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Abstract—Monitoring pest in agriculture has been a high-
priority issue all over the world. Computer vision techniques are 
widely utilized in practical crop pest prevention applications due 
to the rapid development of artificial intelligence technology. 
However, current deep learning image analytic approaches 
achieve low accuracy and poor robustness in agriculture pest 
monitoring task. This paper targets at this challenge by proposing 
a novel two-stage deep learning based automatic pest monitoring 
system with hybrid global and local activated feature. In this 
approach, a Global activated Feature Pyramid Network (GaFPN) 
is firstly proposed for extracting highly representative features of 
pests over both depth and spatial position activation levels. Then, 
an improved Local activated Region Proposal Network (LaRPN) 
augmenting contextual and attentional information is represented 
for precisely locating pest objects. Finally, we design a fully 
connected neural network to estimate the severity of input image 
under the detected pests. The experimental results on our 88.6K 
images dataset (with 16 types of common pests) show that our 
approach outweighs the state-of-the-art methods in industrial 
circumstances.  

Keywords—Pest Monitoring, Convolutional Neural Network, 
Global Activated Feature Pyramid Network, Local Activated Region 
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I. INTRODUCTION 

Monitoring pest in agriculture has been a high-priority issue 
all over the world. The need for better efficiency of inspecting 
occurrence of pests drives the development of new chemical 
engineering solutions and innovative pest-monitoring systems, 
including chemical pesticides [1], image analytic systems [2], 
automatic adjustable spraying device [3], status estimation of 
wheat plants [4], remote sensing [5], etc. Computer vision 
techniques are widely utilized in practical crop pest prevention 
applications due to the rapid development of artificial 
intelligence technology. Among these applications, stationary 
pest trap facilities are the common choice to capture and 
transform trap images that contain multi-class numerous wild 
pests in the field [6-9]. Despite that these aforementioned 
computer vision approaches could enable great success in 

effective pest monitoring in the wild field, there still remains an 
open problem due to a challenging fact that many discriminative 
features of small pest are short of details when hand-crafted 
features are designed to be selected as pest descriptors. 
Therefore, towards practical multi-class pest monitoring 
including localization, classification and severity estimation in 
the field, it is highly demanding to develop an effective domain 
specific automatic system. 

Recently, the emergence of deep learning techniques has led 
to significantly promising progress in the field of object 
detection that requires localization as well as classification [10-
12]. Specifically, Convolutional Neural Network (CNN) has 
exhibited superior capacities in learning invariance in multiple 
object categories from large amounts of training data. In this 
context, this paper attempts to study the state-of-the-art deep 
learning approaches and find out an effective automatic system 
targeting at solving the challenges of pest monitoring including 
localization, classification and severity estimation. Our idea is 
to build a feature pyramid structure on CNN backbone named 
Global activated Feature Pyramid Network (GaFPN) to extract 
highly representative features of pests over both depth and 
spatial position activation levels. Then, an improved Local 
activated Region Proposal Network (LaRPN) augmenting 
contextual and attentional information is represented for 
precisely locating pest objects. Following this motivation, we 
integrate GaFPN and LaRPN into our two-stage deep learning 
solution. Finally, we design a fully connected neural network to 
estimate the severity of input image under the detected pests. 

In this paper, we make three major contributions: (1) a novel 
CNN based pest monitoring system is presented for accurate and 
effective pest detection. (2) two novel global and local activation 
branches are introduced to improve the powerfulness of feature 
extraction and pest localization. (3) we evaluate our system on 
our 88.6K image dataset on pest localization, classification and 
severity estimation tasks, which show to outweigh the state-of-
the-art deep learning approaches. 



 
Fig. 1. Workflow of our proposed pest monitoring system 

II. SYSTEM DESCRIPTION 

A. Global activated Feature Pyramid Network (GaFPN) 

For feature extraction in our pest monitoring task, we build 
our Global Activated Feature Pyramid Network (GaFPN) shown 
in Fig. 2 rather than single convolutional network. This property 
will allow some missing features of tiny pests in pooling layers 
in one level to be redetected by many pyramid levels. Different 
from common feature pyramid architecture [12], GaFPN takes 
full advantages of global information during series of sequential 
convolution operations. The motivation is that The number of 
kernels corresponds to be the feature depth and each kernel is 
learned to extract the specific type of feature such as shape and 
texture. Thus, one potential way to enhance the quality of 
features is activating the weights of different kernels (depth of 
feature maps). On the other hand, there exists a drawback that 
limited receptive field of convolution operations might result in 
weaken features of pests in spatial level during training because 
tiny targets could be confused with nearby context when 
relatively large kernels are applied. Therefore, it is necessary to 
apply depth and spatial activation in global level with deep CNN 
to boost the representational power of pests’ feature. 

