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Abstract

Hyper-velocity stars are stars that have been accelerated to speeds in excess of the

escape velocity of the galaxy. The first hyper-velocity star observed was found in 2005

by Brown et al. (2005) and to date we can confirm 25 stars as being hyper-velocity. The

small number of these stars discovered is due to the relatively low rate of acceleration

events as well as observational methods limiting observations to B type stars. The

leading processes by which these stars may be accelerated are binary tidal disruption

events in the center of our galaxy. A binary tidal disruption event occurs when a binary

star system orbits close to a massive compact object, such as a massive black hole.

When this occurs the binary members are separated and one of the binary members

gains the orbital energy of its partner, ejecting it at high speeds leaving the partner

bound to the black hole. These bound stars, known as S-stars, have been observed and

can be used to calculate the mass of the central massive black hole in our galaxy.

In this thesis, I present the result of a series of simulations of binary tidal disruption.

These simulations provide insight into the required parameters to trigger a binary tidal

disruption event as well as the properties of stars ejected via these events. My simula-

tions utilize a restricted three body model to reduce the parameter space that I need to

explore to simply the binary orientation, binary phase angle and the penetration depth

D, that being the ratio of the closest distance the binary center of mass approaches

to the black hole and the tidal radius. This approximation models binaries as having

zero energy parabolic orbits but also allows me to model the binary orbit as radial for

binaries that have orbits bringing them extremely close to the massive black hole.

I will firstly show how the disruption rate behaves as a function of the individual initial
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conditions of the binary. As the penetration depth shrinks the majority of binaries will

be disrupted, however as the penetration depth approaches zero there are still approx-

imately 12% of binaries that survive their orbit around the black hole. The magnitude

of velocity gained by the ejected stars is relatively independent of penetration depth

with ejected stars having energies of the order of E ≈ (Gm2/a)(M/m)1/3 where m is

the mass of the binary, M is the black hole mass and a is the binary separation. Hyper-

velocity stars seen in my simulations are only rarely ejected with energies greater or

less than this order of magnitude. Because of this the distribution of binary proper-

ties (binary and black hole masses, and binary separation) is more important to the

spectrum of hyper-velocity stars than the distribution of injection parameters (pene-

tration depth, binary orientation binary phase, and eccentricity). While the average

disruption rate can be well defined with penetration depth for a given orientation the

disruption dependency is more complex with prograde orbits being favoured for dis-

ruption in shallow penetrations D ≈ 1 ∼ 2, while binaries oriented with their angular

momentum vector toward the black hole are favored in deep penetrations D � 1.

Secondly I consider the disruption rate in terms of the binary phase at the periapsis

of its orbit and attempt to constrain the critical criteria that determine the fate of the

binary. By looking at binary disruption in terms of free solutions in the radial ap-

proximation I can approximate the range of binary phase angles that will survive their

encounter with the black hole.

Thirdly I explore the properties of the former partners of hyper-velocity stars that re-

main bound to the black hole in terms of their eccentricity. I find that post disruption

bound stars have eccentricities close to unity. This is significantly higher than observed

S-stars in our galaxy, suggesting stars in the center of our galaxy have undergone re-

laxation over time.

Finally I discuss the implications of binary interactions for gravitational wave astron-

omy. Binaries that survive these orbits will have their own internal orbits shifted,

gaining significant eccentricity and potentially having their semi-major axis changed.

As surviving binaries have their orbits deformed, the inspiral time for binary compact

objects can be decreased significantly.
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“I look inside myself and I ask: “Do I feel like a man or a woman?” and the answer

is that I feel like shit”

- Natalie Parrott

“Build a man a fire, and he’s warm for a day. Set a man on fire and he’s warm for the

rest of his life.”

- Terry Pratchett

“Listen. Strange women lying in ponds distributing swords is no basis for a system of

government. Supreme executive power derives from a mandate from the masses, not

from some farcical aquatic ceremony.”

- Michael Palin
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Chapter 1

Introduction

1.1 Sgr A*

In the early 1960’s the first optical detections of quasars were made by Schmidt (1963)

and Matthews and Sandage (1963). These sources had redshift placing them within

distant galaxies with an absolute magnitude brighter than any other galaxy discovered

at that point. The luminosity of these sources could be explained as the result of mat-

ter falling onto a massive black holes within their host galaxy (Lynden-Bell, 1969).

Lynden-Bell and Rees (1971) would go on to suggest that massive black holes could

exist within most galaxies including our own Milky Way. In 1974 a radio source was

detected from the centre of our galaxy around Sagittarius A by Balick and Brown

(1974). This source would not be properly named until a 1982 paper wherein it was

referred to as Sgr A* (Brown, 1982).

Ghez et al. (1998) made observations of the motions of stars within the central 25arcsec2

of our galaxy. These findings placed strong constraints on the composition of the cen-

tral mass within our galaxy with a massive black hole with mass 2.6 ± 0.2 × 106M�

being the most likely with other options being too unstable to collapse in the form of a

cluster of low mass dim stars, neutron stars, or stellar black holes, or simply not having

any feasible formation method in the form of a dense ball of bosons which would have

1



1.1. Sgr A* 2

a radius only slightly larger than that of the Schwarzschild radius of the predicted black

hole.

These results would later be supported by Schödel et al. (2002) who came to the same

conclusion based on in depth observations of S0-2, one of the S stars orbiting in close

proximity around Sgr A*, with periapsis Rp = 124AU. These observations were made

using high resolution near-IR imaging and spectroscopy over the course of ten years

covering a the majority of S0-2’s 15.2 year orbital period. They found that S0-2’s orbit

is associated with a central mass of (3.5± 1.5)× 106M�.

With the presence of massive black holes in the centre of galaxies Hills (1975) pro-

posed a method by which gas could be transported to the Schwarzschild radius of

them, fueling the quasars that had been previously detected. Hills proposed that stars

in the nuclear cluster would be ripped apart by the massive black hole if their orbits

brought them within the stars’ Roche limit (6M/πρ)1/3, where M is the mass of the

black hole, and ρ is the density of the star. This is called a tidal disruption event (TDE),

where the matter that comprised the star is pulled apart with part of the gas accreting

onto the massive black hole. The luminosity expected from galaxies based on this

method is dependent on the density of stars in the nuclear cluster with larger densities

producing faster orbital diffusion, the highest densities leading to accretion at the Ed-

dington limit (LE = 3.2× 104(M/M�)L�). Accretion at this rate will either grow the

black hole mass until the Schwarzschild radius grows larger than the Roche limit of

the star; this occurs at around M = 3.2× 108M�. Alternatively the disruption of these

stars depletes the nuclear cluster until the luminosity falls below the Eddington limit.

In the case of our own galaxy the stellar density around the black hole is low enough

that the rate of stellar disruption via TDEs is far slower than the initial accretion rate

with a predicted stellar disruption rate of approximately one star every 104 years (Rees,

1988). The radio emission observed from our own galaxy would therefore come from

the last remnant of a long ago disrupted star or gas cloud in a low level accretion flow.



1.2. Binary TDE studies 3

1.2 Binary TDE studies

Expanding on their work on TDEs by a massive black hole Hills (1988) considered the

potential for binary star systems on a close orbit around a massive black hole. These

binaries would undergo a similar form of disruption to that of a single star if their orbit

brought them within the binary’s tidal radius,

RT =

(
M

m

) 1
3

a, (1.1)

where m is the total mass of the binary and a is the binary semi-major axis. In this

case instead of the comprising matter being spread out with a distribution of orbital

energies with approximately 50% being ejected, the result is the two binary partners

on independent orbits with the total orbital energy of the binary split between them.

This can result in one of the disrupted partners gaining a significant amount of energy

from its partner and being ejected from the nuclear cluster at high speed.

The term Hyper-Velocity Stars (HVS) was coined by Hills (1988) to describe stars with

a velocity greater than the escape velocity of the galaxy (of the order of 1000km s−1

at the Galactic centre, Rossi et al., 2017) that would be produced as a result of these

interactions. Hills argued that observation of such a HVS would be evidence of a

massive compact object present in our own Galaxy, that being the then theorized super

massive black hole (SMBH) known as Sgr A*. These HVS’s have sufficient velocity

to not only escape from the pull of the SMBH but potentially also escape the Milky

Way itself while their former partners remain bound in tight orbits around the SMBH.

This mechanism for the production of HVS’s is known as the Hills mechanism. These

stars would be recognizable by both their high velocity and by their relatively young

age and high metallicity in comparison to the stars in their local areas, as hypervelocity

stars would have a similar population to that of the Galactic centre.

Hills (1988) also models the disruption of equal mass (m1 = m2 = 1M�) binary sys-

tems with a perturbing mass of Mbh = 104, 105, 106, 107M�. These binaries all begin

with a semi-major axis of a = 0.01AU except for two data sets with a = 0.02AU &
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0.1AU which were run only for a perturbing mass of Mbh = 106M�. With a binary

centre of mass velocity at infinity of 250m s−1 these orbits were all hyperbolic with

the total energy of the three body system being positive, however the initial velocity

was much smaller than the velocity of the binary at the tidal radius and so results of

interactions were only weakly dependent on the binary centre of mass velocity at in-

finity. Hills’ simulations found that the probability of the ejection of a HVS through

an exchange collision (where one binary partner becomes bound to the SMBH while

the other is ejected, a specific case of a binary TDE) is strongly dependent on the triple

system’s initial conditions. However the probability averaged over binary phase and

with random binary angular momentum orientation is approximately the same for a

given value of the dimensionless parameter D ≡ (Rp/a)(M/m)−1/3 where Rp is the

periapsis of the binary’s orbit around the black hole (note that Hills measured penetra-

tion depth with a normalizing factor Dmin = (Rp/a)(2M/106m)−1/3, see Fig. 1.1).

In some literature this parameter is characterized by its inverse, β = D−1. The same

is true for the average energy of the ejected binary which is also relatively invariant

for a given value of D. These simulations were run using point particles as the three

bodies, however obviously there is a minimum limit on the value of Rp beyond which

you enter the Roche limit of the individual star placing a lower limit in terms of the

dimensionless penetration factor D beyond which solar type stars cannot survive an

orbit. For an equal mass binary this limit is:

Dcrit ≈
R◦
a
, (1.2)

where R◦ is the radius of the star. For binaries comprised of compact objects Dcrit is

much smaller than for main sequence stars allowing them to penetrate much deeper

into the black hole’s gravitational well. Compact objects also do not have the risk

of interactions between binary members such as mass exchange, tidal deformation or

collisions.

Hills’ first models were done for binaries with a small centre of mass velocity at infinity

relative their velocities at the tidal radius, however his later simulations involve higher

energy orbits (Hills, 1991). It is in this study where it is important to recognize the



1.2. Binary TDE studies 5

Figure 1.1: The probability of an exchange collision as a function of penetration depth as found
by Hills (1988). Penetration depth here is taken using Hills normalization Dmin ∼ 80D and
binary separation is given in units of AU. Figure is taken from Hills (1988)

distinction between a binary dissociation and an exchange collision. Both are forms

of binary TDEs, however in an exchange collision one of the binary partners remains

bound to the black hole while the other is ejected, while binary dissociation occurs

when neither of the binary partners is bound to the black hole, and neither are they

bound to each other. Within my work, unless otherwise specified, binary disruption is

used to mean exchange collision as within my framework dissociation is not relevant.

Dissociation can only occur in binary TDEs where the binary orbital energy is greater

than the characteristic change in energy of the binary partners as a result of their dis-

ruption. This characteristic energy change is a function of the black hole mass such

that ∆E ∝ M1/3, as shown in Hills (1988). As a result of this, binaries being dis-

rupted by more massive black holes require a larger orbital energy in order to become

dissociated (Hills, 1991). A larger dissociation rate leads to a reduced chance of an

exchange collision as the total disruption rate as a function of the penetration depth is

not strongly dependent on the orbital energy of the binary. This lack of dependence
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can be explained by considering the velocity of the binary centre of mass at the tidal

radius,

Vcm(Rt)
2 ≈

(
M

106M�

) 2
3 ( a

0.01AU

)−1
1015m2s−2 + V 2

∞. (1.3)

For higher mass SMBHs the first term dominates over the initial velocity, and the orbit

approximates to a zero energy parabolic orbit as in Hills (1988).

Although it was not stated explicitly in Hills (1991), Fig. 1.2 (taken from that paper)

shows that even in cases with a periastron distance close to zero the probability of a

binary exchange is not 100% specifically the bottom right panel of Fig. 1.2 and the line

marked with a solid circle with ∼ 0 orbital energy where dissociation is not possible.

This result is interesting, suggesting that binaries are able to survive deep penetrating

orbits. Although as has already been said there is a limit on the periastron distance a

binary orbit can have before there is a risk of stellar tidal disruption given by equation

1.2.

The rate of binary TDEs is based on the rate of binaries entering the so called loss

cone, that being the range of angular momentum parameter space that would allow a

binary star system to be in an orbit that would result in a binary TDE with periapsis

distance Rp ≤ RT . Working under the reasonable assumption that the orbital energy

of the binary was negligible and the orbit could be treated as parabolic, a binary enters

the loss cone when it has a specific angular momentum of:

h2 ≤ h2lc = 2R2
T

[
E − GM

RT

]
≈ 2GMRT , (1.4)

(Yu and Tremaine, 2003). Depending on the rate at which binaries enter the loss cone

we can define the HVS production rate as being in the full loss cone or the empty loss

cone regimes. In the full loss cone regime the change in angular momentum over a

single orbit is larger than the loss cone angular momentum, meaning that the loss cone

is continually and uniformly refilled with the number distribution of periapsis distance

n(Rp) ∝ Rp. Because of this the rate of HVS production is dependent on the tidal

radius with binaries with larger tidal radii more frequently disrupted (Hills, 1988).
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Figure 1.2: The probability of an exchange collision as a function of the periastron distance of
the binary orbit as found by Hills (1991) with different black hole mass in terms of the mass of
one binary member (M0) and binary velocity at infinity in terms of the binary internal velocity.
Top left panel: black hole mass 10M0 with velocities 0.001 < V∞/Vorbital < 3.004. Top right
panel: black hole mass 102M0 with velocities 0.001 < V∞/Vorbital < 3.754. Bottom left
panel: black hole mass 103M0 with velocities 0.001 < V∞/Vorbital < 4.801. Bottom right
panel: black hole mass 104M0 with velocities 0.001 < V∞/Vorbital < 9.011. Figure taken
from Hills (1991).
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In the empty loss cone regime the change in a binary’s specific angular momentum over

a single orbit is much smaller than the loss cone angular momentum. In this regime

the binary orbit slowly shifts until h ≈ hcl. If this were the only factor driving change

in the binary orbit we would expect an exponential drop off in binaries occupying

h < hlc. However this extremely slow evolution allows rarer scattering events to

become the dominant factor in driving the change in angular momentum. Because

of this binaries in the empty loss cone regime approach the black hole with a flat

distribution in D (Weissbein and Sari, 2017). This rate is independent of the binary’s

mass or separation.

Hills (1988) made an approximation of the rate at which we could expect binary TDEs

to occur within our own galaxy using the same method as Hills (1975). However this

rate also requires the density of stars in the Galactic centre to be large enough that

TDE’s would not significantly affect the total density (full loss cone). Hills estimated

a HVS ejection rate of ∼ 10−3yr−1 which would suggest high number of HVSs that

would be observable, however at that point there had been none reported from existing

surveys.

This prediction of the rate of binary TDEs would later be improved upon by Yu and

Tremaine (2003) using a method similar to Hills’ method of estimating the HVS rate.

However, Yu and Tremaine considered the potential for Binary TDEs to deplete the

loss cone making the dominant factor in the binary TDE rate the diffusion rate of stars

in the nuclear cluster filling the loss cone (empty loss cone). Evaluating the TDE rate

in this way assuming a binary separation of a = 0.3AU,

nTDE ≈ 1.5× 10−5
( η

0.1

)
yr−1, (1.5)

where η is the diffusion constant, a factor that determines the rate at which gravitational

relaxation occurs and is of the order of 0.1. The binary TDE rate is only weakly

dependent on binary separation decreasing to 0.9× 10−5 (η/0.1) yr−1 at a = 0.01AU.

Zhang et al. (2013) also calculate the rate of binary TDEs based on the several mod-

els and injection methods, with a rate of 10−3yr−1 in the full loss cone regime and a
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minimum rate of 10−5yr−1 in the empty loss cone regime. Based on the stellar mass

functions and observations of HVSs they predicted the rate of TDEs in our galaxy to

be within the range of 10−5 − 10−4yr−1.

This method of binary tidal disruption serves as an explanation for stars observed in

close proximity to Sgr A*, such as the star S0-2 that was mentioned previously being

used by Schödel et al. (2002) to confirm the presence of the SMBH in the Galactic

centre. Stars would not be able to form due to the tidal forces that would act on any

star forming cloud in such close proximity to a massive black hole. As one star is

ejected its partner loses energy and becomes bound to Sgr A*. The change in velocity

of a star due to disruption is derived by Yu and Tremaine (2003) as of the order of,

∆v ∼
√
Gm

a

mp

m
, (1.6)

where mp is the mass of the star’s binary partner. If the binary is disrupted at the

periapsis of its orbit we can find the orbital parameters of the bound star, as the bound

star’s periastron would be the same as the binary’s periastron and has v(rp) = vm(rp)−

∆v. Assuming that the energy change due to the binary TDE is significantly larger than

the orbital energy of the binary pre-disruption, the semi-major axis of the bound star

is approximately ab = a(M/m)2/3. Compare this estimate to the observed orbital

conditions of S0-2 with a semi-major axis of 953AU and mass 13.6+2.2
−1.8M� (Habibi

et al., 2017); assuming no change in orbital parameters post disruption, this would

suggest that S0-2 originated from a binary with initial separation ∼ 0.9AU. An equal

mass binary with this initial separation would have a tidal radius of 44AU, significantly

less than the periapsis of S0-2. This coupled with the rarity of binaries with such a

large separation, implies some form of post-disruption relaxation. This discrepancy

could also be explained by S0-2 originating in a binary with a more massive partner

mp ∼ 200M� and a larger binary semi-major axis a ∼ 4AU (Gould and Quillen,

2003). A binary with these conditions could also disrupt producing a bound star similar

to S0-2. However if Gould and Quillen’s explanation for S0-2’s orbital parameters can

be applied to other S stars we can observe, it suggests that large mass ratio binaries

are the norm given the range of eccentricities we observe, with eccentricities as low as
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0.358 ± 0.036 for S1 (Eisenhauer et al., 2005). If these high mass-ratio binaries were

the norm we would expect to see several high mass S stars resulting from binary TDEs

where the low mass member is ejected.

