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ABSTRACT 

People today, in addition to their concerns about getting old and having to go through watching 

themselves grow weak and wrinkly, are facing an increasing fear of dementia. There are around 

47 million people affected by dementia worldwide and the cost associated with providing them 

health and social care support is estimated to reach 2 trillion by 2030 which is almost equivalent 

to the 18th largest economy in the world. The most common form of dementia with the highest 

costs in health and social care is Alzheimer’s disease, which gradually kills neurons and causes 

patients to lose loving memories, the ability to recognise family members, childhood memories, 

and even the ability to follow simple instructions.  

Alzheimer’s disease is irreversible, unstoppable and has no known cure. Besides being a 

calamity to affected patients, it is a great financial burden on health providers. Health care 

providers also face a challenge in diagnosing the disease as current methods used to diagnose 

Alzheimer’s disease rely on manual evaluations of a patient’s medical history and mental 

examinations such as the Mini-Mental State Examination. These diagnostic methods often give 

a false diagnosis and were designed to identify Alzheimer’s after stage two when the part of all 

symptoms are evident.  

The problem is that clinicians are unable to stop or control the progress of Alzheimer’s disease, 

because of a lack of knowledge on the patterns that triggered the development of the disease. 

In this thesis, we explored and investigated Alzheimer’s disease from a computational 

perspective to uncover different risk factors and present a strategic framework called Early 
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Prediction of Alzheimer’s Disease Framework (EPADf) that would give a future prediction of 

early-onset Alzheimer’s disease. 

Following extensive background research that resulted in the formalisation of the framework 

concept, prediction approaches, and the concept of ranking the risk factors based on clinical 

instinct, knowledge and experience using mathematical reasoning, we carried out experiments 

to get further insight and investigate the disease further using machine learning models. In this 

study, we used machine learning models and conducted two classification experiments for early 

prediction of Alzheimer’s disease, and one ranking experiment to rank its risk factors by 

importance. Besides these experiments, we also presented two logical approaches to search for 

patterns in an Alzheimer’s dataset, and a ranking algorithm to rank Alzheimer’s disease risk 

factors based on clinical evaluation.  

For the classification experiments we used five different Machine Learning models; Random 

Forest (RF), Random Oracle Model (ROM), a hybrid model combined of Levenberg-

Marquardt neural network and Random Forest, combined using Fischer discriminate analysis 

(H2), Linear Neural Networks (LNN), and Multi-layer Perceptron Model (MLP). These models 

were deployed on a de-identified multivariable patient’s data, provided by the ADNI 

(Alzheimer’s disease Neuroimaging Initiative), to illustrate the effective use of data analysis to 

investigate Alzheimer’s disease biological and behavioural risk factors. We found that the 

continues enhancement of patient’s data and the use of combined machine learning models can 

provide an early cost-effective prediction of Alzheimer’s disease, and help in extracting 

insightful information on the risk factors of the disease. Based on this work and findings we 

have developed the strategic framework (EPADf) which is discussed in more depth in this 

thesis. 
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 Introduction 

 Introduction 

The brain is central to being human; our biological memory defines our identity and character, 

and it’s the place where we store our entire life log. Without our memory we would disconnect 

with everything around us. The brain, as well as being a memory is also a regulator of our 

internal organs, and controls our decision making. As we get older this vital part of our body 

becomes under threat of decaying. People today, in addition to their concerns about getting old 

and having to go through watching themselves grow weak and wrinkly, they also have a 

growing fear of developing dementia. There are around 47 million people affected by dementia 

worldwide and the cost associated with providing health and social care support is equivalent 

to the 18th largest economy in the world [1]. Memory loss due to dementia, and the failure to 

recognise our surroundings is a very terrifying experience. The most common form of dementia 

is Alzheimer’s disease. Alzheimer’s disease gradually kills brain cells and as a results of that 

patients end up losing loving memories, the ability to recognise family members, childhood 

memories, and even the ability to follow simple instructions e.g. making their usual morning 

cup of coffee, remembering how to use the toilet, and maintaining normal self-hygiene 

[2][3][4]. 
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Currently the disease has no known cure and scientists are still unsure of what is the actual 

cause of the disease. Knowing the patterns that cause Alzheimer’s disease to develop and 

having the possibility to predict the disease at a very early stage could help us either prevent 

the disease or slow its progress. This thesis explores and investigates the disease from a 

computational perspective to uncover different patterns and present a framework called Early 

Prediction of Alzheimer’s Disease Framework (EPADf) that would give a probable prediction 

of the onset of Alzheimer’s disease. 

 

 Motivation 

Alzheimer’s disease is a slow and fatal disease that progresses gradually. The pathological 

development for Alzheimer’s disease is complicated since the knowledge about its causes is 

limited, and the current diagnostic methods are either expensive or unreliable. In this section 

we discuss the motivation for investigating Alzheimer’s disease, from three different angles, 

as follows: 

1.2.1 Causes of Alzheimer’s Disease 

Alzheimer’s disease starts as two abnormal protein fragments called "Plaques" and "Tangles". 

These two protein fragments develop in the brain and gradually kill brain cells [5]. The very 

first stage of Alzheimer’s disease is the existence of abnormal clusters of protein fragments 

that build up between nerve cells called “Plaques”. Plaques will then surround healthy brain 

cells and cause them to die, which then turns into other twisted strands of another protein called 

“Tangles” [5][6][7].  
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Since the presence of the protein fragments “Plaques” and “Tangles” indicates the development 

of Alzheimer’s disease, what actually causes these fragments to develop is still undiscovered. 

However, it is apparent that Alzheimer’s disease is caused by many different types of risk 

factors and has different patterns from one patient to another. These risk factors are either 

biological markers or behavioural markers, and fall into different categories i.e. genetics, 

lifestyle, medical history, demography and characteristics. The ostensible risk factors of 

Alzheimer’s disease are mainly in genetics information and in the medical history of the 

patients. Majority of these risk factors are strong indicators used in the diagnosis of the disease. 

In term of genetics, only 1% of Alzheimer’s disease patients directly inherit the gene that causes 

a genetic mutation (APP, PS1 or PS2) and triggers the development of onset Alzheimer’s 

disease. While another gene called APOE4 which is in 10-15% of people, increases the risk of 

developing Alzheimer’s disease. However, approximately three quarters of Alzheimer’s 

disease patients have no family history of the disease and still developed the disease because 

of many other risk factors [8][9].  Chapter 2 of this thesis contains an in-depth discussion of 

Alzheimer’s disease including its risk factors, their pathological contribution and their 

interrelationships.  

1.2.2 Symptoms of Alzheimer’s disease 

When it comes to the onset of Alzheimer’s disease it usually shares a lot of its symptoms with 

other types of dementia, which makes it difficult to give an accurate diagnosis. Early symptoms 

might include changes in mood and personality, poor judgement, and becoming forgetful. 

These early symptoms force the patient to withdraw from work and social activities, and as the 

disease progresses further, other severe symptoms start to develop such as challenges in 
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planning and solving problems, confusion with time and place, and misplacing things and 

losing the ability to retrace steps. The most common early sign is difficulty remembering new 

memories because Alzheimer’s disease affects the hippocampus area of the brain that is 

responsible for storing new memories. Chapter 2 of this thesis contains an in-depth discussion 

of Alzheimer’s disease including its symptoms and description of what it is like to live as a 

person with Alzheimer’s disease. 

1.2.3 Diagnosis of Alzheimer’s disease 

The diagnosis of Alzheimer’s at a very early stage is very complex and presently not possible. 

Currently, the way Alzheimer’s is diagnosed is through a very careful medical evaluation of 

clinical assessments. The medical evaluation to diagnose Alzheimer’s disease includes an 

examination of medical history, mental status testing, a physical and neurological exam and 

other tests such as brain imaging. It is a very complex process to diagnosis Alzheimer’s disease, 

but its complexity also depends on what stage the disease is being diagnosed at; it is more 

difficult to diagnose people with Alzheimer’s at an early stage as most of the symptoms are 

unclear [10][11] [12]. 

There are multiple diagnosis standards and methods from using cognitive examination to 

analysis of brain imaging data. The most common cognitive test used to diagnose Alzheimer’s 

disease is the Mini Mental Score Examination, also commonly known as MMSE. In a cognitive 

test, if all questions were answered correctly, then patient is classed as normal [13]. However, 

if any patient scores low, then the patient will be considered to have memory problems, but 

this might not necessarily mean it is Alzheimer’s disease. There are a lot of challenges to 
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accurately diagnose Alzheimer’s disease in a patient, accurate diagnosis and prediction can 

help slow its progress or tackle the disease all together. Chapter 2 of this thesis discusses the 

challenges to diagnose Alzheimer’s disease patients, and current diagnosis standards. 

 Problem Statement 

Alzheimer’s disease is affecting the lives of over 47 million of people and costing health care 

providers worldwide approximately $1 trillion dollar every year. It is irreversible, 

unpreventable with no known cure or available methods to predict its onset development. In 

addition to this, little is known about its root cause, and because shares most of its symptoms 

with other types of dementia it is often misdiagnosed. Early onset prediction of Alzheimer’s 

disease will help to track its development and provide more insightful knowledge about its root 

causes.  

 Scope of the Research 

The study focused on providing a framework for the early prediction of Alzheimer’s disease 

by deploying machine learning models on real patient data provided by ADNI (Alzheimer’s 

disease Neuroimaging Initiative). Based on the research problem of this study, the framework 

will use both behavioural and biological markers data exclusive of brain imaging, to provide a 

better understanding of Alzheimer’s disease risk factors. The key areas of research that the 

study will focus on are the ability to predicted Alzheimer's disease before it kills brain cells, 

the possibility of improving the accuracy of onset diagnosis of the disease, and to identify 

different pathological development patterns for the disease using behavioural and biological 

markers dataset aided with clinical evaluation. 
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If we understand the correlation between biological markers and behavioural markers such as 

lifestyle and demography we will understand more about the disease and its onset development. 

Collecting large amount of data related to behavioural and biological data of Alzheimer’s 

disease can be impossible for humans to find hidden patterns and correlate the features without 

the use of computer science. Therefore, in this study, we will examine the use of machine 

learning models to investigate patient’s data and extract knowledge that can be used toward 

early prediction and accurate diagnosis of Alzheimer's disease.  This will be conducted by 

analysing Alzheimer’s disease risk factors in the available patient data, as well as by computing 

the clinical knowledge from a manual evaluation.  

 Aim and Objectives 

The aim of this thesis is to provide a framework called Early Prediction of Alzheimer’s Disease 

Framework (EPADf) that utilises machine learning toward early and cost-effective prediction 

of Alzheimer’s disease using a combination of behavioural and biological markers. EPADf is 

an evolving framework that is capable of analysing Alzheimer’s disease, combine machine 

learning and manual evaluation to weight Alzheimer’s disease risk factors, and predict the 

disease from an early stage. This framework will further the understanding of Alzheimer’s 

disease risk factors and help clinicians with decision making. To achieve the research aim, the 

following objectives have been undertaken: 

 To gain an in-depth understanding of Alzheimer’s disease risk factors and the available 

Alzheimer’s disease datasets provided by ADNI, and extract the relevant data related 

to the research aim.  
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 To prepare a dataset by applying pre-processing, balancing and filtering techniques.  

 To conduct exploratory data analysis for further understand the data and select the 

relevant features that would assist the early prediction of Alzheimer’s disease.  

 To develop a crowed-sourcing system to collect manual evaluation of risk factors’ 

interrelationships from an epidemical and pathological prospective.  

 To deploy machine learning models on the baseline data to produce automatic 

weighting for the risk factors based on their correlation.  

 To propose a new framework to detect Alzheimer’s disease before it causes severe brain 

damage. 

 To dissemination of research findings and outcomes in international specialised venues 

and events. 
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Figure 1-1 Research and work carried out in this thesis 
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The flowchart diagram illustrates a step by step of work conducted to complete this study and 

formulate the presented prediction framework (EPADf). The content of Chapter 4 and 5 will 

illustrate in-depth details on the proposed framework and the experiments carried out for this 

study. 

 

 Research Contributions 

This thesis proposes a new framework (EPADf) for early prediction of the onset of Alzheimer’s 

disease to help clinicians with decision making and intervene before the disease fully develops 

and causes its victims to completely lose their living quality. Our approach provides a 

structured method to process, analyse and model Alzheimer’s disease data using machine 

learning. On this basis there are other novel contributions which are discussed in turn in the 

following subsections. 

The contributions of our work are detailed in the following list: 

 Collection of extensive research related to understanding the fundamental requirements 

to investigate Alzheimer’s disease using machine learning algorithms and the ranking 

of its risk factors. With this we also formulated logical approaches to illustrate how 

future research should be conducted. 

 A baseline development for a strategic evolving framework (EPADf) for early 

prediction of Alzheimer’s disease, which also lays a pathway towards early prediction 

and diagnosis of the disease. The framework is presented in Section (4.6), with all its 

sub-components which are also considered as further contributions.  
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 Solutions for skewed patient datasets to deal with limitations of imbalanced datasets to 

avoid biased results and overfittings. Methods such as under-sampling and over-

sampling which were highlighted in Chapter 5, and Chapter 6. 

 The development of a crowdsourcing risk factor ranking system (CRFR) as a 

subcomponent of our framework to collect clinical evolution of Alzheimer’s risk factors 

and their contributors based on validated research and clinical understanding, and 

converting this knowledge to numerical sum using a mathematical algorithm presented 

in this study: 

o The idea is to produce a large fully connected network with risk factors and 

contributing factors as nodes of this network. 

o Based on the connections the CRFR system uses an algorithm to calculate the 

importance of each risk factor based on inwards and outwards influence for each 

risk factor. This was highlighted in section (5.5.1). 

o The CRFR system also has an easy to use platform where clinicians can input 

their experience and contribute to the knowledge confined in the network. 

o The produced ranking of this system provide a guideline for machine learning 

models to use during the learning process. 

 Construction of a baseline dataset from the ADNI database and investigated the 

possibility of conducting early onset prediction of Alzheimer’s disease from a machine 

learning prospective based on variables of risk factors that are not considered as late 

stage symptoms of Alzheimer’s disease. This work illustrates the importance of 

underlying risk factors that is traditionally ignored. 
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 Defining and formalising the difference between the approach of using patient specific 

data (ADNI) and the approach of using clinical instinct and experience data (CRFR 

system) to investigate Alzheimer’s disease. 

 Evaluation of the performance of five different classification model algorithms, 

supported by two experiments, and compared against each other. The work also 

involved the following contributions: 

o Using five different architectures of machine learning classification models to 

investigate the possible prediction using only limited data in lifestyle, 

demography and common medical history. 

o Using different machine learning classification models to rank the risk factors 

variables in the dataset by importance. This presented an insightful knowledge 

about the dataset collected from ADNI, (see section 5.2). 

o Enhancement of the baseline dataset to include data from lifestyle, demography, 

medical history, genetics, and family dementia history. The work conducted 

here improved the classification process and set the path for future work 

following the footsteps for this thesis. 
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Framework Overview 

Figure 1-2 Early Prediction of Alzheimer's Disease Framework (EPADf) 

The “Swimlane” diagram above shows a complete flowchart of the presented framework in 

this thesis, its subcomponent, and how it can be used for early prediction of Alzheimer’s 

disease.  

 

 Thesis Structure 

This thesis is structured into 7 chapters giving an all-round view of the research problem, 

solution methodology, work carried out so far, and discussion of contribution and future work. 

Chapter 1 is an introduction section that delivers an overview of the research problem and 

scope of research. It highlights the negative impact of the Alzheimer’s disease burden on 

healthcare providers and the economy in general. The chapter argues the need to utilise 
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machine learning technology to predict the disease from an early stage to help clinicians with 

decision making. Predicting the disease from an early stage before it aggressively progresses 

and cause severe brain damage, would encourage clinicians and patients to work together to 

take actions that would either prevent it or slow down its progress, which in return will enable 

people to live longer and more independently. In this chapter the proposed predictive 

methodology and framework are presented with a descriptive content of aims and objectives, 

and a discussion of novel contributions claimed in this thesis. 

A comprehensive content of research background is assembled in Chapter 2, which provides 

an in-depth understanding of dementia and with concentrated focus on Alzheimer’s disease. 

The content discusses Alzheimer’s disease risk factors, and their correlations and contribution 

to each other’s development. It also discusses Alzheimer’s disease symptoms and their impact 

on patients’ lives, and the current methods used for diagnosis and treatment. Additionally, the 

discussion in this chapter is also extended to highlight challenges in this field, and the financial 

costs associated with Alzheimer’s disease health and social care and its impact on the economy. 

Overall this chapter gives a wide understanding of dementia, specifically Alzheimer’s disease 

and the need for decision support solutions to tackle the challenges. 

Chapter 3 in this thesis discusses the science field of artificial intelligence, specifically its 

subset, field machine learning, and how it is used to aid and accelerate research in the 

interdisciplinary field of bioinformatics. The content of this chapter provides an in-depth 

understanding of machine learning and discusses and compares the capabilities, algorithms, 

and concepts of learning models used in this thesis. The modules used include different 

artificial neural network architectures, random forest, support vector machine, Naïve Bayes, 
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and decision trees. This chapter also includes discussion of related work to the utilization of 

machine learning to investigate Alzheimer’s disease. 

A comprehensive discussion of the proposed framework and its implementations are provided 

in Chapter 4 and 5, which includes the core methods and data pipeline modules used to provide 

an early prediction of Alzheimer’s disease. The implementation chapter discusses the data pre-

processing and the methods used for the processing, extraction, and selection of relevant 

features to the aim of this research, as well as the oversampling techniques used to balance the 

data. The implementation chapter also provides an exploration of the data sample and discusses 

the content and dimensions of the data. In general, these two chapters gives a detailed summary 

of the framework, the experimental set-up, and the machine learning techniques used to 

conduct the prediction of onset Alzheimer’s and to systematically investigate the dataset. 

To conclude the findings and proof of work, chapter 6 provides a comprehensive report of key 

experiments’ results and further discusses the performance of each learning model employed 

in the work carried out in this thesis. This includes prediction results, model’s accuracy 

calculation, the interpretation of the results, and a detailed summary of the contributions made 

in this thesis.  

Chapter 7 of this thesis provides an overall discussion of results, a summary of the work carried 

out, and a conclusion of the content and contribution made in the thesis, with a final discussion 

of future work. 
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 Background 

 Introduction 

Getting old and weak is something most people find hard to accept. It’s a struggle that mature 

people over the age of 50 are facing but the concern doubles with the fear of losing their 

memory due to dementia. Elderly people who are affected by dementia are living the 

experience of watching themselves die slowly, fade away from their world, live in constant 

confusion, and no longer able to understand their surroundings. It is a horrible experience to be 

endured for dementia victims, their carers, and their families[14].  In this chapter we conducted 

an extensive background research on one of the most common types of dementia; Alzheimer’s 

disease. We discussed Alzheimer’s disease from different angles, covering its pathological 

development, the types of risk factors, symptoms, and the current diagnosis methods. 

 Dementia 

Dementia is becoming the challenge of our century, although the word itself does not refer to 

a specific disease, it is a term used to group several cognitive impairment diseases such as 

Alzheimer’s disease, Parkinson disease, and many other types of dementia diseases. In a report 

published by Alzheimer's Society [15], discussed and listed the most common types of 

dementia in the UK. Figure 2-1 below shows the different types of dementia and percentage of 

people who are suffering from these diseases. 
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Figure 2-1 The most common types of dementia in the UK [15] 

According to the World Alzheimer Report 2015 by Alzheimer’s disease International; the 

estimated financial cost for dementia is 1 trillion dollars and will double to 2 trillion dollars by 

2030. There are around 47 million people affected by dementia worldwide. The overall cost of 

the disease is higher than the market value of both Apple and Google combined. The cost 

associate with providing health and social care for dementia is equivalent to the 18th largest 

economy in the world. This comparison helps us to comprehend the massive impact of the 

disease on the economy [1]. 

This chapter of the thesis discusses the most common types of dementia i.e. Alzheimer’s 

disease and the progress currently made in fighting the disease. It will highlight the effects of 

Alzheimer’s disease on the economy and people, from both the social and biological 

perspectives, its symptoms, how it’s currently diagnosed, and the work done to fight the 

disease.  
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 Alzheimer’s disease 

Alzheimer’s disease is the most common form of dementia with no known cure, it is a slow 

and fatal disease that affects the human brain. This disease develops in different stages, which 

can cause a full destruction in the functionality of the brain over time. Alzheimer's patients 

usually experience memory loss, difficulty in focusing and a struggle to learn. The disease can 

also cause changes in personality and affected patients suffers from many side effects, such as 

anger and depression. As a person's condition declines, they often withdraw from family and 

society. Gradually, bodily functions are lost, ultimately leading to death. Although the speed 

of progression can vary, the average life expectancy following diagnosis is approximately 

seven years. Fewer than 3% of individuals live more than 14 years after diagnosis.  

Having Alzheimer’s disease means losing loving memories, the ability to recognise family 

members, and childhood memories, or even the ability to follow simple instructions e.g. 

making their usual morning cup of coffee, remembering how to use toilet, and maintain self-

hygiene [2][3][4]. Statistics show that around 1 in 10 people over the age of 65 have been 

affected by Alzheimer’s. Unfortunately, there are no effective cures for this disease and no one 

is immune [16].  

The reason Alzheimer’s was chosen to be the disease to investigate, is that over 62% of 

dementia patients have this disease, and there are no current systems that can predict the disease 

from an early stage. Most of the work related to this proposed research is mainly focused on 

the diagnosis of Alzheimer’s disease from a short term and biological perspective. Only few 

research works have been carried out to predict Alzheimer’s disease before the clinical 
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diagnosis. The challenge is to look for the most accurate way to predict Alzheimer’s disease at 

a very early stage before patients develop any of the symptoms. The success of such a challenge 

will help improve the research into  “Early Treatments” and diagnosis [12].   

 

 Biological Development and Causes of Alzheimer’s Disease 

To understand this fatal brain disease, one must understand how the human brain functions. 

The human brain consists of complex chemical and electrical processes to run the body 

functions. The brain is formed from billions of cells call neurons as shown in Figure 2-2. These 

electrically excitable cells communicate and transmit information with one another, through 

electrical and chemical signals. The brain is made up of an enormous number of neural 

networks, connected together to form a vastly large core component of the nervous system[17].  

There are multiple types of neurons in the human body that are responsible for transmitting 

data. The brain cells or the neurons in the brain are responsible for storing and transmitting 

data. Dementia diseases generally affect the neurons in the brain and cause communication 

disorder in the neural networks.    
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Figure 2-2 Structure of the brain [19]  

Alzheimer’s disease is a slow and fatal disease that 

develops gradually. It starts as two abnormal protein 

fragments called "Plaques" and "Tangles" (see 

Figure 2-3). These two protein fragments develop in 

the brain and gradually kill brain cells [5]. The very 

first stage of Alzheimer’s disease is the existence of 

abnormal clusters of protein fragments that build up 

between nerve cells called “Plaques”. Plaques then 

surround healthy brain cells and cause them to die, 

which then turns into other twisted strands of another 

protein called “Tangles” [5][6][7].  

Figure 2-3: Plaques and Tangles in the Brain [21] 
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There is no enough evidence to backup the claim that Plaques and Tangles are the main causes 

for brain cells to die. However, according to the latest research Plaques and Tangles are the 

main suspects. The abnormal Plaque protein fragments are formed from small protein pieces 

called beta-amyloid that are clumped together. These protein pieces are usually found in the 

fatty membrane surrounding nerve cells.  

Once both Plaques and Tangles have fully appeared in the brain they will start developing in 

the “hippocampus”; the part of the brain where human memory is first formed. Over time the 

"Plaques" and "Tangles" will start killing the cells in the “hippocampus” which will make it 

harder and harder for patients to develop new memory, specifically short-term memories of 

things that happened a few hours or days ago.  

After the destruction of the hippocampus more Plaques and Tangles will spread to different 

parts of the brain, slowly and gradually kill brain cells wherever they go across the brain in 

different regions. This spread is what causes the different stages of Alzheimer’s disease. As the 

first region to be affected is the hippocampus, the patient starts to lose short term memories. 

The disease then spread, to the second region where language is developed, which causes 

patients to find it difficult to speak or make sentences.  

After a few years the disease spreads to the front of the brain where logical thoughts are 

developed, and patients will struggle to plan tasks or solve problems. Gradually the disease 

will then spread to the region of the brain where emotions are regulated. When the disease 

affects the emotions region patients will experience constant changes of mood. When the 

emotions regulator region is fully affected, the "Plaques" and "Tangles" will then spread across 
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to the sense region, where understanding of surroundings is developed. Patients will struggle 

to analyse or make sense of things surrounding them and will experience hallucinations.  

Near the end the disease will spread to the brain region where old memories are stored, and it 

will cause memory loss of the oldest memories of the person. After this stage and at the very 

end the disease will spread to the very last part of the brain where the heart and breathing 

balance is controlled. The patient will then gradually lose balance and coordination of their 

heart and stop breathing.  Alzheimer’s disease has no cure to this date and whole process of the 

disease is very slow and could take up to 8 to 10 years before the patient loses their life. 

 Symptoms and Diagnoses of Alzheimer’s Disease 

The most frequent early symptom is having difficulty in remembering recent events [10]. As 

the disease advances, symptoms can include confusion, irritability, aggression, mood swings, 

changes in personality, anger, trouble with language, and long-term memory loss [3]. This 

disease develops in different stages, which can over time cause a full destruction in the 

functionality of the brain.  

The diagnosis of Alzheimer’s at a very early stage is very complex and presently not possible. 

Currently, the way Alzheimer’s is diagnosed, is through a very careful medical evaluation. The 

medical evaluation to diagnose Alzheimer’s disease includes an examination of medical 

history, mental status testing, physical and neurological tests, and other tests such as brain 

imaging. It is a very complex process to diagnosis Alzheimer’s disease, but its complexity also 

depends on what stage the disease is being diagnosed at; it is more difficult to diagnose people 

with Alzheimer’s at an early stage as most of the symptoms are unclear [10][16][12]. 
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There are 10 main common signs that are used to identify Alzheimer’s disease. According to 

the Alzheimer’s association (www.alz.org), the 10 suggested signs are as follows [14] [3] [18]:  

 Memory loss that disrupts daily life  

 Challenges in planning or solving problems  

 Difficulty completing familiar tasks at home, at work or at leisure  

 Confusion with time or place  

 Trouble understanding visual images and spatial relationships 

 New problems with words in speaking or writing.  

