (AUC), Gini, 

Logarithmic Loss, and Mean Square Error (MSE). Sensitivity and specificity are used to 

represent the number of correctly identified case and control observations (Trevethan 2017). 

Sensitivity refers to the proportion of observations who have the disease and give positive 
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test outcomes (true positive rate). It describes the ability of the test to correctly classify 

people with T2D. Whereas specificity refers to the proportion of observations without the 

disease and give negative test outcomes (true negative rate). It describes the ability of a 

model to correctly classify people without T2D. Generally, sensitivity and specificity metrics 

of the test are inversely related. This means that both metrics often trade-off with each other. 

Choosing the optimal trade-off between sensitivity and specificity depends on the purpose 

of the test. Another approach uses the Youden’s index (Youden 1950) to find a balance 

between sensitivity and specificity. A third possible approach uses the ROC curve to find 

the closest trade-off value to the (0, 1) top-left corner (Perkins & Schisterman 2006), which 

defines the optimal cut-off point based on the lower distance to the (0, 1) corner. In the 

context of this thesis, the true positive rate (sensitivity) is considered a higher priority than 

the true negative rate (specificity). It is more important not to miss a potential case of T2D 

rather than misclassify a healthy individual as having T2D, as for the latter, further tests 

would clarify whether there is any concern or not. 

Alternatively, other performance indicators such as positive predictive value (PPV) and 

negative predictive value (NPV) can be considered to provide healthcare system (i.e. 

physicians) with information that can be more relevant to patients, if the test result is positive 

or negative (Trevethan 2017; Florkowski 2008). PPV is the probability that individuals with 

positive results certainly do have the disease. Whereas NPV is the probability that 

individuals with negative results indeed do not have the disease. The predictive values (PPV 

and NPV) depend on the prevalence of the disease in the population under investigation. 

This considers as one of their limitations as they are influenced by how common the disease 

is in the population being studied. For example, if a disease is uncommon in a tested 

population, a large amount of positive test results will be false positives thus the PPV will 

be low. Whereas if the disease is common in a tested population, the PPV will be high.     
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Each classifier produces a class prediction which is either mapped to case or control 

instances. As such, given a classifier and an instance there are four possible prediction 

outcomes; true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

(Okeh & Okoro 2012). These four outcomes are employed to construct a two-by-two 

confusion matrix that summaries the prediction results of a classifier when a test set is used. 

Figure 4.13 shows a confusion matrix of classification results with its predictive accuracy 

terms. In the context of our study, if an observation is T2D (case) and it is classified as T2D, 

it is counted as a true positive; while if it is classified as non-T2D (control) it is counted as 

a false negative. The other possible instance is non-T2D - if it is classified as non-T2D, it is 

counted as a true negative; if it is classified as T2D it is counted as a false positive. 

 

Figure 4.13: Confusion Matrix Table 

The confusion matrix is used to calculate the performance metrics of binary classification 

models. Performance metrics including sensitivity, specificity, accuracy, PPV, and NPV are 

calculated as: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.14) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4.15) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝑇𝑁
 (4.16) 

 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.17) 
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 𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (4.18) 

In order to estimate the accuracy of machine learning models, k-fold cross-validation (Jung 

2018) is used. K-fold cross-validation also called rotation estimation is a statistical method 

used to compare and select a model for a given classification model to estimate the predictive 

capability of the model on unseen data (data not used during the training or validation 

phases) (Kohavi 1995). K-fold cross-validation involves randomly partitioning the dataset 

into k folds or groups (Refaeilzadeh et al. 2009). These groups are approximately equal size. 

K iterations of training and validation are performed. Subsequently, in the first iteration the 

first fold is considered as a validation set while the remaining k-1 folds are used to fit the 

model. In the second iteration the second fold is held-out for validation and the remaining k-

1 folds for training. This procedure is repeated until all the folds are trained and tested. The 

average error obtained from cross-validation is an estimate of the error obtained for the 

classifier. The common way to obtain a large number of estimates is to run k-fold cross-

validation multiple times and this is known as repeated k-fold cross validation. This method 

is performed in our analysis considering 5 folds with 30 repetitions. 

The area under the curve (AUC) and the receiver operating characteristic curve (ROC curve) 

are used in this study to assess and compare classifier performance. Both of these measures 

are widely used to evaluate binary classifiers (Hand 2009) particularly, in medical decision 

making (Kumar & Indrayan 2011). The AUC value describes the probability of a correct 

classification using both positive and negative instances; values range between 0 and 1. A 

classifer that produces a large area under the curve is preferable. This is because a higher 

AUC means better classification (Hand 2009). The ROC curve is a graphical plot to visualize 

and organize the performance of a binary classification model (Hand 2009). It is created by 

calculating the trade-off between the true positive rate (also known as sensitivity) against the 

false positive rate which can be represented as (1-specificity) (Hand 2009). ROC graphs are 
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a preferred approach rather than simple classification accuracy as the latter is generally 

considered a poor metric for measuring performance (Seliya et al. 2009). 

The Gini coefficient value can be derived from the AUC. It represents the area between the 

ROC curve and the diagonal. The Gini coefficient is usually used in binary classification 

problems. A Gini value above 60% is considered a good model. The Gini is defined as: 

 𝐺𝑖𝑛𝑖 = 2 ∗ 𝐴𝑈𝐶 − 1 (4.19) 

Logarithmic Loss (Logloss) is a classification loss function often used to measure the 

performance of a classification model where the predicted input is a probability value 

between 0 and 1. Logloss increases as the predicted probability (accuracy) decreases (Vovk 

2015; Ferri et al. 2009). A Logloss value of 0 indicates a perfect model where the model 

correctly classifies all class instances. The Logloss is defined as: 

 𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑗log 𝑝𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

 (4.20) 

where 𝑁 denotes the number of observations, and 𝑀 the number of possible outcomes (actual 

labels). While, 𝑦𝑖𝑗 represents a binary indicator to specify if the actual label 𝑗 is the correct 

classification for observation 𝑖, and 𝑝𝑖𝑗 is the model probability of assigning label 𝑗 to 

observation 𝑖. In the case of binary classification where only two classes are specified the 

mathematical expression of Logloss can be simplified to: 

 𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 log 𝑝𝑖 + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)]

𝑁

𝑖=1

 (4.21) 

The Mean Squared Error (MSE) performance metric is used to measure the average of the 

square of the error between the actual values and the predicted values. MSE values closer to 

0 mean that the model correctly classifies all class instances (Ferri et al. 2009). The 

mathematical definition of MSE is expressed as: 
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 𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (4.22) 

MSE is a common measurement metric for evaluating the predictive ability of neural 

networks (Ferri et al. 2009). 

 Summary 

This chapter presented details about the methodology utilized in this thesis. The framework 

architecture to fulfil the outline of the proposed methodology including the data description 

and data quality control procedure, along with genetic association analysis, feature 

engineering, classification and the performance measurements used were described. 
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 Results 

 Introduction 

This chapter presents the results of the experiments performed in this thesis. Following the 

quality control procedures conducted to produce subsets of reliable samples and genetic 

markers for logistic association analysis, the results and their visualizations are presented. 

These results highlight statistically significant SNPs that suggest potential disease-

associations in T2D. In addition, these findings are biologically discussed and linked to 

previous studies in the literature. 

Furthermore, the results for the binary classification of T2D genetic data using deep learning 

stacked autoencoders are evaluated and benchmarked against a multilayer perceptron neural 

networks and random forest classifier. 

Five algorithms including GBM, SVM, RPART, NNET, and GLM are employed to conduct 

three distinct evaluations using genomic data only, clinical data only, and lastly the joint effect 

of genetic and clinical data. The results generated by the three evaluations models are 

compared. 

 Logistic Association Analysis Results 

A case-control study design is used for association analysis tests to find statistically 

significant SNPs associated with T2D. Logistic regression association analysis under an 

additive genetic model adjusted for GC inflation factor shows that six genotyped SNPs 

passed the Bonferroni-corrected genome-wide significance threshold. In addition, 22 (16+6 

GWS) SNPs were found to be above the suggestive association threshold. The Manhattan 

plot in Figure 5.1 illustrates the logistic association analysis results. Each point in the plot 

represents an individual SNP and the chromosome number along the x-axis and the negative 

log of the corresponding 𝑝-value on the y-axis. The plot shows the SNPs that reached the 

Bonferroni level of significance, and those that reached the suggestive threshold. 



117 
 

 
Figure 5.1: Manhattan Plot for Logistic Regression Analysis Adjusted GC 

Logistic analysis uncovered the SNPs shown in Table 5.1. The OR for these SNPs is > 1 

indicating that these SNPs are more likely to appear in cases and thus signifying an 

association with T2D. 

Table 5.1: SNPs from Logistic Regression Test of Association 

Chr Nearest Gene SNP P-Value OR Association Type 

10 TCF7L2 rs4132670 1.412 × 10−9 1.288 Risk Association 

10 TCF7L2 rs12243326 1.767 × 10−9 1.295 Risk Association 

10 TCF7L2 rs12255372 2.400 × 10−9 1.290 Risk Association 

10 TCF7L2 rs7901695 2.561 × 10−9 1.283 Risk Association 

10 TCF7L2 rs4506565 2.991 × 10−9 1.281 Risk Association 

3 ADAMTS9 rs2371765 3.146 × 10−8 1.240 Risk Association 

The analysis shows that there are 5 significant associative SNPs located in chromosome 10 

as listed in Table 5.1. These SNPs have an association with T2D and a OR > 1. These SNPs 

can be found in the Transcription Factor-7-Like-2 (TCF7L2) Gene region. The TCF7L2 gene 

is known as the susceptibility gene with the largest effect on T2D predisposition (Gloyn et 

al. 2009). In line with  (Chuan-zhen et al. 2008; Cauchi et al. 2006; Scott et al. 2006; Sale et 

al. 2007; Ibrahim et al. 2016) studies that suggested that (TCF7L2) genetic variants have 

been associated with T2D in several ethnic groups, our findings confirm this and thus could 

serve as a starting point for future investigations. In addition, one of the reported genes found 
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in chromosome 3 has been previously associated with T2D related traits. Particularly, 

ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) gene which has 

previously been reported by Voight et.al (Voight et al. 2010). 

Of the list of SNPs obtained from logistic association tests, we found 10 SNPs (rs1020731, 

rs10181181, rs6718526, rs2925757, rs7572970, rs7593730, rs4589705, rs4077463, 

rs11693602, and rs9287795) above the suggestive threshold. These were located in 

chromosome 2 as listed in Table 5.2. Chromosome 2 is one of the largest chromosomes in 

the human genome and gene abnormalities have been linked to several important diseases 

particularly T2D (Hanis et al. 1996). These SNPs are found in the RNA binding motif single 

stranded interacting protein 1 (RBMS1) gene and show protective association to T2D with 

OR < 1. Even though the odds ratio for these SNPs indicate that the condition is more likely 

to be in the control group, the large-scale meta-analysis study conducted by Qi et al. (Qi et 

al. 2010) proved that the RBMS1 gene was a T2D associated variant represented by SNP 

rs7593730 at 2q24 locus. Variants in this region were usually linked to lower fasting glucose 

suggesting that the 2q24 locus may influence T2D risk by affecting glucose metabolism and 

insulin resistance. Thus, these SNPs identified by our study should be considered for further 

investigation. Figure 5.2 shows the Manhattan plot for chromosome 2 and highlights the 

SNPs that reached the suggestive line. 

