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with what is most probable.”
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This thesis proposes a theoretical framework to thoroughly analyse the structure of a

dataset in terms of a) metric, b) density and c) feature associations. To look into the

first aspect, Fisher’s metric learning algorithms are the foundations of a novel manifold

based on the information and complexity of a classification model. When looking at

the density aspect, the Probabilistic Quantum clustering, a Bayesian version of the

original Quantum Clustering is proposed. The clustering results will depend on local

density variations, which is a desired feature when dealing with heteroscedastic data.

To address the third aspect, the constraint-based PC-algorithm is the starting point

of many structure learning algorithms, it is focused on finding feature associations by

means of conditional independent tests. This is then used to select Bayesian networks,

based on a regularized likelihood score.

These three topics of data structure analysis were fully tested with synthetic data ex-

amples and real cases, which allowed us to unravel and discuss the advantages and

limitations of these algorithms. One of the biggest challenges encountered was related

to the application of these methods to a Big Data dataset that was analysed within the

framework of a collaboration with a large UK retailer, where the interest was in the

identification of the data structure underlying customer shopping baskets.
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Chapter 1

Introduction

This thesis can be summarised as a search for data structure using three different per-

spectives that belong to distinct machine learning fields: metric learning, unsupervised

clustering and structure learning. The structure analysis is driven through a pipeline of

methods divided in three parts:

• The first part focuses on the computation of a new metric that redefines the dis-

tances between observations creating a new data space with different neighbour-

hoods.

• The second part applies clustering techniques to find new clusters formed by new

metric.

• The third part looks for feature associations within each cluster defined in the

previous part, assuming that each cluster may be driven by different feature rela-

tionships.

This chapter introduces a global perspective on this work, giving additional details

about the high level pipeline overview in the next section 1.1. Then, it is followed

by the sections: context 1.2, rationale 1.3, algorithm pipeline schema 1.4, aims and

objectives 1.5, novel contributions 1.6, limitations 1.7, list of publications 1.8 and thesis

layout 1.9.

1.1 High level overview

The main goal of the pipeline is to discover new groups of similar data (clusters) when

the metric that defines the similarity of the observations is changed, and where these

1
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new clusters would be more difficult to detect with the original Euclidean metric. The

proposed metric is derived from the Fisher metric, which it is not Euclidean and depends

on additional external data labels, henceforth identified as class labels. The class labels

give additional properties to each observation and the metric will tend to separate as

much as possible the observations with different class labels, and to group together obser-

vations with the same class label. However, although the distance between observations

is affected by the class label to which the observations belong, the main contribution to

the distance measurement still depends on the feature similarities.

Therefore, the idea of changing the metric is for smoothly restructuring the data space in

such a way that a new data neighbourhood is formed and new clusters can be identified,

where the new space offers a continuous granularity from one class region to another.

If a new class label set is given, recomputing the metric again will produce a different

data distribution.

Alternatively, a completely different approach could be taken, for instance, directly

separating the observations by class labels. But doing this, the distance as a concept of

feature similarities between observations are not taken into account, i.e. the observations

are separated arbitrarily by its class labels, where the class labels do not have to be

related with data features. It is possible that without the change of metric, the new

detected clusters could be overlapped in the original space.

This is the first part of the analysis, which is focused on the identification of similarities

between observations when the metric is changed. The second part of the analysis is

focused on the identification of associations between features.

Roughly speaking two associated features can be understood when they are correlated,

if one feature varies the other will vary in a corresponding manner. The absence of

correlation indicates these features are independent. The measure of association between

two features is computed through independence tests, and can be extended to all features

creating a map of conditional independence tests, henceforth Conditional Independence-

Maps (CI-Maps). These maps can be applied on each cluster, highlighting the feature

associations intra-cluster as a characteristic cluster driver (or behaviour understood as

a pattern of CI-Maps), where the CI-Maps are indirectly dependent on the class labels

(because the clusters depend on them). Without considering the cluster stratification in

the CI-Maps, the multiple drivers tend to be masked when the feature associations are

analysed on the whole data, where in general the global behaviour is a superposition of

multiple drivers. For that reason, the idea of building CI-Maps by cluster is to discover

different drivers that are aggregated in the same data space.
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In terms of pipeline inputs and outputs, the expected input of the pipeline is a dataset

with class labels that will be used to compute the new metric. For the outputs, there

are three parts in the pipeline:

1. The first output is related to metric learning, this part can be catalogued as semi-

supervised because the metric depends on the class labels. The new metric based

on the Fisher metric defines a Riemannian manifold, called henceforth Fisher man-

ifold. Under this space, new pairwise distances between observations can be esti-

mated, where they differ from the original Euclidean distances. These distances

can be represented in a triangular adjacency matrix of 0.5N(N − 1) elements,

where the N observations are represented in N rows and N columns. This matrix

contains the necessary information to embed the Fisher manifold in a new low-

dimensional Euclidean space. The embedded Fisher manifold is the first

pipeline output, where the observations are represented by coordinates instead

of pairwise distances.

2. The second output is related to unsupervised clustering. The output is a set

of labels identifying clusters. Two different branches of clustering techniques

have been chosen: the first branch is based on spectral clustering that works

directly on the distance adjacency matrix, while the second branch is based on

projective methods that works on the embedded Fisher manifold. Depending on

the structure of data within and between the new clusters, this informs whether

the focus is should be on segmentation or density discrimination. Plotting the

embedded Fisher manifold will help to decide which method is more appropriate.

3. The third output is related to structure learning, which is also an unsupervised

methodology. The output is a set of CI-Maps of the relevant clusters

identified in the previous part. The CI-Maps can be represented as a network

graph with nodes and edges, where the nodes represent the features and the edges

represent associations between features (nodes). An additional output are the

Bayesian networks derived from the CI-Maps. In general, this part of the analysis

is optional and relies on the nature of the input dataset features, and whether it

makes sense to look for feature associations.

A summary of the thesis pipeline in a few words could be: the pipeline starts changing

the metric to define a new neighbourhood of the observations, then there is a process for

identifying clusters in this new neighbourhood, and finally there is a process to explore

feature associations in each cluster.
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1.2 Context

This thesis presents a novel theoretical framework that can be useful in carrying out

detailed and thorough analyses of data structure. Specifically, three features of particular

relevance are investigated: metric, density and structure.

Metric learning algorithms based on Fisher information propose a semi-supervised ap-

proach to produce manifolds based on class labels and the internal characteristics of

classification models. This part of the research was carried out in the context of a col-

laboration with a large UK retailer, interested in a scalable version of Fisher Information

Networks (FIN) [2–4]. Thus, a customer segmentation based on shopping baskets of cus-

tomer transactional data could be performed. The company was also interested in a Big

Data framework based on Hadoop [5] and Spark [6]. Once the code was developed

in Spark, the algorithms were tested with real data and a procedure was designed to

provide insights into the data structure.

Density is analysed by algorithms based on Quantum Clustering (QC) - a quantum

inspired unsupervised algorithm for clustering non-spherical distributions. This is an

important component of the overall objectives of the thesis, given the capability of this

algorithm of finding particular profiles and behaviours that are not usually detected by

classical algorithms. One of the novelties of this thesis is the proposed Bayesian version

of the QC method, which, in addition to the intrinsic probabilistic interpretation, it

is used to detect outliers and assess the free model hyper-parameters in a completely

unsupervised way, using a likelihood score function based on cluster membership. The

latter is of particular importance as it has the potential to become the basis of an

objective evaluation of unsupervised algorithms.

Structure learning is the goal of constraint-based algorithms that can build Conditional

Independence Maps (CI-map) [7] with the purpose of building feasible Bayesian Net-

works (BNs) from data. Part of the initial work that should be highlighted was based

on the stabilization of the PC-algorithm [8], analysing different algorithm policies and

the influence of the node ordering in the BN construction.

The stages of processing starts with metric learning algorithms that create a Rieman-

nian manifold with the simplest manifold structure for encoding classifier complexity.

Then, either spectral clustering is used for community detection, thus converting the

Riemannian space into a similarity network based on a Gaussian-kernel distance, or

else a Euclidean embedding is used for applying projective clustering methods, like the

density-based Quantum Clustering. In both cases the purpose is to find relevant clusters

in the Fisher manifold. Then finally, structure learning algorithms are applied over the
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clusters to find association maps among the features, where each cluster is likely to have

a different structure.

1.3 Rationale

1.3.1 Metric Learning

Following the pipeline order, the main idea of metric learning is how the metric of

the data Euclidean space can be changed, in such a way that the new metric reflects

a function of given class labels. Changing the metric modifies the pairwise distances

between observations, and therefore the data structure. In this new data structure, the

aim is to find relevant clusters that provide insights about the given class labels. As

mentioned before, if new labels are provided, recomputing the metric, creates a new

different data structure.

A suitable metric for this purpose is Fisher Information (FI), which is a Riemannian

metric defined on a smooth statistical manifold and is related to the Kullback-Leibler

(KL) divergence [9] at neighbouring points in the parameter space using a second order

Taylor expansion. Although the FI metric is based on the parameter space of the

statistical manifold, it can also be derived analogously using the input data space, as

shown in [10], given a posterior probability P (c|X) fitted to the input data and being c

the class labels.

A good candidate for the posterior probability model, which has to be up to second

order differentiable because of the Hessian matrix of the KL divergence, is a Multilayer

Perceptron (MLP), a discriminative model to classify class labels given the input data.

Computing pairwise distances with the FI metric is not straightforward because the

metric varies with the input space, therefore it is necessary to sample the metric across

the path and use approximations for path integrals and geodesic distances following

the shortest path between nodes. This operation could be very expensive if the sample

size (N) increases more than several thousands, having N(N − 1)/2 different pairwise

distances. This is mainly due to the sample size, but the number of features and the

number of class labels can also have a strong impact on the runtime.

Previous works related to the methodology [2–4] were implemented in Matlab [11] using a

single machine, without parallel computing. The runtime can be excessive, for instance,

it can be longer than 10 days for a sample of 7500 observations in a standard computer

(Intel Core I7 processor, 8Gb RAM memory).
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To be able to analyse the Big Data dataset from the UK retailer company using Fisher

Information networks, a scalable version of the algorithm, developed in a framework

suitable for production, and able to deal with bigger datasets was required. Of the

different options to design a scalable algorithm described later in Section 3.3, the Apache

Spark framework under the Hadoop ecosystem was chosen, using a scalable computer

cluster as the distributed computing paradigm.

Therefore, scalability was the main requirement of the metric learning block to speed

up the pairwise distances runtime, which at least depends on O(N2).

1.3.2 Unsupervised Clustering

Once the pairwise distances based on the FI metric are obtained, the next task in the

procedure is to analyse the data structure in the new Riemannian space.

One option described in [10] is to find communities using spectral clustering algorithms,

like Newman’s modularity optimization algorithm [12]. This step requires the transfor-

mation of pairwise distances into a similarity network, where a Gaussian kernel can be

used to obtain similarity measures. The advantage is that Newman’s algorithm can deal

with big data sample sizes. The disadvantage is that the Gaussian kernel introduces a

local network hyper-parameter that acts like a length scale which has to be tuned in.

This length scale controls the amount of communities (clusters), and it can be estimated

by measuring the Fisher network capability of reproducing the class-membership prob-

abilities given by the original estimator (MLP model), for instance, measuring the KL

divergence of both models. The length scale can be estimated using heuristic rules based

on percentages of average Fisher pairwise distances within the same class-membership.

One of the drawbacks of spectral clustering is that it is hard to identify and visualize

the data structure without additional methods.

Another option to find clusters is to apply a Euclidean embedding of the Riemannian

manifold, and then apply usual clustering methods in a projective space. There are

several methods in manifold learning that can be useful to visualize and represent the

data structure of a Riemannian manifold in a low-dimensional embedding, for instance:

Sammon mapping [13], Isomap [1], Minimap [14], local linear embedding (LLE) [15],

classical Multidimensional Scaling (cMDS) [16], or the non-linear t-SNE [17].

From all of these methods, cMDS was chosen, which is a linear and global structure pre-

serving method. One of the main reasons for choosing cMDS is because the eigenvector

decomposition allows an estimate of the relative contribution of each eigenvector by the

cumulative sum of its eigenvalues, in such a way that only the main eigenvectors are
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kept, giving at the same time information about how many dimensions are required to

embed the Riemmanian data structure.

Once the Fisher Information space is embedded in a Euclidean space, projective clus-

tering methods can be applied to find relevant clusters. Here, one may observe two

opposing situations: The first when the embedded data presents a uniform distribution

without local density changes. In reality, there are no clear clusters and the community

finding task is a segmentation task. In this case, K-means can segment the data just as

good as the spectral clustering methods, and the number of clusters would depend on the

desired granularity for the problem at hand. To reinforce the consistency of the number

of clusters, K-means was used with the SeCo framework [18], a method to determine the

number of clusters by measuring the separation and concordance of different K-Means

initializations. Cases of segmentation without clear clusters usually happens when the

data is very noisy, or when the MLP cannot properly discriminate the class labels, in

which case the low MLP performance is reflected in the FI metric.

The second case is when the embedded Fisher manifold is highly structured or presents

high local density variations, mainly due to a very good performance in the MLP. Here,

a density-based clustering method able to find non-spherical cluster distributions or

discriminate clusters by local density changes is needed. Initially the method of Quantum

Clustering (QC) [19] was considered, which outperforms K-means in clustering non-

spherical distributions [20]. However, QC had the problem of selecting the appropriate

length scale in an unsupervised way. The SeCo framework to the QC in [21] was adapted,

measuring the concordance and the range of the QC length scale when sampling QC

solutions. This work provided an empirical procedure to estimate the length scale, but

the original QC model still had theoretical limitations related to heteroscedasticity and

local density variations.

An important part of the thesis consisted then in redesigning QC, providing it with a

probability framework able to select the appropriate hyper-parameters in an unsuper-

vised way, through a score function based on a likelihood of cluster membership. The

proposed method, called Probabilistic Quantum Clustering (PQC), uses a variable length

scale fitted to the local manifold that addresses the heteroscedastic problems. Therefore

PQC solves the unsupervised clustering problem and highlights the underlying structure

of the Fisher manifold assessing PQC solutions (different hyper-parameters) with the

likelihood function.
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1.3.3 Structure learning

This section investigates how to build feasible maps of feature relationships from the

data. The starting point is the constraint-based PC-algorithm [8], which is used to

create a multivariate correlation model represented as a Conditional Independence Map

(CI-map), or graphical model that reflects the statistical associations between features.

This takes into account multiple levels of conditioning and therefore removes spurious

associations i.e. controls for False Positives.

Assuming the hypothesis that the CI-map of the whole data is composed by a mixture

of underlying drivers, the clusters obtained in the previous section are needed. Firstly, it

is worth mentioning that each cluster is characterized because its members have similar

features, at least those ones which have more predictive power for the MLP. Recalling

that this similarity is measured by pairwise distances with the Fisher metric, and the

Fisher metric is based on the posterior probabilistic model defined by the MLP. There-

fore, when segmenting the data into clusters with similar profiles (features), a CI-map

can be built per cluster to check whether they have a different feature structure. The

expectation is that the most distant clusters present different CI-maps.

From the CI-maps, features that represent the central nodes can be identified as those

that are the main drivers for each cluster, looking like a hub in the map. Additionally, to

build a Bayesian Network from the CI-map, it is necessary to orient the edges of the CI-

map skeleton creating a Directed Acyclic Graph (DAG). The PC-algorithm provides the

skeleton and the v-structures of the CI-map, which defines a unique Partially Directed

Acyclic Graph (PDAG). There are multiple DAGs compatible with a PDAG, they can be

obtained following the edge orienting rules defined in [22, 23], however the order in which

the nodes are oriented influences the final DAG. To select one of the multiple DAGs, a

predefined node order by mutual information as a base line is proposed, and compared

with multiple iterations of random node orders, selecting the DAG with highest BIC

score.

The BN provides a probabilistic framework where the probabilities of the model are

factorised by the DAG structure, and allows probability estimations conditioned to the

evidence of certain nodes. The BN defines some nodes (features) as ancestors or par-

ents, and others as descendants or children, where the probabilities of the children are

conditioned to their parents. This enables the creation of Markov blankets to produce

additional independences if all the parents of a node are observed as evidence.

In summary, three approaches for data structure identification have been investigated,

which use will depend on the chosen class labels. The first, related to the structure of

the Fisher manifold created by the classifier model, the second related to the structure
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of the data distribution in a Euclidean embedding of the Fisher manifold, identifying the

relevant clusters with a characteristic feature profile. And the final approach relates to

the structure of feature associations of each cluster in a multivariate correlation model.

1.4 Algorithm pipeline schema

The algorithm pipeline is illustrated in figure 1.1. The pipeline starts with the data

(using standardized variables), and a set of class labels which will be used to train the

MLP classifier. Steps 2 to 5 belong to the metric learning block, where the outputs

are the pairwise distances that form the Fisher manifold, these distances are depicted

by an adjacency matrix. Step 6 is used to visualize the Fisher manifold distribution

through an Euclidean embedding, observing the distribution will help to inform at the

clustering stage whether a data segmentation with spectral clustering or a density-based

clustering with the projective methods like PQC is preferred. When the data presents

an homogeneous density the data segmentation approach should be followed, the path

described in steps 7 and 8 transforms the distances into a similarity network and applies

spectral clustering, such as Newman’s modularity optimization to find communities in

the network. The other path described in steps 9 and 10 embeds the Fisher manifold

into a low-dimensional Euclidean space where projective methods can be applied, like

histograms if there is a dominant dimension, or data clustering. If the data presents

local density variations or non-spherical distributions, the PQC can address this problem

quite well.

Although both paths identify the clusters with a set of cluster labels, they are comple-

mentary analysing different aspects of data neighbourhood or similarities. The path of

spectral clustering (steps 7 and 8) tends to find communities in a similarity network,

while the path of clustering based on projective methods (steps 9 and 10) tends to find

clusters. Henceforth the terms of communities and clusters will be referred as clusters

for simplicity, although they can be defined differently:

• Clusters: groups of similar data identified with projective methods.

• Communities: highly connected networks identified with spectral methods.

Once the relevant clusters are obtained, structure learning methods are applied in steps

11 and 12 to find associations between features, using CI-maps and their derived BNs.
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1. Data + Class Labels

2. P(C|X) with MLP

3. FI METRIC

5. GEODESIC DISTANCES
Shortest path algorithm

7. FI NETWORK
Gaussian kernel similarity 

from step 5

8. COMMUNITIES
Spectral Clustering

11. CI-MAP
per cluster

4. PAIRWISE DISTANCES
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Fig. 1.1 – Algorithm pipeline
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1.5 Aims and objectives

The three aims of this work have been motivated from independent sources addressing

different problems, united in a common pipeline of methodologies. The main part of

the thesis motivation is derived from a collaboration with a big UK retailer company,

the company was interested in customer segmentation based on the analysis of shopping

baskets. For this task, the methodology of Fisher Information networks fitted quite well

with the retail company problem but they were not scalable in a big data environment,

this is the origin of the first aim: Develop a scalable implementation of the Fisher

Information networks.

The second aim appears when looking for an unsupervised clustering technique that

works well in the embedded Fisher manifolds, which tend to be in a low-dimensional

space with local density variations. For this task, the method of Quantum Clustering

(QC) was proposed because it fits well with the problem. However, the original QC

presented a series of limitations that were improved during this work, for instance the

problem of selecting the length scale hyper-parameter or the lack of a probabilistic

interpretation in the cluster membership.

The third aim appears when feature associations are analysed. The aim is related with

the feasibility of building a robust CI-Map from the data, and how a Bayesian network

can be derived from the CI-maps.

The list of aims and its objectives following the order of the pipeline methods are pre-

sented below:

Aim 1 Develop a scalable implementation of the Fisher Information networks.

Obj. 1.1 Evaluate different tools for parallel processing for speeding up the al-

gorithm. These tools must be able to deal with big data environments

based on distributed computing.

Obj. 1.2 The Multilayer Perceptron (MLP) is the initial candidate for a discrim-

inative classifier, the objective is to check that its scalable implementa-

tion achieves analogous results to its non-distributed version in terms

of: over-fitting, convergence, neuron weights and performance.

Obj. 1.3 Analyse the problem of distance measurement in a Riemannian space,

like in the Fisher manifold with a variable metric. The problem is

approached from two perspectives: local and global pairwise distances.

Obj. 1.4 Find a reasonable approximation of local distances based on path inte-

grals considering the scalability issues.
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Obj. 1.5 Find a reasonable approximation of global distances based on shortest

path algorithms considering the scalability issues.

Obj. 1.6 Evaluate the runtime bottlenecks of the work flow, in terms of the scal-

ability limitations.

Aim 2 Research clustering techniques suitable to be applied in the Fisher manifolds.

Obj. 2.1 Develop a scalable clustering implementation that links to the pipeline.

The initial proposal is based on spectral clustering, since it is the version

that was used in the non-distributed implementation.

Obj. 2.2 Test the performance of density-based clustering algorithms, with Quan-

tum Clustering a good initial candidate.

Obj. 2.3 Investigate the hyper-parameter selection in an unsupervised way.

Aim 3 Develop a robust methodology to create Bayesian networks based on CI-Maps

from the data.

Obj. 3.1 Analyse the dependency of PC-algorithm policies and hyper-parameters

with reference to the skeleton errors of the CI-Maps.

Obj. 3.2 Analyse the sample size influence on the CI-Maps construction

Obj. 3.3 Analyse the problem of node order when the skeleton edges are oriented.

1.6 Contributions

In this thesis three key novelties can be highlighted:

1. A new method to approximate the All-Pairs Shortest Path (APSP)

distance in a Fisher manifold.

This method is based on Single-Source Shortest Path (SSSP) Dijkstra’s algorithm

and it is useful when the APSP Floyd-Warshall algorithm is not available, for

instance due to its difficult parallelization in distributed computing. This is ex-

plained in Subsection 3.3.2.2 and the algorithm 2 explains the procedure details.

2. A probabilistic framework for the Quantum Clustering (QC), with two

algorithm variants of Probabilistic QC (PQC).

Both variants, PQCkn and PQCcov, use a variable local length based on K-Nearest

Neighbours (KNN), the first one considers a spherical neighbourhood and the

second variant considers non-spherical covariance matrices estimated locally. This

is explained in subsections 4.2.2, 4.2.3 and 4.2.4. The algorithm 1 identifies the

hyper-parameters of interesting solutions.
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3. A new policy to obtain a explicit Bayesian Network from a CI-Map

independent of the node order.

The policy orders the nodes by decreasing average mutual information, then orients

the edges of the nodes with higher mutual information. Here the nodes represent

the features, usually presented as columns in the datasets. This is explained in

Subsection 5.2.3 and 5.4.2.

Each key novelty belongs to a different part of the pipeline, and its contribution is

integrated in each part as follows:

1.6.1 Scalable FIN implementation

The first contribution is framed under the modification of the FIN algorithms, from step

1 to 8 in the pipeline 1.1, to adapt them in a scalable framework able to deal with a

distributed environment and parallel processes.

Part of the FIN methodology is an extension of a previous work [2], already imple-

mented in Matlab but lacking scalability for larger sample size. As explained earlier in

section 1.3.1, there are two main bottle necks in the pipeline: the first one is the com-

putation of the N(N − 1)/2 local pairwise distances with the FI metric, which requires

sampling the Fisher information matrix across the path integral (being N the sample

size), and the second bottleneck lies in the computation of global distances through

shortest path algorithms along the Fisher manifold.

The initial idea was to implement most of the stages of processing in Spark under the

Hadoop ecosystem, but several experiments showed that not all the pipeline steps were

faster or more reliable in Spark (distributed computing) than they were in Matlab (using

a single machine). The runtime of the first bottleneck was considerably improved by

the Spark parallelization, nevertheless the second bottleneck was harder to parallelize,

requiring new approximations to compute the APSP distances in a distributed environ-

ment, here is where the first key novelty is applied. The APSP approximation sacrifices

accuracy to obtain better runtime, however, the runtime of the distributed approxima-

tion for the APSP (based on Dijkstra’s algorithm) is considerably longer than the single

machine counterpart (based on Floyd-Warshall algorithm). Therefore, for those cases

where the dataset fits into memory of a single machine, a hybrid solution is proposed at

the end of section 3.3.3, which consists on implementing the parts that require a higher

level of parallelization in Spark, such as Fisher pairwise distances; while performing the

other parts in Matlab, such as the shortest path algorithm.
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1.6.2 A Probabilistic framework for Quantum Clustering

The second key novelty appears with density-based clustering algorithms in the embed-

ded Fisher manifolds. The original method of Quantum Clustering was a good candi-

date, however, a potential algorithm improvement was identified; the original version

lacked a probabilistic interpretation and a method to select the hyper-parameters in an

unsupervised way.

From a theoretical viewpoint, a probabilistic framework for Quantum Clustering that

enhances the original algorithm, called PQC, has been developed providing a completely

new methodology. Some of its most relevant new features are: local density discrim-

ination, outlier detection, unsupervised assessment of control parameters and insights

generation of underlying hierarchical data structure.

The original QC [19] is better able to cluster non-spherical distributions than the K-

means algorithm, however QC lacks an assessment method to find an appropriate length

scale, which derives the number of clusters, and even when finding an appropriate length

scale, the algorithm is not able to fit heteroscedastic data. Hence, there are two chal-

lenges that other clustering methods resolve, but not simultaneously. For instance,

regular mixtures of Gaussians can deal with heteroscedastic data, but requires a pre-set

value of the number of clusters, K. On the other hand, DBSCAN [24] (Density-based

spatial clustering of applications with noise) does not need a pre-set of K, but it remains

difficult to estimate the hyper-parameter corresponding to the minimum number of core

points when the data are heavily heteroscedatic.

However, PQC can resolve these two challenges simultaneously: It has an unsupervised

assessment method based on a likelihood function of cluster membership to find the

appropriate length scale. Additionally, instead of having a single length scale value,

the length scale varies locally according to the local nearest neighbours, capturing the

manifold information.

1.6.3 CI-maps stabilization

The third key novelty appears after the CI-Maps are built from the data, when the

graph edges are oriented to build a Bayesian network, it happens that different networks

are produced depending on the order of the edges being oriented. In fact, the work in

this part of the thesis starts with the empirical stabilization of the skeleton errors of the

CI-Maps.

From a heuristic and empirical point of view, within the state-of-the-art constraint-based

structure learning algorithms based on PC-algorithm, the Conditional Independence
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map (CI-map) algorithm has been improved where a major challenge was to minimize

errors in the graph structure. This work presents empirical evidence for best practice:

to reduce false positive errors via the False Discovery Rate (FDR), and to identify

appropriate parameter settings to improve the False Negative Reduction (FNR). In

addition, several node ordering policies are investigated that transform the skeleton

graph into a DAG (edges orienting rules) to form a Bayesian Network (BN). The results

show that ordering nodes by strength of mutual information recovers a representative

DAG in reasonable time, although a more accurate graph can be recovered using a

random order of samples, however this is at the expense of adding significantly to the

computation time. The graph accuracy or faithfulness of the BN is measured with

likelihood score based on Bayesian Information Criteria (BIC). The purpose of the key

novelty is to provide a good baseline score to have a reference for graphs generated by

random node order.

1.7 Limitations

This research contains several limitations, some of which could be addressed as future

work, other limitations are intrinsic of the problem or require a completely different

approach.

1.7.1 FIN runtime limitations

The scalability of the process of measuring distances in a Fisher manifold has runtime

limitations with quadratic sample size dependency, O
(
N2
)
. Sample sizes greater than

N > 105 can exceed 24 hours with the Spark implementation used in this work, even with

a relatively good computer cluster; specific runtime details about the test performed can

be checked in table 3.1 of Chapter 3. As future work, improvements could be obtained

changing the parallelizing approach to the GPGPU computing.

1.7.2 QC performance limitations in high-dimensional spaces

The work related with QC has performance limitations related with high-dimensional

input data. Fortunately this problem is avoided with the embedded Fisher manifolds as

these tend to be low-dimensional. The root of the limitation lies in the measurement of

Euclidean distances inside the Gaussian kernels used as a density estimators; the relative

distances between observations tend to be very similar in a high-dimensional space, in QC

this effect produces the superposition of density estimators based on exponentials with
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similar shape that tend to create potential functions with a single potential well that are

unable to discriminate the clusters, implying a decrease in performance. This problem

is inherent of QC independently of the version of QC, including the new PQC, and it is

related with the known curse of dimensionality in nearest neighbour search [25, 26].

As future work, this problem could be addressed changing the kernel of the density

estimators in such a way that the relative distances can be better discriminated in high-

dimensional spaces. However it is not straight forward as there are other QC constraints

like the differentiability up to second order of the potential functions. On the other hand,

the PQC runtime could be improved using GPGPU parallelization.

1.7.3 Finding true structure from data

One of the main limitations in structure learning is to recover the true structure just

from the data without using expert knowledge. In this research, constraint-based al-

gorithms have been used to build the CI-Maps and then the BN, after orienting the

CI-Maps skeletons. However, there are currently many families of algorithms to tackle

this problem, but none of them can guarantee that the true structure is recovered, both

in terms of skeleton errors (if there is an edge or not between two nodes) and the edge

orientation of the DAG. Even if the skeleton true structure is found, there are multiple

DAGs compatible with each skeleton.

Therefore, assuming the limitation of finding the true structure, the objective is to find

the most faithful BN possible, within a sample of compatible BNs, one way to assess

a BN is through a likelihood score based on Bayesian Information Criteria (BIC). This

work proposes a policy based on node ordering by mutual information to build BN with

a reasonably good baseline of BIC score, i.e. a BIC score better than average of those

scores obtained from a BN with random node order. This baseline score can be employed

as a comparison reference with respect to a new BN created by random order, repeating

this process and keeping the BN with best BIC score, guarantees that a reasonably

faithful BN is chosen, but not the best or the true one.

1.8 List of papers

This section contains a list of the works published during the research period leading to

this thesis, they are listed in chronological order.

• Performance assessment of quantum clustering in non-spherical data

distributions [20].
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Guerrero

Neurocomputing (2017).

• Workshop presentation: Probabilistic Quantum Clustering Raúl V. Casaña-
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1.9 Layout of the rest of the thesis

The thesis is presented in seven chapters depicted in figure 1.2, where the main nov-

elty chapters about metric learning, unsupervised clustering and structure learning are

highlighted in yellow:

Chapter 1 introduces the overall objectives and the main work-flow of the thesis.

Chapter 2 focuses on the literature review of the three topics: metric learning, unsuper-

vised clustering and structure learning.

Chapter 3, which belongs to the metric learning part, presents a review of the Fisher

Information metric, how it can be embedded in a Euclidean space for analysing the

data structure with projective methods, and section 3.3 is focused on the scalability of

the Fisher Information manifold, applying techniques of distributed computing. Several

case studies are presented to illustrate how the algorithm works.

Chapter 4 develops a novel method for unsupervised clustering based on Quantum Clus-

tering in a Euclidean space, this can be applied to the Fisher manifold of previous chap-

ters once the Euclidean embedding is applied. During the chapter small toy examples

are used to illustrate how the algorithm works. At the end, several datasets are used for

benchmarking the PQC.

Chapter 5 is related to structure learning methods based on Conditional Independence

maps and how they can be improved to create more feasible maps and Bayesian networks

(BN), just using the information provided by the data. At the end of chapter there is a

case study applied to brain tumour dataset.

Chapter 6 presents the whole pipeline applied to two case studies. The main idea is to

illustrate the embedded Fisher manifold for these two cases, and to compare both clus-

tering paths on each case. As mentioned before, the option of spectral clustering is good

for segmentation, and the option of projective methods with PQC is good for density

discrimination. Depending on the manifold distribution and our clustering purposes one

path should be chosen, although in this chapter both paths will be compared.

After that comparison, both case studies will be developed in detail. In section 6.3,

the music case study analyses the spectral features of the Million Song Dataset [27], its

main objective is to compare the preassigned genres with the similarities in the Fisher

manifold. In section 6.2, the retail case study applies the pipeline to customer retail

data in collaboration with a large UK retailer company (name omitted for confidentiality

reasons). The main objective is to perform customer segmentation through shopping

basket similarities, later the segmented shopping basket will be used to build BNs, the
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structure of each BN can be understood as a shopping basket driver or behaviour, where

the more relevant products will be the central nodes.

Chapter 7 summarises the thesis with the final conclusions.

1. Introduction 3. FIN
2. Literature 

Review
4. PQC

6. Complete 

Framework
7.Conclusion5. BN

Novelties

Metric 
Learning

Unsupervised 
Clustering

Structure 
Learning

Applied to:
retail & music

Fig. 1.2 – Schema of the chapters



Chapter 2

Literature review

This chapter presents a literature review about related algorithms employed in each part

of the pipeline, the chapter is divided in three main topics: metric learning, clustering

and structure learning.

2.1 Metric learning

An important concept in metric learning is the distance function, which intuitively can

be seen as a similarity measure between pairs of elements of a data space. This distance

function becomes a metric if it satisfies the following four conditions: 1) non-negativity,

2) symmetry, 3) triangle inequality and 4) discernibility. If the distance function does

not satisfy all conditions it is called pseudometric. There are two main categories of

metric learning: unsupervised and supervised metric learning.

Unsupervised metric learning is generally associated with methods of dimensionality re-

duction, where the purpose is to learn a low-dimensional manifold that retains as much

information as possible about the geometric relationships between the samples in the

original input space under some specific metric. One of the best-known linear data pro-

jections is Principal Component Analysis (PCA) [28]. Another group of algorithms, not

based on linear projections, are the Multidimensional Scaling (MDS) [16] algorithms.

This family of algorithms starts with a dissimilarity matrix dij that measures dissimi-

larities (distances) between observations, and the objective is to find a representation of

these observations in an M-dimensional space:

x1, · · · ,xN ∈ RM , therefore dij ≈ ||xi − xj || as close as possible.

From this group of algorithms it is important to highlight the classical MDS [29, 30], also

known as Principal Coordinate Analysis (PCoA) [31], because this is used for embedding

20
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a Riemannian manifold generated by the Fisher Information metric into a Euclidean

space.

From a theoretical standpoint, it is important to mention the Nash embedding the-

orem [32, 33], which states that every Riemannian manifold of dimension D can be

isometrically embedded into some Euclidean space of dimension M , where M ≥ D + 1.

Isometric meaning the length of every path is preserved.

In the case of cMDS, it tries to find a solution X = [x1, · · · ,xN ] hence di,j = ||xi−xj ||,
where xi ∈ RM and M ≥ N − 1. The solution can be expressed as a function of the

N ×N Gram matrix B = XT ·X, where now the distances depend on B:

d2
ij = bii + bjj − 2bij (2.1)

where the expression has been obtained taking into account ||xi−xj ||2 = x2
i +x2

j−2xixj ,

and considering the assumption of centred configuration:

N∑
i=1

xik = 0 ∀ k (2.2)

This assumption will serve as a constraint for obtaining a unique solution, and for the

purpose of dimensionality reduction. Summing for all variables in eq. 2.1, using the

constraint eq. 2.2 and rearranging the terms the final solution can be obtained:

bij =
−1

2
(
d2
ij −

∑
i d

2
ij −

∑
j d

2
ij +

∑
i

∑
j d

2
ij

) (2.3)

If B is decomposed by its eigenvectors, B = V ·Λ ·V T , then X = Λ1/2 ·V T . In this way

X is expressed as the eigenvectors of B, allowing a dimensionality reduction similar to

PCA, just discarding the eigenvectors which its eigenvalues have less weight (variance).

In fact, the coordinates are ordered from the largest to the smallest variances, allowing

any dimension from 1 to M to be selected.

The distance dij is called a Euclidean distance if exists a finite M therefore:

dij ≡ ||xi − xj || ∀ i, j (2.4)

otherwise dij is called a non-Euclidean distance, which is the case of the distances ob-

tained in the Fisher manifold.



2.1. Metric learning 22

For Riemannian distances (non-Euclidean) some of the eigenvalues of B are negative,

hence these eigenvectors are forced to be discarded. However, in all of the cases where

the cMDS with the Fisher manifold has been tested, the M is quite high but the eigen-

values present an exponential decay with a long tail, with the smallest eigenvalues being

negative. Therefore they carry little variance, in practice only the first two or three

eigenvalues are kept, where the accumulated sum of variance is greater than 80%. On

the other hand, when the cMDS is applied to Euclidean pairwise distances the same

results as the PCA are recovered, with no eigenvalue being negative.

Apart from the cMDS, special mention should be made of Sammon mapping [13] that

performs non-linear data projections, and can visualize the input data into a 2D-map

using the pairwise distances obtained from the Fisher manifold. Other algorithms are

Isomap [1] and Local Linear Embedding [34] that assume there is a lower-dimension man-

ifold underlying the original input space, generating a pairwise distance matrix through

geodesic lines in the lower-dimension manifold. The algorithms build the path looking

for the smallest sample of the k nearest neighbours. It is also worth mentioning the recent

non-linear method t-SNE [17] that preserves similarities using a probabilistic formulation

with Gaussian kernels and measuring distance distributions with KL-divergence. Min-

imap [35] is a recent technique that approximates local geodesic distances by shortest

paths along a neighbourhood graph adding a penalizing factor depending on the number

of steps in the path, combined with Sammon mapping it enhances the local structures

at the expense of long distances.

Supervised metric learning uses class labels to define similarity patterns in the input

data. Nearest neighbour classifiers [36, 37] compute the output function based on the

values of the known output functions in the surrounding area. Other methods like large

margin nearest neighbour (LMNN) [38] learns a Mahalanobis metric through the cost

function minimization that tries to pull together neighbours of the same class and to push

out neighbours of different classes. Similar works on Mahalanobis metric are neighbour-

hood component analysis (NCA) [39] and global similarity distance metric (GSDM) [40].

There is another family of metric learning inspired by Fisher’s linear discriminant anal-

ysis (LDA) [41] where a linear transformation searches for the maximum separation

between the classes (assuming the data is normally distributed). In these algorithms the

between-class and within-class covariance matrices play an important role in the metric

tensor. Two such examples are discriminant adaptive nearest neighbour (DANN) [42]

and relevant component analysis (RCA) [43, 44].

Another case of metric learning are similarity measures by means of kernel functions.

Usually kernel functions map the input space into a higher dimensional space, and

since kernel functions can be arbitrarily complex, they can be designed in such a way
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that linear relationships in the kernel space, like inner product, represent non-linear

relationships in the input space, this is known as the kernel trick :

K (xi,xj) = φ (xi) · φ (xj) (2.5)

Kernel similarities can be interpreted as distance measures of the input space images

in the kernel manifold. In other words, there is a mapping between the points of the

input space and their images in the manifold, where the distances between images can

be measured:

dφ (xi, xj) = dM (φ (xi) , φ (xj)) (2.6)

The kernel manifold M usually has a curved surface, creating a Riemannian manifold,

where the distances are estimated locally using the Riemannian metric tensor [45] G (x).

dφ (x,x + dx)2 = dxT ·G (x) · dx (2.7)

G (x) is a positive definite matrix that can be expressed in terms of infinitesimal dis-

placements in the kernel manifold. Let z = φ (x) and z + dz = φ (x + dx). Then you

have:

dz = φ (x + dx)− φ (x) ≈ ∇xφ (x) dx (2.8)

dφ (x, x + dx)2 = ‖dz‖2 = dxT · ∇xφ (x)T ∇xφ (x) · dx (2.9)

Approximating φ (x + dx) up to first order Taylor expansion. Then, using the kernel

trick function: K (x,y) = φ (x) · φ (y), the equation 2.7 can be expressed as:

dφ (x, x + dx) = dxT · ∇x∇yK (x,y)
∣∣
y=x
· dx (2.10)

G (x) = ∇x∇yK (x,y)
∣∣
y=x

(2.11)

So, there is a strong relationship between kernel functions and the tensor metric.

For estimating distances between non-adjacent points in M the following path integral

is needed:
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dφ (xi, xj) =

∣∣∣∣ ∫ tj

ti

√
ẋ(t)TG (x(t)) ẋ(t)dt

∣∣∣∣ (2.12)

where t ∈ [ti, tj ] parametrizes the path in x(t), from xi = x(ti) to xj = x(tj), and

ẋ(t) = dx/dt.

Only when the manifold is flat, i.e. lies in a hyperplane and G (x(t)) is constant, the

global pairwise distances can be computed using straight lines connecting the points, like

in Euclidean space. Otherwise, the distances have to be computed locally and G (x(t))

needs to be evaluated across the path.

One kernel of interest for this thesis is the Fisher kernel [46], which measures the similar-

ity of two points with reference to a generative statistical model p(x|θ), parametrized by

θ. This generative model produces a manifold where the Riemannian metric tensor [47]

is the Fisher information matrix [48]:

d (θ, θ + dθ)2 = dθTG (θ) dθ (2.13)

G (θ) = Ex
[
∇θlog p(x|θ) · ∇θlog p(x|θ)T

]
(2.14)

where Ex is the expected value with reference to p(x|θ).

With the Fisher metric, distances between two close parameters θ and θ+dθ correspond

to manifold distances between the corresponding densities p(x|θ) and p(x|θ + dθ) in

terms of the expected variation in the log-likelihood of x. However, because the metric

is Riemannian and not Euclidean, the expected variation of log p(x|θ) for the same dθ

distortion depends on the location of the space x, in which the log-likelihood variation

is measured.

The Fisher kernel of two points in the input space, given a generative model p(x|θ), is

defined as:

K (xi,xj) = n (θ,xi)
T ·G (θ) · n (θ,xj)

=∇θlog p(x|θ)T ·G (θ)−1 · ∇θlog p(x|θ)
(2.15)

where the natural gradient [49] has been used to find the θ direction of the steepest

ascent of the log-likelihood at point p(x|θ) of the manifold:
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n (θ,x) = G (θ)−1∇θlog p(x|θ) (2.16)

Focusing on the FI metric, it is worth mentioning its connection with the KL diver-

gence [9], measuring the difference between adjacent probability distributions on the

manifold:

IKL (θ : θ + dθ) = IKL (p(x|θ), p(x|θ + dθ)) = dθTG (θ) dθ

= −
∫

log

(
p(x|θ + dθ)

p(x|θ)

)
p(x|θ)dx

(2.17)

Generally, most of the works in the literature that involve the FI metric [9, 45, 46, 48–

50] use the metric defined in parameters manifold based on generative models, p(x|θ).
However based on [51, 52], it is possible change the approach and apply the Fisher

metric on discriminative models p(y|x) that classify an external auxiliary information

y. In this case, the metric measures parameter distortions with reference to the input

space x instead of θ.

This is the main idea followed in chapter 3 to build the Fisher manifolds based on the

new approach of the Fisher metric.

On the other hand, one of the tasks derived from the computation of distances in this

Riemannian space is how to estimate global distances in a space where the metric changes

locally. This task cannot be addressed analytically with an exact solution because is

infeasible to compute the metric of all possible paths between two points to check which

path is shorter, therefore several approximations have to be taken. The first approxi-

mation is to compute local distances with path integrals in a similar way described in

eq. 2.12 but sampling the metric in regular intervals between the two points. The other

approximation tackled in this thesis is to use these local distances to build a fully con-

nected network (graph) of distances, where the nodes are observations and the edges their

pairwise local distances. With this network, the global distances can be approximated

computing the shortest path between nodes. Two algorithms have been used to perform

the shortest path between nodes in a graph: the Floyd-Warshall algorithm [53, 54],

which belongs to the class All-Pairs Shortest Path, and the Dijkstra’s algorithm [55],

which belongs to the class Single-Source Shortest Path. The APSP class computes the

shortest distances of all nodes respect to all nodes, the SSSP class computes the shortest

distance of one node respect to all nodes. The APSP class fits better to the problem of

this thesis, but it is not always available like in a distributed computing environment.
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2.2 Clustering

The second part of the pipeline is focused on clustering the Fisher manifold, where the

Fisher manifold is initially described by an adjacency matrix with the pairwise distances,

and then, with the information of the adjacency matrix, can be embedded in a Euclidean

space to visualize the manifold distribution. These two possible representations of the

Fisher manifold offer at least two options to tackle the clustering problem.

The first option is to work directly with the adjacency matrix through spectral clus-

tering methods. This requires a transformation of the distance adjacency matrix into

a similarity network, where the range of values of the matrix elements are transformed

from distances ∈ [0,∞[ to similarity scores ∈ [1, 0].