 Misplacing things and losing the ability to retrace steps  

 Decreased or poor judgment  

 Withdrawal from work or social activities  

 Changes in mood and personality 

If a person has the majority of these symptoms they are believed to have Alzheimer’s disease. 

If a General Practitioner (GP) suspects that the patient may have Alzheimer’s, then the patient 

will be asked to take the Mini Mental Score Examination test on a regular basis to confirm the 

diagnosis. 

 We have contacted the Department of Health to confirm if there are any Government-led 

programs to help diagnose dementia at a very early stage, such as a national examination for 

dementia for people over age 65, similar to the breast cancer program [19]. It was confirmed 

that there are no such government-led programs for early detection of Alzheimer’s and 

dementia, and only in the middle of 2014 the NHS introduced “Dementia Enhanced Service 
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for GPs ” to detect and provide timely diagnosis of the disease [20]. Therefore, if a person has 

the majority of these symptoms, they are believed to have Alzheimer’s disease, or if a general 

practitioner (GP) suspects that the patient may have Alzheimer’s then the patient will be asked 

to take the Mini Mental Score Examination (MMSE) test on a regular basis to confirm the 

diagnosis. Alongside the Mini Mental Score Examination, the Alzheimer’s Association have 

released a paper “New Diagnostic Criteria and Guidelines for Alzheimer’s disease” to diagnose 

the disease at an earlier stage [21]. 

The usual way to diagnose Alzheimer’s disease, is firstly done by noticing some of its 

symptoms and when the disease advances the symptoms are easier to detect. If the symptoms 

of Alzheimer’s are clear and can easily be detected the patient is recommended to undertake 

several tests. Sometimes if the symptoms are unclear or abnormal doctors might refer patients 

to take a brain imaging test in order to confirm the existence of the Alzheimer’s disease and to 

differentiate it from other types of dementia or other brain problems [6] [12][13]. This work 

will explore the current diagnosis methods and the existing data collected from clinical trials 

during these diagnostic sessions. The novelty of our work will focus on using this data for early 

prediction of Alzheimer’s disease pre-diagnosis stage (see area 1 in Figure 2-8). 

2.5.1 Mini Mental Score Examination (MMSE)  

Currently, doctors use a paper-based mental examination test to diagnose Alzheimer’s patients. 

The Mini Mental Score Examination (MMSE) is a series of questions and tests, each question 

is evaluated with points scored given based on the answers given. If all questions were 

answered correctly, the maximum score is 30 points. However, any score below 27 the patient 
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will be considered to have memory problems but not necessarily dementia. Below are the 6 

different types of questions and tests included in the MMSE test [13]: 

 Orientation – Such as identifying current location, time and date 

 Registration – Repeat and learn individual words 

 Attention and Calculation – Spell words backward or systematic mathematical 

equations 

 Recall – Remember individual words learned previously during the Registration stage 

 Language – Name different objects, repeat sentences, follow instructions and write 

sentences 

 Copying – Draw simple shapes such as pentagons [22] 

This test is commonly used for complaints of memory problems. However, as one of many 

other tests, MMSE test is also used by doctors to diagnosis Alzheimer’s disease and other types 

of dementia [13]. 
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 Risk Factors of Alzheimer’s disease 

Although, there are many opinions stating that Alzheimer’s disease is a heredity based disease, 

other research shows that many Alzheimer’s disease cases could be prevented by lifestyle 

changes such as exercise, eating healthily and not smoking. Scientists might not agree but the 

results of their research could potentially mean that they are right, and that Alzheimer’s disease 

can develop from lifestyle or could simply be a genetic disease. 

 
Figure 2-4 Identified Risk Factors of Alzheimer ’s disease 

Figure 2-4  shows the currently recognised risk factors of Alzheimer’s disease, details of these 

risk factors and references to related studies are included in the following table (Table 2-1) : 
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Table 2-1 Alzheimer's Disease Risk Factors Summary 

Risk Factor Description Category Citation 

AGE In almost all cases symptoms of Alzheimer’s 

start to show from the age of 50+. 

Characteristic 

(Demography) 

[23] 

APP, PS1, and PS2 These three genes have been identified as 

causative genes of Alzheimer’s Disease. 

Genetics [24] 

APOE Apolipoprotein E (APOE) gene increases a 

person’s risk of developing Alzheimer’s 

disease. 

Genetics [23][24] 

DIABETES A known cardiovascular risk factors is type 

2 diabetes, it increases the risk of 

Alzheimer’s disease in mid-life or later life. 

Medical History [23][25] 

OBESITY Obesity is one of the cardiovascular risk 

factors that increases the risk of Alzheimer’s 

disease in mid-life. 

Medical History [23] 

STROKE Stroke is related to almost all of the 

cardiovascular disease that are considered to 

be high risk factors of Alzheimer’s disease 

and dementia in general. 

Medical History [23][25][26] 

DEPRESSION People with history of depression in mid-life 

or later life have shown to have increased 

rates of dementia. 

Medical History [23] [27] 

HIV INFECTION People with HIV sometimes develop 

cognitive impairment. 

Medical History [23] 

DOWN’S 

SYNDROME 

Down’s syndrome carries a gene that 

produces one of the key proteins (APP gene 

– Amyloid precursor protein) which is a 

causative gene of Alzheimer’s Disease. 

Medical History [23] 

CHOLESTEROL Cholesterol is a fatty substance, which, 

causes the development of Alzhemere’s 

Disease risk factors such as diabetes, high 

blood pressure, and other cardiovascular 

disease. 

Medical History [23] 
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HEART DISEASE Heart disease shares ApoE as a genetic link 

with Alzheimer’s disease, and it is also a 

vascular risk factor to onset of Alzheimer’s. 

Medical History [25] 

HEAD TRAUMA A severe blow to the head increases the risk 

of later dementia such as Alzheimer’s 

disease. 

Medical History [23] 

BLOOD 

PRESSURE 

High blood pressure is a risk factor of 

dementia, and beside this blood pressure can 

cause strokes and strokes are risk factors of 

dementia. 

Medical History [23] 

STRESS Stress affects the immune system, which is 

known to play an important role in the 

development of dementia. 

Medical History [28][29][30] 

POOR DIET An unhealthy diet can affect a person’s risk 

of developing dementia and cardiovascular 

disease such as type 2 diabetes. 

Lifestyle [23][27] 

SUBSTANCES Drug abuse have been suggested as possible 

risk factor of dementia. 

Lifestyle [23][27] 

ALCHOHOL Heavy and chronic drinking results in 

specific dementia-type symptoms. 

Lifestyle [23][27] 

LAZINESS 

(PHYSICAL 

INACTIVITY) 

Mid-life physical inactivity increases the risk 

of all-cause dementia. 

Lifestyle [23][27] 

SMOKING Smoking increases the risk of developing 

dementia, especially Alzheimer’s disease. 

Lifestyle [23] [27] 

ALUMINIUM Research on Aluminium concentrations in 

water showed that he risk of Alzheimer's 

disease was 1.5 times higher in areas where 

the aluminium concentration exceeded 0.11 

mg/l than in areas where concentrations were 

less than 0·01 mg/l. 

Lifestyle [31] 

LOW SOCIAL 

ACTIVITY 

Very few studies report the long-term effect 

of mid-life social isolation or loneliness on 

risk of dementia in to older age. 

Lifestyle [23] [27] 
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LOW MENTAL 

ACTIVITY 

Mental activities in mid-life are associated 

with a lower risk of dementia in later life. 

Lifestyle [27][32][33] 

FEMALE Women are more likely to develop 

Alzheimer’s disease than men. 

Characteristic 

(Demography) 

[23] 

ETHNICITY People from certain ethnicities are at higher 

risk of dementia than others. 

Characteristic 

(Demography) 

[23] 

NO EDUCATION Many research studies have associated lower 

education with a greater risk for dementia. 

Suggesting that the effect of education on 

risk for dementia may be best evaluated 

within the context of a lifespan 

developmental model. 

Characteristic 

(Demography) 

[23][34]  

EMPLOYMENT Low level of job control is associated with 

higher multivariate adjusted risk of 

dementia. 

Characteristic 

(Demography) 

[35] 

 

2.6.1 Genetics and Family History 

There are approximately 70 trillion cells in the human body, and the number varies from one 

to another. As people grow older or gain more weight, the number of cells increases and vice 

versa. Not all of these cells serve the same purpose; they fall into different categories such as 

blood cells, brain cells, tissues cells and other types of cells. Each type of cells has their own 

size, shape and responsibility to manage a particular function in the body. Each individual cell 

has a set of DNA sequence that shapes its amino acid and proteins, which determines how the 

cells would function. The human DNA is a sequence of a genetic code merged during 

fertilization, and it determines everything about a person, including how they going to look, 

and the genetic diseases that they might have in the future. Any changes to the genetic code of 

the DNA will mean that the functions of the cells will also change. Lifestyle and interaction 
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with other biological environments could cause slight changes in the function of some of our 

body cells; hence, why we get ill and catch different diseases. Investigating this field of the 

human body and its relation to Alzheimer’s disease, will provide us with a solid knowledge 

about the disease.  

There are multiple proteins (amino acids) in the human cells, which determine the shape and 

functionality of the cell. Each protein has its own sequence of genetic code (mRNA sequence) 

that forms its set of instructions on how the protein should work, any changes to this code will 

affect the tenacity of the protein and functionality of the cell. Proteins and amino acids are the 

visualisation of genetic codes or mRNA sequences, although, it is complicated to explain how 

they function exactly but perhaps if we compare it to computer code the analogy would be; 

genetic code and proteins work similarly to the front-end and the back-end of a software 

package. 

The study of a particular cell will first start with the extraction of its DNA sequence (mRNA), 

then analyse the sequence to identify the different gene sets and amino acids. The genes set in 

the DNA sequence have already been named and previously defined by scientists. The genetic 

sequence helps scientists understand the behaviour and functionality of the cell. Abnormal 

activities or changes in the nature of the cell are also identified through its genetic code [36]. 

In the case of Alzheimer’s disease, there are at least three genes that have been identified by 

scientists as causative genes. Mutations in these three genes, APP, PS1, and PS2 have been 

established to cause mainly early-onset Alzheimer’s disease. If these three genes are found in 

the DNA variations sequence it means that the person who is carrying these genes will 
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definitely develop Alzheimer’s disease in the future [24]. However, carrying these genes is a 

very rare occurrence. These three genes are not classified as risk factors of Alzheimer’s disease, 

but more as hallmarks of the disease. There are several other risk factor genes that have been 

identified as contributors to the development of Alzheimer’s disease, but the main contributor 

is the Apolipoprotein E gene (AOPE), which has been identified as the highest risk factor gene 

of Alzheimer’s disease [24]. Environmental risk factors can cause changes in the structure of a 

gene, resulting in an abnormal form that 

may be conveyed to succeeding 

generations.  

The APOE gene is responsible for 

providing instructions for making APOE 

protein; this protein is a blood protein that 

carries Cholesterols and other fats through 

the bloodstream. High cholesterols are also 

believed to be one of the risk factors for the 

development of Alzheimer’s disease. 

Maintaining cholesterol levels is essential 

for the prevention of disorders such as high blood pressure, heart disease and strokes, which 

are also Alzheimer’s disease risk factors. From Figure 2-5, we learn that APOE is an important 

risk factor as it has roots in other high and low risk factors and that increases the level of its 

risk frequency. However, if we study the effects of APOE in reverse, APOE is only responsible 

for carrying cholesterols and other fats; in this case, APOE is not the main risk factor in this 

Cardiovascular 
Diseases

•Heart Disease

•Strokes

•Blood Pressure

Cholesterols 

APOE

Figure 2-5 - Connection between APOE and Bloodstream 

Diseases 
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chain of risk factors. The main risk factor in this process is the source of fats and high 

cholesterol.  

The APOE gene helps to facilitate the development of Alzheimer’s disease but having this gene 

does not confirm the definite development of the disease. It is important to acknowledge that 

having this type of gene means there is a high risk of developing Alzheimer’s disease if the 

lifestyle, body fat, and medical state are not managed properly.   

   

2.6.2 Medical History 

One of the major aspects that doctors use in the evaluation process of diagnosing any disease 

is the medical record of the patient, as most diseases in a way can relate to each other or 

progress from one state to another state and become a disease in a new form or become more 

chronic. For example, high blood pressure leads to stroke, or an untreated premalignant 

condition will eventually turn into cancer. Therefore, the connection between Alzheimer’s 

disease and other diseases or illnesses is an immense possibility.  

When it comes to Alzheimer’s disease, medical records that relate to heart and bloodstream 

diseases can significantly increase the risk of developing Alzheimer’s disease or any other type 

of dementia. Scientists believe that medical history plays a vital part in the development of 

Alzheimer’s disease. The majority of Alzheimer’s disease patients share a medical record 

similar to other patients, for instance, many Alzheimer’s disease patients have had blood 

circulation problems. Therefore, the risk factors of Alzheimer’s disease in medical history can 

be entrenched at different degrees of disorders. In other words, a patient might develop 
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Alzheimer’s disease if they have previously had high blood pressure followed by high 

cholesterol, or perhaps had both stress and diabetes. These are just hypothetical examples to 

demonstrate how medical history could contribute to the development of Alzheimer’s disease.  

  

 

 

 

 

 

 

Figure 2-6 Hypothetical Examples of Alzheimer's Progression 

 

Even though many Alzheimer’s disease risk factors have been identified, the development of 

the disease remains a mystery.  Alzheimer’s disease develops over time through a complex 

series of brain changes that occur throughout the lifetime of the patient. These changes in the 

brain can be caused through diseases, genetic heredity, interaction with environment or bad 

and poor lifestyle. Identifying or categorising the level of risk to these causes is very difficult 

and complex as each cause can differ from person to person.  

Example of merging events that might 

cause Alzheimer’s disease 

Example of progressive development toward 

Alzheimer’s disease 
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As there are several diseases, genes and other aspects that could be categorised as risk factors 

for Alzheimer’s disease, it is a very complicated process to identify the causal risk factors of 

Alzheimer’s disease. However, there are five types of risk factors; age, genetics, medical 

history, lifestyle and characteristics, as shown in Figure 4. It might be less difficult to point out 

which type of risk factor has the major impact, but it is a complex process to identify the 

relation between each type and the connection between all of the risk factors. What makes the 

disease far more complex is that it can develop from multiple causes and not just in one way. 

Therefore, it is important to use computer science in order to analyse Alzheimer’s disease 

patient data to identify causal patterns in the risk factors and the relationship between them. 

These patterns are almost impossible to work out manually, therefore, the use of technical 

machine learning concepts will speed the learning on Alzheimer’s disease and provide more 

information about its development. 

Age and Genetics are the clearest risk factors. However, research suggests that a variation of 

medical history beyond genetics may play a role in the development of Alzheimer’s disease. 

This has sparked a vast amount of research and become of great interest to many health 

providers and institutions. Below is a table of the diseases that are known as risk factor of 

Alzheimer’s disease and their relationship to one another, which shows how they contributes 

to each other’s development.   
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Table 2-2 AD Medical History Risk Factors & their Relationship 

Risk Factor Diseases Relationship (1) Relationship (2) Relationship (3) 

1. Diabetes 
Obesity [37] Cholesterol [38] Heart Disease [39] 

2. Obesity 
Cholesterol [40] Depression [41] Chronic Stress [42] 

3. Stroke 
Blood Pressure [43] Head Trauma [44] Chronic Stress [45] 

4. Depression 
Obesity [46] Chronic Stress [47] Stroke [48] 

5. HIV Infection 
Others Others Others 

6. Down's Syndrome 
Genetic Genetic Genetic 

7. Cholesterol 
Obesity [40] Heart Disease [49] Blood Pressure [50] 

8. Heart Disease 
Obesity [51] Depression [52] Blood Pressure [53] 

9. Head Trauma 
Chronic stress  [54] Stroke [44] Blood Pressure [55] 

10. Blood Pressure 
Obesity [51] Diabetes [56] Chronic Stress [57] 

11. Chronic Stress 
Lifestyle Lifestyle Lifestyle 

 

 

Biologists suggest that Alzheimer’s disease is correlated to blood circulation and changes in 

the brain. Table 2-2 shows a preliminary demonstration of the correlation between the illnesses 

that are suggested to be Alzheimer’s disease risk factors. For each illness, the top three possible 

illnesses that might be its initial cause, were selected and put into three new columns as shown 

in Table 2-2. Although, this is a preliminary analysis, the outcome has raised many questions, 

as well as a possible backing up some of the statements made by other researchers. For 

example, diabetes is classed as common risk factor for Alzheimer’s disease, although, diabetes 

was only brought up once in Table 2-2 but this disease relates to the most significant diseases 

in the relationship columns in Table 2-2. Chronic stress, obesity, blood pressure and heart 

Note: Please note Table 2-2 is a results of basic manual analysis, and the relationship between the 

diseases is stated based on researched from multiple sources (as cited next to each relationship).  
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disease are the most significant risk factors in Table 2-2, therefore, could these risk factors have 

high importance for increasing early risks of Alzheimer’s disease? 

In the correlation between the medical history risk factors in Table 2-2, the top four relatable 

diseases, chronic stress, obesity, blood pressure and heart disease are also very much caused 

by and related to life style risk factors. For example, in some cases stress, obesity, blood and 

heart disease, can be avoided by simply changing the diet and lifestyle, and staying physically 

active. After genetics, it is possible for lifestyle to be the biggest early risk factor of Alzheimer’s 

disease. 

Medical history plays a significant role in the development of Alzheimer’s disease. Most of the 

diseases that play a role in developing Alzheimer’s disease are not common among young 

people, which makes it difficult to identify Alzheimer’s disease at an early stage. If the critical 

diseases that contribute to the development of Alzheimer’s disease are caused by poor lifestyle 

and personal characteristics, then, having a good, healthy and quality lifestyle from a very 

young age could help to prevent the risk of getting Alzheimer’s disease. 

To visualise the connection between the risk factor diseases and Alzheimer’s disease, Figure 

8, is a network graph that demonstrates the link between the diseases. Each disease is 

represented in a circle (station); the connection between the diseases is demonstrated using the 

arrows (links), an outgoing link means that the disease that the link is pointing at is one of its 

causes and vice versa.  
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Figure 2-7 Visualisation of Table 2-2. 

In Figure 2-7, shows the main three stations in the network are obesity, blood pressure and 

stress. The reason why such a simple analysis triggers interest is because the outcome is 

immensely lifestyle-related and has a huge impact on the bloodstream. A protein called beta-

amyloid is believed to be the cause of the development of plaques, which then triggers the 

development of tangles, and both together are hallmarks of, and responsible for the 

development of Alzheimer’s disease. However, not all brains with beta-amyloid will develop 

Alzheimer’s disease. The development of beta-amyloid is believed to be caused by fat and 

protein carried in the blood to the brain cells. The outcome of the analysis of Figure 8 shows 

that bloodstream and lifestyle-related diseases are high risk factors. The relation between 

obesity, blood pressure and stress together with other diseases developed over time could 

potentially explain the pathology of Alzheimer’s disease. 

Note: Each disease is represented by a colour to visualize them better, unlike the circle 

size, the colours do not represent any significance. 
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“Alzheimer’s disease starts to manifest long before plaque formation becomes 

evident,” said Carla Shatz, PhD, professor of neurobiology and biology at Stanford 

University[58]. Dr Shatz also said, “I’ve always found it strange that these mice — and, 

in fact, all the mouse models for Alzheimer’s disease that we and other people study — 

seem not to have any problems with memory until they get old,” Shatz said. “These 

mice’s brains have high levels of beta-amyloid at a very early age.” 

The development of beta-amyloid happens in Alzheimer’s disease suspects at a very young 

age, and symptoms only become detectable at a much older age. In this case, medical history 

is one of the main sources to predict Alzheimer’s disease at a very early stage. The use of data 

analysis and machine learning will help in finding medical history patterns for the development 

of Alzheimer’s disease in current existing Alzheimer’s disease databases. The use of these 

patterns alongside other patterns found in lifestyle, characteristics and genetics could help with 

the diagnosis of Alzheimer’s disease 20-30 years before its symptoms are noticeable.  

2.6.3 Lifestyle and Diet 

“A healthy body equals a healthy mind”. What we eat and what we do will certainly affect our 

mental health performance. Most of the common diseases of today are due to bad diet and 

nutrition. One of the questions in this thesis is how can lifestyle and diet contribute to the 

development of Alzheimer’s disease?  Probably, the best way to investigate the answer is by 

looking at the patient’s lifestyle and their medical record to identify the lifestyle elements that 

trigger the development of Alzheimer’s disease risk factors. An example would be; a lifestyle 

of too much fat and unhealthy food with a lack of exercises will trigger the development of 
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both obesity and diabetes, which will then contribute to the development of many other blood 

and heart diseases. Heart problems, diabetes and other bloodstream diseases are high risk 

factors of Alzheimer’s disease. Hence, lifestyle is the primary cause of heart problems, 

diabetes, stress and other bloodstream diseases; one can argue that besides genetics, the 

lifestyle and diet are primary contributors to the development of Alzheimer’s disease.  

This section explores the diverse lifestyles and diets that might contribute to the development 

of Alzheimer’s disease. The process of developing Alzheimer’s disease is still a mystery; 

however, the biological hallmarks of the disease are Plaques and Tangles, and the focus now 

is to investigate the development of these hallmarks. Plaques and Tangles are the hallmarks of 

Alzheimer’s disease. Plaques, are abnormal clusters of protein fragments, built up between 

nerve cells. Tangles are dead brain cells, scientist know that tangles are formed after the 

development of Plaques around the healthy brain cells which cause them to die. For early 

prediction of the disease with the use of patterns found in diet and lifestyle, it will only make 

sense to investigate the elements that are responsible for the development of plaques, clusters 

of protein around the brain cells.  

Brain cells or neurons are responsible for releasing the beta-amyloid protein, this process 

happens in almost all of us, and it has no preferred structure. In people with Alzheimer’s 

disease, this protein folds in an abnormal structure around the cells to promote aggregation and 

triggers a cascade of pathologic events. What causes beta-amyloid to fold in such an abnormal 

way around the brain cells is a very interesting field of research to investigate; however, this is 

mainly down to biology and clinical trials. In this section, the focus will be on the type of food 

and activities that have an impact on our nervous system and specifically beta-amyloid protein.  
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Identifying risk factors in food and day-to-day activities is a very complex process and variant. 

Due to our inconsistent nature and diet, it will be difficult to identify risk patterns for 

Alzheimer’s disease. Alternatively, a more simple and practical way to identify possible factors 

would be by investigating the diet and activities that are responsible for increasing the risk of 

developing medical risk factor diseases for Alzheimer’s disease. For instance, if diabetes is 

suspected to be a high-risk factor for Alzheimer’s disease, then it will only make sense to 

investigate the diets and activities that are responsible for diabetes, in order to identify the type 

of food and activities responsible for increasing the risk of Alzheimer’s disease.  Like the 

analysis given in Table 2-2 to investigate the association between risk factor diseases, in Table 

2-3 and Table 2-4, we have listed all of the risk factor diseases alongside three known 

contributors of these diseases. In Table 2-3, risk factor diseases are listed alongside the top 

three foods habits that contribute to their pathology. In Table 2-4, risk factor diseases are listed 

together with the top three lifestyle habits that contribute to their development.   

The aim of these two simple preliminary analyses is to learn about the signs that could indicate 

early development of Alzheimer’s disease. The results of this preliminary analysis are 

unverified, and the data used is based on the information found on each disease from different 

sources [59][60][61]. Therefore, it will not be strictly accurate to claim the results of this 

analysis as a discovery. However, the outcome will help us find a pattern to our research that 

might be worthy of verifying in future work. Our future work will study early prediction of AD 

using risk factors and lifestyle. 
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Table 2-3 Alzheimer’s disease Medical History Risk Factors & the Relationship to Diet 

Disease Diet 1 Diet 2 Diet 3 
1. Diabetes 

Alcohol Candy (Sugary Food) Cakes (Fat Food) 

2. Obesity 
Fast Meal (Oily Food) Candy (Sugary Food) Cakes (Fat Food) 

3. Stroke 
Red Meat (CAFO) Fizzy Drinks Processed Salt 

4. Depression 
Lack of sea food Artificial sweeteners Alcohol / Caffeine  

5. HIV Infection 
Transmission Transmission Transmission 

6. Down's Syndrome 
Genetic Genetic Genetic 

7. Cholesterol 
Fast Meal (Oily Food) Cheese Liver Dishes 

8. Heart Disease 
Fast Meal (Oily Food) Alcohol Candy (Sugary Food) 

9. Head Trauma 
Alcohol MSG / Processed Salt Caffeine 

10. Blood Pressure 
Processed Salt Canned Food Alcohol 

11. Chronic Stress 
Caffeine Alcohol Fast Meal (Oily Food) 

 

The information in Table 2-3 indicates a relationship between the food we eat and the 

development of different diseases that could possible trigger the pathology of Alzheimer’s 

disease in the long-term. Alcohol appeared 6 times in Table 2-3 (results in Table 2-5), which 

makes it the top leading diet habit to over half of the Alzheimer’s disease risk factor diseases. 

Followed by fast meal / oil reach food, which was mention 4 times and it contributes to the 

high-risk factors of Alzheimer’s disease; Obesity, Cholesterol, Heart Disease and Chronic 

Stress. Caffeine, candy and processed food and salt - these food categories have been 

mentioned 3 times each in the table.  

The food addressed in this analysis is food most of us consume on a day-to-day basis.  The 

results of this analysis could possibly be the reflection of our present-day food consumption. 