Further numerical studies would follow after the identification of the first HVS, SDSS

J090745.0+024507 in 2005 (Brown et al., 2005). Gualandris et al. (2005) attempted

to test three different origins for the first HVS, disruption of a binary star system by

a massive black hole, the acceleration of a single star by a massive black hole binary,

and the disruption of an intermediate mass (100 − 1000M�) black hole-star binary

(IMBHSB) by a massive black hole. All these methods are capable of producing stars

with the same velocity as the observed star under the right circumstances. Of these

three methods of HVS production the disruption of IMBHSB produces the highest

energy HVSs as the ejection energy of disrupted binaries is proportional to the mass

of the binary partner. However, the expected rarity of intermediate mass black holes in

binaries with main sequence stars leaves the HVS rate from this method prohibitively

low at 10−11yr−1. The massive black hole binary acceleration model requires Sgr A*

to be a single component in a binary system; to date there has been no evidence to

suggest that this is the case, leaving us with the disruption of a binary star system as

the most likely origin of SDSS J090745.0+024507.

To predict the full spectrum of escape velocities of HVSs, Bromley et al. (2006) also

performed numerical simulations of binary disruptions for a range of initial conditions

holding one binary partner mass within a small range 3M� < m1 < 4M� with the

other star’s mass sampled over a larger range 0.5M� < m1 < 4M�, the binary sep-

aration sampled between 0.05AU and 4AU, and the closest approach distance to the

black hole sampled between 1AU and 700AU. Bromley et. al. confirmed the findings

of Hills (1988) that the disruption probability could be given as a function of binary

separation, closest approach distance and the masses of the black hole and binary given

in the form of the penetration depth. Bromley et al. (2006) also numerically give the
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average velocity of an ejected star as a function of the penetration depth:

〈v1〉 = 1750

(
2m2

m

) 1
2 ( a

0.1AU

)−1
2

(
m

2M�

) 1
3
(

M

3.5× 106M�

) 1
6

F(D)km s−1,

(1.7)

where F(D) is of the order of unity and can be fit to a fifth order polynomial with

coefficients: A0 = 0.774, A1 = 0.0204, A2 = −6.23 × 10−4, A3 = 7.62 × 10−6,

A4 = −4.24 × 10−8, A5 = 8.62 × 10−11. After normalizing with the penetration

depth the most significant effect on the distribution of ejection velocities comes from

the orientation and orbital phase of the binary. In Fig. 1.3 Bromley et al. (2006)

shows the distribution of ejection velocities for a given set of initial conditions with a

Gaussian fit with 〈v1〉 = 2600km s−1 and σ = 500km s−1, with σ ≈ 0.2〈v1〉 found to

be a reasonable approximation for a wide range of initial conditions with µ taken from

equation 1.7.

Bromley et al. (2006) found that the HVSs with the highest ejection velocities come

from binaries with angular momentum strongly aligned with the binary centre of mass

angular momentum around the black hole (prograde). They also gave the probability

of an individual encounter resulting in a disruption as a linear function of penetration

depth,

Pdis ≈ 1− D

2.2
, (1.8)

This is a good approximation of Hills’ results (Fig. 1.2) in the range of parameters

covered in their sample, but it does not account for surviving binaries in the deepest

penetrations. Using a galactic density profile of

ρ(r) =
ρ0

1 +
(
r
ac

)2 , (1.9)

where ρ0 is the central density (1.27 × 104M�pc−3) and ac is the core radius (8pc),

Bromley et al. (2006) found their results to be in good agreement with observational

data for most HVS velocities falling within the predicted ejection velocities for 3 −

4M�. The only significant outlier was US708 (Hirsch et al., 2005) which later ob-

servations would suggest as originating from a supernova ejection and not a binary
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Figure 1.3: Distribution of ejection speeds immediately after disruption for a binary withm1 =
4M�, M = 3.5×106M�, a = 0.1AU, andRp = 5AU. This orbit corresponds to a penetration
depth of D ≈ 0.5. Figure taken from Bromley et al. (2006).
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disruption (Geier et al., 2015).

While the velocity of HVSs immediately after disruption is not dependent on star mass,

the stellar lifetime introduced a dependence of mass on the spatial distribution of HVSs

with more massive stars needing higher velocities to reach the halo within their own

lifetimes (Sesana et al., 2007).

The trajectory of an ejected HVS can be obtained analytically from the energy of the

HVS. Post disruption, the path of the HVS follows approximately the same trajectory

as the path of the initial binary with the same periapsis but with a increased eccentricity.

The deflection angle of a binary’s velocity at periapsis from its initial injection velocity

at infinity is given by π/2−Ψ where tan(Ψ) =
√
|1− e2|. As the injection trajectory

can be treated as parabolic with e = 1 the change in the trajectory of the new orbit is

equal to tan−1(
√
|1−∆e2|). For a HVS ejected with velocity 750km s−1-1000km s−1

the ejected HVS is only deflected by ∼ 8◦. Because the trajectory is only changed by

a small amount HVS populations memorize their origin in the galactic core (Lu et al.,

2010). The spatial distribution of observed HVSs is not isotropic when projected from

the galactic centre, however this distribution can be linked to existing structures in the

Galactic centre as shown in Fig. 1.4 (taken from Lu et al., 2010).

From these positions the majority of observed HVSs have a high probability of orig-

inating from the clockwise stellar disk (CWS) or the northern arm (Narm). However

these origins result in new problems as the population in the CWS disk does not reflect

what would be expected from the observed sample of HVSs. Due to observational

constraints, HVS detections are limited to B type stars. These stars have a flight time

from the Galactic centre of ∼ 1 − 2 × 108yr, while the populations of OB stars in

the CWS disk are only 6 ± 6 × 106yr old (Levin and Beloborodov, 2003). The CWS

disk would need to have been rejuvenated with young stars over the past 2 × 108yr to

replace stars lost to binary TDEs, however star formation in the region is suppressed

by the presence of Sgr A*, preventing sufficiently large gas clouds from forming new

stars.

Stars may be injected into the loss cone from these structures through the Kozai-Lidov
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Figure 1.4: Projection of the coordinates of observed HVSs and some structures in the Galactic
centre, with open circles being stars with their coordinates centred on the earth and closed cir-
cles being the stars’ coordinates centred in the Galactic centre. The curves show the projection
to infinity of the planes of the counterclockwise disk (yellow), the northern arm (Narm, blue),
the bar components of the minispiral (cyan), the circumnuclear disk (green), and the clockwise
stellar disk (CWS, magenta) fitted from Paumard et al. (2006) (thick solid line), Lu et al. (2009)
(thin dashed line), and Bartko et al. (2009) (thin dotted line). Figure taken from Lu et al. (2010)
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mechanism (Kozai, 1962; Lidov, 1962) with other stars in the disk pushing them into

eccentric orbits around the black hole. Šubr and Haas (2016) would test this method in

their own study, in which they populated a disk of 2000 binaries and examined the evo-

lution of the disk. They begin with a disk populated with an IMF of nm ∝ m−3/2 and a

binary separation equally distributed in log space. All binaries initially beginning with

no relative inclination to the disk and eccentricity e = 0.9(a − amin)/(amax − amin)

where amin = 0.04pc and amax = 0.4pc define the range of the separation distribution.

They found that injection in this method can produce binaries with large internal eccen-

tricity and inclination relative to the disk. This method also found some stars ejected

directly from the disk through scattering although these ejected stars cannot reach the

same velocities as those produced though binary disruption. This study also confirms

that stars ejected from the Galactic centre maintain a similar orbit to its originating

disk. The mass function of HVSs produced through this mechanism differs from the

IMF of the disk, with high mass stars being preferentially ejected as HVSs. This could

be explained in two ways: first that as massive stars are more likely to have massive

partners, the massive stars are typically going to be ejected with higher velocity and

therefore be recorded as HVSs, second is that more massive binaries will sink towards

the inner part of the disk at a greater rate due to two-body relaxation and once there the

effect of the Kozai-Lidov mechanism is more pronounced pushing them into the loss

cone.

Extreme mass ratio inspirals are produced when a compact object (CO) merges with a

massive black hole; this merger occurs as a result of energy lost in the form of gravi-

tational waves from the CO. These COs can initially become bound to the black hole

from close two body encounters (Miller et al., 2005). However binary tidal disruption

presents an alternate method for CO capture as observations of X-ray transients within

the central 1pc of the Galactic centre suggests the presence of binaries comprised of

COs (Muno et al., 2005; Laycock et al., 2005). The difference between these two cap-

ture methods is the initial semi-major axis of the bound CO, as the two-body encounter

method requires the orbit to be close enough that gravitational waves can be emitted. If

it is very tightly bound and eccentric from the start, it can begin inspiraling from grav-
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itational wave emission immediately. Binary disruption only requires the binary to be

within its tidal radius. Both methods leave the bound CO on highly eccentric orbits but

the wider orbit of the TDE method allows the bound CO circularize before merging

with the black hole entering the LISA detection range with e ∼ 0.01 (Miller et al.,

2005) while close capture COs begin emitting with higher eccentricity e ∼ 0.5 − 0.9.

Binaries that are able to survive their encounter with a SMBH are also relevant to the

field of gravitational wave astronomy, as perturbations from the encounter can leave

the surviving binary in a tighter and more eccentric orbit which reduces the time re-

quired for a binary CO system to merge through gravitational wave emission (Peters,

1964).

Considering the relevance of the Hills method to gravitational wave astronomy, Ad-

dison et al. (2015) produced their own study with more detailed exploration of the

specific parameters beyond simply the penetration depth that leads to the disruption of

binary systems. Addison et al. (2015) explore a range of penetration depths 0.35 <

D < 5, defined therein using the parameter β = D−1 in an empty loss cone distri-

bution of periapsis (equally distributed), with random binary orientation defined by its

inclination from a prograde orbit i, and the longitude of their ascending node Ω0, and

random initial binary phase θ0. The survival rate of binary encounters is plotted for

each of these parameters in Fig. 1.5 taken from the same paper.

When averaged over the other parameters the most significant parameters are penetra-

tion depth and inclination with there being no consistent trend for azimuthal angle and

binary phase when averaged over these shallow penetrations. We can understand the

disruption of binaries in terms of a change of eccentricity derived by Heggie and Rasio

(1996) for a circular binary on a parabolic orbit:

∆e = 6
√
π2

1
4D

3
4 exp

[
−(2D)3/2

3

]
G(i, φ), (1.10)
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Figure 1.5: The surviving fraction of encounters simulated by Addison et al. (2015) for each
initial parameter. Top left: Penetration depth averaged over orientation and binary phase. Top
right: Inclination averaged over penetration depth, azimuthal angle, and binary phase. Bottom
left: Azimuthal angle averaged over penetration depth, azimuthal angle, and binary phase.
Bottom right: Binary phase averaged over penetration depth and orientation. Figure taken
from Addison et al. (2015)
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Figure 1.6: 2D histogram of disruptions vs. penetration depth (β−1 = D) and inclination
(cos(i)) with the solid line marking the range of inclination and penetration depth given by
Eqn. 1.12. Figure taken from Addison et al. (2015)

where G(i, φ) is of the order of unity and given by

G(i, φ) = cos2
(
i

2

)[
cos4

(
i

2

)
+ sin2

(
i

2

)
+

4

3
cos2

(
i

2

)
sin2

(
i

2

)
cosφ

] 1
2

,

(1.11)

where cos(φ) is a function of azimuthal angle and binary phase. By setting cosφ to be

equal to unity and knowing that for a disrupted binary ∆e ≥ 1 we can define a range

of penetration depth and inclination for which disruption can occur.

1

G(i, 0)
= 6
√
π2

1
4D

3
4 exp

[
−(2D)3/2

3

]
(1.12)

As can be seen in Fig. 1.6 this range is accurate for D >∼ 1 but for deeper penetrations

it is less accurate with disrupted binaries found even where i = π where equation 1.10

would suggest that disruption should not be possible. Once well within this range how-

ever the disruption rate is not strongly dependent on penetration depth and inclination
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with disruptions distributed fairly evenly with any differences potentially being due to

the random sampling method used to obtain the data.

To explore the implications for binary CO mergers, Addison et al. (2015) also exam-

ined the range of final eccentricity and separation in binaries that survived encounters

within their sample. In these surviving cases the binary will either tighten with the

centre of mass gaining energy, or soften with the binary becoming bound to the black

hole. In this way binaries are divided into three classes: Bound binaries with a merger

timescale greater than the binary centre of mass orbital period (Long BEMRI), Bound

binaries with a merger timescale shorter than the binary centre of mass orbital period

(short BEMRI), and unbound stars. The merger timescale of a binary CO due to grav-

itation wave emission, sometimes referred to as the Peters lifetime (Peters, 1964), is

given approximately as,

TGW ≈ 150Myr
(
m

M�

)−3(
a

R�

)4

(1− e)
7
2 . (1.13)

The eccentricity of a surviving binary can be taken to a reasonable degree of accu-

racy from equation 1.10 for shallow penetration depths and prograde inclinations but

as with applications for disruption conditions (seen in Fig. 1.6) it does not hold for

deeper penetrations as can be seen by comparing the numerical and analytic results for

surviving eccentricity (white and black contours in Fig. 1.7). The general trend how-

ever holds with binaries surviving a deep penetrating encounter having a significantly

higher post encounter eccentricity than binaries surviving a shallow penetration.

The semi-major axes of post encounter binaries experience a much less significant

change as a result of their encounter with the overall mean found to be 〈a/a0〉 = 0.988

with 97% of binaries in the range of 0.5 < a/a0 < 1.5. The most significant change

in semi-major axis comes from binaries with penetration depth D < 2, with shallower

penetrations producing a much less pronounced change. The post encounter semi-

major axis also features a stronger dependence on Ω0 than is seen in the disruption

chance or eccentricity. Binaries entering with i = π/2 and Ω = π/2 or 3π/2 will

be left with a larger semi-major axis. These orientations correspond to binaries with
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Figure 1.7: 2D histogram of surviving eccentricity log(e) vs. penetration depth (β−1)
and inclination (cos(i)). Contours of constant eccentricity from right to left of log(e) =
−5.5,−5.0,−4.5, ..., 0 from numerical results (white) and analytic solution given by Eqn. 1.10
(black). Figure taken from Addison et al. (2015)

orbital angular momentum vector pointed approximately towards or away from the

black hole.

While the encounter can produce a wide range of post-encounter Peters times, the

surviving binaries within this range of parameters sampled by Addison et al. (2015)

had an average Peters time of TGW ≈ 0.84TGW0 where TGW0 is the initial Peters time

∼ 108yr. As all binaries in their are initially circular the surviving eccentricity can

only increase, therefore all binaries with TGM/TGW0 > 1 must have a wider semi-

major axis. In this way the distribution of Peters time is strongly dependent on that of

semi-major axis. This relatively unchanged Peters time combined with estimates for

encounter rates and CO binary population mean the rate of detected binary coalescence

would only be enhanced by as much as 1%, an amount that would be difficult to verify

given the expected scarcity of these events.
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Figure 1.8: Greyscale maps of change in Peters lifetime log(TGW /TGW0) for different pairs of
input parameters averaged over binary phase. Figure taken from Addison et al. (2015)

While the velocity of a HVS immediately after disruption can be estimated based on

analytical models of binary disruption, observations of HVSs to date have been limited

to stars that have already reached the Galactic halo (Brown et al., 2006a,b, 2007a,b,

2009, 2012, 2014). An understanding of the velocity distribution of HVSs can be used

to make predictions of the Galactic potential by comparing observed proper motions

in the halo with predicted ejection velocities. The velocity of an ejected star at infinity

if acting only under the gravity of the black hole is

〈v〉 =

√
2Gmp

a

(
M

m

) 1
6

H, (1.14)

where mp is the mass of the ejected star’s partner, m is the total binary mass, M is the

black hole mass andH is a function of the encounter geometry of the order unity. Rossi

et al. (2014) use numerical simulations along with distributions of binary initial con-

ditions to predict the distribution of HVS velocities at ejection in both the empty and

full loss cone regimes. In their work they utilize both the analytical solution above and

Monte Carlo simulations to numerically calculate the actual ejection velocity. Heavy

extinction due to dust makes it difficult to know the distribution of masses and orbital

parameters of binaries in the Galactic centre. Instead the distribution is taken as being

similar to the distribution found observationally in the solar neighborhood (Duquen-

noy and Mayor, 1991) and clusters (Kiminki and Kobulnicky, 2012) where binaries

are found to have a logarithmic distribution of semi-major axis fa ∝ a−1 with a mini-

mum separation amin larger than the Roche limit of the stars to prevent mass exchange

between binary partners. For the mass of the partner star mp, Rossi et al. (2014) con-
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siders two cases, the first being a case where all binaries have equal mass, and the

second where the mass of the partner obeys a power law distribution fm ∝ m−αp where

α > 1 with partner mass ranging between mmin = 0.5M� and mmax = 100M�.

