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Abstract 

This thesis explored the effect of pain on human temporal perception. This aim 

was achieved firstly by systematically testing the way in which pain experience affects 

duration estimates, and memory for duration and secondly by examining whether it 

was possible to reduce perceived duration of pain in clinical and no clinical 

population. 

 

Chapter 5 examined the effect of different pain intensities on perceived duration 

when pain was the to-be-timed stimulus (i.e., task-relevant) and when pain was in 

the background (i.e., task-irrelevant). Participants were required to verbally estimate 

the duration of no pain, low pain and high pain electro-cutaneous stimulations and 

the duration of a neutral visual stimulus whilst being exposed to no pain, low pain 

and high pain thermal stimulation. Increases in the intensity of the electro-cutaneous 

stimulation were associated with longer verbal estimates, reflecting a multiplicative 

effect. However, low pain thermal stimulation did not affect the perceived duration 

of the visual stimulus and high pain thermal stimulation led to shorter verbal 

estimates. The lengthening effect of pain therefore appeared to be limited to 

circumstances when pain was task-relevant.  

 

Chapter 6 examined whether changes in physiological arousal mediated the effect 

of task-relevant and task-irrelevant pain on time perception. Participants’ 

physiological activity (skin conductance level and high frequency heart rate 

variability) was measured while they were asked to verbally estimate the duration of 

an electro-cutaneous stimulation at different intensities and a neutral stimulus whilst 

perceiving a thermal stimulation at different intensities. The lengthening effect of 

task-relevant pain on time perception, although did not replicate the multiplicative 

effect, was mediated by sympathetic arousal, supporting previous suggestions that 

temporal distortions due to pain are caused by changes in the arousal level. However, 

task-irrelevant pain did not affect verbal estimates of participants, despite it 

increased their physiological arousal, and there was no relationship between 

physiological arousal and verbal estimates. This suggests that changes in arousal do 
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not affect time perception when arousal arises from sources other than the to-be-

timed stimulus.  

 

Chapter 7 examined whether pain enhanced or disrupted the memorization of 

duration by using a temporal generalisation task. Participants were required to 

encode the duration of a tone whilst experiencing neutral or painful thermal 

stimulation and to recall the duration immediately after learning or after a delay. 

Delay affected neutral and pain related durations in a comparable way, suggesting 

that pain does not have any unique effect on the memorization of duration: pain does 

not enhance nor disrupt the memorization of duration information. 

 

Chapter 8 tested whether a mindfulness intervention could reduce the 

lengthening effect of pain in heathy people and in chronic pain patients. Participants 

were asked to estimate the duration of visual, vibrotactile and electro-cutaneous 

stimuli before and after practicing mindfulness meditation for a week. Healthy 

participants gave similar verbal estimates before and after the intervention, 

suggesting that mindfulness was not able to modulate the perceived duration in any 

stimulus modality. In chronic pain patients mindfulness practice led to longer verbal 

estimates in any stimulus modality including pain, suggesting that mindfulness was 

not an appropriate intervention to reduce the lengthening effect of pain, however, 

caution should be taken when interpreting this latter finding due to the small sample.   

 

Together the finding of this thesis show that task relevant pain distorts time, in 

part due to its capacity to increase sympathetic nervous system activity. Pain, 

however, appears to have no influence on memory for duration. Furthermore, 

interventions which reduce the intensity of pain do not appear to be effective in 

reducing the perceived duration of pain. Further research is therefore required to 

understand how the lengthening effect of pain can be mitigated in clinical and non-

clinical settings. 
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Chapter 1 

Time perception 

 

1.1 – Internal clock models of time perception 

1.1.1 – The history of internal clock models of timing 

The idea that humans have an internal clock to perceive duration was first 

suggested by François (1927) and then Hoagland (1933), following their observation 

of the effect of body temperature change on perceived duration. François (1927) 

asked participants to tap their finger on a regular basis while their body temperature 

was experimentally modulated, which led participants to tap their finger more 

frequently when their body temperature increased. This was similarly observed by 

Hoagland (1933), who repeatedly asked his wife to produce a time interval of 60 

seconds while her body temperature fluctuated due to a natural fever. His wife 

produced the 60 seconds in a shorter amount of time when her body temperature 

was high in comparison to when it was low. The results of both studies suggested that 

the same time interval could be perceived differently depending on the perceiver’s 

body temperature; with longer estimates and shorter productions when body 

temperature increases. 

