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Abstract Most Internet of Things (IoT)-based service requests require excessive
computation which exceeds an IoT device’s capabilities. Cloud-based solutions
were introduced to outsource most of the computation to the data center. The
integration of multi-agent IoT systems with cloud computing technology makes
it possible to provide faster, more efficient and real-time solutions. Multi-agent
cooperation for distributed systems such as fog-based cloud computing has gained
popularity in contemporary research areas such as service composition and IoT
robotic systems. Enhanced cloud computing performance gains and fog site load
distribution are direct achievements of such cooperation. In this article, we pro-
pose a workflow-net based framework for agent cooperation to enable collaboration
among fog computing devices and form a cooperative IoT service delivery system.
A cooperation operator is used to find the topology and structure of the resulting
cooperative set of fog computing agents. The operator shifts the problem defined
as a set of workflow-nets into algebraic representations to provide a mechanism
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for solving the optimization problem mathematically. IoT device resource and col-
laboration capabilities are properties which are considered in the selection process
of the cooperating IoT agents from different fog computing sites. Experimental
results in the form of simulation and implementation show that the cooperation
process increases the number of achieved tasks and is performed in a timely man-
ner.

Keywords Cloud Computing · Fog Computing · Petri-Net · Workflow-Net ·
Internet of Things · Agent Cooperation.

1 Introduction

IoT devices, both stationary and mobile, provide simple and complex services,
especially, in cloud computing and big data applications. For instance, high levels
of performance, accuracy, and robustness are achieved using IoT robotic devices
in real-time applications such as manufacturing. However, in more advanced IoT-
based scenarios such as ’search-and-rescue’ [1], complex service composition [2]
and exploring new land and water terrains [3], pre-programmed IoT robotic devices
may not be able to achieve the requested service due to their hardware and software
limitations. The integration of IoT device communication using traditional and
advanced networks (i.e. smart grid networks [4]) with parallel distributed systems
has made it possible to achieve new complex tasks such as long-distance medical
surgeries and other specialized cases.

Although grid networks integrate communication and node resources, due to
the limitations of mobile node resources such as computation and storage, IoT
systems have moved towards more advanced and emerging technologies such as
cloud computing and big data [5]. Cloud computing is a data driven technology
that enables storage, computing, analysis, networking, and visualization of very
large data at cloud computing data centers. Such technology allowed for the de-
sign of multi-agent distributed systems that can achieve complex tasks with high
performance levels [6].

Cloud computing has brought great advances, but cloud-based systems have
moved away from the traditional centralized approach towards a more sustainable
and robust distributed scheme as well as enhancing the grid with cloud comput-
ing [7]. Fog computing has revolutionized traditional cloud computing architec-
tures to assure that cloud computing related tasks are performed at different fog
computing sites [8, 9]. Offloading cloud computing related tasks to fog comput-
ing devices in a distributed fashion not only balances the load among cloud and
fog computing sites, but can also support service task achievement with reduced
latency and improved service quality [10]. Fog computing is not an alternative
to cloud computing, but rather provides support. It was introduced to solve de-
lay issues for time sensitive applications. Fog computing is an intermediate layer
between IoT devices and the cloud datacenter. It extends the traditional cloud
computing paradigm towards the underlying networks by providing limited re-
sources to clients. By bringing the network and cloud computing resources closer
to the network edge, substantial amounts of requests can be processed near the
IoT devices instead of sending data all the way to the cloud datacenter.

Parallel distributed systems incorporate advantages over traditional systems
in terms of performance, design simplicity and task achievement that is deemed
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impossible using a single process [11–14]. Cooperation is defined as the process
of merging and managing resources and capabilities such as sensing, knowledge
and computation power to reach an objective. The objective is achieved by having
cooperating fog computing entities negotiate for IoT device resources and perform
task planning and scheduling.

In this article, we address the problem of multi-fog IoT agent cooperation
for enhanced task achievement. For instance, if a particular is requested from a
set of IoT devices in one area (i.e. fog computing site), such that a fog’s IoT
devices’ capabilities are insufficient or may consume excessive energy and time to
perform, then adopting a collaborative approach which relies on other IoT devices
in cooperative fog computing sites may achieve the requested service in accordance
with the quality and energy restrictions. An extension to Petri-nets [15], known
as Workflow-nets [16, 17] is used to establish a framework for cooperating fog
computing IoT agents [18] to achieve tasks by merging and managing the available
IoT device capabilities from different fog computing sites.

The cooperating partners are selected from different fog computing sites based
on the task coverage they maintain in which properties such as device capabilities
and whether device agents can collaboratively achieve the required task on time
are considered. The presented work fits well within multi-objective multi-device
scenarios such as IoT robotic systems that may require usage of IoT robot de-
vice capabilities which are not available in their surrounding environment, but
rather may be available at different locations. For instance, assume that a set of
collaborative IoT drones are available in a certain location and are capable of com-
municating with fog devices available at a certain fog computing site as depicted
in Figure 1. Assuming that the drones are incapable of completing the task due
to a resource constraint such as the lack of computing capabilities or the lack of
power availability. The fog determines that another IoT device (or set of devices)
at other collaborative fog computing sites are able and willing to cooperate with
the drones to achieve the requested service. Therefore, the new cooperating agents
will negotiate for resources, then perform task planning and scheduling to com-
plete the requested service in a timely and more efficient manner. This is achieved
by constructing, merging, and managing workflow-nets. Workflow-nets have been
a favorable choice and are adopted in research areas undergoing intense study
such as enhanced cloud service composition [19] [20], agent cooperation for task
achievement [21], and vehicular service management [22].

This work relies on a cooperation operator introduced in [23,24] that formulates
the topology and structure for a set of cooperating fog computing sites and IoT
device agents. The cooperative operator turns the composition problem defined
as a set of Workflow-nets into algebraic representations to solve and optimize
the problem mathematically. The presented work extends the work introduced
in [23] to provide a solution for fog and cloud computing systems targeting areas
of IoT agent cooperation to produce enhanced composed services (both simple
and complex) in a timely manner. We show through mathematical proofs and
experimental results that the proposed cooperative solution is applicable to fog-
based systems with limited node resources. To clarify the fog-based cooperative
solution incorporated in this paper for the reader, a realistic IoT-based cooperation
application scenario is integrated, which focuses on multi-robot (i.e. IoT multi-
device) task achievement. Hence, the literature review and experimental evaluation
sections will focus on IoT-based robotic issues and solutions.
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Fig. 1: Merging and managing IoT device capabilities at different fog computing sites to
accomplish a task efficiently.

To this end, related work is surveyed in Section 2. Section 3 illustrates the
methodology of the proposed framework and the agent cooperation algorithm.
Section 4 briefly summarizes the cooperative operator and its properties. Section
5 presents experimental evaluation results in support of the framework through
simulation and implementation tests. Section 6 concludes the paper and outlines
potential future work.

2 Related Literature

Cooperation is defined as the process of merging and managing resources and ca-
pabilities, such as computational power, of different entities to reach an objective.
The objective is achieved by having cooperating entities negotiate for resources
and perform task planning and scheduling. Cooperation among different entities
is widely common in many different engineering disciplines, such as robotics, wire-
less sensor networks [25, 26], and vehicular communication [27–32]. Advances in
both IoT devices and network technologies have made it possible for mobile and
stationary devices such as robots to perform collaborative tasks in various envi-
ronments [33]. Moreover, today’s advanced wireless technologies such as 5G have
made connectivity to cloud computing services easier, to allow for significantly
enhanced IoT system capabilities [34] as well as data management and congestion
mitigation in densely crowded environments [35] [36].