To numerically obtain the ejection velocity Rossi et al. (2014) used a semi-analytic

approximation of the 3 body interaction first proposed by the same group in Sari et al.

(2010). My own work utilizes the same approximation and the full derivation will be

described in Section 2.2. Briefly the approximation considers the separation of the

binary partners moving in a time-dependent potential from the black hole. The initial

conditions are normalized in terms of penetration depth to limit parameter space and

reduce computation time.

In the analytic solution Rossi et al. (2014) found that the rate of ejection of stars Ṅv,

for a given velocity v, is dominated by stars that come from binaries with the least

massive possible companion, with the highest velocity ejections only reachable by

compact binaries with equal mass partners. In the low velocity case the rate is due to

ejections with low mass partners, while in the high velocity case they are dominated

by ejections from compact binaries which, as the minimum separation is dependent on

the mass of the partner, is also dominated by the low mass binaries.

Observations of HVSs were and continue to be very rare with the range of velocities

being very narrow with a cut off at 675− 709km s−1. Comparing these limited obser-

vations with the numerical results from Rossi et al. (2014) suggests that the distribution

of binary separation is not flat in log space but instead favours wider separations. This

could be the effect of a filtering process that would cause contact binaries to collide or

undergo stellar TDEs during their orbit.

As most observed HVSs are located in the halo Rossi et al. (2017) did not assume

any specific model for the galaxy mass distribution but instead described the Galactic

potential by the minimum velocity VG that an object requires to reach a radius of 50kpc

which is dependent only on the total mass contained within that radius. Most of the

HVSs’ deceleration occurs within this radius so the velocity distribution is expected to

be independent of radius outside 50kpc. Based on this the velocities of HVSs could be
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used to calculate the escape velocity of the galaxy to be ∼ 800km s−1.

1.3 Observations

1.3.1 Hyper-Velocity Stars

Hyper-velocity stars (HVSs) would go unobserved for eighteen years after Hills’ orig-

inal paper until 2005 when the first was discovered by Brown et al. (2005). SDSS

J090745.0+024507 is a B9 main sequence star with a Galactic rest frame radial ve-

locity of 709km s−1 that is located in the Galactic halo at a distance from the Galactic

centre of 50kpc giving it a velocity of over twice the escape velocity from the Galaxy.

The second HVS, US 708, discovered by Hirsch et al. (2005), was a helium rich O

type star with a Galactic rest frame velocity of 1157km s−1, one of the fastest objects

in the Galaxy. While initially it was theorized to have been produced via the Hills

mechanism, proper motion measurements found it to have an origin in the Galactic

disk and interactions with a SMBH were ruled out (Geier et al., 2015). US 708 is more

likely have originated from a supernova ejection.

A third HVS, HE 0437-5439, was discovered by Edelmann et al. (2005), another main

sequence B-type star with a Galactic rest frame velocity of 563km s−1. In order for

HE 0437-5439 to have been ejected from the Galactic centre it would have had to

have been ejected 100Myr ago. This is much longer than its main sequence lifetime

of 25Myr. Given its proximity to the Large Magellanic Cloud (18kpc) it was initially

posited that it may have been ejected from there instead. Proper motion measurements

from Hubble Space Telescope would later confirm that HE 0437-5439 was traveling

away from the Galaxy (Brown et al., 2010), but the proper motion constraints were

not sufficient to rule out a Large Magellanic Cloud origin (Irrgang et al., 2013). If

HE 0437-5439 did originate from the Galactic centre then, in order to make sense of

the discrepancy between the flight time of the star and its main sequence lifetime, it is

required that HE 0437-5439 be a blue straggler; the result of a merger or mass transfer
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between two stars forming a star with a younger apparent age (Chatterjee et al., 2013).

This suggests that the initial binary disruption would in fact have been a disruption of

a hierarchical triple system ejecting a binary that later merged.

Aiming to expand the sample of HVS’s, observational efforts turned to more com-

prehensive searches of the Galactic halo (Brown et al., 2006a,b, 2007a,b, 2009, 2012,

2014). As the stellar population of the Galactic halo is made primarily of older late

type stars the search targets faint B-type stars with lifetimes consistent with travel time

from the Galactic centre. The HVS survey confirmed at least 16 new HVSs making up

the majority of HVS observations to date.

With data from the LAMOST spectroscopic survey three additional HVS candidates

have been identified: LAMOST-HVS1 (Zheng et al., 2014), LAMOST-HVS2, and

LAMOST-HVS3 (Huang et al., 2017). All of the three candidates are, like previously

discovered HVSs, B type stars. The positions of all three HVSs on the sky are consis-

tent with stars ejected from star forming regions around the Galactic centre, however

the flight time for LAMOST-HVS1 and LAMOST-HVS2 is longer than the lifetime

of the stars themselves suggesting that if these stars did originate from the Galactic

centre then they are most likely blue stragglers much like HE 0437-5439. The lifetime

of LAMOST-HVS3 is however longer than its flight time giving it long enough to have

been ejected normally through the Hills mechanism.

With the release of GAIA data release 2 we were provided with high precision as-

trometry allowing for better constraints on the proper motion of HVSs. GAIA DR2

contains proper motions of all HVSs to date, with the exception of HVS14 and HVS23

for which there are too few observations to constrain proper motions, along with a

large number of bound high velocity stars that may have been ejected through binary

TDEs with Galactic rest frame velocity > 275km s−1. Brown et al. (2018b) uses data

from GAIA DR2 for these stars, comparing with the previous observations from Hub-

ble. The Hubble Space Telescope seems to be more fitting of observing faint stars, of

magnitude g > 18.5, with errors in proper motion up to four times smaller than those

from GAIA. GAIA can have errors up to three times smaller for stars brighter than

this.
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Table 1.1 shows a list of HVSs observed to date that may have been ejected through

tidal disruption, with their heliocentric and Galactic rest frame velocities (v� and vrf

respectively), their distance to the Galactic centre (RGC), and their Galactic longitude

and latitude (l and b respectively) along with the paper in which the were first reported.

Note the lack of HVS2 and HVS11 in the list as the former had been found to orig-

inate in the disc (Geier et al., 2015) while the latter’s Galactic rest frame velocity of

315.2km s−1 is below the escape velocity at 54kpc (Brown et al., 2014). This does not

rule HVS11 out from originating in the Galactic centre but as it is not unbound it does

not fit the definition of HVS. There are other HVSs that are only marginally unbound

as the choice of Galactic potential can leave some HVSs below the escape velocity at

their position. In Fig. 1.9 the Galactocentric distance and velocity of HVSs as listed in

table 1.1 are shown with escape velocity estimates taken from Brown et al. (2014) and

Gnedin et al. (2010). HVS15, HVS16, HVS24, LAMOST-HVS1, LAMOST-HVS3 all

lie below one of these fits.
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Figure 1.9: Galactic rest frame velocity and radius from the Galactic centre of currently ob-
served HVSs as listed in table 1.1 with the LAMOST-HVSs marked by red triangles and HVSs
discovered through other surveys marked by blue diamonds. The dashed and dot-dashed lines
mark estimates for the escape velocity at given radius given by Brown et al. (2014) and Gnedin
et al. (2010) respectively.
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ID v� vrf RGC l b Catalog Original paper
(km s−1) (km s−1) (kpc) (deg) (deg)

HVS1 833.0± 5.5 669.8± 6.6 106.9± 15.3 227.33 +31.33 SDSS J090744.99+024506.88 1
HVS3 723 548 62 263.04 +47.05 HE 0437-5439 2
HVS4 600.9± 6.2 551.7± 7.3 69.7± 10.5 194.76 +42.56 SDSS J091301.01+305119.83 3
HVS5 545.5± 4.3 644.0± 7.5 49.8± 5.8 146.23 +38.70 SDSS J091759.47+672238.35 3
HVS6 609.4± 6.8 501.1± 6.3 57.7± 7.2 243.12 +59.56 SDSS J110557.45+093439.47 4
HVS7 526.9± 3.0 397.7± 6.8 53.2± 6.5 263.83 +57.95 SDSS J113312.12+010824.87 4
HVS8 499.3± 2.9 413.3± 2.6 58.3± 10.8 211.70 +46.33 SDSS J094214.03+200322.07 5
HVS9 616.8± 5.1 458.8± 6.1 77.0± 12.2 244.63 +44.38 SDSS J102137.08005234.77 5

HVS10 467.9± 5.6 417.0± 4.6 53.0± 5.9 249.93 +75.72 SDSS J120337.85+180250.35 5
HVS12 552.2± 6.6 417.4± 8.1 67.2± 8.7 247.11 +52.46 SDSS J105009.59+031550.67 6
HVS13 569.3± 6.1 418.5± 10.8 107.3± 19.6 251.65 +50.64 SDSS J105248.30000133.94 6
HVS14 537.3± 7.2 409.4 105± 16 241.78 +53.20 SDSS J104401.75+061139.02 6
HVS15 461.0± 6.3 328.5± 8.1 66.8± 9.7 266.51 +55.92 SDSS J113341.09012114.25 6
HVS16 429.8± 7.0 344.6± 7.3 70.7± 11.6 285.86 +67.38 SDSS J122523.40+052233.84 6
HVS17 250.2± 2.9 439.5± 4.6 48.7± 4.3 73.52 +41.16 SDSS J164156.39+472346.12 7
HVS18 237.3± 6.4 449.0± 8.5 79.5± 11.1 103.64 −26.77 SDSS J232904.94+330011.47 7
HVS19 592.8± 11.8 496.2± 13.1 98.3± 15.3 256.05 +63.74 SDSS J113517.75+080201.49 7
HVS20 512.1± 8.5 392.1± 8.7 76.4± 10.9 262.56 +60.39 SDSS J113637.13+033106.84 7
HVS21 356.8± 7.5 391.9± 7.5 112.9± 21.7 165.26 +56.11 SDSS J103418.25+481134.57 7
HVS22 597.8± 13.4 487.4± 11.5 84.7± 13.5 263.33 +62.10 SDSS J114146.44+044217.29 8
HVS23 259.3± 9.8 423.2 112± 20 059.36 −39.47 SDSS J215629.01+005444.18 8
HVS24 492.5± 5.3 358.6± 7.6 55.7± 7.7 256.27 +54.55 SDSS J111136.44+005856.44 8

LAMOST-HVS1 611.7± 4.6 473.5± 5.4 20.1± 2.0 221.10 +35.41 LAMOST-HVS1 9
LAMOST-HVS2 341.1± 7.8 502.3± 8.4 22.2± 4.6 60.40 +45.25 LAMOST-HVS2 10
LAMOST-HVS3 361.4± 12.5 408.3± 12.6 29.6± 2.5 165.14 −31.20 LAMOST-HVS3 10

Table 1.1: Table of observed HVSs. (1) Brown et al. (2005), (2) Edelmann et al. (2005) (3) Brown et al. (2006a) (4) Brown et al. (2006b), (5) Brown et al.
(2007b), (6) Brown et al. (2009), (7) Brown et al. (2012), (8) Brown et al. (2014), (9) (Zheng et al., 2014) (10) Huang et al. (2017)
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1.3.2 S-Stars

Within the Galactic core, at a distance from Sgr A* of less than 0.04pc there exists a

population of young B-Dwarf stars with highly eccentric orbits and random angular

momentum orientations that do not conform to the local disk like structures found fur-

ther out such as the clockwise and counter-clockwise rotating stellar disks (Eisenhauer

et al., 2005).

The orbits of the very closest stars, within 0.5arcsec of Sgr A*, are the best constrained

as their orbits are fast enough to reliably track over short timescales. This distance

corresponds to a semi-major axis of < 4AU and an orbital period of < 135yr. Obser-

vations of stars within this region over 10 years starting in 1992 allowed for the full

orbital motion of the closest S-stars to be extrapolated along with orbital period giving

a constraint on the mass of Sgr A*. Schödel et al. (2003) and Eisenhauer et al. (2005)

would do this with the S-stars S1, S2, S8, S12, S13, S14 giving the best view of the

stars in our Galactic core.

Due to the tidal forces in the area around Sgr A* it is difficult for gas clouds to condense

down and form stars without being disrupted first. These stars must therefore have

migrated into these orbits by other means. Binary disruption is a plausible explanation

for how these stars may have become bound to Sgr A*; as one member of a binary

is ejected as a HVS its partner becomes bound having lost the energy that the HVS

gained (Ginsburg and Loeb, 2006). For equal mass binaries, stars bound to the SMBH

through the Hills mechanism do however have very large eccentricities with e > 0.98

(Brown et al., 2018a); only two S-Stars, S8 (e = 0.97) & S14 (e = 0.98), have the

eccentricity that we would expect. It is possible however that for binaries with larger

initial mass ratios (m1/m2 � 1) bound stars can reach eccentricities of e = 0.8 (Zhang

et al., 2013). Specifically, in an unequal mass binary if the less massive star becomes

bound then it will have a lower eccentricity than if the more massive star were to be

bound. In a parabolic orbit both stars have equal chance of being ejected, however in a

hyperbolic orbit the less massive star will be preferentially bound while in a elliptical

orbit the more massive star will be more likely to be bound (Kobayashi et al., 2012).
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Stars bound in this way initially remain on the orbital plane that the binary was injected

towards the SMBH on. This is counter to what we see from the isotropic orientations

of the S-stars and the eccentricities are also much lower than can be formed through

the Hills mechanism alone.



Chapter 2

Binary Exchange collision and the

Restricted 3 Body Problem

To simulate the orbit of binaries around massive back holes I utilize a restricted solution

to the 3-body problem. In this chapter I will explain the conditions under which it

is possible for a binary tidal disruption event to occur. I will also go through the

derivation of my solution and detail the sampling methods I utilize to generate my

results.

2.1 Conditions required for an exchange collision

A binary exchange collision occurs when a binary star system is acted on by a massive

third body (a massive black hole) causing one of the binary members to become un-

bound from its partner and bound to the third body. There are two requirements for an

exchange collision: first the tidal forces must be powerful enough to disrupt the binary,

and second the energy change from the disruption must be sufficient for one partner to

be bound and the other to be ejected.

30
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The Tidal Radius

The first step, the unbinding of the binary, occurs as a result of a tidal disruption event,

where the tidal force from the third body on each partner (Ft) becomes large enough

to pull the binary apart. The point where this occurs is defined as the tidal radius Rt

and can be described with three different arguments: The argument from acceleration,

the argument from velocity, and the argument from separation.

• The argument from acceleration defines the tidal radius as the distance at which

the tidal acceleration At is equal to the gravitational acceleration of the binary

star system Ab The tidal acceleration is defined as the difference between the

gravitational acceleration on each binary partner from the black hole:

At =
GM

(Rm − a
2
)2
− GM

(Rm + a
2
)2
,

≈ 2GMa

R3
m

, (2.1)

where M is the mass of the black hole, Rm is the distance from the black hole to

the binary centre of mass, a is the binary separation, and assuming that Rm � a

which I find to be valid for all cases I consider.

Then we find:

Gm

a2
=

2GMa

R3
m

,

Rm ≈ a

(
M

m

) 1
3

, (2.2)

where m is the total mass of the binary system.

• The argument from velocity defines the tidal radius as the distance where the

change of velocity over the dynamical timescale ∆t due to the tidal acceleration

(At∆t) is comparable to the escape velocity of the binary components ve =√
2Gm/a. Due to the binary’s orbit any changes to the binary caused by tidal
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acceleration will cancel out when averaged over multiple rotations, and because

of this the dynamical timescale must be shorter than or comparable to the binary

orbital timescale (Pb =
√
a3/GM ) in order for a binary to be disrupted. The

tidal radius can therefore be defined as:

√
2Gm

a
=

2GMa

R3
m

√
a3

Gm
,

Rm ≈ a

(
M

m

) 1
3

. (2.3)

• The argument from position is similar to the argument from velocity. It de-

fines the tidal radius as the distance where the displacement over the dynamical

timescale due to the tidal acceleration ∼ At∆t
2 is comparable to the initial bi-

nary separation a.

a =
GMa

R3
m

a3

Gm
, (2.4)

Rm = a

(
M

m

) 1
3

. (2.5)

This definition of the tidal radius also conveniently makes the dynamical timescale of

both the centre of mass orbit and the internal binary orbit equal.

Energy Change due to disruption

Within the tidal radius the massive black hole is able to disrupt the binary causing the

components to become independent. The eventual fate of the binary components is

dependent on the initial total orbital energy of the system and the energy gained or lost

by the components. It can be shown that if the latter is much larger than the self binding

energy of the binary∼ Gm2/a then both stars may become bound (if the initial energy

is negative), or ejected (if the initial energy is positive).

In a parabolic orbit the energy of an individual star post disruption is only from the
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change in energy due to the disruption ∆E. The size of ∆E can be approximated in

three ways by considering: the change in kinetic energy, the change in gravitational

potential energy, and work done during the binary orbit (Sari et al., 2010).

• In the kinetic energy case I consider ∆E simply to be based on the relative

velocity of the individual binary components. In this case I assume the disruption

occurs instantaneously, the binary arrives at the tidal radius in a circular orbit

and the two stars become independent of each other maintaining their previous

position and velocity acting only under the black hole’s gravity. The star that

gains energy has a velocity post disruption of v1 ≈ Vm + v where Vm is the

velocity of the binary centre of mass at the tidal radius (Vt =
√
GM/Rt), and

v is the velocity of the star at disruption relative to its partner (v0 =
√
Gm/a).

This leads to a change in kinetic energy of the order of:

∆E =
1

2
m(Vm + v0)

2 − 1

2
mV 2

m,

≈ mVmv0, (2.6)

since the centre of mass velocity is much larger than the binary orbital velocity I

have ignored the second order term. This gives a change in energy of

∆E =
Gm2

a

(
M

m

) 1
3

. (2.7)

Since M � m, ∆E is much larger than the binding energy of the binary.