 
Figure 5.2: Manhattan Plot for Chromosome 2 
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Two of the genes reported in our analysis were found to be associated with different disease 

traits in other studies. Particularly, the regulator of G-protein signaling 6 (RGS6) gene that 

is associated with Parkinson’s disease (Ahlers et al. 2016), Cancer (Ahlers et al. 2016), and 

Heart Rate (HR) variability (Verweij et al. 2018). Additionally, the holocarboxylase 

synthetase (HLCS) gene has been linked with the pathogenesis of Chronic Rhinosinusitis 

with Nasal Polyps (Bohman et al. 2017). 

Table 5.2: SNPs above Suggestive Threshold 

Chr Nearest Gene SNP P-Value OR Association Type 

2 RBMS1 rs1020731 4.135 × 10−7 0.8022 Protective 

2 - rs10181181 7.014 × 10−7 0.8061 Protective 

2 RBMS1 rs6718526 9.192 × 10−7 0.7836 Protective 

14 RGS6 rs2283381 1.362 × 10−6 0.8071 Protective 

2 - rs2925757 4.251 × 10−6 0.7923 Protective 

2 RBMS1 rs7572970 4.652 × 10−6 0.8179 Protective 

21 HLCS rs11701035 6.026 × 10−6 1.2560 Risk Association 

21 HLCS rs2835530 6.899 × 10−6 1.2550 Risk Association 

1 - rs10753049 7.403 × 10−6 1.2670 Risk Association 

1 - rs6425178 7.508 × 10−6 1.2670 Risk Association 

1 - rs6667131 7.567 × 10−6 1.2670 Risk Association 

2 RBMS1 rs7593730 8.343 × 10−6 0.8095 Protective 

2 RBMS1 rs4589705 8.813 × 10−6 0.8100 Protective 

2 RBMS1 rs4077463 9.101 × 10−6 0.8102 Protective 

2 RBMS1 rs11693602 9.118 × 10−6 0.8102 Protective 

2 RBMS1 rs9287795 9.631 × 10−6 0.8105 Protective 

In genetic association analysis Q-Q plots are used to check for possible systematic bias in 

the study dataset. In Figure 5.3 the Q-Q plot shows the 𝑝-values for SNPs against expected 

𝑝-values. The figure shows the relationship between the expected distribution of 𝑝-values 

(null) and the observed distribution of 𝑝-values for association tests. The logistic test shows 

that systematic bias is not possible due to population stratification as there is no early 
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deviation from the diagonal. Logistic regression under the additive genetic model, adjusted 

for GC, shows that there is moderate deviation in the upper right tail from the y=x line and 

also that there is a severe deviation at the top. This suggests the existence of some form of 

association between SNPs and the disease of interest. The red line represents the null 

hypothesis of no association and the blue dot refers to the observed −𝑙𝑜𝑔10(𝑝). 

 
Figure 5.3: Q-Q Plot for Logistic Test Adjusted GC 

 Results for the Classification of High-Dimensional Genetic Data 

Following the identification of feature subsets obtained from the original GWAS data, deep 

learning stacked autoencoders for unsupervised feature learning is adopted to find latent 

representations in SNPs. Learned features are utilised to fine-tune an MLP for T2D binary 

classification of case-control observations. The results obtained are benchmarked against 

two supervised machine learning algorithms (multilayer perceptron neural network and 

random forest classifiers), using the original SNP sequences obtained from GWAS analysis. 

In this analysis, the performance of the MLP, deep learning SAE and RF are measured using 

the Area Under the Curve (AUC), Sensitivity, Specificity, Gini, Logarithmic Loss, and MSE 

values.  

5.3.1 Data Splitting 

The dataset used in this analysis is split randomly into training (70%), validation (15%), and 

testing (15%). The training set is used to train the model. The validation set is used to optimize 
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the hyperparameters. Following hyperparameter optimisation, the test set is utilised to 

evaluate model performance on unseen data. 

5.3.2 Baseline Multilayer Feedforward Neural Network 

This section presents the classification results for the MLP using the T2D dataset. Several 

association analysis thresholds are considered including 5 × 10−8, 10−6, 10−5, 10−4, 10−3, 

and 10−2 resulting in 7, 13, 23, 103, 766, and 6609 SNPs respectively. The architecture of 

the MLP network for each subset of features with its tuning parameters including activation 

function, input_dropout_ratio, L1 and L2 penalties, momentum_stable, momentum_start, 

learning rate, and rate_annealing is presented in Table 5.3. Several neuron and hidden layers 

were tested to specify the optimal network topology to obtain the best results. For input 

neurons with 103, 766, and 6609 SNPs the best performance was obtained using three hidden 

layers with one hundred neurons in each and one output neuron. For 23 SNPs (input nodes), 

three hidden layers with ten nodes in each is specified. For 13 and 7 SNPs configurations 

four hidden layers with fifty nodes in each is used. Based on empirical analysis, these 

configurations produced the best results. 
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Table 5.3: Configuration of the Network for MLP for Different Subsets of Features 

Input 

neurons 
Activation function Hidden 

Input 

dropout 
L1 𝜆 

Momentum 

stable 

Momentum 

start 

Learning 

rate 

Rate 

annealing 

6609 RectifierWithDropout [100,100,100] 0.2 9.9e-5 3.7e-5 0.99 0.5 0.001 1.0e-6 

766 RectifierWithDropout [100,100,100] 0.2 9.9e-5 3.7e-5 0.99 0.5 0.001 1.0e-6 

103 RectifierWithDropout [100,100,100] 0.2 9.9e-5 3.7e-5 0.99 0.5 0.001 1.0e-6 

23 TanhWithDropout [10,10,10] 0.0 4.6e-5 8.1e-5 0.0 0.0 1.0e-4 1.0e-7 

13 MaxoutWithDropout [50,50,50,50] 0.0 1.2e-5 2.2e-5 0.0 0.0 0.001 1.0e-8 

7 MaxoutWithDropout [50,50,50,50] 0.0 1.2e-5 2.2e-5 0.0 0.0 0.001 1.0e-8 
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Table 5.4 provides the performance metrics for the MLP using the validation set. Metric 

values for p-value thresholds 5 × 10−8, 10−6, 10−5, 10−4, 10−3, and 10−2 were obtained 

using an optimized F1 threshold with values 0.4822, 0.4879, 0.4686, 0.5155, 0.3914, and 

0.3005 respectively. 

Table 5.4: Performance Metrics of MLP for Validation Set 

p-value AUC Sens Spec Logloss Gini MSE 

10−2 0.9479 0.9133 0.8319 0.3166 0.8959 0.0966 

10−3 0.8682 0.8430 0.7338 0.4545 0.7365 0.1482 

10−4 0.6938 0.6814 0.6246 0.6330 0.3813 0.2211 

10−5 0.6176 0.8477 0.3305 0.6720 0.2117 0.2395 

10−6 0.6052 0.7142 0.4257 0.6722 0.2110 0.2397 

5 × 10−8 0.5778 0.8501 0.2745 0.6811 0.1537 0.2440 

Table 5.5 provides the performance metrics for the MLP using the test set. Metric values for 

5 × 10−8, 10−6, 10−5, 10−4, 10−3, and 10−2 were gained using an optimized F1 threshold 

with values 0.4762, 0.4564, 0.4712, 0.5789, 0.3919, and 0.3502 respectively. 

Comparatively, the results are lower than those obtained by the validation set, which is 

expected. 

Table 5.5: Performance Metrics of MLP for Test Set 

p-value AUC Sens Spec Logloss Gini MSE 

10−2 0.9534 0.9439 0.8086 0.2849 0.9069 0.0885 

10−3 0.8375 0.8528 0.6709 0.5031 0.6751 0.1643 

10−4 0.6810 0.5397 0.7346 0.6397 0.3660 0.2245 

10−5 0.5774 0.8060 0.3035 0.6773 0.2009 0.2421 

10−6 0.5699 0.8878 0.1836 0.6806 0.1634 0.2438 

5 × 10−8 0.5434 0.8528 0.2117 0.6899 0.0848 0.2484 

The classification accuracy for the MLP classifier model shows significant improvement 

with values ranging between 57.78% for 5 × 10−8 and 94.79% for 10−2 in the validation 

set. This is also the case for the test set with values of 54.34% and 95.34% for 5 × 10−8 and 

10−2 p-value thresholds respectively. Sensitivity and specificity metrics for the MLP using 
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the validation and test sets are imbalanced for lower p-value thresholds, with signs of bias 

in sensitivities. However, this is not the case with higher thresholds 10−4, 10−3, and 10−2 

where the number of SNPs increases. 

Figure 5.4 shows the model learning curve for the training and validation sets and is useful 

to model overfitting. Early stopping was adopted to avoid overfitting during model learning. 

Logloss stopping metrics was used to stop model learning on the validation set when the 

model’s Logloss value did not improve by 1e-2 (stopping_tolerance) after reaching 5 scoring 

epochs (stopping_rounds). An overfitted model can be diagnosed from the Logloss plot 

where the train loss curve slopes down while the validation loss curve slopes down, hits the 

inflection point (the epochs points) and begins to slope up. As can be seen in Figure 5.4 (a) 

and (b), there are signs of overfitting in both cases. In same figure, a small amount of 

overfitting can be observed in (c), (d), (e), and (f) which in the future can be addressed by 

imposing heavier regularisations. Furthermore, the AUC plots are visualized to highlight if 

overfitting occurs. AUC plots provide useful information about early divergence between 

the training and validation curves, Figure 5.5 shows that there is a small amount of 

overfitting, again this can be addressed using heavier regularisations. 

  
(a) Logloss 10−2 (b) Logloss 10−3 
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(c) Logloss 10−4 (d) Logloss 10−5 

  
(e) Logloss 10−6 (f) Logloss 5 × 10−8 

Figure 5.4: (a) to (f) Logloss Plots against Epochs for p-value 10-2 to 5 × 10-8 

  
(a) AUC 10−2 (b) AUC 10−3 

  
(c) AUC 10−4 (d) AUC 10−5 
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(e) AUC 10−6 (f) AUC 5 × 10−8 

Figure 5.5: (a) to (f) AUC Plots against Epochs for p-value 10-2 to 5 × 10-8 

5.3.3 Baseline Random Forest Ensemble Method 

An RF classifier is utilised which is a randomized decision tree-based ensemble for the 

classification of T2D case-control observations and to benchmark the performance of the 

MLP classifier. In this evaluation, using the same subset of features obtained from 

association analysis p-value thresholds (5 × 10−8, 10−6, 10−5, 10−4, 10−3, and 10−2), with 

the number of trees set to 200 and a maximum depth of 20, the early stopping criterion is 

adopted to build an optimized RF model and to avoid overfitting. The early stopping criterion 

is determined using stopping metrics, stopping rounds, and stopping tolerance values set to 

Logloss, 4, and 1e-2 respectively. Model learning stops fitting new trees, when the model’s 

Logloss value, fails to increase more than 1e-2 after 4 scoring intervals. 