As a UK society and like most developed countries around the world, the food we bring home 

with us is most likely to fall into all these food categories in Table 2-3. For instance, alcohol 

consumption is one of the major problems we have in the UK, in 2014 there were over 1 million 

Note: Please note the table above is the results of a basic premature analysis.  
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hospital admissions related to alcohol consumption in the UK. The food mentioned in Table 

2-3 includes a list of essentials that we can simply completely avoid as a society; however, it 

is an indication that too much of anything is unhealthy. A healthy well balanced diet should 

help us avoid most of the Alzheimer’s disease risk factor diseases and keep a clean medical 

record [59]. 

Like the analysis in Table 2-3, Table 2-4 demonstrates the impact of the lifestyle we choose on 

our health; the activities that we do as a part of our lifestyle. What we do can sometimes 

determine the habits or diet we get ourselves used to. There is no decision that we can make 

that does not come with some sort of balance or sacrifice, and almost every action we take has 

a consequence. What we choose to eat or not eat will eventually have an impact on our body 

health. 

Table 2-4 AD Medical History Risk Factors & the Relationship to Lifestyle Activities 

Disease Lifestyle 1 Lifestyle 2 Lifestyle 3 
1. Diabetes 

Lack of exercise Alcoholism Smoking 
2. Obesity 

Food Addiction Lack of exercise Stressful Lifestyle 
3. Stroke 

Lack of exercise Stressful Job Family Problems 
4. Depression 

Family Problem Loneliness Smoking 
5. HIV Infection 

Unprotected Sex  Blood Contact Transmission 
6. Down's Syndrome 

Genetic Genetic Genetic 
7. Cholesterol 

Lack of exercise Alcoholism Stressful Life 
8. Heart Disease 

Lack of exercise Smoking Food Addiction 
9. Head Trauma 

Alcoholism Head Injuries Stressful Lifestyle 
10. Blood Pressure 

Stressful Lifestyle Family Problem Smoking 
11. Chronic Stress 

Emotional 

Sensitivity 

Expectations Demands 

 
Note: Please note the table above is the results of a basic premature analysis.  
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The second part of this preliminary investigation is identifying possible contributors to 

Alzheimer’s disease risk factors in our daily lifestyle. Table 2-4 shows a list of the high-risk 

factors found in the medical history of Alzheimer’s disease patients, alongside them the top 

three possible lifestyle contributors to their development. We learn that a stressful lifestyle with 

a sharp lack of exercise opens the opportunity for Alzheimer’s disease risk factors to develop. 

Lack of exercise and stressful activities are the high-risk factors in this analysis, followed by 

family problems, alcoholism and smoking.  

Table 2-5 Summary of Table 2-3 and Table 2-4 

Lifestyle Factors Occurrence  Diet Factors Occurrence 

No exercise 5 Alcohol 6 

Stressful Lifestyle 5 Oil Rich Food 4 

Family Relation 3 Processed Food / Salt 3 

Alcoholism 3 Caffeine 3 

Smoking 3 Sugar Rich Food 3 

Food Addiction 2 Fat Rich Food 2 

Social Isolation 1 Red Meat (CAFO) 1 

Emotional sense 1 Low Sea Diet 1 

Head injuries 1 Fizzy Drinks 1 

High Expectations 1 Artificial Additions 1 

High Demands 1 Cheesy Food 1 

 Canned Food 1 

Liver Dishes 1 

In the analysis of diet and lifestyle, it’s clear that the top three main risk factors are the over 

consumption of alcohol, stressful activities, oily unhealthy food and the lack of physical 

activities. Avoiding these patterns in our diet and lifestyle will help us avoid development risk 

factor diseases, which will play a vital role in early prevention of Alzheimer’s disease risk. 

However, as the aim is to predict Alzheimer’s disease risk at a very early stage, it is important 
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to obtain such information about suspected individuals who might be at risk of developing 

Alzheimer’s disease. 

2.6.4 Characteristics 

Life form is indeed a very complicated and sophisticated feature of planet earth. The extreme 

complexity of living organisms and their biology is a fascinating science with all of its hidden 

secrets. The perfection, in which life forms have been engineered with all of their intricacy, has 

attracted many scientists and researchers to investigate how they work for over thousands of 

years. This perfect engineering is called life. Each life form has a unique imprint, and a 

complexity of its own. When it comes to humankind, we are far more sophisticated and 

complicated in comparison to the rest of creation on planet earth. Not only biologically unique, 

but we are the only creation with such emotional and mental intelligence. The psychological 

and emotional complexity is what makes us more unpredictable and unique. Our psychological 

and emotional intelligence has divided us into nations with different languages, cultures and 

lifestyles.  

Each human is unique and carries characteristics that define their life. These characteristics are 

personality, family, demography or environment, emotional intelligence and social life. Our 

characteristics are determined by our emotional and psychological intelligence. Who we are 

determines the things we do and the way we live our life. Our social life and environment also 

have a great influence on our emotional and psychological complexity. Living with a mental 

health problem such as Alzheimer’s disease risk, causes and risk factors can vary between both 

biological changes and impacts of characteristics [62][63]. 
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People suffering from Alzheimer’s disease risk factors, would probably have a stressful type 

of personality with high expectations in every aspect of life. Both stress and high expectations 

create pressure on the mind and influence changes on the lifestyle. This part of the work will 

explore the impact of characteristics on people with potential to develop Alzheimer’s disease 

risk. Characteristics influence changes on the daily lifestyle, which means a negative 

characteristic combined with unbalanced lifestyle can potentially cause all sorts of health 

problems. For instance, being a stressful person with a stressful job influences some people to 

smoking, unhealthy eating, overthinking or lack of sleep. These influences are the primary 

causes of several illnesses such high blood pressure, chronic stress, heart problems and other 

type of diseases. Characteristics can also trigger or help in the development of Alzheimer’s 

disease risk medical risk factors at a very early stage [64] [3]. 

The characteristics that can be classified as high risks factors for Alzheimer’s disease risk are; 

low education, stressful job and gender [65]. The number of females subjected to Alzheimer’s 

disease risk is higher than males, and also the majority of Alzheimer’s disease risk patients 

either have not been in higher education or spent the majority of their working life in a stressful 

job. An interesting research paper published by the American Psychological Association 

concluded that women are more likely to suffer from depression and stress than men, which 

probably explains why there are more women who are likely to develop Alzheimer’s disease 

risk [66][67]. Stressful life and stressful jobs cause the majority of the medical risk factors of 

Alzheimer’s disease risk. The demographic indication shows that people in western and 

developing countries are at greater risk of developing Alzheimer’s disease risk than people in 

the Far East, Asia and Africa. This could possibly be due to the dynamic and demanding 
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lifestyle in countries with developing economies, where employability is high, high alcohol 

consumption and people live a more demanding lifestyle. 

 Alzheimer’s disease risk is initiated by multiple variations of risk factors cumulating together 

over time, to cause the development of Alzheimer’s disease risk biological hallmarks. 

Consequently, the most effective approach to prevent Alzheimer’s disease risk would be as 

early as teenage life or childhood; long-term education, successful relaxed career, comfortable 

lifestyle and most importantly good balanced diet, all of these factors will help reduce the risk 

of getting Alzheimer’s disease risk. 

2.6.5 High Risk Factors 

The known high-risk factors of Alzheimer’s disease are genetics and in the medical history of 

the patients. While genetics remains a primary high-risk factor as it is something people are 

born with, from the analysis in this chapter we understand that risk factors in medical history 

might not be considered primary as they are triggered contributing risk factors in diet, lifestyle 

and characteristics, and therefore the contributing risk factors should be considered as primary 

factors.  However, in some cases, risk factors in diet, lifestyle and characteristics are also 

influenced by risk factors in the medical history. But this shows that the development of 

Alzheimer’s disease is spread across a combination of medical history, lifestyle and diet. 

Sustaining a healthy lifestyle and diet might prevent the development of risk factors in medical 

history and overall the development of Alzheimer’s disease. 
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Figure 2-8 Different areas of study for AD 

 Figure 2-8 demonstrates how Alzheimer’s disease is studied from different areas. Area 1 

explores the area in which Alzheimer’s disease can possibly be predicted at an early stage. At 

this point, the patient does not have any Alzheimer’s disease symptoms but has existing risk 

factor patterns in their medical history, which also interconnect with patterns in their 

characteristics and diet. In Area 2, it will be quite inaccurate to predict Alzheimer’s disease at 

this stage. This is because patients have not yet developed any of the high-risk factors nor have 

any symptoms. The data available in area 2 will consist of information on lifestyle, diet and 

characteristics, which will only be useful to predict early potential high risk of Alzheimer’s 

disease. Unlike area 2, both areas 3 and 4 are linked to late prediction and diagnosis of 
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Alzheimer’s disease. At this point of the Alzheimer’s disease pathology, the patient will already 

have most of the medical risk factors as well as visible symptoms of Alzheimer’s disease.  

2.6.6 Summary 

Alzheimer’s disease costs its victims their lives, and it has a tremendous effect on health 

organisations and the economy all around the world. Statistics show that around 1 in 10 people 

over the age of 65 will be affected by Alzheimer’s. Unfortunately, there are no effective cures 

for this disease and no one is immune [16].  Getting old and weak is something most people 

find hard to accept. It’s a struggle that mature people over the age of 50 are facing but the 

concern doubles with the fear of losing their memory due to dementia. Elderly people who are 

affected by dementia are living the experience of watching themselves die slowly, fade away 

from their world, live in constant confusion, and no longer able to understand their 

surroundings. It is a horrible experience to endure for Alzheimer’s disease victims, their carers, 

and their families. Having Alzheimer’s disease means losing loving memories, the ability to 

recognise family members, and childhood memories, or even the ability to follow simple 

instructions e.g. making their usual morning cup of coffee, remembering how to use the toilet, 

and maintain self-hygiene [2][3][4]. 

Taking action to fight Alzheimer’s disease will enable people to live longer and more 

independently. Unfortunately, what exactly causes Alzheimer’s disease to develop is still 

undiscovered, however, research shows there are several known risk factors that contribute to 

its development. These risk factors fall into an array of categories; medical history, lifestyle, 

family dementia history, characteristics, and demography. Moreover, these risk factors are 
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classed as either behavioural markers or biological markers of Alzheimer’s disease. Many 

research initiatives fighting Alzheimer’s disease mostly focus on either new drug development 

or investigating the disease by studying its biological markers. With the expansion of computer 

science, several research approaches have emerged using the power of data science and 

machine learning to study Alzheimer’s disease. Unfortunately, because of the challenges more 

specifically data limitations, researchers were inclined to carry out their study on biological 

markers of Alzheimer’s disease and almost neglected its behavioural markers. Our research 

comprehensively studies Alzheimer’s disease risk factors using both behavioural and 

biological markers to seek possible early prediction, or an onset diagnosis of the disease. 
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 Literature Review 

 Introduction 

The world is almost fully dependent on the aid of computers. We use computers in almost 

everything such as agriculture, medical care, trade, travel, manufacturing, and communication. 

Computers are heavily used to aid us with decision making or to achieve tasks very quickly 

that the human mind wouldn’t be able to achieve. 

Data analysis and machine learning are interdisciplinary fields, where the former uses different 

scientific methods to collect, store, and extract data, and the latter provides systems with the 

ability to learn and improve from experiences using data without being explicitly programmed. 

These two fields of study are closely related and have tremendously impacted and accelerated 

the development of technology.   

The different methods and techniques from the fields of data analysis and machine learning 

were applied throughout this research; therefore, this chapter presents a literature review of 

machine learning and data analysis, as well as an overview of the related work to the research 

problem in this thesis.  

 An Overview on Data Science     

Data is used commonly used to extract knowledge and insights that would help us with decision 

making. However, to acquire useful information that would help us make decisions, we would 
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need to collect a data set relevant to our problems, then analyse the data in an effective way 

using scientific methods and algorithms to give us the information we need. 

Manual extraction and analysis of data is extremely difficult, and, in some cases, it is 

impossible to do it without the help of machine learning tools and methods, especially, when 

we have large datasets. For example, companies such as Amazon and eBay use data science 

and machine learning to analyse a mixture of structured, semi-structured and unstructured data 

in search of valuable business information and insights [68] [69] [70].  

The usefulness of data science is that it helps to uncover hidden patterns and unknown 

correlations in the data sets, which helps companies or corporations to understand market 

trends, customer preferences and other useful business information [69]. When working with 

large data sets, data scientists are responsible for the analysis, capture, duration, search, sharing, 

storage, transfer, visualisation, the privacy of this data, and extraction of useful meaningful 

knowledge [68] [71].  

The research aim in this thesis is to present a framework to predict Alzheimer’s disease at a 

very early stage, the experimentation in this thesis to demonstrate the framework uses risk 

factors data related to behavioural markers datasets acquired from the Alzheimer’s disease 

Neuroimaging Initiative (ADNI). Scientific methods and computational models will be 

employed to ensure the data used is as accurate as possible, and clean from errors. Working on 

data for patients with Alzheimer’s disease , such as ADNI [72],  will require solid knowledge 

of data analysis and cleansing.  
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The ADNI database contains incomplete datasets [73], which means that before using such 

data and to make sense of the data it is important for this data to be cleaned. The data cleaning 

process ensures that the data is valid, clean, accurate, complete, consistent and uniform. 

Especially, when dealing with data for Alzheimer’s disease patients that contain large sets of 

data with hundreds of variations, it is crucial for the data to be valid and of a high quality.  

A good example of data cleansing and challenges in working with ADNI data is in Qu’s work, 

titled: “A Predictive Model for Identifying Possible MCI to AD Conversions in the ADNI 

Database,”[73], he realized that there are some tests in the ADNI database in which a limited 

number of patients have participated and the corresponding values were marked as “–1000” 

for the rest of the subjects. Therefore, he had to clean the database and remove all the 

incomplete fields. It is crucial to have a clean dataset before applying data analytical tools such 

as principal component analysis (PCA), Pattern Recognition Tools (PR Tools) or any other 

machine learning tools. 

 

 Concept of Machine Learning     

This section discusses the study of Machine Learning (ML), one of the Artificial Intelligence 

subfields. Artificial Intelligence, often referred to as AI, is the field of study of intelligent 

behaviour and is a description given to smart software or machines that have the capability to 

think and learn independently. John McCarthy, who coined the term in 1955, defines it as "the 

science and engineering of making intelligent machines". Today AI is widely used by large 

corporations and businesses such as Tesla, Google and Apple, and Militaries around the world. 
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AI is developed on algorithms and artificial neural networks, which are inspired by biological 

neural networks in the central nervous systems of humans. The overall goal of AI is to develop 

systems that can learn and mimic the human response and behaviour in different circumstances. 

AI is highly complicated and very much a specialised field to study, which focuses on 

reasoning, knowledge, planning, learning (Machine learning), communication, perception and 

the ability to move and manipulate objects.   

Machine Learning (ML), is a term used to describe the cover of providing computers with the 

ability to learn from experience from data and search for patterns without being programmed. 

It is widely used across almost all disciplines, for diverse purposes ranging from commercial 

use by businesses and healthcare to academia to conduct research studies. It is used by 

companies like Facebook to show personalised advertisements, or for image recognition to 

allow users to tag their friends. It is also used by gaming companies like the Nintendo Wii that 

uses real time image recognition and an algorithm called random forest to track users’ 

movements, which, allow users to interact with the game by only moving their body and hands 

without a joystick. Machine learning is used by virtual reality technology companies to build 

virtual reality video games, and by mobile phone companies that provide a keyboard voice tool 

that most people are familiar with in modern smartphones, which uses machine learning 

algorithms for voice recognition to convert speech to text. Another example of the use of 

machine learning is in robotics, e.g. building walking dogs robots that use reinforcement 

machine learning algorithms that allow the robot to learn how to walk on its own. 

Machine learning searches for patterns in data to enhance the performance of the system and 

change its actions accordingly, without human interference. This concept of learning from 
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experience without explicit programming will leave a huge impact on the future of technology 

and computer science in general.  

Machine learning is a technology that the future will be built on. With 3.7 billion humans 

having access to the World Wide Web, the amount of data generated each day exceeds 2.5 

quintillion bytes (equivalent to 2,328,305,664 Gigabytes). From 2010 to 2018 the growth of 

generated data has reached 50 times to an estimated 40,900 exabytes of data. These statistics 

are astonishing and show that with the growth of data there is an essential need for machine 

learning to process and analyse this large amount of data.  

It is true that we humans are smarter than computers but when it comes to remembering, 

executing complex tasks and analysing data they’re better than us and more accurate if 

designed correctly. The following sections in this chapter will discuss the different types of 

machine learning and the approaches, and their use for classification problems and prediction.  

 

3.3.1 Machine Learning Approaches  

Machine Learning (ML) is a computational technique used for automated or semi-automated 

extraction of knowledge from large datasets. This is aimed to give computers the ability to 

learn from data and to classify or give productive values. It is inspired by human biological 

ability to learn and find answers to questions. Automated machine learning means that the 

computer can provide the insight into the data without human interference. Semi-automated 

learning is when many of the decisions made involve the human input. 
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ML has two different types of learning “signal” and “feedback”, and three different categories; 

supervised learning, unsupervised learning and reinforced learning. These three categories help 

systems to recognise patterns, learn from unknown data and interact with the environment. The 

complexity of this field has opened a window for innovation and research; as a result of these, 

different approaches were used such as the Decision Tree Learning for predictive modelling or 

the Bayesian Networks for graphical modelling.  

The way that ML works is that it employs classification techniques (often referred to as 

classifiers) to combine a subset of the dataset into different classes depending on their variables 

(features). There are many classification and prediction algorithms techniques that can be 

employed for ML on a dataset. Even though they all perform differently and produce different 

results, they still have mutual procedures and characteristics.  

To apply machine learning technique on a dataset, and enhance the overall outcome, the dataset 

needs to be split into three subsets, a subset for training, validation subset and testing subset. 

The reason for this is to provide the ML algorithm with a set of data to learn from by performing 

correlational tasks such as clustering, classifying and protecting the classes. The principal 

motivation behind having a validation subset of the dataset, for occurrence in Artificial Neural 

Network (ANN) is to locate the ideal number of hidden layers or to decide the definite ceasing 

point for the backpropagation technique. Finally, the testing subset is utilized to evaluate the 

execution of classifiers with obscure class names. 
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3.3.1.1 Supervised Learning 

Supervised learning - or Model Training is when the Machine Learning model is trained on an 

existing labelled dataset that has already been labelled with the desired outcome. For instance, 

using medical data to classify patients with a certain disease who have already been diagnosed. 

This is used to help the model to learn the relationship between the attributes or variables of 

the dataset. After the model has been trained on the data, the test data would be used without 

any labels to predict the desired outcome. In simple terms model training is that the model is 

learning from past examples made up from inputs and outputs and applying what it has learned 

to future inputs in order to predict future outputs. The diagram below will demonstrate the 

normal process of a supervised machine learning (model training) technique. 

 

Training 
Data

Class Labels

Testing Data
Desired 
Labels

Data Variables

Data Variables

Supervised Learning 
Model

Predictive Model

 

Figure 3-1 Supervised learning workflow [74] 
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3.3.1.2 Unsupervised Learning 

Unsupervised Learning - Unlike supervised machine learning, unsupervised learning is also a 

machine learning technique, but it does not require the input of classes to learn from its 

algorithm during the training stage. In simple terms this technique is used to describe hidden 

structures from unlabelled data, also often referred to as clustering analysis, and used to draw 

conclusions from the entire dataset [27].  The diagram below demonstrates how unsupervised 

learning works. 

Training 
Data

Testing Data Clusters

Data Variables

Data Variables

Unsupervised 
Learning Model

Predictive Model

 

Figure 3-2 Unsupervised learning workflow [75] 

 

3.3.1.3 Semi-Supervised Learning  

Semi-Supervised learning is utilized to influence the notion of joining supervised learning 

(labelled dataset) and unsupervised learning (unlabelled dataset), which might have sway on 

changing the learning conduct. This type of learning is a significant advancement to machine 

learning as it enables the use of both labelled and unlabelled data which will make learning 
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from big data more accurate. The diagram below demonstrates how semi-supervised learning 

works. 

Training 
Data

Class Labels

Testing Data

Classification

Data Variables

Data Variables

Supervised Learning 
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Training 
Data

Data Variables
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Figure 3-3 Semi-Supervised learning workflow [75] 

3.3.1.4 Reinforcement Learning  

Reinforcement Learning (RL) has a totally different concept to other types of machine learning 

techniques, inspired by the concept of consequence influence behaviour. Which means that it 

takes action because it knows other consequences will follow. The idea is that the algorithm of 

RL learns from the consequences of its actions. Unlike supervised learning where the model is 

explicitly taught. LR has three main learning rules from its consequences; if the consequences 

give a positive outcome (Reward) then its behaviour increases, if the consequences give a 

negative outcome (Punishment) then its behaviour decreases, and if the consequences are 

neutral then it extinguishes the behaviour.  
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Figure 3-4 Reinforcement learning workflow [76][75] 

 

 Learning Models 

The concept of machine learning is concluded in the use of algorithms based on computational 

models to train computers to extract knowledge from large sets of data. The data set represents 

historical data from reality, for example medical observation history for real patients. A 

machine learning model will have its own unique algorithm that would guide it to use this data 

set and discover different patterns to either classify the data or predict future data. 

The algorithm that a model uses to manipulate or interpret the data is based on a set 

mathematical equation involving linear algebra, logarithmic, arithmetic, statistics, probability, 

and calculus. There are many machine learning models with multiple variations of algorithms 

and in some cases models are combined and classed as hybrid models. 

Understanding the research problem and the type of data is very important before applying any 

machine learning model. To solve a problem or discover a pattern effectively you must apply 

the right type of models on the suitable datasets. For example, we cannot use classification 

models on a data set where we trying to predict a house price in a particular city. There are 
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models that are specifically designed to work best with classification problems such as teaching 

the machine to class emails as spam or not spam, these types of models are called classifiers 

such as Support Vector Machine (SVM). On the other hand there are also models that can be 

used to solve both classification and regression problems such as Artificial Neural Network. 

This section will briefly describe the major learning models currently used and the different 

categories they fall under. 

3.4.1 Artificial Neural Network  

The goal of ML is to give systems the ability to mine data, analyse data and learn from that 

data without being exclusively programmed. The Decision Tree and association rule learning 

are two ML methods that are used to identify the most important variable and discover data 

patterns. Another method that is typically used to find patterns and to represent non-linear and 

linear relationships in data is the artificial neural network learning algorithm.  

Artificial Neural Networks (ANN) are sometimes described as simulated neural networks and 

are a group of connected neural networks created by software to work in a similar way to the 

biological neural networks of the human brain. The human brain is built from multiple nerve 

cells called neurons, connected together in a well-organized structure, this structure has inspire 

the science field of Neural networking and Artificial Intelligence [77]. Since scientists are now 

able to explain some of the functionalities of the brain in terms of learning, remembering, 

identifying objects and decision-making, ANN can be described as a mathematical concept that 

attempts to try to understand the functionality of the human brain. There are several neural 

networks software packages, which are used to simulate, research, visualise, develop and apply 
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the concept of artificial neural networks. One of the main software packages widely used by 

researchers to investigated ANN is a software called MatLab [78]. 

In machine learning the ANN 

concept is used to classify data and 

to model complex relationships 

between inputs and outputs, to 

identify models and structure in 

data. An example of using ANN in 

scientific research and patterns 

discovery is the work of Meysam 

Torabi at the Iranian Sharif University 

of Technology. The title of his work “Discrimination between Alzheimer’s disease and Control 

Group in MR-Images Based on Texture Analysis Using Artificial Neural Network” [79]. 

Torabi used ANN to classify MRI scans of 75 subjects; 50 normal subjects and 25 who have 

previously been diagnosed with AD (data obtained through Harvard University “The Whole 

Brain Atlas”). After extracting the features in the datasets, he used ANN to focus on brain 

texture in both normal and abnormal cases, comparing both types of subject in an attempt to 

diagnose AD. His work demonstrated that the neural network makes a significantly different 

output for AD patients compared with normal control group, which gives a strong diagnosis of 

AD with 95 percent proper response.  

ANN 'learns' from observed data and requires good understanding of the underlying theory 

before using it, but is quite widespread and is not so straightforward. Before using this concept 

Figure 3-5 Artificial Neural Network 
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to classify data, in order to have a robust ANN it is important to choose the correct model right 

learning algorithm.  

An artificial neural network is formed from inputs, synapses (lines), hidden layers (neurons), 

and output layer. As illustrated in Figure 14, Synapses are responsible for taking values from 

inputs, calculating the input against a certain weight and passing it on to hidden layers and to 

the output layer. Increasing the number of hidden layers and synapses will form a deep learning 

neural network. ANN is a supervised learning model that can either be used to predict a single 

value for classification purposes or continues prediction for regression study. 

3.4.1.1 Levenberg-Marquardt Feed-forward Neural Network 

Levenberg-Marquardt Feed-forward Neural Network is a feed-forward neural network that 

uses the Levenberg-Marquardt method to optimise its loss function. The Levenberg-Marquardt 

method is widely used for its training precision. Optimisation theory is a major field in the 

study of mathematics and since neural networks and machine learning algorithms heavily 

depend on mathematical equations there are parts of these algorithms where optimisation is 

needed in order to help the machine learning models such as neural network to learn and 

improve their predictions.  

The learning of a feed-forward neural network model is measured through a loss function or 

sometimes known as cost function. The loss function measures the ability of the prediction 

algorithm to predict the expected outcome. An optimisation method is required to minimise the 

error of the loss function in order to find the minimum point where prediction is most accurate. 

There are several optimisation methods used but the most commonly used methods are the 
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gradient descent and the Gauss-Newton. The gradient descent takes small steps toward the 

minimum point by continuously updating parameters to reduce the sum of squared errors. The 

Gauss-Newton reduces the sum of squared errors by assuming the least squares function is 

locally quadratic and finding the minimum of the quadratic.  

The Levenberg-Marquardt can be considered a combination of both methods; gradient descent 

and the Gauss-Newton. When the predicted output is far from the expected output, the 

Levenberg-Marquardt algorithm behaves like a gradient descent method, and when the 

predicted output is very close to the expected output, the algorithm behaves like a Gauss-

Newton method. The Levenberg-Marquardt method is very effective and works well in practice 

[80]–[82]. 