As shown in Fig. 2, feature map from each level is input into 
our proposed Global Activation Module (GAM) to refine the 
features, which involves two branches for depth and spatial level 
activation. In the first part of depth activation branch (the upper), 
the 3D feature map with shape of W H C   extracted by CNN 
block is fed into a global pooling layer that takes average in each 
channel (depth) and generates a lower dimensional (1D) feature 
(1 1 C  ), in which the averaged value represents the global 
feature of every channel. So the feature vector is learned by a 
combination of convolutional operations and could be used as 
depth activation vector. The lower part of GAM in Fig. 4 is 
spatial activation branch. Similarly, the input 3D feature map 
(W H C  ) is fed into a ‘global convolution layer’ that takes 
1 1  size of kernels to reduce the depth of input feature map to  

 
Fig. 2. Structure of Global activated Feature Pyramid Network 

1, which ensures that our spatial factor is learned in spatial level 
and output a 2D spatial activation vector with shape of 

1W H  . Then the 2D vector is learned by a series of dilated 
convolutions [13] to enlarge receptive field. Finally, the output 
is the broadcast element-wise product of original feature map 
and two activation vectors. 

B. Local Activated Region Proposal Network (LaRPN) 

After extracting powerful enough features, we adopt an 
improvement of Region Proposal Network (RPN) to enhance the 
region features in local level by augmenting contextual and 
attentional information during pest localization phase. So our 
approach is named Local Activated Region Proposal Network 
(LaRPN). The first motivation of ‘local activation’ is that the 
output region proposals derived from standard RPN might not 
contain the complete information of target pest, which results in 
inaccurate pest boxes localization and classification. Secondly, 
the local spatial positions contribute to the pest regions 
classification because the key feature for precise region might 
be the fine-grained characteristics such as colors or shapes of 
pests’ wings. Thus, we introduce contextual and attentional 
information to precisely locate pest objects 

Based on the two motivations, we develop LaRPN to achieve 
local activation in region proposals, whose structure is shown in 
Fig. 3. In the first stage, we apply a standard RPN with small 
scale region templates using sliding window approach to find 
potential pest locations, in which those templates with 
Intersection-over-Union (IoU) more than 0.7 to ground truth are 
extracted as preliminary pest regions. Then the four types of 
extra contextual regions [14] that are expansion of 1.5 times 
larger than the preliminary pest regions are augmented and fused 
into them by Rregion-of-Interest Align [15] operation, in which 
three different magnifications could cover sufficient contextual 
information. Thirdly, we develop a self-attention mechanism 
[16] to activated the spatial positions of these fused regions in 
local level, in which we add two convolutional layers with 1 1
size kernel to build two extra branches region feature maps. In 
this way, the relationships among various positions of pests 
could be extracted by the multiplication of two branches. 

 
Fig. 3. Structure of Local activated Region Proposal Network 

III. MODEL OPTIMAZATION 

A. Pest Localization 

Localization is a specific problem where the samples are 
predicted with numerous bounding boxes rather than labels. So 
differently, it is essential to pay more attention on the spatial 
accuracy. Thus, we are supposed to employ box regression loss 
as pest localization training criterion.  Referenced by Faster 
RCNN [11], smooth L1 is selected as the loss function of pest 
localization task LossL: 
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Where  is usually set to 0.5, it  and ît  indicate the coordinates 
of ground truth and predicted bounding boxes respectively. 

B. Pest Classification 

After pest localization, we classify each bounding box from 
LaRPN. Different from binary classification for region 
proposals in the above, localized boxes are categorized with 
various types of pest. Therefore, we use multi-class Softmax loss 
pest classification problem: 
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C. Pest Severity Estimation 

In our system, pest severity estimation aims to predict the 
pest severities of input images, which consist of 5 levels from 
general to serious corresponding to I-V, in which the 5 severities 
are labelled by agricultural experts.  During high-level semantic 
estimation task, the input information should be the combined 
results with those from localization and classification in previous 
step. In this way, we adopt a variant encoding of one-hot 
approach [17] that transforms input into a Ncls-dimensional 
vector. In this case, the pest severity estimation is a multi-class 
classification task so we build several fully connected layers for 
feature extraction and severity prediction with the Mean Square 
Error (MSE) loss: 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Pest Localization Task 

We show pest localization results on our stationary pest 
image dataset in Table 1, where we compare our method with 
Faster RCNN [11] and FPN [12] using Inception [18] and 
ResNet50 [19] as CNN backbones. Observed from Table 1, our 
approach could significantly outperform another feature 
pyramid method FPN on two types of CNN backbones, which 
holds 2.69% and 2.38% Average Precision [20] for localization 
(APL) improvement. Besides, Fig. 4 illustrates the Precision-
Recall (PR) Curve for detailed pest localization performance. It 
can be observed that our method outperforms Faster RCNN by 
an obvious margin, which could be mainly due to the following 
two reasons. Firstly, our method with GaFPN applies a pyramid 
feature extraction architecture and localize pests’ regions on 
multi-level feature maps that could help precisely find pests 
positions on various scales resulting in pests with different sizes 
could be searched well, which is evidence from APL values of 
our method in Fig. 6. Secondly, holding global activation factors 
by our presented GAM for activating the channel and spatial 
information in global level makes it easier to localize bounding 
boxes of pests because of much more remarkable features 
between pests’ positions and background. 