Thus, spectral clustering methods usually work with similarity networks for finding com-

munities, and the clustering task is usually called community detection. The outcome is

a set of labels identifying each community. However in terms of notation, as mentioned

before in section 1.4, communities will be referred as clusters for simplicity, although

communities can be defined as highly connected networks identified with spectral meth-

ods. The next section 2.2.1 reviews some of the spectral clustering methods.

The second option is to work with the Fisher manifold embedded in a Euclidean space,

in such a way that projective methods can be applied. The main difference is that

now each observation is defined by a coordinates instead of pairwise distances. In this

new Euclidean space the standard clustering methods described in section 2.2.2 can be

implemented.

One of the advantages of spectral clustering is that it can work directly with adjacency

matrix, i.e. an Euclidean embedding is not needed, and spectral clustering scales better

with the sample size. The disadvantage is that an additional hyper-parameter is required

to set the length scale of the similarity network. Alternatively, projective methods in a

Euclidean embedded space have the advantage of being able to use more sophisticated

algorithms, like those based on density discrimination.

2.2.1 Community detection with spectral methods

The starting point is a similarity network (graph) where the nodes represent observations

and edges represent pairwise relations, this network has been obtained after applying a

similarity kernel on the FI adjacency matrix.
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Intuitively, the idea of community is understood as a group of nodes densely intercon-

nected, the number of edges between groups is much smaller in comparison with the

intra-group edge density [56–58].

A similarity network can be obtained from the pairwise distances of the Fisher manifold

using a Gaussian radial kernel that transforms distances into similarities:

Aij = exp

(
−dist (xi,xj)

2

σ2
G

)
(2.18)

where σ2
G is the length scale that controls the kernel width (community size), the smaller

the length scale the larger the number of communities. This length scale can be estimated

empirically measuring the faithfulness of the network predictions compared with the

classifier model, or can be estimated heuristically based on a percentage of the average

Fisher distances between the samples that belong to the same class label, the percentage

will define the grade of granularity of the network.

Regarding community extraction algorithms, there are multiple options in the litera-

ture. There are, to mention a few, graph partitioning algorithms, which are based on

graph iterative bisections, for instance the Kernighan-Lin algorithm [59], or spectral

partitioning [60] based on the spectral properties of the Laplacian matrix to perform the

bisection. Other approaches are hierarchical clustering [61] with agglomerative methods,

divisive hierarchical methods like the Girvan-Newman algorithm [62], which is focused

on removing edges between modules instead of removing edges with low similarity. Here

the concept of modularity [63] is important, which is a measure of the quality of the

division of a network. Some of the most relevant modularity optimisation algorithms

are [64], the greedy optimization method based on agglomerative hierarchical clustering,

[65] uses a simulated annealing, [66] maximizes the modularity through an extremal

optimisation, and [12] is based on modularity spectral optimisation. The last one will

be used in the pipeline with a Matlab implementation.

The modularity spectral optimisation method will be used as a default clustering method

during the Chapter 3, where the Fisher Information networks and its scalable version

will be presented. Only for visualization purposes, an Euclidean embedding of the Fisher

manifold will be performed in this chapter.

2.2.2 Clustering with projective methods

The starting point is an embedded Fisher manifold in a low-dimensional Euclidean space.

In this work the cMDS is the preferred algorithm for the embedding task, because it
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preserves the global distances and the dimensionality is adapted to the Fisher manifold

complexity (the more complex the more dimensions needed for the embedding).

In the literature there are many clustering algorithms, they can be classified as: centroid-

based clustering like the well known K-Means [67], connectivity-based clustering (hi-

erarchical) [68], distribution-based clustering like Gaussian mixture models [61], and

density-based clustering like DBSCAN (Density-based spatial clustering of applications

with noise) [24] or the less known Quantum Clustering [69].

In this section there is more interest in density-based clustering because the Fisher

manifold distributions tend to have local density variations. However, other kind of

algorithms also have been tested, for instance K-means obtains similar results to the ones

obtained with spectral clustering, at least in the examples performed in this work where

the manifold distributions had an homogeneous and the problem was a segmentation

task. Conversely, when the manifold has strong density variations, neither the K-means

nor the spectral clustering are able to discriminate properly the density clusters.

From the density-based clustering algorithms, the original QC was the initial proposal

due to a work [21] about unsupervised length scale selection based on concordance

measures showed promising results. The use of concordance measures to select the hyper-

parameter was previously employed with K-means in [18, 70], where the Separation-

Concordance (SeCo) framework was used to select the number of K. The concordance,

which is based on Cramer’s V statistic [71], measures the similarity among different

cluster solutions with stochastic algorithm initializations.

A further research on how to improve the original QC with its fixed length scale led to a

new QC reformulation under a probabilistic framework. The new probabilistic QC im-

proves the original one, with new characteristics that fit very well for the clustering task

in the Fisher manifold. The algorithm highlights are introduced in the next subsection.

2.2.2.1 Probabilistic Quantum Clustering

Quantum Clustering (QC) is an appealing paradigm inspired by the Schrödinger equa-

tion [69] with potential to identify and track connected regions while separating them

from other nearby clusters. However, the method would benefit from a stronger theoreti-

cal basis to assess the goodness of fit to the density distribution of the data, in particular

to guide the choice of control parameters which determine the number of clusters de-

tected. In addition, QC is prone to fragment the data into many small clusters that may

comprise outliers, without clearly defined means to control this process.
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A probabilistic framework to address these issues is proposed. This framework is applied

to an extension to QC using local estimates of the central length scale parameter, which

enables the model to accurately detect clusters with very different data densities.

The starting point is the original quantum clustering algorithm introduced by [69] which

generates a potential function V (x) from a wave function Ψ(x) as a constant energy

solution of the time-independent Schrödinger equation:

HΨ ≡
(
−σ

2

2
∇2 + V (x)

)
Ψ(x) = EΨ(x) (2.19)

where H is the Hamiltonian and E the constant total energy.

In the original formulation the wave function represented a Parzen estimator with a given

length scale parameter, σ. Given a potential function generated from the wave function

using the Schrödinger equation, the allocation of individual data points to clusters was

determined by the use of gradient descent [69] to find local minima and allocate clusters

based on maximum probability of cluster membership, although local Hessian modes in

a potential lattice have also been used for this purpose [72].

While the wave function providing data density estimates need not be Gaussian e.g., B-

splines [73], Vector Quantization [74] or the Epanechnikov kernel [75, 76] with optimal

efficiency, exponential distributions are generally preferred due to their smoothness since

the wave function has to be differentiable up to third order in the potential function:

V (x) = E +
σ2

2

∇2Ψ(x)

Ψ(x)
(2.20)

To define the wave function is proposed by assigning a normalized Gaussian function to

each observation in the training set, centred on the observed data point and with the

covariance matrix estimated locally from a set number of nearest neighbours (NNs) and

assumed to be diagonal.

This is in contrast with Mixtures of Gaussian Models (MGMs) where the mean and

covariance parameters are not tied to data points and are fitted using Maximization-

Expectation [61]. The new approach is equivalent to a generative model with a kernel

representing inherent noise and a prior that is uniformly distributed across all of the

observations. The total wave function thus comprises many narrow Gaussians creating

an aggregate density function that links neighbouring data points to generate a smooth

and connected valley in the potential function.
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Clearly the length scale of the exponential functions, σ, which parameterises the variance

of the noise estimate, is of critical importance since it determines the overlap between the

wave function components from neighbouring observations and so has a critical impact

on the shape and smoothness of the resulting potential function, by affecting the number

of local minima and, consequently, also the number of clusters.

A recent publication [77] recognises the difficulty in mapping local data structure with

local potential functions and proposes training a self-organised neural network with

radial basis functions as the basic computational units. This empirical approach is

effective although it does not claim to optimise the model parameters, because of the

complex structure of local minima of the potential surface.

Regarding metric learning,Topological Data Analysis (TDA) [78, 79] can be considered

a similar approach in terms of data-structure characterization through the search of

distance-parameter stabilization, where the clustering is based on this topology per-

sistence [80]. However, TDA lacks the methodical and objective criteria for selecting

the hierarchical level of the dendrograms. On the contrary, we propose a Bayesian in-

terpretation of our generative model, in order to infer probabilistic measures for the

goodness-of-fit of the data, providing a score function for parameter selection. The

probabilistic QC (PQC) outperforms TDA in terms of Jaccard scores (JS), as it will be

shown in Section 4.4.

It was the dependence of the original QC on the band-width selection of the Parzen

window which originally led to the use of k-nearest neighbours (KNN) in kernel esti-

mators of the local sample covariance [72, 81]. Unfortunately, the efficiency of KNN

estimators varies considerably depending on the structure of the data [21]. An alter-

native approach is considered in [82, 83], where the kernel scale is locally estimated.

In [84], a probability density function is estimated using a manifold Parzen window,

rendering the Gaussian function non-spherical. Summing up, the determination of a

suitable kernel length to discriminate clusters from the QC potential lacked a defined

framework to measure goodness of fit to the data, making it difficult to optimise this

critical parameter.

A probabilistic interpretation of quantum clustering is proposed through the use of wave

functions comprising normalised joint probability distributions. This enables the length

parameters for local covariance estimation to be optimised by maximising a Bayesian

probability of cluster allocation. An empirical evaluation with synthetic and real-world

data shows that the approach is robust for clustering complex data by maximising the

probability of cluster membership without prior knowledge of the correct number of

clusters. After obtaining the probability of cluster membership, the standard Bayesian

framework can be used to detect outliers.
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Furthermore, a positive definite likelihood function of cluster membership can be opti-

mised to select the bandwidth of the Gaussian functions, namely the number of KNNs

used for local covariance estimation, which is the only free parameter in the model. This

underlines PQC as a plausible method for the detection of hierarchical data structure.

The proposed framework addresses two complementary challenges for current methods.

Regular mixtures of Gaussians cannot resolve the number of clusters, hence requiring

a preset value of K. While this is addressed in part by DBSCAN [24], it still remains

difficult to estimate the hyper-parameter corresponding to the minimum number of core

points when the data are heavily heteroscedastic. Therefore, this part of the thesis shows

a framework to select efficient parameters to map, with quantum clustering, complex

data structure with no prior knowledge of the number of clusters.

2.3 Structure learning

In this work, the structure learning methods are applied on the data stratified by clusters

with the purpose of obtaining more defined feature relationships than would have been

achieved considering all the data. In any case, the same methods described below could

be applied to the entire data set.

Structure finding methods lie within the field of Probabilistic Graphical Models and are

extensively studied [85, 86], especially from a theoretical perspective, as they offer an

efficient graphical approach to apply statistical estimates in a complex system. They

serve as a framework for Bayesian and Markov networks [7], and have two components:

a structure in the form of a graph, and a set of parameters that can be used to make

statistical estimations.

Recently, a new structure finding algorithm [87] was proposed, which can obtain a

faithful Bayesian Network (BN) without the need for specific approximations and with

a reasonable computation time. Using these methods, complex associative maps can be

obtained through Conditional Independence Maps (CI-maps). Many constraint-based

structure learning algorithms, including this work, are based on the PC-algorithm [8],

where the graph starts fully connected graph, and edges are removed between nodes

(variables) based on pairwise independence tests, increasing the number of conditioned

variables as the algorithm progresses. The algorithm stops when it finally converges to a

stable structure forming a CI-map. This work extends the methods used in [87], where

the criterion for independence is based on conditional mutual information instead of

likelihood-ratio tests (G-test). In addition, this work proposes several policies to create

a data-driven structure:
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• FDR [88] controls the False Positives decreasing the significance level in conditional

independence tests when they are applied multiple times on the same nodes. This

translates to reduced number of edges.

• FNR [89] tries to avoid independence tests if it is not powerful enough. The criteria

is based on a threshold of Degrees of Freedom (DoF) that depends on the desired

power for the test, the sample size and the effect size.

• The Weakest First (TWF) affects the order in which the graph is being pruned.

The outcome of the PC algorithm is influenced by the order in which the condi-

tional independence tests are executed. TWF sorts the nodes by mutual informa-

tion (edge strength), testing first the weakest nodes which reduces the problem of

incorrect pruning or incorrect edge dependence discovery.

Once the structure is found, the next step is to build a DAG following the rules defined

in [22]. These rules do not necessarily lead to a unique DAG, where the most general

solution is a Partial Directed Acyclic Graph (PDAG).

It is well known that the PC algorithm is sensitive to the order in which the nodes

are tested [90, 91]. This problem is addressed by using a similar solution to TWF,

but ordering the nodes by descending mutual information. This policy is called The

Strongest First (TSF). The DAG obtained with TSF node order is compared with DAGs

generated by random node order, the BNs derived from the DAGs are assessed by the

log-likelihood function with the Bayesian Information Criteria (BIC), which penalizes

the graph complexity.

Other studies take different approaches, such as the Complete Partially Directed Acyclic

Graphs used in [92], latent variables with the Fast Causal Inference algorithm in [8],

Maximal Ancestral Graphs in [93], IDA algorithm (Intervention calculus when the DAG

is Absent) in [94, 95], and Essential Graph Search in [96] based on scoring random order

DAGs.

2.4 Conclusion

In this chapter, many related algorithms from completely different areas of machine

learning have been reviewed. The part of metric learning contains the foundations of

the Fisher manifold, which is the main driver of the thesis. The modification of the

Fisher metric to work with the input space is an algorithm quite specific, and its choice

has been motivated by its potential application in the analysis of shopping baskets.
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However, in the clustering part of the pipeline, several algorithms could have been used

to cluster the manifold. The Newman’s algorithm based on spectral clustering was

chosen for the ability to work directly with the pairwise distance matrix and for its

scalability. On the other hand, the new PQC was chosen for the ability to discriminate

clusters by density and for being able to select its hyper-parameters in an unsupervised

way.

Analogously, during this chapter several algorithms capable of doing the structure learn-

ing task have been mentioned, the reason why the PC-algorithm has been chosen is

because of its ability to customize hyper-parameters and policies, and because of the

low error in the structures (skeletons) created from the data.

Nevertheless, this work does not claim that the chosen algorithms are the best or the

only algorithms capable of doing the pipeline tasks.

The next three chapters (3, 4, 5) will introduce the details of the methodologies of the

Fisher manifold, PQC and CI-maps respectively.



Chapter 3

Fisher Information Networks

The chapter is divided in two blocks, the first block introduces the theoretical framework

to build a Fisher manifold and describes the methodology used when data sample size

is small enough to avoid runtime problems. The second block introduces a scalable

implementation that tries to mitigate the runtime problems that appear when the size

of the data grows.

The first part starts with the foundations of the Fisher manifold. Then the methodology

section introduces the concept of Fisher Information matrix interpreted as a metric.

An important adaptation is that the Fisher metric is derived from a discriminative

classification model, defining a metric based on the input space using a MLP as the

discriminative model. This is followed by the methodology needed for estimating the

global pairwise distances in the Fisher manifold. The next section covers the manifold

transformation into a similarity network, and how to determine the length scale of

the Gaussian kernel to obtain a reasonable number of communities through spectral

clustering algorithms. This is followed by an introduction to low-dimension visualization

methods for representing the FIN.

The second part focuses on a scalable implementation based on distributed computing

with Spark, the section analyses the bottlenecks of the pipeline, where two approxima-

tions are proposed to tackle the shortest path task in a distributed environment, and

then the runtime of different configurations are studied.

The chapter ends with several case studies: The first one is based on aneurysm data and

it is the most extensive, for this case the data is small and can be addressed avoiding

the scalable implementation. The aim is to find clusters within the Fisher manifold that

are able to classify patients presenting a ruptured aneurysm. The other two case studies

use the scalable implementation, one is a synthetic non/linear dataset based on nested

34
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spirals, the other is data from Monte Carlo simulations of high-energy physics particle

detection.

Finally, this chapter is brought to a close with the conclusions.

3.1 Foundations of Fisher Information manifold

3.1.1 Fisher metric in the input space

Generally, most of the works in the literature that involve the FI metric [9, 45, 46, 48–

50] use the metric defined in parameters manifold based on generative models, p(x|θ).
However based on [51, 52], it is possible change the approach and apply the Fisher

metric on discriminative models p(y|x) that classify an external auxiliary information

y. In this case, the metric measures parameter distortions with reference to the input

space x instead of θ.

d (x, x + dx)2 = dxTG (x) dx (3.1)

G (x) = Ey
[
∇xlog p(y|x) · ∇xlog p(y|x)T

]
(3.2)

Generally, the auxiliary information y represents a class label C composed by J discrete

values, y ∈ [c1, · · · , cJ ]. The probability function p(y|x) represents the discrete prob-

ability distribution conditioned on x, where the Expected value Ey over p(y|x) is the

summation of FI matrix over each class in p(y|x):

G (x) =

J∑
j=1

∇xlog p(cj |x) · ∇xlog p(cj |x)T p(cj |x) (3.3)

This metric measures local distances in the input space dx as a function of the variations

on the class probabilities, assigning longer distances in the direction of the posterior

probabilities that have more variation, and shorter distances where there are no class

probability changes. In other words, the FI metric contains local relevant information

about the probability rate of change of class y membership.

The new Fisher metric approach still has a connection with the KL-divergence:
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IKL (x : x + dx) = IKL (p (y|x) , p (y|x + dx))

= −
J∑
j

log

(
p(cj |x + dx)

p(cj |x)

)
p(cj |x)

= −
J∑
j

(
dxT∇xlog p(cj |x) +

1

2
dxT

(
∇2

xlog p(cj |x)
)
dx

)
p(cj |x)

= −1

2
dxT

 J∑
j

(
∇2

xlog p(cj |x)
)
p(cj |x)

 dx

=
1

2
dxT

 J∑
j=1

∇xlog p(cj |x) · ∇xlog p(cj |x)T p(cj |x)

 dx

=
1

2
dxT ·G(x) · dx

(3.4)

where log p(cj |x+dx) has been approximated with the second order of Taylor expansion,

and some terms are cancelled due to
∑J

j p(cj |x) = 1.

3.1.2 Global distances in Fisher manifold

There is a problem to compute optimally global pairwise distances. Global distances

are computed following a similar path integral shown in eq. 2.12, but the optimal path

where G (x) is evaluated is unknown, and it is not practical to evaluate G (x) everywhere.

Therefore, in practice approximations are necessary and are described in more detail in

the methodology section 3.2.2. The first group of assumptions is called the straight line

approach, and it considers straight line paths between points, where G (x) is sampled in

regular intervals across the straight line, the integral path is approximated as a sum of

small segments where each segment is considered with a constant metric.

The second assumption, called the shortest path approach, improves the pairwise dis-

tances computed with the straight line approach. The idea is to use shortest path al-

gorithms, like the Floyd-Warshall algorithm [53, 54] or the Dijkstra’s algorithm [55], to

find a shortest path in the manifold of pairwise distances generated by the straight line

approach to make the global distances shorter. The Floyd-Warshall algorithm, which

belongs to the family All Pairs Shortest Path (APSP), will be implemented in Matlab

(single machine) and will be used in the procedure of this chapter. The Dijkstra’s algo-

rithm, which belongs to the family Single Source Shortest Path (SSSP), will be used a

modified version in Spark (distributed computing) to apply sequentially the algorithm



3.2. Methodology 37

over certain sources (nodes) of the manifold to approximate an APSP using an SSSP

algorithm, it will be used in the pipeline of this chapter, 3.

After the shortest path process, the pairwise distances under the Fisher manifold are

considered as faithful as possible within a reasonable runtime, due to the runtime at

least depends on O
(
N2
)
, with N being the sample size.

Fig. 3.1 – Manifold example with Isomap from [1]

As an example, figure 3.1 shows a ”Swiss roll” manifold and how Isomap reduces the

features dimensions. The image is taken from the original paper by Tenenbaum et al. [1].

Fig. 3.1-A shows two points relatively close in the Euclidean space, but far away within

the manifold created by the ”Swiss roll”. Fig. 3.1-B shows the graph generated by K-NN

with K=7 on the ”Swiss roll” manifold, and the shortest path applying Djikstra’s algo-

rithm. Fig. 3.1-C shows the 2D manifold representation generated with cMDS using the

matrix of graph distances, additionally the geodesic path of the two points is compared

with the Djikstra’s shortest path.

3.2 Methodology

This section describes the methods applied in the research for small sample sizes. The

algorithms are implemented in Matlab using a single machine (non-distributed com-

puting) via CPU. The stages of processing include the MLP classifier, Fisher metric,

pairwise distances in the Fisher manifold, transformation into similarity networks for

community finding, and Euclidean embedding for visualizing the structure of the Fisher

manifold with the communities.

It is important to mention that small sample sizes are considered to be lower than 5000

observations. Although the pipeline runtime also depends on the number of features and

the number of class labels, the decisive factor is the sample size due to the Fisher pairwise

distance computation, which, as mentioned before, is the main pipeline bottleneck. For

instance, in a standard computer with I7 CPU and 8GB RAM, the runtime is less than

1 hour for sample sizes lower than 1000 observations. However, for 7500 observations
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the runtime can roughly take 10 days, this is the main reason why a scalable version of

the FIN has been implemented in the next chapter.

3.2.1 Fisher metric

Let us suppose there is a dataset with standardized numerical features, if they are

categorical data One-Hot Encoding can be used to make dummy variables, and also

there is a set of class categorical labels which will be used as a target variable for the

classifier model.

The starting point is the selection of the classifier model. This will need to a) be a

multinomial classifier, b) be able to deal with non-linear data, c) have a mechanism to

avoid overfitting, and d) allow the model to be easily differentiable up to second order

with respect to the input space. The latter requirement is due to the core of the manifold

being the Fisher Information matrix [48], which can be derived as the Hessian of the

KL-divergence (also called relative entropy), implying derivatives of second order. Given

these requirements, a MLP classifier regularized with weight decay was chosen for the

task.

Using the MLP as a discriminative model, the posterior probability estimation is eval-

uated with the soft-max activation:

p(cj |x) =
exp (aj(x))∑J
k=1 exp (ak(x))

(3.5)

where cj are the J different class labels, and aj are the MLP outputs described in the

following expression:

a(x) = WO ·Θ
(
WH · x + BH

)
+ BO (3.6)

where W and B are the MLP weights of the hidden layer (H) and output layer (O),

and Θ(z) is the sigmoid function.

The MLP architecture is set empirically with one hidden layer of 10 neurons, which

provides good enough results to discriminate any non-linear shape without adding too

much model complexity. The other MLP hyper-parameters depend on the implementa-

tion used; in this work three implementations have been used: a custom MLP in Matlab,

the MLP of the built-in Matlab API Neural Pattern Recognition in Deep Learning tool-

box [97], and the Spark MLP classifier. The hyper-parameters of the custom MLP are
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listed below, for the other implementations similar parameters have been used when

they were available:

• MLP architecture: One hidden layer of 10 neurons

• Neuron activation: Sigmoid

• Learning rate: 0.001

• Momentum: 0.9

• Weight decay: 0.05

• Maximum epochs: 2000

The weights are updated by training a log-likelihood objective function with a regularized

back-propagation:

εLL = − 1

N

N∑
i=1

J∑
j=1

cj(xi)log (p(cj |xi)) + (1− cj(xi)) log (1− p(cj |xi)) (3.7)

Summarizing, the Riemannian tensor metric G (x) is the Fisher information matrix

FI (x) applied to a discriminative model with respect to the input space x.

G (x)→ FI (x) =
J∑
j=1

∇xlog p(cj |x) · ∇xlog p(cj |x)T log p(cj |x) (3.8)

For obtaining FI (x) as a function of the MLP output estimators, the soft-max logarithms

and their derivatives are needed:

pj =
exp (aj)∑J
k=1 exp (ak)

(3.9)

log(pj) = aj − log

(
J∑
k=1

exp (ak)

)
(3.10)

∇log(pj) = ∇aj −
J∑
k=1

pk∇ak (3.11)

where pj = p(cj |x), ∇ = ∇x = d
dx and aj = aj(x) for notation abbreviation. Now,

combining eq. 3.8 and eq. 3.11 and expanding the product you obtain:
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FI (x) =
J∑
j=1

(
∇aj −

J∑
k=1

pk∇ak
)(
∇aj −

J∑
l=1

pl∇al
)T

pj

=

J∑
j=1

(
(∇aj)(∇aj)T −

J∑
l=1

(∇aj)(∇al)T pl

−
J∑
k=1

(∇ak)(∇aj)T pk +
J∑
k=1

J∑
l=1

(∇ak)(∇al)T pkpl
)
pj

(3.12)

Rearranging terms, considering any variable t can be expressed as
∑J

i tpi = t
∑J

i pi = t,

you have:

FI (x) =
J∑
j=1

(
J∑
k=1

J∑
l=1

(∇aj)(∇aj)T pkpl

−
J∑
k=1

J∑
l=1

(∇aj)(∇al)T pkpl −
J∑
k=1

J∑
l=1

(∇ak)(∇aj)T pkpl

+
J∑
k=1

J∑
l=1

(∇ak)(∇al)T pkpl
)
pj

=
J∑
j=1

(
J∑
k=1

J∑
l=1

(
(∇aj)(∇aj)T − (∇aj)(∇al)T

−(∇ak)(∇aj)T + (∇ak)(∇al)T
)
pkpl

)
pj

(3.13)

Merging the summations you obtain the final expression of the FI (x) for the MLP:

FI (x) =

J∑
j=1

J∑
k=1

J∑
l=1

∇ (aj − ak)∇ (aj − al)T pjpkpl (3.14)

With this expression 3.14 the metric is estimated locally, computing differential distances

as:

d(x,x + dx)2 = dxT · FI(x) · dx (3.15)
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3.2.2 Fisher pairwise distances

If there are two points close enough, the distance between them can be approximated

as:

d(xA,xB)2 ≈ (xB − xA)T · FI

(
xB + xA

2

)
· (xB − xA) (3.16)

In general, however, the points are not close. The theoretical solution for this case is to

use the path integral:

d(xA,xB) =

∣∣∣∣∫ tB

tA

√
ẋ(t)T · FI (x(t)) · ẋ(t)dt

∣∣∣∣ (3.17)

However the MLP density estimators, a(x), are non-linear functions of x making the

path integral impossible to solve analytically.

As discussed in the previous section, the distances considering the straight line approach

can be estimated numerically, which approximates the path into a straight line that

connects both points where the FI(x) is evaluated taking T samples across the path.

The total distance is approximated as the sum of T small segments computed like in

eq. 3.16.

dT (xA,xB)2 =
T∑
t=1

d

(
xA +

t− 1

T
(xB − xA) , xA +

t

T
(xB − xA)

)2

(3.18)

The quantity of segments T can be set empirically, one option with a good trade-off in

runtime versus accuracy is fixing the segments number in T = 10, where the segments

will have a variable length depending on the Euclidean distances between xA and xB.

The other option, which is slower but the sampling would be more homogeneous for the

whole data, considers a variable quantity of segments that has a fixed length defined

by a global parameter, for example a fraction of the total average Euclidean pairwise

distances. This process is the bottleneck of the pipeline because of the 1/2 ·N(N − 1)

pairwise distances to compute, at least in the single machine (CPU Intel I7, 8GB RAM)

implementation with Matlab.

Next step is the shortest path approach which looks for an improvement of the global

distances (shortening distances) applying the Floyd-Warshall algorithm across the Fisher

manifold. This kind of algorithm is based on weighted graphs. In our case, the nodes

are the points and the edges are the pairwise distances, creating a fully connected graph.

For the implementation, MatlabBGL has been used from the library of David F. Gleich.
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With the shortest path approach the pairwise distances are assured to be the shortest

possible, at least within the manifold obtained with the straight line approach pairwise

distances. The higher the density points when computing pairwise distances, the higher

the information of the manifold, producing more accurate global distances.

3.2.3 Community finding in a similarity network

This section describes the implementation in Matlab of the community finding algorithm

based on modularity spectral optimization [12]. Before this, an important step is the

transformation of the manifold distances into a similarity network using a Gaussian ker-

nel of eq. 2.18. The network is defined by the adjacency matrix Aij which is symmetrical

with diagonal elements forced to be zero. Elements with small similarities are rounded

to zero, by default Aij < 10−5.

The locality parameter σG is a free parameter that needs to be adjusted. Two methods

are proposed: the first one measures the faithfulness of the network predictions compared

to the MLP. This process implies running the community finding algorithm for a range of

σG and evaluating the network for each value. The second is a heuristic approach based

on the average intra-label distances in the Fisher manifold. The first method will be used

for the Matlab implementation, and the second method for the Spark implementation

(section 3.3) as this approach requires less computational cost.

3.2.3.1 Length scale based on the faithfulness of the network predictions

Three criteria have been used to measure the faithfulness of the network predictions. The

method generates different networks using a range of length scales comprised into the

maximum and minimum manifold distance, and then each network is visually assessed

to select the appropriate σG using a plot with the following criteria: KL divergence,

Cramer’s V statistic and McNemar’s test.

KL divergence:

A new classifier model can be estimated based on the network combining similarities

with the MLP outputs, the scores ak(x). Applying a weighted average over the scores,

where the weights are the similarities, a new score a′k(x) is obtained estimated by the

network:

a′k(x) =
1∑N
j Aij

N∑
j

Aija
′
k(xj) (3.19)
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then it can be used as an argument in the soft-max function 3.5 to obtain the probabilities

p′(ck|x).

The network model can be compared with the original MLP model using the KL diver-

gence, showing how well the network predictions replicate the MLP predictions:

ϕKL = − 1

N

N∑
i

J∑
k

p(ck|x) log

(
p′(ck|x)

p(ck|x)

)
(3.20)

If ϕKL = 0 this means the network perfectly reproduces the estimates of the MLP. This

is a good method to clearly indicate an appropriate value for the length scale. When

σG is small, ϕKL ≈ 0 because the network only considers the closest neighbours for the

predictions. However, as σG increases, at some point ϕKL will also start to increase,

at the point where σG starts to increase considerably is the preferred value for σG. In

other words, the objective is to select the largest value of σG whilst keeping ϕKL ≈ 0.

Cramer’s V statistic:

This statistic [71] evaluates how the communities match the true labels, with ϕCV = 1

representing complete concordance and ϕCV = 0 no association at all. It is based on the

contingency table formed by the communities and the class labels. Here the objective

is opposite to the ϕKL case, here the objective is to select the largest σG that also has

ϕCV ≈ 1.

ϕCV =

√
χ2

N ·min (Com− 1, J − 1)
(3.21)

where χ2 is the chi-squared statistic obtained from the table, and Com and J are the

number of communities and class labels respectively.

McNemar’s test:

McNemar’s test [98] is based on the difference between the prediction made with the

probability estimated by the FI network and the original probability estimated by the

MLP. The null hypothesis is that both models are not significantly different. The ob-

jective is to select a σG in a range where ϕMN is high enough to be greater than the

p-value of the statistical test, to assure that both models are not significantly different.

ϕMN =
|nA − nB| − 1√

nA + nB
(3.22)

where nA are the number of errors made by the network and not by the MLP, and nB

are the number of errors made by the MLP but not by the network.
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3.2.3.2 Length scale based on the heuristic intra-labels manifold distances

This method is based on the average pairwise distances of the manifold that belong to

the same label, let us call these the intra-label average distances:

distintraLab (xi,xj) =

∑N
i=1

∑
j 3(j>i)∧ (Li=Lj)

dist (xi,xj)∑N
i=1

∑
j 3(j>i)∧ (Li=Lj)

1
(3.23)

This intra-label distance represents the average distance within the manifold regions

that belong to the same class label. Using the Gaussian kernel to measure similarities,

Ai,j ∈ [0, 1], the constraint that this intra-label distance (or a fraction of that distance)

have to be equal to a reasonably high value of the similarity measure can be imposed:

Ath > 0.5. Let say A(i,j)∈ intraLab → Ath = 0.75 for instance.

A(i,j)∈ intraLab = exp

(
−r · distintraLab (xi,xj)

σG

)2

← Ath (3.24)

Imposing these conditions, σG becomes completely determined within a small range of

values. A multiplying factor r ∈ [0, 1] has been added to the distances, to modulate the

granularity of the network. Empirical good values are r ∈ [0.2, 0.5]. With r = 0.5 the

community finding algorithm obtains approximately as many communities as there are

different class labels. With r = 0.2 between one and two times the number of different

class labels are approximately obtained.

σG ←
r · distintraLab (xi,xj)√

ln (Ath)
(3.25)

Once the σG is set, the adjacency matrix Ai,j is calculated, then follows the community

finding algorithm to obtain the community membership list. Additionally the prototype

of each community can be computed, where the prototype is the node of highest influence

within the sub-graph generated by the community. The prototype can be estimated using

the concept of centrality in graph-theory. There are several centrality indicators, for this

work the closeness centrality or the eigenvector centrality was used.

The next step is to visualize the FI network with the communities and prototypes that

have been obtained.
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3.2.4 Low-dimensional representation

This section introduces embedding of the Fisher manifold into a low-dimensional space

for visualizing the structure of the Fisher manifold, ideally in a two or three dimensional

space. The basic idea is to transform the pairwise distances of the Riemannian manifold

into coordinates, embedded in a Euclidean space. Most methods require approxima-

tions to achieve a low-dimensional representation of the Riemannian manifold. These

approximations are acceptable so long the margin of error is controlled. Two methods

have been implemented, each one with its own specific advantages.

3.2.4.1 Sammon mapping

For Sammon mapping it would be a two-dimensional representation. It tends to be more

accurate at preserving the local distances, but the global distances are distorted. This

method is very useful for representing the communities as prototypes. However, given

Sammon mapping is a non-linear method that forces projections into a two-dimensional

space, sometimes the Riemannian manifolds cannot be embedded only in this space,

producing significant distortion, overall in the long distances, without knowing the level

of error in the global distances. For this reason, the Sammon mapping is good for

visualizing the communities and the relative distances of the Fisher manifold, but is not

a good method for generating a faithful Euclidean embedding where projective clustering

methods can be applied.

In figures 3.2 and 3.3 an example of Sammon mapping is presented using the pairwise

distances of the well-known Iris dataset. Figure 3.2 embeds a network based on Euclidean

distances, whilst figure 3.3 embeds a Fisher Information network. The FIN is based

on the MLP classifier with 97% accuracy, hence the Fisher manifold can separate the

three classes very effectively (Setosa, Versicolour and Virginica). In both cases, the

communities have been found using a heuristic-based length scale. The communities of

the Euclidean distances are mixing the real classes, however in the Fisher manifold, the

classes are well separated, except for a few observations. With Sammon mapping the

communities can easily be visualized in a two-dimensional representation with a similar

scale for both axis, although the global distances are distorted.

3.2.4.2 Classical Multidimensional Scaling

The cMDS has a complementary advantage to Sammon Mapping. It is a good method

for preserving the global structure of the manifold, however, it needs more dimensions to

properly embed a Riemannian manifold with the advantage of gaining mapping accuracy.
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Fig. 3.3 – Iris FIN with Sammon map-
ping

The interesting point is that the method gives access to the eigenvalues associated with

each eigenvector of the Euclidean embedding, measuring the relative importance of each

dimension, and therefore discarding the less relevant dimensions beyond some threshold

of the cumulative sum of the eigenvalues. These eigenvalues represent the information

(variance) carried in each eigenvector (dimension), they are sorted in descending order

which provides a clear indication of how many dimensions are needed to effectively map

the Fisher manifold.

The cMDS represents a more faithful structure of the Fisher manifold than the Sam-

mon mapping, generating a Euclidean space that can be used for projective clustering

methods. Figures 3.4 and 3.5 show the Iris example with the cMDS embedding, at first

it looks similar to the Sammon mapping, but inspecting the axis more closely they do

not have the same scale, the eigenvector decomposition allowing the relative importance

of each dimension to be observed.
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Fig. 3.4 – Iris Euc. with cMDS
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Fig. 3.5 – Iris FIN with cMDS

In figures 3.6 and 3.7, the same cMDS embedding is depicted with the first three eigen-

vectors only, and fixing the axis scales for the three dimensions. In figure 3.7 it can be
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seen how the Fisher manifold lies in practically one dimension.
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Plotting the eigenvalues and their cumulative sum in figure 3.8, one can appreciate that,

for the Iris dataset, the first eigenvalue contains almost all the variance of the Fisher

manifold. In these cases where the first eigenvector is clearly dominant, a histogram

could be used to represent the first eigenvector projection, allowing discrimination of the

labels by its distribution. Figure 3.9 shows the joint probability based on the density

histogram multiplied by the class prevalence: P (X,C) = P (X|C) · P (C)
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Fig. 3.8 – Eigenvalues of cMDS Iris
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3.2.5 Community profiles

One additional step is to analyse the community profiles in order to highlight if the

communities are characterized by any particular features in the input space. This step

basically builds a table of k communities and n features where each feature is standard-

ized with respect to the average feature considering the whole data:

profilecomk (xn) =
µcomk (xn)− µ (xn)

σ (xn)
(3.26)
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xn being the nth feature of the input space, µcomk the mean value of the observations

that belong to community k, µ the mean feature value and σ its standard deviation.

These community profiles are obtained with the information extracted from the Fisher

manifold and can be compared with the profiles based on the class labels (computed

analogously). Usually there are significant differences between community and class

label profiles, with the community profiles usually having some features with values

considerably different from the mean. However the class label profiles do not necessarily

have to have a characteristic profile.

The community profiles will be used in Chapter 6 to describe the customer shopping

basket profiles in section 6.2.10, and the music profiles in section 6.3.4.4.

3.3 Scalable implementation of Fisher Information Net-

works

The objective of this section is to reduce the pipeline runtime for larger datasets. The

main problem of FIN is that the algorithm is not scalable because at least one part of the

procedure heavily depends on pairwise distances, as explained in previous section 1.3.1,

and each Riemannian pairwise distance needs relatively expensive computations at two

levels, one local and another global. Locally, the Fisher metric needs to be evaluated

several times across a straight-line path. Subsequently, the global pairwise distances

are improved by computing the APSP across the manifold taking into account all the

pairwise distances computed locally.

Unfortunately, although big data tools are employed, the FIN pipeline does not work

for typical big data environments, such as N ≈ 105 − 106, because of the quadratic

dependency O
(
N2
)

of the algorithm. The runtime will eventually grow to a point

beyond which a big data environment is not feasible. Therefore, the objective is to use

big data tools to be able to tackle greater sample sizes than the CPU-single machine

version of the algorithm, the sample limit will depend on the computer performance, but

is roughly around N ≈ 104. For instance, the procedure was tested in a Hadoop cluster

of 150 nodes with 128GB RAM and 48 cores each, using 15% of the cluster capacity,

and for sample sizes of N ≤ 2 · 104, the runtime was less than eight hours.

This section will introduce some common big data tools, describe the stages of processing

implementation in Spark and will show some interesting data examples of the FIN with

larger sample sizes.
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3.3.1 Introduction to Big Data Framework

The big data paradigm has had an enormous impact over the last 10 years. The fast

growth of data generation, together with the huge advances in computing power and

technology, have been the main catalyst for the launch and development of the Big Data

era. Big data has been characterised by a number of ”Vs”, including Volume, Veracity,

Velocity and Variety, and to the more recent additions of: Viability, Visualization and

Value.

The purpose of this section is to present the Big Data tools that will speed up the

pipeline runtime, under certain external constraints imposed by the collaborating retail

company. Investigating the procedure bottlenecks, it is apparent that the main challenge

are the pairwise distances, and the best way to tackle this problem is parallelization.

What also needs to be taken into account is the data volume and whether it can be held

in memory, which is mainly due to the APSP pipeline step.

Parallel computing tools fall into two main groups: single-machine parallel computing

and distributed-computing:

Single-machine parallel computing is focused on multi-thread CPU cores and the

General-Purpose computing on Graphics Processing Units (GPGPU). The GPGPU of-

fers a level of parallelization much higher than multi-thread CPU cores, although the

CPU chips are faster, the GPGPU are built with a larger number of graphics chips. The

GPGPU paradigm is based on handling the data as if they were images, where the par-

allel processing is performed between one or several GPUs and a CPU. Nowadays there

are many high level programming languages and software packages or application pro-

gramming interfaces (APIs) that can relatively easily implement parallel computing, for

instance the Nvidia CUDA [99] platform or the TensorFlow [100] open-source software

for GPGPU, also Matlab has the Parallel Computing Toolbox [101]. This single-machine

category is usually associated with High Performance Computers (HPC), but it does not

necessarily need to be a single computer, it can be a server or a HPC cluster, or any other

configuration that differs from multiple machines with a distributed location (networked

computers) which is distributed computing.

Distributed computing is generally characterized by: lack of a global clock, concur-

rency of components, and independent failure of components. The power of this config-

uration relies on the large number of independent computers that can run many parallel

processes (tasks) providing for failure tolerance and redundancy, like the executors in

the Java Virtual Machines (JVM) created in the Hadoop ecosystem. One of the most

relevant paradigms of big data analysis is the MapReduce paradigm [102] developed by

Google, later becoming open-source and under the Apache Foundation, integrated into
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the Hadoop project [5]. Apache Hadoop is a family of open-source software that forms an

ecosystem. One of the main elements is a distributed storage system known as Hadoop

Distributed File System (HDFS), which was inspired by Google File System [103]. Also,

Hadoop includes the Hadoop MapReduce implementation for large-scale data process-

ing, Hadoop YARN which is a resource manager and applications scheduler, and Hadoop

Common with the libraries and utilities. The Hadoop ecosystem is designed to operate

in distributed computer clusters built from commodity hardware, where the failure tol-

erance relies on data redundancy and the cluster self-governance controlled by YARN

managing the nodes as workers or masters, which is very well suited to cloud-computing.

Originally, in the Hadoop ecosystem, most of the machine learning (ML) implementa-

tions were based on MapReduce, for example the Apache Mahout project [104]. However

the main disadvantage of MapReduce is the disk-oriented design which slows the ma-

chine learning algorithms with high iteration dependency and the high load on disk

writing/reading operations. This is the main reason why MapReduce has been super-

seded by the Apache Spark project [6], where Spark bases the workload on the nodes

RAM memory allowing for fast iterations for ML algorithms. Apache Spark was orig-

inally developed at the University of California, Berkeley’s AMPLab, in 2009, being

donated to the Apache Software Foundation in 2013. Nowadays Spark has become the

staple for big data analytics offering a unified engine with multiple modules that cover

most ML implementations: Spark SQL, Spark Streaming, MLlib and GraphX. Spark

can run as a top layer within the Hadoop ecosystem. It manages the data using the

resilient distributed dataset (RDD), a read-only (immutable), partitioned collection of

elements that can be operated on in parallel. Newer Spark versions have improved the

RDD into Dataset and DataFrames for SQL, where one of the main improvements relies

on the DAG scheduler and the query optimizer under the lazy-evaluation of Spark. The

RDD operations can be divided into actions and transformations, Spark only performs

computations on RDD actions, hence it collects sequential RDD transformations and

then are executed with the optimized order (DAG scheduler) when the next RDD ac-

tion triggers the computation. The order in which the operations are evaluated has

a strong impact in the runtime performance, overall in operations that involve data

shuffling across different cluster nodes.

From the parallel computing tools discussed, Hadoop + Spark ecosystem has been chosen

for a number of reasons. Even when it is not the fastest option when compared with

a high performance computer based on GPGPU, it does offer scalability and versatility

in cloud computing, allowing the cluster size to adapt as required. In addition, it is

failure-tolerant and provides a robust file management system that combines with no-

SQL databases based on Hadoop, like Apache HBase, Cassandra or MongoDB. This is

also the set up the collaborating retail company prefers.
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3.3.2 Methodology of Spark implementation

The Spark implementation of the FIN procedure uses the ML libraries every time it was

possible, however, a number of custom functions have also been written. DataFrame-

based implementations were the preferred option. A Data-Frame is a Dataset organized

by columns, where a Dataset is a distributed collection of data, with the benefits of the

RDDs and employing Spark SQL’s optimized execution engine.

This is the list of steps in the Spark implementation:

1. Data preprocessing with Spark ML library based on DataFrames.

2. MLP from DataFrame-based Spark ML library to obtain the neuron weights.

3. Fisher metric and pairwise distances with the straight-line approach using User

Defined Functions (UDF) based on DataFrames.