 

3.4.1.2 Back-Propagation Feed-forward Neural Network 

The backpropagation algorithm was made famous in a 1986 paper by David Rumelhart, 

Geoffrey Hinton, and Ronald Williams. Their work described how a neural network with 

backpropagation works faster than the current learning approaches used back then. Today, 

backpropagation is widely used with neural network models. This section will briefly explain 

the use of backpropagation with a feed-forward neural network. 

A feed-forward neural network is one of the Artificial Neural Network architectures where the 

connections are fed forward from input all the way to the output layer. Unlike the recurrent 

neural networks where the neurons form circles and feedback their output, feed-forward 
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prohibits any feedback between the layers. Often the feedback architecture would be confused 

with the back-propagation method; although, both are completely different things. 

A feed-forward neural network with backpropagation means the training algorithm of the 

model consists of two steps; first, the input values are feedforward to the hidden layers then 

during the training optimization process the algorithm carries out an iterative adjustment to the 

weight of neurons. This is done to avoid overfitting and to reduce the differentiation between 

the expected results and the predicted results, over multiple training cycles until the model 

reaches the best level of prediction accuracy [83]. 

3.4.1.3 Multi-layer Perceptron Neural Network 

Muli-layer Perceptron Neural Network is a feedforward neural network architecture. A 

traditional single neural network would normally consist of one input layer, one hidden layer, 

and one output layer. This type of neural network architecture would only solve a linear 

problem as one neural network can only handle AND or OR boolean. When it comes to non-

linear problems and the handling of XOR boolean it can only be achieved by increasing the 

number of nodes in the hidden layer which are often referred to as perceptrons.  

The increase of perceptrons in a hidden layer results in a Multilayer Perceptron Neural Network 

(MLP). MLP was an evolution of the single perceptron neural network and can give better 

prediction results especially when using back-propagation algorithm. MLP would use x 

number of inputs and pass each input to each perceptron in the hidden layer with weight 

attached to it. The calculation of all weights between inputs and the perceptrons will be stored 

in a weight matrix, then the perceptron would calculate a weighted sum of all inputs denoted 
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as 𝑍 = ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 , where 𝑛 is the number of inputs, 𝑥 is the input, 𝑤 is the given weight, and 

Z is the weighted sum.  

𝑆(𝑥) =
1

1 + 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 + 1
 

Equation 3-1  

Equation 3-1 represents the sigmoid function where 𝑥 is a weighted sum, and 𝑒 is the natural 

logarithm base or the Euler's number. Once the weighted sum is calculated, it will then be 

passed through to an activation function such as this sigmoid function in Equation 3-1 which 

will compute the value to be between 0 and 1. [84] [85] 

Once the activation function generates an output the perceptron in the hidden layer would then 

calculate the classification error, which is the difference between the given output and the 

desired output. Based on that error, the model would then fire the back-propagation process 

which will feedback adjustment to all weights in the network.  

The weights are adjusted back to front, meaning that the weights between the hidden layer and 

output layer will be adjusted first, then every other weight between input layer and the hidden 

layer will be adjusted. The weights between the layers are adjusted based on their responsibility 

for the error, therefore, the calculation of the output layer error is completed, followed by a 

calculation of error in in the hidden layer. The total of the output error is denoted as   

𝐸 = 𝑒𝑜1 + 𝑒𝑜2… where E is the sum of all errors produced from the data points and 𝑒𝑜1is the 

individual error which is the difference between the target and the output results, and its 

calculation is denoted as 𝑒𝑜1 = 
1

2
(𝑡1 − 𝑜1)

2, where t is the target and o is the output. 
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 Once the output error is calculated, every perceptron in the hidden layer will have its own error 

sum, before the weights are adjusted. The calculation of the hidden layer perceptron error is 

denoted as 𝑒ℎ1 = 
𝑤1

𝑤1+𝑤2…
∗  𝑒𝑜 , where 𝑒ℎ1 is the error for perceptron one in the hidden layer, 

𝑤1 is the weight of the perceptron to the output layer, 𝑤1 +𝑤2 are the output layer weighted 

sum, and 𝑒𝑜 is the error in the output layer. Then the weights between the layers will be adjusted 

based on their responsibility for the error by using Gradient Descent, sometimes called the 

Generalized Delta Rule [83], [86], [87]. 

3.4.1.4 Deep Learning 

As the study of artificial intelligence (AI) has evolved and expanded to become a 

multidisciplinary field of research, machine learning as a subfield of AI has also expanded and 

has its own subfields of study such as supervised, semi-supervised, and unsupervised learning. 

One particular field of study that has become a major field in deep learning, is the study of 

Artificial Neural Networks. Artificial neural networks started as a simple study of a perceptron 

in a three layers network; A perceptron (hidden layer) connecting input (input layer) and output 

(output layer), to find patterns and to measure the connection between them. Ever since, 

researchers have contributed to this field of study and the concept of artificial neural networks 

has evolved over the years to have multiple architectures (models) and calculation methods.  

Research on neural networks began by using neural networks to solve AND and OR linear 

problems. Then neural network architecture was expanded to include multiple perceptrons in 

the hidden layer, and this was to solve XOR nonlinear problems. The use of multiple perceptron 

has shown improvement in classification accuracy.  
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Today, the hot topic of research in neural networks is the field of Deep Learning which is part 

of a continuous evolution of artificial neural networks. Deep learning is a term often used to 

describe an artificial neural network that has more than one hidden layer or multiple networks 

connected together. Deep learning can be a supervised, a semi-supervised, or unsupervised 

learning. This type of learning has been adopted and used commercially in different industries; 

bioinformatics, aerospace, military, trade, and others such as exchange markets. 

Most technology now depends on deep learning including voice recognition, image processing, 

natural language processing, computer vision, social network filtering, machine translation, 

drug design, medical image analysis, material inspection and game programs. The successful 

performance of deep learning networks has in some cases produced results comparable to or 

superior to human experts[88]–[91].  

3.4.2 Non-Artificial Neural Network 

Although neural networks have become very popular and widely used and considered ideal to 

train machines to learn from experience, there are other learning algorithms that are not 

biological brain-inspired. These training models are mathematical algorithm-based and have 

shown in some cases that they can be very successful in solving classification problems. Non-

artificial neural networks include Random Forest, Support Vector Machine, Naive Bayes, and 

Decision Tree. Some of these models will be discussed in the sections below. 

3.4.2.1 Support Vector Machine 

Support Vector Machine (SVM) model is a non-neural network learning algorithm, that it is 

commonly used in supervised learning to solve both regression and classification problems. 
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SVM uses associated learning algorithms to analyse data to find patterns in the data and 

separate the classes. The core concept of SVM, is to use hyperplane or a set of hyperplanes in 

a high-dimensional space to find the largest distance to the nearest training data point of any 

class. 

SVM is commonly used for classification problems to distinguish between the features in the 

data. For example, if we have a large dataset of mugs and plates, containing a set of features 

which may include height, weight, width, and price, and the aim was to train a machine to 

differentiate between the two objects. The model would try to plot the data and find the line 

between the support vectors with widest margin (hyperplane) that splits the data best, as shown 

in the image below: 

 

Figure 3-6 Support Vector Machine [92] 

 

The SVM is trained to solve a constrained optimisation problem to maximise the margin 

between the two groups. This can be achieved by using the Lagrange Multipliers technique. 

Finding the widest margin between the two groups of a dataset means that any new data is more 
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likely to fall in either side of that line. This model supports higher dimensions data and handles 

multiple classes. When training an SVM model the model uses something called C Parameter 

variable to maximise its margins, whereby when the parameter is low it prioritises simplicity, 

but this can compromise the classification and allow the model to allow some mistakes in 

classification. Using higher value for C parameter minimises the misclassification but can 

sometimes cause overfitting problems. The best practices are to adjust the C parameter as 

necessary until it gives best results possible. 

In a multi-class classification problem, the SVM uses two techniques to separate the classes.  

The first technique is One-Versus-Rest (OVR), where the model tries to separate a certain 

group of the data versus the rest of the data in a systematic way. The other technique is One-

Versus-One (OVO), where the model tries to separate each class from every other class 

individually and create hyperplanes for each class. The OVR technique costs less as it performs 

fewer classification calculations compared to the OVO and takes longer to train. Although, the 

OVR model classification may be imbalanced, the OVO is less sensitive to imbalanced data. 

The visualisation of the SVM results depends on the size of its dimensions; for 2D dimension 

a line is used to separate the groups, in data with 3D dimensions a plane is used to split the 

data, in 4D and higher dimensions visualisation becomes a very challenging problem, and that 

is where the use of the Kernel Trick comes in. The Kernel Trick helps split a 4D+ dimensional 

data using different methods depending on the classification problem. The main Kernel options 

are; Linear Kernel, Radial Basics Function, Polynomial, and sigmoid [92–98]. 
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3.4.2.2 Naïve Bayes  

The Naïve Bayes is one of the non-artificial neural networks and in fact, the model is a 

probability-based algorithm that uses the Bayes' Theorem to mathematically learn from data. 

The Bayes' Theorem or often called Bayes' rule, describes the probability of an event, based on 

knowledge of conditions that might be related to the event. For example, if Alzheimer’s disease 

is related to weight, then, the Naive Bayes algorithm would use the feature weight as one of 

the key features to predict if people would have Alzheimer's or not. The model assumes that 

all of the features are independent, and all of the features independently contribute to the 

probability of an event. For example, if we have weight, diabetes, heart disease as features in 

a dataset to predict Alzheimer’s disease the model would not acknowledge the relationship 

between weight and diabetes and would rather assume that each one is independently 

contributing to the probability that the person might get Alzheimer’s disease. 

𝑃(𝐶𝐾|𝑋) =  
𝑃(𝑋|𝐶𝐾)𝑃(𝐶𝐾)

𝑃(𝑋)
 

Equation 3-2   

The Naïve Bayes algorithm is denoted in the equation above. The 𝑋 represents the input vector 

𝑋 = (𝑥1, … , 𝑥𝑛) and 𝑛 is the number of features. C represents the number of possibilities or the 

classes and K is the individual possible outcome or class. In the equation 𝑃(𝐶𝐾) represents the 

class prior probability,  𝑃(𝑋|𝐶𝐾) represents the likelihood, 𝑃(𝑋) is the evidence or the predictor 

prior probability, and 𝑃(𝐶𝐾|𝑋) then becomes the posterior probability of target class 𝐶𝐾 given 

input X. 
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This model requires less training data and can learn very quickly even in multi-class prediction 

problems, especially on categorical datasets compare to a normalised numerical variable. 

However, like other classifiers this model also has some downs, and one of them is the 

assumption that all features are independent contributors because realistically most of the 

datasets used in machine learning have one or more features that are related to one another [99–

103]. 

3.4.2.3 Decision Tree Learning 

Data classification and prediction are two concepts used when making decisions. Prediction of 

data is predicting an outcome of the data from previously classified existing data. For example, 

in the case of predicting if a patient’s health will improve or decline after taken a certain 

treatment, doctors will look at the existing current status of the patient, and treatment results of 

other similar patients to help them predict the final outcome, this would be data prediction. 

Whatever is the outcome of the treatments the doctors will take a decision to classify the 

resulting data, this would then be classification [103]. 

The Decision Tree Learning is one of many methods used in ML, it is based on the binary tree. 

Commonly used in statistics and data mining for different purposes, in ML it is used merely 

for predictive modelling and classification. The concept of the decision tree is a powerful 

method that uses a tree-like model similar to the binary tree, to model decisions and work out 

their possible consequences. Creating a set of connected trees would resemble a forest known 

as Random Forest or a Gradient Boosted Decision Trees (GBDT).  
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An example of how this method is used to classify data would be in the work of Sandhya Joshi, 

“Classification of Alzheimer’s disease (AD) and Parkinson's Disease (PD) by Using Machine 

Learning and Neural Network Methods” [104]. Joshi investigated a classification model for 

both AD and PD using machine learning methods and neural networks. He collected a dataset 

of AD and PD patients containing information about potential risk factors. The aim was to 

identify the strongest risk factors using the different classification methods and formulas. In 

the implementation of his work, he used the Decision Tree, Random Forest Tree and a few 

other ML methods for feature selection and reduction of variables in the data. The Decision 

Tree was used to extract knowledge from the data using IF-THEN rules. The use of this concept 

has made it very easy to understand more about the data “especially when the tree is 

large”[104].  

One of the important steps in the process of predictive analytics and classification of data is the 

feature selection algorithms (sometimes called variable screening) for removing irrelevant, 

redundant, and noisy information from the data [102]. The decision tree helps identifying the 

most important variable in the dataset. When the decision tree is applied to the dataset, the top 

nodes on which the tree is split are the most important variables within the dataset and with 

this technique, feature selection become automatic. One of the advantages of Decision Tree 

Learning is the fact that it is easy to explain and the relationships between variables will not 

affect the overall tree performance and do not expect linear features or even features that 

interact linearly. The collection of big data often means that a large number of variables and 

irrelevant data will be stored in the datasets; in order to extract the relevant data, a feature 

selection technique such as the Decision Tree Learning is required.  



 

 

71 | P a g e  

 

 

 

3.4.2.4 Association Rule Learning 

Unlike the decision tree learning, association rule learning is more complicated and more 

interesting. While decision tree learning is used as a part of the feature selection process to 

extract knowledge and most important variables in datasets, association rule learning is the 

concept of finding interesting relations between the variables. Association rule learning relies 

on using different measures of interestingness to identify strong rules in the database.  

This technique is widely researched and used especially by large corporations and supermarket 

companies with a large inventory of items. This method is powerful as it helps them with 

prediction and forecasting of the sales, and with decision-making on what to put on sale. For 

example, one of the rules that can be found in the sales data is {onion, potatoes} => {burger}, 

which indicates that if onion and potatoes were sold together then the customer is more likely 

to buy a hamburger meat [105]. The advancement in using this method will help the progress 

of finding answers in any large and complex database. For example, the use of this method in 

medical research with biological data that are usually very large and complicated, it could make 

it easier for researchers to discover clues for treatments or signs of symptoms for early 

diagnosis. 

The concept of finding interesting relations between variables is quite a popular and well 

researched area. An interesting paper was published by Le Queau, from the University of 

Calgary, titled: “Analysing Alzheimer’s disease gene expression dataset using clustering and 

association rule mining”[106]. Queau presents various data mining techniques for analysing 

Alzheimer’s disease Gene Expression Dataset using Clustering and association rule learning. 



 

 

72 | P a g e  

 

 

 

Biological data such as dataset for people with Alzheimer’s disease or Gene Expression 

Datasets, contain a lot of variables and typically are complex and hard to process manually. 

And sometimes because of environmental and experimental factors, the variability of the data 

can be wide and unpredictable. In this work Queau, demonstrated how the use of ML methods 

such as clustering association rule learning can be employed to discover or identify interesting 

patterns in the data.  

3.4.3 Pre-processing 

Real-world/row-data would normally be incompatible to be used by learning algorithms for 

several reasons; the data often is incomplete, has a lot of missing values and errors, inconsistent, 

and stored in multiple locations. Data pre-processing technique is used to solve all these data 

problems and transforming the raw data into an understandable format. Most of the time is 

spent on data-pre-processing and less time on the employment of the learning algorithms. The 

figure below demonstrates where data pre-processing takes place in machine learning: 

 

Figure 3-7 Pre-processing Stage in Machine Learning Process  [107] 

 

Pre-processing 
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3.4.3.1 Data Collection 

The first step would be the gathering of the data often referred to as data collection. The 

collection of the data would often depend on an ETL (extract, transform, load) process. The 

data would be extracted from its multiple sources such as web pages, flat files or multiple 

databases, then transformed to an appropriate format and loaded to a unified location where 

machine learning would take place [108], [109]. 

3.4.3.2 Missing Values 

Missing values in a dataset would fail the performance of a learning algorithm and draw up an 

inaccurate inference about the data. Therefore, it is important to solve any missing values in 

the data. There are multiple techniques to deal with missing data but the two prominent ways 

are; either delete rows with missing values or use mean, median or mode to replace missing 

values. The first technique in some cases is acceptable to remove rows with missing values, 

but this way would reduce the data volume significantly, and also these values can contain 

crucial information. Depending on the problem and the data type, sometimes it is best to use 

the second technique and replace missing values with the total mean values as it can give better 

results [110],[111]. 

3.4.3.3 Categorical Values 

Machine learning algorithms are based on mathematical equations and would require numerical 

values. The data can often contain categorical values columns, for example, a dataset with 

‘country’ column as a variable, this variable would cause some problem to the learning 

algorithm. Categorical values will need to be converted to numerical values in a way in which 
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the new numerical values would have equal importance. This is done by converting the 

categorical values to variables (columns) and filling the rows with 1/0 values.  

Table 3-1 Handling Categorical Values 

Before After 

Country Age 

UK 19 

Iraq 27 

Yemen 20 

UK 28 

Iraq 30 
 

UK IRAQ YEMEN Age 

1 0 0 19 

0 1 0 27 

0 0 1 20 

1 0 0 28 

0 1 0 30 
 

 

Table 3-1 is an example of how to handle categorical values are handled in the pre-processing 

stage when conducting a machine learning investigation [112], [113]. 

3.4.3.4 Data Normalization & Rescaling 

Other pre-processing methods that might be needed are the removal of unnecessary or repeated 

variables. Then finally before the exploration of the data, all the data numeric values must be 

rescaled to range between 0 and 1; this is called data normalization and can be achieved by 

subtracting the minimum value from all values in the column, then divided by all values by the 

maximum number. Below is the equation for data normalization where 𝑥 = (𝑥1, … , 𝑥𝑛)𝑥 =

(𝑥1, … , 𝑥𝑛) and 𝑧𝑖 the ⅈth normalized data [114], [115]. 

𝑧𝑖 =
𝑥𝑖  −  𝑚ⅈ𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚ⅈ𝑛(𝑥)
 

Equation 3-3  
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3.4.3.5 Synthetic Minority Over-Sampling Technique (SMOTE) 

The pre-processing of the data especially after the completion of data cleaning, normalization, 

and handling of missing values, can often result in an imbalanced dataset. Imbalanced data can 

result in compromising the learning process for some classifiers such as the Support Vector 

Machine, leading to biased prediction and affecting their accuracy. In some cases, where there 

is enough data, a quick solution would be using a technique called Random Under-sampling to 

remove data to ensure all classes have equal size. However, it is always beneficial to train 

models with as much data as possible, and removing data is not always advisable. 

The alternative option would be to use a technique called Random Over-Sampling, which 

would randomly replicate minority data to balance the classes. This method prevents further 

loss of information from the data, however, the downside is that the data becomes prone to 

overfitting due to the duplication of the data. Therefore, the best alternative technique would 

be the deployment of another commonly used technique called Synthetic Minority 

Oversampling Technique (SMOTE). 

 

Figure 3-8 Synthetic Minority Over-Sampling Technique (SMOTE) [116] 
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SMOTE would first identify the feature vectors to resample, then take the difference between 

the feature vectors and their nearest neighbour. The difference would then be multiplied with 

a random number between 0 and 1, and the final step would be to find a new point on the line 

segment by adding the random number to the feature vector. This process would then be 

repeated for the identified feature vectors. The figure above demonstrates a theoretical process 

of SMOTE technique to resolve the imbalanced data problem [117–119]. 

3.4.4 Data Exploratory  

One of the most important tasks in machine learning is the data exploration analysis. This part 

of the process helps us to identify the right dataset needed for the study, by summarising the 

domain characteristics of the dataset, gain better understanding of the data, uncover 

relationships between the dataset variables, and extract the most important variables. This part 

of the process requires a good understanding of statistics and correlation algorithms to extract 

a good set of data that would help learning models to perform better. However, before data 

exploration, data pre-processing must take place in which the data is imported from its main 

sources, missing values handled correctly, converting it to data types that models would 

understand, and features are scaled correctly depending on the context. 

Data exploration analysis is the initial step of the investigation of the problem; through the use 

of different method a good exploration of the data would give an indication on how the machine 

learning model would perform and what type of learning method is needed for the 

investigation. Data exploration analysis would often involve visualisation of the dataset using 

different methods such as box plots, histograms, scatter plot, and dimensionality reduction like 
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the principal component analysis technique. The use of this technique will help researchers to 

build different hypotheses, decide whether new data is needed for the study, know which 

learning model they can start with, and most importantly draw a roadmap for their data 

investigation [120], [121]. 

3.4.4.1 Principal Component Analysis 

One of the major problems that can be faced in machine learning is having data with missing 

values, noise, or redundant information. These problems result in an over-fitting problem that 

misguides the classifiers and leads to unreliable results. One of the techniques that are often 

employed to reduce feature vector dimensions, and to avoid the over-fitting problem is called 

the Principal Component Analysis (PCA). PCA is used to eliminate ambiguity in the data by 

finding the correlations between features of multi-dimensional data. If the data has two 

dimensions then the correlation can easily be plotted on a 2-dimensional graph, and a 3-

dimensional graph would be used to plot a dataset with 3 dimensions, however, when the data 

consist of a larger number of dimensions it becomes impossible to visualize the correlation in 

one single graph and extract the correlation between the features. Here is where PCA becomes 

a very useful technique to use to visualize the correlation. PCA calculates the correlation for 

two features at a time, then plots the correlations on a 2-dimensional graph. The idea is that 

each data point that is of the same class end up together in the shape of a cluster if they are 

highly correlated. Normally, each class of the dataset would be colour coded so then it would 

be easier and faster to distinguish between the data points in a single graph.  
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Figure 3-9 Principle Component Analysis [122] 

Employing PCA before performing the training process on the data, will help understand what 

type of learning is needed and what type of model is required for the prediction i.e. if the 

learning would be linear or nonlinear, and if the prediction is possible or difficult. This is 

because the more clusters that are formed in the graph means there are features that will guide 

the learning model to compute a predictive formula [123],[124]. 

3.4.4.2 Independent Component Analysis 

Independent Component Analysis (ICA) works in a similar concept to the Principal Component 

Analysis (PCA) technique, the main difference is that PCA is about finding a variable 

correlation in the data by maximizing variance and ICA tries to maximize the independence of 

data features. Unlike PCA, the ICA is designed to solve the blind source separation problem. 
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Using an example to explain this would be to imagine a dataset containing images of people’s 

faces; PCA would focus on the direction of maximum variance which would be what features 

these images share that makes them correlated such as brightness and the average face. The 

ICA, focuses on independent features such as eyes, noses and mouth selectors [125], [126]. 

3.4.4.3 T-distributed Stochastic Neighbourhood Embedding 

A more modern and improved dimensional reduction technique compared to PCA, is the T-

distributed Stochastic Neighbourhood Embedding (t-SNE). The t-SNE technique is commonly 

used for dimensional reduction and the visualisation of the data, it embeds high-dimensional 

data in a low-dimensional space while preserving the information in the high dimensional 

space. In simple terms, humans can only visualise 2D or 3D graphs, so if there was data with 

two dimensions such as height and weight of a person then we can easily plot this information 

on a 2D graph, and if we add an additional dimension such as gender then this would fit 

perfectly on a 3D graph, but if these dimensions were to increase to thousands of features then 

it would be impossible to draw and visualise this data in a graph without using dimension 

reduction techniques like t-SNE. The t-SNE reduces the dimensionality of data to two or three 

dimensions, and the algorithm does this with two steps; first, it constructs a probability 

distribution so that similar objects would have a high probability to be clustered together. 

Second, the algorithm defines a similar probability distribution over the points in the low-

dimensional space, and it minimizes the probability difference between the two distributions 

with respect to the locations of the points in the space [127], [128]. 
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3.4.5 Feature Selection 

In ML the concept of feature selection is an essential data processing step to be taken before 

applying the learning algorithm. Feature selection is a technique that is frequently used in ML 

to select a subset of the features of a data set in order to build a robust model for learning. This 

technique helps to give researchers a clearer understanding about the data by telling them the 

important features of the data and their relationship with each other. There are three main goals 

of feature selection: improving the prediction performance of the predictors, providing faster 

and more cost-effective predictors, and providing a better understanding of the underlying 

process that generated the data [129]. 

Feature selection is a widely used technique by research with big data; researchers explore 

domains with hundreds to tens of thousands of variables or features. Therefore, many feature 

selection techniques are used to address these challenges in order to select relevant data and to 

remove irrelevant, redundant, and noisy information from the data [102]. There are many 

feature selection searching approaches and these search approaches are categorised in three 

different classes of methods based on how the selection algorithm and the model building are 

combined. The three classes of feature selection methods are; filter method, wrapper method 

and embedded method. 

An example to explain the algorithm of the feature selection technique is if we assume that we 

have data about two types of dementia patient; Alzheimer’s disease (AD) and Mild Cognitive 

Impairment (MCI) subjects. And we have a dataset with 100-dimensional feature vectors. The 

challenge is to identify the distinguishing features between these two conditions. We generally 
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know that for example memory test score is one of the distinguishing features between the two 

types of dementia, and that patients with Alzheimer’s disease generally will score less than 

MCI patients. However, in order to determine that this is a distinguishing feature and to identify 

other distinguishing features we will need to develop a feature selection algorithm on the 

dataset. Identifying the distinguishing features is what would be considered as the problem of 

the feature selection algorithm. In machine learning, redundant features act as noise, therefore, 

feature selection acts as noise removal and makes classification easier. 

Another example to explain how feature selection works. Let us assume that we have three 

features X1 and X2 and X3, and X3 = 2*X1 + 1, so then the value of X3 will change with the 

changes in the value of X1. Table 3-2 below demonstrates the changes: 

Table 3-2 Relationship between X1 and X2. 

Value of X1 Value of X2 Value of X2 

1 2 3 

2 5 5 

10 4 21 

The example above shows a direct relation between the two features, which in this case means 

that one of the features will need to be classed as redundant and removed. This is a very simple 

example to demonstrate redundancy in feature relationships during the process of feature 

selection. 