Table 5.6 shows the performance metrics for the RF using the validation set. Metric values 

for 5 × 10−8, 10−6, 10−5, 10−4, 10−3, and 10−2 were obtained using optimized F1 

threshold values 0.4952, 0.4963, 0.2858, 0.5474, 0.5287, and 0.5500 respectively. 

Table 5.6: Performance Metrics of RF for Validation Set 

p-value AUC Sens Spec Logloss Gini MSE 

10−2 0.7471 0.6416 0.7507 0.6517 0.4943 0.2295 

10−3 0.7366 0.7213 0.6610 0.6422 0.4733 0.2250 

10−4 0.6610 0.6112 0.6302 0.6518 0.3221 0.2298 

10−5 0.5473 0.9203 0.1092 0.7520 0.0947 0.2686 

10−6 0.5620 0.7423 0.3697 0.7209 0.1241 0.2578 

5 × 10−8 0.5552 0.8103 0.2857 0.6936 0.1104 0.2489 
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Table 5.7 presents the performance metrics for the RF using the test set. Metric values for 

5 × 10−8, 10−6, 10−5, 10−4, 10−3, and 10−2 were obtained using optimized F1 threshold 

values 0.4944, 0.4872, 0.5677, 0.5118, 0.5350, and 0.5508 respectively. The classification 

accuracy metric partially shows, in some cases, worse results than those obtained using the 

validation set, which is to be expected. 

Table 5.7: Performance Metrics of RF for Test Set 

p-value AUC Sens Spec Logloss Gini MSE 

10−2 0.7353 0.5654 0.7831 0.6566 0.4706 0.2320 

10−3 0.6966 0.7313 0.5841 0.6551 0.3932 0.2313 

10−4 0.6498 0.7196 0.5102 0.6595 0.2996 0.2335 

10−5 0.5661 0.5560 0.5969 0.7444 0.1322 0.2663 

10−6 0.5517 0.7245 0.3346 0.7300 0.1034 0.2615 

5 × 10−8 0.5518 0.8294 0.2423 0.6924 0.1036 0.2496 

The RF classifier model shows 19.19% improvement for the validation set and 18.35% 

improvement for the test set. Sensitivities and specificities for the RF using the validation 

and test sets are imbalanced for lower p-value thresholds, indicating that RF is not able to 

distinguish between cases and controls. However, for higher thresholds 10−4, 10−3, and 

10−2 where the number of SNPs increases a much higher improvement can be observed. 

Figure 5.6 presents the ROC curves generated for the MLP and RF classifiers. The 

performance of the MLP and RF are similar when using 5 × 10−8, 10−6, 10−5, and 10−4. 

However, the MLP classifier model outperforms the RF model when using 10−3 and 10−2 

thresholds. 
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(a) ROC for  10−2 (b) ROC for  10−3 

  

(c) ROC for  10−4 (d) ROC for  10−5 

  

(e) ROC for  10−6 (f) ROC for  5 × 10−8 

Figure 5.6: (a) to (f) Performance ROC Curves for MLP and RF Test Sets using p-value Threshold 

10-2 to 5 × 10-8 

5.3.4 Deep Learning Stacked Autoencoder Results 

This section presents the classification results for T2D that were obtained using a Deep 

Learning SAE. This evaluation considers SNPs generated with a p-value threshold 10−2 

which filters the dataset to 6609 SNPs. Deep learning stacked autoencoders use these SNPs 
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to extract latent information and non-linear epistatic interactions between SNPs. The results 

are based on four stacked autoencoders. The first SAE consists of 2500 hidden neurons while 

the second, third and fourth SAE use (2500, 1500), (2500, 1500, 700), and (2500, 1500, 700, 

300) hidden neurons respectively. 

The network architecture for each SAE layer along with its tuning parameters is presented 

in Table 5.8. Several neuron and hidden layer configurations are tested to determine the 

optimal network topology for softmax classification tasks. For input neurons with 2500 and 

1500 compressed SNPs the best performance was obtained using four hidden layers with ten 

neurons in each, and one output neuron. Using 700 SNPs, three hidden layers and one 

hundred nodes in each are used. While, 300 SNPs, with three hidden layers and ten nodes in 

each, produced sufficient results. 
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Table 5.8: Configuration of the Network for MLP Softmax Classifier for Four SAEs 

Input 

neurons 
Activation function Hidden 

Input 

dropout 
L1 𝜆 

Momentum 

stable 

Momentum 

start 

Learning 

rate 

Rate 

annealing 

2500 MaxoutWithDropout [10,10,10,10] 0.2 3.5e-5 9.6e-5 0.99 0.0 1.0e-4 1.0e-8 

1500 MaxoutWithDropout [10,10,10,10] 0.2 9.6e-5 0.99 0.0 1.0e-4 1.0e-8 9.6e-5 

700 RectifierWithDropout [100,100,100] 0.2 9.9e-5 3.7e-5 0.99 0.5 0.001 1.0e-6 

300 RectifierWithDropout [10,10,10] 0.2 3.3e-5 9.3e-5 0.5 0.0 0.001 1.0e-6 
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Table 5.9 illustrates the performance metrics for the deep learning SAE using the validation 

set. The metric values for the first SAE (2500 hidden units), second SAE (2500, 1500), third 

SAE (2500, 1500, 700), and fourth SAE (2500, 1500, 700, 300) were obtained using an 

optimized F1 threshold with values 0.2904, 0.3619, 0.3388, and 0.4662 respectively. 

Table 5.9: Performance Metrics of DL SAE for Validation Set 

SAE AUC Sens Spec Logloss Gini MSE 

2500 0.9400 0.9297 0.7815 0.3484 0.8800 0.1024 

1500 0.9039 0.9039 0.7226 0.3910 0.8079 0.1244 

700 0.8909 0.9320 0.6834 0.4406 0.7818 0.1344 

300 0.8064 0.8477 0.6526 0.5416 0.6128 0.1792 

Table 5.10 presents the performance metrics obtained using the test set. The metric values 

for the first SAE (2500 hidden units), second SAE (2500, 1500), third SAE (2500, 1500, 

700), and fourth SAE (2500, 1500, 700, 300) were obtained using an optimized F1 threshold 

with values 0.6173, 0.4149, 0.3514 and 0.3889 respectively. The results are lower than those 

produced using the validation set but not for all cases, for SAE (2500 hidden units) a 0.25% 

improvement was observed. 

Table 5.10: Performance Metrics of DL SAE for Test Set 

SAE AUC Sens Spec Logloss Gini MSE 

2500 0.9425 0.8714 0.8954 0.3405 0.8851 0.0948 

1500 0.8947 0.8761 0.7448 0.4226 0.7895 0.1330 

700 0.8689 0.9228 0.6326 0.4969 0.7379 0.1536 

300 0.8078 0.8785 0.5306 0.5511 0.6157 0.1843 

The classification accuracy using the SAE approach shows a progressive deterioration as the 

input features are steadily compressed to 300 hidden neurons using both the validation and 

test sets. Despite the gradual deterioration in performance, satisfactory results were achieved 

with 1500 hidden units. Figure 5.7 presents the model learning curves for both the training 

and validation sets to detect overfitting. Early stopping was adopted to ensure this does not 

happen and the Logloss stopping metric was used to stop the model learning when the 

model’s Logloss value does not improve by 1e-2 after reaching 5 scoring epochs. Again, as 
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can be seen in Figure 5.7 and Figure 5.8 (a), (b), and (c) there are signs of overfitting which 

can also be addressed with heavier regularisations. But the last figure with 300 hidden units 

(d), shows that overfitting is appropriately managed.   

  

(a) Logloss for hidden=2500 (b) Logloss for hidden=1500 

  

(c) Logloss for hidden=700 (d) Logloss for hidden=300 

Figure 5.7: (a) to (d) Logloss Plots against Epochs for 2500, 1500, 700, and 300 Compressed Units 

  

(a) AUC for hidden=2500 (b) AUC for hidden=1500 
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(c) AUC for hidden=700 (d) AUC for hidden=300 

Figure 5.8: AUC Plots against Epochs for 2500, 1500, 700, and 300 Compressed Units 

The ROC curve in Figure 5.9 illustrates the cut-off values for the false and true positive rates 

using the test set. In this evaluation, the ROC curve shows a gradual deterioration in the 

performance of the softmax classifiers as the initial 6609 features (SNPs) are gradually 

compressed down to 300 hidden units in the stacked autoencoder configurations. Although 

the predictive accuracy degraded from 94.25% for 2500 hidden units and to 80.78% for 300 

hidden units, the results still remain acceptable. 

 

Figure 5.9: Performance ROC Curves of DL SAE for Test Set for 2500, 1500, 700, and 300 

Hidden Units 
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 Results for the Classification of Genetic and Clinical Data using Traditional 

Machine Learning 

Several experiments are considered in this section to investigate and evaluate the predictive 

capacity of traditional machine learning models using genetic data only, clinical data only, 

and lastly when genetic and clinical data are combined. Five algorithms including GBM, 

SVM, RPART, NNET, and GLM are employed to conduct three distinct experiments with 

genomic data only, clinical data only, and lastly genetic and clinical data combined. The 

performance of each model is measured using AUC, Sensitivity, and Specificity.  

5.4.1 Data Splitting 

The dataset is split randomly into training (80%) and testing (20%) to evaluate model 

performance. For resampling, 5-fold cross-validation with 30 repetitions is employed and the 

average performance is calculated. 

5.4.2 Genetic Analysis Results 

The first experiment was conducted using genomic features only; these include SNPs 

(rs4132670, rs12243326, rs12255372, rs7901695, rs4506565, and rs2371765) extracted 

from logistic association analysis using Bonferroni correction threshold. Five machine 

learning algorithms including GBM, SVM, RPART, NNET, and GLM were designed and 

evaluated using training and testing sets as specified previously. The hyperparameters for 

these models were experimentally detected. GBM, a boosted tree model, is used for 

classification with the number of trees (n.trees) in the range 50 to 150, and the number of 

leaves in each tree between 1 and 3 (represents the complexity of tree (interaction.depth)). 

The minimum number of samples in tree nodes (n. minobsinnode) is set to 10, with the 

learning rate (shrinkage) set to 0.1. The best tuning values used to fit the model include 

n.trees set to 50 and interaction.depth set to 1. An SVM, a classifier model based on radial 

kernel function, is used for classification with sigma set to 0.2731565 and the cost (C) 

parameter range between 0.25 and 1. RPART is also used, which is a decision tree model, 
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for classification; the size and the splits in the decision tree are controlled with the 

complexity parameter configured to 0.001526718. In addition, NNET, a neural network 

model with single hidden layer, is employed for classification with 1, 3, and 5 hidden layer 

units. The regularization parameter (decay) is configured to 0.1, which is useful to avoid 

overfitting. Table 5.11 highlights the optimal values used along with the selected machine 

learning algorithms used in classification tasks. 