4. Shortest path for distances optimization using Dijkstra algorithm approximations

5. Community finding using the Power Iteration Clustering (PIC) built in the RDD-

based Spark ML library.

In Spark, the number of partitions needs to be set, in which the RDD are parallelized

taking into account the number of executors (cluster size) and the sample size. Too

many partitions produce excessive overheads and too few does not take full advantage

of the parallelization. The trade-off is determined empirically by increasing the number

of partitions until the first overhead indicators appear. However, a good approximation

of the partitions number is two or four times the total number of cores in the cluster.

In the FIN pipeline, two different partition levels p1 and p2 are set, the first partition level

p1 is derived from the input sample size, where the initial RDD is partitioned according

to the number of observations, most of the stages of processing operations work with

these partition levels, except for the pairwise distances. The pairwise distances are

treated like a list of 0.5N(N − 1) elements, and for these computations a new RDD is

created with the higher partition level p2. There is no a rule of thumb to determine

p2, but a good range is p2 ∈
[
4p1, 0.5p

2
1

]
, setting a linear dependence for small sample

sizes and a quadratic dependence for relatively large sample sizes. It is also advisable to

set a maximum p2 value (threshold) that depends on the cluster size in case of large p1

values.
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3.3.2.1 Computing the Fisher Information metric

For computing the Fisher Information metric, the MLP neurons weights are needed.

The weights carry all the information of the Fisher metric and the manifold shape is

completely determined by them. Additionally, if the input data is standardized, the

average weights values are independent of the input dataset.

Using the MLP of the Spark ML library has some disadvantages, for example, the

algorithm cannot be customized to include other options. One example of this is that

it does not implement the use of a regularization term based on weight decay, which is

crucial to optimize the neuron weights with small values. This is probably because the

MLP is designed to deal with big data, where the risk of over-fitting is reduced. There

are, instead, two options for optimizing the neuron weights: mini-batch gradient descent

or L-BFGS [105], with the latter being the one used by default.

L-BFGS stands for Limited-memory of the Broyden–Fletcher–Goldfarb–Shanno algo-

rithm, and is based on the family of quasi-Newton methods. This option makes the

MLP training converge faster and the performance is slightly better than gradient de-

scent. However this method tends to assign non-standardised dissimilar values to the

neuron weights, some of them being too large, O(102). Large neuron weights produce

an unstable Fisher metric in regions with high probability gradients, making the metric

matrix almost a degenerate matrix and producing some distances that become practi-

cally zero and others that are too large, creating a twisted Fisher manifold. Therefore,

to obtain a homogeneous Fisher manifold, with well-balanced distances, it is important

the values of the neuron weights are similar with values close to zero. This is the main

reason to reject L-BFGS optimization and use the mini-batch gradient descent, despite

its generally worse performance. With the gradient descent option, in order to achieve

convergence, more iterations are needed, and also an increased learning rate for highly

non-linear data, but the neuron weights are within an acceptable range.

Another option for obtaining MLP neuron weights when the input sample is not large

O(105), is to use the customizable Matlab MLP and then export the weights to Spark

to carry on with the Spark pipeline. The clear disadvantage of this is having to deal

with separate environments, i.e. Matlab and Spark.

Once the neuron weights are calculated, a Spark DataFrame is created with the list

of all pairwise distances, using the higher partition level p2. Then, custom functions

are defined to compute the Fisher pairwise distance using the straight-line approach of

section 3.18, where the input function is a pair of points and the output function is the

Fisher distance. Within the function, the Fisher metric is evaluated in regular intervals

between the points and the Fisher distance is estimated as a sum of small segments. This
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custom function is transformed into a UDF to be applied to a DataFrame pairwise list,

parallelizing the distance computation into p2 partitions. Bear in mind the partitions

are not evaluated simultaneously, they are evaluated by the executors of each JVM,

where each executor has assigned a certain number of cores that are able to deal with

simultaneous processes. The executors’ configuration is set in the cluster creation, but

the partitions are set within the Spark session.

As previously mentioned, the main procedure bottleneck are the pairwise distance com-

putations, and the UDF applied to the DataFrame is the tool employed in Spark to speed

up these computations. The runtime depends on the cluster size and its performance,

however the parallelization increases and the runtime decreases linearly with the cluster

size and cores, but the pairwise distance list increases quadratically with the sample

size. Therefore, eventually, there will be a sample size with an excessive runtime for our

application.

3.3.2.2 Shortest paths approximations

This section also presents a bottleneck in the pipeline, although it is not as critical as

the bottleneck described in the previous section. Here the main purpose is to optimize

the pairwise distances computed for the straight-line approach using the Fisher manifold

to find a shortest path that reduces the distance.

In Matlab, the Floyd-Warshall algorithm was used to compute the shortest path from

all pairs at once (APSP). The Matlab implementation is designed to deal with data held

in memory, therefore under this requirement, the algorithm is considered to be fast and

efficient.

However, in Spark, everything is designed for distributed memory, and a stable imple-

mentation of the Floyd-Warshall algorithm has not yet been implemented, although

there are some related works such as [106]. One of the limitations of the APSP algo-

rithms in distributed computing is that the graph is already distributed, parallelizing the

message passing of one source node among the other graph nodes in a fully connected

graph. Therefore, it is difficult to implement another level of parallelization, forcing the

message passing of all sources to be implemented sequentially.

To overcome this problem the Dijkstra algorithm can be used instead, which is a single-

source shortest path algorithm (SSSP) and has been implemented in Spark within the

GraphX API. However, approximations to estimate all sources have to be made using

a single-source algorithm. Although the direct solution could be to sequentially apply

the Dijkstra algorithm to all sources, when there are many sources (observations) this

approach becomes intractable. Two approximations are proposed:
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• Approx. 1: Prototypes shortest paths.

• Approx. 2: Shortest paths pivoting with random points.

Approx. 1: Prototypes shortest paths

This approach applies the PIC method over the Fisher manifold for obtaining clusters

and their prototypes, then instead of computing the shortest path over all pairwise dis-

tances, the shortest path is only computed between prototypes using only the prototype

network. Therefore, the number of nodes (sources) to apply the shortest path is drasti-

cally reduced, the Dijkstra algorithm can then successfully applied sequentially over all

prototypes. Constructing the Fisher pairwise distances as a graph G of N nodes with

N2−N edges defined by the distances of the straight-line approach, the graph is reduced

to K nodes of K2 −K edges, where K is the number of prototypes, being K � N .

The intra-cluster distances, i.e. within the same cluster, are estimated as the distances

computed in the previous section with the straight-line approach, distSL:

distintra−cluster (i, j) = distSL (i, j) (3.27)

The inter-cluster distances are estimated as the sum of three distances: SL distance

from node i to its prototype ki, geodesic distance between prototypes ki and kj , and SL

distance from node j to its prototype kj :

distinter−cluster (i, j) = distSL (i, ki) + distgeod (ki, kj) + distSL (kj , j) (3.28)

This approximation is analogous to an underground rail network, where the geodesic

prototype distances represent the railway stations, and the node to prototype SL dis-

tances acts as people walking to the stations. Only the station (prototypes) distances

are optimized with the shortest path algorithm.

There are some risks related to the loss of information in the Fisher manifold if the

number of prototypes are reduced too much when computing the Dijkstra algorithm,

because the optimal path is found only through the prototype distances.

The approximation is not as efficient as the optimal distances with the Floyd-Warshall

algorithm, but it roughly captures the main structure of the manifold. The only consid-

erable problem is related to the Spark data architecture. This procedure contains several

DataFrame JOIN operations by indices that probably belong to different partitions, and

this kind of transformations with wide dependencies can be slow in Spark when data is
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shuffling among cluster nodes. Therefore, a second approximation method was devised

(see section 3.3.2.2).

Approx. 2: Shortest paths pivoting with random points

This approach tries to reduce the runtime by avoiding finding clusters and prototypes.

The basic assumption is that close points in the Fisher manifold are well estimated by

the SL distances, and distant points are more likely to require the use of the shortest

path algorithm across the whole manifold to compute the geodesic distance.

The Dijkstra algorithm obtains the shortest paths of a single source with respect to the

rest of the nodes, therefore selecting k′ random nodes for applying the Dijkstra algorithm

sequentially, the information can be used to estimate geodesic distances from any nodes

pivoting over all of this k′ nodes and then select the minimum of these k′ distances:

distpivot (i, j) = mink′
([

distgeod
(
i, k′

)
+ distgeod

(
k′, j

)]
∀ k′

)
(3.29)

Thus assuring the minimum distance between any two points when comparing distpivot

with distSL the minimum distance is selected, if they are close points it is probable that

distpivot > distSL.

dist (i, j) = min (distpivot (i, j) ,distSL (i, j)) (3.30)

With approx.2 better results are obtained compared to approx.1 with reference to the

optimal APSP solution with the Floyd-Warshall algorithm. In addition, the runtime

is considerable reduced because some of the DataFrame JOIN operations have been

replaced for MapReduce operations, reducing the data shuffling across the cluster nodes.

Although this method is scalable in Spark, for those cases where the data fits into

memory able to run on a single-machine, the runtime of the Spark version is much

greater than running the Floyd-Warshall algorithm in Matlab.

3.3.2.3 Communities with Power Iteration Clustering

In the previous Subsection 3.3.2.2, the PIC [107] was introduced which is a spectral

clustering method implemented in the RDD-based Spark ML library and able to deal

directly with the adjacency matrix based on similarities as the input data. This is of

benefit as the Fisher manifold is described as distances instead of Euclidean coordinates,

and PIC can deal with Riemannian distances when they are transformed similarity
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measures. Here a Gaussian kernel with the length scale determined heuristically is used

with the method described in section 3.2.3.2.

One difficulty in using the algorithm is the requirement to provide the number of clusters

as an input parameter, meaning there is no automatic detection for number of the

communities. The consequence is if the number of clusters stated is too large, the

algorithm will find clusters with very low membership.

Once the communities are obtained, the community profiles are computed following the

same procedure in section 3.2.5, but using Spark DataFrames with groupBy functions

to compute the profiles.

3.3.3 Runtime problems and the hybrid solution

The Spark implementation has been tested in different cluster configurations:

1. High performance computer with 768GB RAM and 32 cores in Spark standalone

mode.

2. Cloud computing with Amazon Web Services using different configurations up to

using: 20 nodes of 32GB RAM and 8 cores each, or 5 nodes of 244GB RAM and

32 cores each.

3. Cluster of the retail company, using up to 15% of its resources: 150 nodes, 128 GB

RAM and 48 cores each.

The third option being the most powerful cluster and with the smallest pipeline runtime.

As mentioned before, the Spark work-flow has two main bottlenecks, Bn1 and Bn2: the

first Bn1, is in the pairwise distances with the straight-line approach, and the second

Bn2, is in the APSP with the second approximation 3.3.2.2. The most important factor

affecting runtime is the sample size, but it is also affected by the number of features,

and number of categories in the class labels. In the Spark implementation, the two

bottlenecks take approximately the same amount of time, slightly more for Bn2.

Taking the retail dataset as a reference described in detail in section 6.2 of Chapter 6: it

has 35 features, 4 categories in the class labels, and a sample size up to 50K observations.

This information can be used to estimate the maximum sample size to perform the work-

flow in an overnight or less than eight hours.

Table 3.1 shows approximated runtime for different cluster configurations. In Matlab

implementation, Bn1 refers to the SL distances, and Bn2 refers to the Floyd-Warshall
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algorithm, which is not really a bottleneck if compared with Bn1. The standard PC

has an I7 processor with 8GB RAM and shows the runtime for the implementations in

Matlab. The HPC configuration uses a hybrid solution, where Bn1 is implemented in

Spark taking advantage of the 32 CPU cores in standalone mode, and Bn2 is imple-

mented in Matlab. The AWS and the big clusters (retail company cluster) use both the

Spark implementation.

Table 3.1 – Approx. runtime for different cluster configurations

5K obs 10K obs 15K obs

Computer config. Bn1 Bn2 Bn1 Bn2 Bn1 Bn2

Standard PC 5d 5’ - 10’ - 20’

HPC 12h 5’ 2d 10’ - 20’

AWS cluster 1h 1.5h 3h 5h 12h 20h

Large cluster 30’ 45’ 1.5h 2.5h 5h 7h

Inspecting the table, for more than 15K observations the pipeline runtime takes too

long, even when using a large cluster. This implies that the implementation is not

really capable of dealing with “big data”, although there are 112.5M different pairwise

distances to compute. For sample sizes lower than 15K, where the data fits into memory

of a standard computer, the best option is to use a hybrid solution, where the Spark

implementation is the best option to speed up Bn1, and the Matlab implementation is

better to tackle Bn2 which provides the exact shortest paths with the Floyd-Warshall

algorithm.

With the hybrid solution, the Spark implementation is only needed for computing the

SL distances, the rest of the procedure can be implemented in Matlab as described in

section 3.2, including the MLP. If there is no access to a large cluster, an easy way to

use Spark is through cloud computing services (AWS, Azure, Cloudera, Hortonworks,

etc.) for creating a temporary cluster adjusted, in this work AWS ElasticMap Reduce

clusters were used.

Therefore, the hybrid approach only considers the fastest combination of the method to

improve the runtime, which is a good solution to launch research experiments. However

this solution, even if it is the fastest, may not be appropriate for a production deployment

where all the algorithms should be integrated in the same environment.

3.4 Case studies

The methodology to obtain the Fisher manifolds has been applied on three case studies:

aneurysm, nested spirals and exotic physics particles data. The first one does not use
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the scalable implementation because the dataset is small enough, on the other hand the

other two cases use the scalable implementation.

In all cases, the clustering task has been made using spectral clustering, choosing the

left path in the step 6 of the pipeline diagram, figure 1.1 of Chapter 1. The other path

with PQC will be introduced later in next Chapter 4, and both paths will be compared

in Chapter 6 with two case studies. In addition, for the cases of this chapter it is not

necessary to apply PQC to obtain a good analysis of the manifold. When the manifold

is one-dimensional, with density histograms it is enough to evaluate the clusters.

3.4.1 Aneurysm case study

This subsection shows the results of applying the FIN to a real-world data case based on

cerebral aneurysms [108]. The data combines traditional clinical records with complex

features obtained by computational analysis [109]. From each patient it is known whether

the aneurysm ruptured or not, and this variable is used as the target label. The main

objective is to obtain a rupture risk stratification of cerebral aneurysm and, by applying

the FIN, one expects to find communities from which patient profiles can be defined,

with a higher predictive power than a traditional binary classifier. The Fisher manifold

has to stratify the transition from regions of high rupture risk to safer regions, where

the rupture is less likely.

A cerebral aneurysm is a complex disease which incurs severe damage if a rupture

ensues, leading to 60% mortality rate in such cases [110]. The two common treatments

for ruptured aneurysm are surgical clipping or endovascular coiling. However, not all

aneurysms cause a rupture, and with the treatment being a risky operation, it is only

recommended for aneurysms with a high risk of rupture.

The objective of this analysis is to identify patient profiles (communities) with a high

risk of rupture where the treatment would be advisable for patients before the rupture

occurs, and also identify other low-risk profiles where alternative treatments, such as

drugs, can be employed.

Using the FIN procedure, the Fisher manifold is generated by the MLP. Given that this

is a binary classifier, a low-dimensional manifold is expected. This manifold contains

the information needed to discriminate the rupture, and the patients can be ranked by

the FI metric similarity enabling stratification by communities of different rupture risk.
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3.4.1.1 Data description and feature selection

The data consists of 180 patients’ clinical records combined with basic shape descriptors

of the aneurysm [111, 112] and a set of complex features obtained by computational

analysis [113]. The complex features describe the surface and volume of the Zernike

Moment Invariants (ZMI), which are expressed in 120 principal components from PCA,

with only the top 20 PC considered. The clinical records are eight categorical variables

that include the well-known risk factors: age, smoking status, hypertension status, loca-

tion of aneurysm, laterality of aneurysm, status of aneurysm and aneurysm type. There

are eight basic shape aneurysm descriptors: volume, surface, neck surface, neck width,

depth, aspect ratio, and non-sphericity index.

The ratio of the number of variables to observations (patients) is very likely to lead to

overfitting, and it is also likely that many of the ZMI components are redundant. To

tackle this problem a feature selection by means of a CI-map is performed, which was

constructed incorporating the target variable (rupture) and all the features, previously

categorized (binary). The idea being to select only those variables that have a first

order (direct edge) or second order (two edges distance) connection to rupture. For

more statistical robustness, the CI-maps were resampled with replacement (similar to

bootstrapping) to create a frequency list of those variables that are more often directly

connected with rupture.

From the top 12 variables a subset of 8 was selected, which resulted in highest MLP

accuracy (64% on the test data) with the lowest amount of features as possible. These

top 8 features most associated with rupture were: location of aneurysm, hypertension,

non-sphericity index, rem-PC6, ZMI surface-PC6 and ZMI surface-PC4.

As a pre-processing step, the categorical variables were transformed with 1-N encoding

and the continuous data was standardized (z-score).

3.4.1.2 Results and discussion

The first step is to train the MLP, in this case has been used the built-in Matlab API

Neural Pattern Recognition [97], with one hidden layer of 10 neurons as mentioned in

section 3.2.1. The MLP performance is depicted in a contingency table showing the

scores in the following template 3.2:

In multinomial cases, the sensitivity, specificity, PPV and NPV are computed as One

versus All, for instance if there are 3 class labels, where TPi are the true positives of

classi, its sensitivity Sensi is:
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Table 3.2 – Template for showing the MLP results.

Target 1 Target 2

Predicted 1 True Positive False Positive PPV

Predicted 2 False Negative True Negative NPV

Sensitivity Specificity Accuracy

Sensi =
TP2

TP1 + TP2 + TP3
(3.31)

The data is divided in 70% training, 15% validation and 15% test. The results are shown

in figure 3.10
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Fig. 3.10 – MLP performance of Aneurysm data.

Then the FI metric and the pairwise distances were computed as described in methodol-

ogy section 3.2, followed by the FI pairwise distances that defined the Fisher manifold,

leading to the similarity network incorporating an appropriate length scale σG for the

Gaussian kernel.
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The following figures (3.12 to 3.15) analyse the faithfulness of the network predictions

as a function of the network length scale, σG. The σG parameter determines the size of

the node neighbourhood, affecting the granularity with which the Newman’s algorithm

detects communities. At least initially, it is intended to find more communities than

class labels, two in this case. The methodology applied is described in section 3.2.3.1,

using the following indicators: KL-divergence, accuracy, Cramer’s V and McNemar test.

In the figures, the blue lines represent the whole network, a weighted average of the MLP

scores over all network elements, see eq. 3.19. The red lines represent the community

predictions, an average of the adjacency matrix elements that belong to the same com-

munity. And the black lines represent the prototype predictions, the average of the MLP

scores for the prototypes. The decision criteria will be based on the network behaviour

(blue line).

Figure 3.11 shows the number of communities with respect to the network length scale,

σG. The length scale is linearly sampled from the values comprised between 5% to 100%

quantiles of the pairwise distances. From the figure one may observe that for σG greater

than 1.2 the Newman’s algorithm only find two communities in the created network,

therefore σG ≤ 1.2 is a threshold for having networks with the ability to discriminate

more than two communities, which was the initial intention.
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Fig. 3.11 – Aneurysm number of communities per σG

The figure 3.12 analyses the KL-divergence of the model based on the network predictions

compared with the MLP predictions. This is the most important criterion because it

is usually the most restrictive to select σG. The figure illustrates that the length scale

should be σG ≤ 0.5 to keep the KL-divergence of the network (blue line) close to zero.

The figure 3.13 shows the accuracy in the network predictions, considering all the nodes

(blue line), community nodes (red line) and community prototypes (black). According

to the network predictions (blue), the length scale should be σG ≤ 1.0 to keep the

accuracy on the same levels of the MLP.
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Fig. 3.12 – Aneurysm KL-divergence per σG
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Fig. 3.13 – Aneurysm network predictions accuracy per σG

The figure 3.14 shows the Cramers’ V statistic for the community labels compared with

the class labels. This statistic measures the matching level between categorical variables.

For this case this statistic is not very informative because most of the values are similar,

approximately σG ≤ 0.75 is a good threshold to keep CV ≥ 0.64 but it is not very

relevant.

The figure 3.15 shows the McNemar tests, which is a measure of how different are the

predictions of two models based on contingency tables, due to the null hypothesis is that

both models are equal, big p-values indicate that the null hypothesis cannot be rejected.

For the network model (blue) an acceptable length scale is σG ≤ 1.25.

The idea was to select the highest length scale possible, preserving the faithfulness of

the network predictions (blue lines). Usually the KL divergence is the most conser-

vative indicator, figure 3.12 showing σG ≤ 0.5 to avoid an increase in KL divergence.

Given that the other plots point to a higher threshold, the decision is to keep σ ≈ 0.5.

If the second heuristic method was used based on intra-label manifold distances (see
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Subsection 3.2.3.2), the value of σ would be 0.40, which indicated that both methods

are broadly in agreement. For simplicity, when comparing the Fisher manifold with the

manifold created by Euclidean pairwise distances, the heuristic method will be used to

estimate the length scale.

Once the σG and the communities are found, the Fisher manifold was embedded and

the communities represented.

Sammon mapping

Using the Sammon mapping, figures 3.16 and 3.17 show the differences between using

the normal Euclidean distances to create the pairwise distance matrix, and the distances

created by the Fisher manifold. For the Euclidean case there are five communities with

significant overlapping, however for the Fisher case there are four well separated com-

munities, displacing the ruptured aneurysm to the bottom right, and the not-ruptured

to the left top of the figure.
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Classical MDS

Now using the cMDS with the 3 main eigenvectors there is a clear difference in the

manifold structure between the Euclidean distances and the Fisher manifold, shown in

figures 3.18 and 3.19.
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With figure 3.20 showing more information per community. For instance, the rupture

prevalence per community, i.e. for each community, the ratio of the largest label against

the community size (in communities Com2 and Com3 the largest label is not-rupture).

This provides an indication of the expected prevalence of rupture within each commu-

nity, therefore assigning patients to communities allows for an estimate of likelihood of

rupture. In this analysis there are four communities, where the extreme right (Com1)

has a probability of rupture of 94%. And the extreme left (Com2) has a probability of

not-rupture of 82%. The intermediate communities form a more mixed group in terms

of rupture where a decision on likelihood of rupture has to be taken more carefully, even

having high prevalences (72% not-rupture in Com3 and 81% rupture in Com4).
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Representing the eigenvalues of the cMDS in figure 3.21, one can observe that the Fisher

manifold is practically one-dimensional. This happens in most of the cases with binary

linear classifiers. For these cases only histograms are required of each class label across

the main eigenvector, projecting all the manifold in this direction. Figure 3.22 shows the

probabilities derived from the histogram, P (X,C) = P (X|C) · P (C), where P (X|C) is

the density histogram, and P (C) is the class prevalence. The label-1 means not-ruptured

aneurysm and label-2 ruptured.
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The FIN procedure has been applied to the aneurysm dataset for representing a Fisher

manifold and the communities defined by a similarity network. The objective was to

obtain a rupture risk stratification beyond that of a binary classifier, and the analysis

provided four communities, where the two extreme manifold communities have a rup-

ture risk probability higher than the sensitivity and specificity of a binary classifier.

Additionally, the histogram of the main eigenvector projection in the embedded Fisher
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manifold has been constructed to produce a continuous probability distribution where

the extremes belong to pure regions of 100% no-rupture (left) and 100% rupture (right)

in figure 3.22. This is potentially very useful as it allows for a patient to be identified

in the manifold, and evaluate the risk of rupture with respect to the other patients like

them identified as their nearest neighbour.

3.4.2 Spirals

3.4.2.1 Data description

This is a synthetic dataset based on five nested spirals with Gaussian noise. There are

4K observations divided evenly into five classes, shown in figure 3.24. The spirals have

little noise and are well separated.

Here the objective is to illustrate how a highly structured low-dimensional input space

requires a non-linear classifier to produce a Fisher manifold of higher dimensionality.

In most cases, the opposite usually happens, where the Fisher manifold reduces the

dimensionality because it only considers those features that discriminate the classes.

3.4.2.2 Results and discussion

Applying the proposed hybrid solution, the MLP neuron weights are obtained from the

Matlab implementation. The data is divided in 70% training, 15% validation and 15%

test. The MLP results are shown in figure 3.23, the performance has been purposely

made to be very good because the intention was to create an non-linear classifier with

well separated class labels.

The Fisher pairwise distances with the straight-line approach are obtained in Spark, the

rest of pipeline is performed in Matlab again, i.e. the shortest paths, the community

detection and the Euclidean embedding.

If the Sammon mapping is applied to the spirals’ Fisher manifold, figure 3.25, the Sam-

mon mapping cannot separate the highly structure manifold in a 2D space. In fact, most

of the communities do not overlap but this cannot be observed from the Sammon map.

Therefore, Sammon mapping is not suited for representing non-linear, highly structured,

interspersed Riemannian spaces.

Applying the cMDS on the spirals’ Fisher manifold, its structure can be better appre-

ciated. The method can approximate the embedding with 3 eigenvectors. Figure 3.26
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Fig. 3.23 – MLP performance of 5 spirals data.
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shows the first three eigenvalues that represent 81% of the cumulated variance. Al-

though not apparent in the figure, the last eigenvalue has a significant negative value,

λlast = −1513 compared with the first eigenvalue λ1 = 15340, which means the Rieman-

nian manifold is considerably far from the expected behaviour of a Euclidean space.

Figure 3.27 illustrates the cMDS Euclidean embedding in 3D where one may observe

that the Fisher manifold looks like the original spirals but distorted and stretched in the

rotation axis direction. The Fisher manifold tries to improve the distinction between

observations in different classes.
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Fig. 3.26 – Spirals FIN cMDS eigen-
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Fig. 3.27 – Spirals FIN cMDS 3D

In figure 3.28, the same plot is presented from another angle. The inner class 4 (black)

is pushed to the left of Eig1 axis and the exterior class 5 (magenta) is pushed to the

right of Eig1, in such a way that the 2D original space is transformed to a 3D space

where the classes are completely separated.

Finally, figure 3.29 simply shows the cMDS built from Euclidean distances, because the

original distances are Euclidean, the cMDS is able to reproduce the original distribution.

However, the communities found in the Euclidean manifold mix the class labels.

Fig. 3.28 – Spirals FIN cMDS 3D
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3.4.3 Physics particle detection

3.4.3.1 Data description

The HEPMASS dataset is from the UCI repository [114]. It represents high-energy

physics experiments focused on finding exotic particle signatures in the collisions. The

data is obtained from Monte Carlo simulations of the signatures that produce the exotic

particles and the resulting decay products. There is a target class label that separates the

observations where an exotic particle is created from other observations with background

sources. The dataset contains 27 normalized features and an additional extra column

with the particle mass in case of particle creation. A random sample of 10K observations

was taken from the original 10.5M instances.

The objective for this study is to use the FIN work-flow to classify the signatures that

create the particles, firstly to find communities that discriminate the classifications, and

secondly to inspect the structure of the Fisher manifold to gain insights about the class

distributions.

3.4.3.2 Results and discussion

The Spark MLP obtains the performance depicted in figure 3.30, where the data has

been divided in 70% training, 15% validation and 15% test.

The resulting Fisher manifold is firstly represented by Sammon mapping in figure 3.31,

where the red points are no particle observations and the blue points the particles.

Newman’s algorithm finds four communities with the length scale obtained with the

heuristic method. Figure 3.32 shows the maximum ratio of label membership per com-

munity, where the extreme communities identify observations with a high prevalence

of particles, higher than the MLP accuracy. Community-1 has 87% of signatures of

no-particles, while community-2 has 94% of signatures of finding of particles. The other

two intermediate communities are a transition between the extremes.

If the particle masses associated are represented with each signature as in figure 3.33, it

would show how the mass is directly correlated to the chance of finding a particle, with

the signature of heavier particle easier to identify (right side of Sammon mapping).

For this dataset, the Sammon mapping has been useful for visualizing the distribution

of the communities, but to observe the manifold structure itself, it is better to use the

cMDS embedding. Figure 3.34 shows the eigenvalues of the cMDS, clearly representing

one dominant eigenvector that represents 98% cumulative sum of the eigenvalues.
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Fig. 3.30 – MLP performance of physics particles data.

Fig. 3.31 – Particles FIN Sammon
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Fig. 3.33 – Particles FIN Sammon mapping by mass label
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The cigar shape of the manifold structure allows for an arbitrary segmentation, however

given nearly all the observations lie in the first eigenvector, the manifold can be projected

in this direction and histograms used to inspect the class distributions. Figure 3.36 shows

that the manifold has two peaks at the extremes, the distribution could be a good criteria

for segmenting cigar shape manifolds. If instead of using the class label the mass label

is used, figure 3.37 shows how the particles mass are distributed in the Fisher manifold,

highlighting the same effect observed in the previous mass Sammon map but with more

detail and the mass distributions clearly identified.

Finally, a comparison of the cMDS created from Euclidean distances instead of the

Fisher distances is presented. Recalling that cMDS obtains similar results to the PCA

decomposition if the original distances were Euclidean, figure 3.38 shows the eigenvalue

cumulative sums, where eigenvalue weights are distributed more evenly. This highlights

the ability of the Fisher manifold to concentrate all the relevant information in one

eigenvector, when the original data needs at least 15 eigenvectors to obtain an 80% of
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the total variance. However, plotting the two main eigenvectors distinguished by mass

label 3.39, one may also observe that the information of mass distribution is mainly

contained in the two main eigenvectors of the Euclidean distances manifold, analogously

to PCA. Therefore, the particles and their mass can be discriminated with only the first

principal component.
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3.5 Conclusion

The core of the chapter is the manifold defined by the Fisher Information metric. This

manifold contains the relevant information of the discriminative model which it is based

on. Once the Fisher manifold is embedded in a Euclidean space and transforms the input

space in a low-dimensional space, using the Sammon mapping it is helpful to visualize

the communities created by the Newman’s community finding algorithm. Alternatively,

using the classical MDS the manifold structure can be visualized thanks to its eigenvector

decomposition.
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Reflecting on the results and the behaviour of the Fisher manifold, it tends to separate

those observations that belong to the same class label, placing at the manifold extremes

the observations with highest certainty of class membership, then moving towards the

centre of the manifold there is a smooth transition from one class to another. This effect

is related to the Fisher metric which depends on the gradient of the posterior class proba-

bilities, the metric shortens the distances within regions of no class membership changes,

and lengthens the distances within regions of class membership changes. The pairwise

distances create a Riemannian manifold of minimum dimensionality that discriminates

the class labels, because the Fisher metric only considers those features that contribute

to differentiating the labels. That is the reason why in most of the cases where there

is a binary classifier model, the manifold practically lies in one-dimension cigar shape,

reflected in the Euclidean embedding with cMDS. For these cases the manifold structure

is a continuous, homogeneous distribution where there are no truly separate clusters, it

is more a segmentation problem where the distribution is split into an arbitrary number

of communities, depending on the desired granularity. In general, the dimensionality of

the Fisher manifold depends on the complexity of the classifier model, needing only one

dimension to represent the linear binary classifiers. However, if the classifier model is

multinomial or highly non-linear, the Fisher manifold will have a more complex structure

producing an embedding with higher dimensionality.

In the first part of this chapter, the FIN pipeline has been successfully applied using small

datasets, namely, the Iris and the aneurysm datasets. Given that the main limitation

of this set of algorithms is the sample size when computing the Fisher metric and the

pairwise distances, the second part of the chapter introduces some big data tools to tackle

a greater number of observations in a scalable implementation of the FIN procedure.

In the second part of this chapter, a pseudo scalable version of the FIN pipeline has

been implemented in Spark under Hadoop ecosystem, it is pseudo scalable because the

quadratic dependence on the sample size with the pairwise distances will eventually lead

to excessive runtimes. Two main bottlenecks have been identified: Bn1 and Bn2. Bn1,

which is based on the pairwise distance computation with the straight-line approach

(SL), can be sped up considerably using the Spark parallelization. Bn2, which is based

on the computation of shortest paths across the Fisher manifold for approximating

geodesic distances, is better tackled with the Floyd-Warshall algorithm in Matlab using

a single machine (provided the data fits into memory). Therefore, the fastest option is a

hybrid solution, tackling Bn1 with distributed computing (Spark) and Bn2 in a single

machine (Matlab).

The criteria of the hybrid approach is the adopted solution from the perspective of
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speeding up the runtime of research experiments, where only the fastest method combi-

nation is considered. However, hybrid approach is not elegant and the mixture of two

environments may be not suitable for a hypothetical deployment in production.

In reference to the experiments, three case studies have been analysed, two of them

with the scalable implementation. For the Aneurysm case and the exotic particles, a

high dimensional input space is transformed into a one-dimensional Fisher manifold,

where the class labels can be analysed using a density histogram. For the five nested

spirals, because of the highly non-linear classifier model, the two-dimensional input

space is transformed into a Fisher manifold of higher dimensionality, three-dimensional

Euclidean embedding was used in this case.

As future work, without having the Hadoop ecosystem constraint of the retail com-

pany, it would be interesting to address the problem with GPGPUs, where the level of

parallelization is very high and the whole pipeline could be implemented in the same

machine.



Chapter 4

Probabilistic Quantum Clustering

This chapter shows in detail the new methodology of probabilistic Quantum Clustering

and how it is derived from the original QC. This density-based clustering algorithm is

useful to find clusters in the embedded manifold when the space presents high density

variations.

One of the main advantages of PQC is its ability to automatically select the hyper-

parameters though a likelihood score of cluster membership. The Subsection 4.2.5 shows

that this likelihood function, based on P (K|X), is correlated with the Jaccard score (JS)

when the underlying cluster structure is known for synthetic data.

The rest of the chapter is structured as follows: Section 4.2 introduces the original

Quantum Clustering, including a description of the algorithm in Subsection 4.2.1, then

the proposed QC improvements based on KNNs are described in Subsection 4.2.2, the

manifold QC in 4.2.3, the probabilistic interpretation of the QC in 4.2.4; Subsection 4.2.5

shows how the likelihood function becomes an effective way of assessing the performance

of QC, and subsections 4.2.6 and 4.2.7 show auxiliary methods to identify potential wells

with clusters. Section 4.3 presents the data sets used to test the performance of the

proposed clustering method with results reported in Section 4.4. Section 4.5 concludes

with a critical summary of PQC identifying directions for further work.

4.1 Introduction

In the FIN procedure, once the Fisher manifold embedded in a Euclidean space with the

cMDS is obtained, communities or clusters can be found directly on the new Euclidean

space using traditional projective methods like K-Means, DBSCAN [24], mixture of

Gaussians or any other similar clustering algorithm; instead of the spectral methods used

75
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previously based on pairwise similarity matrices. One of the disadvantages of spectral

clustering is the need for setting up an additional hyper-parameter that defines the length

scale in the Gaussian kernel for controlling the influence area of the neighbourhood

similarity. Most of the algorithms based on projective methods also need additional

hyper-parameters, like the cluster number K in K-Means, or in the mixture of Gaussians

before the Expectation-Maximization (EM) fitting. On the other hand, density-based

algorithms like DBSCAN can detect automatically the cluster number, but they still

need a hyper-parameter for controlling the neighbourhood length scale.

Part of the work in this thesis has focused on finding an unsupervised clustering algo-

rithm able to detect the data structure assessing the hyper-parameter selection. This

chapter introduces such an algorithm which is a new probabilistic framework developed

for improving the original Quantum Clustering [69]. The new Probabilistic Quantum

Clustering (PQC) introduces many new improvements that will be explained in detail

in this chapter, which include the ability to determine the cluster number and the data

density structure in a completely unsupervised way.

Since the PQC is a density-based algorithm, it fits very well in the FIN pipeline when

the embedded Fisher manifold presents a data structure with local density variations,

i.e. heteroscedastic data. However, it is recommended to avoid the use of PQC in cases

where the Fisher manifold presents a homogeneous distribution with a constant density,

as in this situation the community finding step becomes a segmentation problem where

the cluster number is quite arbitrary. For instance, in a uniform cigar-shape dataset,

PQC tends to identify a single big cluster without segmenting the data.

4.2 Methodology

This Section starts (Subsection 4.2.1) with a general description of the original QC

and its main elements, namely, the wave function, the potential and the potential gra-

dient. Then, follows the introduction of the new approaches alongside its implications

culminating in a probabilistic model with an unsupervised assessment for the free hyper-

parameter.

In case of heterogeneous features, the data are sphered by standardizing each dimension

to the z-score, in order to provide a uniform length scale across all dimensions. Addi-

tionally, the data is scaled by a constant, 1/λ, to make the length scale uniform when

the stochastic gradient descent (SGD) is applied:
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λ =

∑n
i=1 ‖xi‖
n

(4.1)

where n is the length of vector x, and ‖x‖ is the L2 norm.

4.2.1 Original Quantum Clustering, QCσ

QCσ starts by defining a wave function as a Parzen estimator, from which a convex

potential function is derived by the Schrödinger equation. Cluster allocation consists

in identifying which regions belong to each local minimum of the potential function,

originally through a gradient descent.

Gaussian kernels associated with each observation add together to make the wave func-

tion (4.2):

Ψ(x) =

n∑
i=1

ψi (x) =

n∑
i=1

e−
(x−xi)

2

2σ2 (4.2)

where n is the sample size and σ a global length scale comprising a single hyper-

parameter to adjust. The Gaussian normalisation (
√

2πσ)−d is redundant as it will

cancel out in the calculation of the potential function. Applying the eq. 2.20 the poten-

tial is:

V (x) = E +
σ2

2

∇2Ψ(x)

Ψ(x)
= E − d

2
+

∑n
i=1 (x− xi)

2 e−
(x−xi)

2

2σ2

2σ2Ψ(x)
(4.3)

where d is the dimension of the input space, and E in this context plays the role of an

offset of V (x). If V (x) ≥ 0 is imposed, then E = −minσ2

2
∇2Ψ(x)

Ψ(x) . For the purposes of

cluster allocation with the gradient descent, the offset values of V (x) are irrelevant.

Therefore, QCσ potential corresponds to a weighted average of the function F over Ψ,

and it could be expressed as the expected value of F over Ψ, as follows:

〈Fi〉Ψ ≡
∑

i Fiψi∑
i ψi

(4.4)
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Applying the gradient to 〈F 〉Ψ yields a generic expression useful for simplifying the QCσ

equations:

∇〈Fi〉Ψ =
〈
∇Fi −

Fi
σ2

(x− xi)
〉

Ψ
+
〈
Fi

〉
Ψ

〈(x− xi)

σ2

〉
Ψ

(4.5)

With this notation the V (x) and ∇V (x) are simplified to:

V (x) = E +
σ2

2

∇2Ψ(x)

Ψ(x)
= E − d

2
+
〈(x− xi)

2

2σ2

〉
Ψ

(4.6)

∇V (x) =

〈
(x− xi)

σ2

〉
Ψ

(
1 +

〈
(x− xi)

2

2σ2

〉
Ψ

)
−
〈

(x− xi) (x− xi)
2

2σ4

〉
Ψ

(4.7)

The next step in the QCσ is to apply the gradient descent to allocate the clusters.

Defining yi(0) = xi, the usual gradient descent is:

yi(t+ ∆t) = yi(t)− η(t)∇V (yi(t)) (4.8)

where η(t) is the learning rate.

A variant of SGD is applied with an adaptive momentum term ADAM [115] which makes

it suitable for sparse gradients that commonly occur with sparse data or outliers. In

order to ensure the convergence of SGD, two criteria are imposed:

max(|∆yi|) ≤ εy max(∆V (yi)) ≤ εV (4.9)

where ε is the threshold1. The first stopping criterion ensures that the updating distances

in SGD are smaller than a given threshold, while the second limits the size of potential

differences. The next step is to identify the clusters allocated to particular local minima

of the potential function. This is detailed in Section 4.2.6.

One of the main limitations of QCσ is having a single length scale which sets equal width

for all Gaussian functions irrespective of local density. Length scales ranging from the

1Empirically, a good value for both thresholds is ε ≈ 0.001 if the data have been rescaled to have an
average length of 1.
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smallest to the average pairwise distance between observations will in general detect a

cluster per observation or a single cluster for all of the data. A parametrisation of the

length scale that reflects variations in local density is the average of pairwise distances

between observations ordered by proximity i.e. nearest neighbours, as shown below:

σk% =
1

n

n∑
i

∑
j ∈ knn

dist(xj ,xi) (4.10)

In order to compare different QC methodologies an artificial data set #1 is introduced,

which is further detailed in Section 4.3.1. It consists of four two-dimensional clusters

some of which are strongly anisotropic, as well as a high-density cluster nested within a

low-density one. Each cluster has 100 observations.

Figure 4.1 shows the cluster allocation by SGD from the potential gradient of the QCσ

model with a length scale of σ20% showing the corresponding direction of the gradient

vectors in figure 4.2. The length scale adjusted for the all of the data is too broad to

accurately capture the high density cluster and too narrow for the sparse cluster at the

bottom of the plot which breaks up into multiple local minima. The resulting Jaccard

score against the clusters identified by the generating density functions is 0.556.

Using QCσ model with a length scale of σ20%, figure 4.1 shows the cluster allocation by

SGD from the gradient of the potential, figure 4.2 depicts the direction of the potential

gradient vectors.

The wave function, and consequently the potential, are too smooth to fit the local density

changes, thus providing a biased clustering. This example is a straightforward example

of the difficulties of QCσ to classify data whose density is locally variable.
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The improvements in clustering shown in figure 4.3 show the potential of adjusting the

local variance around data points. This approach has been explored in the literature [21,

72, 81]. However, there remains a need to find a more principled approach to resolve

the cluster allocation problem for heteroscedastic data. This is addressed in the next

Section.

4.2.2 K-neighbours Quantum Clustering, QCknn

Information about local density can be included in the length scale by defining σ as a

function of the KNNs, where the new hyper-parameter is the quantity of neighbours

to consider. This quantity will be expressed as a percentage of the total sample size:

K = %KNN.

σi ≡
1

K

K∑
j ∈ knn(xi)

dist(xi,xj) (4.11)

Each observation contributes a different Gaussian function to the overall wave function

in eq. 4.12. Multiplying through by 1
n ensures correct normalisation of the integral over

the input space,
∫
R Ψ(x)dx = 1.

Ψ(x) =
1

n

n∑
i=1

ψi (x) =
1

n

n∑
i=1

e
− (x−xi)

2

2σ2
i(√

2πσi
)d (4.12)

where d is the dimensionality of the sample. One may observe that in (2.19) the total

kinetic term is decoupled, T (x) = −σ2

2 ∇2Ψ(x) (σ2 and ∇2 are separated factors because

σ is a constant common factor), now, with a different σi per observation, the Schrödinger

eq. 2.19 has to be updated. The kinetic term of each observation, Ti, can be expressed

as follows:

Ti =
σ2
i

2
∇2ψi =

(
(x− xi)

2

2σ2
i

− d

2

)
ψi (4.13)

Therefore, the new total kinetic term couples the length scale σi and ∇2ψi:
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Ttotal =

n∑
i=1

Ti =

n∑
i=1

σ2
i

2
∇2ψi (4.14)

The new potential and its gradient are similar to eq. 4.6 and eq. 4.7, but with a variable

σi:

V (x) = E +

∑
i
σ2
i
2 ∇2ψi∑
i ψi

= E − d

2
+
〈(x− xi)

2

2σ2
i

〉
Ψ

(4.15)

∇V (x) =

〈
(x− xi)

σ2
i

〉
Ψ

(
1 +

〈
(x− xi)

2

2σ2
i

〉
Ψ

)
−
〈

(x− xi) (x− xi)
2

2σ4
i

〉
Ψ

(4.16)

Using again the artificial data set #1 as an example, the variable length scale produces a

wave function with a very pronounced peak in the high density region causing a ”volcano

effect” in the potential (figure 4.4). The shape of QCknn potential is much more complex

than that obtained by QCσ, as it is now smooth in sparse regions and steep in dense

areas, as required. Figure 4.3 shows the cluster allocation by SGD over this potential

with accurate discrimination of the high density cluster against the surrounding sparse

cluster. The potential also adapts to the local density changes, creating a sharp sink

around the highest density peak; this region will be isolated in the clustering allocation

by gradient descent (SGD), allowing a cluster discrimination by local densities. In

this example, σ20% is an appropriate parameter value, if σ were much smaller it would

produce an overfitted potential, generating too many sub-clusters.