• In the potential energy case I consider the difference in potential energy of the

two binary partners at the tidal radius, again assuming an instantaneous disrup-

tion. The distance from the energy-gaining star to the black hole is r1 = Rt+a/2

and its partner is located at Rt − a/2. The difference in the two stars’ potential

energy is of the order of



2.1. Conditions required for an exchange collision 34

∆E =
GMm

Rt − a/2
− GMm

Rt + a/2
,

=
GMma

R2
t

,

=
Gm2

a

(
M

m

)1/3

. (2.8)

• At the tidal radius the binary orbital timescale becomes identical to the centre of

mass black hole orbital timescale (Pbh =
√
R3
t /GM ); this means that over the

course of one half period of the binary it has been displaced by Rt while each

star is acting on its partner, pulling it around its orbit, doing work equal to force

times displacement. The mutual gravity force between the two stars is

F =
Gm2

a2
, (2.9)

so the change in energy due to work done over the dynamical timescale is of the

order of:

∆E =
Gm2Rt

a2
,

=
Gm2

a

(
M

m

) 1
3

. (2.10)

Each of three arguments results in the same estimate for the energy lost by a star and

gained by its partner and from these three arguments I can analytically estimate the

range of energies between which an exchange collision is plausible. In order for an

exchange collision to occur a star must gain or lose enough energy such that one is

ejected with positive energy and one is bound with negative energy. For binaries in a

parabolic orbit this is certain due to their zero energy orbit and conservation of energy,

but in hyperbolic or elliptical orbits the energy change may not be sufficient to result

in a binary exchange.

Considering a plausible apoapsis Ra for elliptical orbits around the central massive
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black hole within a galaxy I can place constraints on the range of orbital parameters for

which the total orbital energy Em is less than the change in energy due to disruption.

Starting with orbits with Ra around the edge of the black hole’s sphere of influence

rh = GM/σ2 where σ is the local stellar velocity dispersion ∼ 100km/s (Genzel

et al., 2010). In the Milky Way, this is of the order of several parsecs, and with these

orbital parameters the orbital energy of the binary is∼ 10−3∆E. The limit for apoapsis

of a binary orbit, where Em ∼ ∆E is Ra = (M/m)1/3Rt, in these orbits binaries will

preferentially be bound to the black hole even if the binary is disrupted.

It can be shown that a binary on an orbit with total orbital energy Em = ∆E will have

comparable velocity at the tidal radius to a binary on a zero energy orbit.

V 2
t =

∆E

m
+
GM

Rt

,

=
Gm

a

(
M

m

) 1
3

+
GM

Rt

,

=
GM

Rt

(
1 +

(m
M

) 1
3

)
. (2.11)

As in my scenario M � m, it is clear that for any binary orbital energy that can result

in an exchange collision I can use a parabolic orbit.

2.2 The Restricted 3 body problem

2.2.1 General Approximation

In order to simplify the 3 body system involved in binary disruption events I utilize a

form of the restricted 3 body problem first outlined in Sari et al. (2010). In this section

the derivation of this method will be explained in depth.

I start with a binary system injected on an orbit towards a massive object from a dis-

tance significantly larger than the tidal radius. First the equation of motion of each

component is given as:
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Figure 2.1: Layout of objects in a 3 body interaction with a binary star system (blue crosses) on
a parabolic orbit (blue line) around a black hole (black dot at 0, 0) with instantaneous distance
from the central mass of rm and binary separation of r. The axes are scaled to the distance of
closest approach (rp).
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d2r1
dt2

= − Gm2

|r1 − r2|3
(r1 − r2)− GM

|r1|3
r1, (2.12)

d2r2
dt2

= − Gm1

|r1 − r2|3
(r2 − r1)− GM

|r2|3
r2, (2.13)

where r1 and r2 are the positions of the primary and secondary binary components

respectively in the black hole rest frame, while m1 and m2 are the component masses.

Within the restricted 3 body problem I consider only the separation of the two stars

with a time dependent potential induced by the black hole. In this way I define the

position vector r = r1 − r2

d2r

dt2
= −Gm

|r|3
r−GM

(
r1
|r1|3

− r2
|r2|3

)
,

= −Gm
|r|3

r−GM
(

rm + m2

m
r

|rm + m2

m
r|3
−

rm − m1

m
r

|rm − m1

m
r|3

)
, (2.14)

where rm is the position vector of the binary centre of mass in the black hole rest

frame, which is defined by the initial total energy of the binary and is expressed as a

Keplerian orbit. In my approximation rm � r so I neglect the second order and higher

terms of r in the second term of the equation of motion.

d2r

dt2
= −Gm

r3
r−GM

[
rm + m2

m
r

r3m

(
1− 3m2

m

r· rm
r2m

)
−

rm − m1

m
r

r3m

(
1 +

3m1

m

r· rm
r2m

)]
,

d2r

dt2
= −Gm

r3
r− GM

r3m
r +

3GM

r5m
(r· rm) rm. (2.15)

Within my work I assume that the binary is always on a parabolic orbit as a binary

injected towards the black hole from a sufficiently large distance will approximate to a

zero energy orbit described by

rm =
2rp

1 + cos f


cos f

sin f

0

 . (2.16)
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Here rp is the distance between the black hole and binary centre of mass at the closest

point in its orbit and f , known as the true anomaly, is the angle between rm and the

point of closest approach. f is a function of time but analytically I can only express

time as a function of f :

t =

√
2

3

√
r3p
GM

tan
f

2

(
3 + tan2 f

2
.

)
(2.17)

This relationship is derived by using conservation of angular momentum, L = mr2mḟ .

Rescaling the distance unit by (m/M)1/3rp, the time unit by
√
r3p/GM , and the mass

unit by m the equation of motion in this new unit system becomes:

˜̈r =

(
r̃p
r̃m

)3

[−r̃ + 3(r̃· r̂m)r̂m]− r̃

r̃3
, (2.18)

where the tilde indicates a unit that has been rescaled and a hat indicates a unit vector.

This solution is then separated into three equations for x, y, and z and a final one for

the evolution of f derived from the conservation of angular momentum.

˜̈x = −(1 + cos f)3

8
[x̃− 3(x̃ cos f + ỹ sin f) cos f ]− x̃

r̃3
, (2.19)

˜̈y = −(1 + cos f)3

8
[ỹ − 3(x̃ cos f + ỹ sin f) sin f ]− ỹ

r̃3
, (2.20)

˜̈z = −(1 + cos f)3

8
z̃ − z̃

r3
, (2.21)

ḟ =

√
2(1 + cos f)2

4
. (2.22)

The energy of one of the binary partners is calculated as follows:

E1 =
1

2
m1v

2
1 −

GMm1

r1
− Gm2m1

r
, (2.23)

however as shown in section 2.1 the energy gained from the disruption is of the order

of (M/m)1/3 larger than the binding energy, so I can neglect the third term from eq.

2.23 and consider the energy rewritten in terms of the relative position and velocity of
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binary partners to the binary centre of mass,

E1 =
1

2
m1

∣∣∣vm +
m2

m
v
∣∣∣2 − GMm1∣∣rm + m2

m
r
∣∣ ,

≈ 1

2
m1

(
v2m + 2

m2

m
vm· v

)
−GMm1

r2m

(
rm −

m2

m

rm· r
rm

)
,

≈ m1

m
Em +

m1m2

m
vm· v +

GMm1m2

mr3m
rm· r. (2.24)

Within the parabolic approximation the orbital energy of the binaryEm = 0. Rescaling

the position and time terms by the parabolic unit system the energy becomes

E1 =
GMm1m2

mrp

(m
M

) 1
3

(
r̃2p
r̃2m

r̂m· r̃ +
ṽm
r̃p
· ṽ
)
. (2.25)

This leaves the energy of the primary in Cartesian coordinates:

E1 =
Gm1m2

a

(
M

m

) 1
3

× (2.26)

1

D

[
(1 + cos f)2

4
(x cos f + y cos f) +

−ẋ sin f + ẏ (1 + cos f)√
2

]
.

Here D is the ratio of the closest approach distance and the tidal radius, known as the

penetration depth D = rp/Rt. Since the total energy of the system is zero the energy

of the secondary body is simply the negative of the primary E2 = −E1. From the ap-

proximations made in section 2.1 I expect the term on the second line to be of the order

of unity so I often report energies, that have been rescaled by (Gm1m2/a)(M/m)1/3

Ẽ. The energy of a star is of particular importance as it is one of the potential methods

for determining if a binary has been disrupted. If a binary is disrupted, the energy of

an individual star becomes constant as it is no longer interacting with its partner. This

parallels the energy gained or lost due to disruption (∆E).

The angular momentum of the primary star around the black hole L1 is calculated as



2.2. The Restricted 3 body problem 40

follows:

L1 = m1(r1 × ṙ1),

= m1

[(
rm +

m2

m
r
)
×
(

ṙm +
m2

m
ṙ
)]
,

= m1

[
rm × ṙm +

m2

m
r× ṙm +

m2

m
rm × ṙ +

m2
2

m2
r× ṙ

]
,

=
m1

m
Lm + ∆L1, (2.27)

where Lm = mrm × ṙm is the angular momentum of the binary centre of mass, which

is constant for a given orbit. Since rm and ṙm are perpendicular at rm = rp and

vm =
√

2GM/rm,

Lm =
√

2GMm2rp


0

0

1

 . (2.28)

∆L1 is the angular momentum change due to the internal angular momentum of the

binary, which becomes constant after disruption. As in previous solutions I use the fact

that rm � r and ṙm � ṙ to neglect the final term giving,

∆L1 =
m1m2

m
(r× ṙm + rm × ṙ). (2.29)

For the secondary star the change in angular momentum is ∆L2, and the only differ-

ence is the signature of r and ṙ meaning that ∆L2 = −∆L1.

Assuming r ≈ a and ṙ ≈
√
Gm/a and using the same instantaneous disruption model

used prevously when estimating ejection energy,

∆L1 ≈
m1m2

m

(
a

√
GM

Rt

+Rt

√
Gm

a

)
,

≈
(
M

m

) 1
3 √

Gm3a. (2.30)
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For shallow penetrations Lm dominates over ∆L1

Lm
∆L1

≈
√

2GMm2rp(
M
m

) 1
3
√
Gm3a

≈
(
M

m

) 1
3 √

D. (2.31)

For penetration depths D � (m/M)2/3, it can be said that L1 = (m1/m)Lm. From

the angular momentum I can get the eccentricity of stellar orbits post disruption, one

hyperbolic and one elliptical

e1 =

√
1 +

2L2
1E1

m3
1G

2M2
. (2.32)

For shallow penetrations I substitute (m1/m)Lm and use the rescaled Ẽ1

e1 =

√
1 +

Gm1m2

a

(
M

m

) 1
3 (4GMm2

1rp)Ẽ1

m3
1G

2M2
, (2.33)

=

√
1 + 4D

m2

m

(m
M

) 1
3
Ẽ1, (2.34)

≈ 1 + 2D
m2

m

(m
M

) 1
3
Ẽ1. (2.35)

2.2.2 Radial Approximation

The formulation that has been explained here is appropriate for all penetration depths,

however in the deepest penetration depths D � 1 I can further simplify the evolution

of the orbit by describing it not as a parabolic orbit but as a radial orbit with the binary

in freefall from infinity directly towards the black hole,

rm =

(
9GMt2

2

) 1
3


1

0

0

 . (2.36)

In this radial regime I use a different unit system where distance is scaled by a and

time is scaled by
√
Gm/a3 which I use to rescale equation 2.15, then substituting the
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centre of mass location to give an equation of motion:

˜̈r =

(
2

9t̃2

)
[−r̃ + 3(r̃· r̂m)r̂m]− r̃

r̃3
. (2.37)

Since the unit vector of rm is unity in the X dimension and zero in all others the

equation of motion separated into Cartesian coordinates becomes:

˜̈x = +
4x̃

9t̃2
− x̃

r̃3
, (2.38)

˜̈y = − 2ỹ

9t̃2
− ỹ

r̃3
, (2.39)

˜̈z = − 2z̃

9t̃2
− z̃

r̃3
. (2.40)

The energy given in the same way from equation 2.25 is

E1 =
Gm1m2

a

(
M

m

) 1
3

×
(

2

9

) 2
3

t̃−
4
3

(
x̃+ 3t̃¨̃x

)
, (2.41)

where, as with the general case, E1 = −E2.

2.2.3 Free Solutions in the General Solution

As the binary approaches the black hole in deep penetrations the tidal forces become

so dominant that the self-binding force becomes negligible and both stars travel on

independent orbits acting only under the gravity of the black hole. In this regime I can

obtain analytic solutions to the equations of motion by considering two near identical

orbits with slightly changed initial conditions denoted by ∆. Since the equation of

motion is a three dimensional second order differential equation there exist six inde-

pendent solutions. In these independent solutions one orbit is parabolic with standard

initial conditions (rm) and the other has only a single initial variable changed and all

other variables identical (r′m). The solutions are constructed with a variation to a single

condition; these conditions are:

• Variation of periapsis crossing time.
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• Variation of the orbit’s eccentricity.

• Variation of periapsis distance.

• Variation with a rotation of apsidal axis.

• Variation with a rotation around the apsidal axis.

• Variation with a rotation around the latus rectum.

In the discussion below, it is useful to use a new variable N ≡ tan(f/2) and relations

sin f = 2N/(1 + N2) and cos f = (1 − N2)/(1 + N2). I consider an orbit infinites-

imally close to a parabolic orbit, and I will evaluate the separation between the orbits

(∆x,∆y,∆z) at a given time (i.e. the separation between two stars in the orbits). For

a given time, the true anomaly of the former f ′ = f + ∆f is infinitesimally different

from that (f) of the fiducial parabolic orbit. Ignoring the 2nd and higher order terms

of ∆f , I can show the following relations.

sin f ′ ≈ sin f + ∆f cos f =
2N + ∆f(1−N2)

1 +N2
, (2.42)

cos f ′ ≈ cos f −∆f sin f =
(1−N2)− 2∆fN

1 +N2
, (2.43)

N ′ ≡ tan(f ′/2) ≈ N + (∆f/2)(1 +N2). (2.44)

• Variation of periapsis crossing time.

Considering two stars on identical parabolic orbits with different periapsis cross-

ing time, the relative position can be thought of as the difference of two points

on the same orbit separated by a constant small change in time t′ = t+ ∆t. The

change in the true anomaly ∆f can be evaluated by using Eq. 2.22 or equiva-

lently ∆f =
√

2(1 +N2)−2∆t̃ where ∆t̃ is the crossing time difference ∆t in

units of
√
r3p/GM . I can express the separation in terms of N .

∆x = r′m cos f ′ − rm cos f = −
√

2rpN

1 +N2
∆t̃, (2.45)

∆y = r′m sin f ′ − rm sin f =

√
2rp

1 +N2
∆t̃, (2.46)

∆z = 0, (2.47)
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where r′m ≡ 2rp/(1 + cos f ′) = rp(1 + N ′2) and rm = rp(1 + N2). Expressing

these back in terms of f ,
∆x

∆y

∆z

 ∝

− sin f

1 + cos f

0

 . (2.48)

By substituting r = (− sin f, 1 + cos f, 0) into the equation of motion, it is easy

to show that this is a solution when the binary self-gravity term is negligible.

• Variation of the orbit’s eccentricity.

Considering two stars on identical orbits, one parabolic and one with eccentricity

e = 1 + ∆e, the relative position can be thought of as the difference between

these two at the same point in time. Like with the solution based on variation in

crossing time this introduces a change in true anomaly ∆f , I pick points at equal

time: t = K(N, e,Rp) = K(N ′, e′, Rp). I start by considering the form of this

altered orbit:

r′m =
(1 + e)Rp

1 + e cos(f ′)
= Rp(1 +N ′2)

(
1 +N ′2

∆e

2

)
, (2.49)

I can derive my K function based on conservation of angular momentum,

h′ = r′2m
df ′

dt
= r′2m

df ′

dN ′
Ṅ , (2.50)

Considering the orbital-energy-invariance equation vm =
√
GM(2/rm − 1/a),

where a = Rp/(1− e), the specific angular momentum at the periastron h′ ≈√
2GMRp(1 + ∆e/4)). I rewrite the conservation of the angular momentum as

K(N ′, e′, Rp) =

√
2R3

p

GM

[
N ′ +

N ′3

3
+ ∆e

(
−N

′

4
+
N ′3

4
+
N ′5

5

)]
. (2.51)

This equation gives the time as a function of N ′ (or equivalently f ′) for a given

set of the parameters ∆e andRp. For a given time t, f and f ′ are slightly different
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because the two orbits have different eccentricity. Equalizing the time for the two

orbits K(N ′, e′, Rp) = K(N, e,Rp), I obtain

∆f =
N(5− 5N2 − 4N4)

10(1 +N2)2
∆e. (2.52)

Now I can evaluate the separation,

∆x = Rp(1 +N2)

(
∆f(N cos(f)− sin(f)) + ∆e

N2

2
cos(f)

)
,

=
Rp∆eN

4

10(1 +N2)2
(5 + 4N2 −N4). (2.53)

∆y = Rp(1 +N2)

(
ε(N sin(f) + cos(f)) + ∆e

N2

2
sin(f)

)
,

=
Rp∆eN

10(1 +N2)
(5 + 5N2 + 6N4). (2.54)

Expressing displacement in terms of the true anomaly, I get:
∆x

∆y

∆z

 ∝


(8 + 12 cos(f)) tan4(f/2)

35 sin(f)−2 sin(2f)+3 sin(3f)
(1+cos(f))2

0

 . (2.55)

• Variation of pariapsis distance.