A demonstration of how feature selection is used to help researchers;  a feature selection 

technique was employed in the work of Dimitrios Ververidis from the VTT Technical Research 
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Centre of Finland. Titled: “Feature selection and time regression software: Application on 

predicting Alzheimer’s disease progress”[130]. Ververidis’ work is constructed on data 

obtained from Alzheimer’s disease Neuroimage Initiative (ADNI) database, which is publicly 

available[131]. The subset of ADNI used in his work consists of 2,712 neuropsychological and 

biomarker features measured over 819 subjects (patterns). 800 subjects were used in the 

experiments, as 19 out of 819 subjects had no label. In the 800 subjects: 185 subjects are AD 

patients, 389 are MCI patients, and 226 subjects are healthy. A wrapper method approached 

was selected for feature selection. He developed a software tool for features selection using 

Matlab. The tool employs a variant of the Sequential Forward Selection (SFS) algorithm for 

feature selection. The goal is to discriminate AD, MCI, and Healthy subjects, and to predict 

the progression of AD using biomarkers. 

Most of the work related to this proposed research has mainly been focused on the diagnosis 

of Alzheimer’s disease from a short term and biological perspective. Only a few research 

studies  have been carried out to predict Alzheimer’s disease before the clinical diagnosis. The 

challenge is to look for the most accurate way to diagnose Alzheimer’s disease at a very early 

stage before patients develop any of the symptoms. The success of such a challenge will help  

improve the research of “Early Treatments” [12].   

The Alzheimer’s Association have released a paper “New Diagnostic Criteria and Guidelines 

for Alzheimer’s disease” to diagnose the disease at an early stage. [21] The current work in the 

investigation of the disease is mainly focusing on the biological markers and the changes in the 

brain. It is an easier task to diagnosis someone with Alzheimer’s after signs and symptoms 
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have reached the stage at which a diagnosis of clinically probable Alzheimer’s disease can be 

made according to currently recommended criteria [132]. 

 Other Related Work 

The works most closely related to this research are involving features that can be considered 

as late diagnosis of Alzheimer’s disease taking for example the work of Gaël Chetelat and Jean-

Claude Baron discussed in their NeuroImage Journal at the University of Cambridge, UK; 

titled: “Early diagnosis of Alzheimer’s disease: Contribution of structural neuroimaging”. 

Their focus was to use the structural brain imaging of people who have Alzheimer’s and healthy 

people to find patterns or evidence that could potentially show people at risk [132]. To compare 

this research with the proposed research, they both share the similar concept of prediction and 

diagnosis. However, this proposed research will focus on searching for patterns and evidence 

that would help with prediction of Alzheimer’s at an early stage through the use of several 

markers and not just structural brain imaging.  

In 2005, Mei Sian Chong and Suresh Sahadevan discussed the diagnosis and prediction of 

Alzheimer’s disease in a published journal called “Preclinical Alzheimer’s disease: Diagnosis 

and prediction of progression”. The journal summarises the current research on the accurate 

prediction - through the use of clinical assessment, psychometric testing, neuroimaging, and 

biomarkers - of which people with symptomatic predementia will develop clinical Alzheimer’s 

disease.[10] The main focus of this research will be on predicting the disease through finding 

similarities and patterns between collected data for healthy people and infected patients. The 

aim is not just to look for biological markers but also to include behavioural markers as well.  
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Table 3-3 Summary and Critical Evaluation of Related Work  

 
 Modality Technique Data Set 

Details 

Patholo-

gically 

proven 

data set 

Accuracy Limitation Validation 

performed 

(No. of 

Folds ) 

(Klöppel, 

Stonnington 

et al. 2008) 

MRI Linear 

SVM  

3-groups   

AD= 67  

CTRL= 91  

Yes    

96%  

Sample size is 

too small with 

no 

justification of 

missing 

values. 

Leave one 

out Cross 

Validation 

(Chaves, 

Ramírez et 

al. 2010) 

SPECT Apriori- 

AR mining  

AD = 54  

CTRL = 43  

No    

95.87%  

Did not 

mention the 

how they 

limited the 

effect of 

missing 

values 

Leave one 

out Cross 

Validation 

(Chaves, 

Górriz et al. 

2011) 

SPECT Apriori- 

AR mining  

AD = 56  

CTRL = 41  

No    

94.87%  

The data may 

contain 

Missing 

values which 

will cause 

uncertainty 

Leave one 

out Cross 

Validation 

(Zhang, 

Wang et al. 

2011) 

MRI+ 

FDGPET 

+ CSF 

SVM  AD = 51 

CTRL = 151  

No    

93.2%  

Class 

Imbalance and 

missing 

values 

10-fold 

Cross 

Validation 

(Chaves, 

Ramirez et 

al. 2012) 

FDG- 

PET + 

PiB-PET 

Apriori- 

AR mining  

AD = 19  

CTRL = 84  

No    

94.74%  

Unproven 

data with 

missing 

values 

Leave one 

out Cross 

Validation 

Robi 

Polikar et 

al. (2010) 

EEG + 

MRI + 

PET 

Ensemble 

based 

decision 

fusion 

AD = 37  

CTRL = 36 

No  

85.55% 

Unproven 

data with 

missing 

values 

5-fold 

Cross 

Validation 

(Chaves, 

Ramírez et 

al. 2012) 

SPECT 

PET 

Apriori- 

AR mining  

SPECT: 

AD = 55  

CTRL = 42  

PET:   

AD = 75  

CTRL = 75  

No    

92.78%  

Unproven 

data with 

missing 

values 

Leave one 

out Cross 

Validation 

(Westman 

et al., 2012) 

CSF MRI Apriori- 

AR 

mining+ 

SVM 

AD = 96  

CTRL = 273 

No    

91.8%  

Class 

Imbalance and 

missing 

values 

7-fold 

Cross 

Validation 
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(Chaves, 

Ramírez et 

al. 2012) 

SPECT 

PET 

Apriori- 

AR mining 

for feature 

selection 

PCA, 

SVM 

SPECT:  

AD = 56 CTRL 

= 41  

PET:  

AD = 75  

CTRL = 75 

No   

91.75%  

Unproven 

data with 

missing 

values 

Leave one 

out Cross 

Validation 

(Chaves, 

Ramírez et 

al. 2013) 

SPECT 

PET 

Apriori- 

AR mining  

SPECT: 

AD = 56  

CTRL = 41  

PET:   

AD = 75   

CTRL = 75 

No  SPECT:  

96.91%  

  

PET: 92% 

Pathologically 

unproven data 

with no 

justification 

about missing 

values 

Leave one 

out Cross 

Validation 

A. 

Veeramuthu 

et al. (2014) 

PET AR mining Not Given No  91.33%  No dataset 

details, 

missing 

values or any 

preprocessing 

steps 

highlighted 

No 

Tong Tong 

et al. (2016) 

MRI & 

Cognitive 

Tests 

SVM & 

RF 

NC= 229  

SMCI = 129 

PMCI = 171  

uMCI = 98  

 AD = 191 

Yes  84-92% 

Class 

imbalance and 

the prediction 

accuracy is 

for conversion 

from MCI to 

AD 

10-fold 

Cross 

Validation 

Marwa 

Mostafa 

Abd El 

Hamid et al. 

(2017) 

Genetic - 

SNPs 
SVM 

NC= 211  

MCI = 365  

AD = 175 

Yes 76.70% 

Not predictive 

of 

Alzheimer’s 

Disease but 

it’s toward 

identifying 

genetic 

biomarkers 

10-fold 

Cross 

Validation 

Minh 

Nguyen et 

al. (2018) 

Not Stated RNN No Stated Yes 0.86 

Missing Data, 

Class 

imbalance and 

relies on brain 

imaging scans 

No Stated 

Solale 

Tabarestani 

et al. 

(2018/2019) 

MRI, 

FDG-PET 
MLP 

NC= 341  

LMCI = 529 

EMCI = 255 

AD = 333 

Yes 
Regressio

n 

Class 

imbalance and 

relies on brain 

imaging scans 

10-fold 

Cross 

Validation 

Emimal 

Jabason et 

al. 

(2018/2019) 

MRI & 

Cognitive 

Tests 

SVM 

NC= 232  

MCI = 991  

AD = 647 

Yes  98.78% 

Class 

imbalance and 

relies on brain 

imaging scans 

5-fold 

cross 

validation 

Julian 

Fritsch el al. 

(2019) 

Trans-

literation 

Evaluation 

n-gram 

Model 

Cookie Theft 

picture from 

DementiaBank’s 

Pitt Corpus 

No 85.60% 

It is an 

improvement 

to a method 

introduce by 

Wankerl et al. 

Leave one 

out Cross 

Validation 
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Table 3-3 is a comprehensive review of related work and techniques used, from 2008 up to 

2019. Part of the content in this table, between 2008 to 2014 was obtained from a published 

review paper titled “Early Diagnosis of Alzheimer’s disease using Machine Learning 

Techniques: A Review Paper” by Aunsia Khan and Muhammad Usman from Dept. of 

Computing, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), 

Islamabad, Pakistan [133]. 

Another study towards early diagnosis of Alzheimer’s disease by detecting brain regions 

related to Alzheimer’s disease using 3D MRI scans is based on eigenbrain and machine 

learning by Yudong Zhang et al, 2015. Early diagnosis or detection of Alzheimer’s disease 

(AD) from the normal elder control (NC) is very important. However, the computer-aided 

diagnosis (CAD) was not ubiquitously used, and the classification performance did not reach 

the standard of practical use. They proposed a novel CAD system for MR brain images based 

on eigenbrains and machine learning with two goals: accurate detection of both AD subjects 

and AD-related brain regions.  First, they used maximum inter-class variance (ICV) to select 

key slices from 3D volumetric data. Second, they generated an eigenbrain set for each subject. 

Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, 

kernel support-vector-machines with different kernels that were trained by particle swarm 

optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE 

with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that 

distinguish AD from NC [134]. 

In this thesis, analysing behavioural markers doesn’t necessarily mean the type of behavioural 

markers that would signify the existence of Alzheimer’s disease, but the research will 
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investigate patterns in markers shared by people with Alzheimer’s disease and normal people; 

these behaviour markers include life record beyond apparent symptoms of Alzheimer’s disease, 

such as frequent use of substances, type of diet, lifestyle or job career field. 

 Summary 

In this chapter we conducted a literature review on machine learning and the possible 

techniques that we will use to conduct our experiments to investigate early prediction of 

Alzheimer’s disease. This literature review aims to give the reader an insight into why we are 

using computational modelling to conduct this research, the current existing models and 

methods used in this field, and more specifically more information about models and methods 

we have used during this study. 

Overall, we discussed the concept of using machine learning, the methods used to pre-process 

and explore the datasets, different types of learning models to train the machine to predicted 

results, and we also discussed related work conducted by researchers in the same field. This 

chapter serves as a useful sources to get an up to date knowledge of research toward early 

prediction and diagnosis of Alzheimer’s disease. 

Table 3-4 Literature Review Summary 

Discussed 

Literature 

Review 

Methods We Used From Literature 

Review 

Reason for use 

Machine 

Learning 

Approaches 

We have used Supervised Learning approach 

for classification and Unsupervised Learning 

to visualise and explore the data. 

The ADNI data in this study is 

multidimensional and has multiple classes, 

and the use of Supervised Learning approach 

allows learning models to be trained on a 

dataset that has already been labelled with the 

desired outcome. For the initial analysis of the 

data before the classification process 

Unsupervised Learning was used to describe 
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hidden structures from the data, and to draw 

conclusions from the entire dataset [27][135]. 

Learning 

Models 

We used a mixture of Artificial Neural 

Network Classifiers, and non-Artificial 

Neural Networks, as well as combining a 

hybrid model with a model from both 

categories to compare the performance and as 

an attempt to increase prediction accuracy. 

In majority of the published work related to 

this study the performance of the Neural 

Network models such as the MLP, and 

Decision Trees based models such as the RF 

seem to perform best. This is further discussed 

in section 5.6. 

Data 

Collection 

We obtained access to set of data CSV files 

from ADNI (Alzheimer's Disease 

Neuroimaging Initiative). 

For the purpose of this study and to present the 

framework and prediction concept we used 

this dataset to conduct our experimentation. 

Further data collection directly from patient 

will be discussed in the future work section.  

The details of this step is further discussed in 

section 5.2. 

Data Pre-

processes 

We selected the relevant features to our study 

based on a comprehensive study of 

Alzheimer’s risk factors provided in Chapter 

2. The data was then joined and undergone 

pre-processing procedures which includes: 

 Handling missing data using both 

approaches; data deletion, and 

oversampling techniques using 

SMOTE as discussed in section 

3.4.3.2 and conducting an 

experiment with each approach 

respectively.    

 Categorical data has been 

converted to numerical values 

while preserving the importance of 

the data as demonstrated in section 

3.4.3.2. 

 All of the data variables where 

normalised to numerical values 

ranging between 0 – 1. 

Taken into account the type of data we have it 

was necessary to take these pre-processing 

steps in order to prepare the data for the 

employment of classification models. This is 

further discussed in details in section 5.3. 

Data 

Exploratory 

As we have a multidimensional and 

multiclass dataset we used three of the most 

commonly used unsupervised learning 

models to explore the data and understand the 

type of study we are conducting on the data. 

The three technique used are PCA, ICA, and 

t-SNE. 

Initial visualisation and analysis of the data 

was important to us in this kind of study in 

order for us to understand the behaviour of the 

data and distribution over the classes. We used 

some of the up to date and most commonly 

used techniques in this type of study, which is 

discussed in more details in section 5.4. 

Related 

Work 

Alzheimer’s disease is being research from 

different fields, but one of the major fields of 

research is studying the disease using 

computer science specifically machine 

learning. We looked at published research on 

the use of machine learning toward early 

prediction and diagnosis of the disease, to 

ensure we have an improved study approach 

and an up to date methodology.    

It was necessary and important to understand 

the current research in the field, to avoid the 

repetitiveness of research, and to contribute 

with new findings. 

The next chapter will discuss the proposed framework to achieve the objectives in this thesis. 
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 The Machine Learning Classification 

Framework 

 Introduction 

Although, there are many opinions stating that Alzheimer’s disease is a heredity disease, there 

also many research studies that claim many Alzheimer’s disease cases could be prevented by 

lifestyle changes such as exercise, eating healthily and not smoking. Scientists from different 

fields might not have a common agreement on the true causes of Alzheimer’s disease but 

ultimately research will determine whether Alzheimer’s disease is developed by a combination 

of risk factors including medical history, family dementia history and lifestyle, or is simply just 

genetically inherited disease. 

Our study focuses on the early prediction of Alzheimer’s disease by using a machine learning 

framework on a combination of behavioural and bio markers data. Here in this chapter we 

present our strategic framework called EPADf to predict onset Alzheimer’s disease by 

frequently enhancing its dataset based on conclusions obtained from the machine learning and 

clinical evaluation of the risk factors.  

This chapter also contains two logical approaches to conduct this study when using this 

framework. For the experimentations conducted in this study we considered Coherence 

Development Patterns (CDP), as the data set we used is limited and not a time series data (see 

section 4.3 for more information of these logical approaches). 
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 Proposed Framework 

The framework consists of five different component; Data Collection, Machine Learning, 

Clinical Evaluation, Data Enhancement, and Prediction. Each component of the framework has 

three internal process stages; Supervised Actions, Automated Process, and Final Products. In 

this section we will explain each component of the framework and elaborate on their internal 

process stages from a data flow prospective. The diagram below (Figure 4-1) illustrates the 

framework design using a swim lane diagram. 

Figure 4-1 Diagram of our framework (EPADf) 
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Framework Components: 

1. Data Collection: This part focuses on the collection of the dataset. The data will contain 

patient specific data related Alzheimer’s disease risk factor, focusing on behavioural and 

biological markers of the disease, obtained from patient’s lifestyle, medical history, and 

demography. The collection of the data will depending on the provided Data Collection 

guideline produced by the Data Enhancement component of the framework. For our study 

we used ADNI dataset and selected initial features based on existing research on 

Alzheimer’s risk factors (see section 2.6). 

2. Machine Learning: Continuous learning technique employed to analyse the constructed 

dataset and provides a predictive formula, as well as feedback on the importance of the 

variables (Alzheimer’s disease risk factors). This part of the framework and the employment 

of machine learning techniques can be done using MATLAB, R studio, Python and other 

integration services. For our study we used MATLAB to build the classifiers and employ 

machine learning models on the ADNI dataset. 

3. Clinical Evaluation: A web-based sub-system is developed to calculate guided weighting 

for each risk factor. This system relies on validated discrete knowledge manually inputted 

by either system admin, or clinical professionals through crowdsourcing. This component 

influences the weighting used by machine learning techniques, as well as decision making 

when adding new variables to the dataset (see section 5.5). 

4. Data Enhancement: The feedback from both machine learning techniques and clinical 

epidemic evaluation of the risk factors is used to determine which new data needs to be 

collected and what variables should be added to the baseline dataset.  
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5. Prediction: Whilst constantly learning from the datasets, the predictive formula will 

continuously be updated to provide as accurate a prediction as possible. The prediction 

formula will feed into a live system in which live patient data will be stored. This part of the 

framework will keep track of patient records and trigger warnings when establishing a 

possible prediction. 

To understand the functionality of EPADf and the meaning of the Figure 4-1 in more depth, 

the table below (Table 4-1) provides a detailed description on each internal process stages of 

the framework: 

Table 4-1 Explaining How EPADf Works 

 Supervised Actions Automated Process Final Products 

1. Data 

Collection 

This section requires supervised 

interaction with the framework to 

determine what data is collected 

and combine with data previously 

used data. For example if 

previously we had data for patients 

with 10 features and we needed to 

collect more data as recommended 

in the ‘Clinical Evaluation’ 

component, then in this component 

we merge the old features with new 

features or to remove unnecessary 

features. 

In this part of the 

component is responsible 

for pre-processing the 

data set by apply 

normalisation techniques, 

dealing with missing data 

and balancing the data. 

This component 

ultimately produces a 

machine learning ready 

dataset. 

2. Machine 

Learning 

 

 

The deployment of machine 

learning models is automated. 

The machine learning 

component uses the 

produced data by first 

component to train the 

learning models. In this 

component the 

framework will also 

consider the features 

ranking produced by the 

third component and auto 

rank the features in the 

dataset.  

This component will 

continuously employ 

multiple learning models 

to classify the data, then 

consequently, choose the 

best model and present 

it’s learning as a 

predictive formula. 

3. Clinical 

Evaluation 

Clinicians use this system to 

evaluate the influence of risk 

factors and their interrelationships. 

For example an expert cardiologist 

puts their knowledge and clinical 

The clinical evaluation 

input is converted to 

numerical values then 

rank risk factors 

importance by using an 

This component will 

produce a ranking of risk 

factors based on 

clinician’s clinical 

experience, as well as the 
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instinct on the relationship 

between fast food and blood 

pressure. The more we have of this 

kind of data the closer we get to 

mapping out the connection 

between the risk factors and rank 

their importance based on their 

contribution in the development of 

other risk factors. 

algorithm as presented in 

section 5.5.3. This feature 

ranking will indicate 

which risk factor is more 

important and this will 

help with the 

enhancement of the 

dataset. 

machine learning models 

learning experience. 

4. Data 

Enhancement 

For the production of the data 

enhancement guideline there are 

no supervised actions required in 

this component. 

The framework ranks the 

risk factors using both 

machine learning as well 

as the clinical evaluation 

input.  

The overall ranking will be 

presented as a data 

collection guideline to 

indicate what the most 

influential risk factors are.  

Based on this guideline 

new data related to the 

most important risk factors 

is to be collected and feed 

into the framework. 

5. Prediction To diagnose a patient and to 

predict the disease, in this 

component we feed unlabelled 

data and let the framework process 

the data and categorise it.  

The inputted data will be 

fed through the predictive 

formula produced by the 

machine learning 

component. All new input 

of data in this component 

will also be added to the 

overall data storage. 

The framework will use 

the unlabelled data and 

classify it by percentage 

to indicate if the patient is 

at risk of developing 

Alzheimer’s Disease. 

 

 Logical Approaches to Predict Alzheimer’s disease 

The ADNI database store information about patients’ medical history, partial lifestyle, 

genetics, characteristics and other information related to Alzheimer’s disease. And it is 

important to extract knowledge about Alzheimer’s disease by investigating the risk factors in 

existing databases. With effective use of computer science, specifically machine learning and 

data analysis techniques speeds up the investigation toward early prediction of the disease and 

provide information that are more accurate.  

Here in this section of the thesis we present two logical approaches for the discovery of 

Alzheimer’s disease development patterns. We called these two approaches, Sequential 
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Development Patterns (SDP) and Coherence Development Patterns (CDP). These two 

approaches are to be considered in the investigation of Alzheimer’s disease development 

patterns. Due to the complexity of Alzheimer’s disease development, it is assumed that the 

pathological development is triggered over time in two possible ways;  

1. Risk factors develop in sequence, which then leads to the development of Alzheimer’s 

disease. 

2. A coherence of all risk factors developing at the same time to trigger the development 

of Alzheimer’s disease.  

 

Sequential Development Patterns (SDP) – The SDP approach focuses on finding patterns of 

Alzheimer’s disease development based on the date at which the risk factor has occurred in the patient’s 

record, as well as looking at the risk factors occurring before and after it. For example, to investigating 

the development of Alzheimer’s disease in a dataset full of Alzheimer’s disease patient medical records,  

we will start by looking at the diseases that have occurred before Alzheimer’s disease, then investigating 

Figure 4-3b Example of Coherence 

Development Patterns 

 

Figure 4-3a Example of Sequential 

Development Patterns 

Note: Please note the examples used in Figure 4-3a and Figure 4-3b are hypothetical and are only used to 

demonstrate the concept of the two logical approaches.  
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each of the diseases in the same way (in reverse) and compare the results for each patient in order to 

find a sequential development pattern.  

This approach could be used to investigate patterns in both lifestyle datasets and medical 

history. The success from using this approach may possibly designate a pattern that could 

perhaps help with early prediction and prevention of Alzheimer’s disease. Such an approach 

will provide an in-depth insight into the sequential connection between risk factors of 

Alzheimer’s disease. However, the down side of such an approach is that existing databases 

might not have the desired record needed to use to produce accurate results.  

Coherence Development Patterns (CDP) – The CDP approach is unlike the SDP, this 

approach looks at the common combination of disease and risk factors that occur in most 

Alzheimer’s disease patients’ datasets. As shown in Figure 4-3, the CDP approach looks at the 

available information in the datasets and search for the combination of risk factors that are 

responsible for Alzheimer’s disease development. The advantage of such an approach is that it 

will be possible to use it to investigate current existing Alzheimer’s disease databases such as 

ADNI. 

Due to the fact that it is not clear what causes Alzheimer’s disease, these approaches are worth 

using for the investigation of Alzheimer’s disease development patterns and it would be best 

to use both together. As for CDP, it provides a set of patterns combined with multiple 

possibilities, while SDP analyses the patterns in depth to find the highest possibilities that 

trigger Alzheimer’s disease. In our study we used CDP approach as the dataset we obtained 

didn’t contain enough information and structure to conduct time series study. 
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 Implementation of the Framework 

 Introduction 

We obtained a dataset from Alzheimer’s disease Neuroimaging Initiative (ADNI) that contains 

data for over 1,880 subjects’ records related to some of the Alzheimer’s disease risk factors. 

Although, due to the limitation of the amount of risk factors’ data contained in the ADNI 

dataset it might not be possible to achieve an accurate prediction. We are looking to use this 

dataset to deploy a machine learning algorithm and rank the importance of the risk factors in 

the dataset. 

Machine learning is a computational technique used for automated or semi-automated 

extraction of knowledge from large datasets. This is aimed to give computers the ability to 

learn from data and to classify or give productive values. It is inspired by the human biological 

ability to learn and find answers to questions. Machine learning has two different types of 

learning “signal” and “feedback”, and three different categories; Supervised Learning, 

Unsupervised Learning and Reinforced Learning. These three categories help systems to 

recognise patterns, learn from unknown data and interact with the environment. The 

complexity of this field has opened a window for innovation and research, as a result of this, 

different approaches were used such as the Decision Tree learning, Neural Network and the 

Bayesian Networks [136]. 

In this chapter we use supervised and unsupervised machine learning and experimented using 

5 models. The study in these experiments includes classification to predict the disease based 
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on the dataset obtained and an analysis aiming to mathematically order which of the risk factors 

indeed have an impact.  

 

This chapter is split into different sub-sections discussing the methods used to conduct the 

experiments by phases; all the way from data access and collection to the deployment of the 

machine learning model. 

 

 Data Access and Collection  

In this thesis we deployed the machine learning models on Alzheimer’s disease dataset using 

MATLAB. The data was obtained from an organization called Alzheimer’s disease 

Neuroimaging Initiative (ADNI), which was first launched in October 2004 with the aim to 

collect data that would help to find more sensitive and accurate methods to detect Alzheimer’s 

disease [137]. Access was granted after the submission of a research proposal to ADNI, the 

data is unidentifiable data and available for researchers to use, no ethical approval was required. 

The ADNI, was first launched in October 2004 with the aim to collect data that would help to 

find more sensitive and accurate methods to detect Alzheimer’s disease [137]. In the first phase 

of ADNI (ADNI 1) the study gathered thousands of data for a limited number of Alzheimer’s 

disease markers, this includes brain scans, genetic profiles, and biomarkers in blood and 

cerebrospinal fluid that are used to measure the development of Alzheimer’s disease. 
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The collected brain-imaging data in the 

first study OF ADNI was gathered 

through the use of techniques such as 

positron emission tomography (PET), 

including FDG-PET (which measures 

glucose metabolism in the brain); PET 

using a radioactive compound 

(Florbetapir F 18) that measures brain 

amyloid accumulation; and structural MRI  [137]. The focus of this ADNI study was to detect 

Alzheimer’s disease in the brain to assist doctors with a more accurate diagnosis of the disease. 

However, as the study evolved, and Alzheimer’s disease diagnosis became easier the goal of 

ADNI has expanded toward the detection of the disease at a pre-dementia stage. With the 

successful standardized data collection methods used, the imaging and bio markers data was 

made available to scientists from around the world to conduct cohesive analysis and research 

into Alzheimer’s disease. 