Cloud providers collaboration for the purpose of service discovery and man-
agement has been discussed in [37]. Solutions such as hybrid cloud and adaptive
scheduling for heterogeneous workloads have impacted the performability of work-
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flow applications in cloud environments [38] [39]. On the other hand, Fog node col-
laboration for the purpose of fulfilling requests and services sent from IoT nodes to
the fog computing layer and improving fog computing performance is considered
in [40] [41]. The proposed solution assumes that if a fog computing node can ac-
cept IoT node requests based on its current load, then it will process the requests.
Otherwise, it would offload the requests to other fog computing nodes or the cloud
datacenter, to achieve what they call ”load sharing”. Two modes of fog computing
interactions are adapted: centralized and distributed. In centralized, within each
fog computing domain, a node is selected to act as a central authority to control
the interactions among the fog computing nodes in the domain. Fog computing
nodes within a single domain report their estimated time to process IoT node
requests to the central fog computing node. The central node then announces the
estimated processing times to neighboring fog computing nodes. Fog computing
nodes compare those timings against pre-calculated thresholds. If a fog computing
node is capable of processing this request, then the task is offloaded to the capable
fog computing node. Otherwise, the request is forwarded to the cloud datacenter.
In the latter mode of fog computing node interaction (i.e. distributed), fog comput-
ing nodes can only collaborate with neighboring nodes using a universal protocol.
Each fog computing node maintains a reachability table using the estimated task
processing times it receives from neighboring fog computing nodes. Similar to the
central mode solution, a fog computing node will select the best neighbor that
is capable of processing the request with the smallest estimated processing time,
plus half of the roundtrip latency.

The authors in [42] introduced a communication framework for Autonomous
Underwater Vehicles (AUVs) which expands the computational and data resources
that are available to a team of AUVs by including public cloud computing re-
sources. A resource provisioning engine is designed to offload some of the AUVs’
tasks to the cloud datacenter. AUV workload is shared between local and cloud
computing resources based on communication cost, computation cost, and battery
capacity. The aim of the solution is to increase the lifetime of such power-limited
IoT devices. Additionally, with the availability of more sophisticated cloud com-
puting resources, high accuracy is also achievable. The focus of their work is on
resource-provisioning to allocate tasks between the cloud and local resources based
on the objective of minimizing execution time or the price of the execution. The
required set of tasks to be performed are represented using a Directed Acyclic
Graph (DAG), with tasks denoted by nodes in the graph. Directed edges indi-
cate the information flow from one task to another. Nodes on the same level of the
graph are executed in parallel, whereas nodes in consecutive levels are executed se-
quentially. Simulations using MATLAB were conducted to show the improvement
in task accuracy.

Wang et al. [43] proposed a hierarchical auction-based mechanism for au-
tonomous cloud computing robotic system negotiations within an ad hoc network
setting. The solution provides fast and efficient access to cloud computing resources
under a constrained bandwidth using firm real-time (FRM) communication. The
solution assigns a role to each node available in the network to manage the limited
communication capability of an ad hoc robot-to-robot (R2R) network. A proxy
node is chosen to be responsible for distributing the resources in the cloud ac-
cording to the auction results. Clients are the robots requiring cloud computing
resources. Relay nodes are robots capable of maintaining connectivity for the R2R
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network. Relay nodes are responsible for selecting winning clients in the latest
auction round. All robots compete for the transmission opportunity through re-
lay nodes. Node priorities are considered when allocating network resources. The
objective of the game is to maximize the total transmission rate for the network.
Simulation results show that the proposed algorithm outperforms the greedy and
the Hungarian algorithms.

In [44], the authors proposed a peer reciprocal learning system for robots to
cooperatively accomplish a complex task and help each other learn better. The
cooperating robots communicate their individual decisions and collected informa-
tion to formulate mutual decisions and robotic motions. A mutual learning method
is proposed allowing robots to learn from each other by exchanging their neural
network learning function weights. The authors claim that simulation results have
shown that robots can learn from each other and build general concepts from lim-
ited training. Moreover, a real-time experiment was developed to demonstrate the
effectiveness of the proposed robot learning system in achieving complex tasks.

In [45], the authors consider the issue of deploying a team of robots to accom-
plish a task while maintaining an ad-hoc network that supports the data trans-
mission requirements necessary for task fulfillment. A solution is presented that
considers estimation of point-to-point channels using pathloss and Gaussian pro-
cess models to identify reliable point-to-point communication links. Moreover, data
routing techniques are considered in determining suitable end-to-end communica-
tion routes. Motion planning is also considered to determine robot trajectories for
motion control to ensure the survival of the communication network. Experimental
evaluations were conducted to show that multi-robot navigation is possible with
continuous end-to-end connectivity.

The authors in [46] proposed a neural dynamics approach used for complete
area coverage navigation conducted by multi-robots. The neural network is used to
model the work environment and then guide a swarm of robots through navigation.
Each mobile robot considers other robots as moving obstacles. Robot paths are
autonomously generated from the neural activity landscape of the neural network
and previous robot positions. Experiments were conducted on cleaning robots to
showcase the effectiveness of the robot navigation technique.

The project proposed in [47], is an open-source database available in the cloud,
providing services for IoT robotic systems. IoT robotic devices from different lo-
cations in the globe can access and update this information. IoT Robotic systems
can learn from other robots’ experiences, behaviors and operating environments.
The project’s collected data focuses mainly on target recognition, navigation and
intelligent services performed by robots. The architecture is composed of three lay-
ers: robot clients, cloud computing engine, and cloud computing database. Tasks
involving computation are transferred to the cloud computing engine using a uni-
fied data format. The cloud computing engine interacts with the database layer to
finalize the results to be sent back to the robot client. Some robot applications may
not require access to the cloud computing engine but rather can access the cloud
computing database directly for model matching. The requested data is returned
back to the robot to complete the specific task.

Table 1 provides a summary of some cooperative IoT systems in the literature
highlighting their advantages and disadvantages.

In this article we introduce a workflow-net based framework for agent cooper-
ation of IoT devices. The framework provides an algorithm to verify similarities
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TABLE I.  COMPARING DIFFERENT COOPERATIVE APPROACHES FOR IOT SYSTEMS. 

Application Objective Solution Adapted Factors Considered Advantages Disadvantages 

Underwater 

sensors [23] 

Decrease 

energy 

consumption 

New routing protocols are introduced, such that, sensor nodes forward data 

packets in a multi-hop fashion with a virtual pipeline. Nodes outside the 

pipeline do not forward data packets to avoid network flooding. 

Number of hops, 

number of neighbors. 

Energy-efficient, 

reduction in packet 

delay. 

Increased 

numbers of 

transmitted 

packets. 

Industrial 

sensors [25] 

Accurate 

sensing and 

reporting 

Two phases: in the first phase, each node shares its information with all other 

nodes. In the second phase, each node forms a cooperative data packet and 

sends it to the BS. 

TDMA-based MAC 

protocol, majority rule 

scheme for decision 

making. 

Information is 

relayed by 

neighbouring nodes, 

helps conserve power 

for energy-limited 

nodes. 

Network traffic 

flooding. 

Road vehicles 

[26] 

Safe driving 

and lane 

changing 

A vehicle driving and lane changing model is proposed to plan trajectories for 

vehicles in the vicinity of traffic signals in advance, by extending the Intelligent 

Driver Model (IDM). 

Signal cycle state, 

distance to traffic 

signals, adjacent 

vehicles. 

Reduced vehicle 

stopping frequency 

and travel time, 

improved road traffic 

throughput. 

Increased 

numbers of 

transmitted 

packets. 

Smart road 

vehicles [27] 

Deliver 

continuous 

cloud services 

to smart vehicle 

users 

Nodes are clustered according to the services they offer. Nodes that are close to 

one another and offer similar services are grouped together. Clusters are 

established using a movement and service description similarity technique. 

Cluster heads are selected for each cluster according to a node stability 

identification method in terms of neighboring nodes’ link distances. Optimal 

user service selection is achieved by a trusted-third-party (TTP) selection 

method. 

Service similarity, 

relative velocity, node 

link lifetime node link 

distance, delay, 

service cost, privacy.  

Improved QoS and 

QoE, guaranteed 

service delivery, 

reduced service cost. 

Increased packet 

overhead. 

Underwater 

vehicles [33] 

Increase node 

lifetime 

Allocate tasks between cloud and local resources based on the objective of 

minimizing execution time or the price of execution. Two polynomial-time 

heuristics are introduced to solve the resource-allocation problem. 

Communication cost, 

computation cost, 

battery capacity. 

Reduced execution 

delay. 

Cost is only 

reduced if the 

traditional cloud 

scheme is used. 

Various 

robotic 

devices [40] 

Maximize total 

transmission 

rate 

A hierarchical auction-based mechanism is used. The solution assigns a role to 

each node available in the network. A proxy node is chosen to be responsible of 

distributing the resources in the cloud according to the auction results. Relay 

nodes are responsible of selecting winning clients in the latest auction round. 