In this solution the varied orbit remains parabolic with a changed periastron dis-

tance. Consider two similar orbits with slightly changed periastron distance

R′p = Rp + ∆Rp, with an associated change in the true anomaly ∆f . This

change in the true anomaly is obtained in a similar method to the variation of

eccentricity method where t = K(N, e,Rp) = K(N ′, e, R′p) giving:

∆f =
−∆Rp

2Rp

sin(f)(2 + cos(f)), (2.56)
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which I can substitute into the relative position

∆x = Rp(1 +N2)

[
∆Rp

Rp

cos(f)−∆fN

]
, (2.57)

∆y = Rp(1 +N2)

[
∆Rp

Rp

sin(f) + ∆f

]
. (2.58)

Finally giving a displacement of:
∆x

∆y

∆z

 ∝


(2− cos(f))

cos(f) tan
(
f
2

)
0

 . (2.59)

• Variation with a rotation of apsidal axis.

In this solution I compare my parabolic orbit with an identical orbit that has been

rotated around the focus on the X-Y plane by a small angle ∆ω

r′m =


1 −∆ω 0

∆ω 1 0

0 0 1

 rm, (2.60)


∆x

∆y

∆z

 ∝


sin(f)

1+cos(f)

cos(f)
1+cos(f)

0

 . (2.61)

• Variation with a rotation around the apsidal axis.

In this solution I again rotate but this time around the apsidal line (i.e. the X axis)

by a small angle ∆ω. This introduces a z component to the parabolic equation

which previously has been set to zero.

r′m =


1 0 0

0 1 −∆ω

0 ∆ω 1

 rm, (2.62)
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
∆x

∆y

∆z

 ∝


0

0

2 sin(f)
1+cos(f)

 . (2.63)

• Variation with a rotation around the latus rectum.

The final solution is a rotation around the latus rectum line (the Y axis), which

also introduces a Z component.

r′m =


1 0 ∆ω

0 1 0

−∆ω 0 1

 rm, (2.64)


∆x

∆y

∆z

 ∝


0

0

2 cos(f)
1+cos(f)

 . (2.65)

2.2.4 The t=0 Singularity in the Radial solution

In order to use the radial solution as an approximation for very deep penetrating bi-

naries in the general case I must be able to fully simulate the orbit of the binary into

positive times. However in the radial solution I cannot evolve the binary through the

periastron with the standard reduced equations of motion. The nature of the radial

solution leads to rm becoming zero at t = 0 causing the separation between the stars

become infinite. I can remove this problem by relying on free solutions to navigate

through the minimum separation into positive times.

As with the general solution as I approach t = 0 the self-binding forces in the binary

become negligible and the equations of motion for each spatial dimension become

dependent only on the dimension itself and time, allowing us to solve the differential,

¨̃x =
4x̃

9t̃2
, (2.66)
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which is satisfied by a power law x̃ ∝ t̃n where the value of n can be shown to be 4/3

and −1/3,

x̃ = Axt̃
−1
3 +Bxt̃

4
3 . (2.67)

Here Ax and Bx are coefficients of integration, likewise y and z have similar equations

of motion

ỹ = Ay t̃
1
3 +By t̃

2
3 , (2.68)

z̃ = Az t̃
1
3 +Bz t̃

2
3 , (2.69)

Since at this distance from the black hole interaction between the stars is negligible on

this time-scale, the coefficients are constant, so the velocity of the star is given using

the free solution as:

˙̃x = −1

3
Axt̃

−4
3 +

4

3
Bxt̃

1
3 , (2.70)

˙̃y =
1

3
Ay t̃

−2
3 +

2

3
By t̃

−1
3 , (2.71)

˙̃z =
1

3
Az t̃

−2
3 +

2

3
Bz t̃

−1
3 . (2.72)

The values of the coefficients are given by:

Ax =
4x̃

5
t̃
1
3 − 3˜̇x

5
t̃
4
3 , (2.73)

Bx =
x̃

5
t̃
−4
3 − 3˜̇x

5
t̃
−1
3 , (2.74)

Ay = 2ỹt̃
−1
3 − 3˜̇yt̃

2
3 , (2.75)

By = −ỹt̃
−2
3 + 3˜̇yt̃

1
3 , (2.76)

Az = 2z̃t̃
−1
3 − 3˜̇zt̃

2
3 , (2.77)

Bz = −z̃t̃
−2
3 + 3˜̇zt̃

1
3 . (2.78)

It can be seen from these solutions that although the binary separates at t = 0 it later

returns in positive times. As the coefficients are constant so long as the binding force is

negligible I can obtain the conditions of the binary in positive time by simply changing

the signature of time in the free solutions.
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These coefficients in the radial free solutions can be linked to the coefficients in the

general free solutions. As the penetration depth approaches zero (D � 1) and the orbit

becomes radial, in essence a straight line towards the black hole, the true anomaly is

−π for the entirety of the orbit up until t = 0 when it rapidly makes a full 2π rotation.

I can compare the two solutions by expanding around f = −π + ∆f . Time can be

shown as a function of ∆f

t̃ =

√
2

3
D

3
2 tan

(
−π + ∆f

2

)(
3 + tan2

(
−π + ∆f

2

))
, (2.79)

∆f = −
(

128

9

) 1
6

D
1
2 t̃

−1
3 . (2.80)

Considering the solution with respect to variation in crossing time, the general free

solution when expanded around −π + ∆f has the same time dependency as the Ax

term in the radial free solution

∆x = − sin(−π + ∆f) ≈ ∆f ∝ t̃
−1
3 . (2.81)

In the same manner each of the five other coefficients of the radial free solutions can

be linked to the general free solutions: Bx is linked to solution for a variation in orbital

eccentricity (Eq. 2.55), Ay is linked to the solution for variation in periastron distance

(Eq. 2.59), By is linked to the solution for a rotation in apsidal axis (Eq. 2.61), Az is

linked to the solution for a rotation around the apsidal axis (Eq. 2.63), and Bz is linked

to the solution for a rotation around the latus rectum (Eq. 2.65).

In deep penetrations, in the general case as well as the radial case, the final energy and

position accurately reproduce those of the full 3 body integration, however the motions

of the stars during the periapsis of their orbits are not recreated. In deep penetrations

the approximation causes binary partners to separate substantially as they approach the

periastron (Fig. 2.2), however they do later return to the same path as that of the full 3

body integration.

In the radial free solutions as |t| � 1 the Ax term dominates over all others causing

the separation of binary members. It can be shown that the same term dominates in
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the general case as well, as the paths of the binary members in deep penetrations of

the general case follow the free solution for variation in time (Fig. 2.3), however the

3 body solution does not follow the free solution exactly. This effect is due to the

approximation treating the stars as test particles. Increasing the mass of the black hole

in the 3 body case results in an orbit similar to the restricted case however as the subject

of this study is focused on interactions in our own Galactic centre the black hole mass

can always be taken as M � m.

To navigate the radial case across t = 0 using the radial solution I need to select a value

of t, Tmin, where it becomes acceptable to neglect the self gravity. In my scaled unit

system it is simple to approximate the range of Tmin. From the radial free solutions

(Eq. 2.67, 2.68, & 2.69) I know that as t → 0, r → x → Axt
−1/3. The criterion to

enter the free solution is therefore taken from the radial equation of motion: t � Ax.

Since Ax is of the order of unity the requirement becomes simply t� 1. I have tested

ranges of Tmin (Fig. 2.4) to find the most effective value for future use. As the time

step of integration is scaled based on the dominant dynamical timescale, a smaller Tmin

can become computationally expensive over multiple simulations. I therefore want to

choose a value as large as is feasible while still maintaining numerical accuracy. Based

on these tests I have determined that Tmin = 10−5 results in a fractional difference of

less than 0.01 while keeping computation time down.

2.2.5 Time step scaling

In the restricted three body solution there are two dynamical timescales to consider:

the binary orbital timescale Tr =
√
r3/Gm which scales to r̃3/2 and the outer orbit

timescale Tm =
√
r3m/GM which scales to (2/(1 + cos f))3/2 in the general case, and√

9/2t̃ in the radial case. The timesteps in the integration are scaled to these values

with ∆t = 10−5×min(Tr, Tm) to maintain accuracy. This scaling is accurate for both

eccentric and circular binaries. The fractional difference in ejection energy for circular

and eccentric binaries integrated with base time step 10−5 and binaries integrated with

smaller time steps are less that 0.1% for timesteps an order of magnitude smaller.
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Figure 2.2: The path of the primary star’s orbit relative to its partner integrated from the same
initial conditions using the full 3 body model (black), the restricted general case (blue), and the
restricted radial case (red). The penetration depth of the three body and general cases is set as
10−5, the black hole mass in the 3 body case is set to 2× 106m and binary phase at periastron
is 0.0. The distance is scaled to the initial separation a.
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Figure 2.3: The path of the primary star’s orbit relative to its partner integrated from the same
initial conditions using the full 3 body model (black) and the restricted general case (blue) with
penetration depth D = 10−2 and binary phase at periastron of 0.5π in a co-planar prograde
orbit. The full 3 body model is integrated using a range of different black hole masses. The
restricted general case has the same form as the free solution for variation in time.
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Figure 2.4: Top: The mean ejection energy of stars in the radial case with θ = 0.50π,
0.25π, 0.10π in blue solid, dashed red, and dot-dashed black respectively, in units of
Gm1m2/a(M/m)1/3 as a function of the Tmin. Bottom: The fractional difference in mean
energy between E(Tmin) and E(Tmin = 10−7) with θ = 0.50π, 0.25π, 0.10π in blue solid,
dashed red, and dot-dashed black respectively.
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2.3 Initial Conditions

2.3.1 General Case

Within the restricted 3 body problem I have rescaled factors to reduce the parameter

space required to fully sample the spectrum of different initial conditions. In this way

the results of a single given integration are applicable to any different combination of

masses and separations. As such the only conditions I need consider when choosing

initial conditions of a circular binary in the general case are: The penetration depth

D, the phase of the binary φ, and the orientation of the binary defined in polar space

by the angular momentum vector with inclination from the positive X axis θ and the

azimuthal angle from the positive Y axis ϕ (Fig. 2.7).

I can restrict the range of binary phase angles that need to be considered by recognizing

the symmetry of the binary system. In a circular binary of equal mass the two stars are

displaced around the centre of mass by π radians and so a rotation π results in an

identical binary. Likewise within my approximation the only effect of rotation is a

change in signature of E1, that is to say that in the case where the primary is bound to

the black hole while its partner is ejected a rotation of initial binary phase of π would

result in the secondary being bound while the primary is ejected. In this way I can

restrict the range of binary phase angles to 0 ≤ φ < π which are sampled in an equal

distribution. In my approximation where a � rm the offset of the binary centre of

mass in an unequal mass binary is not a factor when considering only the first order

terms, therefore a rotation of π produces an identical negative result to the equation of

motion and energy (Eqn. 2.18, 2.26). Because of this the symmetry in binary phase

is valid for all mass ratios. This does not hold for eccentric binaries where a rotation

of π can result in a different binary separation and cannot be sampled in an equal

distribution as angular velocity is not constant.

I consider 3 different techniques for sampling orientation angles. The first is a Monte

Carlo random sample generated using pairs of randomly generated numbers u, v be-

tween 0 and 1 that produce orientation angles θ = cos−1(2u−1) andϕ = 2πv. The sec-
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ond method uses the same distribution as the Monte Carlo sample but using a regular

distribution instead of random, choosing rings of equal θ with dθ = cos−1(θ) between

0 and π and populating those rings with points with azimuthal angle ϕ equally dis-

tributed between 0 and 2π. The third is based on the method by Deserno (2004) where

points are distributed on a sphere approximately equidistant from their neighbouring

points. This is done in concept by dividing the surface of a sphere into approximately

equal squares and placing a point in the centre of each.

I start by deciding the number of points required N , and given that the surface area

of a unit sphere is 4π, each square has area A = 4π/N with angular length on each

edge of d =
√
A. I then divide the sphere into rings of equal θ, the number of rings is

Nθ = π/d with angular displacement dθ = π/Nθ. On each ring of equal θ I then popu-

late it with points equally separated in azimuthal angle ϕ, with approximate separation

dϕ = A/dθ.

To test the efficacy of the three sampling methods at producing an equal distribution

I compare the distribution with different sample size N . Then to judge the accuracy

of the distribution I consider each orientation angle as a point on the surface of a unit

sphere, defining s̄ as the average distance between a specific point on a unit sphere and

the points generated by my methods. In a perfect distribution this value is known and

derived in the following way (also see Fig. 2.5):

s̄ =
1

N

N∑
i=1

(si), (2.82)

=
1

N

N∑
i=1

(
2 sin

(
θi
2

))
. (2.83)

N = 4πn where n is a constant surface area number density. In a ring on the sphere

with inclination α from a specific point with thickness dα the number of points Nα =

2πn cos(α)dα. All points within this ring have the same s therefore,
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s̄ =

∫ π

0

sin

(
θ

2

)
cos(θ)dθ,

= 2

∫ π

0

sin2

(
θ

2

)
cos

(
θ

2

)
dθ,

= 4

∫ π
2

0

sin2 (τ) cos (τ) dτ,

=
4

3
. (2.84)

For each of my distributions I take a point at each of end of the cartesian axis ([1, 0, 0],

[−1, 0, 0], [0, 1, 0], [0,−1, 0], [0, 0, 1], [0, 0,−1]) and take the s̄ − 4/3 of each. The

average for each of these is given in Fig. 2.6 with increasing sample size. The De-

serno (2004) method is more accurate for all sample sizes. While both the regular and

Deserno methods work in principle by having each point describing an equal area, the

dimensions of that area are not constant in the regular method. In the Deserno method

each point occupies a square of equal height and width, but in the regular method

points around θ = 0 and θ = π are very tall but narrow, while points around θ ≈ π/2

are very wide but short. This makes it less efficient for sampling orientations.

I am also able to limit the range of binary orientation angle θ in the same way as the

binary phase can be limited by recognizing another symmetry in the system. Since in

the general case the black hole is always located on the X-Y plane the only effect of

changing the signature of the z component to the equation of motion 2.18 is a change

in signature of the z̈ component Eq. 2.21. In this way for every initial orientation there

is a mirror orientation with only the signature of the z component changed (see the

dashed lines on Fig. 2.7). Since the angular momentum vector is defined as l̂(θ, ϕ) =

(cos θ, sin θ cosϕ, sin θ sinϕ) the orientation that produces the mirrored orientation is

l̂(π − θ, π − ϕ). Therefore it is possible to limit the range of orientation angles such

that 0 ≤ θ ≤ π/2 and 0 < ϕ < 2π. Within my simulations I do not use this limiting

method as within the Deserno sampling method there is no loss or gain in accuracy by

limiting my range.
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Figure 2.5: Diagram describing the derivation of mean separation of points randomly dis-
tributed on the surface of a sphere.
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Figure 2.6: The difference between the mean distance to points generated vis the three ori-
entation sampling methods and the mean distance obtained from a perfect distribution. The
Monte Carlo method is shown in black, the regular distribution method is shown in red, and
the Deserno (2004) method shown in blue.



2.3. Initial Conditions 59

Figure 2.7: The initial circular orbit of a binary (red solid line) and its angular momentum
vector (blue solid arrow) with its projection (blue dotted line) on the Y -Z plane. The binary
itself orbits the MBH on a parabolic orbit on the X-Y plane. The red dashed line indicates
another circular orbit which is symmetric to the red solid orbit with respect to the X-Y plane.
The two blue dashed arrows are the angular momenta of the same (red dashed) orbit but one
orbiting in the prograde direction and the other in the retrograde.



2.3. Initial Conditions 60

In the case of binaries with an initial eccentricity the initial conditions for binary ori-

entation are described differently. Along with φ angle there is an additional factor, the

angle describing the position of the periapsis of the eccentric orbit relative to the X

axis before the binary is rotated by the orientation angles: $. In an eccentric orbit

the angular velocity is not constant, and because of this φ can not be sampled linearly

between 0 and 2π. To produce a sample I attempt to derive φ as a function of t using

Kepler’s laws.

dA

dt
= constant =

πab

T
, (2.85)

where dA is an area swept out by a line connecting the star to its centre of orbit, a is

the semi-major axis, b is the semi minor axis and T is the orbital period.

1

2
r2(φ)dφ =

πab

T
dt, (2.86)

1

2

(
a(1− e2)

(1 + e cosφ)

)2

dφ =
πa2
√

1− e2
T

dt, (2.87)

1

(1 + e cosφ)2
dφ =

2π(1− e2)− 3
2

T
dt. (2.88)

There is no trivial solution to this differential so instead I must solve it numerically. In

essence I integrate a through a single orbital period using the Euler method with equal

spaced time intervals.

∆φ = 2π
(1 + e cosφ)2

(1− e2) 3
2

∆t

T
, (2.89)

∆φ =
2π

Nφ

(1 + e cosφ)2

(1− e2) 3
2

, (2.90)

which generates a sample φi+1 = φi + ∆φ(φi).

As said before the symmetry between 0 < φ < π and π < φ < 2π does not exist

in elliptical orbits. However a similar symmetry exists with $ where a rotation of π

while maintaining the same φ results in the same negative energy result as the original

symmetry. Since $ is randomly oriented I can sample it equally distributed between
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0 ≤ $ < π. For the general case I model binaries with eccentricities e = 0, 0.3, 0.6

and 0.9.

The last remaining variable to decide is penetration depth D which is decided sepa-

rately from the other variables. While other initial conditions are sampled in a regular

fashion or using a numerical method D is sampled only as needed to fully describe the

range between Dmin where the results can be described accurately by the radial solu-

tion, and Dmax where the probability that a binary will undergo an exchange collision

becomes 0. Within this range I specify points in a semi-logarithmic scale sufficient to

produce continuous curves in all results.