The second phase (ADNI2) began in 2011 as an expansion of the ADNI 1 goals, the aim was 

to help doctors and specialists to detect markers of Alzheimer’s disease and to accurately track 

progression of the disease. The aim was also to use this data for clinical trials and to measure 

the effectiveness of potential interventions. ADNI 2 phase was expanded to collect 

demographic, behavioural and biological data of Alzheimer’s disease patients. ADNI provides 

a large dataset of tests, measurements, and observations taken during the progression of normal 

Figure 5-1 Content of ADNI Data 
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control to Alzheimer’s disease patients. ADNI has data from approximately 1,880 patients; 843 

females, 1,036 males and 1 unknown. 

At the start of ADNI, data was collected from a small number of patients at different visits. In 

this study a patient’s first visit will be referred to as baseline visit (BL). Some patients have 

returned for observations every 3 months since baseline, whilst some would turn up to some 

visits but not consistently.  

When the second phase began the number of observations was extended in order to capture 

more information to help early detection of Alzheimer’s disease. This resulted in some patients 

who had their data recorded in phase ADNI 1 having missing data for the new observations. 

Similarly, to ADNI 1 in phase ADNI 2 there were also patients who didn’t have observations 

taken for them consistently on every visit. This shows that the datasets contain a lot of missing 

data which will cause inaccurate results if we were to use them in the experiment. For this exact 

reason the experiments done in this work will only be based on data from phase 2. Working 

with ADNI data for machine learning and data analysis was not a straightforward task, 

especially, with this amount of data that was collected at different phases on different visits, 

with missing rows, and inconsistent and imbalanced data. 

 

Forming a Baseline Dataset 

ADNI provides comprehensive details regarding its data and the variables representation in the 

dataset. The ADNI data was stored in over 60 flat files, with approximately 70 columns each. 

We downloaded and extracted the relevant data to perform our first experiments then gradually 
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extracted more variables in attempts to improve the machine learning classifier’s performance. 

Overall, we obtained all the data files that contain lifestyle, demography, medical history and 

family dementia history. Here is an overall list of data attributes of the dataset some of which 

represent Alzheimer’s disease risk factors. 

Table 5-1 Dataset of attributes 

Variable Representation Variable Representation 

AGE Subject age  SMOKING Smoker or non-

smoker 

MUM_DEMENTIA If mother had dementia DRUG Consumed drugs or 

substances  

DAD_DEMENTIA If father had dementia ALCOHOL If is alcohol drinker 

or not 

GENDER Male or Female ALLERGY If have any known 

allergy 

RACE White / Black / Mixed etc. WORK_CAT Work category 

ETHNICITY Hisp/Latino or Not, or 

Unknown 

WEIGHT Weight 

EDUCATION Education Category HEIGHT Height 

MARRIED Married/Divorced/Single…  APOE4 Have APOE4 gene 

or not 

ENERGY Experiencing lack of energy DEPRESSION Have history of 

feeling depressed 

DIZZY Experiencing Dizziness  CARDIOVASCULAR Have any 

cardiovascular 

diseases 

DROWSY Experiencing feeling 

drowsy 

BLOOD_PRESSURE Blood pressure 

readings 

VISION Have vision problem HEART_RATE Heart rate readings 

HEADACHE Experiencing frequent 

headaches 

MMSE Mini Mental Score 

Examination 
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The data was in comma separated values files (CSV) and had several pre-processing challenges 

before deploying the machine learning models. The data is unidentifiable data and subject’s 

information was replaced with a single numeric identifier called RID to help identifying the 

subject’s data across the ADNI dataset files. We convert the extracted files to a relational SQL 

Server database, which helped us to easily extract correct and accurate relevant data to this 

experiment for each subject.  

This was our first step in following a complete Extract, Transform, and Load (ETL) process to 

construct a baseline Alzheimer’s disease dataset from the ADNI data files, before employing 

machine learning models. After extracting the ADNI dataset and converting it to a relational 

database, the relevant data to our experiment was further extracted and transformed using a 

combination of server-side scripting language and R. The transformation of the dataset 

involved data cleaning and balancing such as removing data with missing values and 

converting the text values to numeric representation [138]. The next section discusses all of the 

pre-processing steps in more detail.  

 Pre-processing 

The pre-processing stage was a difficult stage due to the fact the most machine learning 

classifiers, special neural networks fully depend on mathematical calculation. Therefore, the 

data must be converted from text to be all numerical. The ADNI dataset contained some 

numerical parts but a lot of it was text data. Beside this problem the data was imbalanced 

distribution over classes, had a lot of missing values, and categorical data. These problems 

where resolved as discussed in chapter 3 (see Table 3-4). 
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The work began to tackle these challenges step by step starting with dealing with categorical 

data values. An example of this would be the gender and marriage status of patients. For gender 

they had ‘Male’ or ‘Female’, and for marriage status the options where, ‘Single’, ‘Married’, 

‘Widow’, and ‘Divorced’. This type of data will need to be numerical data in order to 

employing machine learning, however, if we were to convert for example ‘Single’ to 1, 

‘Married’ to 2, ‘Widow’ to 3, and so on, this would also cause the machine learning model to 

be more confused as ‘Widow’ would automatically gain bigger weight than ‘Single’ and this 

is not necessarily true. As described in Section 3.4.3.3 the way this categorical data would be 

resolved is as follows: 

  Original Format      New Format 

Patient Mariage_Status 

1 Single 

2 Single 

3 Divorced 

4 Widow 

5 Married 
 

Patient SINGLE MARRIED WIDOW DIVORCED 

1 1 0 0 0 

2 1 0 0 0 

3 0 0 0 1 

4 0 0 1 0 

5 0 1 0 0 
 

This is done by converting the categorical values to variables (columns) and filling the rows 

with numerical values 1 for true and 0 for false, as show in the table above. 

Now that the categorical data problem was resolved for every categorical column in the dataset, 

the second challenge was to normalise and rescale the rest of the data. Un-normalized data can 

cause the learning of the classification models to be conditioned by the values of the features, 

for example having a feature that ranges between 0 and 1, and another feature ranging between 

100 – 500, a small variation in the first feature can be more influencing than a big variation in 

the second feature. Therefore, the data was converted to numerical values as shown in the 
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example above and high ranged data was normalised to range between 0 to 1, using this 

equation for data normalization 𝑧𝑖 =
𝑥𝑖 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 where 𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑧𝑖 the 

ⅈth normalized data.  

The third challenge in the pre-processing stage is the handling of missing values, and 

imbalanced data. As discussed in section (3.4.3.2) and (3.4.3.5), this can be solved by either 

removing patients with missing data and balancing the data by further removal of patients, or 

alternatively replace missing data with average values and use Synthetic Minority Over-

Sampling Technique (SMOTE) technique to balance the rest of the data [110],[111]. Since we 

had a reasonable amount of data, we removed patients with missing values and removed 

imbalanced classes in our initial experimentation then the latter for our second experimentation.  

 Data Analysis and Visualisation 

The machine learning experimentation work carried out in this thesis was conducted in three 

different parts; initial construction and investigation of a baseline dataset, enhancement of the 

dataset and ranking of variables, and deployment of machine learning models on the enhanced 

dataset. This section discusses the data before and after the pre-processing procedures, from an 

analytical approach with data visualisation techniques.   

5.4.1 Phase 1: Initial Experiment Dataset 

This part of the research is focused on early prediction of Alzheimer’s disease for the pre-

dementia stage, the experiments are carried out on data that relates to the behavioural markers 

and the variables selected are matching the features discussed in the risk factors section (2.6) 
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of this thesis. Table 5-2 below shows the risk factors that we used for our initial experiment in 

phase one of the study:  

Table 5-2 AD Risk Factors used in the initial experiment 

 

 

 

 

After the performance of data pre-processing and the removal of missing data the total data 

volume was reduced to 650 subjects from 1880, and the distance between the data volume for 

each class has changed and resulted in the data being imbalanced. Figure 5-2 shows an 

exploration of the data after the deletion of subjects with missing data. This resulted in a very 

small number of subjects who are classed as Significant Memory Concern (SMC) compare to 

the rest of the classes, which makes the dataset imbalanced. 

Running the experiment on imbalanced data will not give a correct accuracy as it will mislead 

the artificial agents to give insufficient results. To make the data more balanced, all subjects 

with SMC class were removed from the dataset. The section shows an overview of the final 

dataset which is used in the following experiments.  

Medical History Lifestyle Demography 

Diabetes Alcohol Age 

Cholesterol Smoking Education Field 

Heart Disease BMI Race 
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Data with imbalanced class: 

Figure 5-2 Initial Experiment ADNI Data Volume 

Data summary after removal of imbalanced class: 

Table 5-3 Final Dataset for Initial Experiment 

 

 

 

 

During this phase the number of subjects was reduced by almost 50%, now with a total 

remaining number of 650 subjects to be studied. Table 5-3 gives an overview of the dataset for 

each of the four remaining classes (Labels). 

To explore the dataset suitably, different data analysis toolboxes on MatLab, MiniTab 16 were 

deployed, this includes t-Distributed Stochastic Neighbour Embedding (t-SNE), Principal 

Component Analysis (PCA), Independent Component Analysis (ICA), and Square Prediction 

Error (SPE).  

Class Data Volume 

NC 185 

EMCI 177 

LMCI 161 

AD 127 

Total 650 
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The t-SNE is a Machine Learning algorithm commonly used for dimensionality reduction in 

data visualisation. t-SNE is applied on the dataset, giving the results shown in Figure 5-3, it 

shows mixed clusters detached apart. Ideally the perfect result that we had hoped for is that 

each cluster will contain a majority of one class. However, as shown in Figure 5-3 the clusters 

have an almost equal mixture from all classes, which, means that the algorithm struggled to 

differentiate between the categories of the subjects. Although, this algorithm shows a large 

distance between the clusters which means on a dimensional level it managed to differentiate 

between the variables (risk factors). 

Figure 5-3 Explore of Data Using t-SNE on 

Other useful methods used to explore and visualize this dataset are the Principal Component 

Analysis (PCA) and Independent Component Analysis (ICA), both Figure 5-4  and Figure 5-5 

illustrate the use of these techniques on MATLAB. PCA is used to emphasize the variation, 

dimensions reduction and bring out the strongest patterns in the dataset. ICA is a method for 
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separating a multivariate signal into additive subcomponents; for more information see section 

(3.4.4.1 and 3.4.4.2). 

Figure 5-4 Explore of Data Using PCA on MATLAB 

Ideally, what we want to see in both Figure 5-4  and Figure 5-5 is four clusters and each cluster 

has only one shape representing a specific data class. But in these figures we see that both 

models struggled to separate the classes this is because the data lacks of features that are unique 

to specific classes, which, ultimately indicates at this level the classification process might not 

present a positive prediction.  

Figure 5-5 Explore of Data Using ICA on MatLab 



 

 

108 | P a g e  

 

 

 

Furthermore, the data was explored using the Square Prediction Error (SPE) plot to measure 

the quality of a predictor. The graphs and coefficients result in Table 5-4 show an apparent 

indication that the type of study will be a nonlinear regression. 

Figure 5-6 Explore of Data Using SPE on Matlab 

 Table 5-4 PCA Coefficient for Each Variable 

 

Variables / Components PC1 PC2 PC3 PC4 

Diabetes 0.001793 0.027300 0.136991 0.094909 

Cholesterol -0.071206 0.105367 -0.247695 -0.485408 

Smoking 0.446737 0.293874 0.043807 -0.054670 

Smoking Years 0.367998 0.264838 0.038639 -0.003285 

Smoking Per Day 0.439407 0.278448 0.050468 -0.052177 

Quit Smoking Period 0.391725 0.239360 0.061360 -0.015511 

Heart Disease 0.036513 -0.039123 0.116216 0.451622 

Alcohol 0.305641 -0.402629 -0.307793 0.006958 

Alcohol Duration 0.299719 -0.378212 -0.278685 0.025604 

Alcohol Duration Since End 0.289615 -0.396444 -0.285074 0.011434 

Gender -0.122825 0.249310 -0.410394 -0.188994 

Race 0.038631 -0.033482 0.023795 -0.186449 

Education -0.019303 -0.134047 0.073096 -0.044850 

AGE 0.065078 0.053068 0.087619 0.378552 

BMI -0.060827 0.131281 -0.312178 0.455934 

Weight 0.090059 -0.214031 0.358343 0.073775 

Height 0.108802 -0.292391 0.478053 -0.293493 
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The coefficient data shows an apparent indication that the experiment result of the predictors 

will not provide a clear outcome. From the data exploration it is very unclear which variable is 

the highest predictive factor, which shows that the classifiers might not give a very clear 

classification or definite predictive value. In this case future experiments involving more 

variables and underlying data will provide a better outcome. 

5.4.2 Phase 2: Extending the Dataset and Ranking Risk Factors 

After the negative classification in the initial experiment we extended the dataset to include 

more variables and employed machine learning models to rank the variables by importance, in 

an attempt to visualise the data and investigate the dataset further. Table 5-5 contains all of the 

variables we used during this part of the investigation: 

Table 5-5 Extended Dataset of attributes (Phase 2) 
Variable Representation Variable Representation 

AGE Subject age  SMOKING Smoker or non- 

smoker 

MUM_DEMENTIA If mother had dementia DRUG Consumed drugs or 

substances  

DAD_DEMENTIA If father had dementia ALCOHOL If is alcohol drinker 

or not 

GENDER Male or Female ALLERGY If have any known 

allergy 

RACE White / Black / Mixed etc. WORK_CAT Work category 

ETHNICITY Hisp / Latino or Not, or 

Unknown 

WEIGHT Weight 

MARRIED Married/Divorced/Single…  APOE4 Have APOE4 gene 

or not 

ENERGY Experiencing lack of 

energy 

DEPRESSION Have history of 

feeling depressed 

DIZZY Experiencing Dizziness  CARDIOVASCULAR Have any 

cardiovascular 

diseases 

DROWSY Experiencing feeling 

drowsy 

BLOOD_PRESSURE Blood pressure 

readings 

VISION Have vision problem HEART_RATE Heart rate readings 
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HEADACHE Experiencing frequent 

headaches 

  

In the same steps as part one, before we conduct the experiment, we ran a few essential steps 

to summarize and understand the data better. We explored the dimensions of the new dataset 

after the extraction process and compared it with the initial extract of approximately 1,880 

patients that are of interest to us. The final dimensions were 1,635 instances and 26 attributes 

(some subject were removed because they had no data related to the extended attribute). Then 

we ensured that our data was all numeric and understandable by the models as well as exploring 

the classes’ distribution. The final dataset had 5 levels of class attributes “AD”, “NC”, “EMCI”, 

“LMCI”, and “SMC”. The aim is to find the importance of each variable (risk factor) for each 

of the 5 class levels. This experiment was not to predict or to classify the patients, so we didn’t 

need to remove classes that had fewer patients. Table 5-6 demonstrates the levels of class 

attributes and the data distribution of instances. 

Table 5-6: Levels of the Class Attribute (Phase 2) 

Class Representation Frequency Percentage 

NC Normal Control 267 20.36% 

AD Alzheimer’s disease 310 23.64% 

SMC Early Mild Cognitive Impairment 232 17.69% 

EMCI Late Mild Cognitive Impairment 432 32.95% 

LMCI Significant Memory Concern 70 5.33% 

 

The first analysis of the dataset was to plot the correlations summary using the 'Pearson' 

covariance method [139][140]. The 'Pearson' correlation method is the most common way to 

quantify attribute relationships, which measures the relationship from -1 to +1. Having +1 

means a strong positive relationship, 0 represents no relationship, and -1 represents strong 

negative relationship. If the relationship is positive it means that as one variable increases the 
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related variable increases also and vice versa. In a negative relationship it works differently as 

it means if a variable increases the related variable will decrease.  

Figure 5-7 illustrates the correlation plot for the Pearson correlation method. The output shows 

an interesting correlation between the variables. Showing positive correlations between 

demographic attributes such as gender and weight, gender and height, and work and education. 

The negative correlations are mainly between symptoms and medical history attributes.  

 

Figure 5-7: Pearson Covariance Method (Phase 2) 
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To further examine the dataset, we employed a technique called T-distributed Stochastic 

Neighbourhood Embedding (tSNE). Here is the outcome of the tSNE technique: 

 

Figure 5-8 Phase 2: T-distributed Stochastic Neighbourhood Embedding 

Figure 5-8 shows the datasets with 5 levels of class attributes labels. This plot illustrates the 

class dispersion problem with different types of colour, where points from the 5 classes of 

dataset are clustered. Ideally, the 5 classes are decomposed using a clustering technique; each 

cluster can determine a new class label for the testing set. This shows a real example using t-

SNE of the class distribution problem: clusters with the same class points are spread across the 

variable values. In this case, the machine learning models specifically with RFC are trained on 

the original dataset with the class labels. The main point behind using this t-SNE is to represent 

dimensionality reduction that is suitable to visualise our datasets with high dimensional. t-SNE 

scales depend on the total number of objects N, it is appropriate to a limited number of datasets 

with a few thousand instances. We applied this technique with our datasets up to 1,635 

instances. [127] 
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5.4.3 Phase 3: Over-Sampling and Classification of Extended Data  

As ADNI increase their dataset subjects, further data was added to the baseline dataset and this 

time more variables were added related to demographic data, behavioural markers, genetic, and 

some medical history data. The variables selected are matching the features discussed in the 

risk factors section (2.6) of this thesis.  

The selected variables were related to: 

Table 5-7 AD Risk Factors used in extended dataset 

Different to the initial experiment, this time because the data was extended to cover more 

variables, the removal of the data would cause more than one class to be imbalanced and some 

classes had all their subjects removed completely. For this reason, during the implementation 

of data pre-processing we replaced missing values with mean values of the data, maintaining 

the number of subjects at 1,737 patients. 

During the pre-processing stage, we resolved the problem of having categorical data, which 

resulted in variable expansion of dataset matrix from 28 features to 70 variables (see section 

5.3), Table 5-8 demonstrates the levels of class attributes and the data distribution of instances. 

Medical History Lifestyle Genetic Demography Family History 

Diabetes Alcohol APOE4 Age Dad Dementia 

Cholesterol Smoking  Education Field Mum Dementia 

Allergy Drug Use  Ethnicity  

Heart Disease BMI  Race  

Depression Energy Level  Marriage Status  

Drowsiness, 

Dizziness, Headaches 

Cognitive Test  Work Category  
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Table 5-8  Levels of the class attribute (Phase 3) 

Class Representation Frequency Percentage 

NC Normal Control 417 24 % 

AD Alzheimer’s disease 342 19.68% 

EMCI Early Mild Cognitive Impairment 310 17.84% 

LMCI Late Mild Cognitive Impairment 562 32.35% 

SMC Significant Memory Concern 106 6.10% 

 

The dataset was still imbalanced even if we didn’t remove missing values, because the ADIN2 

contained an imbalanced number of subjects for each class. The solution was to use an over 

sampling technique call Synthetic Minority Over-Sampling Technique (SMOTE), see section 

(3.4.3.5) for more details on this technique. 

Before over-sampling: 

 

Figure 5-9 Part 3: Before Over-sampling 

 

 

NC 
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After Synthetic Minority Over-Sampling Technique (SMOTE): 

 

Figure 5-10 Using SMOTE in WEKA 3.6 (Phase 3) 

After over-sampling the dataset to balance the classes, the data volume increases to 2,808 

subjects, giving approximately 20% of the data to every class label. 

For dimensionality reduction, and to visualize the data, t-SNE was applied on the dataset, 

giving the results shown in Figure 5-11, it shows one large mixed cluster. Ideally the perfect 

results that we had hoped for is that each cluster will contain a majority of one class. However, 

as shown in Figure 5-11; the clusters have almost equal mixtures from all classes. Which means 

that the algorithm struggled to differentiate between the categories of the subjects. The results 

presented here are nonlinear, if we zoom in further, we find multiple clusters from the same 

class which means on a dimensional level it managed to differentiate between the variables 

(risk factors) and could possibly indicate an improvement in the classification. The table below 

explains the labels on the graphs. 

 

NC 
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Table 5-9 Classes Representation on Graphs and Plot 

Class AD NC LMCI EMCI SMC 

Number on Graphs 1 2 3 4 5 

 

Figure 5-11 Explore of Data Using t-SNE in Matlab (Phase 3) 

Other useful methods used to explore and visualize this dataset is the Principal Component 

Analysis (PCA) and Independent Component Analysis (ICA), both Figure 5-12 and  

Figure 5-13 illustrate the use of these techniques in Matlab. PCA is used to emphasize the 

variation, dimensions reduction and bring out the strongest patterns in the dataset. ICA is a 

method for separating a multivariate signal into additive subcomponents, for more information 

see section (3.4.4.1 and 3.4.4.2). 
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Figure 5-12 Part 3: Exploration of Data Using PCA in MatLab 

Furthermore, the data was explored using the Square Prediction Error (SPE) plot to measure 

the quality of a predictor. The graphs and coefficients results show an apparent indication that 

the type of study will be a nonlinear regression with a slight indication of classification 

improvement. 

 

Figure 5-13 Part3: Explore of Data Using SPE in Matlab 
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 Development of Crowdsourcing Risk Factor Ranking System 

The current diagnosis of Alzheimer’s disease is conducted through manual evaluation based 

on clinician’s experience and clinical instinct. Some of this knowledge is not only based on 

judgment of apparent symptoms of the disease, but it’s also based on their knowledge of a 

patient’s medical history as well as their knowledge about Alzheimer’s disease and current 

ongoing research. Since there is no existing certainty in knowing the main causes of the disease 

yet, most current evolution is based on assumptions. This section of the thesis presents a present 

a sub-component of the presented framework EPADf, this component is a web-based system 

called “Crowdsourcing Risk Factor Ranking” (CRFR), used to collect clinical evaluation for 

Alzheimer’s disease and its risk factors.  Using machine learning only to evaluate the disease 

might not be reliable enough, as traditionally initial weightings in machine learning are 

distributed randomly. The use of the crowdsourcing system will unify the clinical instinct and 

evaluations of clinicians, and also produce weighted values for each of the risk factors. 

Figure 5-14 Created with NodeXL (http://nodexl.codeplex.com) 
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The image above has no relation to this research, it is visualisation of a social network user’s 

connections and influences. However, taking the same concept and applying it to the 

interconnection and influence of Alzheimer’s disease risk factors on each other, this, would 

highlight the most influential risk factors and rank them as important contributors.  This can be 

done by developing a crowdsourcing system to map the interconnection between the risk 

factors. The system would act as a discrete biological knowledge bank to aid with decision 

making and machine learning tools with early prediction of disease. The extracted knowledge 

would improve the prediction and diagnosis of Alzheimer’s disease using the relationship 

between risk factors across all of the risk factors categories (Genetics, Lifestyle, Medical 

History and Characteristics). The aim for this system in relation to the proposed framework is 

to provide a supervised dataset to boost the accuracy of the machine learning algorithm when 

working with bioinformatics datasets. 

The overall objective is to have a system with all Alzheimer’s disease risk factors (clinically 

inputted) and their relationships added to it (in the concept of a large network). Using a 

mathematical model to rank and classify each risk factor and giving them a weight. This 

system will provide a reliable analysis for each risk factor.  

 

5.5.1 Crowd Contribution 

Based on current research and input from clinicians the system would have a list of all the 

factors currently considered as risk factors of Alzheimer’s disease, and contributing risk factors 

to the development of main risk factors. For example, if ‘diabetes’ is considered an Alzheimer’s 

disease risk factor and ‘fast food’ is the risk factor for ‘diabetes’, then in this case ‘diabetes’ is 

a main risk factor and ‘fast food’ is a contributing factor.  
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Experts (clinicians) would enter their contribution by selecting one of the listed risk factors or 

one of the contributing factors, then enter their clinical instinct evaluation (input) based on a 

valid research. If the risk factor or contributing factor is not listed, then they will be able to add 

it to the list.  

To add a risk or a contributing factor they will need to enter its name (unique), select one of 

the categories this factor falls into e.g. lifestyle, medical history or genetics, and then select the 

type i.e. if it is a risk factor or a contributor to the risk factors. To add clinical knowledge on a 

factor the user must select the factor name from the list, select the other factor that this factor 

contributes to, add the risk level 1-10, add the development stage (1-Mild, 2-Moderate, 3-

Severe), then finally add the reference to back up their contribution. The following section 

5.5.2 provides a visual user guide for this process. 

5.5.2 Crowdsourcing System Screenshots  

 

Figure 5-15 Crowdsourcing System Homepage 
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The users would login to the system, then select one of the risk/contributing factors to 

contribute to as shown in Figure 5-15. The screenshot below (Figure 5-16) shows the page 

loaded after the user clicks on one of the factors. For example, “Heart Disease”: 

 

 

Figure 5-16 Crowdsourcing System Heart Disease Page 

The first section on the right lists the contributing risk factors for Heart Disease, the middle 

section lists the risk factors that heart disease contributes to, and the third section details the 

contribution between heart disease and any factor selected from the list. To add new clinical 

input the user would click on  sign and fill in the little form displayed. 

 

Figure 5-17 Crowed-sourcing System Adding New Contribution 
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The green circle  (as shown in Figure 5-17) represents the number of clinical contributions 

added. When clicked it will display the contribution details as shown in Figure 5-18 below: 

 

Figure 5-18 Crowed-sourcing Risk Factors Interconnections 

 

5.5.3 Converting Input to Weights 

Depending on the number of pieces of clinical knowledge contributed over time the more 

contributions the more comprehensive and useful the extracted weighting would be. 

Eventually, this concept could possibly present new high-risk factors for the early development 

of Alzheimer’s disease. The contributing factors could possibly have higher relevance to 

Alzheimer’s disease more than the currently considered high-risk factors. 

Each factor will get a ranking through a mathematical formula that would calculate the overall 

weight by average number of clinical inputs; considering its contributions levels, outwards and 
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inwards contributions, and the weighting of factors that contribute to it. This is denoted in the 

mathematical Error! Reference source not found. below: 

 

𝑓(𝑥) = (
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(1) 

The function 𝑓(𝑥) returns a numerical ranking value for a risk factor, where x is the risk factor, 

we need to calculate its ranking in the network. The first part of the equation is to calculate a 

value representing the connections that x contributes to other factors (Outwards), and then 

calculate a value representing the connections contributed to x (Inwards). Subtract the inward 

from the outward then divided it by 𝑌, which, represents the number of risk factors in the 

network to get the overall ranking.   