 Table 5.11: Tuning Parameters for Models using Genetic Data  

Classifier Best Tuning Parameters 

GBM 

number of trees = 50 

number of leaves in a tree = 1 

learning rate = 0.1 

minimum number of training set samples in a node = 10 

SVM 
sigma = 0.2731565 

cost = 0.25 

RPART complexity parameter = 0.001526718 

NNET 
size = 1 

decay = 0.1 

The results presented in Table 5.12 show that sensitivities and specificities are imbalanced 

for all the models, sensitivities are lower than specificities. This indicates that the selected 

features for these models are inadequate at distinguishing between cases and controls. This 

analysis also reveals that the performance using the AUC for linear and non-linear classifiers 

are almost the same ranging between 57.09% for SVM and NNET classifiers and 57.46% for 

the GLM. Figure 5.10 illustrates the ROC curve for the chosen models. 

Table 5.12: Predictive Results for Genetic Analysis 

Classifier Accuracy Sensitivity Specificity 

GLM 0.5746 0.2668 0.8348 

GBM 0.5718 0.2546 0.8399 

SVM 0.5709 0.2424 0.8485 

RPART 0.5737 0.2607 0.8382 

NNET 0.5709 0.2587 0.8348 
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Figure 5.10: ROC Curve for Five Models using Six SNPs Reached Bonferroni Correction 

Threshold 

5.4.3 Genetic Analysis Results using Feature Selection 

Using the RFE algorithm for feature selection, individual features are assessed to determine 

their rank within all features considered. Figure 5.11 shows the results for various feature 

combinations. The results highlight that the optimal number of features is three with an 

AUC=0.558. The three ranked features are rs2371765, rs12255372, and rs4132670 and these 

are used as input features for the five models to investigate whether this reduced feature set 

can enhance or maintain the previous result when the whole set of features are used. 

 

Figure 5.11: Recursive Feature Elimination Plot for Genetic Data 
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5.4.3.1 Classifier Performance of Genetic Data using Features Extracted from RFE 

This experiment was conducted using the three features selected by RFE (rs2371765, 

rs12255372, and rs4132670). The hyperparameters are experimentally detected. For the 

GBM, the number of trees is configured to 150 with the number of leaves in a tree set to 1. 

The minimum number of samples in tree nodes is set to 10 with the learning rate set to 0.1. 

Whereas for the SVM, sigma is set to 0.2950747 and the cost parameter is configured to 0.25. 

For the RPART classifier model, the size and the split of the decision tree is controlled with 

the complexity parameter configured to 0.001526718. Finally, for the NNET model, the 

number of units in the hidden layer is set to 3 and the regularization parameter configured to 

1e-04. Table 5.13 describes the tuning hyperparameters for these chosen models. 

Table 5.13: Tuning Parameters for Models using Genetic Data Selected by RFE 

Classifier Best Tuning Parameters 

GBM 

number of trees = 150 

number of leaves in a tree = 1 

learning rate = 0.1  

minimum number of training set samples in a node = 10 

SVM 
sigma = 0.2950747 

cost = 0.25 

RPART complexity parameter = 0.001526718 

NNET 
 size = 3  

decay = 1e-04  

Table 5.14 describes the predictive results obtained from each of the models using the reduced 

feature set from the genomic dataset. It is evident that the GLM, GBM, and RPART classifiers 

perform slightly worse in terms of accuracy measurement. Sensitivity for the GBM improved 

by 1.83% indicating that this classifier can classify case instances much better using these 

selected features. However, the SVM and NNET can improve on the previous results 

demonstrated using the full features set.  
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Figure 5.12 illustrates the ROC curves for the five models which shows no significant 

improvements on the previous set of results for the five models when the full set of features 

are used. 

Table 5.14: Predictive Results for Genetic Analysis using Features Selected by RFE 

Classifier Accuracy Sensitivity Specificity 

GLM 0.5709 0.2587 0.8348 

GBM 0.5709 0.2729 0.8227 

SVM 0.5728 0.2587 0.8382 

RPART 0.5737 0.2607 0.8382 

NNET 0.5718 0.2546 0.8399 

 

Figure 5.12: ROC Curve for Five Models using Three SNPs Chosen using RFE 

5.4.4 Clinical Analysis Results 

A separate analysis is conducted using clinical variables only. These include Body Mass 

Index (BMI), alcohol intake (Alcohol), smoking status (SMK), physical activity (ACT), 

family history of diabetes (Famdb), high blood pressure (Hbp), high blood cholesterol (Chol), 

AGE and SEX. The same five machine learning algorithms used in the previous experiment 

are used in this experiment. Table 5.15 presents the optimal values tested for these models.
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Table 5.15: Tuning Parameters for Models using Clinical Data 

Classifier Best Tuning Parameters 

GBM 

number of trees = 150 

number of leaves in a tree = 1 

learning rate = 0.1  

minimum number of training set samples in a node = 10 

SVM 
sigma = 0.07629681 

cost = 0.25 

RPART complexity parameter = 0.007097792 

NNET 
size = 1  

decay = 0.1  

The results in Table 5.16 show that the GBM classifier yields the best accuracy with 71.06%. 

Although GBM produced the best AUC performance, the model classifies control instances 

better than cases with 64.63% and 76.52% for sensitivity and specificity, respectively. The 

AUC values for the SVM and RPART are lower than other classifiers. However, RPART is 

the only classifier with sensitivity higher than specificity (73.89%, 61.47%) which means that 

RPART model can recognize cases better than controls. Figure 5.13 shows the ROC curve 

for the selected models. In fact, in general the NNET actually performs better than all others 

given that the balance between sensitivity and specificity is much closer with an AUC of 

71%. Although the classification performance of clinical data shows satisfactory results, the 

value of clinical information is limited as it is only useful when individuals in the study have 

already developed the disease (in this case T2D).      

Table 5.16: Predictive Results for Clinical Analysis 

Classifier Accuracy Sensitivity Specificity 

GLM 0.7086 0.6505 0.7581 

GBM 0.7106 0.6463 0.7652 

SVM 0.6893 0.6379 0.7330 

RPART 0.6718 0.7389 0.6147 

NNET 0.7096 0.6800 0.7348 
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Figure 5.13: ROC Curve for Five Models using Clinical Data 

5.4.5 Clinical Analysis Results using Feature Selection 

In this experiment the RFE algorithm is utilised to determine the optimal number of clinical 

features for model training. Figure 5.14 illustrates the accuracy results for various feature 

combinations. The optimal number of features is eight which produces an AUC=0.7024. The 

eight ranked features are BMI, Famdb, Hbp, Chol, SMK, Alcohol, SEX, and ACT. 

 
Figure 5.14: Recursive Feature Elimination Plot for Clinical Data 

5.4.5.1 Classifier Performance of Clinical Data using Features Extracted from RFE 

The eight clinical variables extracted using RFE are used as input for the selected models. 

Again, hyperparameter tuning is performed experimentally with the coefficient values shown 

in Table 5.17.
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Table 5.17: Tuning Parameters for Models using Clinical Data Selected by RFE 

Classifier Best Tuning Parameters 

GBM 

number of trees = 100 

number of leaves in a tree = 2 

learning rate = 0.1  

minimum number of training set samples in a node = 10 

SVM 
sigma = 0.08207512 

cost = 0.25 

RPART complexity parameter = 0. 007097792 

NNET 
size = 1  

decay = 0.1  

The accuracy for all classifiers deteriorates slightly using the reduced feature set as presented 

in Table 5.18. The sensitivity for the GBM model shows a 4% improvement indicating that 

this classifier can classify cases much better using the reduced feature set. The ROC curve in 

Figure 5.15 shows that the five classifiers obtain similar results to the previous experiment. 

Table 5.18: Predictive Results for Clinical Analysis using Features Selected by RFE 

Classifier Accuracy  Sensitivity Specificity 

GLM 0.7076 0.6421 0.7634 

GBM 0.7096 0.6863 0.7294 

SVM 0.6912 0.6505 0.7258 

RPART 0.6718 0.7389 0.6201 

NNET 0.7076 0.6821 0.7294 

 

 
Figure 5.15: ROC Curve for Five Models using Clinical Data Selected by RFE 
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5.4.6 Genetic and Clinical Analysis Results  

A combination of six SNPs along with nine clinical variables is used as input features in the 

third experiment. Again, the same five machine learning algorithms are used. The best tuning 

hyperparameters for those models are shown in Table 5.19. 

Table 5.19: Tuning Parameters for Models using Genetic and Clinical Data 

Classifier Best Tuning Parameters 

GBM 

number of trees = 100 

number of leaves in a tree = 2 

learning rate = 0.1  

minimum number of training set samples in a node = 10 

SVM 
sigma = 0.04330685   

cost = 0.25 

RPART complexity parameter = 0.007360673 

NNET 
size = 1  

decay = 0.1  

The results in Table 5.20 show that the best classification accuracy was 72.99% which was 

obtained using the NNET algorithm. The AUC values for the GLM, GBM, SVM, RPART, 

NNET did yield better results than experiments that used clinical or genomic data only. In 

addition, sensitivities and their corresponding specificities for the GBM and NNET classifiers 

are balanced with values ~70%. 

Table 5.20: Predictive Results for Genetic and Clinical Analysis 

Classifier Accuracy Sensitivity Specificity 

GLM 0.7289 0.6758 0.7742 

GBM 0.7212 0.7011 0.7384 

SVM 0.7067 0.6695 0.7384 

RPART 0.6718 0.7389 0.6147 

NNET 0.7299 0.7011 0.7545 

As can be seen in Figure 5.16 from the variable important plots the predictive values of the 

machine learning models used in this investigation are due to clinical data, with slight 

evidence arising from genetic data. BMI and Famdb were significantly important. Moreover, 

the importance of other clinical variables including Hbp, Chol, SMK, Sex, Alcohol, ACT, 
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and AGE appeared to vary among these five models. For the RPART model, the ranked 

features for ACT, SMK, AGE, and SEX seemed to have a trivial effect. 

The importance of genetic variables, in relation to the predictive values for these five 

algorithms, varied and proved to be less relevant than clinical variables. Although all six 

genetic variables were used to model the SVM, and NNET, their rank measurement is low. 

For the GLM, GBM and RPART, however, not all genetic variables were considered, given 

that they showed minor to no influence on the predictive results. Again, the importance of 

clinical information to the prediction of developing T2D is only useful when the observations 

in the study have already been diagnosed with it. Using genetic data gives much better 

indication to the early prediction of the risk of developing the disease (T2D). Figure 5.17 

presents the ROC curves for the selected models. 
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Figure 5.16: Variable Important Plots for Each Model 

 

 

Figure 5.17: ROC Curve for Five Models using Genetic and Clinical Data 

5.4.7 Genetic and Clinical Analysis Results using Feature Selection 

Of the fifteen features containing genetic and clinical data, six optimal features are selected 

using the RFE algorithm. This reduced feature set is utilized to determine whether or not the 

performance capacity of the five models can improve on or maintain the previously reported 

set of results. Figure 5.18 illustrates the accuracy results for various feature combinations. 