 

This led Hoagland (1933) to hypothesize that humans perceive duration through a 

biological clock, which follows the Arrehnius equation in which chemical reactions 

occur more quickly at higher temperatures than lower temperatures. Therefore, if 

humans possess a biological clock, its chemical reactions would be faster at higher 

temperatures leading to longer perceived durations, and slower at lower 

temperatures leading to shorter perceived duration. Hoagland (1933) suggested that 

this biological clock consisted of a pacemaker, which regularly produces pulses, and 

the perceived duration of an event is based on the quantity of pulses produced during 

the event. Hoagland (1933) suggested that the frequency of produced pulses is not 

constant but varies depending on body temperature, with higher body temperature 

corresponding to higher frequency or, in other words, to a greater number of pulses 

produced in the same time interval.  
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Treisman (1963) developed the first widely accepted model of timing (Figure 1.1). 

The model described a pacemaker, a counter, a store, a comparator and a verbal 

selective mechanism. The pacemaker constantly produces pulses with some variation 

of the inter-pulse interval, variation that leads to the scalar variance of the timing 

representation (see section 1.1.2, page 20). The pulses are recorded by the counter 

when an interval needs to be estimated and the count is then transferred into the 

store (which is part of the long-term memory) where, when needed, the comparator 

mechanism retrieves timing information assisted by the verbal selective mechanism. 

The model explains distortions to time (e.g., due to temperature) by proposing that 

the frequency with which pulses are outputted from the pacemaker is modulated by 

arousal; increases of arousal accelerate the production of pulses, leading to a greater 

count and longer perceived duration. In contrast, decreases of arousal slow down the 

production of pulses leading to a lower count and shorter perceived duration.  

 

 

Figure 1.1. Treisman's (1963) internal clock model. 
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The main principles of Treisman's (1963) model (e.g., the pacemaker and the 

arousal effect) were adapted by later time perception models; particularly, the most 

popular models of timing, as the Scalar Expectancy Theory (Gibbon, Church, & Meck, 

1984; see section 1.1.3, page 22) and the Striatal Beat Frequency (Matell & Meck, 

2000, 2004; see section 1.2, page 35), have adopted the scalar variance properties of 

time.  

 

 

1.1.2 – Principles of scalar timing 

Human and animal timing conforms to two principles to produce what is 

commonly referred to as scalar timing: 1) mean accuracy and 2) scalar variability (or 

Weber’s law) (Lejeune & Wearden, 1991, 2006; Wearden & Lejeune, 2008). Mean 

accuracy refers to the observation that timing behaviour linearly and accurately 

varies with the to-be-timed interval; longer intervals are associated with longer time 

representations (e.g., estimates) that are, on average, accurate. The second principle, 

scalar variability, or Weber’s law, refers to the observation that the variability of time 

representations (i.e., the standard deviation) is a constant proportion of the mean 

(i.e., standard deviation/mean = C, where C is a constant). This constant proportion 

is often referred to as the coefficient of variation or a Weber-fraction like measure of 

time sensitivity.  

 

Conformity to Weber’s law can also be demonstrated through the property of 

superimposion in which time responses for different duration ranges superimpose 

when plotted on the same relative scale (Wearden, 1991). Superimposion can be 

tested in the temporal generalisation task, which involves indicating whether a series 

of comparison intervals are similar to a previously learnt standard interval using a 

‘Yes’ or ‘No’ response option (for a complete description of the task see section 

7.1.1.2, page 147). When the proportion of ‘Yes’ responses are plotted against 

comparison duration in a relative scale, that is, as proportions of the standard (Figure 

1.2), the graph shows a reverse ‘V’ shape with the peak of ‘Yes’ responses at the 

standard duration. Superimposion can be observed by plotting data obtained from 
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two different duration ranges (e.g., 200-800ms and 320-1280ms) on the same 

relative scale, resulting in overlapping psychophysical functions (Figure 1.2). 

 

 

Figure 1.2. Simulated data of a temporal generalisation task using a standard of 

500ms and range of comparison between 200ms to 800ms (solid line) and using a 

standard of 800ms and range of comparison between 320ms to 1280ms (dotted 

line). 