 

TABLE 1. Pest Localization Results APL 
CNN Backbone Method APL 
Inception Faster RCNN 74.99% 

FPN 76.65% 
Ours 79.34% 

ResNet50 Faster RCNN 78.74% 
FPN 80.29% 
Ours 82.67% 

 
Fig. 4. Precision-Recall curve for pest localization 

B. Pest Classification Task 

Table 2 presents the pest classification results using different 
models. Having pest localization information associated with 
the predicted bounding boxes to pests, our method could achieve 
more accurate pest recognition performance on 16 pest 
categories. It is clear that our approach significantly exceeds 
Faster RCNN in pest classification task on almost all classes 
using Inception network. Similarly, the homologous advance 
appears in relatively deep CNN architectures ResNet50, which 
3.28% mAP improvement could be obtained. Compared to FPN 
method, our method still could improve the mAP of pest 
classification. This gain is largely due to our LARPN’s ability to 
introduce the contextual and local activated information rather 
than simple fully connected layer for pest recognition, which is 
helpful to sufficiently learn the features of pests in local level. 

TABLE 2. Pest Classification Task Results AP value (%) 

Pest 
ID 

Inception ResNet50 
Faster
RCNN FPN Ours 

Faster
RCNN 

FPN Ours 

1 51.62 60.24 61.41 57.12  62.13 64.60  
2 56.26 61.00 63.15 59.70  62.96 66.01  
3 64.27 67.33 68.22 69.75  70.16 71.74  
4 80.74 82.10 83.48 83.73  82.82 84.97  
5 65.65 69.73 71.44 70.17  71.22 72.07  
6 65.36 68.45 71.61 68.60  68.98 72.07  
7 63.09 63.30 67.35 68.39  69.46 71.25  
8 45.31 49.70 51.04 48.57  53.47 54.50  
9 69.93 71.17 73.36 72.56  72.91 76.32  
10 75.55 76.27 78.73 79.92  80.58 80.65  
11 50.71 51.74 54.28 54.45  57.35 62.36  
12 63.17 66.78 69.06 66.26  69.20 72.03  
13 77.48 83.31 85.45 84.94  85.18 85.95  
14 79.43 86.93 88.21 87.86  88.03 88.08  
15 89.81 89.77 89.82 89.93  89.97 90.21  
16 69.13 72.51 75.09 73.38  74.37 75.05  

mean 66.72 70.02 71.98 70.96  72.42 74.24  

C. Pest Severity Estimation Task 

In many conventional machine learning methods, pest 
severity estimation is considered as a whole image 
classification task. Differently, our method achieves pest 



severity estimation based on the input feature vector that fuses 
the pest localization and classification information from 
previous tasks as initialization in this task. Table 3 illustrates 
the pest severity estimation task results, in which we compare 
our method with other current CNN based image classification 
methods. As can be seen from the table, our method beats the 
whole image classification models by a large margin with 
around 2% accuracy improvement due to the prior pest 
information. 

TABLE 3. Pest severity estimation Task Results Accuracy 
CNN Backbone Method Accuracy 
Inception Softmax 80.5 

Ours 82.8 
ResNet50 Softmax 84.9 

Ours 86.6 
Finally, we visualize some pest monitoring images in Fig. 5 

that fuse the results from localization, classification and 
severity estimation tasks. As it can be seen, our method could 
realize multi-class pest localization and classification under 
both simple and complicated environments and provide the 
predicted severity estimation, despite the intractable challenges 
such as noisy image and tiny objects. 

 
Fig. 5. Examples of pest monitoring results demonstration 

V. CONCLUSION 

This paper proposes a novel deep learning approach for 
automatic pest monitoring in industrial equipment to 
simultaneously perform three key tasks: localization, 
classification and severity estimation. Our method successfully 
realizes efficient and automatic feature extraction with global 
activated feature pyramid GaFPN structure. Furthermore, we 
present local activation to enhance position-sensitive features of 
pest boxes by LaRPN for powerful regions proposal. Under our 
enriched stationary pest dataset captured by our designed pest 
monitoring equipment, our method has outperformed the state-
of-the-art methods in pest localization, classification and 
severity estimation tasks. Future work will consider developing 
more efficient deep learning architecture for real-time pest 
monitoring. 
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