The results show that six features achieved the highest performance with AUC=0.7061. The 

six ranked features are BMI, Famdb, Hbp, Chol, Alcohol, and rs4132670. 
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Figure 5.18: Recursive Feature Elimination Plot for Genetic and Clinical Data 

5.4.7.1 Classifier Performance of Genetic and Clinical Features Extracted from RFE 

The feature set contains one SNP and five clinical features. Again, Table 5.21 presents the 

optimal tuning hyperparameters for the chosen models. 

Table 5.21: Tuning Parameters for Models using Genetic and Clinical Data Selected using RFE 

Classifier Best Tuning Parameters 

GBM 

number of trees = 150 

number of leaves in a tree = 1 

learning rate = 0.1  

minimum number of training set samples in a node = 10 

SVM 
sigma = 0.1351249   

cost = 0.25 

RPART complexity parameter = 0.007097792 

NNET 
size = 1  

decay = 0.1  

Table 5.22 shows the results of the five models using the six features. The performance of the 

five machine learning models deteriorates in this experiment in comparison to the previously 

reported results. Although sensitivities and their corresponding specificities for all models are 

relatively balanced, they do not improve on the previous results. Again, the ROC curve in 

Figure 5.19, demonstrates that the five classifiers do not improve on the previous set of 

results. 
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Table 5.22: Predictive Results for Genetic and Clinical Analysis using RFE 

Classifier Accuracy Sensitivity Specificity 

GLM 0.7086 0.6526 0.7563 

GBM 0.7115 0.6211 0.7885 

SVM 0.7096 0.6232 0.7832 

RPART 0.6718 0.7389 0.6147 

NNET 0.7135 0.6842 0.7384 

 

Figure 5.19: ROC Curve for Five Models using Genetic and Clinical Data Selected using RFE 

As can be seen in Figure 5.20 the variable importance plots, performance is largely due to 

clinical data, with only one SNP from the genetic data being used. BMI, Famdb, and Chol 

were significantly important in all models and their rank was always at the top. In the case of 

the genetic feature rs4132670 its rank was always low. 

In comparison to the full features set, the results confirm that the importance of genetic 

variables for the five algorithms using traditional machine learning algorithms, appears to be 

less relevant in comparison to clinical variables. 
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Figure 5.20: Variable Important Plots for Each Model with Features Selected using RFE 

 Summary 

This chapter presented the results obtained from several experiments conducted in this thesis. 

Different performance evaluation measurements were presented and compared. In addition, 

the obtainable results for the binary classification of T2D high-dimensional genetic data 

using advanced machine learning algorithms were presented and benchmarked against 

simpler and less computationally expensive machine learning algorithms. These results 

support the arguments and novel claims made in this thesis that high-dimensional GWAS 

data and deep learning stacked autoencoders for unsupervised feature learning are sufficient 

to find epistatic interactions between SNPs and subsequently improve model accuracy in 

classification tasks. 
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 Discussion 

Genetic association studies (GWAS) have significantly expanded our understanding of the 

genetic variants that predispose us to complex human diseases. Using a standard statistical 

test for single-SNP analysis has proven ineffective in complex disease given that single 

genetic loci (SNP) do not act independently to increase disease risk. The occurrence of 

complex diseases results from interactions between multiple genetic loci (Morris et al. 2012; 

Robinson et al. 2014; Lee et al. 2012). Modelling the complexity of these genotype-

phenotype interactions in complex disorders is considered a significant challenge. Therefore, 

GWAS is more suitable for capturing linear interactions in diseases such as Cystic Fibrosis 

where a single SNP mutation is the cause (Cutting 2015). 

In the field of bioinformatics where large and complex biological data structure exists, 

researchers have focused on the use of traditional machine learning algorithms to perform 

multi-SNP (epistatic) analysis. Random forests and support vector machine have been 

implemented in (Botta et al. 2014; Nguyen et al. 2015; Ban et al. 2010; Tello et al. 2013) to 

discover SNP correlations. Generalized multifactor dimensionality reduction (GMDR) (Zhu 

et al. 2013) have been successfully applied in the analysis of gene-gene interactions. 

However, investigating all possible SNP combinations in GWAS is computationally 

complex and expensive and as such has seen little success outside of large data centres 

equipped to provide such facilities. Therefore, in this thesis we proposed an alternative 

approach for studying epistatic interactions using a universal approximator to handle the 

complex non-linear correlations and interactions between features. This has the benefit of 

extracting the salient information that exists in genetic data and provides an interesting 

machine learning methodology for the classification of high-dimensional T2D. Using a deep 

learning stacked autoencoder we were able to detect non-linear epistatic interactions between 

features and use the weights of these learned features to initialise a multilayer perceptron 

softmax classifier for the binary classification tasks in hand. 
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This approach contributes to the body of knowledge in the area as genetic risk alleles 

associated with T2D identified by GWAS only answer 10 and 20 percent of the missing 

heritability of this complex disorder (Prasad & Groop 2015). Therefore the prediction of 

disease risk based on highly ranked SNPs demonstrates little predictive power (Mittag et al. 

2012) as confirmed in the results generated in this thesis. Wei et al. (Wei et al. 2009) and 

Gül et al. (GÜL et al. 2014) found that much higher predictive accuracy is obtained when 

increasing the number of SNPs, while comparatively poorer performance is attained when 

including only SNPs above genome-wide significance thresholds. 

 Advanced Machine Learning with p-value < 10-2 

Initial baseline results were obtained using an MLP classifier model to investigate and 

evaluate its ability to distinguish between cases and controls in T2D genomic data with 

different feature size combinations. The best result was obtained using a p-value threshold 

of 10−2 (6609 SNPs) (AUC=95.34%, Sens=94.39%, Spec=80.86%, Logloss= 28.49%, 

Gini=90.69%, and MSE=8.85%). The results show that there was a clear deterioration in 

performance as the p-value threshold is increased. Using the Bonferroni genome-wide 

significance threshold 5 × 10−8 (7 SNPs) attained the worst results (AUC=54.34%, 

Sens=85.28%, Spec=21.17%, Logloss=68.99%, Gini=8.48%, and MSE=24.84%). It is clear 

a much higher predictive accuracy is obtained by increasing the number of SNPs. 

Sensitivities and specificities for the MLP model are imbalanced for lower p-value 

thresholds (10−5 (23 SNPs), 10−6 (13 SNPs), and 5 × 10−8 (7 SNPs)) with (Sens=80.60%, 

Spec=30.35%), (Sens=88.78%, Spec=18.36%), and (Sens=85.28%, Spec=21.17%) 

respectively. It is reasonable to conclude that the MLP cannot learn specificities when the 

number of SNPs was reduced using the dataset we had; given that MLP cannot learn 

sufficient relationships between SNPs to be able to classify cases and controls in a balanced 

way, this is hardly surprising. Therefore, the MLP classifier required a high number of SNPs 

(6609 SNPs) to learn the non-linear relationships between SNPs and to find the latent 
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representations of the relevant information in the dataset and thus to be able to classify case 

and control observations sufficiently. Although, MLP can learn and capture the latent 

representations between SNPs formed by epistatic interactions when using high number of 

features yet the proportion of data that represents noise cannot be controlled.    

RF machine learning models have been successfully used in genetic studies (Botta et al. 

2014; López et al. 2018; Schwarz et al. 2010; Kursa 2014). In this thesis, the results show 

that the best classification performance of RF model was obtained using a p-value threshold 

of 10−2 (6609 SNPs) (AUC=73.53%, Sens=56.54%, Spec=78.31%, Logloss= 65.66%, 

Gini=47.06%, and MSE=23.20%). In general, the sensitivities and specificities are unstable 

for lower p-value thresholds indicating that the RF classifier has low discriminatory capacity 

to separate case and control observations when using low number of SNPs (13 SNPs, and 7 

SNPs). Fitting an RF model using genome-wide significance threshold (7 SNPs), the result 

dropped to (AUC=55.18%, Sens=82.94%, Spec=24.23%, Logloss= 69.24%, Gini=10.36%, 

and MSE=24.96%) classification performance as these SNPs are often false positives. 

The RF classifier model is a highly recommended algorithm for data such as GWAS (Qi 

2012) because the algorithm is a randomized decision tree-based ensemble that is highly 

data adaptive and can handle correlations and interactions among features while at the same 

time ranking those variables that are important (Chen & Ishwaran 2012). In our data set 

using a p-value threshold of 10−2 to extract 6609 SNPs (features) the results show that the 

MLP outperformed the RF. For the MLP (AUC=95.34%, Sens=94.39%, Spec=80.86%, 

Logloss= 28.49%, Gini=90.69%, and MSE=8.85%), while for the RF (AUC=73.53%, 

Sens=56.54%, Spec=78.31%, Logloss= 65.66%, Gini=47.06%, and MSE=23.20%). Both 

Models (MLP, and RF) are used to fit non-linear data however in our case the capacity of 

RF was in most cases lower than the MLP model as shown in Table 5.5 and Table 5.7. This 

is probably because the RF is not as efficient as the MLP to learn the non-linear relationships 

between SNPs. 
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Using our proposed deep learning stacked autoencoder approach to extract the latent 

representations from the 6609 SNPs through progressively smaller hidden layer units (2500, 

1500, 700, and 300), the results using the validation and test sets demonstrate a gradual 

deterioration. The classification accuracy value of the 300 compressed neurons is reasonably 

high (80.78% in the test set). The best result was obtained when using 2500 compressed 

units (AUC=94.25%, Sens=87.14%, Spec=89.54%, Logloss= 34.05%, Gini=88.51%, 

MSE=9.48%). Moreover, the Logloss scoring history plot shown in Figure 5.7 (a-c) suggest 

that overfitting was exist between the training and validation datasets when using 2500, 

1500, and 700 compressed units. The validation Logloss deviates from the training Logloss 

after reaching 40 epochs. Whereas in Figure 5.7 (d) with 300 hidden unites overfitting was 

appropriately managed. 

Although SAE with 2500 compressed units (initially 6609 SNPs) achieved less predictive 

accuracy than MLP using (6609 SNPs) the results are still comparable and significant for 

both models with an AUC=94.25% for the SAE and an AUC=95.34% for the MLP. 

Furthermore, it is noticeable that sensitivity and specificity for the SAE with 2500 hidden 

layer units attained better stability (Sens=87.14%, and Spec=89.54%) than the comparable 

MLP using 6609 SNPs (Sens=94.39%, and Spec=80.86%). This indicates that learning the 

deep features within the 6609 SNPs by reducing the dimensionality to 2500 better represents 

the data (removes data considered to be noise). This allowed us to train the softmax classifier 

(MLP) to better discriminate between case and control observations. The results show that 

we obtained high results even when the original data is compressed to 300 SNPs with a 

predictive accuracy of 80.78%. This is encouraging and demonstrates the potential for 

applying DL to high-dimensional GWAS data to extract features for classification 

modelling. 

The SAE with 300 hidden layer units (AUC=80.78%) showed significantly higher results 

than those produced by the RF (AUC=73.53%). This is because the multiple hidden layers 
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compress the input features into abstract representations to model the complexity of the non-

linearity of SNP interactions generally observed in genetic data, while removing less 

important information. This automated feature extraction algorithm outperforms the 

traditional supervised classification models presented in this thesis and offers a powerful 

way to enhance GWAS data analysis. 