All robots compete for the transmission opportunity through relay nodes. 

Real-time wireless 

multi-hop protocol 

(RT-WMP), node 

priorities. 

Reduced resource 

usage, reduced 

latency. 

Solution does not 

consider dynamic 

network topology 

changes. 

Learning land 

robots [42] 

Enhance robot 

learning 

through 

cooperation 

Robot peers formulate a mutual decision and mutual motions, manage their 

current state, and exchange image information. They keep on communicating 

during the whole process to ensure that the task is executed correctly. The 

solution is based on the peer-assisted learning theory and reciprocal learning 

strategy. 

Image information, 

individual robot 

decisions. 

Increased accuracy of 

robotic movements. 

Solution is limited 

to simple 

scenarios. 

Mobile robots 

[43] 

End-to-end 

node 

connectivity 

Solution provides connectivity among a team of robots under uncertain point-to-

point wireless communication scenarios. The solution considers estimation of 

point-to-point channels using pathloss and Gaussian process models to identify 

reliable point-to-point communication links. Data routing techniques are 

considered to determine suitable end-to-end communication routes. 

Signal strength, node 

velocity. 

Continuous and 

stable end-to-end 

node connectivity. 

Excessive time for 

planning. 

Cleaning 

robots [44] 

Complete area 

coverage 

A neural network approach is used to model the work environment and then 

guide a swarm of robots through navigation. Each mobile robot considers other 

robots as moving obstacles. Robot paths are autonomously generated from the 

neural activity landscape of the neural network and previous robot positions. 

Node position, 

coverage pattern, task 

allocation protocol. 

Load balancing 

among nodes. 

Increase in overall 

power 

consumption. 

 

among agent capabilities discovered from different fog computing sites connected
to the cloud in order to determine the possibility of IoT device cooperation with
respect to a desired task. The intended task is either not achievable given the
available device capabilities in the environment or would require the use of a great
portion of their resources if traditional non-cloud-based solutions are adopted. Our
work differentiates from the literature through the introduction of a cooperation
operator that formulates the topology and structure for the set of cooperating
agents. The cooperative operator turns the task composition problem defined as
a set of Workflow-nets into algebraic representations to solve and optimize the
problem mathematically. We consider robots as an example of collaborative IoT
devices, to provide a more realistic scenario that is reader friendly. It is impor-
tant to note here, that, the considered cooperative solution is not restricted to
robots only, but can also be applied to any IoT device that has either sensing,
computational, or storage capabilities.

3 The Cooperative Framework

Cooperation between two or more agents is frequently required to achieve a com-
mon goal, and it is only considered successful if the desired goal is attained. In the
literature, resource sharing and cooperation are often used interchangeably, though
there is a clear distinction between them. With resource sharing, agents try to
schedule their behavior by postponing certain actions so resources are accessible
by all agents at different times. This makes resource sharing simply a schedul-
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ing problem, regardless of whether it is achieved through central or distributed
scheduling by agents communicating to negotiate resource access. Cooperation,
however, refers to agents contributing by not only sharing resources equitably, but
also by combining their actions so a common goal is realized. We adopted this
definition of cooperation to develop the cooperative fog computing framework in
this article.

To meet a pre-defined objective, a cooperative model that incorporates a set of
IoT agents and their capabilities must be defined. Workflow-net, which is an exten-
sion to the well-known Petri-net [15, 16, 48], is a preferred solution to cooperative
scenarios that need to be handled concurrently [49,50].

3.1 Preliminaries

Petri-net resembles a set of actions taken in sequence or parallel to achieve a task.
Hence, a directed graph is used that incorporates both transitions t and places p.
Places resemble conditions that must be satisfied for the transitions which resemble
actions to be executed. As such, a place either comes before or after a transition,
in which usually, the first place is not preceded by a transition, and a transition
does not proceed the last place. A token which represents activities performed
by transitions reside in places. Thus, a place not withholding tokens disables any
transition connected to it. A transition is therefore enabled if an only if there are
places (with residing tokens) connected to it as input. A transition that is enabled
will execute (or fire) resulting in the removal of one or more tokens from its input
places towards its output places. For a more elaborate description both textually
and visually, the reader is encouraged to look at [10,19,51–54].

According to the definition stated above, a Petri-net is thus a tuple:

N =< P,T,F,W > (1)

where P is a set of places defining the net. Those places can be seen as precondi-
tions to events or post conditions and results to event occurrences. T is a set of
transitions representing event occurrences. F is a set that defines the topology of
the net. W is a vector of weights for the arcs defined in F.

P = {p1, p2, . . . , pn} (2)

and n is the number of places in N. We define the set of transitions T to be:

T = {t1, t2, . . . , tm} (3)

and m is the number of transitions in N.
Figure 2 provides an example of a petri-net with seven places and four tran-

sitions. Four of the places are marked such that T0 and T3 are enabled. When T0
is fired, the token in P0 is consumed and two tokens are produced in P1 and P2,
resulting in T1 and T2 being enabled and so forth.

F represents the connectivity between T and P. Mathematically it is represented
as the cross product of the set of transitions times the places union the cross
product of the places times the transitions:

F = (T× P) ∪ (P× T) (4)
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Fig. 2: A graphical example of a petri-net.

Equation 4 describes the topology of the petri-net. It shows that transitions
are connected to places and places are connected to transitions. It also shows
that transitions cannot be directly connected to transitions and places cannot be
directly connected to places, since the cross product is between the transition set
and the place set or between the place set and the transition set.

W is a set of integer numbers representing the weights of every f ∈ F. This
weight defines the number of tokens required for a transition t ∈ T to be activated
through an input place p ∈ P. The distribution of tokens in the net places is called
marking. At any point of time τ we have token distribution Mτ that is represented
as follows:

Mτ =
n⋃
i=1

‖p‖τ , p ∈ P, at time τ (5)

Equation 5 shows the distribution of tokens over the petri-net at time τ . n is
the number of places and ‖p‖τ is the number of tokens in place p at time τ .

Another important vector is the firing vector. It is a vector that represents a
transition that is enabled and ready to fire based on the current marking of the
net. Mathematically, the firing vector F→ is represented as follows:

F→ =
n×m⋃
i=1

M(p)−W(p, t), p ∈ P, t ∈ T, p× t 6∈ ∅ (6)

In other words, for every arc between a place p and a transition t (where p is
an input to t), p would contribute in enabling t if and only if the marking of p is
greater than or equal to the weight of the arc between p and t. Once the transition
is enabled it can eventually fire and therefore it is being added to the firing vector.

F→ is often represented as a matrix ~ with dimensions n×m. The rows are the
places and the columns are the transitions. ~(i, j) = 0 if and only if pi×tj∪tj×pi =
∅, ~(i, j) = 1 if and only if tj × pi 6= ∅ and ~(i, j) = −1 if and only if pi × tj 6= ∅.
Now if we have a place p and a transition t such that p ∈ •t and p ∈ t• then this
matrix has to be separated into two matrices, namely, ~+ which holds only the
relationship tj × pi 6= ∅ and ~− which holds only the relationship pi × tj 6= ∅.
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3.2 Agents and Agent Capabilities

An agent multi-cloud service composition problem has been presented in [55].
However, the problem of cooperation involves multi-agents that decide to cooper-
ate together based on their inner capabilities to achieve the required task is more
complex task. This task is a set of actions defined as:

Λ = {λ1, λ2, . . . , λ‖Λ‖} (7)

The set of agents are represented as follows:

A = {a1, a2, . . . , a‖A‖} (8)

where ‖A‖ is the length of the set of agents A. We also have a universal set of
capabilities Ω. This Ω is domain and application specific and is represented as:

Ω = {ω1, ω2, . . . , ω‖Ω‖} (9)

For every agent a ∈ A, there is a set of capabilities Ωa ∈ Ω. This Ωa determines
what the agent a can or cannot do. For two or more agents ai, aj , . . . , ak to be able
to cooperate, they need to achieve what is defined to be task coverage. That is the
ability to perform the required task. We define the task coverage to be:

∀λ ∈ Λ,∃ω ∈ Ωai ∪Ωaj ∪ . . . ∪Ωak‖ω ≡ λ (10)

where the task is considered not covered if and only if:

∃λ ∈ Λ, ‖∀ω ∈ Ωai ∪Ωaj ∪ . . . ∪Ωak‖ω 6≡ λ (11)

3.3 Homogenity and Heterogenity of Agents

The concept of homogenity is applied for two or more agents to replace each other
with respect to performing some task. Heterogenity is the opposite of homogeneity.
Mathematically, we model homogenity to be:

Λk ∩Ωai ≡ Λk ∩Ωaj (12)

If equation 12 applies then ai and aj can replace each other to perform a certain
task defined by Λk. This can be expressed as:

∀ω ∈ Ωai , ω ∈ Λk, ω ∈ Ωaj (13)

On the contrary, heterogenity is expressed as follows:

∃ω ∈ Ωai , ω ∈ Λk‖ω 6∈ Ωaj (14)

Similarity is a subset of homogenity. Two agents are considered similar if and
only if:

∃ω ∈ Ωai , ω ∈ Λk‖ω ∈ Ωaj (15)

where ai and aj are similar with respect to performing action ω but not necessarily
all actions in Λk We define agent polymorphism to be the ability for agents to
replace one another given certain tasks. This means that agent polymorphism is
achieved when two or more agents have similarities among each other.

It is worth noting that the proposed framework is applicable for both homoge-
neous and heterogeneous agents. For homogeneous agents, the selection is achieved
based on availability or lower cost, and for heterogeneous agents, the selection is
achieved based on the capability matrix.
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3.4 Representing Cooperation Using Workflows

In order to achieve cooperation among IoT device agents that belong to different
fog computing sites, the task to be performed must be taken into consideration.
The design of the cooperative workflow depends on the diversity of tasks to be
performed.

Aalst defined how a workflow can be modeled using petri-nets [16, 48]. We
use Aalst’s definition of workflows to achieve cooperation among different agents
belonging to different fog computing sites after we determine polymorphism and
similarities among this set of agents. We do this by proposing a cooperation alge-

bra technique that mathematically models the building process of the cooperative
workflow from its original basic agent capabilities. As will be seen later in this
paper, we propose different mathematical operators that convert the cooperation
process into a logical equation. This logical equation is translated into a workflow
defined by Aalst. A few theorems are proposed to prove the correctness of the
resultant workflow and the mathematical properties of those operators. An overall
algorithm is being illustrated for the whole cooperation process.

IoT devices share their capabilities to achieve a cooperative plan. Unlike web
service composition approaches [56, 57], we assume that compatibility is assured
when agents share their capabilities. In web service composition, the objective
is composed and compatible services at design time, while our approach for co-
operating agents will determine the best way to share capabilities to execute a
cooperative plan at minimal cost. Unlike other work in the literature, our pro-
posed solution is a composition plan that integrates the device capabilities of
different fog computing sites, as depicted in Figure 3. Fog computing nodes ad-
vertise their connected IoT device capabilities through the cloud, and nodes that
are assigned tasks that require composition of cooperative agent capabilities first
develop a composition plan in the form of task assignments. A set of workflow-nets
are then composed to represent the composition plan, and the optimal workflow
solution is adapted. Results are stored in the cloud datacenter to be used for future
composition requests.

In the literature, the definition of soundness varies from Aalst [17] to Kindler
[58]. Aalst clearly states that every sub-workflow that is building the overall work-
flow has to be sound in order for the whole workflow to be sound. Kindler, on
the other hand, argues that it is important for the overall workflow to have their
tokens be able to reach the output overall place for it to be sound even if we
have sub-workflows that are not really sound. In this paper, we are adopting the
definition of Aalst to the soundness of the workflow.

A Workflow-net is a subclass of petri-nets, such that, it has one input place and
one output place. So basically, a workflow has one input gate to the system and
one exit gate out of the system. A workflow must be sound by definition and by
design and that is why the proof of soundness for any proposed workflow is crucial.
Aalst defined a petri-net to be a workflow if and only if the following applies [58]:

1. ∃i ∈ ℵ, •i = ∅,
2. ∃o ∈ ℵ, o• = ∅ and
3. If ∃t ∈ Tℵ, •t = o, t• = i then ℵ becomes strongly connected.

In other words, there is a single input i to workflow ℵ and a single output o to
workflow ℵ. If the output o is connected to the input i with a feedback loop using
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Fig. 3: Integration of IoT device capabilities to complete a task through the composition of
workflow-nets.

transition t, any place in the workflow becomes reachable from any other place
in the same workflow. Reachability from place a to place b is defined as having a
sequence of transitions that will make b reachable from a and is denoted as b ∈ [a〉.

We assume that there is a set of basic and primitive actions or capabilities of
agents that cannot be divided or fragmented into any smaller actions. If an agent
ai from the set of cooperating agents A = {a1, a2, . . . , an} has plan dj from the set
of plans D = {d1, d2, . . . , dk}, it can perform the plan alone only if it meets any
time constraints and the following equation holds:

∀ω ∈ dj : ω ∈ Ω(ai), (16)

where ω is an action, and

Ω(ai) = {WFnet1,WFnet2, . . . ,WFnetl} (17)

where Ω(ai) is the action capability set of agent ai, WFneti are workflow nets,
and dj = {ωo(∪ωk)∗}, such that ωo 6= ∅ is a starting action and (ωk)∗ is a set of
actions that follow (which could be the empty set ∅).

Agent ak is a candidate for cooperation with agent ai if and only if

∀ω ∈ ∆j : ∆j = dj − ω(ai) , ω ∈ Ω(ak), (18)

where ∆j is the difference between the capabilities required to achieve plan dj ,
and the capabilities of agent ai. A more relaxed condition would be

∀Ω(ak|) ∪Ω(ai) ≡ ∆j (19)
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We divide workflow into units. Units are the smallest partition of a workflow
which is basically one transition, the inputs to this transition and the outputs from
this transition. Mathematically a unit ui is described as follows:

ui = (P× ti, ti, ti × P) (20)

P × ti is the set of input places to ti and is denoted •ti and ti × P is the set of
output places from ti and is denoted ti•.

Two units ui and uj are considered identical if and only if:

ti ≡ tj and P× ti ≡ P× tj and ti × P ≡ tj × P (21)

In other words, the action ti does the same action that tj does, the input set
•ti is the same as the input set •tj and the output set ti• is the same as the output
set tj•. If we relax the condition by taking the output condition out, this would
yield similar units. Two units ui and uj are similar if and only if:

ti ≡ tj and P× ti ≡ P× tj (22)

This means that all identical units are similar but not all similar units are identical.

We can proceed by induction to propose the concept of composition. We define
a composition to be a set of units connected together. In this case, having two
compositions ci and cj , such that ci is a subset of cj when the following equation
holds:

ci ⊆ cj ↔ ∀ui ∈ ci,∃ujincj : |ui and uj are identical. (23)

The identity of compositions are identified as follows: ci and cj are considered
identical if and only if:

ci ⊆ cj and cj ⊆ ci (24)

and they are similar if and only if

ci ⊂ cj and ci 6= ∅ (25)

For two units ui and uj ( or two compositions ci and cj) to cooperate, we need
a communication channel ζ. ζ could be a single transition with input •ζ = ti•
and output ζ• = •tj . This is the simplest form of ζ, however, ζ could be a whole
workflow-net.

Algorithm 1 shows how a cooperative framework is constructed out of separate
workflows. The complexity of the algorithm is O(w) × O(c) × O(a) where w is
the number of cooperating workflows, c is the average number capabilities per
workflow, and a is the average number of actions in the plan, which approximates
to O(n3). For some related complexity discussions on the soundness problem of
workflow-nets, the reader is encouraged to refer to [59]. The optimization of the
proposed algorithm out of the scope of this paper.

It is worth noting that similarity and identity make cooperation much easier
since it increases homogeneity in the swarm of agents, and therefore, selection and
plan creation is easier since many alternatives are available.
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Algorithm 1 Calculate Λ and D
Require: A plan P|P = (Pi θ Pj)

+ and θ ∈ {∧,∨,→} and + means one or more
times.