The Jaccard score in QCknn (0.862) is much better than in QCσ (0.556).
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Adjusting the length scale from nearest neighbours is clearly effective for detecting clus-

ters with very different densities and also to accommodate outliers with smooth and flat
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gradients that do not lead to unnecessary fragmentation in low density regions. This

Section has proposed an approach that partially solves the problem of heteroscedasticy

but the amount of neighbours considered in the model is still a hyper-parameter to be

determined. There is a trade-off between too few neighbours resulting in an overfitted

density function with too many clusters, and too large a neighbourhood leading to a

biased density function with too few clusters.

4.2.3 Covariance-based Manifold Quantum Clustering, QCcov

Previous work has proposed Gaussian kernels with non-spherical covariance matrices

estimated from local manifold information [84]. The local covariance matrix, Σi is

computed using the relative distribution of the KNNs around each observation:

Σi =
1

Nk − 1

Nk∑
j ∈ knn

(xj − xi)
T (xj − xi) (4.17)

Now, each observation has a kernel with the form of a multivariate normal distribution,

producing the following wave function:

Ψ(x) =
1

n

n∑
i=1

ψi (x) =
1

n

n∑
i=1

1√
|2πΣi|

e−
1
2

(x−xi)TΣ−1
i (x−xi) (4.18)

This wave function is a more accurate probability density function than those presented

in Sections 4.2.1 and 4.2.2 since each observation captures the distribution of the near-

est neighbours. The density function reproduces faithfully elongated distributions, like

cigar shapes or even spiral shapes, a case study in Section 4.4. But it also has some

disadvantages:

1. The mathematical complexity of the equations for the potential function and cor-

responding gradients is significantly increased.

2. Degenerate covariance matrices i.e. with diagonal element close to zero, may cause

singularities in the covariance inverse.

3. If the covariances are too anisotropic, the positive effect of superposition in the

wave function is considerably reduced. This produces a wave function that is less

smooth and a potential less convex, favouring the creation of an excess number of

local minima if the Gaussian kernels do not overlap one another enough.
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These disadvantages can be mitigated if all the local covariance matrices are restricted

to be diagonal although anisotropic (expressed into their eigenvector basis). Degeneracy

is avoided by setting a minimum threshold value for the diagonal elements, as shown in

Section 4.2.7. This also improves the superposition effect in the wave function, because

all Gaussian kernels have a minimum radius controlled by the local-covariance threshold,

but a larger ellipsoid axis greater when necessary. The local-covariance threshold is

defined by:

σ2
thi

=
σ2
k′nni

d
(4.19)

where d is the dimension of the data and σk′nni the mean distance of the k’ nearest

neighbours of each observation i, namely, the variable length scale used in QCk′nn. The

percentage of neighbours considered, k′, is determined experimentally in Section 4.2.7;

results show that k′ should be the same k used to compute the local covariance matrix,

in order to keep enough interaction between kernels; this means that the best QC model

is a hybrid model between QCknn and QCcov.

The Schrödinger eq. 2.19 must be adapted to the variable length scale σi, as in eq. 4.13

when the kinetic term had coupled σ2
i and ∇2ψi. In this case, σi must be replaced by a

scalar expression of Σi; considering that Σi is diagonal if it is expressed in an eigenvector

basis, it is possible to make the change σ2
i → tr(Σi).

The derivation of ∇2ψi is based on the equations proposed in [116]:

∂ψi
∂x

= −ψi Σ−1
i (x− xi) (4.20)

∂2ψi
∂x ∂xT

= −ψi
(

Σ−1
i (x− xi) (x− xi)

T Σ−1
i − Σ−1

i

)
(4.21)

∇2ψi = tr

(
∂2ψi
∂x ∂xT

)
(4.22)

The potential has the following expression:
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V (x) = E +

∑
i
tr(Σi)

2 ψi tr
(

Σ−1
i (x− xi) (x− xi)

T Σ−1
i − Σ−1

i

)
∑

i ψi
=

= E +
〈 tr(Σi)

2
tr
(

Σ−1
i (x− xi) (x− xi)

T Σ−1
i

)〉
Ψ
−
〈1

2
tr (Σi) tr

(
Σ−1
i

) 〉
Ψ

(4.23)

To obtain the gradient of V, the following expression is needed:

∂ tr
(

Σ−1
i (x− xi) (x− xi)

T Σ−1
i

)
∂x

= 2
(
Σ−1
i

)2
(x− xi) = 2Σ−2

i (x− xi) (4.24)

The gradient of V can be split into two terms, ∇V = ∇V1 −∇V2

∇V1 = ∇
〈 tr(Σi)

2
tr
(

Σ−1
i (x− xi) (x− xi)

T Σ−1
i

)〉
Ψ

=

+
〈
tr(Σi)Σ

−2
i (x− xi)

〉
Ψ

+

−
〈 tr(Σi)

2
tr
(

Σ−1
i (x− xi) (x− xi)

T Σ−1
i

)
Σ−1
i (x− xi)

〉
Ψ

+

+
〈 tr(Σi)

2
tr
(

Σ−1
i (x− xi) (x− xi)

T Σ−1
i

)〉
Ψ

〈
Σ−1
i (x− xi)

〉
Ψ

(4.25)

∇V2 = ∇
〈1

2
tr (Σi) tr

(
Σ−1
i

) 〉
Ψ

=

−
〈 tr(Σi)tr(Σ

−1
i )

2
Σ−1
i (x− xi)

〉
Ψ

+
〈 tr(Σi)tr(Σ

−1
i )

2

〉
Ψ

〈
Σ−1
i (x− xi)

〉
Ψ

(4.26)

The sample local covariance estimate is diagonalized to threshold eigenvalues to a mini-

mum value that is higher than a small regularization term, making further regularization

unnecessary. This imposes a minimum radius in the covariance matrix resulting in QCcov

that are similar in value to QCknn. In contrast, the gradient and equipotential surfaces

of figure 4.6 show contours that better capture anisotropy. However, the QCcov potential

is less smooth than QCknn potential so tends to create more local minima. These local

minima create sub-clusters as seen in figure 4.5, which shows the allocation of seven

clusters. The occurrence of these sub-clusters reduces performance (Jaccard score of

0.805) motivating the next Section.

4.2.4 Probabilistic Quantum Clustering, QCprob
cov

Probabilistic Quantum Clustering QCprobcov modifies the cluster allocation of QCcov. In

particular, the clusters are no longer defined by the groups of points found after the
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SGD. These groups are now used to define component elements (subfunctions) that add

to make the overall wave function.

The starting point for the probabilistic framework QCprobcov is to attribute the joint proba-

bility of observing cluster k in the position x to the sum of Gaussian functions associated

with the observations grouped in the cluster (subfunction) k:

Ψ(x) =
K∑
k=1

∑#k
i∈k ψi (x)

n
=

K∑
k=1

P (k,x) = P (x) (4.27)

where n is the sample size, K the total number of clusters, and #k the number of

observations in cluster k.

Eq. 4.27 could be seen as a generative model using a mixture of Gaussians, one centred

at each observation, with prior probability equal to 1/n (isotropic Gaussian kernel over

the data). The purpose of the QC is to provide a link between the individual Gaussian

functions so that points in the same cluster are linked together. This requires the use of

the Schrödinger equation.

The probability of k can be obtained by marginalizing the joint probability over R:

P (k) =

∫
R
P (k,x)dx =

∫
R

∑#k
i∈k ψi (x)

n
dx =

#k∑
i∈k

∫
R ψi (x) dx

n
=

#k∑
i∈k

1

n
=

#k

n
(4.28)

Once the joint probability is defined, the Bayes’ rule can be applied to obtain the fol-

lowing probabilities:
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P (k|x) =
P (k,x)

P (x)
=

∑#k
i∈k ψi (x)∑K

k=1

∑#k
i∈k ψi (x)

(4.29)

P (x|k) =
P (k,x)

P (k)
=

∑#k
i∈k ψi (x)

#k
n

(4.30)

Now, P (k|x) can be used to define a new probabilistic cluster allocation:

cluster(x) = arg maxk P (k|x) (4.31)

In other words, the cluster allocation in the region x will correspond to the cluster

k such as arg maxk P (k|x), or equivalently arg maxk P (k,x) since P (x) is a common

denominator.

Summing up, there are two cluster allocations in the algorithm work-flow:

The first one is when the gradient descent is performed over the potential to allocate each

observation of the training set into its corresponding potential well (identified as cluster).

This gives the grouped Gaussians per cluster K; according eq. 4.28, the probabilistic

framework can be derived: P (k,x) = 1
n

∑#k
i∈k ψi (x)

The second cluster allocation, called probabilistic cluster allocation, is based on the

probabilistic framework, and it only decides to which cluster each observation belongs

based on the P (k|x), selecting k so that makes P (k|x) maximum. The probabilistic

cluster allocation can allocate any observation of the input space.

As a consequence of this, it is possible that the model generates k clusters but not all of

them contain observations. In other words, there would exist k′ empty (small) clusters

if P (k′|x) never wins in any region of the input space, x.

This is a significant improvement on the original method for cluster allocation because

any region of input space can be allocated to a cluster without the need to apply SGD

over the potential. The probabilistic cluster allocation draws a probability map based

on P (k|x) to define the boundaries between clusters. However the probability map

still requires one cluster allocation by SGD (Section 4.2.6 describes the procedure using

a community detection after SGD). But for new observations no additional SGD is

required.
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Experimental results show a difference lower than 2% in the cluster allocation when

comparing QCknn with its probabilistic counterpart. Differences are greater in the case

of QCcov, with the probabilistic cluster allocation closer to the true labels than the SGD

approach, with a Jaccard score of 0.882. The probabilistic approach improves the result

by selecting only four of the seven clusters detected in figure 4.5. This is the model that

provides the highest Jaccard score (JS) for data set #1 of all the tests carried out.

Another interesting characteristic of the probabilistic approach is the capability to im-

plement outlier detection where the probability of belonging to any cluster is lower than

a given threshold. For instance, setting 5% as the outlier threshold:

If in a region x ∈ X, P (x|k) < 5%∀ k ∈ K, =⇒ x is an outlier.

Therefore, P (x|k) and P (k|x) map the probability functions of belonging to each cluster

and the regions formed by outliers.

Figures 4.8 and 4.9 depict the probability maps using the five clusters detected in the

QCknn solution (figure 4.7) with a JS=0.850; in the probability map of cluster member-

ship, P (K|X), there is a small cluster (brown colour) that is covered by other clusters

with higher probabilities, therefore it is an empty cluster. Figure 4.9 is a top-down pro-

jection of the probability map that shows how the cluster membership is defined without

using SGD.

Figure 4.10 shows the maximum probability P (X|K) that the model can assign to each

region, allowing a tool for outlier detection, maxK P (X|K).

Something similar happens with the solutions of QCprobcov , where the algorithm detects

seven clusters, but the probabilistic allocation makes a reduction to four clusters.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

X1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X
2

QCprob
knn 20%

 solution. Jaccard score: 0.850

1
2
3
4

Fig. 4.7 – Solution for QCprobknn 20%

P(K|X) in QC prob
knn 20%

2

1

X2

0

0

-1-1.5 -1 -0.5

X1

0 0.5 1 1.5 -22 2.5 3

0.5

P
(K

|X
)

1

1

2

3

4

5

Fig. 4.8 – P (K|X) of QCprobknn 20%



4.2. Methodology 88

Fig. 4.9 – Projection of P (K|X)
Fig. 4.10 – QC heat map based on

maxK P (X|K)

4.2.5 Performance assessment

4.2.5.1 Average Negative Log-Likelihood, ANLL

This section deals with a major contribution of the chapter, namely, an unsupervised

method to select the remaining free hyper-parameter: %KNN. To recall, each observa-

tion is allocated to the cluster k with the highest P (k|x), cluster kw. As a result the

observation i is allocated with a probability P (kw|xi).

The quantity P (kw|xi) competes against the probabilities associated with the other

clusters in xi. Rewriting eq. 4.29 in terms of probability marginalization:

P (kw|x) =
P (kw,x)

P (x)
=

P (kw,x)∑
k P (k,x)

(4.32)

Regions close to the cluster boundaries have low values of P (kw,x), because there are at

least two clusters with similar probabilities. Therefore, the best models have the highest

value of P (kw|x) for a high number of observations. This corresponds to the likelihood

of cluster membership, given by:

LL(K|X) = log

(
n∏
i

P (kw|xi)
)

=

n∑
i

log (P (kw|xi)) (4.33)

To normalize the score in the range [0, 1], the average negative log-likelihood (ANLL)

may be used:
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ANLL(K|X) =
−∑n

i log (P (kw|xi))
N

(4.34)

The lower the ANLL, the better the model fit. Its value clearly depends on the length

scale parameter, %KNN, because the length scale controls the number of clusters and

the smoothness of the wave function. A representation of ANLL against %KNN will,

in general, have some regions where the ANLL score is minimized, so that P (kw|x) is

maximized, obviously avoiding the trivial solution of a single cluster covering all of the

data, which takes the lowest possible value (ANLL = 0). The ANLL surface has minima

due to trivial solutions that corresponds to those length scales equal or greater than a

threshold that produces a single cluster model, reflecting the gross structure of the data

rather than the component clusters. However, these are easily recognised and can be

discarded.

The ANLL provides an unsupervised figure of merit which was empirically found to

be highly correlated with the supervised JS. Therefore, it can be used as a measure of

the clustering performance without the need for prior information about the number

of clusters or their composition. Figure 4.11 shows ANLL and JS for different length

scales in QCprobcov , to illustrate their correlation. In addition, the ANLL vs %KNN plot

reveals the hierarchical structure of the data, where an abrupt change in ANLL means a

significant change in the data structure, such as a variation in the most relevant clusters.

The bottom plot of figure 4.11 shows how the number of clusters depends on the length

scale, although the QCprobcov considerably cushions the fluctuation compared with the

original QC.

For the artificial data set #1 and QCprobcov , the Pearson’s linear correlation coefficient

between Jaccard score and ANLL is ρ = −0.776, p-value < 0.001.

4.2.5.2 Extended ANLL score

The extended ANLL score improves ANLL by taking account of the threshold parameter

Eth that controls the hierarchical solutions defined in each %KNN by setting a thresh-

old to merge two clusters if the maximum potential difference between their centroids

along the shortest path is less than Eth. A more detailed explanation is presented in

Section 4.2.6.
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Fig. 4.11 – QCprobcov ANLL, JS and #K respect to %KNN variation in dataset #1

By default, the ANLL score uses a fixed Eth that depends on the SGD convergence

criteria in the last iteration:

Eth = max
(
εV ,max

(
∆V (xitermax)

))
(4.35)

This Eth corresponds with the lowest possible bound, so that any accidental cluster

merging is avoided.

Figure 4.12 shows an enhanced representation of ANLL, including its relationship with

Eth. To avoid confusion with non-trivial solutions, scores associated with a trivial solu-

tion are assigned the highest ANLL score.

The interpretation of the ANLL plots is partly subjective, as the plots give an indication

of the clustering structure in the data which may be multi-level when the data are

hierarchical. The algorithm 1 describes the steps must be taken to identify interesting

PQC solutions, including those that correspond with hierarchical solutions.
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Algorithm 1 Procedure of PQC hyper-parameters selection from ANLL plot

1: Inputs: collection of PQC models fitted to X and characterized by their hyper-
parameters %knn and Eth

2: ANLL← function (%knn,Eth) . Goodness of fit score for each model
3: Plot ANLL as a function of %knn and Eth

4: procedure LocalMinimaKnn(ANLL,%knn,Eth)
5: E′th ← min(Eth)
6: ∆E′th ← Small Eth variation
7: Parameters1 ← Empty list
8: for %knn′ ← min(%knn),max(%knn) do
9: if ANLL (%knn′, E′th) is local minima then

10: if ANLL (%knn′, E′th + ∆E′th) ≈ ANLL (%knn′, E′th) then
11: Model with (%knn′, E′th) is an interesting solution
12: Parameters1 ← Append (%knn′, E′th)
13: end if
14: end if
15: end for
16: return Parameters1

17: end procedure

18: procedure LocalMinimaEth(ANLL,%knn,Eth)
19: ∆E′th ← Small Eth variation
20: Parameters2 ← Empty list
21: for %knn′ ← min(%knn),max(%knn) do
22: for E′th ← min(Eth),max(Eth) do
23: ∆E′th ← Small E′th variation
24: ∆%knn′ ← Small %knn′ variation
25: if ANLL (%knn′ ±∆%knn′, E′th ±∆E′th) is ≈ absolute minimum then
26: Model with (%knn′, E′th) is an interesting hierarchical solution
27: Parameters2 ← Append (%knn′, E′th)
28: end if
29: end for
30: end for
31: return Parameters2

32: end procedure

33: SelectedParameters← Parameters1 + Parameters2 . Interesting solutions to
check
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Figure 4.12 shows extended ANLL score versus Eth and %KNN. For low Eth values,

being Eth = 0.001 the default value, the figure 4.12 presents the same pattern of ANLL

observed in figure 4.11. This pattern is kept up to some Eth, at which point the clusters

start to merge. In the range of values where the pattern is constant the proper %KNN

for the QC model can be identified. Then, looking for stable regions of low ANLL values

for high Eth, where hierarchical solutions could also be good solutions, these would have

fewer clusters; this phenomenon does not appear in artificial data set #1, but it will be

shown for data set #2 in Section 4.4.

The ANLL scores always diminish when Eth increases, because it is an implicit reduction

of the number of clusters. That explains why the ANLL score is less reliable when there

are few clusters, because the trivial solution, with a unique cluster, always leads to

ANLL equal to zero. To avoid confusion with non-trivial solutions, scores associated

with a trivial solution are assigned with the highest ANLL score (we call this ANLL

modification as ANLLmod).

Fig. 4.12 – QCprobcov ANLLmod respect to %KNN and Eth variation in dataset #1

4.2.6 Improved Cluster Allocation

Once the gradient descent converges, the observations are allocated to particular po-

tential wells. The first step is to identify the groups of closer observations that lie in a

potential well as a cluster. One of the most robust methods is to apply a community

detection algorithm, such as Modularity Maximization [117], since the observations are

densely located in each potential well the algorithm will identify the communities easily.
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To apply the community detection algorithm, the data is transformed into a network

using pairwise distances, where the Euclidean distances include the potential values as

an extra feature of the data. The adjacency matrix is based on a similarity matrix with

Gaussian radial kernel of the mentioned distances.

In order to implement a community detection, an auxiliary data formed by scaling the

original data is created, in addition to the potential values scaled as if they were an

extra dimension:

Xd+1
aux =

[
xi
λx
,
V (xi)

λV

]
= Y (4.36)

where each scaling factor has the purpose to make similar the magnitudes of both terms:

λx =

∑n
i=1 |xi|
n

λV =

√∑n
i=1 V (xi)2

n
(4.37)

With the new data Y of dimensionality d+1, each observation contains the information

of its space position and its potential equally weighted. To build the adjacency matrix

of the network, a pairwise distance is computed to build a similarity matrix using a

Gaussian radial kernel:

Ai,j = exp

(
−dist (yi,yj)

2

σ2
G

)
(4.38)

where σ2
G is a network locality parameter, empirically adjusted to σG = 0.1 in order

to be large enough to capture all the clusters around the space of 0.1 radius. The

Modularity Maximization community detection algorithm was implemented by means

of the Community Detection Matlab Toolbox by Athanasios Kehagias2.

Once the communities have been detected, each community being a cluster, the centroids

of each cluster are computed by simply averaging their positions.

Now, with the list of clusters and centroids, the goal is to evaluate which is the minimum

difference of potential required to cross from centroid-i to centroid-j. Let us call ”energy”

the minimum difference of potential. The purpose of this step is to merge some nearby

2https://es.mathworks.com/matlabcentral/fileexchange/45867-community-detection-toolbox
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sub-clusters that actually belong to the same cluster but were split by the community

detection algorithm.

The network is extended with the list of centroids creating a fully connected network,

where each node represents an observation or a centroid, and each edge represents the

distance between the nodes based on the potential values, V (x).

Using the Dijkstra algorithm [55] to find the shortest-path in the network, a pairwise

measure of the potential differences between centroids (nodes) can be built. For instance,

in order to go from the i-th node to the j-node, the shortest path found will require at

least an ”energy” in terms of the potential units, as:

∆V (path)
∣∣∣nodej

nodei
= max (Vpath)− V (nodei) (4.39)

It should be remarked that the opposite, going from the j-th node to the i-th node may

have a different ∆V .

With this information,a pairwise network between nodes with the minimum energy to

go from one to another node is built. The next step is to establish a threshold energy

to merge any cluster with very similar potential. This procedure is performed to avoid

certain situations where several potential wells are connected, for instance by a valley,

and hence they have ∆V ≈ 0 but not strictly 0. Therefore, one could consider as the

same cluster any pair of potential wells that satisfy:

If ∆V
∣∣nodei
nodej

≤ Eth =⇒ merge (clusterj , clusteri) (4.40)

The Eth parameter controls the minimum potential difference allowed between two po-

tential wells along their shortest path, ∆V
∣∣nodei
nodej

; they are considered as different clusters

if ∆V
∣∣nodei
nodej

> Eth.

On the other hand, if Eth is progressively increased, more clusters will be merged, up

to some point where all the clusters are merged. Thus, this parameter allows control of

the hierarchical structure of the clusters for a specific QC solution defined by %KNN,

in other words, keeping the same wave function and same potential shape, the clusters

can be hierarchically merged as a function of potential well differences.

Is there a Eth lower bound? Yes, it is related to the SGD convergence criteria, that

was max
(
εV ,max

(
∆V (xitermax)

))
, where εV was set to 0.001 in normalized data, and
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max
(
∆V (xitermax)

)
is the maximum ∆V reached in the SGD if it has been stopped by

number of iterations instead of by reaching the convergence criteria, εV . Then:

min
(

∆V
∣∣nodei
nodej

)
≥ max

(
εV ,max

(
∆V (xitermax)

))
(4.41)

On the other hand, is there a Eth upper bound? The theoretical answer is no, but if the

data is normalized it is very unlikely to obtain potential differences greater than 100 in

energy units. Most of the time, all the clusters are merged when Eth ≈ 10.

Knowing the upper and lower bounds, 10−3 ≤ Eth < 102, the ANLL score can be

mapped with respect to the Eth in addition to the %KNN variable, viewing a whole

picture of all the QC solutions. In terms of computational time, checking the solutions

of different Eth is not expensive compared to computing different %KNN. By way of

example, figure 4.12 shows the ANLL score respect to the Eth and %KNN.

Analysing the ANLL behaviour with respect to Eth, one may observe that ANLL always

decreases as Eth increases because more clusters are merged. When Eth is high enough

to merge all clusters, the ANLL score is equal to zero. To avoid confusions between the

low ANLL values (good solutions) and the trivial solutions (a single cluster), the ANLL

values of the trivial solutions have been masked with an arbitrary offset greater than

zero, for instance, with the maximum ANLL value in the plot. Doing that the low values

corresponding to interesting solutions from the trivial solutions are easily identified, as

one may observe in figure 4.12.

To interpret the ANLL plots and extract solutions of interest, the instructions detailed in

Section4.2.5.2 must be followed. In the case of finding a stable region with high Eth and

a specific %KNN, the distribution of potential differences between potential wells can

be checked; let say ∆E ≡ ∆V (path)
∣∣∣nodei
nodej

∀ i, j. The histogram of ∆E can highlight

a hierarchical structure if there is a multi-modal distribution with regions completely

separated. Also, if the Eth needed to merge each cluster is represented the big energy

jumps can be observed, where two clusters with different structures are merged.

To illustrate that case, the ∆E is compared between the data sets #1 and #2 in fig-

ure 4.13. Left figures show the Eth associated with each solution for a specific number of

clusters. Right figures show the histogram of the pairwise differences between potential

wells (∆E) for a specific solution, %KNN = 10%. Top figures correspond with the arti-

ficial data set #1 and bottom figures to the artificial data set #2 (spirals). The data set

#1 (top-left plot) shows how the Eth needed to merge clusters increases progressively

without big jumps, and in the histogram (top right) there is not a clear multi-modal
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distribution completely separated, this is an indication that there is not an underly-

ing hierarchical structure, and no solution should be considered with higher Eth in the

ANLL plot (figure 4.12). In the spiral case, there is a clear behaviour of the existence of

an underlying structure. The bottom-left plot shows a big jump in the Eth to merge the

last two clusters into only one cluster. The ∆E distribution (bottom right) clearly shows

two separated groups of modes, the left group corresponds with ∆E between intra-spiral

clusters, and the right group corresponds with ∆E between inter-spiral clusters. In this

case, solutions with high Eth should be considered in the ANLL plot (figure 4.22).

Fig. 4.13 – QC Eth distribution between cluster centroids for data #1 and #2

4.2.7 Selection of local-covariance threshold

The most appropriate local-covariance threshold for the QCprobcov model is obtained by

mapping ANLL (Section 4.2.5), JS and the number of clusters found (K), as a function

of the %KNN and the threshold ratio r. Finally, the neighbours considered in local-

covariance threshold are given by:

%K’NN = r (%KNN)

The tests were carried out for the artificial data set #1. The ANLL map is presented

in figure 4.14, from which the following conclusions can be drawn:
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• The valley of lowest (best) ANLL values lie around 20%KNN. However, the most

clear valley corresponds with values that range from 0.5 to 1.0; lower ratios lead

to a noisy response of ANLL.

• If %KNN > 40%, only three clusters are found, and it corresponds, in turn, with a

too biased model, which remains practically invariant to the value of the threshold

ratio.

• The best ANLL values are for ratios from 0.9 to 1.0.

Figure 4.15 shows the JS map, and also provides useful information:

• JS is less affected by the threshold ratio than ANLL. It is, though, more sensitive

to the %KNN.

• The best solutions are located around 20%KNN, as in the case of ANLL.

• There is a common drop in performance when the ratio decreases; the best values

for the highest ratios are r ∈ [0.9, 1]

Figure 4.16 shows the number-of-clusters map. The main conclusions are, as follows:

• Both variables, %KNN and threshold ratio are inversely correlated with the num-

ber of clusters. This effect was already mentioned in Section 4.2.3; low values of

%KNN or %K’NN involve a reduced interaction of each kernel, thus creating an

excess of local minima and sub-clusters. The interesting point is to observe that

the threshold ratio has a similar influence to %KNN for creating sub-clusters.

• As the best solutions are for high values of the threshold ratio, one can conclude

that an excess of sub-clusters decrease the performance.

In summary, in order to obtain the most simple solution, avoiding spurious sub-clusters,

the best threshold ratio is r ∈ [0.9, 1.0]; for the sake of simplicity, r = 1.0 is probably

the most sensible choice. That means %K’NN = %KNN.

4.3 Data description

Two challenging artificial data sets and three real-world data sets were employed to

test the theoretical hypotheses and evaluate the clustering performance for the methods

reviewed in this chapter.
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Fig. 4.14 – QCprobcov ANLL vs %KNN and Eth for dataset #1

Fig. 4.15 – QCprobcov JS vs %KNN and Eth for dataset #1

4.3.1 Data set #1 (artificial): Local densities

This data set has two main characteristics which challenge clustering algorithms: first,

there are two clusters with cigar shapes; second, there are two clusters partially over-

lapped but with different local densities. The original QC was able to detect anisotropic

clusters, but it is less able to discriminate clusters with different local densities. The

data set is two-dimensional to aid visualization and comprises four clusters with 100

observations each.
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Fig. 4.16 – QCprobcov cluster number vs %KNN and Eth for dataset #1

4.3.2 Data set #2 (artificial): Two spirals

This is a spiral data set with standard deviation in the first spiral of 0.1 and 0.025 in the

second spiral. The data set is also two-dimensional. Each cluster has 200 observations,

400 in total.

4.3.3 Data set #3 (real): Crabs

This well-known data set was used in the original QC paper, [118]. The Crabs’ data set

describes five morphological measurements on 50 crabs of each of two colour forms and

both sexes, of the species Leptograpsus variegatus collected at Fremantle, W. Australia.

In total there are 200 observations and four different labels, two for gender and two for

each species. To compare the results with the original paper, PCA has been applied,

selecting only the two first principal components (PCs) shown in figure 4.17.

4.3.4 Data set #4 (real): Olive oil

The Italian olive oil data set [119] consists of 572 observations and 10 variables (fig-

ure 4.18). Eight variables describe the percentage composition of fatty acids found in

the lipid fraction of these oils, which is used to determine their authenticity. The re-

maining two variables contain information about the classes, which are of two kinds:

three “super-classes” at country level: North, South, and the island of Sardinia; and

nine collection area classes: three from the Northern region (Umbria, East and West
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Liguria), four from the South (North and South Apulia, Calabria, and Sicily), and two

from the island of Sardinia (inland and coastal Sardinia). This data set is characterised

by a hierarchical structure with three large regions or nine sub-areas, which makes it

especially appealing for testing clustering algorithms.
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Fig. 4.18 – Olive oil data set

4.4 Results

This section evaluates the extent to which the ANLL score can determine the most

suitable %KNN to maximize the JS, highlighting the peculiarities of each data set and

comparing the results of both models, QCprobknn and QCprobcov . As ANLL is biased, favouring
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fewer clusters, when several local minima appear in ANLL, the ones associated with lower

%KNN values should have priority over the ones with higher %KNN values, because

ANLL tends to be smaller as the number of clusters decreases.

The results tables list the following information:

• Column 1: data set number and identifies the QC model.

• Column 2: score employed to select the quantile (%KNN), firstly the supervised

choice according to the best Jaccard score, then the unsupervised option based on

the local minima found in ANLL, starting from the lowest %KNN values in case

there were more than a local minimum, and finally checking if the extended ANLL

has an stable region increasing the Eth parameter.

• Column 3: the Eth parameter, by default is used Eth = 0.001, but then the

extended ANLL plot is analysed to find stable ANLL regions with solutions of

higher hierarchical order.

• Column 4: length scale parameter in quantiles (%KNN)

• Column 5: number of clusters (#K)

• Column 6: ANLL score

• Column 7: Jaccard score - for the Olive oil data there are two possible classifica-

tions, with 3 regions or 9 subregions of Italy.

• Column 8: Cramerś V score - for the Olive oil data there are two possible classifi-

cations, as above.

• Column 9: Pearson’s linear correlation coefficient between ANLL score with Eth =

0.001 and the Jaccard score.

• Column 10: The p-values of correlation coefficient for testing the hypothesis of no

correlation against the alternative that there is a non-zero correlation.

4.4.1 Data set #1: Local densities

Table 4.1 shows that both models, QCprobknn and QCprobcov , perform similarly for this data

set. QCprobknn has the correct number of clusters, four, with a JS = 0.85, however QCprobcov

with five clusters has a slightly better value, JS = 0.88. In both cases, the ANLL

corresponds with the Jaccard score. On the other hand, there is not a stable region of

low ANLL with high Eth values, therefore no hierarchical solution was considered.
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4.4.2 Data set #2: Two spirals

The results achieved for this data set are of particular interest. The spirals are not

mixed although they are broken-up into sub-clusters due to the value of Eth, being too

small (a further discussion is provided in the Section 4.2.6).

Figure 4.19 shows ANLL, Jaccard score, Cv and number of clusters obtained by QCprobknn

for data set #2. ANLL splits the graph into two regions separated by a value of KNN

equal to 22.5%; at the left side, the spirals are not mixed but broken up; while at the

right side the spirals are mixed but there are only two clusters. Obviously, an external

supervision would prefer not-mixed spirals. Actually, JS is quite low because it is not

a good metric for this data set as it does not attribute any importance to the fact that

the spirals are not mixed, it only measures similarity with the true labels. To address

this issue, the Cramer’s V-index (Cv) was used, which is a normalized version of the

standard chi-square test for contingency tables; Cv measures the concordance between

different cluster allocations for a given number of clusters, detecting when the spirals

are mixed if Cv < 1.
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Cv shows that the spirals are not mixed until 25% KNN for QCprobcov , however the spi-

rals are fragmented into sub-clusters. Length scales greater than 25% KNN make the

potential too smooth and the potential wells mix the spirals.

If guided only by the ANLL score in figure 4.19, two local minima would be selected,

the first at 7.5%KNN and the second at 35%KNN , keeping Eth with the default value

(0.001). Both solutions are illustrated in figures 4.20 and 4.21. The QCprobcov solution of

the left figure 4.20 produces spirals that are not mixed but each one is fragmented in

sub-clusters. The QCprobcov solution of the right figure 4.21 has a the length scale too big

to preserve the spirals not mixed, producing the right number of clusters, two, but the

spirals are mixed. These cases show the need of the extended ANLL plots.
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In order to find the best solution (JS = 1), where the spirals are neither mixed nor

fragmented, the value of Eth should be increased until reaching the region of low ANLL

values, as shown in figure 4.22. For this case, the extended ANLL score shows a stability

region for high Eth values. This region offers a solution based on low length scales where

the sub-clusters are merged hierarchically to form the two spirals without being mixed.

The ANLLmod plot indicates three regions of interest: local minima with small length

scale (blue arrow), local minima with higher length making a too smooth potential

(green arrow), and the stable region of high Eth offering the most interesting solution

(red arrow). The best solution depicted in figure 4.23, is achieved in regions with low

values of %KNN (< 0.20) and higher Eth (∈ [10−1, 100]).

Although ANLL is not highly correlated with JS along the Eth axis direction, a stable

region of low ANLL with high Eth implies an underlying hierarchical structure that

produces a good JS. This effect generalizes well when the underlying structure is very

distinct, as in the case of two spirals separated by high potential walls in the potential

space. Additionally, it is relevant to analyse the distribution of ∆E for detecting separate

distributions. - see figure 4.13 at the end of Section 4.2.6 for further details.
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Fig. 4.22 – ANLL solutions for QC spirals data

Based on the parameters identified by the extended ANLL plot in the stable region in

figure 4.22, it is apparent that the perfect solution for the spiral case is obtained by

increasing the Eth with low %KNN. Since the JS is not ideally suited for this data set,

the expected inverse correlation with ANLL is not present for both, QCprobcov and QCprobknn ,

in Table 4.2.

Table 4.2 shows the results obtained with both models. The stability region varies

depending on the QC model, but can be inspected visually using the ANLL plot.
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4.4. Results 106

T
a
b
l
e
4
.2

–
R

es
u

lt
s

ta
b

le
o
f

d
a
ta

se
t

#
2
:

T
w

o
sp

ir
a
ls

D
at

a
#

2
S

p
ir

al
s

S
co

re
E
th

%
K

N
N

#
K

A
N

L
L

J
S

C
v

ρ
E
th

p
-v

a
l

Q
C
p
r
o
b

k
n
n

B
es

t
J
S

0.
00

1
47

.5
1

0.
51

0
0.

50
-

0
.6

0
0
.0

0
5

B
es

t
A

N
L

L
1

0.
00

1
7.

5
14

0.
23

7
0.

16
1
.0

0
-

-

B
es

t
A

N
L

L
2

0.
00

1
35

.0
2

0.
22

9
0.

33
0
.0

6
-

-

A
N

L
L

st
ab

le
at

h
ig

h
E

th
[0
.2
,0
.8

]
[2
.5
,1

0]
2

6.
8E

-5
1
.0

0
1
.0

0
-

-

Q
C
p
r
o
b

co
v

B
es

t
J
S

0.
00

1
22

.5
6

0.
35

4
0.

36
0
.9

9
0
.1

9
0
.4

1
2

B
es

t
A

N
L

L
1

0.
00

1
7.

5
13

0.
22

3
0.

17
1
.0

0
-

-

B
es

t
A

N
L

L
2

0.
00

1
35

.0
2

0.
19

0
0.

33
0
.0

6
-

-

A
N

L
L

st
ab

le
at

h
ig

h
E

th
[0
.5
,1
.5

]
[2
.5
,2

0]
2

1.
0E

-5
1
.0

0
1
.0

0
-

-

T
a
b
l
e
4
.3

–
R

es
u

lt
s

ta
b

le
o
f

d
a
ta

se
t

#
3
:

C
ra

b
s

D
at

a
#

3
C

ra
b

s
S

co
re

E
th

%
K

N
N

#
K

A
N

L
L

J
S

C
v

ρ
E
th

p
-v

a
l

Q
C
p
r
o
b

k
n
n

B
es

t
J
S

0.
00

1
17

.5
4

0.
11

0
0.

74
0
.9

0
-0

.8
3

5
.7

E
-6

B
es

t
A

N
L

L
0.

00
1

17
.5

4
0.

11
0

0.
74

0
.9

0
-

-

A
N

L
L

st
ab

le
at

h
ig

h
E

th
N

o
-

-
-

-
-

-
-

Q
C
p
r
o
b

co
v

B
es

t
J
S

0.
00

1
15

.0
4

0.
12

6
0.

70
0
.8

9
-0

.8
8

2
.8

E
-7

B
es

t
A

N
L

L
0.

00
1

15
.0

4
0.

12
6

0.
70

0
.8

9

A
N

L
L

st
ab

le
at

h
ig

h
E

th
N

o
-

-
-

-
-

-
-



4.4. Results 107

4.4.3 Data set #3: Crabs

For the Crabs’ data set, ANLL also obtains the appropriate %KNN corresponding with

the best JS. Table 4.3 shows that QCprobknn leads to Js = 0.70 and QCprobcov to Js = 0.74,

respectively. In relation to the extended ANLL score there are no stable hierarchical

solutions.

4.4.4 Data set #4: Olive oil

The olive oil data set is especially challenging due to its double structure and the fact

that some clusters are partially overlapped. Table4.4 shows the main results for both

classifications. JS in bold refer to the value that should be compared to the corresponding

ANNL, depending on whether the model is a solution of the 3-class or 9-class problem.
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For the QCprobknn , the first ANLL local minimum is closer to the real 9 regions classification

but ANLL does not identify the best length scale available: 7.5%KNN (JS 0.55) instead

of 2.5%KNN (JS 0.73). The second ANLL local minimum obtains a similar JS to

the best JS possible, although the length scale is quite different: 22.5%KNN instead of

12.5%KNN. Despite not matching exactly with the highest JS, the information provided

by the two minima is of paramount relevance, as they point out the two underlying

structures, namely, three and nine clusters. The ANLL-JS correlation is quite poor,

partly due to ANLL reflecting two behaviours but it is compared with two different JS

curves.

However for this dataset, the QCprobcov clearly outperforms QCprobknn , ANLL finds solutions

with JS practically as good as the best JS ones, the ANLL-JS correlation is better, and

the cluster number is close to the real ones (#K: 4 and 9).

A further detailed explanation can be obtained observing figure 4.24: The algorithm

starts with many sub-clusters with the first KNN; it is important to take into account

that dealing with more than 100 clusters is computationally very expensive during the

cluster allocation because it has to check 100·99 = 9900 possible paths between potential

wells (centroids). Then, the number of clusters decreases drastically until obtaining nine

clusters in 15% KNN, and it is here where the first local minimum appears in ANLL,

matching with the highest Jaccard score for the structure of nine areas. Then, a subtle

local minimum appears at 45% KNN, very close to the highest Jaccard score for the

structure of three regions of Italy. Lastly, there is another ANLL minimum at 50%

KNN; it is not a real solution but an effect of dealing with very few clusters. The best

Jaccard for three regions is JS = 0.73, and for nine areas is JS = 0.79.

In relation to the extended ANLL score, figure 4.25 shows the analysis of the variation of

Eth for merging clusters. ANLL is represented versus the logarithm of Eth and %KNN.

There is not any stable region with high Eth and low ANLL values and therefore no

stable hierarchical solutions. The red arrow points out the 9 regions structure and the

green one points out the 3 regions classification.

4.5 Conclusion

This chapter presents a novel framework for detecting the underlying structure in data,

within the paradigm of Quantum Clustering (QC). In particular, a merit function to

measure goodness of fit is presented in the form of the Average Negative Log-Likelihood

(ANLL). This utilises a Bayesian framework to enable optimisation of a control param-

eter for the estimation of local length scales using set percentages of nearest neighbours.
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Fig. 4.24 – QCprobcov ANLL, JS, Cv and cluster number for the olive oil data

Local minima of the ANLL are shown empirically to be correlated with the highest val-

ues of the Jaccard Score (JS) measured against cluster labels derived from generating

density functions, in the case of synthetic data, or known a priori for real-world data

set. Therefore ANLL is a useful objective performance index for unsupervised learning.

Furthermore, the ANLL provides useful guidance and insight into QC solutions to detect

hierarchical structures in the data.

Two new models for Probabilistic Quantum Clustering (PQC) with different levels of

computational complexity are proposed. Attending to its simplicity and versatility

QCprobknn may outperform QCprobcov in general. However, QCprobcov performs better with more

challenging data.

The main limitation of QCprobcov stems from its less smooth potential functions as local-

covariance kernels have less superposition effect than spherical kernels. As a consequence
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Fig. 4.25 – QCprobcov extended ANLL for Olive oil data

of this:

• QCprobcov needs more iterations in the SGD to achieve the same convergence than

QCprobknn , mainly because the potential shape is less convex and the SGD is less

effective.

• QCprobcov tends to create more sub-clusters due to the presence of more local minima.

This is not an inconvenience in itself because these sub-clusters can fit better the

data and then can be later merged in the cluster allocation process. However,

if too many sub-clusters appear, the computation time needed to check all the

possible paths between all the centroids may be excessive.

The underlying probabilistic framework for QC enables outlier detection as well as the

delineation of Bayesian optimal cluster boundaries. QC methods are well-known to have

poor performance for high-dimensional data. The proposed framework shares these in-

herent limitations the root of which lies in the ultra-metric nature of Euclidean dis-

tances in high dimensions as well sparsity which causes difficulties for local covariance

estimation. This remains an area of further work. Also the algorithm runtime could be

improved implementing some parallel computing tool, like GPGPU-based.

In the next chapter, the PQC will be used to cluster the embedded Fisher manifold

obtained from a music dataset based on spectral features, where the manifold presents

local density variations.



Chapter 5

Conditional Independence Maps

This chapter focuses on data structure learning algorithms that find relationships be-

tween features. This chapter has two parts, the first part focuses on developing a sys-

tematic methodology for building associative maps based on conditional independencies

between features, and from these conditional independence maps (CI-maps) Bayesian

networks can be derived. The second part of the chapter exploits these CI-maps for

extracting a hierarchical order of variable associations with respect to a target variable.

The method is based on bootstrapping several maps in order to identify the most rep-

resentative CI-map based on bootstrapped data. The CI-map methodology is validated

with benchmark datasets, and then applied to a brain tumour data, where the CI-map

displays the association of brain tumour types with different metabolites observed with

magnetic resonance spectroscopy (MRS).

The schema of the chapter is as follows: this introduction 5.1 makes a brief overview,

the chapter continues with the background section 5.2, where there is a more detailed

description of the main parameters and policies used in the PC-algorithm. Section 5.3

introduces the benchmark data where the true structure is known, and therefore is

used for evaluating the parameters, and also introduces the brain tumours data where

the procedure is applied. Then the methodology section 5.4 presents the procedures

for assessing these parameters with benchmark data, and then in Subsection 5.4.3 the

methodology for selecting the CI-map most representative of the bootstrapped data is

described, giving a robust representation of the variables more often associated with a

target variable. After this, the results section 5.5 and discussion 5.6 for both parts are

presented. The chapter is then completed with final conclusions 5.7.

112
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5.1 Introduction

The starting point of the methodology developed in this chapter is the PC algorithm.

In the field of structure finding, the PC algorithm is a well-known constraint-based

algorithm used to build a Directed Acyclic Graph (DAG) from Conditional Independence

maps where a major challenge is to minimize errors in the graph structure. This part of

the chapter presents empirical evidence for best practice: to reduce false positive errors

via the False Discovery Rate (FDR), and to identify appropriate parameter settings

to improve the False Negative Reduction (FNR). In addition, several node ordering

policies are investigated that transform the skeleton graph into a DAG (edges orienting

rules), the results show that ordering nodes by strength of mutual information recovers a

representative DAG in reasonable time, although a more accurate graph can be recovered

using a random order of samples at the expense of increased computation time.