In eccentric binaries, D is sampled in a regular equal distribution in log space in the

range of 4 × 10−5 < D < 4. Due to limitations of computing time eccentric binaries

are not simulated with full 3d orientations as the inclusion of $ and a full range of D

make the simulations too computationally expensive. Instead they are simulated using

co-planar orientations where both stars and black hole are located on the X-Y plane

(θ = 0.5π, ϕ = 0.5π). I run eccentric binaries with specific values of e similarly to

how I sample D in the circular case.

In summary, I have shown three forms of symmetry in binaries’ initial conditions. The

first is in the binary phase of circular binaries where there is rotational symmetry of

order one, as binaries rotated by π result in a change of signature of ejection energy as

the bound and ejected stars switch places. This symmetry does not hold for eccentric

binaries where instead the same form of symmetry is found in the rotation of the apsidal

line. With orientation there is symmetry in the angular momentum when rotated about

the Z-axis by π; this rotation produced an identical result, with no change in bound-

disruption state.

2.3.2 Radial Case

The radial case is simpler with regards to initial conditions as it is constructed such

that D = 0. Since Rm in the radial case is always located on the X axis the system is
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symmetric to rotation around the X axis. Because of this the orientations of binaries

in the radial approximation are only dependent on θ. I sample θ as a regular equal

distribution between 0 and π/2 and any averages taken over orientation are normalized

by a factor of sin(θ) to account for a 3D rotation around the X axis. For eccentric

binaries the restriction of parameter space allows a more thorough exploration on e

dependency, letting us sample eccentricity to a higher resolution. All other variables

are sampled in the same manner as in the general case.

2.3.3 Kozai-Lidov Mechanism

In deciding on the distribution of orientations I need to consider the effect of perturba-

tions from the black hole on the binary at large distances. Over timescales of the order

of multiple binary orbits the inclinations and eccentricity shift due to what is known

as the Kozai-Lidov (KL) mechanism (Kozai, 1962; Lidov, 1962). To test the potential

effect of the KL mechanism on the distribution of orientations I run simulations using

the full three-body equation of motion with a highly elliptical outer orbit with apoapsis

Ra = 1000Rt. I integrate up to rm = 10Rt, where I typically begin the simulations,

and measure the change in orientation angle and eccentricity over time (Figs. 2.8 &

2.9), with the change in orientation angle α coming from L0 ·L(t)/|L0||L(t)| = sin(α).

The change in orientation stays below 10−2 radians throughout its orbit, and this is far

below the resolution of orientations produced by my sampling method. Likewise the

change in eccentricity is negligible during the early orbit.

Although the effect from the KL mechanism can be significant over multiple outer or-

bits this is not relevant to my work as I do not simulate binaries very far post periapsis,

and with my penetration depths any change in orientation and eccentricity in a binary

that survives its orbit is dominated by the effects of tidal forces during the periapsis of

its orbit. I therefore can ignore the effect of the KL mechanism on my sample.
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Figure 2.8: The angular change in binary orientation as it approaches the black hole using a full
three body integration on a highly elliptical outer orbit with Rp = Rt, Ra = 1000Rt, e = 0,
θ = 0.25π, and φ = 0.5π.
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Figure 2.9: The change in binary eccentricity as it approaches the black hole using a full three
body integration on a highly elliptical outer orbit with Rp = Rt, Ra = 1000Rt, e = 0,
θ = 0.25π, and φ = 0.5π



Chapter 3

Numerical Simulations

In this chapter I report my findings based on the simulations described in chapter 2. I

consider the results of binary disruption in terms of the probability of binary disruption

and the energy of the resulting HVSs. I explore how these factors depend on the

penetration depth, orientation, binary phase, and eccentricity. I explore in depth the

key factors that lead to disruption in the radial case, linking the region of parameter

space for which binaries are disrupted, with the free solutions listed in chapter 2.

3.1 Disruption Probability and Ejection Energy

There are two methods that I can use to determine if a binary has been disrupted by the

black hole. Both are based on variables that become constant if the binary is disrupted.

As the energy of an individual star oscillates between positive and negative values I can

determine if a binary has survived its orbit if its energy changes sign after leaving the

black hole’s tidal radius. I can also use the eccentricity of the star relative to its partner

to determine if the binary has been disrupted. If the binary survives its orbit then the

relative eccentricity will become a constant value less than one, while a disrupted value

will have eccentricity greater than one. Both of these methods produce the same result

when the binary orbit is integrated for a sufficient distance outside the tidal radius.

65
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Both methods have a criterion by which I can immediately deduce the final condition

of the binary. With the energy method if the star’s energy oscillates after the binary

has completed its orbit and has exited out of the black hole’s sphere of influence then

I know it has not been disrupted. With the eccentricity method, if the eccentricity rises

above one then I know that the binary has been disrupted. In both these situations I can

record the binary’s conditions, immediately stop the run and move on to the next set

of conditions. If the binary is not integrated up to a large enough time there is a risk of

incorrectly classifying certain binaries, as the energy method can miss surviving bina-

ries with orbital periods longer than the integration time, while the eccentric method

can miss disrupted binaries that do not separate fully until later on.

Once the binary has passed the periastron it still interacts with the black hole and

its partner for a distance before escaping the black hole’s sphere of influence, and

therefore can have its energy and eccentricity continue to change for a short duration

into positive time before breaking up. I therefore do not evaluate the disruption criteria

until after the binary is well outside the tidal radius. For my simulations I wait until

t = −t0/5, where t0 is the time when rm = 10Rt (this being the point I begin my

simulations). At this time the binary is outside of twice the tidal radius and I can be

confident that the binary is no longer strongly affected by the black hole.

If I do not observe energy oscillations or eccentricity greater than unity I continue

the run up until −10t0 to ensure that I am able to detect binaries with very extreme

conditions, whose orbits have become wider as a result of their orbit around the black

hole, or whose motion relative to each other is almost parabolic. I plot the disruption

rate obtained using both methods as a function of θ for radial orbits in Fig. 3.1. When

integrated up to−10t0 both methods are comparable with a difference of less than 1%.

As neither method presents a significant advantage, for my results I report disruption

statistics using the oscillation of energy method.

The probability of a binary’s disruption is a complex combination of multiple variables

but I shall attempt to describe the way each of the factors interacts to better understand

the conditions for disruption.
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Figure 3.1: Probability of disruption as a function of the inclination angle θ in the radial ap-
proximation, with disruption probability measured using the energy oscillation method (blue)
and eccentricity method (red).

3.1.1 Disruption Probability and energy with Penetration Depth

Fig. 3.2 indicates the probability of binary disruption at the BH encounter as a function

of D averaged over phase and orientation. The largest D for which there is disruption

is D = 2.1 for the coplanar prograde orbits, and for all sampled orbits. This indicates

that coplanar prograde orbits have the highest disruption chance for the shallow en-

counters. It would be reasonable to expect that as the penetration depth decreases the

disruption probability would increase until all binaries become disrupted as the mag-

nitude of the tidal acceleration increases, however that is not what is found. Instead

the disruption probability plateaus at ∼ 88%, meaning about 12% of binaries survive

the BH encounter even for very deep penetrators with D � 1 and into the radial case

(Fig. 3.2).

When the pericentre distance to the MBH becomes comparable to the tidal disruption
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Figure 3.2: Probability of disruption as a function of the penetration factor D. Disruption
probability is averaged over all: binary orientations (black solid), coplanar prograde orbits
(blue dashed), and coplanar retrograde orbits (red dot-dashed). The vertical dotted line marks
the penetration limit for binaries of solar-type stars with a = 1AU where the individual stars
undergo tidal disruption.
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radius of the binary members (i.e. individual stars) there is a risk that individual stars

might be disrupted by the black hole, destroying them. If the binary members are

solar-type stars with radii R� and the initial separation of the binary is a = 1AU, the

stars themselves are disrupted for D <∼ R�/a ∼ 5 × 10−3 (the vertical dotted line in

Fig. 3.2). To achieve a smaller D, the initial separation a must be wider, or the binary

members should be compact objects such as stellar mass BHs, neutron stars and white

dwarfs. For the purposes of this work I treat all stars as point particles and do not con-

sider the potential for the disruption of an individual star. At this point the disruption

probability averaged over all orientations has become constant but comparing prograde

and retrograde binaries it is clear that they do not converge to the radial solution until

much deeper penetrations.

In shallow penetrations the disruption probability can be approximated as a linear re-

lationship as stated in Bromley et al. (2006) where they stated a disruption probability

relation of Pd ≈ 1−D/2.2 (red line in Fig. 3.3) but my examination of deep penetra-

tions instead finds that a more accurate description of the disruption probability is as a

5th order polynomial function (blue line in Fig. 3.3):

Pdis(D) = A0 + A1D + A2D
2 + A3D

3 + A4D
4 + A5D

5, (3.1)

with coefficients: A0 = 0.8830, A1 = −0.0809, A2 = −1.0541, A3 = 1.5377,

A4 = −0.9249 and A5 = 0.1881, for D < 2.1. The fractional error ∆Pdis/Pdis is less

than 1% for D . 1. As the disruption probability approaches zero around D ∼ 2, the

fractional error becomes larger, but it is still about 5% at D = 1.8 and about 20% at

D = 2. This disruption rate of 88% at D � 1 is higher than that for coplanar binaries.

Both coplanar prograde (the blue dot-dashed line) and retrograde (the red dot-dashed

line) cases saturate at a level of ∼ 80% (Sari et al., 2010).

The top panel of Fig. 3.4 shows the ejection energy averaged over the binary phase

and orientation as a function of D. I also plot in the bottom panel the characteristic

maximum ejection energy Emax as a function of D. The maximum energy is defined

as a largest energy reached by a statistically relevant portion of the sample. This is
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Figure 3.3: Probability of disruption as a function of the penetration factor D averaged over all
orientations (blue crosses) with the 5th order polynomial fit eqn. 3.1 (blue line) and the linear
fit (red line).
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Figure 3.4: Top panel: Ejection energy averaged over binary phase and orientation as a function
of D. Bottom panel: Characteristic maximum ejection energy as a function of D. For a given
D, the top 1% have ejection energy higher than the characteristic maximum energy Emax. Re-
sults for general binary orientations are given by the black solid line, coplanar prograde orbits
are given by the blue dashed line, and coplanar retrograde orbits are given by the red dot-dashed
line. The average and characteristic maximum energies are in units of (Gm1m2/a)(M/m)1/3,
and they are evaluated for the absolute value of the energy |E|.
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done by taking the largest absolute value of E after cutting off the top 1% of energies.

This threshold value is rather insensitive to the grid resolution, compared to the actual

maximum value which is as high as ∼ 27 for a coplanar prograde orbit with D ∼ 0.1

due to how the ejection energy is distributed around the mean. In both plots, a peak

is present (the black solid lines), and the peak values are lower than for the prograde

orbits (the blue dot-dashed lines). There are two peaks in the Emax distribution for

the prograde orbits with one peak falling in line with the peak for general orientations

and the second at a deeper penetration. The second peak in the prograde orbits is

around D = 10−1; at this depth there is a knee in the mean energy of the prograde

orbits but the mean energy is not sufficient to explain such a large maximum energy.

There is another explanation for this peak however that can be found by looking at

the disruption probability in terms of binary phase at this depth. At D = 10−1 the

disruption probability of prograde orbits is ∼ 99%, which leaves a very narrow range

of binary phase angles over which binaries can survive, and around this range the

ejection energy is maximized (Fig. 3.5). The energy change as a function of binary

phase will be described in greater detail in section 3.1.3.

The average energy for the ejection energy is approximated by a polynomial,

〈E〉 = A0 + A1D + A2D
2 + A3D

3 + A4D
4 + A5D

5, (3.2)

with coefficients: A0 = 0.9582, A1 = 3.3268, A2 = −6.6801, A3 = 5.2785, A4 =

−1.8731, A5 = 0.2260, where this energy is in units of (Gm1m2/a)(M/m)1/3. The

fractional error is less than 1% for D . 1, and it is about 3% at D = 1.8 and about

10% at D = 2. By equalizing this energy in the physical units with the kinetic energy

m1v
2
1/2 (or m2v

2
2/2), I can estimate the ejection velocity of the primary (or secondary)

star at a distant place from the BH. The Galactic potential should be taken into account

separately to estimate the velocity in the halo (e.g. Rossi et al., 2014, 2017).
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Figure 3.5: The final energy of the primary star post disruption by a massive black hole starting
from co-planar prograde orbits with penetration depth of D = 10−1 with energy in units of
Gm1m2/a(M/m)1/3
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3.1.2 Disruption Probability and Energy with Orientation

So far I have spoken of disruption in terms of the average for all inclinations or for

coplanar prograde or retrograde, however I have found an interesting variation in dis-

ruption rate with orientation. It is clear from the prograde and retrograde co-planar

results that, at least in shallow orbits, disruption is favoured in prograde orbits as op-

posed to retrograde orbits. Given that the disruption rate averaged over orientation lies

in between these two it would seem that the disruption rate would fall off with incli-

nation from the co-planar; this is true for shallow penetrations but the dependency on

orientation changes dramatically in deeper penetrations.

I start by considering disruption rate as a function of the inclination angle θ. As I have

discussed in the previous section, since there is correspondence between (θ, ϕ) and

(π−θ, π−ϕ), the disruption probability (and the ejection energy averaged over binary

phase) should be the same for the two binary orientations: Pdis(θ, ϕ) = Pdis(π−θ, π−

ϕ). By integrating this relation with respect to ϕ, I obtain the symmetry about θ = π/2:

Pdis(θ) = Pdis(π − θ). The numerical disruption probability is shown in Fig. 3.6 as a

function of θ for a fixed D. The symmetry about θ = π/2 mentioned in chapter 2 is

demonstrated.

For deep penetrators D � 1, where the trajectory of the binary’s centre of mass be-

comes radial, the binary orientation should be characterized only by the inclination

angle θ. Prograde or retrograde has no meaning or influence in this limit, indeed in

Fig. 3.2, prograde and retrograde results overlap in this regime. The radial approxi-

mation (the blue circles in the upper panel of Fig. 3.6) is in a good agreement with the

very deep penetrations (D = 10−5, the blue solid line) and the fractional difference in

the probability of disruption between the radial and general approximations becomes

less than 2% for D < 10−4. Almost all binaries will be disrupted when the binary

rotation axis is roughly oriented toward the BH or it is in the opposite direction. The

surviving probability becomes significant for 0.15π <∼ θ <∼ 0.85π; the highest surviv-

ing probability (or the lowest disruption probability ∼ 80%) is achieved for θ = π/2.

For larger values of D, the surviving probability increases for values of θ closer to 0
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Figure 3.6: Probability of disruption for a given D as a function of the inclination angle θ.
Upper panel: deeper penetrators, the radial approximation (blue circles) and the general ap-
proximation with D = 10−5 (blue solid), 10−2 (red dashed), 10−1 (green dot-dashed), and 0.3
(black dotted). Bottom panel: shallower penetrators, the general approximation with D = 0.5
(blue solid), 1.0 (red dashed), 1.5 (green dot-dashed) and 2.0 (black dotted).
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and π.

For very shallow penetrators, the highest disruption probability is achieved around

θ = π/2, rather than θ ∼ 0 or π (see the black dotted line in the bottom panel). This

is because the dynamics of the relative orientation of the binary and orbital angular

momenta for shallow penetrators leave coplanar prograde orbits relatively vulnerable

to disruption.

Fig. 3.7 indicates the ejection energy averaged over binary phase and the azimuth

angle for a given D as a function of the inclination angle θ. As already discussed the

average energy is symmetric about θ = π/2, and the numerical results are therefore

plotted only for 0 < θ < π/2. The radial approximation results (the blue circles)

and the general approximation results for D = 10−5 (the blue solid line) are almost

identical in this figure. However, there is a discrepancy at θ = 0. Due to the nature

of the radial approximation, binaries with θ = 0 have zero energy at all times. The

general approximation gives non-zero energy and its energy distribution is smooth

around θ = 0. For a wide range of D, the average energy slightly increases as the

inclination angle θ increases. For the general approximation results, the energy for

θ = π/2 is higher by a factor of 1.4− 1.7 than that for θ = 0.

While comparing disruption rates with θ I average over φ, meaning that I ignore the

difference in disruption rate of prograde and retrograde orbits. I know from the copla-

nar data sets (blue and red lines in Fig. 3.2) that in shallow penetrations the inclination

from prograde is a dominant factor in disruption rate. In Fig. 3.8 I have plotted the

probability of disruption as a function of the inclination from prograde coplanar orien-

tation i, averaged over binary phase, for different penetration depths sampled in bins

of ∆i = 0.05π.

In the deepest penetrations with D = 10−5 (the blue line in the top panel of Fig. 3.8),

as the orbit approaches the radial approximation the highest disruption rate is found

with inclinations of π/2 with Pdis ∼ 90%. The disruption rate is symmetrical on either

side of this peak, with prograde and retrograde orbits being indistinguishable in radial

orbits with Pdis ∼ 80%. The peak at inclination π/2 comes from binaries with θ ∼ 0
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Figure 3.7: Ejection energy averaged over binary phase and azimuth angle for a given D as
a function of the inclination angle θ. Upper panel: deeper penetrators, radial solution (blue
crosses), D = 10−5 (blue solid), 10−2 (red dashed), 10−1 (green dot-dashed), and 0.3 (black
dotted). Bottom panel, shallower penetratorsD = 0.5 (blue solid), 1.0 (red dashed), 1.5 (green
dot-dashed) and 2.0 (black dotted). The average energy is in units of (Gm1m2/a)(M/m)1/3.
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Figure 3.8: Probability of disruption for a given D as a function of the inclination from pro-
grade coplanar orientation. Upper panel: deeper penetrators, D = 10−5 (blue solid), 10−2 (red
dashed), 10−1 (green dot-dashed), and 0.3 (black dotted). Bottom panel, shallower penetrators
D = 0.5 (blue solid), 1.0 (red dashed), 1.5 (green dot-dashed) and 2.0 (black dotted).
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or π; as I have shown in Fig. 3.6 disruption is favoured in that range. As the orbit

becomes less radial the prograde-retrograde dependency becomes apparent. For all

orbits outside of the radial regime disruption is favoured in inclinations i < π/2 with

the peak disruption rate for D = 10−2 found at i ∼ 0.3 with Pdis ∼ 95%. From this

depth up to D = 0.5 the disruption rate is close to 100% for all orientations i < π/2,

while the disruption rate for retrograde orbits rapidly drops with no disrupted binaries

found for i > 0.85π at D = 0.5. After this point the disruption rate drops for all

inclinations, after which disruptions are only found in coplanar orientations.