Require: R‖R = {r1, r2, . . . , rn} and n is the number of agents.
Require: Ω‖Ω = {ω1, ω2, . . . , ωn} and ωi is the set of capabilities of agent ri.
Ensure: Θ , The cooperative framework.

for all ri ∈ R do

for all rj ∈ R do

if ωi ∩ ωj 6= ∅ then

S = S ∪ (ri, rj)
end if

if ∃P ∈ P‖P 6∈ S then

TERMINATE
end if

end for

end for

for all si ∈ S do

for all Pj ∈ P do

if Pj ∈ si then

for all rk ∈ S do

G(k) = G(k) ∪ rk(P )
end for

end if

end for

end for

for all gi ∈ G do

for all pj ∈ gi do

if pj ∈ gi ∧ pj 6∈ Θ then

Θ = Θ ∪ pj
end if

Connect pj to pj−1

end for

end for

4 The Cooperative Operator

In order to represent cooperation mathematically, we propose a cooperative op-
erator ⊗. This operator joins two or more workflows and produces a coopera-
tive workflow based on identical and similar units composing those workflows. If
WFnetk = WFneti ⊗WFnetj , then the following properties must apply:

1. WFneti and WFnetj are sound,
2. ∀ ζ ∈WFneti ⊗WFnetj , ζ is sound, and
3. •ik = ∅, ok• = ∅.

The cooperative operator preserves the property of soundness, and is associa-
tive, non-commutative and non-distributive. Having workflow x and workflow y,
the incident matrix of the cooperation is shaped as follows:
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~⊗ =

[
~x ζ

ζ ~y

]
That is if and only if Px∩Py = ∅ and Tx∩Ty = ∅. In other words, the cooperation
incident matrix is valid only in cases where x and y are disjoint. If they are joint,
then the common places and transitions are written once. The dimension of ~⊗ is
calculated as follows:

‖~‖ = (‖Px‖+ ‖Py‖+ ‖Pζ‖)× (‖Tx‖+ ‖Ty‖+ ‖Tζ‖) (26)

4.1 The ∧ Operator

The and operator ∧ joins incident matrices of its predicates. Two workflows are
joined as follows:

ℵ1 ∧ ℵ2 → ∃t0∃p0∃te, pe‖p0 = •t0 and t0 = •iℵ1 and t0 = •iℵ2
and pe = te • and oℵ1 = •pe and oℵ2 = •pe (27)

In other words, the two workflows work in parallel with a single input place
and a single output place. In this case, ζ is an incident matrix that binds ℵ1 and
ℵ2 with a single input and output as an ∧ operation. Figure 4 depicts an example
of the behavior of the ∧ operator on two workflows.

P2

P1

P0 P5

T0

T1

T2

P3

P4 T3

P1

T1

P3 P2

T2

P4and

Results in:

Fig. 4: An example of the behavior of the ∧ operator on two workflows.

We propose the following theorem:

Theorem 1 Having two workflows ℵx and ℵy, if ℵx is sound and ℵy are sound, then,

ℵx ∧ ℵy is also sound.
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Proof 1 ∵ ℵx ∧ℵy =< Px ∪Py ∪{p0, pe},Tx ∪Ty ∪{t0, te1, te2} > and t0 = p0• and

pe = te1• and pe = te2• and te1 = oalephx• and te2 = oℵx•.
∴ ∀M0,M0 = Mτ (iℵx).

∵ ℵx is sound,

∴ ∀Mτ (iℵx) = Mτ2(oℵx).

∴ Mτ2(oℵx) = Mτ2(pe)
∴ for ℵy :∀M0,M0 = Mτ (iℵy ).

∵ ℵy is sound,

∴ ∀Mτ (iℵy ) = Mτ2(oℵy ).

∴ Mτ2(oℵy ) = Mτ2(pe).

∴ ℵx ∧ ℵy is sound.

4.2 The ∨ Operator

The or operator ∨ also joins the incident matrices of its predicates. Two workflows
are joined as follows:

ℵ1∨ℵ2 → ∃t01∃t02∃p0∃te, pe‖p0 = •t01 and t01 = •iℵ1 and p0 = •t02 and t02 = •iℵ2
and pe = te • and oℵ1 = •pe and oℵ2 = •pe (28)

Contrary to the ∧ operator, in the ∨ operator, either one of the two workflows
will work at a time. The two workflows share the same input and output places.
In this case, ζ is an incident matrix that binds ℵ1 and ℵ2 with a single input and
a single output as an ∨ operation. Figure 5 depicts an example of the behavior of
the ∨ operator on two workflows.
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Fig. 5: An example of the behavior of the ∨ operator on two workflows.

We propose the following theorem:
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Theorem 2 Having two workflows ℵx and ℵy, if ℵx and ℵy are sound, then ℵx ∨ ℵy
is also sound.

Proof 2 Since ℵx∨ℵy =< Px∪Py∪{p0, pe},Tx∪Ty∪{t0, t1, te1, te2} > and t0 = p0•
and t1 = p0• and pe = te1• and pe = te2• and te1 = oalephx• and te2 = oℵx•.
∴ ∀M0,M0 = Mτ (iℵx) or M0 = Mτ (iℵx).

∵ ℵx and ℵy are sound,

∴ if∃Mτ (iℵx)→Mτ (iℵx) = Mτ2(oℵx).

∴ if∃Mτ2(oℵx)→Mτ2(oℵx) = Mτ2(oℵy ).

∴ if∃Mτ (iℵx)→Mτ (iℵx) = Mτ2(pe).

∴ if∃Mτ (iℵy )→Mτ (iℵy ) = Mτ2(pe).

∴, ℵx ∨ ℵy is sound.

4.3 The → Operator

The implication operator → joins workflows as follows:

(ℵ1 → ℵ2)→ ∃tm‖tm = oℵ1 • and tm = •iℵ2 (29)

In other words, using the → yields in one of the two workflows being selected
at a time. The two workflows share the same input and output places. In this case
ζ is an incident matrix that binds ℵ1 and ℵ2 with a single input and output as an
→ operation. Figure 6 depicts an example of the behavior of the → operator on
two workflows.

T2
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P2

P0

T0

P1 P2

T2

P3Implies

Results in:

T0

P0 P3

Fig. 6: An example of the behavior of the → operator on two workflows.

We propose the following theorem:

Theorem 3 Having two workflows ℵx and ℵy, if ℵx and ℵy are sound then, ℵx → ℵy
is also sound.

Proof 3 ∵ ℵx and ℵy are sound,

∵ ℵx → ℵy =< Px ∪ PyTx ∪ Ty ∪ {tm} > and tm = oℵx• and tm = •iℵy .

∴ ∀M0,M0 = Mτ (oℵx).
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∴ Mτ (oℵx),M0 = Mτ (iℵy ).

∴ Mτ (iℵy ) = Mτoℵy ).

∴ ℵx → ℵy is sound.

Certain properties hold for the cooperation operator, nameley, non-commutativity,
associativity and non-distributivity.

4.4 Commutativity

We propose the following theorem:

Theorem 4 Having two workflows ℵx and ℵy, ℵx ⊗ ℵy 6≡ ℵy ⊗ ℵx.

Proof 4 For ℵx to cooperate with ℵy, Ωℵx ∪Ωℵy = Λ.

If ℵx 6≡ ℵy, ∴ Ωℵx −Ωℵy 6= Ωℵy −Ωℵx .

In other words, Λ−Ωℵx 6= Λ−Ωℵy . ∴ ζxy 6= ζyx.

∴ ℵx ⊗ ℵy 6≡ ℵy ⊗ ℵx.

4.5 Associativity

We propose the following theorem:

Theorem 5 Having three workflows ℵx, ℵy and ℵz, (ℵx⊗ℵy)⊗ℵz ≡ ℵx⊗ (ℵy⊗ℵz).