The CI-map methodology will then be used on the brain tumour data. The relevance

of this dataset for CI-maps is the high association of specific metabolites with certain

types of brain tumours, in such a way that the dominant associations using the proposed

structure learning algorithm can be identified and visualized to aid interpretation. The

CI-map recovered will differ depending on the type of brain tumour selected. Addition-

ally, this study presents a good opportunity to apply bootstrapping methods to discover

a robust set of metabolites that are the most predominant by tumour type.

The chapter is divided into two blocks, the first one tries to assess the parameters and

policies in the PC-algorithm to build feasible CI-maps and BNs, using benchmark data

where the true structure is known. The second block implements these procedures to

brain tumour data.

The first part of this work continues the research developed in [87], where the aim is to

present empirical evidence for best practice in setting three parameters optimizing: the

policies of False Discovery Rate and False Negative Reduction, and the effect of node

ordering when the edges are being oriented. This empirical research has conducted to

the following contributions:

1. Analysis of structure finding based on PC algorithm and its dependence on design

parameters e.g. data ordering.

2. Empirical parameter optimization of conditional independence maps removing de-

pendence on design parameters.

3. Optimisation of False Discovery Rate (FDR) and False Negative Reduction (FNR)

policies to avoid proliferation of False Positives.
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The first point was mentioned in section 1.6 of the first chapter as one of the novel

contributions of this thesis. The node ordering is further developed in section 5.4.2 of

this chapter.

The second part of the chapter continues with a final procedure of bootstrapping the

data for structure finding to address new data based on the parameters set-up of the

PC algorithm. This procedure is applied to brain tumour data from MRS for analysing

the metabolite dependences.

5.2 Background

This section describes three important parameters which must be taken into account in

the structure learning when using the PC-algorithm, and then a bootstrapping method

for selecting the most representative CI-map, assuming there is a target variable as a

reference point.

5.2.1 False Discovery Rate

When multiple conditional independence tests are carried out, the control of False Dis-

covery Rate (FDR) in the PC-algorithm is necessary. To understand the reasons, the

basic mechanics of the PC-algorithm must first be explained:

The PC-algorithm performs conditional independence test between every pair of nodes,

these test are conditional because assume that certain node values are given (observed).

The starting point of the algorithm considers that all nodes are dependent, i.e. a fully

connected graph, and then the algorithm starts to perform multiple conditional inde-

pendence test in successive stages, where in each stage the number of conditioned nodes

are increased. The null hypothesis of all conditional independence tests is that they

are independent. After each test where null hypothesis is not rejected, these nodes are

considered independent and their edge is cut, meaning that this edge is no longer consid-

ered in the following conditional independence tests. Last point is critical to reduce the

runtime, because the number of the independence test performed by the PC-algorithm

grows exponentially with the possible combination of conditioned nodes if in the first

stages enough nodes are not independent.

The stages of the PC-algorithm are described as follows: The first stage, the algorithm

performs all combinations of independence test, non-conditioned. In the second stage,

the algorithm starts to perform conditional tests adding only one conditioned node,
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where the tests are repeated with different conditioned nodes. The next stage the algo-

rithm repeats the conditional independence test but adding two conditioned nodes, and

excluding those node combinations that were independent. And future stages continue

in a similar way until all nodes are conditionally independent.

As explained before, the null hypothesis of the conditional independent test is that the

nodes are independent, and the null hypothesis is rejected when the p-value of the test

is lower than level of significance, α, therefore α controls the quantity of False Positives

(the test indicates dependence when in reality there is not), the so-called type I errors.

However, the more independence tests are made, the more likely False Positives (FP)

are to occur by chance, this problem is known as the multiple comparisons problem.

And because the PC-algorithm performs many independence tests on the same data,

the FDR is needed to keep the same FP ratio on the multiple tests made. The FDR

modifies α in such a way the expected proportion of FP remains constant.

The work [87] proposes three different variants of the FDR control policy: Basic, inter-

leaved and mini-FDR. The FDR procedure is an extension of the results in [120].

• The default option is the basic FDR and is applied after PC algorithm convergence,

a-posteriori.

• The interleaved variant is applied after each step of the PC algorithm, where a

step implies one more node in the conditional independence tests. With respect

to ”a-posteriori” FDR, this procedure is interleaved within the steps of the PC

algorithm.

• Mini-FDR, with respect to ”a-posteriori” and ”interleaved” FDR, is solely respon-

sible for pruning edges in the structure.

5.2.2 False Negative Reduction

A False Negative (FN) implies a missing edge (independence) between two nodes (vari-

ables) when there is a true dependency present between the pair of nodes. The FNR

policy, based on [89], avoids testing the hypothesis if the minimum power of the test is

not at least 1−β, with β being the false negative proportion. This condition establishes

a maximum degrees of freedom threshold that depends on the sample size, β, the test

level α, and a desired effect size w. In practice, β and α are usually pre-established

standard values, and the effect size w has to be adjusted. This is the challenging part

of the FNR, as the optimal w value is dependent on the data and its sample size, and

therefore it is difficult to find a good value for unknown data.
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The difficulties of the FNR policy appears in the following scenario: The process for

finding the skeleton starts with a fully connected graph, FNR avoids some tests between

nodes, and therefore the edges are kept, reducing the chance of a FN. But, at the same

time, if too many edges are preserved because they are not tested, either due to a wrong

parameter like w, or because some of these edges belong to true independent nodes and

should be removed, it would create an excess of False Positives (FP). The key point

resides on how to determine the appropriate w value for new data. This point will be

investigated in the methodology section with benchmark data.

5.2.3 The effect of node ordering

As commented at the end of section 5.1, the PC algorithm solutions are sensitive to node

ordering. The work in [87] addressed this problem by ordering the nodes by mutual

information, and then testing the weakest nodes first. In such a way, the PC algorithm

starts to prune the fully connected skeleton by the weakest nodes. Applying this policy

the PC algorithm reconstructs the structure independently of the node order.

The next step is to orient the edges of the skeleton to produce a DAG, using a set of

rules developed in [22, 23]. These rules are also sensitive to the node order, i.e. the

order in which the edges are oriented affects the final DAG, this problem is even worse

than the skeleton case because there is no unique solution.

By systematically following these rules, graph acyclicity is not guaranteed, thus after

orienting an edge the acyclity must be checked, and if the acyclity is not preserved the

last edge orientation is reversed. One of the complexities orienting an acyclic graph is

that it has a tree structure, hence the edge orientation of the ancestors determine the

edge structure of their descendants, and a mistake made in an ancestor edge is more

punitive than a mistake in a descendant edge. The number of possible edge orientations

grows non-linearly with the degree of descendants.

The theorem 3.7 from [85] states that two graphs with the same skeleton and the same

set of V-structures (immoralities), are I-equivalent graphs. The group of I-equivalent

graphs can be expressed as a Partially Directed Acyclic Graph (PDAG). However, the

converse does not hold, graphs of the same I-equivalent group (and same skeleton) can

have a different set of V-structures.

Therefore, knowing the skeleton and the V-structures set, only a PDAG can be unequiv-

ocally built. For building a DAG from the PDAG, one of the multiple solutions from the

PDAG has to be chosen. The process of orienting edges depends on the node ordering
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and taking into account that a graph with n nodes have n! different node permutations,

a couple of options are proposed to overcome this computational explosion:

• The first option is to once again order the nodes by mutual information, which gives

two possibilities to orient the edges, by the weakest first (TWF) or the strongest

first (TSF).

• The second option is to implement random node orders, build the DAGs and pick

the solution with the best score. The score being the log-likelihood function with

BIC regularization to penalize graph complexity.

The node strength is based on mutual information, and it measures the accumulated

mutual information from one node with respect to the other nodes, computed by pairs.

In section 5.5.3, the effect of node ordering will be assessed measuring the score distri-

butions of samples taken from the Insurance network.

5.2.4 CI-maps as feature selection

Sometimes, a CI-map can be built on a dataset with a target variable in mind, this target

variable can belong to the dataset as a feature or as an class label, for instance class

labels to be classified later. By analysing the CI-map associations (edges) in relation

to the target variable, can be obtained which features (nodes) are most associated with

the target variable, considering the first or even the second order edges as the influence

neighbourhood of node dependence.

Building the CI-map using the PC-algorithm with the set-up developed in this chapter,

a skeleton is obtained where the variables that are connected with our target variable

are identified, but how robust is this CI-map? Are these variable associations the most

representative from the information contained in the data? To test this a set of CI-maps

can be created from bootstrapped data, i.e. re-sampling with replacement keeping the

same size dataset. These new bootstrapped CI-maps should have a similar skeleton with

little variations in the edges.

Analysing the frequency with which the target variable establishes its first and second

order connections the nodes identified as having the most frequent associations can be

used as an implicit measure of edge robustness. From the collection of CI-maps generated

by data bootstrapping, a hierarchical filtering is proposed where the maps are filtered

sequentially following the order of most frequent connections in relation to the target
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variable, in such a way that at the end, the filtered CI-map is the most representative

map of the collection.

With this CI-map, feature selection is achieved by only considering the features con-

nected to the target variable. Depending on the purpose of the analysis, these can

include first order or also the second order associations. This analysis is always made in

relation to a target variable, if the target variable is changed, most probably the most

representative CI-map will be different.

It is worth mentioning an issue related to the p-value of the independence tests and

the significance of the variable associations, specifically to the ratio between the sample

size and the degrees of freedom. Recalling that CI-maps require categorical variables,

any continuous features have to be categorized, usually by quantiles. However, this

affects the number of total categories and, in turn, affects the degrees of freedom of the

independence tests, which are based on G2 statistic. There is a rule of thumb where

the G2 statistic is not a suitable approximation of the χ2 distribution if the ratio of the

sample size and the degrees of freedom falls below 5, hence, it has to be expressed as

follows:

sample size

DoF
≥ 5 (5.1)

Therefore, the degrees of freedom may need to be controlled by adjusting the number

of categories for continuous features. Depending on the sample size, this can simply be

achieved by controlling the quantiles or merging categorical data into larger groups.

5.3 Data description

5.3.1 Benchmark data for validation

For the benchmarking experiments, two well-known datasets have been used, namely:

the Insurance and Alarm datasets, both available in the Bayesian Network Repository1.

The Insurance dataset is a Bayesian network for evaluating car insurance risks [121]. It

has 27 variables (nodes), 52 edges degree (arcs), 984 parameters, 5.19 average Markov

blanket size, 3.85 average degree and 3 maximum in-degree. The structure is presented

in figure 5.1.

1http://www.cs.huji.ac.il/~galel/Repository/

http://www.cs.huji.ac.il/~galel/Repository/
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The ”A Logical Alarm Reduction Mechanism” (ALARM) is a network designed dataset

to provide alarms during patient monitoring in anaesthesia [122]. This data has 37

variables (nodes), 46 edges degree (arcs), 509 parameters, 3.51 average Markov blanket

size, 2.49 average degree and 4 maximum in-degree. The structure is presented in

figure 5.2.

Knowing beforehand the probabilities that describe these Bayesian Networks, it is pos-

sible to generate sample data of different sizes. In this work, sample sizes from 0.5k up

to 100k observations have been used.
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DrivHist

INSURANCE Bayesian Network

Fig. 5.1 – Insurance Bayesian network

5.3.2 Brain tumour data

The CI-map methodology has also been applied to brain tumour data based on MRS

from 304 patients with different types of brain tumours. For this dataset, a tumour

category is defined as the target variable, by applying the CI-maps methodology for

feature selection, the main objective is to find associations between metabolites signal

peaks and the tumour categories.



5.3. Data description 120

LVFAILURE

HISTORY

HYPOVOLEMIA

LVEDVOLUME

CVPPCWP

STROKEVOLUME ERRLOWOUTPUT

INTUBATION KINKEDTUBE

DISCONNECT

MINVOLSET

VENTMACH

VENTTUBE

VENTLUNG

VENTALV

ARTCO2

INSUFFANESTH

FIO2

PVSAT

PULMEMBOLUS

SHUNT

SAO2

ANAPHYLAXIS

TPR

CATECHOL

HR

HRBP

ERRCAUTER

HREKGHRSAT

EXPCO2

MINVOL

PAP PRESS

CO

BP

ALARM Bayesian Network

Fig. 5.2 – ALARM Bayesian network

The dataset used was extracted from INTERPRET, an international multi centre

database [123] resulting from the INTERPRET European research project [124]. Class

labelling was performed according to the World Health Organisation system for di-

agnosing brain tumours by histopathological analysis of a biopsy sample. These are

single-voxel proton MRS (SV-1H-MRS) data acquired at 1.5T. The spectra acquired at

short echo time (20-32 ms) from brain tumour patients and healthy controls is being

used. A list of them can be seen below (the brackets show the number of patients in

each class):

• a2: Astrocytomas of WHO grade II (22 obs.)

• a3: Astrocytomas of WHO grade III (7 obs.)

• ab: Brain Abscesses (8 obs.)

• gl: Glioblastomas, giant cell glioblastomas and gliosarcomas (86 obs.)
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• hb: Haemangioblastomas (5 obs.)

• ly: Brain Lymphomas (10 obs.)

• me: Brain metastases (38 obs.)

• mm: Meningiomas of WHO grade I (58 obs.)

• no: Normal brain tissue, white matter (22 obs.)

• oa: Oligoastrocytomas of WHO grade II (6 obs.)

• od: Oligodendrolgiomas of WHO grade II (7 obs.)

• pi: Pilocytic astrocytomas (WHO grade I) (3 obs.)

• pn: Primitive neuroectodermal tumours and medulloblastomas (9 obs.)

• ra: ”Rare tumours”, for more information about their pathologies, check the IN-

TERPRET database (19 obs.)

• sc: Schwannoma (4 obs.)

MS spectroscopy provides insight into the biochemistry of tissue through a discrete signal

in the frequency domain that reflects the relative abundance of several low molecular

weight metabolites, lipids and macromolecules in the millimolar range of concentration.

A total of 195 clinically relevant frequency intensity values measured in parts per million

(ppm) were sample from each spectrum in the [4.24, 0.50] ppm interval. The following

list describes a number of metabolites present in different types of brain tumours:

• Mobile lipids (ML). Found at 1.28 ppm. These MR-visible lipids are composed of

triglycerides and cholesterol esters that accumulate in intracellular neutral lipid

droplets. In human tumours mobile lipids are observed predominantly in high-

grade brain tumours and in regions of necrosis [125].

• Lactate (Lac) / Lipids. Found at 1.31 ppm. Lactate can be observed as a doublet

from the methyl group, at 1.31 ppm. However this spectral region is frequently

complicated by the presence of lipid resonances [126].

• Alanine (Ala). Found at 1.46 ppm. Alanine has a doublet with centre at 1.46ppm.

Increased alanine has been observed in vivo in meningiomas [127].

• N-Acetyl aspartate (NAA). Found at 2.01 ppm. Singlet at 2.01 ppm is the most

prominent resonance of NAA.
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• Creatine (Cr) / Phosphocreatine (PCr). Found at 3.03 ppm. Creatine and phos-

phocreatine (or creatine phosphate) can be observed as a prominent singlet reso-

nance from their methyl-protons, at 3.03 ppm [126].

• Choline (Cho)-containing compounds. Found at 3.21 ppm. The choline signal is

primarily observed as a prominent singlet at 3.21 ppm, which includes contribu-

tions from free choline, glycerophosphorylcholine, and phosphorylcholine, and it is

often referred to as ‘total choline’ [126].

• Taurine (Tau). Found at 3.42 ppm. Taurine can be seen as two triplets at 3.25 and

3.42 ppm. For in vivo studies at lower field strengths, these resonances commonly

overlap with the resonances from myo-inositol and choline.

• Glycine (Gly) / Myo-inositol (m-Ins). Found at 3.55 ppm. Glycine has two

methylene-protons that co-resonate at 3.55 ppm. The glycine resonance over-

laps with those of myo-inositol, making unambiguous observation of glycine not

possible at shorter echo times [126].

• Glx group – with glutamate and glutamine (Glx). Found at 3.74 ppm. Glutamate

(Glu) can be observed as a doublet-of-doublets centred at 3.74 ppm. Glutamine

(Gln) is structurally similar to glutamate with two methylene groups and a methine

group, and its coupling pattern is the same. A triplet from the methane proton

resonates at 3.75 ppm [126].

• Alanine (Ala). Found at 3.77 ppm. Quartet centred at 3.77 ppm.

For this analysis, the tumour types are grouped as in [124], which includes the following

classes: class 1: meningiomas, class 2: aggressive tumours (glioblastomas and brain

metastasis), and class 3: low grade glials (astrocytomas grade II, oligodendrogliomas,

and oligoastrocytomas). The normal parenchyma is also added to this set of classes as

a class 4. The peak intensities (numerical variables) were categorized into 3 quantiles.

These tumour groups are later processed as four independent binary variables, where

each one acts as target variable for the CI-map bootstrapping. Only one target is

included in a CI-map to avoid the creation of spurious associations between tumour

types which can mask the metabolites associations.

5.4 Methodology

The first part of this section is focused on the assessment of the PC-algorithm parameters

and policies. The second part introduces and assesses the procedures applied to brain

tumour data to build a feasible CI-maps and BN where the true answer is unknown.
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5.4.1 Assessment of policies and parameters

First, the three options of the FDR policy are analysed to identify the procedure that

produces the fewest skeleton errors in the Insurance dataset, then the FDR is also tested

with the FNR policy with the appropriate parameters for the Insurance data, the idea

is to analyse any synergies between both policies.

As described in Subsection 5.2.2, the FNR depends on the effect size, w. Therefore, the

main objective is to determine, empirically, which is the range of w values that minimizes

the total skeleton errors of the CI-map given the same sample size of the Insurance data.

For this purpose, multiple CI-maps are retrieved by varying w. By plotting the False

Positives, False Negatives and the total errors, the optimal w value that minimizes the

total amount of skeleton errors can be identified.

The procedure to identify an appropriate value for w is then repeated for different

datasets and sample sizes, where the variability of the appropriate w values against the

sample size of the data is presented. The results are compared with those estimated

in [89]. The latter analysis of the FNR policy is carried out by plotting the skeleton

results for the Insurance dataset when the sample size is considerably larger than the

sizes where a reasonably good w value can be estimated heuristically. These experiments

are repeated without FNR policy, whereby only the FDR policy is considered.

5.4.2 Node ordering in Bayesian network’s assessment

This subsection describes the methodology for assessing a BN using a BIC score as a

function of the node order. Two different ordering of nodes based on mutual information

are proposed, and the BN generated with these predefined orders are compared with

those generated by a random node ordering. The main goal is to assess the score

distributions as a function of the number of random node orders needed to generate

BNs that outperform networks with predefined node orders.

The methodology consists of generating 100 samples of 25K observations of the Insurance

dataset. Recalling that samples can be generated because the probabilistic model is

known for this benchmark BN. The samples will produce 100 different CI-maps per

data sample. Each CI-map provides a PDAG that can generate multiple compatible

DAGs which represent the BN, where the generated BNs depend on the node order on

which the edges are oriented. For the experiment, the 100 BNs are scored with regards to

the predefined orders by mutual information, the weakest first (TWF) and the strongest

first (TSF). Then several sets of BN are generated by random node order, selecting the

ones with best and worst scores, this is applied to the 100 CI-maps, creating a score
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distribution. The sets are composed of 1, 25 and 100 different BNs with random node

ordering. The three distributions are compared in the three-random-set scenarios.

The main idea is to have a decent baseline of a BN score with a predefined node order,

later it will be seen that the TSF is the best one, and then run random node iterations

until the BN score outperforms the best old score. The number of iterations depend on

the computation time available. This approach provides a non-arbitrary baseline result

for a realistic assessment of the performance of the respective policies.

5.4.3 Most representative CI-map with bootstrapping

In this subsection, the methodology for highlighting the strongest features associated

with the type of brain tumour is presented. The methodology starts with the pre-

processing of the brain tumour data, where its features are numerical variables obtained

from the maximum signal of the MRS within the spectral range in ppm associated with

each metabolite. The metabolites are described in section 5.3.2. The signal features are

discretized into categorical variables using 3 quantiles.

The target variable is an class label with the information of the tissue type per case

(patient or control). In total there are seven different types of tissue (brain tumours and

normal brain). They are grouped into four categories: lowgrade, aggressive, meningioma

and normal, as explained previously. For the input of the CI-map, each tissue type

category is considered as a binary variable isolated from the rest of categories. Only one

tissue type category is included per CI-map in order to obtain its feature associations

without interferences. Therefore, the process will be repeated four times, one per tissue

category.

Next step is to generate 400 bootstrapped data creating 400 CI-maps is not compu-

tationally expensive for this size of data and is enough to obtain robust results. The

results are recorded in an accumulative list of the first and second order associations

connected to the tissue category. From this list, two histograms are constructed in order

to visualize the most frequent associations for the first and second order connections of

the target variable.

Inspecting the histograms provides qualitative insights about the structure of the CI-

maps, for instance, if two nodes have complementary percentages between the first and

second order edges, they probably are swapping positions in the edges. If in the first order

histogram there are few nodes but with high percentages, this means the connections

are very significant and most of the CI-maps are quite similar. On the other hand, if

there is a number of nodes connected to the target variable, this means that there are
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many weak connections where edge variation is considerable, probably indicating that

there are a number of weak connections and these nodes can appear as 1, 2 or 3 order

connections or no have connection at all (which means independence).

The next step in the procedure is to apply the hierarchical filtering, starting with the

first order connections and selecting the most frequently connected node, then the second

order and so on, until there is only one remaining CI-map or the rest are equal. In fact,

after the third order connection the filter can be discarded, and just select one random

node of the remaining maps. Nodes with a frequency less than 10% are ignored to avoid

maps with low prevalence.

The selected CI-map is the most representative in terms of frequency that the nodes

appear in the set of CI-maps. This procedure is a robust method whereby the tar-

get variable connections represent the strongest, most reproducible dependences. The

CI-map can then also be used to build a BN following the methodology described in Sub-

section 5.4.2. The CI-maps identified using this approach are presented in the results

for the chapter from section5.5.4 onwards.

5.5 Results

The influence of the FDR, the FNR and the node ordering in two known Insurance and

Alarm networks are now presented. The effects are assessed by counting the errors in

the skeleton compared to the true structure. An error is considered as having: too many

edges (FP), missing edges (FN), and the wrong edge direction in the case of a DAG.

The Bayesian networks formed by DAGs are also evaluated using a log-likelihood score

function with BIC as a regularization term.

5.5.1 False Discovery Rate

Using the Insurance network, a comparison table has been created to measure the skele-

ton errors with six possible combinations of FDR and FNR. Table 5.1 shows the skeleton

errors for a sample of 500 observations of the Insurance dataset, for each of the FDR

control policies. The FNR setup has an effect size of w = 0.25, and power of β = 0.05.

The weakest first (TWF) node ordering is enabled. The table shows an improvement of 5

fewer False Positives (FP) when FNR is activated, but no significant changes with refer-

ence to the FDR. Therefore, the default policy, basic FDR, should be the recommended

policy just because of the simplicity of the code.
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Table 5.1 – Averaged skeleton errors of 10 samples of Insurance data with 500 obser-
vations each

SETUP FN FP TOTAL

FDR basic 3.1± 1.2 25.3± 1.5 28.4± 2.5

FDR interleaved 3.0± 1.5 25.2± 1.5 28.2± 2.8

FDR mini 2.8± 0.9 25.0± 1.6 27.8± 2.4

FDR basic + FNR 3.3± 0.9 20.6± 1.6 23.9± 1.9

FDR interleaved + FNR 3.4± 1.3 20.4± 1.4 23.8± 2.4

FDR mini + FNR 3.4± 1.1 20.4± 1.4 23.8± 2.3

These results are compared with the R package called PCALG [128], using the same 10

samples of the Insurance dataset with 500 observations. Table 5.2 shows the skeleton

errors of three structure finding algorithms from the PCALG package, the FCI algo-

rithm [8], and two variants of PC-algorithm [92], called special and relaxed, where the

former tests that no additional V-structures are needed if a DAG is built, and the latter

does not apply this condition.

Table 5.2 – PCALG R package Insurance CI-map comparison

PCALG
algorithms

Skeleton errors
500 obs. 5000 obs.

FCI 26.6± 1.1 24.7± 1.5

PC special 25.7± 1.0 22.6± 2.4

PC relaxed 25.7± 1.0 23.2± 2.4

The results are quite similar, slightly better than the algorithm with only FDR, but

slightly worse when FDR and FNR are activated. The purpose of this comparison is to

check if the results are approximately similar and consistent.

5.5.2 False Negative Reduction

Figure 5.3 shows the averaged skeleton errors of 10 different samples of Insurance dataset

with 500 observations. This is to illustrate the pattern of the structure errors with

reference to the effect size w, the observed behaviour is similar for different sample sizes

but displaced to the left (same peaks but with lower values of effect size).

A number of insights can be gained from inspection of this figure:

• FN errors decrease as the effect size decreases until some point where all tests

are avoided and the graph becomes fully connected. Beyond this point FNR is

disabled.

• Similarly where the FN errors start to decrease, the FP errors start to increase

until reaching the fully connected graph where the FP errors are at a maximum.
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• There exists an effect size window, δw, where the trade-off between FP vs FN is

acceptable, and the total error decreases. This δw depends on the dataset and the

sample size.

• For this example of 500 observations, one may observe the optimal effect size

is wmin = 0.24, improving the average total error by 4.7. This improvement

diminishes as the sample size increases, being 4.7, 3.6, 3.3, and 2.3 skeleton errors

for 0.5K, 1K, 5K and 10K samples, respectively. In the best case, an improvement

of approximately 5 skeleton errors does not warrant the high risk of selecting a

bad effect size for new data.

Fig. 5.3 – Averaged structure errors for Insurance BN. Zoom in critical point
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Figure 5.4 shows the optimal effect sizes, w, found through empirical tests with Insur-

ance (red) and Alarm (black) networks. The procedure is similar to that presented in

figure 5.3, scanning several effect size values and selecting the one that minimizes the

total skeleton errors. Additionally, in the same plot one may observe in blue the effect

size suggested by [89], in that work the optimal effect size is obtained from a random

sample of Insurance and Mildew networks using a cross-validation at each sample size.

Also a bandwidth of ∆w ≈ 0.15 is bounded, with the lower bound wLB ≈ wi − 7.5 an

unconstrained skeleton, and the upper bound wUB ≈ wi + 7.5 a rule of thumb; the rule

of thumb states that the independence test (G2-test) is reliable if there are five or more

instances per degree of freedom of the test. If the test is not reliable, PC-algorithm

defaults decision to include the edge in the skeleton.
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Fig. 5.4 – Best empirical values for effect size parameter

Using the suggested effect size for a 500 sample size in the figure 5.4, a w = 0.22 should

be obtained. If that value is taken, figure 5.3, the errors would be higher than if FNR

were disabled. Hence, FNR is not recommended for new datasets or if the effect size

cannot be selected optimally.

Similarly, figure 5.5 shows how a fixed effect size w affects the skeleton errors when the

data size increases. When FNR is activated, an increasing FP error is observed when

the data size increases. If FNR is deactivated a significant FP reduction is observed,

these plots show the effect size has to be carefully adjusted as a function of the sample

size. Theoretically, the PC-algorithm would converge to the true structure if the whole

population data were available. However, in a realistic case scenario, the skeleton errors

asymptotically tend to a non zero value, ≈ 7.5. In this analysis, the errors for the DAG

have a different source, it is related to the lack of a unique DAG solution given the skele-

ton. Due to the application of the orienting rules of [22, 23], it does not unequivocally

solve the DAG, and this is why other works use the Partially Directed Acyclic Graphs

(PDAGs).
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Fig. 5.5 – Skeleton and DAG errors vs sample size and FNR for Insurance data

5.5.3 The effect of node ordering

Now the score distributions of a sampled Insurance network are presented as a function

of the node ordering when the DAG is created (edge orientation) from the skeleton built

with the PC-algorithm.

Figure 5.6 shows the density functions of the BIC score, using a non-parametric kernel-

smoothing distribution for 100 samples of the Insurance dataset with 25K observations

and 27 nodes. In each plot, there are four distributions with TWF and TSF node

order, and the best and worst solutions obtained by random ordering. There are three

scenarios: only 1 random order (being only 1, worst = best), 25 random samples, and

100 random samples.

The graphs show that the TSF node order policy is the best option when there are

limitations in the number of repetitions to build new DAGs based on random node

orders. Such limitations may be, for instance, due to a computational time constraint

for a large data set, or when the graph has too many nodes and a large number of

repetitions is needed to extract a representative sample of the node order permutations.

In contrast, the score distribution of the TWF node order policy is centred in a region
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of lower scores and presents a long left tail. This tail can produce a very poor DAG

score depending on the sampled data. However, the tail of TSF distribution is shorter

and it defines a lower bound for the DAG score.

Intuitively, the reason why TSF has a better performance than TWF is because TSF

starts orienting the strongest edges first, like in a tree structure the strongest edges being

the biggest branches, and leaving the orientation of the weaker edges (branches) for the

last steps of the algorithm. This effect is just the opposite in the CI-map pruning process

(edges cut), where the performance improves if the fully connected graph is being pruned

starting from the weakest edges.

However, when creating a new DAG sampling node order permutation does not require

an excessive computational time, the best option to obtain a faithful DAG (highest score)

is the random sampling option. The basic idea is to repeat the random samplings as

much as reasonably possible, and pick the solution with the best score. In this example

with 25K observations, the sample is considered that represents the whole population

for the insurance dataset quite well. Decreasing the number of observations will produce

more noisy distributions.

5.5.4 Brain tumour results

This subsection shows the results of the CI-maps applied to the four target variables

based on tissue type categories with reference to the relevant brain tumour metabolites.

The results are in the following order: normal, low-grade, aggressive and meningioma.

For each target variable three figures are presented: 1) the association histograms in

relation to the target variable, obtained from the bootstrapped CI-maps. 2) The most

representative CI-map based on hierarchical filtering, and 3) the BN derived from the

CI-map using the node order assessment, starting with TSF node order and improving

the BIC score with random iterations.

In all CI-maps the edges include the mutual information, the significance test is set to

a p-value of 0.05, and the bootstrapping has 400 iterations.

5.5.4.1 Tumour category: Normal tissue

As an example, in this first case figure 5.7 the original CI-map created without boot-

strapping is shown, just so the original observations can be compared with the CI-maps

obtained from the filtered bootstrapped CI-maps in figure 5.10.
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Fig. 5.6 – BIC score of node order distributions for Insurance network

In figures 5.8 and 5.9 are the associations histograms in relation to the tumour category

(normal).

Figure 5.10 shows the hierarchical filtered CI-map, which is the most representative CI-

map of the bootstrapped data with respect to the most frequent node associations in

relation to the tumour category (normal).

Figure 5.11 shows the BN built from the bootstrapped CI-map applying the node order

methodology to obtain the best BIC score.
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Fig. 5.11 – BT normal BN

5.5.4.2 Tumour category: Low-grade

In figures 5.12 and 5.13 there are the associations histograms in relation to the tumour

category (lowgrade).
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Fig. 5.12 – BT lowgrade 1st order hist.
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Fig. 5.13 – BT lowgrade 2nd order
hist.

Figure 5.14 shows the hierarchical filtered CI-map, which is the most representative

CI-map of the bootstrapped data due to respect the most frequent node associations in

relation to the tumour category (lowgrade).

Figure 5.15 shows the BN built from the bootstrapped CI-map applying the node order

methodology to obtain the best BIC score.
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5.5.4.3 Tumour category: Aggressive

In figures 5.16 and 5.17 there are the associations histograms in relation to the tumour

category (aggressive).
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Fig. 5.16 – BT aggressive 1st order
hist.
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Fig. 5.17 – BT aggressive 2nd order
hist.

Figure 5.18 shows the hierarchical filtered CI-map, which is the most representative

CI-map of the bootstrapped data due to respect the most frequent node associations in

relation to the tumour category (aggressive).

 0.21378 
 0.21077 

 0.26238 

 0.33852 

 0.37366 

 0.5172 

 0.43076 

 0.68437 

 0.6985 

 0.52366 
 0.61935 

 0.54812 
 0.51707 

 1.0971 
 1.3236 

aggressive Ala1

NAA

PCr

Tau

Cho

Ala2

Gly

Glx

Lac

ML

Fig. 5.18 – BT aggressive bootstrapped CI-map

Figure 5.19 shows the BN built from the bootstrapped CI-map applying the node order

methodology to obtain the best BIC score.

5.5.4.4 Tumour category: Meningioma

In figures 5.20 and 5.21 there are the associations histograms in relation to the tumour

category (meningioma).
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Fig. 5.20 – BT meningioma 1st order
hist.
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Fig. 5.21 – BT meningioma 2nd order
hist.

Figure 5.22 shows the hierarchical filtered CI-map, which is the most representative

CI-map of the bootstrapped data due to respect the most frequent node associations in

relation to the tumour category (meningioma).

Figure 5.23 shows the BN built from the bootstrapped CI-map applying the node order

methodology to obtain the best BIC score.

5.6 Discussion

5.6.1 CI-map methodology

With regard to the methodology and policies developed for applying the PC-algorithm

to build CI-maps, based on these results the following conclusions can be made:
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• In terms of FDR policy, all the experiments performed in section 5.5.1 show no

significant differences in the structure errors between any of the three FDR policies

proposed in [87], without taking into account the FNR policy, which is safer not

to activate, discussed in the next point.

• The FNR policy is able to reduce some FP in the CI-maps 5.1, but it requires a

very fine adjustment of its parameters (effect size, w). For unknown data, which is

most cases, the proper parameters are unknown, and a bad parameters adjustment

can produce a high proliferation of FP as seen in 5.3. The FNR parameters also

depend on the sample size, which complicates matters even more for its proper

adjustment. For that reason, it is safer not to activate the FNR policy.

• When a DAG is created from a CI-map, the node order for edge orienting influences

the BN outcome based on the BIC score. Figure 5.6 shows the BIC score distri-

butions, where pre-ordering the nodes by strength of mutual information warrants

a good baseline BIC score. However, it can be outperformed by BN with random

node ordering, where it is necessary to perform as many iterations as practical,

a 100 iterations being a reasonable number to obtain a significantly better score

distribution.

• If there is a target variable, bootstrapping methods can be applied to obtain a

robust identification of the most frequent edges connected with the target vari-

able. From the CI-maps generated a hierarchically filter is applied to select the

most reproducible CI-map, in other words, the CI-map most representative of the

generated sample. From the CI-map a BN following can be constructed following

the previous point.

5.6.2 Brain tumour CI-maps

In general, the metabolites associations with the tumour categories agree with the ex-

pected dependences described in the metabolites literature, see notes in 5.3.2. Analysing

each category in more detail:

• Normal tissue: Sorting in decreasing order, the associations with highest preva-

lence are NAA, PCr and Ala1, with 58%, 42% and 35% respectively. The N-

Acetyl aspartate (NAA) association is the expected result, being an abundant

brain metabolite, predominant in normal brain tissue. Interestingly, the CI-map

shows that there are other metabolites completely disconnected from normal tis-

sue, like Tau, Ala2 and Glx.
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• Low-grade tumours: Sorting in decreasing order, the associations with highest

prevalence are PCr, Gly, Cho and Tau, with 52%, 39%, 22% and 20%. Here, the

associations differ from normal tissues with the presence of both, PCr and Gly,

where Gly was absent in normal and NAA is absent in low-grade.

• Aggressive: Sorting in decreasing order, the associations with highest prevalence

are ML, Lac and Ala2, with 52%, 45% and 43%. According to the literature [129],

the lactates and lipids (Lac) are associated with necrotic cells. In the selected

CI-map, Lac is a second order connection with aggressive tumours through ML

and Ala1.

• Meningioma: Sorting in decreasing order, the associations with highest prevalence

are Ala2 and PCr with 98% and 80%. In this case, Alanine and creatine are

clear indicators of meningiomas, which are located around meninges. Although

this tumour is benign, it is important to discriminate it from other aggressive tu-

mours, in order to promote accurate diagnosis, which will lead to more appropriate

treatment and prognosis.

The most important associations extracted from the prevalence histograms can be sum-

marized in the following figure 5.24. The solid arrows connects the first order connec-

tions, the widest arrows indicate the predominant association, and the dashed arrows

indicate second order associations.

5.7 Conclusion

The focus of this chapter is on finding the best setup for structure finding stabilization

based on the PC algorithm. With these empirical results, it can be concluded that any of

the FDR policies can be used to control the FP errors; however, the basic FDR has been

selected because of its simpler implementation. FNR policy is focused on decreasing the

FN errors, but it is recommended not to activate when the optimal values of the effect

size are unknown, which is the usual case for new data. The effect size parameter in

FNR policy can produce a proliferation of FP errors if the parameter is not well adjusted

to the data. Finally, to build a DAG from the skeleton, the node in which the edges are

oriented affects the final DAG. Ordering the nodes by mutual information is proposed

followed by orientating by the strongest first (TSF) order, which provided the best BIC

score compared with a random ordering distribution. However, if the DAG is generated

multiple times by sampling random node orders, the best solution of multiple random

node orders outperforms TSF. The higher the number of samples the better BIC score

is obtained, the price for this preferred approach is an increase in computational cost.
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Fig. 5.24 – BT summary tumour vs metabolites associations

When investigating connections to a target variable the CI-maps can be used as feature

selection, where using bootstrapping techniques robust results can be obtained with re-

gard to identifying the highest edge prevalences with reference to the target variable.

Apart from the variable associations, this method can be used to select the most repre-

sentative CI-map from the bootstrapped CI-maps, subsequently to be transformed into

a DAG following the procedure described in the first part of the work.

The CI-map methodology has been applied to brain tumour data based on MRS, pro-

ducing consistent results about the metabolites associated with different tumour types

that agree with the literature. With the bootstrapped CI-maps, histograms of the first

and second order edges have been built, reflecting the prevalence of each association.

Figure 5.24 summarizes, qualitatively, the most important metabolite associations.



Chapter 6

Complete framework and its

application to retail and music

data

This chapter analyses the procedure of the full framework using two case studies as

examples. In the pipeline described in figure 1.1, step 6 presented a decision point

between two paths where a clustering method had to be chosen to find clusters in the

Fisher manifold. The objective of this chapter is to present two examples in which the

two paths have been followed, and where both clustering methods will be compared.

The idea is to extract insights about which clustering path is better depending on the

manifold distribution.

The chapter is organized in three blocks: the first block, Section 6.1, computes the

Fisher manifold of the two case studies and performs the two clustering methods on

each case study comparing the results. The second block, Section 6.2 describes in detail

the Fisher manifolds analysis based on customer shopping baskets but produced with

different class labels. In addition for this case study, Bayesian networks are built from

the shopping baskets grouped by the cluster labels. The section includes an introduction

about the application of this methodology to shopping baskets, data preprocessing and

feature selection, also different manifolds are built changing the class labels or stratifying

the input data by other class labels with the objective of finding different customer

segmentation. The last block, Section 6.3, builds a Fisher manifold based on spectral

features of music data, with the objective of finding additional similarities (clusters)

within songs that are predefined by genre labels. In this case study the PQC has been

used to cluster the Fisher manifold because it presented strong density variations. On

the other hand, the part of Bayesian networks is not applied here because there is no

141
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interest in looking for feature relationships between the music spectral features. Finally,

the chapter ends with a final conclusion.

6.1 Procedure of pipeline methodology

The overview about the pipeline methodology was depicted in figure 1.1. In this section

is detailed the algorithm 2 which shows the procedure for obtaining the Fisher mani-

fold, putting together the equations seen in chapter 3. The idea is to summarize the

methodology, describing step by step until obtaining the adjacency matrix that defines

the global pairwise distance of the Fisher manifold. According to the figure 1.1, the

algorithm 2 describes the steps from 1 to 5.

Next is step 6, which uses the output of the algorithm 2, Dmanifold, to embed the

Fisher manifold in a Euclidean space with the information of its pairwise distances. In

Section 3.2.4.2 it is recommended to use cMDS because it preserves global distances

better than Sammon mapping.

The goal of step 6 is to visualize the Fisher manifold distribution to help choose the

type of clustering to be applied in the next step, symbolized as a decision point in the

figure 1.1. This is discussed in next subsection.

6.1.1 Comparison of the two clustering methods

The pipeline figure 1.1 shows two possible paths for clustering the Fisher manifold, one

path is focused on segmentation and the another on density discrimination.

The steps 7 and 8 form the path of segmentation, where the clustering task is performed

through a network with community detection algorithms. The network is based on the

distance adjacency matrix from step 5, Dmanifold, where the network is obtained after

transforming the matrix into a similarity network with a Gaussian kernel tuned by a

length scale parameter described in Section 3.2.3.

Alternatively, steps 9 and 10 are based on the Euclidean embedding of the Riemannian

manifold, with this Euclidean space projective methods can be applied to analyse the

manifold density distribution. One the techniques proposed in this work is the proba-

bilistic Quantum Clustering, which is specialized in density discrimination.

The issue in question is which path to choose, the answer is that both paths can be

valid. Although the manifold distribution can favour a technique, both paths are not
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Algorithm 2 Procedure of obtaining Fisher Information manifold

1: Input data: collection of N observations with k features, x ∈ Rk
2: Class labels: collection of N labels of J classes, cj with j ∈ [1, J ]

3: X← Standardized Input data . Z-score is recommended for MLP
4: C← Class labels
5: P (C|X)← Probabilistic discriminative model . MLP is the model used
6: FI (x)← Fisher Information metric with respect to x . For generic probabilistic

model see eq. 3.8, for MLP see eq. 3.14

7: procedure LocalPairwiseDistances(X)
8: DSL ← Matrix of zeros of size (N,N)
9: for all i, j ∈ [1, N ] with i < j do . Spark parallelizes the list of pairs(i, j)

10: d(xi,xj)
2 ← Distance SL eq. 3.18 . Distance derived from eq. 3.16

11: DSL (i, j)← d(xi,xj)
12: DSL (j, i)← DSL (i, j) . This matrix is positive and symmetric
13: end for
14: return DSL

15: end procedure

16: procedure GlobalDistances(DSL)
17: if DSL fits in memory then . Non-distributed computing
18: Implementation: APSP Floyd-Warshall algorithm in Matlab
19: Dgeo ← APSP(DSL)
20: else . Distributed computing
21: Implementation: SSSP Dijkstra algorithm in Spark
22: k ← Random list of K observations, with 1 ≤ k ≤ N
23: for all k ∈ K do
24: Dgeo (k, :)← SSSP(k,DSL) . Row vector with N shortest paths from k to

the rest of nodes
25: Dgeo (k, :)← Dgeo (:, k) . This matrix is positive and symmetric
26: end for
27: for all i, j ∈ [1, N ] with i < j do
28: daux ←∞ . Auxiliary variable to iterate the k’ distances
29: for all k′ ∈ K do
30: dtemp ← Dgeo (i, k′) + Dgeo (k′, j) . Temporary variable
31: daux ← minimum (daux, dtemp)
32: end for
33: Dgeo (i, j)← minimum (daux,DSL (j, i))
34: Dgeo (j, i)← Dgeo (i, j) . This matrix is positive and symmetric
35: end for
36: end if
37: return Dgeo

38: end procedure

39: Dmanifold ← Dgeo . Adjacency matrix of pairwise distances of Fisher manifold
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mutually exclusive and their results can be complementary. Table 6.1 shows a quick

comparison between two approaches.

Table 6.1 – Comparison table between network approach and cMDS embedding

FISHER INFORMATION NETWORK

Advantages Disadvantages

Works directly with
adjacency matrix

Needs a neighbourhood
parameter, σG

Can segment the network
independently of its density

Densities can be masked
by wrong σG

Similarities can used to
estimate the class label

Cannot apply projective methods

FISHER MANIFOLD EMBEDDING

Advantages Disadvantages

Observations are described
by coordinates instead of a
network with edges and nodes

For Riemannian manifolds the
embedding needs many
dimensions to accurately
reproduce the pairwise distances

Eigenvalue decomposition allows
to know the relative weight of
each dimension, and reduce its
dimensionality at expenses
of distance accuracy

Low dimensional embeddings
imply a higher distance error

Manifold complexity measured
by its required dimensionality

Many algorithms available
in Euclidean spaces, like PQC

6.1.1.1 Example comparison 1: manifold of shopping baskets

In this subsection both clustering methodologies are applied to the shopping baskets

manifold, this manifold is extracted from the retail data case study, Section 6.2, where

it will be introduced with more details. For the purpose of this subsection, which is to

illustrate the cluster differences, it is enough to know that the manifold is formed from

shopping baskets and class labels related with customer loyalty. The loyalty labels are

provided by the retailer company according to their internal indicators, but they are not

strictly derived from shopping baskets. The loyalty label is sensitive information related

to mainly to Recency and Frequency of purchases.
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Figure 6.1 shows the embedded Fisher manifold with the original class labels defined by

loyalty. The class labels are quite mixed, having two minority classes with low prevalence

(ly3 and ly4).
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Fig. 6.1 – cMDS FIN manifold with loyalty class labels

Applying both clustering methods, two different cluster labels are obtained. Figure 6.1

shows the network communities with spectral clustering applied to the FI network.