I plot the ejection energy of disrupted binaries as a function of inclination in Fig. 3.9.

In non-radial orientations the ejection energy has a similar function to the disruption

probability, the energy being higher in ranges with higher disruption rate and lower in

ranges of low disruption. This relation can be understood by considering the fact that

for a binary to be disrupted the change in energy must be sufficient to overcome the

self gravity of the binary and so conditions that produce a high disruption rate would

also have a high mean ejection energy.

This relationship is not always true as can be seen in the near radial case of D = 10−5

where the inverse is found. I would expect to find the maximum energy at i = π/2,

the same place as the peak disruption is found. What I found however is that the mean

ejection energy is lower for this inclination. From Fig. 3.7 I know that in the radial

regime the ejection energy drops for orientations θ = 0 and π as in these orientations

the relative position of the stars to the black hole results in the individual energies of

the stars being close to zero post disruption.

In Fig. 3.10 I have checked the convergence of my numerical results by comparing

disruption probability with different sample sizes for specific penetration depth. The

probability of disruption shown in Fig. 3.2 (general orientations, the black solid line)

is obtained with Nori = 2000 binary orientation angles and Nφ = 200 binary phase

angles. The results are about 87% for D < 10−1. The probability is evaluated by

changing Nori or Nφ by a factor of 1/4−4. The probability changes less than 0.3% for

the lower resolution (a factor of 1/4-1), and less than 0.05% for the higher resolutions

(a factor of 1-4).
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Figure 3.9: Ejection energy averaged over binary phase and inclination angle θ for a given
D as a function of the inclination from prograde coplanar orientation. Upper panel: deeper
penetrators, radial solution (blue crosses), D = 10−5 (blue solid), 10−2 (red dashed), 10−1

(green dot-dashed), and 0.3 (black dotted). Bottom panel, shallower penetrators D = 0.5 (blue
solid), 1.0 (red dashed), 1.5 (green dot-dashed) and 2.0 (black dotted). The average energy is
in units of (Gm1m2/a)(M/m)1/3.
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Figure 3.10: The binary disruption probability Pdis averaged over all binary phase angles and
orientations with penetration depth D = 10−3 and different total sample sizes. The points on
the blue line are samples with 2000 orientations and 50 − 800 binary phase angles, while the
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3.1.3 Disruption Probability and Energy with Binary Phase

For a given penetration depth and orientation it is found that disrupted binaries are

grouped within distinct ranges of φ. Within each range all binaries are disrupted with

the primary always being either ejected or bound to the black hole, that is to say that

the signature of the energy does not change within a disruption range. Given the neg-

ative energy solution for orbits with a binary phase rotated by π this leads to an equal

probability of either star being ejected. Outside these disrupted ranges there is a range

where binaries survive their orbits.

When the results are taken in terms of binary phase, disruption probability is no longer

relevant as the results of binaries’ orbits can not be averaged over orientation. Instead

the result is simply a question of if, for a single set of initial conditions, the binary has

been disrupted or not and what the energy of the energy change is for that set if it has

been disrupted.

I can make three statements regarding the behaviour of binaries as a function of binary

phase that are always found to be true.

• Whether a binary has been disrupted or not is not random. For a given orientation

and penetration depth there are distinct ranges of binary phase where all binaries

are disrupted.

• For a given range of disrupted binaries, the signature of the energy does not

change. In other words, for a given disruption range it will always be the primary

star that is ejected while the secondary becomes bound to the black hole. This is

reversed on rotation of binary phase by π.

• The magnitude of the change in energy of the binary is continuous within a

disruption range. Energy as a function of binary phase cannot be expressed

exactly as it is dependent on orientation and penetration depth.

The exact number of disruption ranges can change with orientation and penetration

depth. By looking at prograde binaries specifically (Fig. 3.11), in very shallow pen-
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Figure 3.11: The final energy of the primary star post disruption by a massive black hole
starting from co-planar prograde orbits with penetration depth of D = 1 (solid blue),
1.25 (dashed red), 1.75 (dot-dashed black), and 2 (dotted green) with energy in units of
Gm1m2/a(M/m)1/3.

etrations (black and green lines) there is a single disruption range within our sample

range but a second range emerges at D = 1.5 (red line). This increases to three ranges

at D = 10−1 as I have shown previously in Fig. 3.5. This later returns to a single

disruption range in deeper penetrations.

While I cannot give an exact relation describing energy in terms of binary phase, there

are some general rules that can be used to describe the energy. Firstly I note that there

is usually a slight gradient from one side of the disruption range to the other. The

signature of this gradient is not consistent as a function of changing initial conditions

as can be seen in the penetration depths of D = 1 (blue line Fig. 3.11) where the

gradient is negative, with the energy decreasing with rotation. However for D = 10−4

(the blue line in Fig. 3.12) the gradient is positive, with energy increasing on rotation.
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Figure 3.12: The final energy of the primary star post disruption by a massive black hole
starting from co-planar prograde orbits with penetration depth of D = 10−4 (solid blue), 10−3

(dashed red), 10−2 (dot-dashed black), and 3 × 10−2 (dotted green) with energy in units of
Gm1m2/a(M/m)1/3.

The second general rule I find is that if the end of one binary range is close to the start

of the next range then the energy will peak around that boundary. I show this in Fig.

3.12, where I again plot prograde orbits between 10−4 < D < 3 × 10−2. Within this

range the disruption rate increases as the orbit becomes shallower pushing the edges of

the disruption ranges towards each other. As the space between the two edges shrinks

the energies of these boundaries grow. This is best shown by the energy of the right

hand disruption range for D = 3 × 10−3 (green line of Fig. 3.12, φ = 0.5π) where

the energy is twice that of D = 10−2 (black line) despite both having almost identical

energies in the middle of the disruption range 0.2π < φ < 0.7π.
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3.1.4 Deep Encounter Survivors

As I have shown, even in the deepest penetration interactions there exists a small frac-

tion of binaries that are not disrupted by the black hole. The existence of surviving

binaries for D � 1 was first discussed by Sari et al. (2010); more recently Addison

et al. (2015) also reported a population of such surviving binaries in their large Monte

Carlo simulations in which they sample down to D = 0.35. Although deep encounter

survivors are counter-intuitive, all binaries including these peculiar ones are actually

perturbed when deeply penetrating the tidal sphere, and the binary members separate.

However, they approach each other after the periapsis passage and a small fraction of

them can form binaries again. By observing the disruption distribution in terms of the

binary phase the boundaries for disruption can be identified and potential explanations

can be made as to the origin of these boundaries. To discuss this behaviour in more

detail, I consider the radial restricted three-body approximation. Since the binary ori-

entation is described by a single parameter in this regime, the discussion is simpler.

As I have discussed previously, I have analytic solutions for when the binary deeply

penetrates the tidal sphere. The Ax solution describes two particles that have the same

trajectory, but are slightly separated in time. The Bx solution describes the relative

orbits of two particles going on the same radial path, but with slightly different ener-

gies. The energy gain or loss at the tidal encounter is proportional to Bx. As the binary

approaches the orbital periapsis its position and velocity are dominated by the Ax co-

efficient. Although the condition which ensures the binary survival after the periapsis

passage is not fully understood, I have interesting results which indicate that the Ax

and Bx solutions are likely to be related to the process.

Fig. 3.13 shows the range of the initial binary phase φ for which binaries survive the

deep encounter. This is obtained based on the radial restricted three-body approxima-

tion with the binary inclination angle θ = 0.3π. The coefficients Ax (the blue dashed

line) and Bx (the red solid line) are also shown as functions of φ. These coefficients

are evaluated at t = −Tmin = −10−6, and they are expected to become constants if the

binary is disrupted. As said before Bx is proportional to the energy of an individual

member, and the ejection energy of disrupted binaries is plotted having been rescaled
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Figure 3.13: The coefficients of the free solutions as functions of the initial binary phase: Ax
(blue dashed) and Bx (red solid), along with the ejection energy of disrupted binaries (solid
black line) rescaled by Gm1m2/a(M/m)1/35(2/9)2/3, thus normalizing it to the same scale
as Bx. The binary inclination θ = 0.3π is chosen for this plot as it best demonstrates the
link between free solution coefficients and the surviving range. Binaries survive the deep tidal
encounter if the initial binary phase is in a narrow range indicated by the vertical black dot-
dashed lines.

to the Bx scale (the solid black line). This energy is equivalent to the value of Bx at

infinite time.

I overlay the value of the free solution coefficients Ax and Bx over the ejection energy

and the disruption boundaries match up quite well with the point where Ax and Bx

cross zero (Fig. 3.13). The goodness of this fit is dependent on binary inclination, with

the best fit being for θ = 0.3π.

Physically the Ax coefficient can be thought of as the speed at which the stars separate

as the orbit approaches t = 0. For −1� t� 1 position and velocity can be described

by x ≈ Axt̃
−1/3 and ẋ ≈ −Axt̃−4/3/3. A small value of Ax means that the separation

of binary partners at Tmin is also small, although it does theoretically still become
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infinite at t = 0 before returning in positive times. A change in signature of Ax means

that the direction that the primary star travels at Tmin also changes signature. AtAx = 0

the binary does not separate at all, as all other terms in the free solution tend to zero

when Ax = 0, and the binary collapses in on itself, with the stars travelling through

each other. A change in the direction of binary separation is unmistakably linked to

the survival of binaries although it is unclear whether it is directly causal or if both

are dependent on a third condition. While both boundaries have an associated drop

in ejection energy, as the energy always drops to zero before reaching the surviving

range, the Ax = 0 boundary has a much sharper drop than the Bx = 0 boundary which

as I will explain given the energy’s dependency on Bx suggests that a sudden change

like the direction of separation would be an explanation for the boundary.

The simplest explanation for the Bx = 0 boundary is considering it as an analogue

for energy. Since a change in signature of energy is analogous to a star becoming

bound instead of being ejected and I know that within a disruption range the signature

of ejection energy does not change, it logically follows that when the energy changes

signature the disruption range ends. This is reflected in the gradual increase in ejection

energy from the Bx boundary as opposed to the Ax boundary. Unlike the Ax boundary

the Bx boundary is not an exact match to the Bx = 0 point for all orientations.

Fig. 3.14 shows how the boundaries of the surviving region (the black dot-dashed

lines) and the initial binary phases at which Ax = 0 (the blue solid line) or Bx = 0 (the

red solid line) depend on the binary inclination angle θ. At a large inclination angle

(e.g. θ = π/2), binaries survive the tidal encounter for a wide range of φ. As a smaller

inclination angle is assumed, the surviving region becomes narrower, and there are

practically no survivors for θ < 0.15π (or θ > 0.85π). In the figure, the Ax = 0 line is

identical to one of the boundaries of the surviving region (the lower branch). Although

the Bx = 0 (or equivalently E = 0) line is similar to the other boundary (the upper

branch) of the surviving region, they are slightly different. I notice that the value of Bx

evolves slightly even at t > 0 around the boundary, because the binary members do

not separate quickly in this region and they weakly interact with each other. The real

E = 0 line is expected to be identical to the upper branch of the boundaries or slightly
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Figure 3.14: The loci of positions in the parameter space for which the coefficients of the free
solution Ax (blue solid) and Bx (red solid) are equal to zero, the energy of binary stars ejected
from disrupted binaries goes to zero (black solid), and the range of binary phase for which
binaries survive the deep tidal encounter (green area). The lower boundary of E = 0 and the
Ax lines overlap.

inside the surviving region. Otherwise, it means that some binaries are disrupted even

if the energy gain or loss at the tidal encounter is zero (E = 0). If the binary inclination

angle θ is zero or π (i.e. the binary rotation axis is exactly oriented toward the BH or

it is in the opposite direction), then from the symmetry of the system, the three-body

interaction does not depend on the binary phase φ and I obtain Ax = Bx = 0 for any

φ.

I have attempted to link the disruption criteria to the energy and specific angular mo-

mentum of the primary star during the periapsis of their orbit. By observing the evo-

lution of these variables for individual cases with binary phase close to the surviving

boundaries I find that there is no significant difference in the behaviour of specific an-

gular momentum at the periaspsis between surviving binaries and disrupted binaries.
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Figure 3.15: The evolution of primary star energy with time for a binary on a radial orbit with
θ = 0.3π, and binary phase at periapsis of 0.17π. These initial conditions are on the surviving
side of the Ax boundary in Fig. 3.14

At the Bx boundary the evolution of energy around the periapsis does not behave any

differently with the obvious exception that at Bx = 0 the energy at periapsis is also

zero; this is expected from what is known about relationship between Bx and energy. I

find something significant when considering the evolution of the primary stars’ energy

around the periapsis at the Ax boundary as shown in Fig. 3.15. In orbits close to the

Ax boundary orbital energy sharply drops at the periapsis; this behaviour is present for

all inclinations, even ones where disruption does not occur. This behaviour is similar

to what is seen in Fig. 3.13 as ejection energy and Bx both drop at the Ax boundary.

I still can not make a direct causal link between this drop in energy and the survival

of binaries. Despite a thorough exploration of the behavior of binaries in the surviving

region and around the boundaries I can not make a solid conclusion as to the cause of

the surviving 10% of binaries in the radial case.

As I have just shown, for a given penetration depth and binary orientation, the fate
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of binaries (disrupted or not) is determined by the initial binary phase φ. If φ is in a

narrow surviving region, the binary survives the tidal encounter. It means that I can

determine the probability of disruption accurately by resolving the narrow region with

high resolution grid points. The advantage of my method is that I can analytically han-

dle some of the system parameters (e.g. masses of the binary members, initial binary

separation, binary-to-BH mass ratio). The number of essential parameters is smaller

than that for the full 3-body calculations. This allows me to set up high resolution

grid points in the parameter space, reducing the error on the disruption probability to

merely the resolution of my sample.

3.1.5 Disruption probability and energy with binary eccentricity

I now consider the tidal disruption of coplanar, eccentric binaries. As I have discussed

in the previous section, I sample $ uniformly between 0 and π. Since eccentric bina-

ries spend a larger fraction of their time near the apoapsis, the binary phase 0 < φ < 2π

is sampled with unequally spaced grids such that the binary rotates from one grid point

to the next with a constant time step. The time-averaged binary separation is given by

ā = a(1 + e2/2) where a is the semi-major axis.

Fig. 3.16 shows the disruption probability of eccentric binaries as a function of D. All

cases give ∼ 80% disruption probability for D � 1. However, for shallow penetra-

tors, the disruption probability strongly depends on the eccentricity and the direction

of the binary rotation. For higher eccentricity, binaries are disrupted at a larger value

of D, and the peak is shifted to a larger D. In eccentric binaries the time-averaged

separation ā is larger than the semi-major axis of the binary by a factor of (1 + e2/2),

as the penetration depth is defined as D ∝ a−1 this larger average separation could be

considered as an explanation for the shift in peak and maximum penetration depth. Al-

though this qualitatively explains the shifts, even if penetration depth is considered in

terms of the time-averaged separation, eccentric binaries are still more vulnerable than

circular ones at shallow penetrations. For prograde orbits (the solid lines), as higher

eccentricity is used, the peak is shifted at a larger D, and the largest penetration factor
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Dmax for which there is disruption also becomes larger. Dmax is∼ 2.1 for e = 0,∼ 2.8

for e = 0.3 and ∼ 3.2 for e = 0.6 and 0.9. While the peak disruption probability for

e = 0 is ∼ 1 it is marginally smaller in larger eccentricities. There is little difference

between prograde binaries with eccentricity 0.6 and 0.9. For retrograde orbits (the

dashed lines), the eccentricity more significantly affects the probability distribution at

shallow encounters. While in the prograde orbits there was little change between larger

eccentricities, in the retrograde case it is the low eccentricities between e = 0 and 0.3

that are similar. The probability distributions for e = 0.6 and 0.9 are similar to the

circular binary case for deep penetrations but have a peak structure around D = 1, and

Dmax is much larger than the circular case (D = 0.44 for e = 0), becoming compa-

rable to the values for the corresponding prograde orbits. This suggests that in highly

eccentric binaries the significance of the direction of the binary spin on disruption rate

for coplanar binaries is less significant.

I plot the ejection energy averaged over the binary phase φ and orientation $ in the

top panel of Fig. 3.17. The energy has been rescaled by (Gm1m2/a)(M/m)1/3. For

prograde orbits (the solid lines), as binary eccentricity increases, the energy function

becomes flatter. The peak structure around D = 0.1 − 1 which is significant for

circular binaries (e = 0; the black solid line) disappears and the energy of the prograde

orbits is closer to its asymptotic value for shallow orbits. In retrograde orbits, for

higher eccentricity, the function extends to larger D because of a larger Dmax, and the

ejection energy becomes similar to that of the prograde binaries in the same way as can

be seen in the disruption probability function. In the deep penetration limit D � 1,

the prograde and retrograde orbit cases approach the same ejection energy as expected.

Interestingly, the asymptotic energy is not a monotonic function of the eccentricity; the

largest value is given by e = 0.3 (the blue lines).