Proof 5 For (ℵx ⊗ ℵy)⊗ ℵz, the resultant workflow is

ℵxy =< Pℵx ∪ Pℵy ∪ Pζxy ,Tℵx ∪ Tℵy ∪ Tζxy,Fℵx∪Fℵy∪Fζxy ,Wℵx∪Wℵy∪Wζxy
> (30)

Now, ℵxy ⊗ ℵz gives:

ℵxyz =< Pℵx ∪ Pℵy ∪ Pℵz ∪ Pζxyz , Tℵx ∪ Tℵy ∪ Tℵz ∪ Tζxyz ,
Fℵy ∪ Fℵz ∪ Fζxyz ,Wℵx∪ Wℵy ∪Wζxyz ∪Wζxyz >

Now, for ℵx ⊗ (ℵy ⊗ ℵz), the resultant workflow is

ℵyx =< Pℵy ∪ Pℵz ∪ Pζyz , Tℵy ∪ Tℵz ∪ Tζyz,Fℵy∪Fℵz∪Fζyz ,Wℵy∪Wℵz∪Wζyz
>

Now, ℵx ⊗ ℵyz gives:

ℵxyz =< Pℵx ∪ Pℵy ∪ Pℵz ∪ Pζxyz ,Tℵx ∪ Tℵy ∪ Tℵz ∪ Tζxyz ,
Fℵx ∪ Fℵy ∪ Fℵz ∪ Fζxyz ,Wℵx ∪Wℵy ∪Wζxyz ∪Wζxyz >

∴, having three workflows ℵx, ℵy and ℵz, (ℵx ⊗ ℵy)⊗ ℵz ≡ ℵx ⊗ (ℵy ⊗ ℵz).

4.6 Distributivity Over the ∧ Operator

We propose the following theorem:

Theorem 6 Having three workflows ℵx, ℵy and ℵz, (ℵx ⊗ (ℵy ∧ ℵz)) ≡ (ℵx ⊗ ℵy) ∧
(ℵx ⊗ ℵz)).
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Proof 6 For (ℵx ∧ ℵy)⊗ ℵz, the resultant workflow is

ℵx∧y =< Pℵx ∪ Pℵy ∪ {p0, pe},Tℵx ∪ Tℵy ∪ {t0, te},Fℵx ∪ Fℵy ,Wℵx ∪Wℵy >
which makes ℵx∧y ⊗ ℵz as follows:

ℵ(x∧y)z =< Pℵx ∪Pℵy ∪Pℵz ∪Pζ(x∧y)z ∪{p0, pe},Tℵx ∪Tℵy ∪Tℵz ∪Tζ(x∧y)z ∪{t0, te},
Fℵx ∪ Fℵy ∪ Fℵz ∪ Fζ(x∧y)z ,Wℵx ∪Wℵy ,Wℵz ∪Wζ(x∧y)z >

Now, for (ℵx ⊗ ℵy) ∧ (ℵx ⊗ ℵz)), the resultant workflow is :

ℵxy =< Pℵx ∪ Pℵy ∪ Pζxy ,Tℵx ∪Tℵy ∪Tζxy ,Fℵx ∪ Fℵy ∪ Fζxy ,Wℵx ∪Wℵy ∪Wζxy >

ℵxz =< Pℵx ∪ Pℵz ∪ Pζxz ,Tℵx ∪ Tℵz ∪ Tζxz ,Fℵx ∪ Fℵz ∪ Fζxz ,Wℵx ∪Wℵz ∪Wζxz >

ℵxy∧xz =< Pℵx∪Pℵy∪Pℵz∪Pζxy∪Pζxz∪{p0, pe},Tℵx∪Tℵy∪Tℵz∪Tζxy∪Tζxz∪{t0, te},
Fℵx ∪ Fℵy ∪ Fℵz ∪ Fζxy ∪ Fζxz ,Wℵx ∪Wℵy ∪Wℵz ∪Wζxy ∪Wζxy >

From the previous derivation, the difference is in ζ.

Since the ∧ operator only joins the two workflows through joining the two input places

and two output places, ∴ ζ(x∧y)z ≡ ζxy ∪ ζxz from the separability criteria.

∴ (ℵx ⊗ (ℵy ∧ ℵz)) ≡ (ℵx ⊗ ℵy) ∧ (ℵx ⊗ ℵz)).

4.7 Distributivity Over the ∨ Operator

We propose the following theorem:

Theorem 7 Having three workflows ℵx, ℵy and ℵz, (ℵx ⊗ (ℵy ∨ ℵz)) ≡ (ℵx ⊗ ℵy) ∨
(ℵx ⊗ ℵz)).

Proof 7 For (ℵx ∧ ℵy)⊗ ℵz, The resultant workflow is

ℵx∨y =< Pℵx ∪Pℵy ∪{p0, pe},Tℵx ∪Tℵy ∪{t01, t02, te1, te2},Fℵx ∪Fℵy ,Wℵx ∪Wℵy >,

which makes ℵx∨y ⊗ ℵz as follows:

ℵ(x∨y)z =< Pℵx ∪ Pℵy ∪ Pℵz ∪ Pζ(x∨y)z ∪ {p0, pe},Tℵx ∪ Tℵy ∪ Tℵz ∪ Tζ(x∨y)z ∪
{t01, t02, te1, te2}, Fℵx ∪ Fℵy ∪ Fℵz ∪ Fζ(x∨y)z ,Wℵx ∪Wℵy ,Wℵz ∪Wζ(x∨y)z >

Now for (ℵx ⊗ ℵy) ∨ (ℵx ⊗ ℵz)), the resultant workflow is:

ℵxy =< Pℵx ∪ Pℵy ∪ Pζxy ,Tℵx ∪Tℵy ∪Tζxy ,Fℵx ∪ Fℵy ∪ Fζxy ,Wℵx ∪Wℵy ∪Wζxy >

ℵxz =< Pℵx ∪ Pℵz ∪ Pζxz ,Tℵx ∪ Tℵz ∪ Tζxz ,Fℵx ∪ Fℵz ∪ Fζxz ,Wℵx ∪Wℵz ∪Wζxz >

ℵxy∨xz =< Pℵx ∪Pℵy ∪Pℵz ∪Pζxy ∪Pζxz ∪ {p0, pe},Tℵx ∪Tℵy ∪Tℵz ∪Tζxy ∪Tζxz ∪
{t01, t02, te1, te2}, Fℵx ∪Fℵy ∪Fℵz ∪Fζxy ∪Fζxz ,Wℵx ∪Wℵy ∪Wℵz ∪Wζxy ∪Wζxy >

From the previous derivation, the difference is in ζ.

Since the ∧ operator only joins the two workflows through joining the two input places

and two output places, ∴, ζ(x∨y)z ≡ ζxy ∪ ζxz from the separability criteria.

∴, (ℵx ⊗ (ℵy ∨ ℵz)) ≡ (ℵx ⊗ ℵy) ∨ (ℵx ⊗ ℵz)).

Now that we have discussed the cooperative operator and all its properties, we
shift our focus on the scalability of the proposed framework.

4.8 Scalability of the Framework

The scalability of the proposed framework can be proven as shown through the
following theorem:

Theorem 8 Having many workflows ℵx,ℵy, . . . ,ℵz, if ℵx,ℵy, . . . ,ℵz are sound then

ℵx ⊗ ℵy ⊗ · · · ⊗ ℵz is also sound.

We prove this theorem by induction.
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Proof 8 Base case: From Theorems 1,2,11: ℵx ⊗ ℵy is sound if ℵx,ℵy are sound.

Hypothesis : Assume that ℵx ⊗ ℵy ⊗ · · · ⊗ ℵz is sound.

Induction step : we need to prove that ℵx ⊗ ℵy ⊗ · · · ⊗ ℵz ⊗ ℵz+1 is also sound.

From the hypothesis, ℵx ⊗ ℵy ⊗ · · · ⊗z ℵz is a sound workflow.

If ⊗z ≡ ∧ then ℵx ⊗ ℵy ⊗ · · · ⊗z ℵz is a sound workflow from Theorem 1.

If ⊗z ≡ ∨ then ℵx ⊗ ℵy ⊗ · · · ⊗z ℵz is a sound workflow from Theorem 2.

if ⊗z ≡→ then ℵx ⊗ ℵy ⊗ · · · ⊗z ℵz is a sound workflow from Theorem 11.

∴, the framework is scalable over operator ⊗.

4.9 Robustness of the Framework

To show that the proposed cooperative framework is correct and robust, the fol-
lowing criteria must be considered for the workflow: soundness, deadlock-freeness,
livelock-freeness, and starvation-freeness [60,61]. Soundness implies that the model
is both structurally and behaviorally well-formed. Through Theorems 1-8, we have
shown that the workflow preserves the notion of soundness in different cases using
the cooperative operators, hence, we can say that the overall framework preserves
the notion of soundness.