 

 

Mean accuracy and scalar variability have been demonstrated in timing in both 

animals (Lejeune & Wearden, 1991, 2006; Maricq, Roberts, & Church, 1981) and 

humans (Wearden & Lejeune, 2008). However, conformity to Weber’s law, although 

consistently observed in temporal generalisation and bisection tasks (Ortega & López, 

2008; Wearden, 1992), is often violated in verbal estimation tasks (Wearden, 2015a). 

In verbal estimation, participants are required to provide a numerical estimate 

(generally in seconds or milliseconds) of the duration of a stimulus (e.g., the length 

of the sounding of a tone) immediately after its occurrence. Analysis of mean verbal 

estimates shows that variability is not a constant proportion of the mean and is 

typically greater at shorter durations than at longer durations. The coefficient of 
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variation is not therefore constant and violates the principle of scalar variability. It is 

presently unclear why Weber’s law is violated in verbal estimation tasks, however, 

this may be a product of the quantization process that is unique to the verbal 

estimation tasks (for discussion on quantization see Wearden, 2015a and section 

1.1.3.3, page 31).  

 

 

1.1.3 – Scalar Expectancy Theory  

Gibbon et al. (1984) developed Scalar Expectancy Theory based on the scalar 

principles of timing. The model was originally conceived to explain animal timing and 

then modified by Wearden (1992) to accommodate human timing (see section 

1.1.3.3, page 31). Gibbon et al. (1984) included three types of components in the 

model: (I) the pacemaker-accumulator clock, (II) memory components and (III) the 

decision component (Figure 1.3). The pacemaker-accumulator clock produces the 

‘raw material’ enabling the perception of duration. It comprises of a pacemaker and 

an accumulator, which are connected via a switch. The pacemaker constantly 

produces pulses. When a to-be-timed event occurs, the switch between the 

pacemaker and the accumulator closes allowing pulses to enter into the accumulator. 

The amount of accumulated output forms the representation of duration. The 

contents of the accumulator then enter short-term memory (STM) where they 

remain if they are only required for a single trial. Representations that are valid for 

multiple trials are transferred to reference memory. To produce behavioural output 

the contents of reference memory and STM are compared.  
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Figure 1.3. The Scalar Expectancy Theory model (Gibbon et al., 1984). 

 

1.1.3.1 – Pacemaker-accumulator component 

1.1.3.1.1 – Pacemaker 

Duration is initially encoded by the pacemaker, which generates the pulses that 

represent elapsed time. Pacemaker is conceived as a Poisson emitter: the interval 

between pulses is random but they are generated at an averagely constant rate 

(Gibbon, 1992; Wearden, 1999).  

 

The rate at which the pacemaker emits output is affected by a number of factors, 

for example dopamine levels (Maricq et al., 1981) and physiological arousal (Mella, 

Conty, & Pouthas, 2011). The effect of the neurotransmitter dopamine (DA) on 

pacemaker rate was first demonstrated in drug manipulation studies of animal timing 

(e.g., Meck, 1983) and has been replicated many times using different drugs (Abner, 

Edwards, Douglas, & Brunner, 2001; Buhusi & Meck, 2002) and different tasks (Drew, 

Fairhurst, Malapani, Horvitz, & Balsam, 2003; Miller, McAuley, & Pang, 2006). DA 

agonists (e.g., methamphetamine) have been found to speed-up and DA antagonists 

(e.g., haloperidol) to slow-down pacemaker speed (Buhusi & Meck, 2002; Maricq et 

al., 1981; Meck, 1983). Moreover, time distortion magnitude generated by the DA-

related drug administration is approximately linear to the dosage (Matell & Meck, 

1997) and the affinity of the drug to the D2 receptors (Meck, 1986). However, it 

should be noted that, although DA modulation has been found to systematically 
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affect internal clock in mice (Abner, Edwards, Douglas, & Brunner, 2001; Buhusi & 

Meck, 2002; Meck, 1983, 1986), the relationship between DA and timing is less 

stringent in humans. For example, Wearden, Smith-Spark et al. (2008) found that 

healthy participants and patients with Parkinson’s disease, which notably have DA 

deficiency (Damier, Hirsch, Agid, & Graybiel, 1999), have similar performance in 

timing tasks that do not involve motor responses (e.g., bisection task). This weakens 

the argument that DA affects internal clock speed in humans (see also Rakitin, 

Scarmeas, Li, Malapani & Stern, 2006). 