The length scale of the network has been computed with the heuristic method 3.2.3.2,

obtaining a σG = 0.1399. The legend indicates the percentage of the majority class

respect to each community. This community finding algorithm segments the manifold

across its main eigenvector direction, creating communities of approximately the same

size.

On the other hand, figure 6.3 shows the cluster labels of PQC applied to this embedded

space. The legend indicates the percentage of the majority class respect to each cluster.

The hyper-parameters are chosen following the ANLL score from figure 4.2.5.2. The

clusters found by PQC have not similar sizes, there is a big cluster (cluster 1) that

covers most of the middle part of the manifold, there are two other clusters located at

the ends of the manifold (clusters 2 and 3) with half the population of the largest, these

clusters have higher density and contain observations (customers) with more polarized

loyalty behaviour. And there is a little cluster (cluster 4) with 7 observations that PQC

has separated from the main region, it can be discarded as spurious.

Additionally, PQC provides details about the conditional probabilities associated with

the cluster membership given the data, shown in figure 6.5, and also the conditional

probabilities to belong to any cluster K, which can be used to detect outliers, this is

shown in figure 6.6.
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Fig. 6.2 – Loyalty FIN manifold with network communities
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Fig. 6.3 – Loyalty FIN manifold with PQC clusters
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Fig. 6.4 – ANLL score for loyalty manifold

Fig. 6.5 – Loyalty PQC probability:
P (K|X)
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Fig. 6.6 – Loyalty PQC probability:
P (X|K)

Comparing the labels of both cluster methods, they are quite similar and consistent. The

main difference is that the spectral clustering has segmented in more communities the

manifold, but keeping the main cluster shapes. For instance, the PQC cluster 1 is almost

equivalent to the communities 1 and 3, the PQC cluster 2 includes the communities 4

and 5, and the PQC cluster 3 is equivalent to the communities 2 and 6. With these

blocks the percentage of the majority class respect to clusters are similar. Analysing the

labels similarity quantitatively, the Cramer’s V statistic [71] can be useful to measure

the level of matching between PQC labels, communities and class labels, in eq. 6.1 is

shown the level of agreement between them. Both methods have a similar score between

them (0.7738) and both have a low score respect to the class labels (0.35), this is due to

the two minority classes that have not been separated by any cluster.
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CV (class, clustersPQC) = 0.3414

CV (class, communities) = 0.3590

CV (communities, clustersPQC) = 0.7738

(6.1)

6.1.1.2 Example comparison 2: manifold of music dataset

This subsection is another example comparison of both clustering methodologies applied

to the music Fisher manifold, this manifold is extracted from the music data case study,

Section 6.3, where it will be introduced with more details. For the purpose of this

subsection, which is to illustrate the cluster differences, it is enough to know that the

manifold is formed from music songs described by their spectral features where the class

labels are the musical genre. The musical genre has been externally labelled by the

artist, producer or the society in general, but not specifically according to their spectral

features.

Figure 6.7 shows the embedded Fisher manifold with the genre labels. All genres have

similar population. The manifold has triangular shape, the manifold corners are regions

with only one predominant music genre, although the labels are quite mixed in the

intermediate regions, which means that the songs are a fusion of styles.
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Fig. 6.7 – cMDS FIN manifold with loyalty class labels
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Figure 6.8 shows the communities detected by the network. The length scale of the

network is σG = 0.4138 and it has been computed with the heuristic method 3.2.3.2.

The legend indicates the percentage of the majority class respect to each community.
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Fig. 6.8 – Music genre FIN manifold with network communities

Figure 6.9 shows the clusters detected by the PQC. The hyper-parameters have been

selected according the same ANLL plot 6.46 depicted in Subsection 6.3.4.3. And the

plot of probability of cluster membership, P (X|K), is also depicted in figure 6.47.
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Fig. 6.9 – Music genre FIN manifold with PQC clusters

Comparing the labels of both clustering methods, one can observe the PQC captures

better the high density regions than the spectral clustering with Newman’s algorithm.

This fact is reflected in the percentages of the majority classes respect to clusters, in the

clusters associated with regions of dominant genres. Next table 6.2 shows the percentage

comparison:
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Table 6.2 – Percentage of majority class respect to the cluster

Class / cluster ratio Pop-rock Jazz Rap

Communities 84.11% 78.94% 80.25%

Clusters 85.05% 82.01% 90.64%

Measuring the level of matching between the class labels and the clusters, similar results

to the previous example have been obtained. Both methods have a 0.7703 score of

agreement (being 1 the maximum) which is very similar to the example 1 with a 0.7738.

However, in this example the agreement with the class labels is better (0.63) than the

retail case (0.35).

CV (class, clustersPQC) = 0.6333

CV (class, communities) = 0.6351

CV (communities, clustersPQC) = 0.7703

(6.2)

Therefore, roughly it can be concluded that there is not a huge difference in the labels

of both methods, although there are nuances in terms of density or segmentation that

can be enhanced as a function of the manifold distribution.

6.2 Retail data case study

This section applies the FIN pipeline to the customer shopping baskets using the data

provided by a large retail UK company. The main difference from the previous work-

flow implementations is that the communities obtained from the Fisher manifold will be

used to build CI-maps to analyse customer behaviours based on the products associations

defined by community shopping baskets.

6.2.1 Motivation of retail data

A substantial component of this thesis is the work developed in collaboration with a

large UK retailer company. The objective was to find customer insights applying the

proposed procedure in the context of customer longitudinal transactions data, segment-

ing communities as a function of class labels defined by the company. This kind of data

presented several challenges: a) high dimensionality of products as features, b) noise
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associated with a real scenario, c) software robustness needed to work in production,

and d) scalability of the algorithm to work in a big data environment.

For a retail company the proposed pipeline is useful for the following reasons: Customer

insights are crucial for optimizing the consumer experience. As part of this, customer

segmentation is one of the most important topics in a retail business [130–132]. The

total set of consumers can be segmented by analysing customer transactions, shopping

baskets (products purchased), order history, and other factors. But depending on the

classification criteria, the customer can be segmented in completely different ways, for

instance by loyalty, by brand of products, or by Recency-Frequency-Monetary value

(RFM model). Each criteria produces a different type of segmentation in shape and

number.

One of the key questions lies in having the same customer dataset, generate completely

different results depending on the class labels used. The FI metric modifies the dataset

topology as a function of the classification criteria in order to enhance the label separa-

tion. The classification criteria can be understood as business questions that generate a

different set of labels for the training data. These labels help to identify each cluster in

a semi-supervised way, hence once the network has been built a new consumer can be

allocated to the closest segment. If a different business question is applied, different la-

bels produce a different metric and therefore a different network and segmentation. The

aim is to obtain a homogeneous group of consumers segmented by a business question.

Other key questions arise once the consumer segment has been identified, for instance,

determine if the identified products act as a driver of other sub-products. In other

words, this implies that an association map which relates a product’s dependencies can

be constructed. Using the state-of-the-art techniques in structure finding algorithms

based on conditional independence maps, Bayesian Networks can be built that relates

products within each segment. These networks can be very useful in terms of product

promotions, customer product switching (branded versus own-labelled, healthy versus

not-so-healthy, or other combinations) and other marketing objectives.

The last key question is scalability, the volume of data involved in consumer transactions

forces the segmentation techniques to be scalable. The nature of the data is complex;

considering the sample size as the number of consumers, it can be around several millions

in the case of large companies like the collaborating retailer in this project. Considering

each product as a feature in the dataset, this produces a high dimensional dataset.

Additionally, if each observation belongs to the consumer shopping basket, it makes the

data very sparse.
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From the perspective of real world applications, the whole framework of FI networks,

communities and Bayesian networks was applied to real customer retail data. One of the

novelties resides in the use of shopping basket data to extract customer insights using

the full procedure. The fact of dealing with real data implies additional tasks such as

data preprocessing, data cleaning, feature reduction, and also additional efforts to make

results interpretable.

The case study of loyalty as a business question reveals that noisy real-world data com-

bined with high dimensionality tends to favour linear classification models, where linear

models are equally good as non-linear models. The embedded Fisher manifold presents

a 1-dimensional cigar shape distribution, characteristic of linear models, where the cus-

tomers are uniformly distributed between two extremes, loyalty and churn. Communities

are segmented across this cigar shape, being in the extreme the communities that in-

dicate a more characteristic shopping basket profile, driven by the total spending in

certain classes of products. The customer spending in these products are more sensitive

to the loyalty label. At the same time, analysing the CI-maps for each community, the

same class of products are the central nodes in the map, acting like a hub where most

of the other products are connected to them. From the marketing point of view, these

products are interesting in terms of promotions or loyalty improvement.

6.2.2 Introduction

The aim of this study is to segment customers into communities with similar shopping

basket behaviour. This is achieved by finding a statistically rigorous metric for the

available attributes of the model, in this case spending values by product category,

which is informed by an class label representing a given indicator of relevance to the

business.

A similarity metric is inferred from the posterior probability map for the class label, in

this case a measure of customer loyalty. Aggregated shopping basket data is mapped

into a Riemannian space using the Fisher Information metric and a Fisher Information

Network (FIN) is derived using geodesic pairwise distances converted into similarity

values. The Fisher metric creates a data structure that reflects the business question

indicated by the class labels, by bringing together shopping baskets with similar out-

comes of the given class label and distancing shopping baskets either side of classification

boundaries. Communities in this network define clusters of shopping baskets by similar-

ity according to the metric induced by the class label. Each community is likely to have

a characteristic shopping behaviour. This behaviour is characterised by a multivariate

correlation model represented by the Conditional Independence Map, or graphical model
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that reflects the statistical associations between product categories. This takes into ac-

count multiple levels of conditioning and therefore, removes spurious associations i.e. it

controls for False Positives.

It was found that statistical models of loyalty map the data into an approximately linear

space with gradual changes in the prevalence of loyalty and churn. This was found with

separate models for distinct cohorts defined by an affluence label, so as to remove this

attribute as a confounder for loyalty. In this context, churn can be understood intuitively

as the opposite to loyalty, the churn rate usually measures the proportion of contractual

customers who leave a supplier during a given period of time.

Communities were identified with prevalence of loyalty of 92% and churn of 78%, which

is higher than the sensitivity and specificity of a binary classifier. The different com-

munities are characterised by product category associations with similar basket profiles,

with c10, c76 and c69 the class-products most sensitive in terms of the communities

defined by the loyalty label.

6.2.3 Methodology

The methodology follows the algorithm described in the FIN stages of processing, the

main differences lie in the pre-processing section with an extended analysis based on

feature reduction and class label dependencies. For the community detection Newman’s

algorithm (spectral clustering) has been applied in preference to PQC. This is due to

the Fisher manifold presenting a homogeneous distribution, which is a segmentation

problem, so being suitable to spectral clustering algorithms, or also K-Means if it was

applied directly to an embedded Fisher manifold. Once the communities are identified,

then the CI-maps methodology is applied per communities.

The main pipeline is described as follows:

• Data pre-processing for feature reduction: 80/20 rule, features grouped hierarchi-

cally, X→ log(X + 1) feature transformation, feature selection based on CI-maps

and data stratification.

• MLP performance analysis on different class labels.

• Fisher pipeline applied to data stratified by loyalty labels.

• cMDS on Fisher manifold

• Dominant first eigenvector allows projective methods and distribution analysis on

this direction.
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• Community detection with Newman’s algorithm, and shopping basket profiles.

• CI-maps and customer behaviour analysis based on each loyalty community.

6.2.4 Data description

The dataset is an anonymised sample of 30K customers who have 3-months-worth of

transactional data and have shopped at least five times.

The customer transactions are listed with the lowest product level identifier, called tpnb.

The products act as features when the data is organized as shopping baskets. However,

the company also provided the hierarchical groups where the products can be organized

by higher category levels. The following list enumerates the hierarchical feature levels,

with the number of features stated in brackets:

1. Commercial hierarchy division (10)

2. Commercial hierarchy group (34)

3. Commercial hierarchy department (100)

4. Commercial hierarchy class (318)

5. Commercial hierarchy subclass” (1317)

6. tpnb (10813)

Using higher category levels reduces the number of features, but also implies a loss in

the customer transaction detail given many products are aggregated into lower groups.

The objective is to find a trade-off between transaction detail (useful for the MLP

performance), and few features (useful for reducing the data sparsity and the runtime).

In addition, a set of different class labels were provided by the customer organisation

and were used as an class labels. For instance, the loyalty label is sensitive information

related to mainly to Recency and Frequency of purchases. Analogously, the other labels

measure different customer indicators.

These labels can be used to train the MLP, hence altering the structure of the Fisher

manifold. There are five class labels, each with multiple attributes stated in brackets:

1. Loyalty (4)

2. On-line loyalty (9)
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3. Life-style (3)

4. Life-stage (5)

5. Affluence (4)

All labels are sorted in increasing order, in other words, Loyalty 1 < Loyalty 2 < ... <

Loyalty 4 ; being Loyalty 4 the highest grade of loyalty.

Customer records of both datasets, transactions and customer labels, are linked by its

household number.

6.2.5 Data preprocessing

The original data is transformed with the purpose of creating shopping baskets per

customer, where each row represents a customer and each column represents a product.

The matrix contains the total amount spent per product and per customer. There are

five possible aggregations of shopping basket depending on the hierarchy level chosen.

In order to reduce the number of different products, the total amount spent in each

product is used to sort and filter the products that represent 80% of the total spend.

With the expectation that the dataset follows the 80/20 rule, where 80% of the spend

represents 20% of the products bought.

The data is also cleaned of missing values in the main class labels, on-line loyalty label

has been excluded due to the high amount of missing values (84%).

For the Fisher Information metric it is necessary to obtain a probability map of the

shopping basket space, for this purpose a Multilayer Perceptron (MLP) was used. The

shopping basket data is sparse, containing many products as features with zero spend.

To improve the MLP classification, each feature (column) is transformed with X →
log(X + 1)) to widen the shopping basket distribution, X represents the spending and

always is equal or greater than zero.

For the best trade-off in the MLP training over the five hierarchy levels, product category

commercial hierarchy class was chosen which after the 80/20 filtering contained 130

products. This level provides a good representation of the shopping baskets with less

noise in the data than lower level categories, and is less biased or mixed than the higher

categories. After the pre-processing there were 23K customers (rows) and 130 class-

products (columns), and 4 class labels.
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6.2.6 Feature selection with CI-maps and affluence stratification

The final step is to build a Bayesian Network from Conditional Independence map (CI-

map) from the Fisher manifold communities. The CI-maps performance depends on the

ratio of degrees of freedom (DoF) and the sample size. After the feature reduction using

the 80/20 rule, there are still 130 features (class-products) which is too many DoF to

properly perform the conditional independence tests given the stratified data subset.

Although the MLP can successfully train with many dimensions, the belief is that many

of the products are not adding useful information to the classifier model. Hence, it

would be useful to apply an additional dimensionality reduction technique for the model,

helping at the same time the posterior CI-map.

One option to reduce the dimensionality is at the same time as constructing the CI-

map is to apply the feature selection process as described previously in chapter 5.2.4.

Recalling that the technique consists of building a CI-map with the class label and the

products with the purpose of identifying which products have a dependency (edges)

with the targeted label. As pre-processing is required to combine a dataset with the

target label (loyalty) and the shopping baskets with the product spending discretized

into quantiles (2, 3 and 5 quantiles were tested, with 3 quantiles as the most balanced).

The criteria to select those products that are associated with the class label is to choose

the set with first and second order of connection with the class label.

As an example, in the Subsection 6.2.6.1 there is the figure 6.10 that shows the CI-map

of loyalty vs 130 class-products. Although the product identifiers are not very legible

you can observe the structure and the main product relationships of the whole shopping

basket. Applying the CI-maps for feature selection the products reduce from 130 to

roughly 30 class-products.

By definition, affluence is sensitive to the total spending in the shopping baskets, and

intuitively this is the case for loyalty too. In Subsection 6.2.6.2 independence tests

between the class labels has been undertaken, showing that most of the class labels are

dependent, especially affluence-loyalty shown in 6.3. To avoid affluence having impact

in the loyalty analysis the dataset has been stratified by the affluence labels, in such a

way that four subsets have been created, one per affluence label. The objective is to

isolate the loyalty behaviour from affluence. By stratifying the data, the sample size is

reduced to roughly 7.5K observations with the result that the runtime is significantly

improved.
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This analysis of shopping baskets is therefore stratified by affluence, although at the

end of the chapter there is a Section 6.2.9 where the data has not been stratified, and

provides similar results to the stratified cases.

6.2.6.1 Feature selection of products with CI-maps

The figure of this Section 6.10 shows the CI-map applied to the loyalty label as target

variable, where the 130 class products conform a big CI-map. Although the product

nodes are not legible due to the font size in the big graph, one may observe the main

class-products associations, where there are some central nodes that act as a hub, setting

a dependence with many products. The loyalty label is highlighted in red circle and the

first order nodes are in green circles. The 33 second order nodes are not highlighted

because the figure would be very messy.

6.2.6.2 Independence tests of class labels

Another point to analyse before applying the Fisher pipeline is the independence between

the class labels. Next tables, from 6.3 to 6.8, show independence tests of class labels by

pairs. In almost all independence tests the null hypothesis, which assumes independence,

can be clearly rejected with a p−value < 0.05, the unique exception is Loyalty - Lifestyle,

where the p − value = 0.0525 is close to the decision value. But approximately all the

class labels can be considered dependent.

Table 6.3 – Independence test: Loyalty - Affluence

Loyalty \Affluence lst2 lst3 lst4 lst1 χ2

ly4 0.5% 13.7% 14.1% 1.9% 76.42

ly2 0.3% 8.8% 10.4% 1.8% p-value

ly1 0.4% 10.9% 12.3% 1.6% 8.27E-13

ly3 0.3% 11.2% 10.4% 1.3%

Table 6.4 – Independence test: Loyalty - Lifestyle

Loyalty \Life-style lst2 lst3 lst4 χ2

ly4 0.4% 0.7% 0.4% 12.45

ly2 14.5% 19.5% 10.8% p-value

ly1 15.9% 20.0% 11.3% 0.0525

ly3 2.3% 2.7% 1.6%
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Table 6.5 – Independence test: Loyalty - Life-stage

Loyalty \Lifestage lst3 lst5 lst2 lst1 lst4 χ2

ly4 0.4% 0.2% 0.4% 0.3% 0.2% 917.80

ly2 4.5% 9.4% 12.0% 10.2% 8.7% p-value

ly1 10.7% 8.2% 12.1% 10.3% 5.8% 8.63e-189

ly3 1.9% 1.2% 1.6% 1.1% 0.7%

Table 6.6 – Independence test: Affluence - Lifestyle

Affluence \Lifestyle lst3 lst5 lst2 χ2

ly4 9.3% 13.0% 7.9% 291.17

ly2 8.1% 9.5% 3.6% p-value

ly1 8.6% 11.1% 5.6% 6.35e-60

ly3 7.1% 9.1% 7.0%

Table 6.7 – Independence test: Affluence - Lifestage

Affluence \Lifestage lst3 lst5 lst2 lst1 lst4 χ2

ly4 5.3% 5.0% 8.2% 7.2% 4.5% 868.03

ly2 4.3% 5.7% 4.8% 2.8% 3.6% p-value

ly1 4.9% 5.5% 6.3% 4.8% 3.7% 4.18e-178

ly3 3.1% 2.9% 6.7% 7.0% 3.6%

Table 6.8 – Independence test: Lifestyle - Lifestage

Lifestyle \Lifestage lst3 lst5 lst2 lst1 lst4 χ2

ly4 4.3% 4.9% 8.5% 11.3% 4.2% 1366.3

ly2 7.7% 10.3% 10.3% 6.7% 7.7% p-value

ly1 5.6% 3.9% 7.3% 3.9% 3.5% 1.11e-289

6.2.7 MLP performance with different labels

The MLP performance has been shown to be the key to creating structured FINs where

the communities truly represent a good segmentation of the class labels. In this section,

the train and test accuracy of the MLP using the main class labels are presented, with

two pre-processing options: z-scoring and row normalization.

The MLP model has been trained (70%) and validated (15%) with the three different

sets of class labels and two kind of preprocessing, the selection criterion has been the

accuracy of the test set (15%), which is the best score to check if the Fisher metric derived

from the MLP probabilities can map the input space with the class labels. Inspecting

MLP accuracy in table 6.9 the following conclusions can be made:

• Only loyalty provides accuracy (> 70%). With the CI-map feature selection, the

MLP test accuracy is the same for both, 130 or 37 features, indicating there is

considerable redundancy in the features. See figures 6.11 and 6.12.
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Table 6.9 – MLP performance vs class labels

Label Features Z-score Row norm. Train Acc. Test Acc.

Loyalty

130
No

No 72.8 71.4
Yes 68.3 66.5

Yes
No 72.8 71.2
Yes 65.8 65.8

37
No

No 72.0 72.3
Yes 65.5 64.4

Yes
No 71.7 71.6
Yes 51.2 51.9

Affluence

130
No

No 34.4 33.0
Yes 30.1 31.0

Yes
No 33.7 33.4
Yes 32.6 32.2

32
No

No 31.6 31.6
Yes 30.7 31.9

Yes
No 31.4 31.5
Yes 23.8 23.5

Life-style

130
No

No 54.5 53.0
Yes 53.8 53.6

Yes
No 55.6 53.6
Yes 54.6 52.8

35
No

No 51.0 49.2
Yes 49.7 49.2

Yes
No 50.8 50.1
Yes 33.1 33.4

• Customer normalization decreases the loyalty MLP performance, meaning that

the total amount spent per customer is important in discriminating this label.

However, this is not the case for the other labels.

• In general, Z-scores the data do not influence the result, at least in case of loyalty.

• Affluence and life-style have poor MLP performance, basically because there is

no enough information in the shopping baskets to discriminate these class labels.

Additional pre-processing has no effect on the performance.

Due to the poor MLP performance in the other class labels, only the loyalty label will

be used in the Fisher procedure.

To illustrate the CI-map feature selection has worked well, figure 6.11 shows the loyalty

MLP performance of a model with 130 features, and figure 6.12 the performance of a

model with only 37 features. Both models have approximately similar results.
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Fig. 6.11 – Loyalty MLP performance with 130 features

6.2.8 Loyalty FIN on stratified data

At this point the MLP has been trained, the FIN calculated, the Fisher Information

metric has been defined and the pairwise distances have been optimized with a shortest

path algorithm, using the Spark implementation for the pairwise distances.

This section shows the structure of the Fisher manifold with cMDS, the spectral clus-

tering communities and the histograms obtained from the main eigenvector projection,

if the eigenvector explains more than 80% of the variance. As an example, the subset

of affluence 1 has been chosen to display the Fisher manifold structure, noting that the

other affluence subsets have similar manifolds.
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Fig. 6.12 – Loyalty MLP performance with 37 features

6.2.8.1 Structure of loyalty Fisher manifold with cMDS

The first step is to consider the MLP predictions for the loyalty labels, as the information

captured by the MLP will determine the FIN structure. Figure 6.13 shows that the

MLP only predicts two of the four class labels. This is mainly for two reasons: the

low prevalence of labels Ly3 and Ly4, and the noise in the data where customers with

different loyalty labels are significantly mixed.

The main consequence for the FIN having a MLP with two labels is that it will be-

have similarly to a FIN based on a binary classifier, for example the one studied in

Section 3.4.1. This means that the Fisher manifold structure will probably lie in one

dimension.

Embedding the Fisher manifold with cMDS, figure 6.14, the loyalty manifold lies mainly

in one dimension as expected, where in one extreme label Ly1 dominates and in the
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Fig. 6.13 – Loyalty MLP performance with data stratified by Affluence 1

other Ly2. The cMDS also shows the abundance of noise in the intermediate regions of

the manifold, where there is significant mixing of labels.

Figure 6.15 depicts the eigenvectors of the loyalty FIN, where one may observe the 1-

dimensional structure. On the other hand, representing the Euclidean version of the

pairwise distances, you can see in figure 6.16 how the structure is more spherical due to

the sparsity of the shopping baskets. Although in Euclidean space the loyalty labels are

more mixed than in the FIN manifold, their first eigenvectors approximately discriminate

loyalty labels Ly1 and Ly2.

6.2.8.2 Loyalty probability histograms per affluence stratification

Given that the loyalty Fisher manifold has a 1-dimensional structure, projective methods

can be applied, like histograms based on data projections on the first eigenvector. In
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Fig. 6.14 – cMDS loyalty FIN manifold on Aff.1

Fig. 6.15 – cMDS loyalty FIN eigen-
values on Aff.1 Fig. 6.16 – Loyalty Euc. dist. cMDS

on Aff.1

this case, the interest is in the impact of the data stratification by affluence, specifically

checking if the loyalty distributions change when different affluence data is considered.

Next figures, from 6.17 to 6.20, show the loyalty histograms applied to different affluence

stratifications. Although the colour code associated with each label varies per figure,

looking at the Ly1 and Ly2 labels, one may appreciate that the loyalty distributions

are very similar independently of the affluence stratification.

Fig. 6.17 – Loyalty histogram on Aff.1
Fig. 6.18 – Loyalty histogram on Aff.2
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Fig. 6.19 – Loyalty histogram on Aff.3 Fig. 6.20 – Loyalty histogram on Aff.4

All figures show a bimodal distribution, which relate to Ly1 at the left of Fisher manifold,

and Ly2 to the right. Both distributions present a long tail in the intermediate regions,

overlapping towards the centre. The higher loyalty labels with lower prevalence have no

clear allocation in the manifold because they are not modelled by the MLP, by similarity

Ly3 is generally in the same location as the peak of the Ly1, there is no clear reason

why the observations of Ly3 should be similar to Ly1 in the Fisher manifold.

The manifold structure is typical of binary distributions, where the Fisher metric pushes

the observations that clearly belong to a specific label to one extreme, and the obser-

vations where the characteristics are less certain are placed in the intermediate regions,

in such a way that the distribution represents a transition from one label to another.

This 1-dimensional structure also reflects the fact that is MLP discriminating linear

behaviour, which is an indication that a linear model such as binary logistic regression

would be a suitable classifier.

6.2.8.3 Probability histograms with other labels

Using the Fisher manifold created using the loyalty labels, other labels distributions can

be analysed in order to check if they are correlated with loyalty.

Figures 6.21 and 6.22 show the Life-style and Life-stage distributions respectively. In-

specting the figures it is apparent they are independent of the loyalty manifold, i.e. all

categories have approximately the same distribution independently of the label. There-

fore, it can be concluded the loyalty manifold does not provide any additional discrimi-

nation of Life-style or Life-stage.

6.2.8.4 Fisher manifold with combined labels

Another option for additional insights of the shopping baskets is to create combined

class labels to create new Fisher manifolds. For instance, in table 6.9 the MLP accuracy

of the life-style labels is very low, by combining loyalty and lifestyle labels a new class
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Fig. 6.21 – Life-style histogram on
Aff.1 loyalty manifold

Fig. 6.22 – Life-stage histogram on
Aff.1 loyalty manifold

label is created with better MLP accuracy. One way to reduce the number of categories

is to use only those categories with highest prevalence, for example [ly1, ly2] of loyalty

combined with [ls1, ls2, ls3] of life-style.

Figure 6.23 depicts the loyalty-lifestyle Fisher manifold. It has a slightly wider structure

with a higher weight on the 2nd eigenvalue, but the distributions seem to be dominated

by the loyalty labels. Figure 6.24 shows the probability distributions of the combined

labels where one may observe the categories distributions are indeed driven by the loyalty

labels, with the lifestyle distributions following the loyalty distributions. Therefore, it

can be concluded that the shopping baskets do not contain information about lifestyle.

Fig. 6.23 – Fisher cMDS with com-
bined label: Loyalty & Lifestyle

Fig. 6.24 – Loyalty & Lifestyle his-
togram on Aff.1

6.2.9 FINs without data stratification

It was shown in Subsection 6.2.8.2 that affluence does not affect the loyalty distributions.

Other option is to build a Fisher manifold without the affluence stratification, and

comparing for instance the affluence Fisher manifold with respect to the loyalty manifold.

To reduce runtime a random sample of the original data was used for this analysis.
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6.2.9.1 Affluence FIN

The main problem of the affluence label is the low performance of the MLP with the

shopping basket data. Therefore, it is of interest to build the affluence manifold without

taking into account the MLP accuracy. In figure 6.25 the cMDS structure is shown for

this approach, although it presents a slight cigar shape, the affluence labels seem to be

randomly distributed across the manifold.

Figure 6.26 shows the histogram based on the first eigenvector projection, where there is

no correlation with the affluence labels. Again, similar conclusions to the lifestyle labels

are obtained, the shopping baskets do not contain enough information to discriminate

the affluence labels, and therefore the Fisher manifold is not effective when there is poor

MLP performance.

Fig. 6.25 – Affluence FIN cMDS
Fig. 6.26 – Affluence FIN histogram

6.2.9.2 Loyalty FIN

Applying the loyalty Fisher manifold to the same sample with no stratification, gives

figure 6.27 where the loyalty distributions closely match the case with data stratifica-

tion 6.2.8.2, and the affluence distributions in figure 6.28 continue to be independent of

the loyalty manifold.

Fig. 6.27 – Loyalty FIN cMDS with
no Aff. stratification Fig. 6.28 – Loyalty FIN no Aff. strat.

histogram
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6.2.10 Community analysis based on loyalty FIN

In previous sections, the shopping baskets have been shown to only discriminate the

loyalty labels. In this section, the shopping profiles created by the communities based

on loyalty Fisher manifold are investigated. For example, the manifold created with

the loyalty labels are applied to affluence 1, and the prevalence of loyalty within that

category investigated.

Figure 6.29 depicts the cMDS Fisher manifold with the communities obtained with

the Newman’s algorithm. The cigar shape of the manifold structure transforms the

clustering task into a segmentation task, where the communities are segments of the

cigar shape. The extreme communities have higher ratios of the respective loyalty labels,

Ly1 on the left and Ly2 on the right.

Fig. 6.29 – Loyalty communities on Aff.1

Using the communities to create shopping basket profiles can help to identify prod-

ucts that are more sensitive to the loyalty labels. The community profiles of all class-

products are shown in the Subsection 6.2.10.1. Recalling the profiles are computed by

the standardization of the mean community spending against the whole population, see

Section 3.2.5.

Table 6.10 depicts the most relevant products in terms of absolute spending difference

with respect to the whole population. The first column L, indicates the predominant

loyalty label in the community, the second column C is the community identification,

the third column R indicates the ratio of the maximum label membership within its

community. The other columns are the standardized spending of the class-products,

where the products with an absolute average spending greater than 0.5 have been colour
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coded, orange for less spend compared to the whole population and yellow for more

spend.

Looking at the product mean spend, there is a clear correlation with the loyalty and

customer spending, the communities on the left of the manifold (2 and 6) are the least

loyal and with less spend, while the most loyal are the communities 5 and 4. The

intermediate communities 1 and 3 present a mix of loyalty behaviours with an average

spend close to the whole population.

Table 6.10 – Community profiles of products most sensitive to FIN loyalty

L C R c10 c76 c347 c69 c115

1 2 0.78 -0.93 -0.84 -0.72 -0.89 -0.75

1 6 0.71 -0.69 -0.56 -0.57 -0.60 -0.48

1 1 0.62 -0.33 -0.27 -0.34 -0.32 -0.32

2 3 0.58 0.10 0.10 0.06 0.09 0.06

2 5 0.79 0.57 0.52 0.45 0.58 0.42

2 4 0.92 1.20 1.00 1.05 1.09 1.03

6.2.10.1 Community profiles with all products

This section shows the full list all class-products per community profiles. Those products

with absolute spending values greater than 0.5 are highlighted in colour. As mentioned

in 6.2.10, the first column L, indicates the predominant loyalty label in the community,

the second column C is the community identification, the third column R indicates

the ratio of the maximum label membership within its community. The other columns

are the standardized spending of the class-products. The orange colour is for the less

spending than the whole population and the yellow colour for the greater spending than

whole population.

Next table shows similar profiles but in this case for communities formed by the external

loyalty labels.

6.2.10.2 Bayesian networks per loyalty communities

The following BNs are built from CI-maps based on the communities extracted from the

loyalty Fisher manifold. The products associations that conform the shopping baskets

are driven by the customer behaviour characterized by a loyalty similarity in the Fisher

manifold. They are very important for extracting insights about the shopping basket

structure and community behaviour. The BNs show that the class-products that act as

hubs or central nodes in the graph, are the same class-products as in table 6.10, that

present highest spending variations.
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Table 6.11 – Community profiles with all products

L C R c181 c197 c205 c265 c125 c10 c29 c285 c170

1 2 0.78 -0.13 -0.23 -0.30 -0.45 -0.43 -0.93 -0.51 -0.14 -0.25

1 6 0.71 -0.11 -0.13 -0.25 -0.31 -0.29 -0.69 -0.39 -0.08 -0.07

1 1 0.62 -0.04 -0.07 -0.11 -0.18 -0.15 -0.33 -0.26 0.03 -0.02

2 3 0.58 0.02 0.09 0.07 0.03 -0.02 0.10 -0.02 0.00 0.04

2 5 0.79 0.05 0.17 0.16 0.25 0.26 0.57 0.27 0.09 0.18

2 4 0.92 0.18 0.16 0.39 0.62 0.60 1.20 0.86 0.10 0.15

L C R c48 c76 c165 c52 c347 c69 c248 c96 c108

1 2 0.78 -0.23 -0.84 -0.34 -0.30 -0.72 -0.89 -0.22 -0.26 -0.63

1 6 0.71 -0.20 -0.56 -0.26 -0.27 -0.57 -0.60 -0.08 -0.17 -0.45

1 1 0.62 -0.06 -0.27 -0.17 -0.20 -0.34 -0.32 -0.04 -0.07 -0.28

2 3 0.58 0.07 0.10 0.04 0.02 0.06 0.09 0.04 0.04 0.02

2 5 0.79 0.19 0.52 0.18 0.21 0.45 0.58 0.07 0.16 0.36

2 4 0.92 0.21 1.00 0.51 0.50 1.05 1.09 0.22 0.29 0.94

L C R c213 c41 c72 c58 c176 c12 c83 c22 c271

1 2 0.78 -0.30 -0.32 -0.34 -0.42 -0.56 -0.60 -0.64 -0.54 -0.56

1 6 0.71 -0.10 -0.21 -0.22 -0.27 -0.37 -0.40 -0.42 -0.38 -0.45

1 1 0.62 -0.06 -0.10 -0.13 -0.19 -0.19 -0.16 -0.26 -0.22 -0.22

2 3 0.58 0.02 -0.01 -0.01 0.05 -0.08 0.06 0.02 0.00 0.02

2 5 0.79 0.19 0.12 0.21 0.17 0.24 0.34 0.32 0.28 0.38

2 4 0.92 0.29 0.47 0.48 0.63 0.91 0.70 0.93 0.81 0.79

L C R c61 c220 c374 c188 c115 c264 c287 c311
1 2 0.78 -0.64 -0.63 -0.61 -0.61 -0.75 -0.71 -0.70 -0.70
1 6 0.71 -0.49 -0.50 -0.45 -0.52 -0.48 -0.53 -0.43 -0.58
1 1 0.62 -0.24 -0.27 -0.27 -0.29 -0.32 -0.36 -0.27 -0.35
2 3 0.58 0.05 0.02 0.00 0.05 0.06 0.06 0.06 -0.03
2 5 0.79 0.34 0.34 0.32 0.44 0.42 0.41 0.40 0.41
2 4 0.92 0.90 0.96 0.94 0.87 1.03 1.06 0.92 1.16

The communities are sorted by loyalty in increasing order. The first figure 6.30 and

the last one 6.34 represents extreme behaviours where the loyalty similarities within the

community are more marked, these effect also can be observed in the community profiles

where certain products have an average spending quite differenced from the total mean.

At the same time, the products more sensitive to the loyalty and total spending, are the

products with central nodes that act like a hub in the graph. Intermediate communities

have a mix of behaviours and the BNs (6.31, 6.32, 6.33) reflect different node structures,

although the most sensitive nodes continue acting as a hubs, but with spending values

closer to the total mean.

The BNs show that the class-products that act as hubs or central nodes in the graph,

are the same class-products as in table 6.10, that present highest spending variations.
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Table 6.12 – External loyalty profiles with all products

Ly c181 c197 c205 c265 c125 c10 c29 c285 c170

1 0.05 0.12 0.16 0.25 0.24 0.50 0.30 0.07 0.13

2 -0.04 -0.11 -0.15 -0.23 -0.23 -0.50 -0.30 -0.07 -0.12

3 -0.09 -0.09 -0.19 -0.23 -0.21 -0.50 -0.20 -0.11 -0.11

4 -0.13 -0.16 0.05 -0.20 -0.17 -0.40 -0.10 0.09 -0.11

Ly c48 c76 c165 c52 c347 c69 c248 c96 c108

1 0.12 0.44 0.19 0.19 0.39 0.45 0.08 0.12 0.35

2 -0.10 -0.40 -0.17 -0.20 -0.36 -0.40 -0.07 -0.10 -0.32

3 -0.10 -0.40 -0.19 -0.20 -0.40 -0.40 -0.11 -0.10 -0.35

4 -0.20 -0.50 -0.23 -0.20 -0.31 -0.50 -0.04 0.00 -0.22

Ly c213 c41 c72 c58 c176 c12 c83 c22 c271

1 0.13 0.19 0.17 0.24 0.29 0.30 0.33 0.29 0.33

2 -0.12 -0.17 -0.16 -0.23 -0.30 -0.30 -0.30 -0.26 -0.30

3 -0.12 -0.15 -0.15 -0.12 -0.20 -0.30 -0.28 -0.31 -0.40

4 -0.20 -0.21 -0.20 -0.12 -0.30 -0.30 -0.30 -0.25 -0.30

Ly c61 c220 c374 c188 c115 c264 c287 c311
1 0.33 0.37 0.36 0.34 0.39 0.38 0.39 0.42
2 -0.30 -0.35 -0.30 -0.31 -0.40 -0.36 -0.40 -0.40
3 -0.30 -0.28 -0.40 -0.25 -0.30 -0.32 -0.40 -0.32
4 -0.30 -0.34 -0.30 -0.40 -0.40 -0.42 -0.40 -0.29

Turning the attention to the class label profiles of the products more sensitive, table 6.13

shows their total spend is closer to the whole population than the spend of the community

profiles. In these products, there is a discrepancy between the negative spend of the

community profiles associated with Ly1 (communities 2, 6 and 1 in table 6.10) and the

positive spend of the external profile of Ly1. The opposite situation happens for the

profiles associated to Ly2. For instance, community 4 has 92% of customers in the Ly2

category, however the community average spending profile is predominantly positive

from table 6.10, but the Ly2 spending profile from table 6.13 is predominantly negative.

This is a consequence of the noise in the data, the class labels are very mixed, but the

manifold communities are able to extract shopping basket similarities to give more pure

behaviours, mitigating the noise.

Table 6.13 – Class labels profiles of products most sensitive to FIN loyalty

Ly c10 c76 c347 c69 c115

1 0.5 0.44 0.391 0.45 0.39

2 -0.5 -0.4 -0.36 -0.4 -0.4

3 -0.5 -0.4 -0.4 -0.4 -0.3

4 -0.4 -0.5 -0.31 -0.5 -0.4
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For instance, looking at the spend distributions of the class-products c10 and c115 in the

figures 6.35 and 6.36, one may observe how the distributions are displaced to the right

(increased spend) as the community is more set to the right of the manifold. There are

many observations (customers) in the shopping baskets with zero values, meaning they

have not bought certain products. In these plots, the percentage of customers that do

not buy a product is estimated by looking at the Y-axis values where X-axis is close to

zero. For the c10 product, there is approximately 85%, 62%, 40%, 19%, 8% and 1% of

customers for communities 2, 6, 1, 3, 5 and 4 respectively that do not buy product c10.

A similar pattern emerges for the c115 figure but with higher percentages.

Fig. 6.35 – Community spending of product c10

Fig. 6.36 – Community spending of product c115

6.2.11 Conclusion of retail case study

In this section, the FIN pipeline has been applied to customer shopping baskets, where

the noise associated with real data has completely determined the structure of the man-

ifold, the poor MLP performance reflecting the main constraint to the case study. The

analysis of a customer data sample of aggregated shopping basket data resulted in the

following insights:
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1. The shopping basket data organised according to a probabilistic model of loyalty

classes sits on an approximately linear manifold. This means that the intrinsic

noise has linearised the neural network model to the point where it is closely

equivalent to using logistic regression, for which the manifold generated by the

Fisher Information metric is 1-dimensional and strictly equal to the risk score

β × X. Therefore, loyalty segments can be inferred from the risk score using

clustering methods or accepted statistical methods such as the log-rank test.

2. The segmentation obtained by the manifold clustering is more specific than the

original labels, in the sense that the ratio of mean expenditure per category be-

tween segments is higher.

3. Indicator variables that are in the adjacency set of loyalty table 6.10, are also

highly connected (hub nodes) in segment specific CI-maps 6.2.10.2. These variables

represent categories that are proxies for shopping profiles associated with loyalty.

They are likely related to underlying latent variables.

4. These indicator variables 6.10 show the strongest variation in spending between

inferred loyalty segments.

As future work, a further research in the methods to reduce the impact of the noise of

the real-world data in the FIN procedure is necessary.

6.3 Music data study case

This section is focused on the application of the FIN work-flow into a sample of the

Million Song Dataset (MSD) [27]. Under the scope of Music Information Retrieval

(MIR), the data analyses the spectral features of multiple songs which are classified

(labelled) by music genre.

6.3.1 Introduction

The choice of this dataset for the Fisher manifold analysis is for several reasons, first

of all it represents a good example for the kind of situations where the class labels do

not correspond exactly with the features information, i.e. the songs are represented

objectively by the spectral features but also the data is labelled by genre, a set of labels

defined subjectively by artist style, album tendencies or other factors that mean the

songs may not exactly match with the allocated musical genre. The most common

genres have been selected (pop-rock, rap, and jazz), with the expectation of a smooth
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transition in the song distributions across different genre regions, essentially due to the

great variety of sub-genres or styles.

Another reason is that, up to this point, the Fisher manifolds of real cases presented

a 1-dimensional linear behaviour (aneurysm and exotic particles datasets), due to the

binary classifier and the noise. As in this chapter a dataset with three different class

labels (genres) are introduced, a Fisher manifold with higher dimensionality than the

1-dimensional case is expected, although any significant noise in the data will tend to

produce the opposite effect.

One interesting aspect of this dataset is that one can listen to the songs and compare

how they are distributed in the Fisher manifold according the metric defined by the

MLP that has only used the music spectral features as input.

In this chapter the Fisher manifold will present density variations, providing a good

opportunity to use of the PQC developed in the previous Chapter 4 to find communities

in the embedded Fisher manifold.

6.3.2 Methodology

The methodology of this case study differs from the retail study because in this case

the feature associations are not analysed, since it has no interest for this study. The

methodology can be defined in the following steps:

1. Select a random sample of the Million Song dataset, with genre labels well bal-

anced.

2. Select the features set with the best trade-off between MLP accuracy, features

number and the amount of genre labels.

3. Compute the Fisher metric with the selected MLP model and obtain the local

pairwise distances with the Spark implementation.

4. Compute the global pairwise distance with Floyd-Warshall algorithm (APSP) in

Matlab, the outcome is the Fisher manifold defined by the adjacency matrix of

pairwise distances.

5. Apply the spectral clustering to obtain communities from the similarity matrix,

the outcome is a set of community labels.

6. Apply a Euclidean embedding of the Fisher manifold and analyse the manifold

density distribution.
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7. Apply the PQC in the embedded Fisher manifold and obtain the cluster labels.