Our T2D NHS-HPFS GWAS data is used in Kim’s work (Kim et al. 2018). The authors 

utilized different genetic association mappings (Fisher’s exact test and L1-penalized logistic 

regression) to our approach to extract different subsets of SNPs (96, 214, 399, and 678 

SNPs). Deep neural network with 2 hidden layers of 50 neurons was used in their work to 

classify T2D case-control observations. In comparison to Kim’s work, the results presented 

in this thesis using DL SAE with 300 compressed units achieved ~81% predictive accuracy 

while they obtained (~79% for male, and ~82% for female) for 214 SNPs which is a 

comparable result to our classification performance result. For 399 SNPs, they achieved 

(~87% for male, ~86% for female). Although their results using 399 SNPs are comparably 

higher than our result, yet our 300 compressed features extracted using DL SAE represents 

the reduced, non-linear and latent information from the initial features (6609 SNPs). These, 

we consider, are a better representation of features than using direct features as in Kim’s 

work from statistical logistic approach.  

Deep learning is used in DeepWAS (Arloth et al. 2016) to identify individual regulatory SNPs 

by investigating genomic location and sequence alterations before association analysis is 

conducted. This approach differs to the approach presented in this thesis, in that, QC and 

association analysis are conducted using all of the SNPs genotyped in the T2D NHS-HPFS 

study data. Pre-SNP selection, based on functional regulatory effects, is not applied since our 

aim is to find epistatic interactions between SNPs. While DeepWAS concentrates more on 

biological outcomes (i.e. regulatory mechanisms in GWAS), this thesis focuses on testing DL 

SAE for epistatic interactions and classification analysis. 



153 
 

Using DL SAE for feature extraction provides a more effective approach than using direct 

features from statistical approaches such as logistic regression in association analysis for 

classification tasks. This automated feature extraction algorithm outperforms the traditional 

supervised classification models and offers a powerful way to enhance overall model 

performance while reducing the dimensional space and managing overfitting in GWAS data 

analysis. 

 Traditional Machine Learning with Statistically Significant SNPs and 

Clinical Data 

Genetic variables obtained from logistic regression association analysis, mainly SNP 

variables, and clinical/sociodemographic variables are also considered to investigate and 

evaluate the predictive capacity of five traditional machine learning models when 

distinguishing between case and control T2D observations. Three experiments are performed 

which includes genomic data only, clinical data only, and genetic and clinical data combined. 

In the first experiment, six of the most statistically significant SNPs extracted from logistic 

association analysis are utilized as inputs to model the traditional machine learning 

algorithms. In general, as shown in Table 5.12, the classification accuracy for all five machine 

learning models is low with 57.09% for the SVM and NNET classifiers and 57.46% for the 

GLM. The low accuracy values indicate that genomic data, particularly SNPs, fail to classify 

case and control observations. This is likely to be caused by the fact that statistically 

significant SNPs are often false positives. Consequently, highly significant association SNPs 

demonstrate little predictive power (Mittag et al. 2012). This can be explained due to limited 

heritability (Dudbridge 2013), which means how much of the phenotypic variance (combines 

the genotype variance with the environmental variance) is due to genetic variance (Moore et 

al. 2010). 

A much higher predictive accuracy is obtained using clinical variables only. Among the 

selected models, the GBM achieved the best accuracy 71.06% with 64.63% for sensitivity 
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and 76.52% for specificity. Moreover, the predictive accuracy when employing both genomic 

and clinical data as input features showed satisfactory results with the NNET classifier 

achieving the best result 72.99%. Comparatively, the GLM, GBM, SVM, RPART yielded 

better results than when using clinical or genomic data separately. The results suggest that the 

improvement of the accuracy for all classifiers is entirely due to clinical variables, with no 

predictive value emerging from genotype variables alone. This is confirmed through the use 

of variable importance as illustrated in Figure 5.16. Although the variables for each model 

showed the disparity in relation to their rank measurement, variable importance in the tested 

models showed that clinical data, specifically BMI, was the most important compared to other 

features. Although the predictive power is mainly due to the clinical variables, combining 

genetic and clinical information showed that the GBM classification accuracy values 

improved dramatically from 57.18% for genetic variables to 71.06% and 72.12% for clinical 

variables and the joint effects of genetic and clinical variables respectively. 

Additional evaluations using the features selected by RFE were also considered. For genetic 

data only with six features, three features were ranked important and used to fit the models. 

The results showed that the GLM, GBM, and RPART classifiers performed slightly worse in 

terms of accuracy which was not the case for the SVM and NNET. For clinical data only with 

nine features, eight features were considered important and utilized to fit the models. The 

evaluation showed that the accuracy of all classifiers deteriorates slightly using the reduced 

feature set. For the joint effects of genetic and clinical data, the RFE algorithm eliminates 

nine from the original 15 features that are considered to be unimportant or have no influence 

on the model performance. The six features were employed to fit the models and the results 

demonstrate that there is no improvement in the performance capacity of the five models in 

comparison to previous results employing the full feature set. More importantly, this 

experiment illustrates that using the RFE algorithm to select the most important features 

among six genetic and nine clinical features yielded a single genetic feature and five clinical 
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features. The clinical data has significantly higher discriminatory capacity than only using the 

six statistically significant SNPs. Again, this proves that statistically significant SNPs 

extracted from GWAS analysis is not important for the classification of disease outcomes; 

given that of the six statistically significant SNPs only one was selected.  

Although the classification performance of clinical data in this thesis gives higher predictive 

results than using genetic data (six statistically significant SNPs), the advantage of clinical 

information is limited as it is only useful when individuals in the study have already 

developed the disease (in this case T2D). The prediction of disease risk based on highly 

significant SNPs demonstrates little predictive power while increasing the number of SNPs 

gives much higher performance in comparison to clinical data as showed in the results 

generated in this thesis.  

 Summary 

This chapter discussed the results obtained from several experiments conducted in this thesis. 

Binary classification of T2D high-dimensional genetic data using advanced machine 

learning algorithms was discussed and compared against simpler and less computationally 

expensive machine learning algorithms. In addition, the evaluation of genetic and clinical 

data individually and combined was also discussed. This thesis presents a novel framework 

for the classification of T2D case-control GWAS data. The combination of unsupervised 

learning, using a DL SAE to extract latent representation from large scale biological data 

structures, and the use of these subsets of SNPs to initialise a multilayer feedforward softmax 

classifier for the classification tasks, form the fundamental components in our proposed 

framework. Although unsupervised deep learning stacked autoencoders are widely used to 

learn the compressed representation of the data input in many domains (Vařeka & Mautner 

2017; Deng et al. 2017). This thesis claims that this is the first study of its kind that 

introduces the idea of using unsupervised learning with a deep learning algorithm based on 
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stacked autoencoder to extract the epistatic interaction between SNPs in GWAS for the 

classification of T2D. 

The proposed framework could provide a starting point for researchers and professionals 

investigating the aetiology of T2D that has the potential to help better understand the missing 

heritability that the traditional statistical approaches fail to explain. This could lead to an 

improvement in diagnostic testing for early intervention to minimise the risk of disease onset 

and may support the future direction of personalized medicine. 
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 Conclusion and Future Work 

 Conclusion 

This thesis presented a novel framework based on unsupervised machine learning using deep 

learning stacked autoencoders to extract complex interactions between SNPs to model a fully 

connected MLP to classify between cases and controls in T2D GWAS data. The fact that 

T2D is a polygenic condition means; it is no longer possible to consider a single SNP or 

gene to investigate the aetiology of such a complex disorder. Considering the interaction of 

a SNP including SNP-SNP and SNP-environment interactions is increasingly important 

particularly in complex human diseases like T2D. When considering large-scale GWAS 

data, investigating the interactions between SNPs formed by epistasis, is known to be 

complicated. The research conducted in this study focused specifically on finding a 

computationally and statistically efficient way to identify the epistatic interactions that exist 

between SNPs. 

This study utilized the NHS and HPFS cohorts in T2D provided by the Genotypes and 

Phenotypes (dbGap) database. Various GWAS tools and techniques were considered to 

perform stringent quality control assessment steps followed by logistic regression and single-

SNP association analysis. For high-dimensional T2D GWAS data, deep learning stacked 

autoencoders were employed to extract latent information and reduce the features space. In 

particular, to learn the non-linear epistatic interactions that exist between SNPs. These 

features were then applied to a fully connected MLP to initialise the weights before it was 

fine-tuned for binary classification tasks. 

The findings using the proposed methodology demonstrate promising and encouraging 

results. Reducing the feature space from 6609 SNPs to a smaller number of neurons in each 

layer (2500, 1500, 700, and 300), showed that it was possible to obtain (AUC=94.25%, 

Sens=87.14%, Spec=89.54%, Logloss= 34.05%, Gini=88.51%, MSE=9.48%) using 2500 

hidden layer units. The classification accuracy value of 300 compressed neurons remains 
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satisfactory (AUC=80.78%, Sens=87.85%, Spec=53.06%, Logloss= 55.11%, Gini=61.57%, 

MSE=18.43%). This provides a very efficient way to convert high-dimensional GWAS data 

into low-dimensional data, while maintaining good overall model performance. The greedy 

layer-wise machine learning solution performed using stacked autoencoders is based on 

training the network layer-by-layer using unlabelled data. This method allows us to extract 

latent representation of SNPs in each layer that are formed from the non-linear interaction 

between them. The produced features represent the reduced compressed features from the 

original data and only contain information deemed important to the classification tasks in 

hand. Therefore, we believe that this approach will enhance the quality of further biomedical 

experiment investigations. 

Despite the suitability of deep learning and its potential application to biological data, the 

adoption of deep learning in biomedical research has been slow. Deep learning is still in its 

infancy. However, the success presented in this thesis will contribute to the bioinformatics 

and computational biology research fields as well as other non-genetic domains that 

comprise complex, large-scale data. Furthermore, we believe that this work provides new 

insights into the potential use of unsupervised deep learning as an automated feature 

extraction tool for use in supervised machine learning systems. 

 Future Research Directions 

Despite the encouraging results, there are still many areas for improvement to further 

enhance classification results. These are discussed below. 

7.2.1 Remove GWAS Stage 

The emergence of GWAS has undoubtedly helped to better understand genetics. However, 

single-locus GWAS is best placed to test an individual SNP independently from SNPs and 

associations with traits in case-control dataset. In other words, GWAS focuses on the 

identification of SNPs with main effects. Genetic risk alleles identified by GWAS only 

answer between 10 and 20 percent of the missing heritability in T2D (Billings & Florez 2010; 



159 
 

Prasad & Groop 2015). Using statistically significant SNPs limits the number of SNPs used 

in the analysis. Consequently, it would be interesting if this step could be skipped, allowing 

for more SNPs to be included in the analysis of T2D. Investigating all SNPs will explain a 

much larger proportion of missing heritability and may support the discovery of unidentified 

loci with smaller or no main effects. Furthermore, this would allow us to reveal more 

combinations of SNPs and assess their influence on disease risk. This will present a number 

of challenges, the most difficult being the significant increase in memory and computer 

resources required as more increasingly complex feature combinations are considered. 