 

Mathematical models of pacemaker operation suggest that changes in pacemaker 

speed have multiplicative effects on perceived duration, that is, the effects are 

greater at longer durations than at shorter durations (Maricq et al., 1981; see Figure 

1.4). Multiplicative effects on perceived duration have been demonstrated in 

numerous behavioural studies (Droit-Volet, Tourret, & Wearden, 2004; Gil & Droit-

Volet, 2012; Mella et al., 2011; Smith, McIver, Di Nella, & Crease, 2011). It is also often 

argued the presence of a multiplicative effect of a manipulation as evidence for a 

change of pacemaker speed, rather than attention or memory function change 

(Maricq et al., 1981; Wearden, 2015a). However, this is disputed by studies showing 

that it is possible to produce multiplicative differences in timed behaviour in 

circumstances in which pacemaker speed change was impossible (Matthews, 2011). 
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Figure 1.4. Simulated data of two verbal estimation tasks with a regular pacemaker 

(solid line) and an accelerated pacemaker (dotted line). Note that the distance 

between the two lines (i.e., the time distortion caused by the pacemaker 

acceleration) increases with stimulus duration. 

 

Predominantly, multiplicative effects on perceived duration in line with changes 

in pacemaker speed have been shown when the arousal level of the perceiver was 

modulated (see section 2.3.1 and 3.3.1, page 47 and 67). However, multiplicative 

effects on perceived duration have been found also when arousal was not involved. 

For example, the duration of auditory stimuli is usually overestimated compared to 

the duration of visual stimuli and it has been argued that this difference in perceived 

duration is due to the pacemaker being faster during the encoding of auditory stimuli 

than during the encoding of visual stimuli (Wearden, Edwards, Fakhri & Percival, 

1998). Similarly, the pacemaker is believed to be faster during the encoding of filled 

intervals, which are judged to last for longer than unfilled intervals when pacemaker 

is believed to be slower (Wearden, Norton, Martin & Montford-Bebb, 2007). Finally, 

it has been argued that also click-trains increase pacemaker speed lengthening the 

perceived duration of concurrent stimuli (Penton-Voak, Edwards, Percival & 

Wearden, 1996).  
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Previous studies have expressed the overestimation of the duration of click-train 

related stimuli as an increase of the arousal level of the perceiver. However, there is 

no evidence to support that click-trains increase arousal, suggesting that factors 

other than arousal could modulate the pacemaker speed. 

 

 

1.1.3.1.2 – Switch 

The switch was originally conceived as an on-off system, connecting pacemaker 

and accumulator at the onset of the stimulus and decoupling them at the offset of 

the to-be-timed event (Gibbon et al., 1984). When switch is closed, the pulses are 

allowed to move into the accumulator; in contrast, when switch is open transfer 

ceases. 

 

The model predicts that the attention captured by the to-be-timed-stimulus 

affects the switch closure at stimulus onset, with greater attention dedicated to the 

stimulus associated with faster switch closure, resulting in more accumulation and 

longer perceived duration. Conversely, when attention is not orientated to the start 

of the two-be-timed event, switch closure latency increased resulting in less 

accumulation and a shorted perceived duration. Switch latency effects such as these 

result in additive effects on perceived duration, that is, time distortion due to change 

in switch closure are thought to be the same across stimuli durations (Wearden, 

1999). In other words, faster switch closure causes the same time distortion 

independently of the interval duration (Figure 1.5).  
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Figure 1.5. Simulated data of two verbal estimation tasks with a regular switch closure 

(solid line) and an accelerated switch closure (dotted line). Note that the distance 

between the two lines (i.e., the time distortion caused by the faster switch closure 

at stimulus onset) remains constant. 

 

 

Zakay and Block (1995) modified the original switch in SET with an attentional gate, 

which can be open with different degrees depending by the amount of attention 

dedicated to time. Depending on this degree, different proportion of pulses are 

allowed to have access into the accumulator affecting the final perceived duration of 

the event. The more the attention dedicated, the wider the gate, the greater the 

number of pulses that reach the accumulator and the longer the perceived duration 

of the event. The attentional gate model therefore contrasted the on-off functioning 

of the switch, which implied an all or nothing effect of attention on time perception, 

introducing a gate that takes into account the variability of attentional resources 

dedicated to the passage of time.  