Deadlock and livelock are a result of choice dependent structures. Similar to
soundness, to prove the deadlock-freeness and livelock-freeness of the proposed
framework, we need to prove the deadlock-freeness and livelock-freeness for every
proposed operator as shown below.

Theorem 9 Having a cooperative workflow ℵ = ℵx ∧ ℵy, if ℵ is sound then ℵ is also

deadlock-free and Livelock-free.

Proof 9 ∵ ℵ is sound,

∴ ℵx and ℵy are both sound.

∵ ℵ = (pi, ti)∪ℵx∪ℵy∪(to, po) with pi = •ti and ti = •ℵx and ti = •ℵy and to = ℵx•
and to = ℵy• and to = •po
∴ ∀M ∈ pi,M ∈ iℵx and M ∈ iℵy
∵ ℵx and ℵy are both sound,

∴ ∀M ∈ pi,M ∈ oℵx and M ∈ oℵy
∴ ∀M ∈ pi,M ∈ po
∴ ℵ is deadlock-free and livelock-free.

Theorem 10 Having a cooperative workflow ℵ = ℵx ∨ℵy, if ℵ is sound then ℵ is also

deadlock-free.

Proof 10 ∵ ℵ is sound,

∴ ℵx and ℵy are both sound.

∵ ℵ = (pi, tix, tiy)∪ℵx ∪ℵy ∪ (tox, , toypo) with pi = •tix and pi = •tiy and tix = •ℵx
and tiy = •ℵy and tox = ℵx• and toy = ℵy• and tox = •po and toy = •po
∴ ∀M ∈ pi,M ∈ iℵx or M ∈ iℵy
∵ ℵx and ℵy are both sound,

∴ ∀M ∈ pi,M ∈ oℵx or M ∈ oℵy
∴ ∀M ∈ pi,M ∈ po
∴ ℵ is deadlock-free and livelock-free.
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Theorem 11 Having a cooperative workflow ℵ = ℵx → ℵy, if ℵ is sound then ℵ is

also deadlock-free.

Proof 11 ∵ ℵ is sound,

∴ ℵx and ℵy are both sound.

∵ ℵ = ℵx ∪ tm ∪ ℵy with tm = •ℵy and tm = ℵx•
∴ ∀M ∈ iℵx ,M ∈ oℵx
∴ ∀M ∈ iℵx ,M ∈ iℵy
∴ ∀M ∈ iℵx ,M ∈ oℵy
∴ ℵ is deadlock-free and livelock-free.

Starvation is the case when one or more transitions do not get enough resources
for a token to fire. The objective of this article is to always guarantee an output
of the cooperative workflow, which has already been proven by the proposed the-
orems. Starvation is guaranteed not to happen since workflows are proven to be
sound, deadlock-free, and livelock-free. The fact that the proposed framework is
starvation-free is a direct result from all the proposed theorems.

5 Evaluation Results

Both simulations and implementations were conducted on the proposed coopera-
tion framework. Simulations are used to empirically demonstrate the correctness
of the framework. On the contrary, implementations are used to test the validity
of the framework.

5.1 Simulation Set-Up

A simulator was developed using C++ to implement the cooperation algorithm
described in Section 3. Details regarding the simulation setup were introduced
in [23,24] and are summarized below:

– Simulator input is a linear logic expression that represents a cooperative plan
using cooperative operator.

– Each input parameter represents a set of IoT agents and their capabilities.
Such that, agents represent IoT devices and their resource capabilities and
their rational decision-making process.

– Capabilities correspond to actions that are performed, with a cost associated
to each action.

– Actions that are not part of an agent’s set of capabilities have a cost set to
infinity.

– Actions and their costs are assigned randomly using a uniformly distributed
function.

The set of actions needed to achieve a task are used to determine the set of
agents that need to cooperate. Such cooperation is used to construct a cooperative
plan, that represents each agent capability and the dependency of the action execu-
tion. To simplify the problem at hand, we randomly selected a plan for execution,
expressed as follows:

((((λA ∨ λE)→ (λB ∨ λC))→ λD) ∧ (λG → λF )) (31)
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The presented plan corresponds to seven different capabilities, such that each
capability corresponds to a device, and all are needed to execute the task. A set
of 50 agents (i.e. IoT device) were used in 100 simulation runs. The probability
for an agent to withhold a capability was controlled manually. For instance, in
one of the simulation tests, we set the probability for an agent to withhold a
certain capability to 0.3. This indicates that each one of the 50 agents would have
a 30% chance for possessing each of the 7 capabilities shown in Equation (31).
The execution time is calculated as the total execution cost of the workflow. Time
units are depicted in terms of transition costs in a workflow.

5.2 Simulation Results

Experiments were conducted to compare the execution time needed to complete
up to 1,000 tasks for different plans and workflows, and Figure 7 illustrates the
result of adapting four different plans. Plan[0] is a fully parallel non-cooperative
plan used to execute the requested tasks, Plan[1] is a fully cooperative plan in
which some form of parallelism is applied, Plan[2] is a partially cooperative plan
where some tasks are performed in sequence and Plan[3] is a fully sequential non-
cooperative non-parallel solution used to complete the requested tasks. The results
show that the fully parallel solution completes the requested tasks faster than the
other solutions. However, though there is a significant increase in terms of time,
this solution has higher costs with respect to agent capability replication, since
each agent must acquire the full set of capabilities needed to complete all tasks.
This is considered either unrealistic, or it will cause an unacceptably high cost for
each agent. In contrast, the fully cooperative solution has a similar delay for task
completion, and also outperforms the other solutions in terms of the least cost for
agent capabilities when the set of capabilities are divided among the set of agents.
The figure also shows the delay incurred for both a partially cooperative plan and
a non-cooperative sequential plan; the latter requires more time to complete the
requested tasks.

Figure 8 illustrates two different cooperative workflows used to execute a plan
and compares them to a fully parallel execution. As shown in the algorithm pre-
sented in Section 3, a back-tracking mechanism is adopted to choose the optimal
solution among the set of workflows. In this particular example, two workflows
(WF1 and WF2) are created to achieve the required tasks, and the one with the
least delay (WF1) is chosen to execute the plan. Comparing WF1 to the fully par-
allel solution shows that their execution times are similar. As stated previously,
the cooperative solution outperforms the fully parallel solution in terms of the cost
required for agent capability requirements.

5.3 Implementation Experiment Set-up and Details

As stated earlier in this article, we adopted robots as an example to showcase
the effectiveness of collaborative IoT devices in fog and cloud computing environ-
ments. It is important to note here, that, the considered experimental setup can
be replicated to any IoT device that has either sensing, computational, or storage
capabilities. We assumed there are two sets of robot clusters in two separate rooms,
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Fig. 7: Number of achieved tasks versus time required to complete tasks for four sets of
plans (full parallelism (Plan[0]), full cooperation (plan[1]), partial cooperation (plan[2]),

sequential (plan[3])).

as depicted in Figure 9. A map traversal problem was incorporated to compel a
set of robots move from one location to another while avoiding certain obstacles
(i.e. walls and furniture). The robots can communicate with a fog computing node,
which publishes and requests information to/from a cloud computing storage site.
The robots direction of travel, represented by a dashed arrow, indicates the de-
termined traversal path to the destination, which is represented by a solid circle.
The robots are placed in two different rooms with the same furniture and layout.

All robots are constructed from the GoPiGo robot kit [62] and connected to a
Raspberry Pi 3 mini-computer [63]. The robots communicate wirelessly with each
other and the fog device. We assumed that the fog device is a computer equipped
with an Intel Core i7-3520M CPU, 8GB RAM and 1TB storage. Robots R1 and
R4 are equipped with a Raspberry Pi camera used for office similarity detection
(see Figure 10(a)). Robot R2 is equipped with an ultrasonic sensor to measure
the distance between objects (see Figure 10(b)). Robots R3 and R5 do not have
sensing capabilities, and can only store and process information retrieved from
other robots and the fog node (see Figure 10(c)).