 

𝑂𝑢𝑡𝑤𝑎𝑟𝑑 =  ∑
 (∑
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𝑐
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(2) 

The calculation for Outward starts by looping through the risk stages 𝑐, then identifying the 

connections at that level, loop through the connections and get their connections to the main 

risk factors 𝑛, then for every 𝑛𝑗  get its risk level 𝑅𝑗, plus risk stage 𝑐ⅈ, plus the rank of the risk 

factor 𝑓(𝑗), divided by 𝑛, then repeat the same process to get connections to other contributing 

factors 𝑚, add the values together and divide it by 𝑛 + 𝑚  to get the inward value. Though it is 

worth noting that use of 𝑓(𝑗) inside 𝑓(𝑥) could cause a potential loop that will need to be limited. 

 

𝐼𝑛𝑤𝑎𝑟𝑑 =  ∑
 (∑
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𝑧
𝑧
𝑗=1 )   

𝑣 + 𝑧

𝑐

𝑖=1

   

(3) 

The calculation for Inward connection is conducted in the same process at Outward, except 

that it measures with risk factors from the opposite direction.  The calculation starts by looping 
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through the risk stages denoted as 𝑐, then identifying the connections at that level, loop through 

the connections and get their connections to the main risk factors 𝑣, then for every 𝑛𝑗  get its 

risk level 𝑅𝑗, plus risk stage 𝑐𝑖, plus the rank of the risk factor 𝑓(𝑗), divided by 𝑛, then repeat the 

same process to get connections to other contributing factors 𝑧, add the values together and 

divide it by 𝑣 + 𝑧  to get the inward value.  

 

5.5.4 Crowdsourcing System Overview 

The CRFR component is designed to work as a complete independent system and doesn’t 

necessarily need to depend on the EPADf framework to serve its purpose. However, it has 

functionality that enables it to communicate and integrated with the framework through a 

Representational State Transfer (REST) application programming interface (API). This 

allows the system to send and receive data from external sources. Figure 5-19 is a flowchart 

that provides an overview of how this component is built. 

User Interface
(HTML Front-End)

Server-Side Script
(PHP)

Database
(SQL)

Application Programming 
Interface

(REST API)
Data Transfer

Task Scheduler
(Crons)

User interface (UI) 
where clnicians input 

and view data.

This section connects with 
the database and process 

requests from the UI.

To decrease server load this part of 
the system is scheduled to run the 

ranking calculations every 12h.

The API enables 
intergration of the system 
to the EPADf framework.

The databased where all 
inputs and calculated 

rankings are stored.

 

 

Figure 5-19 CRFR System Overview 
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 Deployment of Machine Learning Towards Early Prediction 

This section is a follow up for section (5.3) and section (5.4), after the pre-processing and 

analysis of the data. Machine learning models were deployed to investigate the possibility for 

early prediction results. Here we list the different models used during the investigations. The 

results will be presented in the results in Chapter 6.  

5.6.1 Phase 1: Initial Experiment Models 

During both the training stage and test stage for the intial experment, the five different classifers 

were applied consecutively for approximatly 30 simulation runs for a better accuracy. We used 

five different Machine Learning Classifiers; Random Oracle Model, Random Forest Classifier, 

Fischer Discriminate Analysis, Multi-Layer Perceptron and Linear Neural Networks. Table 

5-10 provides a description for each classifiers. For this initial exprement we used 70% of the 

data to train the classifiers, 10% for validation,   and 20% was used to test the performance of 

the classifiers. 

Table 5-10 Initial Experiment Models 

Models Description Type 

Random Forest (rf) Implements Breiman's random forest algorithm 

(based on Breiman and Cutler's original Fortran 

code) for classification and regression. 

Classification, 

Regression 

Random Oracle Model Pseudorandom number generator Classification 

H2 - Levenberg- Marquardt 

learning neural network and 

Random Forest, combined 

using Fischer discriminate 

analysis 

A hybrid model combined of Levenberg 

Marquardt learning algorithm and Random Forest, 

combined using Levenberg neural network. It uses 

Classification, 

Regression 
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gradient descent with momentum and adaptive 

learning rate backpropagation. 

Linear Neural Networks Used for batch training with weight and bias 

learning rules. 

Classification, 

Regression 

Multi-Layer Perceptron (MLP) A fully connected feedforward artificial neural 

network. 

Classification, 

Regression 

 

5.6.2 Phase 2: Model Used to Rank Risk Factors by Importance 

Four candidate models are used to explore the dataset to rank Alzheimer’s disease risk factors 

by importance and validate the accuracy with 10-fold cross validation and total of 30 

simulations. The models compared are Random Forest (RF), Neural Networks with a Principal 

Component Analysis (pcaNNet), Support Vector Machines with Linear Kernel (svmLinear), 

and Multi-Layer Perceptron (MLP). Table 5-11 provides a description for each classifiers. 

Table 5-11 Model Used to Rank Risk Factors by Importance 

Models Description Type 

Random Forest (rf) Implements Breiman's random forest algorithm 

(based on Breiman and Cutler's original 

Fortran code) for classification and regression. 

Classification, 

Regression 

Neural Networks with a 

Principal Component Analysis 

(pcaNNet) 

Run Principal Component Analysis on a 

dataset, then use it in a neural network model. 

Classification, 

Regression 



 

 

127 | P a g e  

 

 

 

Support Vector Machines with 

Linear Kernel (svmLinear) 

Based on the concept of decision planes that 

define decision boundaries and performs linear 

regression in the high-dimension feature space. 

Classification, 

Regression 

Multi-Layer Perceptron (MLP) A fully connected feedforward artificial neural 

network. 

Classification, 

Regression 

Variables importance gives an indication of the possible predictive factors in the dataset by 

calculating their statistical significance. The calculation happens with respect to its impact on 

the generated model. On the other hand, since the variable importance is based on the 

contribution that predictors make to the model, this also helps us determine which variables 

are not necessarily required to be in the dataset. The four machine learning models used to 

explore the ADNI dataset to rank Alzheimer’s disease risk factors by importance are the 

Random Forest (RF), Neural Networks with a Principal Component Analysis (pcaNNet), 

Support Vector Machines with Linear Kernel (svmLinear), and Multi-Layer Perceptron (MLP). 

We validated the accuracy with 10-fold cross validation and total of 30 simulations. The models 

would use the dataset to train with and build a predictive model then validate the impact of 

each variable against the built model and scale the best performing variables.  

5.6.3 Phase 3: Final Classification Experiment Models 

For the final experment we used the same classifers as the initial experiment for both the 

training stage and test stage, the five different classifers were applied consecutively for 30 

simulation runs. We used five different Machine Learning Classifiers; Random Oracle Model, 

Random Forest Classifier, Fischer Discriminate Analysis, Multi-Layer Perceptron and Linear 

Neural Networks. Table 5-12 provides a description for each classifiers. For this final 
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exprement we used 70% of the data was used for training the classifiers, 10% for validation,   

and 20% was used to test the performance of the classifiers. 

Table 5-12 Final Classification Experiment Models 

Models Description Type 

Random Forest (rf) Implements Breiman's random forest algorithm 

(based on Breiman and Cutler's original Fortran 

code) for classification and regression. 

Classification, 

Regression 

Random Oracle Model Pseudorandom number generator Classification 

H2 - Levenberg- 

Marquardt learning neural 

network and Random 

Forest, combined using 

Fischer discriminate 

analysis 

A hybrid model combined of Levenberg Marquardt 

learning algorithm and Random Forest, combined 

using Levenberg neural network. It uses gradient 

descent with momentum and adaptive learning rate 

backpropagation. 

Classification, 

Regression 

Linear Neural Networks Used for batch training with weight and bias 

learning rules. 

Classification, 

Regression 

Multi-Layer Perceptron 

(MLP) 

A fully connected feedforward artificial neural 

network. 

Classification, 

Regression 

 

 Summary 

In this chapter we provided and in-depth discusses on the methods that we intend to use to 

achieve the objectives in this thesis. We presented the proposed framework for early prediction 

with a comprehensive discussion of its sub-components, which, includes the learning models 

and deployment phases, the web-based crowdsourcing system, and logical approaches toward 

early predictions. As well as a descriptive analysis and visualisation of the data we plan to use 

as a baseline of the propose framework. The next chapter will present the results of the 

conducted experiments and discussion of these results. 
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 Results 

 Introduction 

In the previous chapter, we presented a machine learning models deployment strategy as well 

as a visual exploration of the data. This chapter is a follow-up for Chapter 5 section (5.3), 

section (5.4), and section (5.6). After the pre-processing and analysis of the data, machine 

learning models were deployed to investigate the possibility for early prediction results.  Here 

are the results for all the three stages of the research. 

 Performance Evaluation Metrics 

We compared the performance of the classifiers by measuring and evaluating their 

performances by calculating their decision threshold parameter. Our classifier evaluation 

consists of two stages; training evaluation (in sample) and testing evaluation (out-of-sample). 

We used a number of methods to measure the accuracy of the classifiers, which include 

sensitivity, specificity, F1 score, precision, Youden’s J statistic, and the overall classification 

accuracy, then we presented the overall true and false values for each model using Area under 

the Curve (AUC) and Receiver Operating Characteristic (ROC) plots. These methods used to 

measure the classifiers results, are dependent on the overall count of these possible outcomes; 

True Positive (TP) and True Negative (TN) results that represents patients that are correctly 

classified for positive and negative respectively, False Positives (FP) represents number of 

patient that have the disease and have been misclassified, and final possible outcome is False 

Negatives (FN), which represent positive number of patients that don’t have the disease and 
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have been incorrectly classified. Table 6-1 is a contingency table known as confusion matrix 

showing the four possible outcomes, and   

Table 6-2 describes the methods used that utilised confusion matrix outcomes to evaluate the 

performance of the classifiers. 

Table 6-1 Confusion Matrix 

 Actual Results 

P
re

d
ic

te
d

 R
es

u
lt

s 

 Positive (1) Negative (0) 

Positive (1)  

TP 

 

FP 

Negative (0)  

FN 

 

TN 

  

Table 6-2 Metrics Calculation 
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 Phase 1: Initial Experiment Results 

The initial experiment had training results of 0.92 sensitivity, 0.935 specificity and 0.771 

precision. However, during the test stage the final output was 0.741 sensitivity, 0.515 

specificity and 0.286 precision. The results of this experiment did not give a clear classification 

or definite predictive value. Involving more variables and underlying data could provide a 

better outcome. This section was an initial experiment to examine the performance of the 

classifiers.  The aim of all three stages of the research is the classification and ranking of the 

importance of Alzheimer’s disease risk factors using Machine Learning predictive models and 

classifications techniques. 

6.3.1 Initial Experiment Training Results 

During both the training stage and test stage, the five different classifiers were applied 

consecutively for 30 simulation runs (1,000 iterations per simulation) for a better accuracy. The 

contrast between the outcome of the training experiment and the test experiment is obvious. As 

expected, the classifiers have performed better during the training stage because the class labels 

Metric Name Calculation 

Sensitivity TP/(TP+FN) 

Specificity TN/(TN+FP) 

Precision TP/(TP+FP) 

F1 score 2 * (Precision*Recall)/(Precision+Recall) 

Youden's J statistic (J Score) Sensitivity + Specificity − 1 

Accuracy (TP+TN)/(TP+FN+TN+FP) 

Area Under Curve (AUC) 0 <=  𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑅𝑂𝐶 𝐶𝑢𝑟𝑣𝑒 <=  1 

ROC sensitivity vs (1 − specificity) 



 

 

132 | P a g e  

 

 

 

were provided to the training model. The hybrid classifier Levenberg- Marquardt learning 

neural network and Random Forest, combined using Fischer discriminate analysis (referenced 

as H2) performed the best while other classifiers did not have dramatic differences during the 

test stage. Figures and Tables in section (6.3) show the outcome of both training and test 

experiments. From a constructive perspective the initial investigation provides a needed 

foundation to draw a roadmap for further work and it has become apparent that more variables 

related to Alzheimer’s disease risk factors are required to improve the accuracy of the 

classifiers. 

Figure 6-1 below is a simplified chart displaying the AUC training results for all of the 

classifiers used showing each class in the dataset in a different colour. The y-axis of the graph 

displays the accuracy of the classifier between 0 and 1. Where 1 means that the performance 

of classifier was successfully, and 0 means the classifier failed to perform of the data.  The x-

axis is displaying the classes in the data for each of the classifying model. 
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Figure 6-1 Training results for 5 different classifiers on Matlab 
 

 

Figure 6-2 ROC training results for each classifier on Matlab 
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Figure 6-2 is a group of ROC plots displaying a ROC curve for each model, with True Positive 

(TP) rate against the False Positive (FP) rate, where TP is on y-axis and FP is on the x-axis. 

The closer the curve to 1 on the y-axis the better the performance of the classifier. 

Table 6-3 Training Overall Results (Phase 1) 

Model Class Sensitivity Specificity Precision F1 score J Accuracy AUC 

ROM NC 0.553 0.591 0.356 0.433 0.144 0.58 0.569 

 EMCI 0.492 0.547 0.284 0.36 0.0383 0.532 0.505 

 LMCI 0.389 0.623 0.254 0.308 0.0122 0.565 0.466 

 AD 0.545 0.526 0.216 0.31 0.0713 0.53 0.501 

RFC NC 0.53 0.728 0.443 0.483 0.258 0.67 0.642 

 EMCI 0.557 0.613 0.345 0.426 0.17 0.598 0.62 

 LMCI 0.549 0.696 0.373 0.444 0.245 0.659 0.655 

 AD 0.58 0.58 0.249 0.348 0.16 0.58 0.606 

H2 NC 0.909 0.938 0.857 0.882 0.847 0.93 0.983 

 EMCI 0.934 0.925 0.82 0.874 0.859 0.927 0.98 

 LMCI 0.956 0.898 0.755 0.844 0.853 0.912 0.981 

 AD 0.92 0.935 0.771 0.839 0.855 0.932 0.982 

MLP NC 0.568 0.699 0.436 0.493 0.267 0.661 0.682 

 EMCI 0.574 0.581 0.335 0.423 0.155 0.579 0.627 

 LMCI 0.619 0.669 0.383 0.473 0.288 0.656 0.692 

 AD 0.644 0.657 0.308 0.416 0.3 0.654 0.71 

LNN NC 0.636 0.565 0.375 0.472 0.202 0.586 0.625 

 EMCI 0.508 0.587 0.312 0.386 0.0955 0.566 0.568 

 LMCI 0.655 0.545 0.323 0.433 0.2 0.573 0.624 

 AD 0.471 0.695 0.268 0.342 0.166 0.652 0.582 

 

Table 6-3 above is displaying the metrics calculation for evaluation methods used to evaluate 

the performance of the classifiers on each class of the dataset. 

 



 

 

135 | P a g e  

 

 

 

6.3.2 Initial Experiment Test Results 

 

Figure 6-3 Test results for 5 different classifiers on MATLAB 

Similar to Figure 6-1, Figure 6-3 above is a simplified chart displaying the AUC test results for 

all of the classifiers used. The y-axis of the graph displays the accuracy of the classifier between 

0 and 1. We notice that when testing the models with unlabelled data after they have complete 

their training, the models performance significantly reduces, especially the H2 classifier. 
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Figure 6-4 ROC Test results for each classifier on Matlab 

 

Figure 6-4 is a group of ROC plots displaying a ROC curve for each model, with True Positive 

(TP) rate against the False Positive (FP) rate, where TP is on y-axis and FP is on the x-axis. As 

shown in this figure almost all of the classifiers had almost a straight line instead of a curve 

which, means they struggle to perform. 

Before the experiment there were no prior expectations, the experiment results of the classifiers 

might not give a very clear classification or definite predictive value, but we expect to see 

which classifier performed best on the data and which risk factor is more likely to be a 

predictive factor to the rest of the dataset variables. Unfortunately, we could not tell which 

variables were potential high-risk factors, (predictive feature) from this experiment. However, 

we have noticed that the H2 hybrid classifier has performed better compared to other classifiers 

during both training and testing phases. The hybrid Fischer Discriminate Analysis classifier 



 

 

137 | P a g e  

 

 

 

(H2) gave training results of 0.92 sensitivity, 0.935 specificity and 0.771 precision. During the 

test stage the final output of this classifier was 0.741 sensitivity, 0.515 specificity and 0.286 

precision. The results of this experiment did not give a clear classification or definite predictive 

value. Which means involving more variables and underlying data could provide a better 

outcome. This was conducted in part three of the thesis. 

 Phase 2: Rank Risk Factors by Importance Results 

The four machine learning models used to explore the ADNI dataset to rank Alzheimer’s 

disease risk factors by importance are the Random Forest (RF), Neural Networks with a 

Principal Component Analysis (pcaNNet), Support Vector Machines with Linear Kernel 

(svmLinear), and Multi-Layer Perceptron (MLP). We validated the accuracy with 10-fold cross 

validation and a total of 30 simulations. The models would use the dataset to train with and 

build a predictive model then validate the impact of each variable against the built model and 

scale the best performing variables.  This section illustrates the output of the four models used 

to calculate the importance of some Alzheimer’s disease behavioural and biological risk factors 

in the ADNI dataset. 

6.4.1 Ranking with Random Forest Model 

The first model employed was the Random Forest (RF), which, is an ensemble learning method 

often used for both classification and regression problems. The outcome of this model shows 

that the overall top three most important variables are APOE4 gene, Age, and lack of energy. 

Followed by significant importance for father dementia history and vision problems.  Other 

risk factors also have some sort of importance and the lowest ones were smoking, ethnicity, 



 

 

138 | P a g e  

 

 

 

cardiovascular problems, and alcohol consumption. We believe the reason for some of the least 

importance factors in this result i.e. smoking and alcohol could either be true or because the 

duration of consumption was not involved. For each individual class the variable importance 

was different.  

The most interesting part of this outcome is the results for subjects with Alzheimer’s disease, 

normal control, and subjects with significant memory concern as they have some sort of logical 

correlations with current research and support our study to investigate and predict Alzheimer’s 

disease at a very early stage. Alzheimer’s disease subjects had APOE4, drowsiness, education 

level, work category, and weight as highest importance factors, and ethnicity, height, and 

mother’s dementia history as the least important factors. Subjects with significant memory 

concern had low energy, vision problem, feeling dizzy and drowsy, and headache as highest 

importance factors, and weight, drugs, cardiovascular as the least important factors. Normal 

control subjects had APOE4, age, low energy, drowsiness and height as highest importance 

factors, and weight, smoking, depression as the least important factors. 

In the significant memory concern group of subjects, the high importance factors are all head 

and brain related problems which to some logical extent shows some positive results. However, 

having significant memory concern does not necessarily means the onset of Alzheimer’s 

disease, and therefore, the important variables for these subjects do not necessarily need to 

correlate significantly with Alzheimer’s disease subjects. Additionally, this class had a very 

low distribution and there is a probability that the results would change if there were a much 

bigger number of subjects. Table 6-4 shows the top five most important risk factors for each 

class of the dataset using the Random Forest model, alongside this Figure 6-5 is showing the 
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level of importance for each variable in each class of the dataset. The discussion in this section 

is based on the results produces by this model. 

Table 6-4 Variable importance using Random Forest model 

 

Figure 6-5 Overall results of the variable importance using the Random Forest model 

AD NC EMCI SMC LMCI Overall 

APOE4 APOE4 AGE ENERGY ENERGY APOE4 

DROWSY AGE DAD VISION VISION AGE 

EDUCATION ENERGY WEIGHT DIZZY HEADACHE ENERGY 

WORK DROWSY ENERGY DROWSY DIZZY DAD_DEMENTIA 

WEIGHT HEIGHT HEADACHE HEADACHE DEPRESSION VISION 
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6.4.2 Ranking with Neural Network & PCA 

The second model was the Neural Network model with feature extraction method using 

principal component analysis (pcaNnet), which, is a neural network model that runs principal 

component analysis on the data to compute the cumulative percentage of variance for each 

principal component. It is a common method often used for both classification and regression 

problems [128]. 

The outcome of this model shows that the overall top three most important variables are 

dizziness, depression, and drowsiness as can be seen in Table 6-5. Followed by respectful 

importance for vision problems and low energy.  Other risk factors also have some sort of 

importance and the lowest ones were alcohol consumption, race, ethnicity, and drug use. Again, 

we believe the reason for some of the least importance factors in this result i.e. smoking, drugs 

and alcohol could either be insignificant or because the duration of consumption was not 

involved. Moreover, in the results for this model each individual class had different variable 

importance. The interesting part in the performance of this model is the results for subjects 

with Alzheimer’s disease, subjects with significant memory concern, and early mild cognitive 

impairment subjects as they have some sort of correlations. 

Alzheimer’s disease subjects had APOE4, age, weight, father’s dementia history, education 

and depression as highest importance factors, and ethnicity, smoking, drugs and alcohol as the 

least important factors. Subjects with significant memory concern had age, APOE4, weight, 

depression and father’s dementia history as highest importance factors, and ethnicity, smoking, 

and drugs as the least important factors. Early mild cognitive impairment subjects had 
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dizziness, depression, drowsiness, vision and energy as highest importance factors, and 

ethnicity, alcohol, and drugs as the least important factors. In the early mild cognitive 

impairment group of subjects the high importance factors are all head and brain related 

problems which to some logical extent shows some positive results as they are also symptoms 

of dementia [3][3][5].  

 

Figure 6-6 Overall results of the variable importance using the pcaNnet model 

The discussion in this section is based on the results produces by Neural Network with PCA 

model. Figure 6-6 is showing the level of importance for each variable in each class of the 

dataset and the top 5 results in this figure have been summarised in Table 6-5 below. 
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Table 6-5 Variable importance using pcaNNet 

6.4.3 Ranking with Support Vector Machines 

The third model used was the Support Vector Machines with Linear Kernel (svmLinear), which 

is a supervised machine learning model that constructs hyperplanes high dimensional data and 

can be used for both classification and regression analysis. It is a common algorithm often used 

to solve machine learning problems and has been widely applied in the biological and other 

sciences [141]. 

The outcome of this model shows that the overall top three most important variables are 

drowsiness, low energy, and vision as seen in Table 6-6. Followed by some high importance 

for dizziness and headache.  Other risk factors also have some sort of importance and the lowest 

the ones were drug use, smoking, ethnicity, and alcohol consumption. Again, we believe the 

reason for some of the least importance factors in this result i.e. smoking, drugs and alcohol 

could either be insignificant or because the duration of consumption was not involved. Like 

the results of other models each class in this model had comparable variable importance except 

subjects with early mild cognitive impairment as their variable importance significantly differs 

from the rest of the classes. 

AD NC EMCI SMC LMCI Overall 

APOE4 APOE4 DIZZY AGE APOE4 DIZZY 

AGE EDUCATION DEPRESSION APOE4 AGE DEPRESSION 

WEIGHT VISION DROWSY WEIGHT EDUCATION DROWSY 

DAD_ 

DEMENTIA 

DIZZY VISION DEPRESSION DAD_ 

DEMENTIA 

VISION 

EDUCATION 

& 

DEPRESSION 

WEIGHT ENERGY 

 & 

HEADACHE 

DAD_ 

DEMENTIA 

WEIGHT ENERGY 
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Alzheimer’s disease subjects had APOE4, age, weight, education and depression as highest 

importance factors, and ethnicity, smoking, drugs and alcohol as the least important factors. 

Which is almost same as the results produced by pcaNent model.  

 

Figure 6-7 Overall results of the variable importance using the svmLinear model 

The discussion in this section is based on the results produces by svmLinear model. Figure 6-7 

is showing the level of importance for each variable in each class of the dataset and the top 5 

results in this figure have been summarised in Table 6-6 below. 
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Table 6-6 Variable importance using svmLinear 

 

6.4.4 Ranking with Multi-Layer Perceptron 

The last model examined was the Multi-Layer Perceptron (MLP), which is a supervised 

learning feedforward artificial neural network model that uses a minimum of 3 layers of nodes. 

It uses a technique called backpropagation to perform its training and it is often used for both 

classification and regression analysis [86]. 

The results produced by this model show that the top three most important variables are 

headache, low vision, and depression as shown in Table 6-7. Followed by some importance for 

energy and dizziness.  Other risk factors also have some sort of importance and the lowest ones 

were drug use, smoking, ethnicity, and alcohol consumption. The least important variables are 

almost the same as the least important variables recognised by other models. Although, they 

had some sort of importance in the results produced by other models here we see that they are 

almost of zero importance.  Perhaps in a future experiment we will try adding the duration of 

the consumption and see if they would have higher importance. Like the results of other models 

each class in this model had similar variable importance except subjects with early mild 

AD NC EMCI SMC LMCI Overall 

APOE4 APOE4 DROWSY AGE APOE4 DROWSY 

AGE EDUCATION ENERGY APOE4 AGE ENERGY 

WEIGHT VISION VISION WEIGHT EDUCATION VISION 

EDUCATION  DIZZY DIZZY DEPRESSION DAD_DEMENTIA DIZZY 

DEPRESSION WEIGHT HEADACHE 

&  

DEPRESSION 

DAD_DEMENTIA WEIGHT HEADACHE 
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cognitive impairment as their variable importance significantly differs from the rest of the 

classes. However, what is apparent here is that almost across all classes, factors that are related 

to symptoms of Alzheimer’s disease are recognised to have some importance. 

 

Figure 6-8 Overall results of the variable importance using the MLP model 

The discussion in this section is based on the results produces by MLP model. Figure 6-8 is 

showing the level of importance for each variable in each class of the dataset and the top 5 

results in this figure have been summarised in Table 6-6 below. 
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Table 6-7 Variable importance using MLP 

6.4.5 Combined discussion of Risk Factor’s ranking 

The experiment employed four different machine learning models on the dataset extract to rank 

variables based on importance. These models include the Random Forest (RF), Neural 

Networks with a Principal Component Analysis (pcaNNet), Support Vector Machines with 

Linear Kernel (svmLinear), and Multi-Layer Perceptron (MLP). The overall output of the 

models combined suggests that all variables had some sort of importance but variables that had 

highest importance are energy, vision, dizziness, depression and headaches (top 5 from the 

combined overall results). This is very interesting as current research shows that social 

inactivity and sport inactivity are related to Alzheimer’s disease and could possibly be 

contributing risk factors [142][59]. Lack of energy could indicate that the subject had a low 

sporty lifestyle, and correspondingly depression could also indicate a lazy and anti-social 

lifestyle.  