8. Compare labels results between both clustering methods.

9. Analyse the clusters patterns and how they are distributed in the embedded Fisher

manifold.

10. Show the location of some famous songs in the manifold.

6.3.3 Data description and feature selection

The features of this dataset have been obtained from the Information Management and

Preservation Lab, at the Department of Software Technology and Interactive Systems at

Vienna University of Technology. This laboratory has used the MSD for benchmarking

spectral features of the MIR domain, having many features sets in their MSD benchmarks

website 1.

With so many features there is the question of choosing a feature set for the MLP

training and how many genres to sample. To answer to these questions, the MLP

performance has been used as guidance, choosing the lowest dimensionality possible

with a high MLP accuracy. The results have been assessed for different pre-processing

of the data: no normalization, standard normalization (z-score) and row-normalization,

with the standard normalization providing the best results.

Table 6.14 shows the MLP and LR accuracy on the test set (15% sample size) for the

different features sets on the MIR domain. For the MLP and the LR has been used the

Matlab built-in functions from the Deep Learning toolbox [97].

Originally, the data contained 13 different genres, for this study only 3 genres have been

used (keeping the same samples per genre). In addition, the table shows the accuracy of

the logistic regression (LR), where linearity can be checked if MLP and LR have similar

performance. The main reason LR is successful is due to the high level of noise in the

dataset, where a simple linear discriminator is enough to separate most of the genres.

With regard to MLP accuracy where there are almost 5K observations with roughly

1600 songs per genre, the best trade-off between MLP accuracy and dimensionality is

obtained using the 16 Low-level features giving 72.5% accuracy. It is important to recall

that an MLP performance of at least 60% accuracy is critical for the pipeline, as the

Fisher metric will rely on the information contained in the classifier model. The accuracy

is the Fisher metric the accuracy is the best indicator to check if the metric associated

with the MLP probabilities can map the input space with the appropriate class labels.

1http://www.ifs.tuwien.ac.at/mir/msd/download.html

http://www.ifs.tuwien.ac.at/mir/msd/download.html
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Table 6.14 – MLP performance on different feature sets

MLP acc. (%) LR acc. (%)
Features set Dim

13 genres 3 genres 3 genres

Rhythm histogram 60 28.4 60.0 60.8

Statistical Spectrum Descriptors 168 41.1 73.7 77.3

Area moments 20 20.5 54.4 55.0

MFCC 26 34.6 67.3 69.6

Low-level features 16 31.8 72.5 70.3

Low-level features Derivatives 96 36.7 71.3 76.5

LPC 20 29.9 66.2 64.6

Moment Methods 20 27.0 64.3 64.6

A more detailed MLP performance is depicted in figure 6.37, where the results (accuracy,

sensitivity, specificity, PPV and NPV) are presented following the format of the table 3.2.

In the figure, the genres correspond with the following numbers: Rap is 1, Pop-rock is

2 and Jazz is 3.
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Fig. 6.37 – Music MLP performance for genre labels
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The description of the spectral low-level features is shown in the table 6.15, where there

are two main types: based on the standard deviation ([X1, X8]) or on average features

([X9, X16]).

Table 6.15 – Music spectral low-level features

Feature Names of Low-Level features

X1 Spectral Centroid std

X2 Spectral Rolloff Point std

X3 Spectral Flux std

X4 Compactness std

X5 Spectral Variability std

X6 Root Mean Square std

X7 Fraction Of Low Energy Windows std

X8 Zero Crossings std

X9 Spectral Centroid mean

X10 Spectral Rolloff Point mean

X11 Spectral Flux mean

X12 Compactness mean

X13 Spectral Variability mean

X14 Root Mean Square mean

X15 Fraction Of Low Energy Windows mean

X16 Zero Crossings mean

6.3.4 Pipeline results

Once the MLP is trained and the Fisher pairwise distances computed, the Fisher man-

ifold structure under the Euclidean embedding can be analysed. The next subsection

starts with the Sammon mapping and the cMDS embedding.

6.3.4.1 Manifold structure with cMDS

Firstly the embedding with the Sammon mapping is discussed, figure 6.38 where the

colours represent the genres with which the songs were originally labelled. The Sammon

mapping tends to not preserve global distances and in this case one may observe there

are some outliers with distorted distances, reflecting the fact that Sammon mapping is

less reliable to representing density distributions than the cMDS embedding. And for

this reason this chapter will focus on the cMDS results.

Figure 6.39 shows the accumulated eigenvalues of the Fisher manifold embedded with

cMDS. The eigenvalues indicate that the Fisher manifold is bi-dimensional, that means

the MLP needs 2 dimensions to discriminate the genres. This low-dimensionality is
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partly due to the inherent noise in the data, that makes linear boundaries equally efficient

than a non-linear MLP, as evidenced in the LR performance in table 6.14.
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Figure 6.40 presents the two main eigenvectors of the FIN cMDS embedding, where the

significant mixing of genre is evidence of the noise in the data. However, observing the

MLP predictions in figure 6.41, they depict simple boundaries separating the genres in

approximately equal areas of the Fisher manifold, and is why a LR has similar results.
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Fig. 6.40 – Music FIN cMDS by genres
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Fig. 6.41 – Music FIN cMDS by MLP
predictions

By applying the spectral clustering with Newman’s algorithm and using the heuristic

method for the length scale, five communities were recovered shown in figure 6.42. They

segment the manifold into five regions that do not appear to correspond with the peak

density distributions. If one observes figure 6.43 with the bi-dimensional histogram, the

density peaks are centred near the extremes of the Fisher manifold where the genre

concentration is most pure. This effect can be evidenced in the legend of the communi-

ties’ plot, that shows the ratio of maximum genre membership per community, a kind

of genre prevalence per community. Communities 1, 2 and 3 have ratios of 0.80, 0.79,
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0.84 respectively, compared with communities 4 and 5 which are in the middle of the

manifold that have ratios of 0.47 and 0.42.
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6.3.4.2 cMDS with Euclidean distances

Just for completeness, figures 6.44 and 6.45 depict the cMDS embedding of the manifold

based on Euclidean pairwise distances. The eigenvalues cumulative sum indicates that

at least four or five principal components are needed to retain more than 80% of the

variance. The Euclidean cMDS representation, which is equivalent to PCA, shows that

two principal components are not enough to separate the genres, as there is significant

mixing of genre types.
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6.3.4.3 Community finding with PQC on cMDS embedding

If, instead of the spectral clustering, PQC was used, then the density-based method

would provide us with tools for selecting the appropriate PQC hyper-parameters, mini-

mizing the Average-Negative-Log-Likelihood of cluster membership. Figure 6.46 shows
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the ANLL plot which indicates that σ = 15%knn and log(Eth) ∈ [−3,−1.5] are good

hyper-parameters for this data. Selecting these parameters a solution is obtained and

presented in figure 6.48, where the maxK P (X|K) is depicted in figure 6.47, represent-

ing the maximum probability of belonging to any cluster. In the manifold, there are

regions where the cluster membership is certain, but in the middle regions is not so clear

anymore, showing regions with a significant mixture of genre.

Fig. 6.46 – Music FIN cMDS PQC
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The genre prevalence per community in the case of PQC clusters is depicted in fig-

ure 6.47. There are six communities, where three belong to the genre regions of higher

density with a genre prevalence of 0.82, 0.85 and 0.91 for Jazz, Pop-Rock and Rap,

respectively. The other three communities lie in the intermediate regions, with lower

prevalences ∈ [0.47, 0.47, 0.60].
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Fig. 6.48 – Music FIN cMDS by PQC clusters
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6.3.4.4 Communities profiles

One interesting option for these groups is to build the communities profiles, i.e. the

main feature characteristics of each community standardized with reference to the whole

data, see eq. 3.26. In this case, one can highlight the most important attributes of each

genre (communities of higher density) and compare them with the other communities.

In addition, the main attributes of the class labels without taking into account their

distribution in the Fisher manifold can be examined, too. The results are presented

in tables 6.16 and 6.17, which display the features based on standard deviation and

mean values respectively. Given the profiles are standardized, only those absolute values

greater than 1 can be considered different enough from the overall mean of the data

(significance in terms of one standard deviation).

The notation of the table for the column position is PR as Pop-Rock, J as Jazz and R

as Rap. The positions refer to the cMDS embedding where Jazz is bottom left, Rap

bottom right and Pop-Rock from the middle and up. Inspecting the features, Jazz and

Rap are characterized by greater absolute values. Pop-Rock features being closer to

zero intuitively makes sense, given that Pop-Rock includes many music styles ranging

from heavy-metal to commercial-pop, and therefore producing an average value closer to

zero. The intermediate communities also have lower absolute values than the extremes

communities. In terms of the features, those based on standard deviations have greater

prominence than the means values.

Finally, it is important to remark that, not only in this case but also in general, the

profiles based on class labels tend to be close to zero, given the class labels are not

clustered by similarities or feature distances, producing averaged profiles close to the

whole data average.

Table 6.16 – Community profiles with std features

Com. Position X1 X2 X3 X4 X5 X6 X7 X8

1 PR & R 0.40 0.45 0.42 -0.02 0.46 0.44 -0.15 0.45

2 J -0.89 -1.02 -1.00 0.21 -1.00 -1.00 0.32 -0.98

3 J & R -0.06 -0.07 -0.40 0.37 -0.25 -0.23 0.59 0.00

4 PR -0.22 -0.09 0.22 -0.46 -0.05 -0.08 -0.50 -0.25

5 J & PR -0.45 -0.41 -0.62 -0.22 -0.63 -0.61 -0.13 -0.44

6 R 1.26 1.19 1.29 0.15 1.44 1.44 -0.03 1.26

Class labels X1 X2 X3 X4 X5 X6 X7 X8

Rap 0.73 0.69 0.71 0.13 0.83 0.81 -0.03 0.74

Pop-Rock -0.20 -0.11 -0.06 -0.24 -0.18 -0.18 -0.20 -0.20

Jazz -0.52 -0.56 -0.64 0.11 -0.64 -0.61 0.23 -0.53
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Table 6.17 – Community profiles with mean features

Com Position X9 X10 X11 X12 X13 X14 X15 X16

1 PR & Rap 0.11 0.12 0.40 -0.35 0.39 0.37 -0.05 0.19

2 J -0.74 -0.81 -1.00 0.68 -1.04 -1.05 -0.22 -0.95

3 J & R -0.51 -0.54 -0.57 0.11 -0.53 -0.57 0.18 -0.55

4 PR 0.62 0.79 0.75 -0.34 0.80 0.90 -0.10 0.81

5 J & PR 0.01 -0.02 -0.56 0.22 -0.36 -0.33 -0.16 0.02

6 R 0.47 0.41 0.86 -0.34 0.67 0.61 0.42 0.45

Class labels X9 X10 X11 X12 X13 X14 X15 X16

Rap 0.23 0.19 0.50 -0.30 0.42 0.37 0.21 0.22

Pop-Rock 0.21 0.31 0.20 -0.13 0.28 0.34 -0.11 0.31

Jazz -0.43 -0.49 -0.69 0.43 -0.69 -0.69 -0.10 -0.53

6.3.4.5 Analysis of famous artists songs

In this section, songs of famous artists are mapped onto the embedded Fisher manifold

to identify where they are located, the advantage of analysing songs is that they can be

listened to and their label/community assessed for appropriateness of the attributions,

albeit subjectively.

The following table 6.18 enumerates the songs by Id for identifying them in the next

figure 6.49. The table contains the external genre and the predicted genre by the MLP.



6.3. Music data study case 188

Table 6.18 – List of famous songs mapped into the Fisher manifold

Id Lab/MLP Song Artist Song title

1 J - J Count Basie Segue In C

2 J - J Duke Ellington Black And Tan Fantasy

3 R - R Eminem We Made You

4 J - J Frank Sinatra I Should Care

5 J -R George Benson Stairway To Love

6 J - J Glenn Miller Happy In Love

7 R - R Ice Cube A Bird In The Hand

8 J - R Jamie Cullum Love Aint Gonna Let You Down

9 R - R Jay-Z Threat

10 J - J Juliet Roberts Carriacou Sunrise

11 R - R Kanye West Flashing Lights

12 PR - PR Korn Politics (Claude Le Gache Edit)

13 PR - J Led Zeppelin Since Ive Been Loving You

14 PR - J Little Richard Long Tall Sally (Take 1)

15 J - J Louis Armstrong I Cant Give You Anything But Love

16 J - J Louis Armstrong Alexanders Rag Time Band

17 PR - J Martha Wainwright These Flowers

18 J - J Miles Davis Dear Old Stockholm

19 PR - PR Naer Mataron The Life And Death Of Europa

20 J - J Nat King Cole I Get A Kick Out Of You

21 PR - J Neil Diamond Girl Youll Be A Woman Soon

22 PR - PR Neil Young Revolution Blues

23 PR - PR Pet Shop Boys Rent (2001 Digital Remaster)

24 PR - J Robbie Williams Morning Sun Reprise

25 J - J Slavic Soul Party! Juan Colorado

26 R - PR Snoop Dogg Gangsta Luv

27 J - PR The Flying Luttenbachers Clank

28 PR - PR The Jimi Hendrix Exp. Hey Joe

29 PR - R The Rolling Stones Cherry Oh Baby

30 PR - PR The Velvet Underground Rock And Roll (LP Version)

31 R - PR Vanilla Ice Its A Party

32 R - R Will.I.Am Tai Arrive

Apart from the famous songs, two more songs have been included due to their closeness

and rare positioning in the middle-top manifold. Their ids are 27 (Jazz) and 19 (Pop-

Rock), and examined to explain why a Jazz song may be so far away from the main Jazz

region (bottom-left). If the reader can listen to both songs they will discover that the

Jazz song (id 27) is quite an experimental style with a sound that could be identified as

industrial noise. On the other hand, the Pop-Rock song (id 19) is extreme heavy metal,

surprisingly labelled as Pop-Rock.

Additional information about these songs features can be found in next Subsec-

tion 6.3.4.6.
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6.3.4.6 Spectral low-level features

This subsection shows additional information about the famous artist songs listed in

table 6.18, it contains the features of the selected songs in the tables 6.19 and 6.20.

Bear in mind, sometimes the spectral features characterize the main attributes of the

wave sound but it is possible that these features are not closely linked to the layman

perception of song style. On the other hand, it is remarkable the discrepancies between

the genre labelling and the spectral features similarities if one observes the high noise

and genre mixing in figures 6.40 and 6.49.

6.3.5 Conclusion of music case study

Probabilistic classifiers induce a local similarity metric at each location in the space of

input data. This is measured by the Fisher Information Matrix. Pairwise distances

in this Riemannian space are measured along geodesics. These distances are useful for

generating a similarity map of the data. This work describes an application to Music

Information Retrieval. A Euclidean embedding is produced for three genres in a cohort

of the Million Song Dataset, which is then segmented to find songs that clearly belong

to a given music genre whilst others reflect fusion styles. This validates this generic

method in a particular application domain and illustrates its value for intelligent data

retrieval.
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Table 6.19 – Features std-based of famous artists

Id X1 X2 X3 X4 X5 X6 X7 X8

1 -0.6 -0.6 -1.0 1.2 -0.9 -0.9 -0.5 -0.4

2 -0.2 -0.5 -1.2 0.8 -1.3 -1.2 0.7 -0.5

3 1.6 1.5 2.8 -0.3 1.6 2.1 -0.8 1.5

4 -0.4 -0.6 -1.2 0.6 -1.5 -1.6 1.4 -0.5

5 0.5 0.4 0.5 0.5 0.3 0.6 0.9 0.4

6 -0.9 -1.0 -1.0 -0.1 -0.9 -0.8 -0.1 -0.9

7 -0.5 -0.4 1.0 0.0 1.1 1.0 -1.0 -0.4

8 -0.5 -0.6 0.9 -0.4 1.1 1.1 1.5 -0.4

9 0.4 0.7 2.6 0.1 2.2 2.3 1.0 0.6

10 -0.6 -0.6 0.1 1.3 0.0 0.0 -1.1 -0.7

11 0.6 0.7 1.2 -0.5 1.5 1.6 0.3 0.7

12 -0.5 -0.2 1.4 -0.4 0.9 0.7 0.3 -0.5

13 -0.6 -0.5 -0.7 -0.3 -0.5 -0.4 -0.4 -0.4

14 0.0 -0.2 -0.9 3.0 -0.4 -0.2 1.0 -0.3

15 1.3 0.4 -1.1 -0.4 -0.9 -0.7 1.6 0.8

16 -0.6 -0.8 -1.0 -0.3 -0.7 -0.5 0.3 -0.8

17 -1.2 -1.2 -0.9 0.8 -0.7 -0.7 0.0 -1.2

18 -0.8 -0.9 -1.0 0.2 -1.0 -0.9 1.4 -0.8

19 0.0 -0.5 -0.3 -0.7 -0.6 -0.7 -1.3 -0.5

20 -0.5 -0.6 -1.0 -0.1 -0.9 -0.8 0.8 -0.6

21 0.2 -0.1 -1.2 0.3 -1.5 -1.5 0.9 0.2

22 -0.5 -0.4 0.4 0.1 0.3 0.5 -0.6 -0.5

23 -0.4 0.0 0.1 0.9 0.0 0.1 -0.7 -0.2

24 -0.7 -0.8 -0.2 -0.2 -0.4 -0.3 -0.1 -0.7

25 -1.0 -1.2 -1.1 1.1 -1.3 -1.4 0.3 -1.3

26 -0.9 -0.9 0.2 -0.3 0.1 0.1 -0.9 -0.7

27 -0.4 -1.3 -0.2 -0.8 -0.8 -0.7 -0.4 -1.1

28 -0.6 -0.3 -0.5 -1.1 -0.5 -0.5 -0.6 -0.6

29 1.8 1.9 -0.8 -0.8 -0.5 -0.3 1.3 1.9

30 0.3 0.4 -1.0 -0.1 -1.1 -1.0 -0.6 0.2

31 1.4 1.5 -0.8 0.0 -0.7 -0.7 -1.0 1.4

32 0.2 0.7 0.6 -0.1 0.5 0.7 2.4 0.3

This work has presented a MIR application of Fisher manifolds. The goal is to arrange

and cluster the songs with human-labelled genre information contained in the MLP.

The similarities between songs have been based on spectral wave sound features, purely

objective measures without any subjective human-perception whatsoever. The result

is a Fisher manifold where the genre labels are somewhat mixed but there are some

high-density regions in the cMDS embedding where there is a predominant genre. PQC

has been used for community finding applied to the embedded Fisher manifold. The ob-

tained communities (clusters) classify the songs into two main kinds of clusters, namely,

those belonging to a pure genre and others that belong to an intermediate region, char-

acteristic of a fusion of styles. Finally, the work analyses a list of famous songs mapped



6.4. Conclusion of complete framework 191

Table 6.20 – Features mean-based of famous artists

Id X9 X10 X11 X12 X13 X14 X15 X16

1 -1.1 -1.0 -1.1 0.9 -1.2 -1.3 1.0 -1.1

2 -0.5 -0.6 -1.2 0.5 -1.6 -1.6 -0.4 -0.9

3 1.9 1.8 2.3 -0.5 1.2 1.3 0.2 1.9

4 0.5 0.4 -1.2 0.4 -1.7 -1.7 -0.8 0.1

5 0.0 -0.1 0.1 0.5 0.4 0.4 0.2 0.1

6 -1.0 -1.0 -1.0 0.2 -0.7 -0.7 0.1 -1.3

7 -0.7 -0.6 1.4 -0.2 1.6 1.5 -0.6 -0.5

8 -0.9 -0.9 0.5 -0.6 0.8 0.7 -0.1 -1.0

9 -0.6 -0.5 1.8 -1.0 1.7 1.5 1.3 -0.4

10 -0.3 -0.2 -0.1 1.1 0.2 0.2 -0.1 -0.5

11 -0.3 -0.3 1.1 -0.8 1.3 1.2 0.6 -0.1

12 0.1 0.3 1.2 -0.7 1.3 1.4 0.8 0.5

13 -0.3 -0.2 -0.5 0.1 -0.2 -0.2 0.0 -0.3

14 0.3 0.2 -0.7 1.4 0.0 0.1 -1.0 -0.1

15 0.4 0.1 -1.1 0.0 -1.2 -1.2 0.6 0.2

16 0.2 0.0 -0.9 -0.1 -0.8 -0.7 -0.3 -0.3

17 -1.3 -1.2 -0.7 1.4 -0.3 -0.3 -0.2 -1.3

18 -0.3 -0.4 -1.1 1.3 -0.9 -0.9 -1.0 -0.4

19 2.7 3.5 1.1 -0.8 1.0 1.2 -0.4 2.6

20 -0.1 -0.2 -1.0 0.3 -1.1 -1.1 0.3 -0.2

21 -0.8 -0.9 -1.2 -0.2 -1.7 -1.7 -0.2 -1.1

22 0.0 0.0 0.3 0.3 0.3 0.4 0.3 0.1

23 -0.2 0.0 0.2 0.2 0.5 0.6 -0.1 -0.2

24 -0.7 -0.8 -0.3 -0.2 -0.1 0.0 0.7 -0.5

25 0.1 -0.1 -1.1 2.4 -0.9 -0.9 -0.5 -0.4

26 -0.9 -1.0 0.9 -0.5 1.1 1.1 -1.1 -0.9

27 3.8 2.6 0.5 -0.5 0.6 0.9 -0.5 2.7

28 -0.4 -0.3 -0.3 -0.3 0.2 0.3 -0.1 -0.2

29 0.9 0.7 -1.0 -0.2 -1.1 -1.1 0.5 0.8

30 0.6 0.8 -0.9 0.4 -0.9 -0.8 -0.6 0.7

31 1.7 1.9 -0.7 0.0 -0.6 -0.6 -0.5 1.8

32 0.4 0.3 -0.3 0.6 -0.4 -0.4 1.5 0.6

into the Fisher manifold in order to illustrate the achieved results and facilitate their

interpretation.

6.4 Conclusion of complete framework

This chapter has applied the complete framework to two completely different case stud-

ies. The first part has focused on describing the procedure to obtain the Fisher manifold

and on comparing the two methods of clustering suggested in this thesis. The pipeline

describes two possible clustering paths, but in the comparison of this chapter, it has
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been seen that both paths do not have to be exclusive. The path of spectral clustering

based on similarity networks is good for segmentation tasks and the path of PQC is good

for density discrimination, but in general there is not a huge difference in the labels of

both methods, being quite consistent between them. The level of matching has been

measured with the Cramer’s V statistic and for the both case studies the score has been

similar: CV (communities, clustersPQC) ≈ 0.77. In any case, the label differences in

both methods will be accentuated when the Fisher manifold distribution presents high

density variations.

The second part of the chapter has focused on analysing in detail the two case studies,

where the presence of noise in the data has been critical to determine the shape of the

manifold, making the MLP probabilistic model have a linear behaviour, with results

similar to a logistic regression. For the first case, where the manifold was based on

customer shopping baskets, the noise and the fact that the MLP model only detected

two labels produced that the shape of the manifold was one-dimensional. The music

study case would have had a similar effect, but the fact that the MLP model detected

the three genre labels has made the Fisher manifold two-dimensional. For the music

case, the differences in density have made the PQC more appropriate to detect the

clusters, besides mapping the manifold with the probability of belonging to any cluster,

useful for identifying regions with fusion of musical genres.

Finally, the CI-maps analysis only has been applied in the retail data, where the most

important products of the shopping baskets in relation to the loyalty labels have been

identified. These products play the role of central nodes in the Bayesian networks, and

many secondary products are connected to them. The communities at both ends of

the one-dimensional manifold have more differentiated CI-maps, and the communities

of intermediate regions have a transitional behaviour between both extremes.



Chapter 7

Final conclusions

This thesis has covered algorithms that belong to completely different areas with an over-

arching theme of developing a process to restructure data, based on the question (label)

being asked. The first part of metric learning could be catalogued as semi-supervised

algorithms, and the other two of clustering and structure learning as unsupervised algo-

rithms. The common bond is the analysis of the data structure through three different

perspectives, summarized as follows:

1. The structure of a manifold, which contains the relevant information and the

complexity of a classifier model. The core of the algorithm is the Fisher metric

applied to the input space instead of the parameter space. This local metric

implicitly measures the amount of the model information in that region, where the

Euclidean pairwise distances are transformed into a Riemannian manifold.

2. The structure of data density, through the bounding of nearest neighbours until

they conform to a cluster. The density estimator is based on a convex potential de-

rived from quantum mechanics. Essentially, the potential transforms the problem

of density hill climbing into a gradient descent problem looking for local minima.

3. The structure of feature associations, where these associations are based on con-

ditional independence tests. In the graph notation, the features are represented

by nodes and the associations by edges. The CI-map represents an undirected

graph, where the edges can be oriented to perform a direct acyclic graph as a

Bayesian network. Learning the structure from the data will not provide a unique

DAG solution. From the PDAG obtained through the PC-algorithm, a systematic

node-ordering methodology has been developed to build a DAG, which is robust,

reliable and reproducible for creating a good candidate as a Bayesian network.
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These structure analyses are linked together through the pipeline described in figure 1.1,

where the Fisher manifold changes the metric and redefines the neighbourhood of obser-

vations, forming a new density distribution. This new structure can be analysed with the

PQC, that detects clusters by density variations. Until this point, the structure analysis

is focused on similarities and relationships between observations, however the structure

analysis can also focus on the relationships between features, which is the purpose of

the CI-maps methodology, but taking the advantage of the segmentation provided by

the clustering analysis.

After all the experiments carried on each chapter, the following conclusions can be made:

Fisher manifold

By constructing a structure of the Fisher manifold, it will contain the complexity of the

MLP classifier, in such a way that the manifold dimensionality mainly depends on 1)

the structure of the class labels distribution and 2) the classifier ability to discriminate

them according to the available input data, i.e. the model performance.

Regarding the label distributions, different examples have been covered. For instance the

case of exotic particles, where the input space had high dimensionality and the binary

classifier only required a 1-dimensional Fisher manifold to discriminate the labels. As

a counterexample, analysed the concentric spirals dataset, a 2-dimensional input space

with a very structured label distribution. In this case the Fisher manifold needed a

3-dimensional space to discriminate the labels, with a higher dimensionality than in the

input space. In general, the Fisher manifold tends to create a Riemannian space with

as low dimensionality as possible.

The other factor is the model performance, which directly depends on the information

contained in the input space for classifying the labels. A noisy dataset, which is the

case in most of real-world data, tends to linearise and smooth the Fisher manifold, but

if the noise is too high or the MLP accuracy is too low, the manifold loses structure

and tends to a homogeneous distribution of the labels. As examples, there were three

cases of increasingly noisy data, the music data and the shopping baskets with loyalty

labels, which displayed considerable overlapping of labels in the intermediate regions of

the manifold. The extreme case of poor MLP performance with the shopping baskets

applied to affluence, life-style or life-stage labels. Future work in this direction could

look at noise reduction in real-world scenarios such as the customer shopping baskets to

mitigate the impact in the Fisher manifold.

In terms of the Fisher pipeline implementation, Spark big-data tools have been devel-

oped to reduce the runtime of the pairwise distance computations. However, the main

limitation is that the algorithm does not scale enough for fairly large sample sizes, for
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instance 15K observations for a medium cluster took approximately five hours runtime.

As future work, it would be worth implementing the pipeline in GPGPU, where there

is also a great level of parallelization.

Probabilistic Quantum Clustering

The main achievement of the PQC has been the development of an unsupervised score to

assess the model hyper-parameters, where the cluster solutions are highly correlated with

the supervised Jaccard score. The unsupervised score measures the average negative log-

likelihood of cluster membership under a probabilistic framework, where the framework

also allows for outlier detection and cluster discrimination by local density variations.

The algorithm has been developed in relatively low dimensional datasets (less than 10 di-

mensions), highly structured with non-spherical cluster distributions, with heteroscedas-

ticity and local density variations. In all cases the results been better or comparable

with the original quantum clustering performance.

The main limitation of any version of quantum clustering is in relation to the measure-

ment of relative Euclidean distances in high dimensional spaces, this problem is inherent

in the Gaussian kernels which have been used as density estimators. Research into dif-

ferent types of kernels applied to quantum clustering could be an interesting future

direction for the work, taking into account that QC needs a kernel easily differentiable

up to at least second order. An alternative future work could look into reducing the

PQC runtime using GPGPU processing.

Conditional Independence maps

In terms of the structure learning field, for constraint-based algorithms a stable method-

ology has been improved for building CI-maps and their derived BNs. The main devel-

opments have been 1) the tuning of the PC-algorithm policies to reduce the structure

errors with unknown data and the overall false positive error proliferation; and 2) the

impact of the node ordering in the DAG construction. The process have been validated

on several benchmark data, and the brain tumour application reveals congruent asso-

ciations of metabolites and the tumour types. Another relevant application has been

for customer profiles based on shopping baskets, where the product associations differ

depending on the loyalty community.

The main limitation of the structure learning algorithms is that it is very hard to know

if the structure recovered from the data is really the true structure, this limitation is

aggravated in cases of data with considerable noise.

One possible line of future work would be the application of the probabilistic models

generated by the BNs with the parameters learnt from the shopping baskets data. In
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such a way that, for instance, the probability that a customer will buy a certain product

given that other products have already been purchased can be estimated.

As final comments, I would like to highlight that, in the scope of real applications, some-

times the use of complex non-linear algorithms may be unnecessary, where the noise of

real data or the scalability issues in big data environments tend to favour simpler, more

interpretable and faster linear models. However, from the theoretical point of view, com-

plex algorithms like the Fisher manifold or the PQC are still very interesting, because

maybe, one day the computing power of new technologies allows a more extensive use of

these complex algorithms in real scenarios. Analogous to the case of the neural networks

resurgence with the deep learning paradigm being witnessed at the moment.
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[90] M. Kalisch, P. Bühlmann, Estimating High-Dimensional Directed Acyclic Graphs

with the PC-Algorithm, J. Mach. Learn. Res. 8 (2007) 613–636.
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Torres, F. A. Howe, M. Van Der Graaf, V. Lefournier, M. M. Murphy, et al.,

Development of a decision support system for diagnosis and grading of brain tu-

mours using in vivo magnetic resonance single voxel spectra, NMR in Biomedicine

19 (4) (2006) 411–434.

[125] E. J. Delikatny, S. Chawla, D.-J. Leung, H. Poptani, MR-visible lipids and the

tumor microenvironment, NMR in biomedicine 24 (6) (2011) 592–611.

[126] V. Govindaraju, K. Young, A. A. Maudsley, Proton NMR chemical shifts and

coupling constants for brain metabolites, NMR in Biomedicine: An International

Journal Devoted to the Development and Application of Magnetic Resonance In

Vivo 13 (3) (2000) 129–153.

[127] H. Poptani, R. Gupta, V. Jain, R. Roy, R. Pandey, Cystic intracranial mass lesions:

possible role of in vivo MR spectroscopy in its differential diagnosis., Magnetic

resonance imaging 13 (7) (1995) 1019.
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Performance assessment of quantum clustering 
in non-spherical data distributions 

Raúl V. Casaña-Eslava1, José D. Martín-Guerrero2, Ian H. Jarman1 and Paulo J. G. Lisboa1 

1- School of Computing and Mathematical Sciences, Liverpool John Moores University, 
United Kingdom 

2- Department of Electronic Engineering, University of Valencia, Spain  

Abstract. This work deals with the performance of Quantum Clustering (QC) when 
applied to non-spherically distributed data sets; in particular, QC outperforms K-
Means when applied to a data set that contains information of different olive oil 
areas. The Jaccard score can be set depending on QC parameters; this enables to find 
local maxima by tuning QC parameters, thus showing up the underlying data 
structure. In conclusion, QC appears as a promising solution to deal with non-
spherical data distributions; however, some improvements are still needed, for 
example, in order to find out a way to detect the appropriate number of clusters for 
a given data set. 

1 Introduction. 

K-means is the most known and widely-used clustering algorithm; however, it has a 
number of problems, being two of the most important ones the fact that the number of 
clusters is not automatically selected and its difficulty to cluster properly when the 
dataset is not spherically distributed. Numerous works have been carried out in order 
to face the former problem; for instance, [1] and [2] make use of Cramérs’ V statistic 
as stability measure to produce the Separation Concordance (SeCo) map, and then using 
the Area Under this Curve as metric to obtain the most consistent values of K. 
Nevertheless, the latter problem is difficult to be solved because of k-means design 
itself. In this framework, Quantum Clustering (QC) appears as a promising solution due 
to its ability to work well with data non-spherically distributed data.. 
 
The QC was introduced in [3] using the Schrodinger equation on probability wave 
function formed as a superposition of N Gaussian probability functions (1), where there 
are N data points of dimension d. Then, looking for solutions of the harmonic oscillator 
potential in ground energy eigenstate, (2 – 4), those centroids in which the potential has 
a local minima can be found. From the wave function in (1) the potential function ܸሺݔሻ 
obtains the σ parameter; more minima appear in	ܸሺݔሻ as σ is decreased. Tuning σ can 
also be used for the estimation of the appropriate number of clusters. 
 

߰ሺݔሻ ൌ ∑ ݁
ି
൫ೣషೣ൯

మ

మమே
     (1) 
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QC has already been tested in [4]; this work made use of Single Value Decomposition 
(SVD) as a preprocessing step before the QC algorithm. Three known datasets of cells 
and genes were tested obtaining good results when dimensions were truncated to the 4th 
– 5th principal components before the application of QC; the corresponding Jaccard 
scores outperformed those achieved by k-means. 
 
The interface called Comparative-Package-for-Clustering-Assessment (COMPACT) 
[5] was used to obtain the results shown in this paper. COMPACT implements several 
clustering algorithms and has the option of reducing the dataset´s dimensionality using 
SVD. The Jaccard score is used to evaluate the clusters obtained compared with the 
known outputs. 

2 The olive oil data set 

The known olive oil dataset [6] has been chosen because it presents a non-spherical 
distribution, and hence, it is suitable to evaluate QC performance compared to k-means. 
The data set presents two types of underlying structure (3 regions and 9 sub-regions) 
thus making the choice of the number of clusters challenging. 
 
The olive oil dataset, consists of 572 observations with 8 characteristics, related to the 
fatty acid content of olive oil. This data corresponds to 3 collection regions, and 9 sub-
regions.; four from Southern Italy (North and South Apulia, Calabria and Sicily), three 
from Umbria (Umbria, East and West Liguria) and two from Sardinia (Inland and 
Coastal regions). 
The projected visualization of the underlying dataset is shown in Figure 1, where each 
data point is labelled according to the region from which it was obtained [7]; the 
overlapping of the data from Calabria, North and South Apulia and Sicily is remarkable. 

3 QC setting-up 

As previously mentioned, COMPACT was used as interface to evaluate the QC 
performance. There are some parameters related to preprocessing (SVD, normalization, 
component reduction, etc.) … and others directly related to the QC algorithm; among 
the latter, the most important parameter is σ, although there are more algorithm 
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parameters that can be tuned (number of steps, rescale, QC core, % pure terms and 
learning rate η). 

 
Fig. 1: Visualization of the 3 main principal components of olive oil data. 

An evaluation performance based on the Jaccard score allowed to draw a number of 
conclusions: 

- Normalization and SVD is needed in order to avoid a high number of clusters. 
- When QC core is applied, the option of % of pure elements just tends to remove 

observations with an outlier behavior (the performance changes because the number 
of observations decreases). 

- The optimal value of the learning rate is η ൌ 0.1; other values of η might improve 
the performance but involving an unstable range of σ to assign a reasonable number 
of clusters. 
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Finally, the best performance was obtained with the following combination of 
parameters: 

- SVD pre-processing is enabled 
- Normalization is applied 
- QC core is not activated 
- The σ belongs to [0.4, 0.6] producing 10 to 2 clusters. 
- The η is 0.1 
- Number of steps: 100 

4 Data structure 

Since the actual output of the olive oil data set is known (classes and sub-classes), it is 
possible to assess and analyze the performance of QC. Although one the main 
advantages of the QC is that the underlying data structure can be found by varying the 
parameter σ. Figure 2 shows that QC does not find the correct number of clusters when 
it obtains the best performance results, that are highlighted in black; in particular the 
value of σ that provides the best performance in the case of three-cluster problem leads 
to four clusters, while QC finds eight clusters when it achieves the best performance in 
the nine-cluster problem. 
 

 
Fig. 2: Performance as σ function. Left axis shows Jaccard score and right axis shows the cluster 
number. Best Jaccard score results alongside the number of clusters are highlighted in black. 

5 QC vs K-means performance 

This section benchmarks QC performance versus K-Means, for the two classifications 
of the data set, namely, three and nine clusters. It must be emphasized that an additional 
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advantage of QC with respect to K-Means is that QC obtains the same solution every 
time the algorithm is run for a particular σ value whereas K-means may provide 
different solutions in different runs since it is strongly depends on the initial conditions; 
to circumvent that bias, K-means was run 500 times to estimate the lowest SSE for each 
cluster number, [2, 12], then the Jaccard score has been obtained for the 3 and 9 regions, 
bearing in mind the lowest SSE doesn’t imply the highest Jaccard score. 
 
The results presented in Fig. 3 show that although QC nor K-Means find the correct 
number of clusters in either of the two problems, QC performance is considerably better 
than that achieved by K-Means, even taking into account that the right number of 
clusters is provided to K-Means. The best solutions for 3 regions are 4 clusters in both 
cases, with the QC Jaccard higher than K-Means. The best matching results for 9 sub-
regions with K-Means is 6 clusters and QC 8 clusters, again QC scoring slightly higher 
(0.74 vs 0.72). The K-Means SSE decreases as K increases, as expected. 

 
Fig. 3 Jaccard score of K-means and QC. Left axis represents Jaccard score and right axis 
represents SSE of K-Means. Orange lines refer to 3 cluster problem and blue ones to 9 cluster 
problem. Dashed line shows QC performance and the grey dot line refers to SSE of K-Means. 

Table 1 depicts the best indices for both algorithms: Jaccard score, purity and efficiency 
(η). 
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Best 
Jaccard sc. 

K-Means QC 

Regions Clust. Jaccard Purity η Clust. Jaccard Purity η 
3 4 0,597 0,619 0,943 4 0.813 0.905 0.889 
9 6 0,718 0,911 0,772 8 0.745 0.794 0.924 

Table 1: Jaccard score, purity and efficiency (η) are shown of clusters with the best Jaccard 
scores. 

6 Conclusion 

This work has proposed the use of QC to cluster non-spherical data distributions. QC 
outperforms the classical K-Means when applied to a data set containing information 
of different production regions of olive oil. Although, QC may not find the correct 
number of clusters, the performance measured in terms of Jaccard score, purity and 
efficiency is much better than that achieved by a K-Means that does know the number 
of clusters in advance. 
Our ongoing and future research is related to the application of QC in more demanding 
environments in order to figure out its usefulness and range of application. And also, 
research related to the search for the correct σ for unsupervised data. 
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a b s t r a c t 

Quantum Clustering (QC) provides an alternative approach to clustering algorithms, several of which are 

based on geometric relationships between data points. Instead, QC makes use of quantum mechanics 

concepts to find structures (clusters) in data sets by finding the minima of a quantum potential. The 

starting point of QC is a Parzen estimator with a fixed length scale, which significantly affects the fi- 

nal cluster allocation. This dependence on an adjustable parameter is common to other methods. We 

propose a framework to find suitable values of the length parameter σ by optimising twin measures of 

cluster separation and consistency for a given cluster number. This is an extension of the Separation and 

Concordance framework previously introduced for K-means clustering. Experimental results on two syn- 

thetic data sets and three challenging real-world data sets show that optimisation of cluster separation 

identifies QC solutions with consistently high Jaccard score measured against true-cluster labels while 

optimisation of cluster consistency provides insights into hierarchical cluster structure. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

As interest in knowledge extraction from data grows, this typ- 

ically includes exploratory analysis especially when the data are 

unlabelled. A central step in exploratory data analysis is the dis- 

covery of different categories or profiles in the data. Clustering al- 

gorithms are efficient methods for unsupervised learning among 

which a frequently used algorithm is K-Means [1] . This method im- 

plements a hard partition of the data by identifying representative 

points, the prototypes, which minimise the sum of within cluster 

squared Euclidean distances as shown in Eqs. (1) and (2) : 

J(�, U) = 

N ∑ 

i =1 

K ∑ 

j=1 

u i j · d(x i , � j ) (1) 

u i j = 

{
1 , d(x i , � j ) = min k =1 , ... ,K d(x i , �k ) 
0 , otherwise 

}
i = 1 , . . . , N (2) 

where d ( x i , �j ) is the distance between the i -th pattern and the j - 

th prototype, N the number of patterns and K the number of clus- 
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ters. In spite of its simplicity, K-Means is an adequate and efficient 

choice of clustering algorithm in many cases. However, it suffers 

from a number of drawbacks that limits its applicability. In par- 

ticular, it tends to find spherical clusters formed by approximately 

the same number of patterns. Moreover, the final cluster allocation 

vary significantly with the choice of prototype initialisation. In ad- 

dition, there is a requirement to pre-set the number of clusters, 

K, even though the optimal value of K is generally not known in 

advance. Consequently, K-means may mix natural clusters or break 

them up with unnecessary intermediate clusters [2–4] . A previous 

publication [3] proposed a framework to ensure that optimal re- 

sults can be reproduced when K-means is repeatedly applied to 

the same data. This framework relies on a parametrisation of the 

set of clustering solutions obtained for different prototype initial- 

isations and cluster numbers, using measurements of cluster sep- 

aration and of the internal consistency, or concordance, between 

multiple clustering solutions obtained for the same K, hence the 

term SeCo for Separation and Concordance mapping of the space 

of clustering solutions. 

This paper proposes an extension of this method to find 

suitable length parameters when applying Quantum Clustering 

(QC) [5–7] . This alternative clustering methodology is attrac- 

tive because it more naturally fits non-spherical data distribu- 

tions [8,9] and it is also better suited to model clusters of different 

http://dx.doi.org/10.1016/j.neucom.2017.01.102 

0925-2312/© 2017 Elsevier B.V. All rights reserved. 
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sizes present in the same data set. We start with a review of exist- 

ing methods for optimisation of the value of the scale parameter 

directly from the dispersion properties of the data, initially pro- 

posed in [10,11] , before comparing the results with the proposed 

alternative method for estimating the length parameter σ using 

the outcome of QC clustering rather than the data alone. 

Work in [12] proposes a combined methodology using kernel 

entropy pre-processing followed by quantum clustering. This two 

length scales, namely a sigma for the entropy kernel and one for 

quantum clustering. The experimental results reported in the pa- 

per assume that the two values are the same and estimates this 

as the small sample covariance for a local neighbourhood with a 

fixed sample size of 50. While this may be appropriate when the 

number of data points is large as is all of the synthetic cases re- 

ported, it remains a parameter to be adjusted. In particular, it is 

found in [12] that the clustering is sub-optimal for the Wisconsin 

Breast Cancer data set. It remains the case, therefore, that the value 

of sigma needs to be adjusted. 

To tackle the problem of high-dimensional data and their scal- 

ability, QC can be combined with techniques of dimensionality re- 

duction [12–15] . 

The rest of the paper is outlined as follows. Section 2 intro- 

duces the QC algorithm. Section 4 , reviews methods for estimating 

optimal values of σ from the data, by application to a set of bench- 

marking data sets which include two synthetic examples and three 

real-world data sets. This is followed in Section 5 , by the introduc- 

tion of the SeCo framework and description of its application to the 

same data sets to set the length scale from clustering results. The 

experimental results are discussed in Section 6 from which conclu- 

sions are then drawn in Section 7 . 