7.2.2 Filter by Biological Plausibility 

Another interesting area of research would be to select SNPs based on the strength of the 

independent main effects. SNPs selection can be established using biological plausibility 

(prior biological knowledge). The potential advantage of this approach would be to only 

consider SNPs that interact biologically through their biochemical reactions, functions, 

pathways, and networks, as some of these SNPs may be missed when using simpler 

statistical filters. A number of approaches that integrate expert biological knowledge into 

epistatic interaction analysis to identify important SNPs have been proposed. Bush et al. 

(Bush et al. 2009) developed the Biofilter algorithm to reduce the search space for assessing 

specific combinations of SNPs based on prior statistical and biological knowledge. The 

Biofilter uses biological information about SNP-SNP relationships and disease-related 

SNPS to produce multi-SNP models prior to any statistical analysis being conducted. This 

knowledge-driven approach offers a way to reduce both the computational and statistical 

burden inherent in testing for SNP-SNP interactions analysis while simultaneously providing 

biological information for corresponding statistically significant results that are identified. 

The utility of this approach has been proven in a number of studies and would warrant further 

study (Kim et al. 2016; Hohman et al. 2016; S. D. Turner et al. 2011; Pendergrass et al. 

2015). 
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7.2.3 Interpretation of Deep Learning Models 

One of the major limitations of deep learning models, and indeed the approach in this thesis, 

is the inability to interpret the model outcomes. While deep learning is a powerful 

mechanism for data representation, it is difficult to interpret the results. In a biological 

context, uncovering complex causal and structural relationships is important if we are to 

provide better biological insights about complex diseases. From the biomedical point of 

view, obtaining good results simply is not enough. It is important to provide logical 

reasoning about genetic components. Several approaches have been developed to remedy 

this pitfall; however, it is a relatively new research direction. With regards to microarray, 

DNA and RNA binding sequence input, Alipanahi et al. (Alipanahi et al. 2015) proposed 

the DeepBind tool, a visualisation method and mutation map that illustrates the effect of 

genetic markers on binding scores that are experimentally detected using deep convolutional 

neural networks. This work however is still in the early stages of development but would be 

worth considering in further studies. 

Within other application domains, for example in image classification, Zeiler and Fergus 

(Zeiler & Fergus 2014) proposed a visualization technique through a deconvolution network 

to reconstruct and visualize intermediate feature layers by mapping these intermediate layers 

back to the input space. Other research utilized gradient optimization through 

backpropagation to visualize the response of deep hidden unit architectures in the input space 

(Mahendran & Vedaldi 2015). Again, all these ideas would be worth exploring in future 

work. 

In our own study, the 300 deep features obtained from the 6609 input SNPs features 

demonstrate reasonable predictive results. However, it is difficult to know how such results 

are derived internally. In other words, which of the 6609 SNPs contribute to those 300 

features? Consequently, it would be beneficial to integrate an interpretable approach such as 

Interpretable Decision Boundaries with deep learning stacked autoencoder to facilitate the 
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transparency and the interpretability of the model. Interpretable Decision Boundaries (Wu 

et al. 2018) is based on linking the numerical values in a prediction made by the model to 

the training data points associated with the prediction. These training data points are 

organized using an Explicable Boundary Tree (EB-tree), which is based on the distances in 

the deep learning transformed space. The data structure of the EB-tree represents deep 

learning decision boundaries and the data points in the tree are efficiently able to 

approximate the predictions of the model via these points. Again, interesting research 

directions to consider in future work. 

7.2.4 Computational and Hyperparameter Optimization of Deep Learning 

The training process in deep learning and stacked autoencoders in particular is usually 

computationally intensive and time-consuming. Parallelizing the training of deep learning 

can dramatically increase speed and improve efficiency in addition to adding feasibility. The 

extension into parallel implementations requires access to graphical processing units 

(GPUs). A recent open sourced framework for high performance computational 

programming is TensorFlowTM (www.tensorflow.org). It was originally developed by 

Google and provides huge support for Artificial Intelligence development. In fact, it is being 

broadly used to implement deep learning and develop solutions with deep learning 

architectures (Ramsundar & Zadeh 2018). 

As a future direction for our work, it would be advantageous to implement deep learning 

stacked autoencoders on a highly parallel processing framework such as the aforementioned 

TensorFlow. This would allow us to increase the speed of the model’s implementation and 

optimization of the hyperparameters using much larger SNP combinations.
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Appendix 

The 6609 SNPs extracted from association analysis was used as an input to SNP nexus 

annotation tool to extract comprehensive annotation of query variants (SNPs) and report the 

overlapped or closest genes according to the NCBI36/hg18 assembly. To find the 

relationship between the queried SNPs and disease association (phenotype) we utilized two 

disease association datasets: The Genetic Association Database (GAD) and The Catalogue 

of Published Genome-Wide Association Studies (GWAS Catalogue). GAD provides 

information about published scientific papers on human genetic association studies of 

complex disorders. GWAS Catalogue provides information about SNPs identified by 

published GWAS. Appendix A is a screenshot of SNPnexus annotation categories selections 

used to query the 6609 SNPs. A list of phenotype and disease association is presented in 

Appendix B. The list was limited to include SNPs associated to T2D and other disorders that 

may influence T2D predisposition. Of the 6609 SNPs, there are a number of SNPs have been 

reported by previous GWAS studies and were presented in Appendix C. These candidate 

SNPs can be investigated further to help better understand epistasis in T2D using GWAS. 

Appendix A: SNP Nexus Annotation Categories 
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Appendix B: List of SNPs Associated to T2D and other Diseases Related to T2D Reported via GAD 

SNP Assoc Phenotype Disease Class Gene 

rs10885409 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs11196205 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs11196208 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs12243326 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs12255372 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs4132670 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs4506565 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs7901695 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs10787472 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

metabolic TCF7L2 
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glucose small for gestational 

age 

rs4074720 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs6585201 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides, birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs2516478  cardiomyopathy cardiovascular BAT1 

rs6103716 Y 

diabetes, type 2; kidney failure, 

chronic, cholesterol metabolic 

syndrome triglycerides, type 2 

diabetes glucose insulin, 

gestational  

metabolic HNF4A 

rs6866823  

coronary artery bypass 

grafting; platelet 

hyperreactivity 

cardiovascular ITGA1 

rs7731949  

coronary artery bypass 

grafting; platelet 

hyperreactivity 

cardiovascular ITGA1 

rs10518694  diabetes, type 2 metabolic ONECUT1 

rs7735277 Y 
vascular disease; coronary 

artery disease; stroke 
cardiovascular ITGA2 

rs7180600  diabetes, type 2 metabolic ONECUT1 

rs7735277 Y diabetes, type 2 metabolic ITGA2 

rs17061580  diabetes, type 2 metabolic KLF12 

rs2325583  diabetes, type 2 metabolic KLF12 

rs10805519  
stroke, ischemic; 

atherosclerosis, carotid 
cardiovascular PDE4D 

rs6138948  

coronary artery disease; 

diabetes, type 2; lipoproteins; 

longevity 

cardiovascular PTPRA 

rs6886001  

coronary artery bypass 

grafting; platelet 

hyperreactivity 

cardiovascular ITGA1 

rs9318218  diabetes, type 2 metabolic KLF12 

rs10466028 N obesity metabolic PRKG1 

rs13037313  

coronary artery disease; 

diabetes, type 2; lipoproteins; 

longevity 

cardiovascular PTPRA 

rs9530249  diabetes, type 2 metabolic KLF12 
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rs16925235 N obesity metabolic PRKG1 

rs6133002  

coronary artery disease; 

diabetes, type 2; lipoproteins; 

longevity 

cardiovascular PTPRA 

rs4620533 Y diabetes, type 2 metabolic PKLR 

rs1125392  diabetes, type 2 metabolic FTO 

rs1125392 Y obesity metabolic FTO 

rs11153664  
atherosclerosis, coronary; 

myocardial infarct 
cardiovascular ROS1 

rs1979398  

coronary artery bypass 

grafting; platelet 

hyperreactivity 

cardiovascular ITGA1 

rs755886 N diabetes, type 2 metabolic CACNA1D 

rs3746619 Y obesity metabolic MC3R 

rs3746619 N diabetes, type 2 metabolic MC3R 

rs3746619 N physical activity normalvariation MC3R 

rs1780365 N diabetes, type 2; insulin metabolic PBX1 

rs1763908  
diabetes, type 2 glucose 

tolerance; insulin   
metabolic ARHGEF11 

rs1324392  

coronary artery disease; 

diabetes, type 2; lipoproteins; 

longevity 

cardiovascular PTPRA 

rs7767391  diabetes, type 2 triglycerides metabolic CDKAL1 

rs17875671  diabetes, type 2 metabolic IKBKB 

rs17383719  diabetes, type 2; insulin metabolic PBX1 

rs10940659  
stroke, ischemic; 

atherosclerosis, carotid 
cardiovascular PDE4D 

rs1923882 Y 

cholesterol, HDL; 

cardiovascular disease; obesity; 

hyperuricemia 

metabolic HTR2A 

rs6138948  

coronary artery disease; 

diabetes, type 2; lipoproteins; 

longevity 

cardiovascular PTPRA 

rs651821 Y 

triglycerides; atherosclerosis, 

coronary; diabetes, type 2; 

obesity; cholesterol, HDL; 

lipids; lipoproteins; body mass; 

type 2 diabetic nephropathy 

triglycerides 

metabolic APOA5 

rs8056879  diabetes, type 2 metabolic PRKCB1 

rs10492795  diabetes, type 2 metabolic PRKCB1 

rs6480638 N obesity metabolic PRKCB1 
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rs13274396  

vascular response; blood 

pressure, arterial; heart rate; 

adrenaline; coronary flow 

velocity; ECG; noradrenaline 

cardiovascular ADRA1A 

rs6859355 Y 

diabetes, type 2; metabolism 

disorders; myocardial 

infarction; stroke, ischemic; 

cholesterol, HDL 

metabolic ITGA2 

rs3138139  diabetes, type 2; liver disease metabolic RDH5 

rs1040558  diabetes, type 2; triglycerides metabolic CDKAL1 

rs12136288 Y diabetes, type 2 insulin metabolic CHRM3 

rs2612026 N diabetes, type 2 metabolic CACNA1D 

rs9940128  diabetes, type 2; obesity metabolic FTO 

rs1904013 N obesity metabolic PRKG1 

rs2245407  

diabetes, type 2; MODY; 

cholesterol, HDL; glucose 

tolerance; metabolic syndrome; 

gestational 

metabolic TCF1 

rs179250 Y insulin metabolic TSHR 

rs1212595  obesity, localized metabolic NCOA3 

rs4952404 Y hypertension cardiovascular SLC8A1 

rs1212595  
insulin-like growth factor-1; 

estrogen metabolism 
normalvariation NCOA3 

rs4073288 Y 

body mass; cholesterol HDL; 

diabetes, type 2; glucose 

insulin metabolic syndrome 

triglycerides; birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs9295495 Y 
diabetes, type 2; diabetes, type 