I have plotted the characteristic maximum energy of eccentric binaries in the bottom

panel of Fig. 3.17. The maximum energies of prograde orbits have a similar function to

the mean energy, with the function becoming flatter for higher eccentricities. However,

in retrograde orbits the maximum energy behaves in a very different way. For binaries

with e = 0.6, not only is there a peak in the maximum energy that is not seen in less
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Figure 3.16: Probability of disruption of eccentric binaries with respect to penetration depth
for coplanar prograde (solid) and retrograde (dashed) orbits with e = 0, 0.3, 0.6, & 0.9 (black,
blue, red, & green, respectively).
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Figure 3.17: Top panel: Ejection energy averaged over binary phase and the orientation of the
semi-major axis. Bottom panel: Characteristic maximum ejection energy. These quantities are
plotted as a function of the penetration factor D for coplanar prograde (solid) and retrograde
(dashed) orbits with e = 0, 0.3, 0.6 & 0.9 (black, blue, red & green, respectively). The
average and characteristic maximum energies are in units of (Gm1m2/a)(M/m)1/3, and they
are evaluated for the absolute value of the energy |E|.
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eccentric retrograde orbits, but the maximum energy in the retrograde case actually

becomes larger than that for prograde orbits despite the mean energy being lower.

The retrograde maximum energy for e = 0.9 is also larger than that for the prograde

binaries. This reverse continues into the near radial case D � 1 where the prograde

and retrograde orbits approach the asymptote from the opposite directions.

The asymptotic values at D � 1 are also estimated by using the radial approximation.

Although the disruption probability at D � 1 is less sensitive to the eccentricity (see

the top panel of Fig. 3.18), there is a small dip around e = 0.5. The average ejection

energy has been scaled by (Gm1m2/a)(M/m)1/3. Since the effective binary separa-

tion ā is larger than the semi-major axis, the disruption of a wider binary should result

in an ejection energy smaller by a factor of (1 + e2/2). The numerical results show a

smaller energy for e = 0.9, compared to the circular case with e = 0 (see the middle

panel of Fig. 3.18), and the number is roughly consistent: 1/(1 + e2/2) ∼ 0.7. How-

ever, the numerical energy peaks at around e = 0.35. The eccentricity more drastically

affects Emax (see the bottom panel). The values for e > 0.4 are much larger than that

for the circular case, and there is a significant peak around e = 0.35.
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Figure 3.18: Radial approximation results for the inclination angle θ = π/2. Top panel:
Probability of disruption as a function of eccentricity. Middle panel: Ejection energy averaged
over binary phase and the direction of the semi-major axis as a function of eccentricity. Bottom
panel: Characteristic maximum ejection energy as a function of eccentricity. The average and
characteristic maximum energy are in units of (Gm1m2/a)(M/m)1/3, and they are evaluated
for the absolute value of the energy |E|.
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3.2 Bound Stars and the conditions of S-Stars

In the previous section I discussed the disruption probability and energy but with a

focus on the ejected HVS while ignoring the star that remains bound to the black hole.

As I have shown previously the eccentricity of the bound star is given by 1 − e ∼

2(m2/m)D(m/M)1/3|Ē| where in this case m2 is the mass of the ejected star and Ẽ

is the energy change rescaled by (Gm1m2/a)(M/m)1/3; within this section I consider

the result only for equal mass binaries. Using the typical mass ratio for binaries in our

galaxy M/m = 106, the mean eccentricity difference 1 − 〈e〉 and the characteristic

maximum difference 1− emin are shown as a function of D in Fig. 3.19.

If I consider deep penetrators where D < (m/M)2/3 the eccentricity of the bound

star can no longer be taken as a linear relation with penetration depth and energy as

the angular momentum of the binary centre of mass Lm becomes comparable to the

angular momentum change due to the internal angular momentum of the binary ∆L1.

However since the energy converges with ˜〈E〉 ∼ 1 and Ẽmax ∼ 2 for D � 1 (see Fig.

3.4), and the angular momentum L1 becomes constant as ∆L1 dominates over Lm,

the average and characteristic maximum eccentricity becomes constant for deepest

penetrations:

〈e〉 ≈ 1 +
(m2

m

)3 m
M

(3.3)

emin ≈ 1 + 2
(m2

m

)3 m
M
. (3.4)

If I compare the eccentricity I would get by evaluating it using the shallow penetration

approximation I find that although the shallow penetration approximation produces a

value significantly lower than the true value, the eccentricities at these penetrations

are so close to unity in both results (〈e〉 − 1 ≤ 10−6) that they can be thought to be

parabolic. I can therefore limit my exploration of eccentricity of bound stars to the

shallow penetrations which is more relevant to the context of hyper-velocity stars.
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Figure 3.19: Top panel: Mean eccentricity difference from a parabolic orbit in bound stars as a
function ofD. Bottom panel: Maximum eccentricity difference from a parabolic orbit in bound
stars as a function of D, where the bottom 1% have eccentricity lower than the characteristic
minimum eccentricity emin. Lines shown correspond to the general binary orientation (black
solid), coplanar prograde orbits (blue dashed), and coplanar retrograde orbits (red dot-dashed).
m1 = m2 and M/m = 106 are assumed.



3.2. Bound Stars and the conditions of S-Stars 98

The bound eccentricity as a function of penetration depth is plotted in Fig. 3.19. With

the dependency of penetration depth on eccentricity, the lowest eccentricities of bound

stars come from orbits with shallow penetration depths with a peak at D = 1.5 of

e = 0.988. In orbits shallower than this, the bound eccentricity rises to unity as the

mean energy change drops to zero.

Although shallow penetrators D ∼ 1 give lower eccentricities, they are still very high

e ∼ 0.98−0.99, far from the range of eccentricities that have been seen in observations

made of S-stars orbiting Sgr A* in the Galactic centre 0.3 <∼ e <∼ 0.95 (Gillessen et al.,

2009; Ghez et al., 2008). This suggests that post-capture relaxation is the significant

factor in determining S-star eccentricities (Perets et al., 2009; Alexander, 2017).

Since the eccentricity differences 1− e of bound orbits are proportional to their orbital

energy, the effect of rotation of binary phase or binary orientation on eccentricity for

a given penetration depth is the same as that of energy. However, as I have discussed,

the eccentricities of the S-stars are determined by post-capture relaxation processes.
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3.3 Surviving binaries

As previously shown, for all penetration depths there is a significant population of

binaries that are able to survive their orbit around the massive black hole. As a result

of the tidal forces during their orbit these binaries can have radically changed orbital

parameters, with high eccentricity and semi-major axis changed significantly from the

initial separation.

In Fig. 3.20 I have plotted the distribution of final semi-major axis of the surviving bi-

nary, in terms of the initial binary separation, as a function of penetration depth. I focus

on the shallow penetration events here as they are more relevant to real astrophysical

scenarios. In penetration depths D > 1.75 the surviving semi-major axis is not signifi-

cantly different to the initial separation with a median of a = 0.975+0.025
−0.125a0 where 70%

of surviving binaries are within the upper and lower boundaries. As binaries penetrate

deeper the upper boundary and median of the distribution (red and black lines in Fig.

3.20 respectively) increases while the lower boundary (blue line in Fig. 3.20) remains

constant. These trends drop off at certain penetration depths with the distribution range

dropping before converging to the radial case with a = 0.805+1.81
−0.442a0.

In Fig. 3.21 I have plotted the distribution of the final eccentricities of the surviving

binaries, in terms of the initial binary separation, as a function of penetration depth.

The distribution of final eccentricities is far wider than that of the semi-major axis, with

median value of 0.246+0.321
−0.203 at the shallowest penetration I sample. In these shallow

penetration depths the extreme changes in eccentricity occur with very little change

in semi-major axis as seen in Fig. 3.20. This leaves the orbital energy unchanged

meaning that the eccentricity change comes from changes in angular momentum. This

leads to a change in orientation in the same fashion as the Kozai-Lidov mechanism

(Naoz, 2016).

The change in orbital parameters extends outside the range of penetration depths where

disruption can occur. My data do not extend far beyond this range, limiting my ability

to comment on the distribution for D > 2.2. However it can be seen that as penetra-

tion depth grows and the binary-black hole dynamical time-scale grows relative to the
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Figure 3.20: Distribution of final semi-major axis of the surviving binary, in terms of the initial
binary separation, as a function of penetration depth. The median semi-major axis is shown as
the black line. The largest 15% of final semi-major axis values lie above the red line, while the
smallest 15% are below the blue line.
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Figure 3.21: Distribution of final eccentricities of the surviving binary as a function of pen-
etration depth. The median eccentricity is shown as the black line, the largest 15% of final
eccentricities lie above the red line, while the smallest 15% are below the blue line.
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binary orbital period the change in orbital parameters can be ascribed entirely to the

Kozai-Lidov mechanism.

These surviving binaries have an interesting significance to the field of gravitational

wave astronomy. The gravitational wave detection GW150914 reported by Abbott

et al. (2016b) was a merger by two black holes of masses 36+5
−4M� and 29+4

−4M�.

This detection was followed up by GW151226 (Abbott et al., 2016a), GW170104

(Abbott et al., 2017a), GW170608 (Abbott et al., 2017b), GW170814 (Abbott et al.,

2017c), and most recently GW170817 (Abbott et al., 2017d). With the exception of

GW170817, the merger of two neutron stars, all confirmed mergers to date have been

between binary black hole systems.

The inspiral time of a binary due to gravitational wave emission is given approximately

by Peters (1964) as:

TGW ≈ 150Myr
(
m

M�

)−3(
a

R�

)4

(1− e)
7
2 , (3.5)

This strong dependence on semi-major axis and eccentricity means that perturbation

by a massive black hole could act to accelerate the merger of compact binaries. To this

end I have calculated the ratio of merger timescales post-orbit and pre-orbit (Fig. 3.22).

As in this case I am only discussing circular binaries with e = 0, the inspiral time ratio

is given by Tpost/Tpre = (a/a0)
4(1 − e)7/2. The inspiral time of over 10% binaries

post orbit have been reduced to less than 1% of their initial inspiral time. In shallow

penetrations all binaries have their inspiral time reduced with almost zero binaries

having their inspiral time unchanged or made longer than their initial inspiral time. In

deeper penetrations the inspiral time is decreased even further, with 10% of D = 10−2

binaries having inspiral times less than 0.001% of the original value, however in deeper

penetrations there is potential that a surviving binary could have a larger semi-major

axis than it started with resulting in a longer inspiral time. These increased inspiral

time binaries are in the minority with only 6% of binaries having their inspiral time

increased to more than ten times the original value.

The relevance of this method for shortening inspiral times is dependant on the preva-
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lence of compact object binaries in the Galactic centre. If these binaries do exist in

large numbers within the black hole’s sphere of influence they can expect to inter-

act with the massive black hole at a rate proportional to that of regular stars, and

with the same distribution of penetration depths. These compact objects are able

to penetrate deeper within the tidal radius than normal stars as the Roche limit for

neutron stars is far smaller than that of main sequence stars. A stellar mass BH bi-

nary should be well described as two point particles. However, if the periapsis is

close to the event horizon scale Rg of the central MBH, the Newtonian formulation

would break down. Relativistic effects are negligible for D � (m/M)1/3Rg/a ∼

8× 10−4(a/1AU)−1(m/4M�)1/3(M/4× 106M�)2/3.

Although these results are promising at deep penetration depths the periapsis of the

binary’s orbit may approach the event horizon scale of the black hole, and close to this

scale general relativistic effects could become significant (Fernàndez and Kobayashi,

2019). As the restricted 3-body approximation does not consider any general relativis-

tic effects it may not be reliable at these depths. Fortunately the depth at which general

relativistic effects become significant is very small:

DGR = 0.005
( a

0.1AU

)−1( m

2m�

) 1
3
(

M

4× 106m�

) 2
3

. (3.6)

Assuming a linear distribution in penetration depth only a small proportion of binaries

will have orbits with penetration depths smaller than this unless the super-massive

black hole is significantly more massive ( 109M�) than our own Sgr A*.



Chapter 4

Conclusions and Discussion

Within this thesis I have presented the results of extensive investigation into the dynam-

ics of binary tidal disruption in order to better understand the parameters that cause a

binary to survive or be disrupted by a close encounter and the range of post encounter

parameters for the application to hyper-velocity stars.

I have discussed how binary tidal disruption depends on the inclination, orientation,

and penetration depth. Due to the large mass ratio I was able to use the restricted

three-body approximation to explore this parameter space efficiently. For circular bi-

naries, we have show that, with random orientations, about 12% of them survive even if

they approach the massive BH very closely: D � 1. In these deep penetrations the bi-

nary members separate as they approach periapsis even in the surviving cases but then

approach each other after the periapsis passage. The dependence on the orientation

of the binary changes from shallow to deep penetrations. In shallow penetrations the

disruption probability is a decreasing function of inclination from prograde orbits and

asD approaches the maximal value that a binary can be disrupted at (∼ 2.2) disruption

is only found in exactly prograde orbits. In the deep penetrations almost all binaries

are disrupted when oriented directly towards or away from the black hole (θ <∼ 0.15π

or θ >∼ 0.85π). This area of total disruption may be connected to the orientation de-

pendence on the semi-major axis of surviving binaries found by Addison et al. (2015)

where binaries with these orientations survive with wider separations than they began

105
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with. The energy of ejected binaries is only weakly dependent on orientation in deep

penetrations, with the energy for θ = π/2 being higher by a factor of 1.4 − 1.7 than

that for θ = 0. In shallow penetrations the energy follows a similar function to that

of the disruption probability with orientations with low disruption probability having a

low average ejection energy.

In prograde binaries the disruption rate is insensitive to the eccentricity of binaries but

with eccentric binaries able to be disrupted at shallow penetrations and the position

of the peak disruption rate shifted to larger D values. Retrograde binary orbits with

D < 0.2 have a disruption rate that is weakly dependent on eccentricity. Outside of this

range more eccentric binaries can be disrupted well outside of the penetration depth

range typical of retrograde binaries. This can be partially explained by an effectively

wider binary separation for more eccentric binaries but that alone is insufficient to

fully explain this behavior. However, the energy is not a monotonic function of the

eccentricity, and it peaks at e ∼ 0.35. My simulations of eccentric binaries are limited

to co-planar binaries due to the increased parameter space introduced by the orientation

of the eccentricity vector. To fully explore the effect of eccentricity on binaries future

work would need to sample over all binary orientations.

A factor that is not considered in this work is that of the radius of the binary members.

In treating stars as point particles I do not explore the potential for stellar disruption.

For D � 1, the pericentre distance to the central MBH becomes comparable to the

tidal radius of the individual stars that compose the binary system. If the binary mem-

bers are solar-type stars with initial separation a ∼ 1 AU, they are tidally disrupted

for D <∼ 5 × 10−3. Such double tidal disruption events have been discussed by Man-

del and Levin (2015). To achieve a deeper penetration without the disruption of the

binary members, binaries need to have a wide initial separation, or they should consist

of compact objects.

I have explored tidal disruption in the context of compact binary mergers. By con-

sidering the case of surviving binaries I have found that close encounters between

massive black holes and compact binaries can accelerate their merger by several or-

ders of magnitude. At small penetration depths, where the periapsis of the binary orbit
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is on the event horizon scale, the restricted 3-body approximation may not be suitable

for describing the orbits of binaries around a black hole. The depth where this occurs

however is very small and the number of binaries orbiting that close to a massive black

hole is not statistically significant. It is still unclear to what extent this method of ac-

celerating mergers will affect the predicted merger rate. The distribution of compact

object binaries in the centre of galaxies is still unknown but based on estimates of en-

counter rates from Fernàndez and Kobayashi (2019) there is an expected merger rate

due to tidal encounter of 0.6Gpc−3yr−1. Based on this estimate post tidal encounter

binaries are unlikely to be the dominant contributor to the gravitational wave detection

rate, which is expected to to be 12− 213Gpc−3yr−1 (Abbott et al., 2017b).

Another possible implication of our results is the study of irregular satellites around

giant planets, which are observed to follow distant, inclined, and often eccentric and

retrograde orbit. One of the leading mechanisms to produce such satellites is the three-

body tidal encounter between planets and planetesimal binaries (Agnor and Hamilton,

2006; Kobayashi et al., 2012).

I do not account for the possibility of stellar collisions during the tidal encounter. How-

ever, such collisions and the resultant mergers could have interesting consequences

(Bradnick et al., 2017). The collision rate can be approximated in shallow binaries by

using the parabolic restricted three-body approximation. Although the energy and dis-

ruption probability are accurately evaluated in this approximation, the separations of

the binary members are overestimated for a short period around the peripasis passage

|t| < (m/M)1/3
√
a3/Gm for D < (m/M)1/3 (Sari et al., 2010).

If the mass ratio M/m is not very large, we might underestimate the collision rate in

deep penetrations. However, by selecting close binaries with a = 10R� the limiting

penetration depth comes from the tidal radius of the individual stars. For such binaries,

I have evaluated the collision probability during a binary’s orbit about the black hole as

a function of D averaged over phase and orientation. If the minimum separation of bi-

nary members becomes less than two stellar radii during the evolution (or equivalently

if it becomes less than 1/5 of the initial separation), we regard it as a collision case.

The collision probability at the deepest possible penetration for 1M� main sequence
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stars (D = 0.126) is 4%, and slightly increases for shallow encounters. It peaks around

D = 1.6 at a value of ∼ 14%. Even if collisions are taken into account, the disruption

probability is very similar as the majority of collision cases occur in binaries that would

have survived their orbit otherwise if treated as point particles. Compared to the point

particle results, the fractional difference ∆Pdis/Pdis is a few percent for D < 0.126,

and it peaks around D = 1 with ∆Pdis/Pdis ∼ 5%. ∆Psurvive/Psurvive is about 45%

for D < 3 × 10−2 (i.e. for deep penetrators, the surviving probability becomes about

half of the point particle value). ∆Psurvive/Psurvive gradually decreases for larger D

and it is about 20% for D ∼ 1.
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