2. Methodology 

2.1. Quantum clustering 

Many clustering algorithms are based on locations of points in 

the data space. That methodology works sufficiently well in many 

situations but it describes a problem that might be ill defined. QC 

proposes a different methodology, inspired in concepts from Quan- 

tum Mechanics [5–7] . It starts with a Parzen-window estimator of 

the probability distribution based on the data; then, a Gaussian 

kernel generates a probability distribution from the data points in 

a Euclidean space, as shown in Eq. (3) : 

�(x ) = 

∑ 

i 

exp 

(
− ( x − x i ) 

2 

2 · σ 2 

)
(3) 

where x i are the data points. QC associates maxima of this function 

with cluster centres in a Hilbert space driven by the Schrödinger 

equation so that minima of the Schrödinger potential are associ- 

ated with cluster prototypes. The Schrödinger equation is given by 

Eq. (4) : 

H� ≡
(

−σ 2 

2 

∇ 

2 + V (x ) 

)
�(x ) = E�(x ) (4) 

where �( x ) is a solution of the equation (eigenstate), H is the 

Hamiltonian, V the potential energy and E is an energy eigen- 

value. The simplest case is given by a single Gaussian where 

� represents a single point at x 1 . It leads to the potential V = 

1 
2 σ 2 ( x − x 1 ) 

2 ; this is a well-known potential in Quantum Mechan- 

ics, the so-called harmonic potential whose ground state corre- 

sponds to the eigenvalue E = 

h̄ ω 
2 = 

d 
2 , where � is the reduced 

Planck constant, ω the angular frequency, and d the space dimen- 

sion. Therefore, the Gaussian function describes the ground state 

of H . 

Although in Quantum Mechanics the usual strategy is to find 

solutions for �( x ) given the potential, the proposal of QC is the 

other way around, i.e., since �( x ) is already determined by the 

data points, the goal is to find a potential V ( x ) whose solution is 

the given �( x ): 

V (x ) = E + 

σ 2 

2 
∇ 

2 �

�

= E − d 

2 

+ 

1 

2 σ 2 �

∑ 

i 

( x − x i ) 
2 exp 

(
− ( x − x i ) 

2 

2 · σ 2 

)
(5) 

If V is positive definite, min V = 0 , and hence E = − min 

σ
2 
∇ 

2 �

�
, 

which implies that 0 < E < 

d 
2 . 

After cluster prototypes are found, the final task is to assign 

each pattern to a given cluster. This can be done by means of a 

gradient descent algorithm; defining y i (0) = x i , the trajectories of 

this point over time, y i ( t ), is iterated as follows, where η is the 

learning rate that controls the speed of approaching the nearest 

minimum: 

y i (t + �t) = y i (t) − η(t ) ∇V ( y i (t )) (6) 

letting y i reach an asymptotic fixed value coinciding with a cluster 

prototype [7] . 

2.2. Parameter optimisation 

The QC code used in this work is based on the Matlab COM- 

PACT GUI [16] . Among the different parameters that appear in this 

implementation, the most important one in the QC algorithm is σ ; 

the rest of the parameters have been set to default because that 

was the setup that provided the best results in [8] , the original 

work from which this paper is an extended version: 

• Learning rate, η = 0 . 10 

• Number of steps = 100 

• Rescale each step = FALSE 

• Use of QC Core = FALSE 

2.3. Number of clusters 

As cluster prototypes are associated with potential minima in 

QC, and the only undetermined parameter is σ , different cluster- 

ing solutions will be obtained for different values of σ . In partic- 

ular, as σ is decreased, more and deeper minima are expected to 

be found. The tuning of σ is usually carried out by means of vary- 

ing it smoothly and looking for stability of cluster solutions [7] . 

Our conjecture is that if one could optimise the value of σ , QC 

would become an automatic clustering algorithm, able to find the 

best combination of structures (in principle, of different shapes) 

that define the data. 

In the next section we introduce several data sets, real and syn- 

thetic, which will be used to illustrate the application of the pro- 

posed methodology. 

3. Description of the data 

Five different data sets are used in this study to illustrate the 

application of the proposed methods: two synthetic data sets and 

three real data sets commonly used to benchmark clustering meth- 

ods. The data sets are described in detail in Sections 3.1 and 3.2 . 

Both synthetic data sets are generated using Gaussian distributions, 

some of them highly overlapped, thus producing unique structures 

formed by different Gaussian distributions that are difficult to sep- 

arate by clustering. The real-world datasets demonstrate markedly 

different cluster shapes and mix clusters of different sizes in the 

same data. 
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Fig. 1. Principal components’ visualisation of artificial data set #1. This data set contains four clusters, generated by a Normal distribution. 

Fig. 2. Principal components’ visualisation of artificial data set #2 (10 clusters). This data set contains 10 clusters, generated by a Normal distribution. 

3.1. Synthetic data sets 

Artificial Data Set #1 (4 clusters). This data set depicts a first possi- 

ble scenario, relatively simple, formed by 800 samples in a three- 

dimensional space and four clusters with the same number of ob- 

servations each. The aim is to evaluate how QC reacts when there 

are three groups of clusters equidistant and how it affects the in- 

ternal Concordance when QC tries to allocate the labels with the 

wrong cluster number. The four clusters are generated by a spheri- 

cal Normal distribution. Fig. 1 shows that two clusters are partially 

overlapped and the other two are totally separated. 

Artificial Data Set #2 (10 clusters). This data set has been used 

in [2–4] , it is based on 1076 observations in three dimensions with 

10 clusters. Each cluster has a different proportion of observations, 

being some of them sparse. The overlapping between two clusters 

is important thus being quite difficult to detect, however there are 

other clusters easily separable. The covariance matrix of the Gaus- 

sian distributions is not spherical. Fig. 2 shows the principal com- 

ponents of this dataset. 

3.2. Real data sets 

Wine data set. This dataset available on the UCI data reposi- 

tory [17] is well known and comprises 178 observations in 13 vari- 

ables. It was acquired from a chemical analysis of wines grown in 

one region of Italy. Each of the attributes consists of measurements 

taken from the various wines, which are created using three dis- 

tinct cultivars. The attributes are Alcohol, Malic Acid, Ash, Alcalin- 

ity of the Ash, Magnesium, Total Phenols, Flavanoids, Nonflavanoid 

Phenols, Proanthocyanins, Colour Intensity, Hue, OD280/OD315 of 

diluted wines and Proline. The cultivars are well separated with 

the expectation of good classification by approaches like K-means. 

Olive oil data set. The Italian olive oil data set consists of 572 sam- 

ples and 10 variables. Eight variables describe the percentage com- 

position of fatty acids found in the lipid fraction of these oils, 

which is used to determine their authenticity. The remaining two 

variables contain information about the classes, which are of two 

kinds: three “super-classes” at country level: North, South, and the 

island of Sardinia; and nine collection area classes: three from the 
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Fig. 3. Olive oil data set: two methods to estimate ˆ σ . Moments method in top graphs, fitting Gamma distribution in middle graphs. Estimated ˆ σ in bottom left and s i sample 

standard deviation in bottom right. Vertical lines indicate the best σ solution according to the Jaccard score for the two external labels of the olive oil data set. 

Northern region (Umbria, East and West Liguria), four from the 

South (North and South Apulia, Calabria, and Sicily), and two from 

the island of Sardinia (inland and coastal Sardinia). 

The goal is to distinguish the oils from different regions and 

areas in Italy based on their combinations of the fatty acids. The 

clusters corresponding to classes all have different shapes in the 

eight-dimensional data space defined by the concentration of fatty 

acids [18,19] . 

Iris data set. The Iris dataset [17] was introduced by Sir Ronald 

Fisher in 1936 for the purpose of using it as an example in explain- 

ing discriminant analysis. The dataset comprises 150 data points in 

four dimensions matching the Sepal and Petal width and height 

for each observation. There are three cohorts present in the data: 

Setosa, Virginica and Versicolor. 

3.3. Data pre-processing 

The QC algorithm is designed to work in a normalised data 

space so that σ values are bounded in the range [0, 2] [5–7,16] . 

For that reason, it is necessary to implement a previous data pre- 

processing. 

The first step is to apply the reduced Single Value Decomposi- 

tion, using the U m x n matrix of left-singular vectors as the new data. 

The data need to be normalised to a unit hyper-sphere. How- 

ever, in order to preserve length information, an extended vector 

is used with a column of ones added to the original matrix, U m x n . 

In addition, the original data matrix is re-scaled by a single factor 

λ to ensure that mean length of the rows is 1. In summary: 

Data m x n = U m x n 	nxn V 

∗
n x n 

U 

′ 
m x n = U m x n /λ (7) 

Z = r nor m ([ U 

′ , 1] m x (n +1) ) 

where rnorm is a function that normalises every matrix row by 

length 1. 

In this way, raw data is transformed in a normalised hyper- 

sphere space, but keeping sample module information, and where 

the variance s i is bounded to [0, 2]. 

In some datasets QC performance can be improved reducing the 

data dimensionality, but in this work the option of reducing the 

dimensionality through PCA has been skipped so that all datasets 

have the same preprocessing. 

4. Setting the length scale from the data 

For the optimisation of σ , we make use of a statistical ap- 

proach for estimating the scale parameter of a potential function 

presented in [10,11] , that can be translated for the estimation of 

σ in QC. The estimation is based on calculating the average Eu- 

clidean distance to a set of neighbours for each data sample; the 

resulting local variances are modelled as a Gamma distribution and 

the scale parameter is estimated as the mean of this Gamma distri- 

bution. Given a data sample x i , a ranking of all other data samples 

according to their squared Euclidean distance to x i is performed: 

R K ( x i ) = 

{
x (k ) | ‖ x (k −1) − x i ‖ 

2 < ‖ x (k ) − x i ‖ 

2 
}

(8) 

for k = 1 , 2 , . . . , K, where x ( k ) represents the K -nearest neighbours 

of x i , and ‖ ‖ denotes the Euclidean distance between a data sam- 

ple and x i . Since the variance s i of the local neighbourhood around 

each sample can be calculated, an empirical distribution of local 
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Fig. 4. Olive oil and artificial data set #2 (10 clusters): left graphs show the estimated s i variance curve with confidence intervals at 95%, the linear regression on the 

interquartile range of KNN labelled s i ( Q 3) in red, and the two suggested KNN solutions, K = N/ 4 and K at 50% of maximum difference with respect to the linear regression. 

Right graphs show the error (difference) between s i and the linear fit, and the two suggested KNN solutions. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article). 

variance estimates can be formed by considering several data sam- 

ples x i and their neighbourhoods R K ( x i ). The probability density 

function that characterises the empirical local variance is modelled 

by the Gamma distribution: 

p(s ) = 

s α−1 

βα�(α) 
exp 

(
− s 

β

)
(9) 

where α > 0 is the shape parameter, and β > 0 is the scale pa- 

rameter of the Gamma distribution �( · ): 

�(t) = 

∫ ∞ 

0 

r t−1 exp (−r) dr (10) 

The parameters α and β are estimated from the empirical dis- 

tribution of the variance, modelled by Eq. (9) . There are differ- 

ent methods to calculate the parameters α and β; the moments 

method is proposed in [10,11] : 

ˆ α = 

(
s 

l 

)2 

; ˆ β = 

l 2 

s 
(11) 

where s and l are the sample mean and standard deviation of the 

distribution of nearest neighbour distances for a given value of K. 

The estimation of ˆ σ can then be obtained as ˆ σ = ˆ α ˆ β . 

As detailed in next sections of the paper, this methodology is 

tested in QC to find out whether it can be successfully applied to 

detect a suitable number of clusters in several data sets (both syn- 

thetic and real) with different characteristics. 

Two methods were used to find the most suitable fit from the 

data, both following the procedure described in [10,11] . The first 

method estimates σ using the average dispersion of the data and 

the second fits the distribution of the dispersion using gamma 

functions. We show that both methods lead to similar values of 

the scale parameter σ for each data set, but these values are not 

necessarily optimal. 

The data dispersion at each data point is estimated using K- 

nearest neighbours (K-NN) with increasingly large numbers of near 

neighbours. Given a certain K, the α and β parameters of the 

Gamma distribution can be obtained either using the moments 

method as described in Eq. (11) or fitting the s i empirical distri- 
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Fig. 5. Wine, artificial data set #1 (4 clusters) and Iris data set: left graphs show the estimated s i variance curve with confidence intervals at 95%, the linear regression on 

the interquartile range of KNN labelled s i ( Q 3) in red, and the two suggested KNN solutions, K = N/ 4 and K at 50% of maximum difference w.r.t. the linear regression. Right 

graphs show the error between s i and the linear fit, and the two suggested KNN solutions. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article). 

bution to the Gamma distribution; in this work the gamfit Mat- 

lab built-in function was used. Fig. 3 shows the estimation carried 

out by these two different ways of calculation; as expected, both 

produce the same result: ˆ σ = ˆ α ˆ β . The vertical lines show the best 

σ solution according to the Jaccard score for the two external la- 

bels of the olive oil data set; that helps to visualise the value of 

the optimal σ . The bottom-left graph of Fig. 3 shows the function 

σ = f (KN N ) . Also one may observe the linear regression fitted to 

the interquartile range of σ values. Over K = N/ 2 a Normal distri- 

bution behaviour is expected, where the variance increases linearly 

as K increases. The bottom-right graph shows the s i standard devi- 

ation with the aim of providing additional information to estimate 

the best K. 

The next step is to decide which K is the appropriate to select 

σ . Two options have been discussed: 

• According to [10,11] , K = N/ 4 , being N the sample size, is a rea- 

sonable choice. This approach suggests that the first quartile is 

the Separation border between the variance of close neighbours 

and the variance produced by remote-enough samples for Nor- 

mal behaviour. 

• The other option goes beyond [10,11] and it is based on the 

assuming that the variance has a normal behaviour when K 

is sufficiently large to include remote neighbours, like K in 

the third quartile of the sample size. Fitting a linear regres- 

sion in this range of K enables to compare the variance with 
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Fig. 6. Olive oil data set: left graph shows the σ range per number of clusters. Right graph shows the number of QC solutions per number of clusters. Solutions with clusters 

from 2 to 13 were filtered from the initial 10 0 0 different σ values. 

near neighbours against the far ones. One criterion could be to 

choose a K that separates more than 50% of the total distance 

between the variance s i and the linear regression. 

Figs. 4 and 5 present the two methods for estimating σ as a 

function of KNN in different datasets. One may observe a com- 

pletely different s i behaviour depending on the dataset, this affects 

the confidence intervals, the K selected and hence the σ estimated. 

This issue will be discussed thoroughly later. 

It would be expectable that the s i curves could reveal some in- 

formation about the data internal structure, and that it would re- 

late the KNN with the proper σ . But it is not the case, choosing a 

σ with this method seems somewhat arbitrary. There is a case to 

be especially noticed in Fig. 5 for the artificial data set #1, which 

is formed by 4 clusters, 2 of them totally separated, having 200 

samples per cluster approximately; the variance curve presents an 

abrupt behaviour when KNN has to include observations from the 

more distant clusters. This should provide a clear KNN to choose 

σ , but the best actual σ range is about [0.65, 0.70], quite far away 

from the suggested [0.04, 0.05] by K = N/ 4 and K (50% err ) in the 

middle left plot of Fig. 5 . An additional problem is that this method 

offers a single solution that it varies strongly depending on a single 

premise, and hence, it is hard to create a general criterion that fits 

all the datasets. As QC needs more σ precision than that yielded by 

this method, we came up with an alternative approach, presented 

in Section 5 . 

These results illustrate the difficulty in establishing a criterion 

for estimation of consistently good values of the length parameter 

σ . This is addressed further in the next section. 

5. Setting the length scale from clustering results 

One of the main objectives in optimising QC to a given data set 

is to assess the QC solutions in an unsupervised way. This amounts 

to finding values of the length scale for the initial Parzen estimator, 

which is controlled by the Gaussian with parameter σ . In this sec- 

tion we will propose a framework using complementary measures 

of cluster performance to a) map the QC solution space, b) find 

suitable values for the number of clusters, K, and length parameter 

σ and c) generate insight into possible hierarchical structure in the 

data. 

In the absence of external labels, we propose the use of a 

two-dimensional performance assessment framework, which we 

call Separation and Concordance (SeCo). This was first introduced 

in [2–4] to assess K-Means and Adaptive Resonance Theory (ART) 

models. 

The SeCo framework characterises the quality of clustering so- 

lutions by measuring two quantities namely the cluster separa- 

tion and cluster stability. The separation measure is the standard 

within-cluster sum of squares (SSQ) and the stability measure is 

the concordance between different cluster allocations for a given 

cluster number, quantified using the CramÃ©r V-index of associa- 

tion (Cv) which is a normalised version of the standard chi-squared 

test for contingency tables. 

In order to obtain sufficient data to measure concordance re- 

liably and also to avoid using poor clustering solutions, for each 

cluster number, K, a significant number of clustering solutions is 

obtained by varying the initial conditions which in the case of QC 

is the assumed value of sigma. Clusters with poor separation are 

discarded by keeping only the top xx% of best SSQs (in QC no so- 

lution is discarded because QC does not depend on random initial- 

isation). 

For each of the clusters retained at that value of K, the value 

of Cv is calculated from the contingency table of cluster allocation 

compared with each pair of clusters in turn. The median of this 

distribution of values of Cv is used as the characteristic measure 

of the stability of this cluster when measured against the other 

clusters. 

The pairs of values (SSQ, median(Cv)) for all cluster solutions 

with high SSQ are then plotted, forming the SeCo map. This scat- 

ter plot gives useful information regarding values of K which rep- 

resent the hierarchical data structure and, for each K, it identifies 

the most stable clustering solution. 

The unsupervised performance assessment can be done follow- 

ing the next steps: 

a) The first step is to run the QC over σ values between [0, 2] in 

regular intervals. 

b) The second step is to measure the number of clusters per σ
value; this information shows how the potential V ( x ) evolves 

according to σ values, and reveals where the data structure is 
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Fig. 7. SeCo representation for the olive oil data set. The plots contains the Separation and the Concordance for each number of clusters, marking the solution with the best 

Jaccard score for each cluster number, using two sets of external labels: Js1 stands for the solution corresponding with three regions and Js2 for the case of nine areas. For 

example, for cluster numbers K = 3 and 4, a better �SSQ score is achieved with the smallest value of σ for that K , which is highest on the y-axis. Although it is not obvious 

from the value of �SSQ , the best Jaccard score for 3 labels, Js1, occurs for K = 4 . And the best for 9 labels, Js2, for K = 8 . 

more stable: the wider σ range the more stable data structure. 

Fig. 6 shows the solutions for the olive oil data set. 

c) The third step is to obtain the SeCo framework. For every QC 

solution grouped by number of clusters, the �SSQ and the in- 

ternal Concordance are calculated. The SeCo framework can be 

observed in Fig. 7 for the olive oil data set. Unfortunately, the 

graph needs to zoom in to appreciate each K in detail, and this 

justifies the plot of the next step. 

d) In order to adapt the SeCo framework to QC, σ has been added 

as an additional variable in the SeCo framework. Plotting �SSQ 

against σ , and Concordance against σ , it is possible to observe 

all the relevant information in a straightforward way. Fig. 8 

shows that representation for the olive oil data set. 

Section 6 will show a deeper analysis of the procedure to select 

the most useful K and the corresponding solution. The process of 

finding a sufficiently good solution for unknown data consists in 

two parts; firstly, a selection of an appropriate K, and secondly, a 

solution within all K-groups’ solutions. The criterion to select K has 

been based on choosing the lowest K (for simplicity) that improves 

considerably the Separation and has a good Concordance (not nec- 

essarily the best). 

The external labels with the Jaccard scores can help to verify 

the conclusions obtained in this framework. For each K, three main 

solutions can be extracted, the solution with highest Separation, 

the solution with highest Concordance and the solution with high- 

est Jaccard score (knowing the true labels). Comparing between 

them it is possible make an inference about which is the most rel- 

evant criterion. For instance, in Fig. 9 they can be compared for 

the olive oil data set, where one may see that the solution with 

the best Separation ( �SSQ ) is frequently almost as good as the one 

with the best Jaccard score. 

6. Discussion of the experimental results 

This section is focused on the SeCo vs. σ plots for the different 

data sets described in Section 3 . The rest of the graphs presented 

in the previous section have been omitted to limit the length of 

the paper, and also because SeCo vs. σ is the most relevant plot in 

order to decide a useful K. To support the conclusions, the Jaccard 

score plots of the true labels are presented, as well. 

6.1. Synthetic data sets 

6.1.1. Artificial data set #1 (4 clusters) 

This dataset is designed to produce a Concordance conflict 

when K � = 4 because there are three groups of equidistant clus- 

ters, one group contains two close clusters and the other two have 

a single cluster. The Concordance conflict is due to different label 

assignments when they are equally probable. At least, this is the 

expected behaviour for K-Means. 

Fig. 10 shows the SeCo vs σ . Here the expected conflict in Con- 

cordance is not as significant as it would be in K-Means. QC depicts 

the K = 4 as the widest σ range and it has constant high Concor- 

dance compared with other K values, what reveals the importance 

of the σ range as a cluster stability estimation. 

In QC, the Concordance is not as relevant as it is in other algo- 

rithms because QC does not depend on random initialisations; ev- 

ery solution at σ i is a slight variant of the solution at σi −1 when σ
values are sufficiently similar. The exception happens in the point 
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Fig. 8. SeCo vs. σ for the olive oil data set. Top graph shows �SSQ vs. σ . Bottom graph internal Concordance vs. σ . Additionally it is possible to appreciate the σ range as 

an estimation of cluster stability in the quantum potential V ( x ). This figure illustrates three main points: First, there is a value of σ where the Separation stabilises. In this 

case it is K = 6 . Second, within the range of K with high Separation, i.e. 6 and above, there is an increase in internal Concordance for K = 8 . Thirdly, the value of K finally 

selected to be optimal for this data set, also has a wide range of values of σ . This confirms K = 8 in this case. 

when the cluster number changes, then again the solutions evolve 

gradually till the next K . 

Fig. 11 shows that any K ≥ 4 is a suitable K ; the solution with 

highest �SSQ has the same performance as the one with highest 

Concordance, given any K . 

6.1.2. Artificial data set #2 (10 clusters) 

In this data set, SeCo vs σ plot in Fig. 12 shows a curve plateau 

in the representation of �SSQ , thus suggesting that the solutions 

for K ≥ 4 are quite separated. Attending the group Concordance, 

the best are K ∈ [5, 8], all have a reasonably wide σ range com- 

pared with K > 8. Thus, the chosen solution should be one of the 

K ∈ [5, 8], depending on the desirable number of clusters. 

Comparing these results with the supervised Jaccard score plot 

in Fig. 13 , it is observable the increasing performance with K even 

for values greater than the actual number of clusters, although the 

Jaccard score performance for K ∈ [5, 8] is close to the plateau 

curve. 

In any case, it is remarkable the poor performance in general of 

the QC for this dataset, with scores lower than 0.35. Other interest- 

ing aspect is the performance differences for the best Concordance 

solution and the best Separation solution with K > 8, being better 

for the latter. 

6.2. Real data sets 

6.2.1. Olive oil 

Fig. 8 shows a considerable improvement in terms of �SSQ 

when the cluster number passes from K = 2 to 3 and so 

on, but �SSQ seems to stabilise in K = 6 . This is a com- 

mon pattern observed in all the tested datasets, there is a 

certain K where the �SSQ reaches the curve plateau. In this 

point QC already has found the main clusters, but beyond this 

point, more K only splits some clusters in additional subdivisions 

without really improving �SSQ . This is the main hint to indicate a 

suitable K beyond this point. 

Next hints to pay attention are the internal Concordance and 

the σ range per K. From solutions with K ≥ 4, the K with the 

highest internal Concordance as a group would be a good can- 

didate. Next priority should be to give priority to those values 

of K with a wider σ range, for instance avoiding K = 3 , 5, 9, 10 

or 12. With those priorities, the best candidate should be K = 

8 . Regarding which is the best solution within K = 8 , the pri- 

ority should be the solution with highest �SSQ . This statement 

is based on the observation of the Jaccard score plots shown 

in Fig 9 , where the solution with highest �SSQ is always closer 

to the best Jaccard score solution than the one with highest 

Concordance. 
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Fig. 9. Jaccard score for the two possible external labels in the olive oil data set: three regions (top plot) and nine sub-regions (bottom plot). The plots show three solutions, 

the one with best Jaccard score for that K, the one with best Separation and the one with best internal Concordance. These solutions may not be the same, i.e. they may 

have different values of σ for the same K . Refer to Fig. 7 . This figure shows that, in general, a) the σ with best Separation ( �SSQ ) has a better Jaccard score than the σ with 

best Concordance, and b) the value of K selected by the proposed method, i.e. K = 4 and 8, have strong Jaccard scores. 

6.2.2. Wine 

The results of this dataset can be observed in Fig. 14 ; they are 

different from those obtained with the olive oil data set. The first 

difference is in the number of solutions, the main reason is due 

to the narrow σ range; for K ∈ [2, 13], σ ∈ [0.452, 0.493]; this 

situation helps to explain how difficult is to find a suitable value 

of σ with the KNN approach. 

Other aspects to remark are the unexpected valley in the �SSQ 

curve or the K fluctuation for adjacent σ values. These aspects 

point to a bad performance of QC in this dataset, and in fact, if 

one observes the Jaccard score ( Fig. 15 ), a poor performance is 

observed. The wine data set is supposed to have easily separable 

clusters, but QC does not work well, probably because the hyper- 

sphere space transformation overlaps two labels when in the raw 

data it does not occur. In addition, the ratio observations/features 

is quite low, 174/13. 

In any case, a suitable K based on SeCo vs σ plot would be 

K = 8 because it is the first K with high �SSQ and with good Con- 

cordance, despite its low σ range. 

6.2.3. Iris 

For the results corresponding to Iris data set, shown in Fig. 16 , 

and following the �SSQ priority, the chosen K would be K = 4 , 

which has a good Concordance and a wide σ range. However, 

Fig. 17 shows that the solutions for K = 2 or 3 have a higher Con- 

cordance and a higher Jaccard score than the chosen ones with 

K ≥ 4, although this information would be unknown in an unsu- 

pervised scenario. 

6.3. Summary of results 

Table 1 summarises the main results obtained in the tested 

datasets. The �SSQ row indicates the chosen K according to the 

separation measure. The Cv row depicts those K which have the 

highest Cramér’s V, revealing a possible underlying hierarchical 

structure. The Js row shows which K has the QC solution with the 

highest Jaccard score compared with the true labels, and finally, 

the last row shows the number of clusters of the true labels. 
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Fig. 10. SeCo vs. σ for the artificial data set #1 (4 clusters). Top graph shows �SSQ vs σ . Bottom graph internal Concordance vs. σ . Additionally it is possible to appreciate 

the σ range as an estimation of cluster stability in the quantum potential V ( x ). 

Fig. 11. Jaccard score for four external labels on artificial data set #1 (4 clusters). There are three solutions, the one with best Jaccard score for that K, the one with best 

Separation and the one with best internal Concordance. 
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Fig. 12. SeCo vs. σ for the artificial data set #2 (10 clusters). Top graph shows �SSQ vs. σ . Bottom graph internal Concordance vs. σ . Additionally it is possible to appreciate 

the σ range as an estimation of cluster stability in the quantum potential V ( x ). 

Table 1 

Cluster number K identified by different criteria with corresponding Jaccard scores against true labels shown within [ ]. 

Maximal criterion Artificial dataset 1 Artificial dataset 2 Olive oil data Wine data Iris data 

�SSQ 6 [0.81] 6 [0.34] 8 [0.75] 5 [0.4] 5 [0.49] 

Cv 6 [0.81] 5 [0.32] 5 [0.70] 2, 3, 6 2 [0.58] 

6 [0.34] 8 [0.75] All [0.34] 6 [0.44] 

Js ≥ 4 [0.79–0.81] 10 [0.35] 4 [0.85] 4, 5, 7 2, 3 

vs 3 lab. All [0.43] Both [0.58] 

8 [0.75] 

vs 9 lab. 

Number of true clusters 4 10 3, 9 3 4 

6.4. Methodology to find the value of K 

This section describes a schematic procedure for finding the 

most suitable K and its QC solution for unknown data. 

The Algorithm 1 describes the methodology to find the SeCo 

parameters. Once the parameters have been obtained, the value of 

K with consistently best separation should be selected; then, the 

value of σ for the best separation is the QC of choice for that value 

of K. High values of the concordance measure for different number 

of clusters indicate the presence of a hierarchical structure. 

6.5. Scalability 

The problem of scalability falls on two main factors: 

• Computational cost depends on the sample size (at least, lin- 

early). 

• It is also linear in the number of sigma values that need to 

be sampled to obtain a significant number of solutions in each 

cluster number, as required to properly estimate the median of 

Cv. In some data sets particular numbers of clusters only occur 

Algorithm 1 Get N QC solutions and SeCo parameters. 

σN ← N-vector evenly distributed ∈ ]0 , 2[ 

for i = 1 : N do 

Solution i ← QC(σi ) � Solution: QC outcome (vector of labels) 

�SSQ i ← SSQ 1 cluster − SSQ Solution i 
CN i ← Cluster Number (Solution i ) 

end for 

Filter Solutions with C N i ∈ [ C N min , C N max ] � To avoid excessive 

CN 

for C N j = C N min : C N max do 

Sol j = Solutions with C N = C N j 

for i = 1 : max (Sol j ) do 

C V i = median (C ramer ′ sV (Sol ji , Sol CN j 
)) � Internal 

Concordance 

end for 

end for 

for a very narrow range of values of sigma, which makes this 

problem more complicated. 
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Fig. 13. Jaccard score for 10 external labels in the artificial data set #2 (10 clusters). There are three solutions, the one with best Jaccard score for that K, the one with best 

Separation and the one with best internal Concordance. 

Fig. 14. SeCo vs. σ for the wine data set. Top graph shows �SSQ vs. σ ; bottom graph internal Concordance vs. σ . Additionally it is possible to appreciate the σ range as an 

estimation of cluster stability in the quantum potential V ( x ). 

However, if data sets are very large then it may be possible to 

take random samples. In addition, it is not strictly necessary to 

sample every number of clusters. 

Ultimately there is a clear need in QC for better ways to esti- 

mate the variance around data points and also for a more princi- 

pled way to find the most likely number of cluster to best explain 

the data. This is indicated under further work. 

In addition to this, in our view the main problem of QC is not 

related to large (if we understand by large to have many samples) 

datasets because there are straightforward ways to computational 

cost e.g. parallelisation. The main problem is more related with 

high dimensions and our current research partly deals with work- 

ing on solutions for that. This applies data sets such as the car- 

diotocography sample from UCI. 

Looking with a little more detail, QC depends on the length of 

the observations that generate the potential, n gen , the number of 

points where the potential is computed, n alloc , the dimension of the 

data, dim , and the number of steps applied in the stochastic gra- 

dient descent (SGD), steps SGD . Therefore, an estimation of its time 

complexity is O ( n gen 
∗n alloc 

∗D 

∗steps SGD ). 

The SeCo framework increases the time complexity in a factor 

that depends on the number of different σ to be sampled, being a 

time complexity of O (n gen ∗ n al l oc ∗ D ∗ steps SGD ∗ # σ ) ; in particular, 

1,0 0 0 sigma samples have been used in the experiments presented 

in this paper. Nevertheless, this work has not been focused on time 

complexity or scalability, which are undoubtedly relevant topics for 

future research. 
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Fig. 15. Jaccard score for three external labels in the wine data set. There are three solutions, the one with best Jaccard score for that K, the one with best Separation and 

the one with best internal Concordance. 

Fig. 16. SeCo vs. σ for the Iris data set. Top graph shows �SSQvs. σ . Bottom graph internal Concordance vs. σ . Additionally it is possible to appreciate the σ range as an 

estimation of cluster stability in the quantum potential V ( x ). 

Fig. 17. Jaccard score for three external labels in the Iris data set. There are three solutions, the one with best Jaccard score for that K, the one with best Separation and the 

one with best internal Concordance. 

7. Conclusions 

This paper has proposed two figures of merit to characterise 

the quality of solutions obtained by QC, from which cluster num- 

bers can be identified which maximise the fit against true cluster 

labels. Maximisation of cluster separation identifies clusters with 

consistently high Jaccard score against true labels, while high val- 

ues of cluster consistency provide insights about hierarchical clus- 

ter structures. The proposed framework provides useful guidance 

to set an optimal value for the length scale parameter σ for each 

data set. 
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Two approaches have been proposed to find the best σ , and in 

turn, the correct number of clusters. The first one is based on the 

variance of K-Nearest Neighbours, and the second one on sampling 

QC solutions to apply the SeCo framework. The results yielded by 

the former approach do not suggest its use as a rule of thumb, due 

to three main reasons: 

• It offers only one solution. 

• The σ confidence intervals are too wide for the QC variability. 

• The estimated σ strongly depends on the data structure, being 

very difficult to establish a general procedure. 

The SeCo framework approach is based on measures of Separa- 

tion ( �SSQ ), internal Concordance and σ range per cluster. The σ
range parameter subtracts importance from the Concordance. Al- 

though the Concordance is very important in other algorithms like 

K-Means, it is less critical in QC due to its unique solution per σ
value. The SeCo framework approach involves a higher computa- 

tional cost than the KNN approach because of the need to run the 

algorithm multiple times. However, the results offer a consistent 

method to make a performance assessment in an unsupervised 

way. The SeCo plots have been adapted to the QC, adding an extra 

parameter: σ . The advantage of the SeCo vs σ plots is that they 

depict the data structure and the most suitable QC solutions in a 

straightforward way. 

A procedure to select the appropriate K and the most suit- 

able solution based on the empirical results has been proposed in 

Section 6.4 . 

Future work is needed to introduce better local tuning of the 

local variances across the data points, together with a principled 

approach to allocate points to clusters and for detection of outliers. 

Our current work is focused on how to tackle high dimensional 

data with QC where it loses performance. 

A rigorous analysis of time complexity and scalability for com- 

plex data sets will also be considered in our future research. 
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Abstract. In the field of structure finding, the PC algorithm is a well-known constraint-
based algorithm used to build a Directed Acyclic Graph (DAG) from Conditional In-
dependence maps where a major challenge is to minimize errors in the graph structure.
This work presents empirical evidence for best practice: to reduce false positive errors
via the False Discovery Rate (FDR), and to identify appropriate parameter settings to
improve the False Negative Reduction (FNR). In addition, several node ordering policies
are investigated that transform the skeleton graph into a DAG (edges orienting rules),
the results show that ordering nodes by strength of mutual information recovers a rep-
resentative DAG in reasonable time, although a more accurate graph can be recovered
using a random order of samples at the expense of increasing the computation time.

1 Scientific Background
Structure finding methods lie within the field of Probabilistic Graphical Models and

are deeply studied [Koller and Friedman, 2009, Daly et al., 2011], especially from a
theoretical perspective, as they offer an efficient graphical approach to apply statistical
estimates in a complex system. They serve as a framework for Bayesian and Markov
networks [Bacciu et al., 2015], and have two components: a structure in the form of a
graph, and a set of parameters that can be used to make statistical estimations.

Recently, a new structure finding algorithm [Bacciu et al., 2013] was proposed, which
can obtain a faithful Bayesian Network (BN) without the need for specific approxima-
tions and with a reasonable computation time. Using these methods, complex associa-
tive maps can be obtained through Conditional Independence Maps (CI-Maps). Many
constraint-based structure learning algorithms, including this work, are based on the PC-
algorithm [Spirtes et al., 2000], where starting with a fully connected graph, edges are
removed between nodes (variables) based on pairwise independence tests, increasing
the number of conditioned variables as the algorithm progresses. The algorithm stops
when it finally converges to a stable structure forming a CI-Map. This work extends the
methods used in [Bacciu et al., 2013], where the criterion for independence is based on
conditional mutual information instead of likelihood-ratio tests (G-test). In addition, the
paper proposes several policies to create a data-driven structure:

• FDR [Benjamini and Hochberg, 1995] controls the False Positives decreasing the
significance level in conditional independence tests when they are applied multi-
ple times on the same nodes. This translates to reduced number of edges.
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• FNR [Fast et al., 2008] tries to avoid independence tests if it is not powerful
enough. The criteria is based on a threshold of Degrees of Freedom (DoF) that
depends on the desired power for the test, the sample size and the effect size.

• The Weakest First (TWF) affects the order in which the graph is being pruned.
The outcome of the PC algorithm is influenced by the order in which the condi-
tional independence tests are executed, TWF sorts the nodes by mutual informa-
tion (edge strength), testing first the weakest nodes which reduces the problem of
incorrect pruning or incorrect edge dependence discovery.

Once the structure is found, the next step is to build a DAG following the rules defined
in [Meek, 1995]. These rules do not necessarily lead to a unique DAG, where the most
general solution is a Partial Directed Acyclic Graph (PDAG).

It is well known that the PC algorithm is sensitive to the order in which the nodes
are tested [Kalisch and Bühlmann, 2008, Kalisch and Bühlmann, 2007]. This problem
is addressed by using a similar solution to TWF, but ordering the nodes by descending
mutual information. This policy is called The Strongest First (TSF).

Starting from the algorithm developed in [Bacciu et al., 2013], the aim of this work
is to present empirical evidence for best practice for optimizing three parameters: the
policies of False Discovery Rate and False Negative Reduction, and the effect of node
ordering when the edges are being oriented. The work concludes with a final proce-
dure for structure finding to address new data based on the parameters setup of the PC
algorithm.

This work presents three novel contributions: 1) analysis of structure finding based
on PC algorithm and its dependence on design parameters, e.g., data ordering; 2) em-
pirical parameter optimization of conditional independence maps removing dependence
on design parameters; 3) optimisation of FDR and FNR policies to avoid proliferation
of False Positives (FPs).

2 Materials
Two datasets have been used for the benchmarking experiments, where the true

DAGs are known: The ALARM and Insurance datasets, both available in Bayesian
Network Repository1. ALARM stands for ”A Logical Alarm Reduction Mechanism”,
and it is a network designed to provide alarms during patient monitoring in anaesthe-
sia. This data has 37 variables (nodes), 46 edges degree (arcs), 509 parameters, 3.51
average Markov blanket size, 2.49 average degree and 4 maximum in-degree. The
Insurance dataset is a Bayesian network for evaluating car insurance risks. It has 27
variables (nodes), 52 edges degree (arcs), 984 parameters, 5.19 average Markov blanket
size, 3.85 average degree and 3 maximum in-degree. Samples of different size have
been generated, from 0.5k to 100k observations.

3 Methodology
The methodology consists of two parts, analysing the structure errors of the CI-Maps,

with reference to several set-ups of the FDR and FNR policies. Followed by the analyses
of the influence of the node order when a DAG is created from a CI-Map.

When multiple conditional independence tests are carried out, the control of FDR is
necessary. The work [Bacciu et al., 2013] proposes three different variants of the FDR
control policy: Basic, interleaved and mini-FDR. Basic FDR is applied a posteriori after
the PC algorithm converges. Interleaved is applied after each step of the PC algorithm,
where a step implies one more node in the conditional independence tests. Mini-FDR
prunes edges a priori, in the initial PC-algorithm stage.

1http://www.cs.huji.ac.il/˜galel/Repository/
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A False Negative (FN) implies a missing edge (independence) between two nodes
(variables) when there is a true dependency present between these pair of nodes. It
can produce collateral FPs if the CI-map tries to recover this lost dependency creat-
ing additional edges (FP) through the neighbour nodes. The FNR policy, based on
[Fast et al., 2008], avoids testing the hypothesis if the minimum power of the test is not
at least 1− β. This condition establishes a threshold for the maximum degrees of free-
dom that depends on the sample size, the false negative proportion β, the test level α,
and a desired effect size w. While β and α are usually pre-established standards, the
effect size w has to be adjusted, and it is difficult because the optimal value is dependent
on the data characteristics and the sample size.

The BN can be evaluated by ordering the structure edges into a DAG, where BIC
score is used for assessing the BN. As the order in which the edges are being oriented
affects the final DAG, two predefined node orders by mutual information are proposed,
comparing them to a random node order. Our conjecture is that they will produce more
feasible BNs in terms of BIC score because the orientation decisions are taken first on
the important edges. For the sake of completeness, we will also assess the opposite
order, TWF, and the best and worst solutions created by random node order.

4 Results
Table 1 shows the structure errors for a 500 sample size of the Insurance dataset,

using each of the FDR control policies. The FNR setup with an effect size of w = 0.25,
and power of β = 0.05. The TWF node ordering is enabled. The table shows an
improvement of five fewer FPs when FNR is activated, but no significant changes with
reference to the FDR. Therefore the default policy, basic FDR, will be the recommended
policy.

Table 1: Averaged structure errors of 10 samples of Insurance data with 500 observations each.

SETUP FN FP TOTAL
FDR basic 3.1± 1.2 25.3± 1.5 28.4± 2.5
FDR interleaved 3.0± 1.5 25.2± 1.5 28.2± 2.8
FDR mini 2.8± 0.9 25.0± 1.6 27.8± 2.4
FDR basic + FNR 3.3± 0.9 20.6± 1.6 23.9± 1.9
FDR interleaved + FNR 3.4± 1.3 20.4± 1.4 23.8± 2.4
FDR mini + FNR 3.4± 1.1 20.4± 1.4 23.8± 2.3

Figure 1 shows the averaged structure errors of 10 different samples of Insurance
dataset with 500 observations. This is an example to illustrate the pattern of the struc-
ture errors with reference to the effect size w. This behaviour occurs in a similar way
for different sample sizes (not depicted in this work) but the graph is displaced to the
left. FN errors decrease as the effect size decreases until some point where all tests
are avoided and the graph becomes fully connected, beyond this point FNR is disabled.
Similarly, where the FN errors start to decrease, the FP errors start to increase until
reaching the fully connected graph where the FP errors are at a maximum value. There
is an effect size window, δw, where the trade-off between FP vs FN is acceptable, and
the total error decreases. This narrow δw depends on the dataset and the sample size.
For this example, the best effect size value is wmin = 0.24, and improves the average
total error by 4.7, not big improvements for the risk assumed out of δw.

Figure 2 shows the optimal effect sizes, w, found through empirical tests with In-
surance (red) and Alarm (black) networks. The procedure was similar to that shown
in figure 1, scanning several effect size values and selecting the one that minimizes the
total structure errors. Additionally, in the same plot one may observe in blue the effect
size suggested by [Fast et al., 2008]. The variability of the optimal effect size with the
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Figure 1: Structure errors of 10 averaged Insurance datasets with 500 observations, zoomed on the critical
point.

data makes it very hard to set a rule of thumb to estimate effect sizes for unknown data.
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Figure 2: Optimal effect size parameter based on experimental results for Insurance (red) and Alarm
data (black). The values are compared with the averaged results (blue) suggested in [Fast et al., 2008]
applying a cross-validation on Insurance and Mildew data.

Figure 3 shows how a fixed effect sizew affects the structure errors when the data size
increases. When FNR is activated an increasing FP error is observed when the data size
increases. If FNR is deactivated a significant FP reduction is observed. Theoretically,
the PC-algorithm would converge to the true structure if the whole population data were
available, however in a realistic case scenario the errors asymptotically tend to a non
zero value, ≈ 7.5.

Figure 4 shows the density functions of the BIC score, using a non-parametric kernel-
smoothing distribution for 100 samples of the Insurance dataset with 25k observations
and 27 nodes. In each plot there are four distributions, the ones with TWF and TSF
node order, and the best/worst solutions obtained by random ordering. There are three
scenarios: only one random order, 25 and 100 random samples. It is shown that TSF is
the best option when there is a limitation in the number of repetitions. This limitation
may be due to a computational time constraint in big datasets, or when the graph has
too many nodes and a large number of repetitions is needed to extract a representative
sample of the node order permutations. If a high number of random order iterations is
possible, the best option will be to obtain the BN with best BIC score.
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Figure 3: Errors in the skeleton and in the DAG when the sample size increases but the effect size of the
FNR policy is fixed, FPs increase with the sample size for the Insurance data. FNs decrease in both cases,
but if FNR is deactivated, FPs errors keep low and stable.

5 Conclusion
This work has been focused on finding the best setup for structure finding stabiliza-

tion based on the PC algorithm. Any FDR policy can be used to control the FP errors,
but the basic FDR has been selected due to its simpler implementation. FNR policy is
focused on decreasing the FN errors, but it is not recommended when the optimal values
of the effect size are unknown, which is the usual case for new data. A wrong effect size
parameter in FNR policy can produce a proliferation of FP errors. Finally, to build a
DAG from the structure, the node in which the edges are oriented affects the final DAG.
We have proposed ordering the nodes by mutual information followed by orientating by
the TSF order which provided the best BIC score compared with a random ordering dis-
tribution. However, if the DAG is generated multiple times by sampling random node
orders, the best solution of multiple random node orders outperforms the TSF order.
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