2 triglycerides 
metabolic CDKAL1 

rs9465871 Y 
diabetes, type 2; diabetes, type 

2 triglycerides 
metabolic CDKAL1 

rs12883673 Y insulin metabolic TSHR 

rs10935840 Y 

peripheral arterial disease; 

heart disease, ischemic; 

peripheral vascular disease 

cardiovascular P2RY12 

rs4732958  

blood pressure, arterial; heart 

rate; adrenaline; coronary flow 

velocity; ECG; noradrenaline; 

hypertension 

cardiovascular ADRA1A 

rs2209726  diabetes, type 2 metabolic KLF12 

rs12152938 Y stroke, ischemic cardiovascular PDE4D 

rs2680649 N diabetes, type 2 metabolic CACNA1D 
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rs8080702  diabetes, type 2 metabolic GCGR 

rs8080702  diabetes, type 2 metabolic GAPD 

rs9565045  diabetes, type 2 metabolic KLF12 

rs11000404 N obesity metabolic PRKG1 

rs9573312  diabetes, type 2 metabolic KLF12 

rs9939973 Y diabetes, type 2; obesity metabolic FTO 

rs1980445  diabetes, type 2; lipids; glucose metabolic PLA2G4A 

rs10426094  

body mass; cholesterol; 

triglycerides; insulin; glucose; 

blood pressure, arterial; 

diabetes, type 2; hypertension; 

insulin; obesity 

metabolic INSR 

rs10426094  atherosclerosis, coronary cardiovascular INSR 

rs1544791 Y stroke, ischemic cardiovascular PDE4D 

rs2328549  diabetes, type 2 triglycerides metabolic CDKAL1 

rs3820700  diabetes, type 2 metabolic ALMS1 

rs9460598  diabetes, type 2 triglycerides metabolic CDKAL1 

rs10757270  diabetes, type 2 metabolic MTAP 

rs9465970  diabetes, type 2 triglycerides metabolic CDKAL1 

rs1121980 Y diabetes, type 2; obesity metabolic FTO 

rs11789818  
coronary artery disease; 

atherosclerosis, coronary 
cardiovascular ABCA1 

rs11789818  

diabetes, type 2; body mass; 

cholesterol; cholesterol, HDL; 

lipoprotein, LDL; triglycerides 

metabolic ABCA1 

rs1206883  obesity, localized metabolic NCOA3 

rs780390 N diabetes, type 2 metabolic ALMS1 

rs2164660 Y stroke, ischemic cardiovascular PDE4D 

rs3811942  
diabetes, type 2; obesity; 

hypertension; insulin 
metabolic PCSK1 

rs4809639  obesity, localized metabolic NCOA3 

rs16978425 Y blood pressure cardiovascular SLC14A2 

rs2689249  diabetes, type 2; obesity metabolic FTO 

rs3827103  

diabetes, type 2; obesity; 

insulin; leptin; glucose 

tolerance insulin 

metabolic MC3R 

rs6554137 Y heart transplant complications cardiovascular PDGFRA 

rs9460546 Y diabetes, type 2 metabolic CDKAL1 
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Appendix C: List of SNPs Reported via GWAS Catalogue 

SNP Region Genes Allele_frequency Trait 

rs10400419 12q14.3 HMGA2 0.3837 Axial length 

rs10906115 10p13 
CDC123, 

CAMK1D 
0.57 Type 2 diabetes 

rs10911902 1q31.1 Intergenic 0.17 Schizophrenia 

rs1106766 12q13.3 
R3HDM2, 

INHBC 
0.23 Urate levels 

rs11097407 4q22.3 NR NR 
Bipolar disorder and 

schizophrenia 

rs11118346 1q41 LYPLAL1 0.47 Height 

rs1121980 16q12.2 FTO NR Body mass index 

rs2053086 Y myocardial infarct cardiovascular HNRPUL1 

rs621060 Y diabetes, type 2 insulin metabolic CHRM3 

rs17742120  
stroke, ischemic; 

atherosclerosis, carotid 
cardiovascular PDE4D 

rs16880453  

coronary artery bypass 

grafting; platelet 

hyperreactivity 

cardiovascular ITGA1 

rs9530244  diabetes, type 2 metabolic KLF12 

rs6084231  

coronary artery disease; 

diabetes, type 2; lipoproteins; 

longevity 

cardiovascular PTPRA 

rs1537306  obesity, localized metabolic NCOA3 

rs6456397  diabetes, type 2 triglycerides metabolic CDKAL1 

rs3799559  

heart disease, ischemic; 

peripheral arterial disease; 

coronary heart disease; stroke, 

ischemic 

cardiovascular F13A1 

rs11000467 N obesity metabolic PRKG1 

rs17816224 N 
diabetes, type 2 glucose 

tolerance obesity 
metabolic SCG5 

rs7901275 Y 

body mass cholesterol, HDL 

diabetes, type 2 glucose insulin 

metabolic syndrome 

triglycerides; birth weight 

glucose small for gestational 

age 

metabolic TCF7L2 

rs9888532  diabetes, type 2 metabolic KLF12 

rs10490053 Y hypertension cardiovascular SLC8A1 
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rs1121980 16q12.2 FTO 0.41 
Obesity (early onset 

extreme) 

rs11259933 15q25.2 ADAMTSL3 0.51 Height 

rs11259936 15q25.2 ADAMTSL3 0.48 Height 

rs11777747 8q24.3 FLJ43860 0.03 
Coronary artery 

calcification 

rs12000445 9p21.3 HuB NR 

Response to platinum-

based chemotherapy in 

non-small-cell lung 

cancer 

rs12148477 15q21.2 NR 0.21 
Follicule stimulating 

hormone 

rs12243326 10q25.2 TCF7L2 NR 
Two-hour glucose 

challenge 

rs12619788 2p16.3 Intergenic NR 

Economic and political 

preferences 

(immigration/crime) 

rs12970134 18q21.32 MC4R 0.30 Weight 

rs12970134 18q21.32 MC4R 0.30 Body mass index 

rs12970134 18q21.32 MC4R 0.36 
Waist circumference and 

related phenotypes 

rs1436953 15q22.2 
C2CD4A, 

C2CD4B 
0.64 Type 2 diabetes 

rs1436955 15q22.2 C2CD4B 0.73 Type 2 diabetes 

rs16887552 4p15.33 Intergenic NR 
Response to mTOR 

inhibitor (everolimus) 

rs17042171 4q25 PITX2 0.12 Atrial fibrillation 

rs17112901 10q24.31 PKD2L1 0.163 Obesity-related traits 

rs17157663 7p21.3 Intergenic 0.32 Quantitative traits 

rs17382202 5q12.1 PDE4D 0.153 
Response to 

antipsychotic treatment 

rs17465637 1q41 MIA3 0.74 Coronary heart disease 

rs17465637 1q41 MIA3 0.72 
Myocardial infarction 

(early onset) 

rs17465637 1q41 MIA3 0.71 Coronary heart disease 

rs17782313 18q21.32 MC4R 0.76 Height 

rs17782313 18q21.32 MC4R 0.18 Obesity 

rs17782313 18q21.32 MC4R 0.21 Body mass index 

rs17782313 18q21.32 MC4R 0.24 Body mass index 

rs1997111 12q24.23 Intergenic NR T-tau 
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rs2200733 4q25 Intergenic 0.12 Atrial fibrillation 

rs2200733 4q25 NR 0.11 Stroke (ischemic) 

rs2200733 4q25 
PITX2, 

ENPEP 
0.11 

Atrial fibrillation/atrial 

flutter 

rs2271293 16q22.1 
CTCF, 

PRMT8 
0.87 HDL cholesterol 

rs2271293 16q22.1 LCAT 0.11 HDL cholesterol 

rs2546890 5q33.3 IL12B 0.52 Multiple sclerosis 

rs2546890 5q33.3 IL12B NR Multiple sclerosis 

rs2546890 5q33.3 IL12B 0.56 Psoriasis 

rs255052 16q22.1 LCAT 0.17 HDL cholesterol 

rs2785980 1q41 LYPLAL1 NR 

Fasting insulin-related 

traits (interaction with 

BMI) 

rs2791553 1q41 LYPLAL1 0.60 Adiponectin levels 

rs2820464 1q41 LYPLAL1 0.66 Waist-hip ratio 

rs2847281 18p11.21 PTPN2 0.16 
Esophageal cancer 

(squamous cell) 

rs2847281 18p11.21 PTPN2 NR C-reactive protein 

rs339331 6q22.1 
GPRC6A, 

RFX6 
0.37 Prostate cancer 

rs354033 7q36.1 
ZNF767, 

ZNF746 
NR Multiple sclerosis 

rs4301033 3q25.1 TSC22D2 NR Adiponectin levels 

rs4506565 10q25.2 TCF7L2 0.31 
Fasting glucose-related 

traits 

rs4506565 10q25.2 TCF7L2 0.32 Type 2 diabetes 

rs4660293 1p34.3 
MACF1, 

PABPC4 
0.23 HDL cholesterol 

rs4739466 8p11.23 NR NR Bipolar disorder 

rs476828 18q21.32 MC4R 0.24 
Obesity (early onset 

extreme) 

rs4842838 15q25.2 ADAMTSL3 0.29 Height 

rs4842838 15q25.2 ADAMTSL3 0.32 Height 

rs651821 11q23.3 

APOA1, 

APOC3, 

APOA4, 

APOA5 

NR 
Lipid metabolism 

phenotypes 

rs651821 11q23.3 APOA5 NR Triglycerides 
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rs6589566 11q23.3 
APOA, 

APOC 
0.0176 Triglycerides 

rs6589566 11q23.3 

APOA1, 

APOC3, 

APOA5 

0.06 LDL cholesterol 

rs6681460 1p31.3 SGIP1 0.3755 

Presence of 

antiphospholipid 

antibodies 

rs6736587 2p12 CTNNA2 0.16 Orthostatic hypotension 

rs6887695 5q33.3 IL12B 0.32 Crohn's disease 

rs7234864 18q21.32 
PMAIP1, 

MC4R 
0.26 Body mass index 

rs7341475 7q22.1 RELN 0.62 Schizophrenia 

rs742134 22q13.2 BIK NR Prostate cancer 

rs7562790 2p22.2 CRIM1 0.40 Ventricular conduction 

rs7593730 2q24.2 
RBMS1, 

ITGB6 
0.78 Type 2 diabetes 

rs765855 7p21.3 NR NR 
Breast Cancer in BRCA1 

mutation carriers 

rs7667 1p36.13 CAPZB NR 
Crohn's disease and 

psoriasis 

rs7901695 10q25.2 TCF7L2 0.45 Coronary heart disease 

rs7901695 10q25.2 TCF7L2 NR Type 2 diabetes 

rs9268877 6p21.32 MHC NR Ulcerative colitis 

rs9268877 6p21.32 
HLA-DRA, 

BTNL2 
0.45 Ulcerative colitis 

rs9465871 6p22.3 CDKAL1 0.18 Type 2 diabetes 

rs9813712 3q22.1 Intergenic NR 
Response to 

amphetamines 

rs9940128 16q12.2 FTO 0.44 Body mass index 

rs9940128 16q12.2 FTO 0.42 Metabolic syndrome 

NR: Not Reported  