The stated results above were mainly influenced by the results for early mild cognitive 

impairment subjects as the importance level was very high for that class. However, there are 

other high importance variables beside energy and vision, APOE4, age, and father’s dementia 

AD NC EMCI SMC LMCI Overall 

APOE4 APOE4 DROWSY AGE APOE4 HEADACHE 

AGE EDUCATION ENERGY APOE4 AGE VISION 

WEIGHT VISION VISION WEIGHT EDUCATION DEPRESSION 

EDUCATION  DIZZY DIZZY DEPRESSION DAD_DEMENTIA ENERGY 

DEPRESSION WEIGHT HEADACHE 

&  

DEPRESSION 

DAD_DEMENTIA WEIGHT DIZZY 
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history have scored high importance also. This also indicates that genetics also play a vital role 

in the development of Alzheimer’s disease and as such, current research recognises the 

important role of APOE4 in relation to Alzheimer’s disease [143]. 

 Phase 3: Final Classification Results 

During both the training stage and test stage, the five different classifiers were applied 

consecutively for 30 simulation runs (1,000 iterations per simulation). The classifiers have 

performed better during the training stage because the class labels were provided to the training 

model.  Figures and Tables in section (5.3) show the outcome of both training and tests during 

this experiment.  

Results from the data analysis and visualisation process in section (5.4.3) show that some slight 

apparent structure is present within the data. Though both PCA and t-SNE plots show that the 

two techniques struggled to separate the classes to clear clusters, this is an indication that the 

data will be challenging for the classifiers to create a clear separation between the classes. This 

section presents the results showing how the classifiers performed compared to each other. 

Table 6-8 Graphs Keys Representation 

Class AD NC LMCI EMCI SMC 

Keys on Graph 1 2 3 4 5 

Table 6-8 above shows the representation of the classes’ keys on the graphs presented in this 

section. 

Here we analyse the results from the experiment as listed in Table 6-9 and Table 6-10, showing 

overall performance results for classifiers during the training and testing stages, separately. To 
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demonstrate the performance results further, further visualisations are presented using ROC 

plots as shown in Figure 6-10 and Figure 6-12, and AUC comparison plots as shown in Figure 

6-9 and Figure 6-11. 

Table 6-9 : Mean Performance for Models (Test) (Phase 3) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

ROM 0.4646 0.5704 0.2138 0.2918 0.03508 0.5494 0.492 

RFC 0.671 0.6224 0.3224 0.4324 0.2932 0.6318 0.6808 

H2 0.8502 0.806 0.5458 0.6592 0.6562 0.8148 0.8812 

MLP 0.8282 0.7742 0.5026 0.6186 0.6026 0.7846 0.8642 

LNN 0.706 0.7238 0.4194 0.5208 0.42996 0.7206 0.7628 

 

Table 6-10 : Mean Performance for Models (Training) (Phase 3) 

Model Sensitivity Specificity Precision F1 J Accuracy AUC 

ROM 0.5064 0.5168 0.2078 0.2948 0.0232 0.5146 0.509 

RFC 0.6536 0.66 0.3312 0.4386 0.313 0.6588 0.6952 

H2 0.9484 0.9528 0.8358 0.8882 0.9008 0.952 0.9876 

MLP 0.8748 0.8776 0.6534 0.7458 0.7526 0.877 0.9398 

LNN 0.7522 0.7734 0.4696 0.575 0.5258 0.769 0.821 

It is clear from the performance results that the dataset contains significant non-linear 

relationships, which made the learning process very difficult for the test models. The best 

performing classifier was the hybrid model combination of Levenberg- Marquardt learning 

neural network and Random Forest, combined using Fischer discriminate analysis (H2), as 
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shown in Table 6-12, followed by the Multi-layer Perceptron Model (MLP), both demonstrated 

their capabilities in fitting the training data, then generalising to unseen examples during 

testing. 

The mean AUC for the hybrid model for all the classes yielded an area of 0.987 during training, 

in comparison to 0.881 during the test sample. Though the classifier struggled with three 

classes (2-3) during the test and performed best for all the classes during the training. The 

Multi-layer Perceptron model (MLP) also displayed similar results but struggled with the same 

three classes as the hybrid model during both training and testing. The MLP had a mean AUC 

for all the classes yielding at 0.939 during training, in comparison to 0.864 during the test 

sample. The third best classifier that also had improved results compared to the initial 

experiment is the Linear Neural Networks (LNN) model. Though it had a good AUC for class 

1 during the both training and testing, overall the mean AUC for all classes yielded at 0.821 

during training and 0.762 for testing. 

This experiment found that the classifiers H2, MLP, and LNN have improved in classification 

after the enhancement of the dataset, while the Random Oracle Model (ROM) and Random 

Forest Classifier (RFC) classifiers made small and insignificant improvement giving a mean 

AUC yielding at 0.509 and 0.695 for training and 0.492 and 0.680 for testing, respectively. The 

RCF is founded on decision tree primitives, and possibility of overfitting problems have caused 

it to struggle with the classification.  
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6.5.1 Final Classification Training Results 

 
Figure 6-9 : Training AUC for all models (Phase 3) 

 

 
Figure 6-10: Training ROC curve for all models (Phase 3) 
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Table 6-11: Models Performance for all Classes (Training) (Phase 3) 

Model Class Sensitivity Specificity Precision F1 J Accuracy AUC 

ROM Class 1 0.512 0.49 0.193 0.281 0.0018 0.494 0.505 

 Class 2 0.489 0.545 0.217 0.301 0.0342 0.534 0.509 

 Class 3 0.472 0.517 0.195 0.276 -0.0108 0.508 0.489 

 Class 4 0.514 0.539 0.218 0.306 0.0534 0.534 0.519 

 Class 5 0.545 0.493 0.216 0.31 0.0374 0.503 0.523 

RFC Class 1 0.683 0.706 0.357 0.469 0.389 0.702 0.753 

 Class 2 0.531 0.645 0.278 0.365 0.176 0.622 0.62 

 Class 3 0.567 0.59 0.255 0.351 0.156 0.585 0.582 

 Class 4 0.606 0.586 0.267 0.371 0.191 0.59 0.623 

 Class 5 0.881 0.773 0.499 0.637 0.653 0.795 0.898 

H2 Class 1 0.974 0.974 0.898 0.934 0.947 0.974 0.996 

 Class 2 0.933 0.934 0.785 0.853 0.867 0.934 0.983 

 Class 3 0.921 0.952 0.825 0.87 0.872 0.946 0.98 

 Class 4 0.929 0.936 0.783 0.85 0.865 0.934 0.982 

 Class 5 0.985 0.968 0.888 0.934 0.953 0.972 0.997 

MLP Class 1 0.96 0.943 0.8 0.873 0.903 0.946 0.987 

 Class 2 0.799 0.855 0.588 0.677 0.654 0.844 0.908 

 Class 3 0.835 0.824 0.54 0.656 0.66 0.826 0.914 

 Class 4 0.847 0.833 0.558 0.673 0.68 0.836 0.911 

 Class 5 0.933 0.933 0.781 0.85 0.866 0.933 0.979 

LNN Class 1 0.955 0.923 0.748 0.839 0.878 0.929 0.982 

 Class 2 0.769 0.732 0.425 0.548 0.501 0.739 0.83 

 Class 3 0.535 0.75 0.346 0.42 0.285 0.707 0.673 

 Class 4 0.679 0.712 0.37 0.479 0.391 0.705 0.756 

 Class 5 0.823 0.75 0.459 0.589 0.574 0.765 0.864 
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6.5.2 Final Classification Test Results 

 

Figure 6-11 : Test AUC for all models (Phase 3) 

 

Figure 6-12 : Test ROC curve for all models (Phase 3) 
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Table 6-12 - Part 3: Models Performance for all Classes (Test) 

Model Class Sensitivity Specificity Precision F1 J Accuracy AUC 

ROM Class 1 0.417 0.639 0.239 0.304 0.0561 0.592 0.481 

 Class 2 0.433 0.536 0.175 0.249 -0.0312 0.517 0.462 

 Class 3 0.564 0.491 0.226 0.323 0.0551 0.506 0.509 

 Class 4 0.464 0.605 0.223 0.301 0.069 0.578 0.513 

 Class 5 0.445 0.581 0.206 0.282 0.0264 0.554 0.495 

RFC Class 1 0.667 0.673 0.357 0.465 0.34 0.672 0.732 

 Class 2 0.596 0.538 0.227 0.329 0.134 0.549 0.601 

 Class 3 0.556 0.604 0.27 0.363 0.159 0.594 0.591 

 Class 4 0.627 0.499 0.234 0.341 0.126 0.524 0.582 

 Class 5 0.909 0.798 0.524 0.664 0.707 0.82 0.898 

H2 Class 1 0.942 0.907 0.734 0.825 0.849 0.914 0.973 

 Class 2 0.788 0.753 0.421 0.548 0.541 0.759 0.838 

 Class 3 0.812 0.703 0.419 0.552 0.515 0.725 0.806 

 Class 4 0.791 0.758 0.444 0.569 0.549 0.765 0.83 

 Class 5 0.918 0.909 0.711 0.802 0.827 0.911 0.959 

MLP Class 1 0.942 0.918 0.758 0.84 0.86 0.923 0.973 

 Class 2 0.806 0.69 0.369 0.506 0.496 0.711 0.832 

 Class 3 0.72 0.713 0.401 0.515 0.434 0.715 0.775 

 Class 4 0.8 0.694 0.389 0.524 0.494 0.715 0.8 

 Class 5 0.873 0.856 0.596 0.708 0.729 0.859 0.941 

LNN Class 1 0.95 0.912 0.745 0.835 0.862 0.92 0.972 

 Class 2 0.728 0.703 0.355 0.478 0.431 0.708 0.785 

 Class 3 0.534 0.517 0.227 0.319 0.0508 0.52 0.524 

 Class 4 0.582 0.729 0.344 0.432 0.311 0.701 0.713 

 Class 5 0.736 0.758 0.426 0.54 0.495 0.754 0.82 
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 Discussion 

Following the extensive background research that resulted in the formalisation of the 

framework concept, prediction approaches, and the concept of ranking the risk factors based 

on clinical instinct, knowledge and experience using a mathematical algorithm, we conducted 

three experiments to get further insight and investigate the disease further using machine 

learning models.  

According to the Alzheimer's Association there are no current working methods to diagnose 

Alzheimer’s disease at a very early stage and the “current diagnosis of Alzheimer's relies 

largely on documenting mental decline” [144]. The method used to diagnose Alzheimer’s 

disease is by using the Mini Mental Score Examination test and in some cases a brain scan. 

Unfortunately, methods such as brain scans detect Alzheimer’s disease at a very late stage 

when all of the symptoms appear [3]. However, the more knowledge gained on Alzheimer’s 

disease, the closer scientists get to solve its mysterious cause.  

We conducted three experiments in this study on a dataset which was extracted from a larger 

dataset provided by Alzheimer’s disease Neuroimaging Initiative (ADNI). All subjects were 

unidentifiable, and the extracted data contained information that is related to Alzheimer’s 

disease possible risk factors. The risk factors are categorised as behavioural risk factors such 

as lifestyle, demographic and characteristics, and biological risk factors such as medical 

history, genetics, and symptoms of sickness (see Chapter 2). 

Our initial investigation was purely used as an approach to begin a long journey into early 

prediction of Alzheimer’s disease. The outcome of the work carried out, supports the need to 
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involve more underlying data related to both behavioural and biological markers of 

Alzheimer’s disease as the classifying models struggled to differentiate the dataset subject 

classes.  The overall aim of the study is to improve the accuracy of early diagnosis of 

Alzheimer’s disease, and start the foundation of a predictive dynamic framework, that aims to 

help with early prediction of Alzheimer’s disease, collection of valuable relevant data, support 

Healthcare Professionals with diagnosis decision-making and provide an insight into 

Alzheimer’s disease. 

Identifying the causes of Alzheimer’s disease is a very challenging task as it is caused by 

multiple risk factors. The use of Machine Learning to assist in the diagnosis and prediction 

process of Alzheimer’s disease will help us learn more about the disease and its behaviour. 

Using Machine Learning algorithms, computers can analyse and extract patterns from 

multivariable datasets far more quickly compared to humans. Early prediction of Alzheimer’s 

disease is a very challenging path of study since there is a limited amount of knowledge 

revealed on its underlying causes. However, that does not mean it is not possible. Alzheimer’s 

disease is like any other disease; it is caused by abnormal genetic mutation of the cells. At some 

point in the life of an Alzheimer’s disease subject, they must have been exposed over time to 

risk factors that are responsible for the development of Alzheimer’s disease. The apparent 

element in the study of Alzheimer’s disease, is that besides being caused by genetic disorder 

from birth it is also caused by over time genetic mutation as a side effect of multiple high-risk 

factors such as lifestyle, medical vascular diseases and genetics type.  

Overall our study aimed to explore the ADNI dataset and underlying connection between the 

risk factors. Though the outcome is based on the ADNI dataset and it cannot claim that the 
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summary of it is medically of significance. For our second phase of investigation we employed 

four different machine learning models on the dataset extract to rank variables based on 

importance. These models include the Random Forest (RF), Neural Networks with a Principal 

Component Analysis (pcaNNet), Support Vector Machines with Linear Kernel (svmLinear), 

and Multi-Layer Perceptron (MLP). The overall output of the models combined suggests that 

all variables had some sort of importance but variables that had highest importance are energy, 

vision, dizziness, depression and headaches. This is very interesting as current research shows 

that social inactivity and sport inactivity are related to Alzheimer’s disease and could possibly 

be contributing risk factors [17] [18]. Lack of energy could indicate that the subject had a low 

sporty lifestyle, and correspondingly depression could also indicate a lazy and anti-social 

lifestyle. Risk factors of Alzheimer’s disease are further discussed in one of our previous works 

and we proposed a framework to predict onset Alzheimer’s disease [19]. The stated results 

above were mainly influenced by the results for early mild cognitive impairment subjects as 

the importance level was very high for that class. However, there are other high importance 

variables beside energy and vision, APOE4, age, and father’s dementia history have scored 

high importance also. This also indicates that genetics also plays a vital role in the development 

of Alzheimer’s disease and as such current research recognises the important role of APOE4 

in relation to Alzheimer’s disease [20]. 

In our final investigation we employed the same classifying models on an enhanced dataset in 

efforts to improve their performance. Because of the limitation of the data we needed to use an 

over-sampling technique and involved more variables related to different risk factors including 

medical history, lifestyle, genetic type, demography and family history. The prediction was 
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successful for two of the models, however, this is based on this result and the data variable, 

and we can’t state that the journey towards early onset prediction is complete. The data variable 

contained a cognitive test score and this for some Alzheimer’s disease patients is not an onset 

indicator. Though without this the classifiers still improved in the classification since the initial 

set of investigations on the baseline dataset, which indicates that more information about the 

risk factors and their connection is the key toward early onset prediction. 

 Summary 

In this chapter we provided and in-depth discusses of the results generated form the machine 

learning models deployment of the ADNI dataset. The overall work conducted is summaries 

in Figure 6-13, which is a flowchart highlighting the work from start to end. Chapter 2 discusses 

the background research, Chapter 3 is the literature review in which discusses techniques and 

methods we used when building the presented framework, in Chapter 4 we discussed the 

presented framework and Chapter 5 comprehensively discusses the implementation of the 

framework. In this chapter we presented the results from the experiments, however the details 

of the experiments are spread across Chapter 5 and Chapter 6, in Table 6-13 we provide 

references to the location where the details on the experiments are discussed. 

Table 6-13 Information on all Experiments 

Experiments Data Analysis Experimental Setup Experimental Results 

Phase 1 Details in section 5.4.1 Details in section 5.6.1 Details in section 6.3 

Phase 2 Details in section 5.4.2 Details in section 5.6.2 Details in section 6.4 

Phase 3 Details in section 5.4.2 Details in section 5.6.3 Details in section 6.5 
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Figure 6-13 Research and work carried out in this thesis 

The Phase 1 results in this chapter are for our initial experiment on a limited baseline dataset 

extract from the ADNI data, these results helped us understand the data further as well as 

measure the performance of the learning models to classify the dataset. Phase 2 results in this 

chapter are for our second experiment on an extended dataset we used to rank the risk factors 

and to extract further more knowledge with a comprehensive discussion of the ranking results. 

Phase 3 of the results in this chapter are for our final experiment on the extended dataset to 

measure the performance of the machine learning models in providing an early prediction of 

Alzheimer’s disease. In this chapter we also provided a discussion of for all of the 3 phases of 

our experimentations. The next chapter will present our conclusion and recommendations for 

future work. 
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 Conclusion and Future Work 

 Introduction 

Here, we give our conclusion on the research problem and the work we have carried out to this 

point. The lessons we have learnt and the work we carried out toward the achievement of the 

objectives in this thesis will positively be a roadmap for future work toward practical and 

structured onset prediction and a cost-effective diagnosis of Alzheimer’s disease. 

 Conclusion 

In conclusion, it is difficult to manually diagnose Alzheimer’s disease, or any other types of 

dementia at an early stage before most of its symptoms are noticeable. General Practitioners 

(GP) would usually rely on diagnosing Alzheimer’s disease through manual evaluation by 

analysing its symptoms using several standards and procedures.  For example, in the United 

Kingdom the Department of Health recommends GPs to first use their clinical instinct to 

conduct a manual evaluation, but this often results in a misdiagnoses of the disease, and even 

if the diagnosis was correct this normally happens after the disease have advanced rapidly into 

the brain and there’s nothing available to reverse or stop its development. 

 The motivation behind this study is the fact that there have been no major breakthroughs and 

scientists are still unsure of what is the actual cause of Alzheimer’s disease and don’t have any 

cure for it, even though there is a valuable amount of knowledge and information that have 

been gained on the disease, yet these knowledge is not enough to pin point the actual causes of 
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the disease, and like any disease, it is important that we know its risk factors and avoid them. 

Researchers from different fields such as biology, physiology, neurology, computer science 

and others have been exploring Alzheimer’s disease for decades, and their work indicates that 

the pathology of Alzheimer’s disease progresses through different channels, and the main 

categories of its risk factors are age, genetics, medical history, lifestyle, and characteristics / 

demography (see Chapter 2).  

Health Service providers and major research institutions around the world have published 

multiple lists of risk factors that are potentially responsible for the development of Alzheimer’s 

disease. However, these risk factors do not mean that they are the only reasons behind the 

development of Alzheimer’s disease as research shows that risk factors varies from one person 

to another and there are other hidden factors that are currently unknown.  

These problems and challenges imposes the need for an early detection of Alzheimer’s disease, 

and the presence of methods that would enable us to learn more about the hidden patterns that 

leads to its pathology. Hence, at the start of this study we had one aim and seven objectives 

that we needed to accomplish to achieve our aim to predict early onset of Alzheimer’s disease. 

In this study we present a framework which we believe with enough data and continues use 

will predict Alzheimer’s as early as possible. We carried out work in this study that supports 

our claim; started with an extensive research on Alzheimer’s disease, different risk factors and 

their relevance to the pathology of Alzheimer’s disease which can be found in Chapter 2, then 

we carried out a literature review study on different learning methods and techniques to use as 

well as related work in this field which we included in Chapter 3. We presented logical 

approaches for early prediction and our proposed framework to be used as a future pathway 
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toward early prediction of Alzheimer’s disease (see Chapter 4), and during the implementation 

of this framework we investigated and analysed the ADNI database from a machine learning 

perspective for potential early onset prediction of Alzheimer’s disease, as well as presented a 

sub-component of the framework which is a crowdsourcing system with an algorithm to rank 

disease risk factors and contributors based on clinical knowledge and experience (see Chapter 

5). To build the machine learning component of the framework we investigated the 

performance of five machine learning classification models with different architectures on two 

different datasets, as well as conducting an experiment to rank the risk factors based on 

importance and evaluated the results for each machine learning models (see Chapter 5 and 6).  

Table 7-1 summaries the methods used to achieve the objectives of the thesis, here, in the table 

below we have the objectives listed in the first column and the corresponding work carried out 

and methods used to achieve it in the second column.  

Table 7-1 Objectives and Work Carried Out 

Objective Work Carried Out 

To gain an in-depth 

understanding of Alzheimer’s 

disease risk factors and the 

available Alzheimer’s disease 

datasets provided by ADNI, and 

extract the relevant data related 

to the research aim.  

An extensive background research was carried out on the 

disease as well as opening dialogues with professionals and 

experts on dementia and cognitive health. The work 

conducted for this objective is included in Chapter 2 and its 

sub-section, where we provided background research and 

analysis of Alzheimer’s disease risk factors. .  

To prepare a dataset by 

applying pre-processing, 

Real data was required to investigate Alzheimer Disease 

using Machine Learning. No ethical approval was needed, 

but access was granted to use anonymised Alzheimer’s 
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balancing and filtering 

techniques.  

patients’ data from ADNI. Data was extracted from multiple 

comma separated files (CSV) and unified to one set of data 

to be used as a baseline dataset for the experimentations. The 

data collected required a lot of pre-processing before the 

employment of machine learning models. This involved 

cleaning, normalization, balancing, and dealing with 

categorical data. The work carried out to achieve this 

objective is included in Chapter 5 in section 5.2 and 5.3.  

 

 

 

To conduct exploratory data 

analysis for further understand 

the data and select the relevant 

features that would assist the 

early prediction of Alzheimer’s 

disease.  

Before conducting the experimentations we conducted an 

analysis and visualisation of the data in order to form an 

understanding of what type of learning and models were to 

be used, this can be found in Chapter 5 in section 5.4. 

To develop a crowed-sourcing 

system to collect manual 

evaluation of risk factors’ 

interrelationships from an 

epidemical and pathological 

prospective.  

A crowdsourcing risk factor ranking system (CRFR) as a 

subcomponent of our framework was developed to collect 

clinical evolution of Alzheimer’s risk factors and their 

contributors. The system uses a ranking algorithm to convert 

the collected knowledge to numerical sum, the work on this 

objective can be found in Chapter 5 section 5.5. 

To deploy machine learning 

models on the baseline data to 

produce automatic weighting 

for the risk factors based on 

their correlation. 

To get further insight and investigate the disease further 

using machine learning models, we conducted three 

experiments in this study, two of the experiments were for 

classification and prediction of Alzheimer’s disease why 

one of the experiments was to rank the risk factors in the 
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dataset by importance. The work performed here is split into 

three different phases, the details and discussion of this work 

can be found in Chapter 5, Chapter 6, and in Table 6-13 we 

provide references to the location where the details on each 

experiment are discussed. 

 

To propose a new framework to 

detect Alzheimer’s disease 

before it causes severe brain 

damage. 

Based on our overall work during this study we formulated 

and presented a strategic framework called Early Prediction 

of Alzheimer’s Disease Framework (EPADf) that would 

give a future prediction of early onset Alzheimer’s disease. 

Chapter 4 includes a discussion on the framework and the 

logical approaches we used during this study.  

To dissemination of research 

findings and outcomes in 

international specialised venues 

and events. 

We produced research papers during this study and 

published them in international specialised venues. The list 

of publications can be found in page XVI. 

 

Our framework is a working concept we have implemented it on a limit dataset but the work 

we carried out to this point to build its sub components show a working method to predict the 

disease using behavioural and bio markers data that can be obtained through assessment or cost 

effective methods, as well as a working method to rank and analysis these risk factors and 

extract the hidden knowledge in the dataset. Owe conclude that we full implementation of such 

framework in an active environment with continuous feed of data will predict the development 

of Alzheimer’s disease, uncover hidden patterns and help people avoid the early contributing 

risk factors. This framework can also be applied to predict other disease and uncover the hidden 

pattern in their pathological development. This is discuss further in the future work section. 
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 Future Work 

This is the end of a long journey for me, but without a doubt the start of an even longer journey 

toward the final aim of fully understanding Alzheimer’s disease, well, at least from a 

computational perspective. This thesis concludes our work to date and motivates us for future 

works. This section will contain future recommendations, limitations, and challenges that could 

be used to further develop the work of this thesis. 

With the results of our experiential study, we consider further work directions, including 

improvements to the framework. Our framework aims to predict early onset of Alzheimer’s 

disease, and what we have done thus far opens doors for potential research directions to 

investigate Alzheimer’s disease further. The framework consists of multiple sub-components 

and perhaps the first point of improvements would be to collaborate with clinicians, doctors, 

and researchers to make most of the crowdsourcing system and input their knowledge into its 

platform, this would open doors to further understand the disease and even to understand the 

details of each risk factor and their contributors. This component of the framework can also be 

used to collect clinical evaluation about other disease and not only Alzheimer’s disease, it has 

the potential of expanding to become like an epidemic knowledge graph that provides an 

insight into diseases and give machines direct access to clinical evaluation.  

The success of such crowdsourcing system will open doors for further research and mining of 

hidden pattern behind the development of diseases, and it will also allow further improvements 

and development of this framework. A potential research direction would be the building of a 

data collection strategy in active real world environment such as hospital, home-care and local 
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clinics. For example using data that is related to patient’s diet, lifestyle, and complete medical 

history. From my experience while working at Med eTrax, we developed an in-hospital 

electronic observation system and an at-home electronic observation systems that keeps track 

of a patient’s wellbeing. The information is collected though a mobile application that uses 

sensors to get data as well as assessment questionnaires answered by the patients or carers. The 

most promising project currently under development by the company is the non-invasive point 

of care that uses sensors to get real-time full blood spectrum scan. Effective utilisation of such 

data and solutions to integrate them to the proposed framework here would provide an evolving 

system. These solutions can be used for data collection by designing a set of assessments to 

target biomarkers in Alzheimer’s patients from their medical history, lifestyle, DNA, 

demography and diet. 
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