Since robots R3, R4 and R5 cannot move through an office in a timely manner
without colliding into obstacles due to the lack of ultrasonic sensors, R4 sends im-
ages of the surrounding environment to the fog computing device. Using an image
recognition algorithm [64], the fog computing device determines that the layout
of the office is similar to an office associated with robots R1 and R2; thus robots
R1 and R2 determine a traversal path using their sensing capabilities (camera
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Fig. 8: Number of achieved tasks versus time required to complete tasks for a cooperative
solution (WF1 and WF2) and a fully parallel solution.

and ultrasonic), and build a traversal map. Traversal maps are represented as a 2-
dimensional grid of cells; a cell being a region with a predefined size. The accuracy
of the grid depends on its resolution, which is the number of cells that occupy a
square meter. Each cell is defined as a tuple T |T = (x, y, v), where (x, y) are the
x− and y− coordinates, and v is the status of the cell, such that:

v =


-1 non-explored path
0 obstacle in the path

+1 safe path

Figure 11 depicts the final merged global map of the complete office area
constructed by robots R1 and R2 in our example. Maps are built by cooper-
ating robots in a distributed approach, and a mathematical model is used to
merge the learned sub-maps into one global map. We define an operator ⊕ as the
merge operator of the sub-maps. With a robot set R = {R1, R2, . . . , Rn} and a
set of sub-maps M = {m1,m2, . . . ,mn}, the learning process outcome is R ×M.
Since the outcome of the × operator is a set of multiple sub-maps, we need to
merge the sub-maps such that M = m1 ∪m2 ∪ · · · ∪mn. This is performed using
the ⊕ operator, such that mi ⊕ mj = ∀(x, y)|Xmin ≤ X ≤ Xmax and Ymin ≤
Y ≤ Ymax, where Xmin = MIN(mi(x) ∪ mj(x)), and Xmax = MAX(mi(x) ∪
mj(x)), and Ymin = MIN(mi(y)∪mj(y)), and Ymax = MAX(mi(y)∪mj(y)). Fig-
ure 12 is an example of two sub-maps generated initially by R1 and R2. The other



Cloud-Based Multi-Agent Cooperation for IoT Devices Using Workflow-Nets 25

Cloud
Fog Node

RouterGateway

Fig. 9: Tested real-time scenario using a set of five robots belonging to two different fog
computing sites. Robots R1 and R2 belong to the first cluster, and R3, R4 and R5 belong to

the second cluster. The two clusters can share information and cooperate to accomplish a
task.

sub-maps are generated, and a merge process is initiated to create the final global
map.

An issue that could arise is having two sub-maps partially overlapping each
other, with part of an area discovered by one robot also discovered by another
robot, as depicted in Figure 13. An update mechanism is used for the cell status
in overlapping areas, and when comparing the cell status from the two maps the
new cell status v∗ is determined as follows:

v∗ =


−1 0 +1

−1 −1 0 +1
0 0 0 0
+1 −1 0 +1


If two robots have the same cell status, the new cell status is not modified.

However, if one of the robots has a cell status of -1 (unexplored) and the other
has a cell status of 0 (obstacle), the new cell status would also be 0. Similarly, if
one robot has a cell status of -1 and the other has a cell status of +1 (safe path),
the new cell status would also be +1. In addition, if one of the robots has a cell
status of 0 and the other has a cell status of +1, the new cell status is set to 0 to
avoid collisions.

We use induction to prove the scalability of the ⊕ operator as follows:

Base: Given two maps m1 and m2, m = m1⊕m2 from the definition given above.

Hypothesis: Let m = m1 ⊕m2 ⊕ · · · ⊕mk.

Inductive step: Proof that m = m1 ⊕m2 ⊕ · · · ⊕mk ⊕mk+1.
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(a)                                                                             (b)   

 

(c) 

Fig. 10: Of the five robots used in the experiment, R1 and R4 are equipped with a
Raspberry Pi camera, R2 is equipped with an ultrasonic sensor, and R3 and R5 do not have

sensing capabilities, and are only capable of storing and processing information.

From the hypothesis, let mt = m1 ⊕m2 ⊕ · · · ⊕mk, therefore m = m1 ⊕m2 ⊕
· · · ⊕mk ⊕mk+1 = mt ⊕mk+1. Therefore, from the base step, m = mt ⊕mk+1.

Once a global map is generated, it is shared with robots R3, R4 and R5 via the
fog computing node. The robots cooperate, and robot R4 with a camera sensor
informs robots R3 and R5 of their locations relative to the shared global map.
Then a follow-the-leader traversal solution is adopted, and R3 and R5 constantly
inform R4 of their cell locations. Essentially, robot R4 guides the others through
the safe path.

5.4 Implementation Experiment Results

Various test sets were performed on the robots to assess the effectiveness of the
cooperation method. Three techniques were adopted: i) a cooperative solution in
which robots from different locations connected through the fog node cooperate
to complete a task; ii) a semi-cooperative solution in which robots in the same
location can only cooperate, without connection to the fog node; and iii) a non-
cooperative solution in which robots must complete the task individually. The
results in Figure 14 show that using the semi- and non-cooperative techniques
prevents robots R3 and R5 from accomplishing the task. This is due to their
inability to traverse a safe path without prior knowledge of the relative distances
between them and surrounding objects, given their lack of sensing capabilities.
On the contrary, robots R1 and R2, are capable of moving in the room using the
semi- and non-cooperative approaches. Although sensing capabilities such as the
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Fig. 11: A merged global map showing the explored office area, where -1 indicates a
non-explored path, 0 an obstacle in the path and +1 a safe path.

camera and ultrasonic sensors allow them to find a traversal path, it takes them
significantly longer. Thus, the cooperative approach is the optimal solution, with
robots R3, R4 and R5 determining a safe path in the shortest time.

In addition to the task completion time test, another experiment tested the
effectiveness of the proposed technique in terms of collision avoidance. The results
in Figure 15 show that robot R4 had no collisions when using the cooperative
technique, and the number of collisions for the robots without sensing capabilities
are significantly reduced to two or three.

Path accuracy was also experimentally evaluated to test the effectiveness of the
proposed solution. A robot is said to be accurate if it follows the determined path;
that is, the selected set of cells from source to destination. The results in Figure
16 show that the cooperative approach achieves almost perfect accuracy for all
the robots. With the semi-cooperative approach, robots R3 and R5 had very low
accuracy due to their inability to precisely determine their location with respect
to surrounding objects. Similarly, with the non-cooperative approach, robots R3
and R5 had an accuracy rate of only 2-3%, due to having neither on-board sensors
nor communication capabilities with the other robots. The experiments showed
that the cooperative approach not only accomplishes the required task, but does
so in a timely, accurate and efficient manner.

6 Conclusion and Future Work

The management process of distributed IoT devices within different fog computing
sites has proven to be a challenging task. The design and implementation of fog-
based cooperative frameworks adapted for service delivery to IoT devices should
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Fig. 13: Overlapping in two sub-maps.

consider the plethora of capabilities available in the cloud and fog computing
environment. This article proposed a Petri-net based cooperative framework for
fog-based IoT systems. The framework provided an algorithm to compose work-
flows based on similarities among IoT device agent capabilities that belong to
different fog computing sites. It gives agents the opportunity to cooperate in or-
der to complete the selected tasks. The dynamic behavior of the framework was
verified by examining its reachability, soundness and scalability criteria. Examples
of using IoT robotic agents to define and provide solutions for cooperation issues
were provided throughout the article. Results gathered from both simulations and
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Fig. 15: Number of robot collisions with obstacles using Cooperative, Semi-Cooperative and
Non-Cooperative techniques.

real-time experiments indicated that the proposed framework provides acceptable
cooperation among IoT devices, in a timely and efficient manner when compared
against existing work. According to the experiment results, task achievement in a
cooperative approach can be achieved seven times faster with more accuracy when
compared against a non-cooperative approach.

Many open research areas still remain to be investigated. One main issue that
arises from cooperation and resource sharing is the willingness of different fog
computing sites to cooperate. Since fog computing sites may belong to different
network providers, fog computing nodes and IoT devices may not cooperate unless
some form of incentives and profit sharing is guaranteed. Another issue that may
arise from cooperation is security and privacy [65]. Some approaches that may
be used to tackle such issue is to use artificial intelligence to analyze and classify
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data traffic. Although solid solutions still do not exist, we believe that in the near
future, promising solutions are yet to be discovered.
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