 

This modification was supported by studies that found a relationship between 

time distortion and amount of attention dedicated to time; for example, during a 

timing task, participants reported shorter estimates when they had to concomitantly 
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complete a difficult object recognition task rather than a simpler version (Hicks, 

Miller, & Kinsbourne, 1976). The attentional gate provides an explanation for these 

results, suggesting that the increased difficulty of object recognition task implies a 

reduction of attentional resources dedicated to the timing task, leading the 

attentional gate to allow less pulses into the accumulator compared to the pulses 

accumulated with the simple recognition task. The hallmark of a change in gate 

openness is the multiplicative effect (Figure 1.4); the gate, in fact, allows a proportion 

of pulses to enter into the accumulator, proportion that depends on the duration of 

the to-be-timed event. Although the attentional gate is widely accepted it has been 

criticised by Lejeune (1998) who suggested that the functions attributed to the 

attentional gate can be ascribed to an attentional switch for parsimony. 

 

 

1.1.3.1.3 – Accumulator 

The accumulator was conceived as a container that stores the pulses occurring 

during the to-be-timed event, that is, when the switch is closed and the pacemaker 

is connected to the accumulator (Gibbon et al., 1984). The short-term memory then 

retrieves the stored pulses from the accumulator for the following memory and 

decision components.  

 

Because of its function of simple container, the accumulator was not conceived to 

be affected by external factors and it was not object of investigation. However, 

accumulator has been suggested to be shared between the processing of time and 

the processing of other dimensions that require cumulative properties (e.g., 

counting; Meck & Church, 1983). This hypothesis has been supported by studies 

showing common neural activity of the parietal cortex in time, number and spatial 

processes (Bueti & Walsh, 2009), and led Bueti and Walsh (2009) to outline A Theory 

Of Magnitude (ATOM). However, it is still under debate whether this integration 

between time and other magnitude dimensions is in the accumulator component or 

whether they are linked in other components such as attention or memory (for 

discussion see Cappelletti, Freeman, & Cipolotti, 2009). 
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1.1.3.2 – Memory components 

Meck (1983) demonstrated the existence of separate clock and memory processes 

by comparing the effect of dopaminergic drugs (haloperidol and methamphetamine) 

with the effects of vasopressin, oxytocin, physostigmine and atropine in a temporal 

discrimination task. This procedure consisted of two phases: firstly rats were trained 

to press two levers that were associated to a ‘short’ (2 s) and a ‘long’ (8 s) standard 

duration (training phase), and then they categorized a series of comparison durations 

as ‘short’ or ‘long’ by pressing the respective lever (testing phase). Different rats were 

administered with one drug in the training or testing phase while saline was 

administered in the other phase. Methamphetamine induced right and left shift of 

the point of subjective equality (PSE, point at which 50% of responses are ‘long’), 

when it was administered during the training and testing phase, respectively (Figure 

1.6). This suggests that methamphetamine hastened the pacemaker, leading to 

longer perceived duration of the standard durations when administered in the 

training phase and leading to longer perceived duration of the comparison durations 

when administered in the testing phase. Haloperidol had opposite effect on PSE 

compared to methamphetamine, suggesting that it reduced pacemaker speed 

resulting in shorter perceived durations.  
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Figure 1.6. Simulated data of a temporal discrimination task in animal and of a 

temporal bisection task in humans under normal circumstances (solid line), with a 

left shift (short dotted line) and with a right shift (long dotted line). 

 

 

In contrast, vasopressin, oxytocin or physostigmine shifted PSE to the left when 

administered in the training phase, but PSE remained unaffected when these drugs 

were administered during the testing phase. This suggested that these drugs affected 

the memorisation process rather than the temporal encoding. Meck (1983) 

expressed this suggesting that, during the transfer from the STM to the reference 

memory, the standard representations are multiplied by the transformer K*, which 

has a mean of 1 and a Gaussian distribution variability when saline was administered. 

However, atropine administration increased the mean of K* (i.e., K* > 1) and the 

standard representations were longer than the actual duration of the standards. In 

contrast, vasopressin, oxytocin and physostigmine administration decreased the 

mean of K* (i.e., K* < 1) and the standard representations were shorter than their 

actual durations. 
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Reference memory is also hypothesised as a source of the scalar variance. When 

the stimulus representation is multiplied by the transformer K*, the duration stored 

into the STM is transformed into a Gaussian distribution of values. In normal situation 

(i.e., when K* = 1), the mean of this distribution corresponds to the STM 

representation, meanwhile the variability corresponds to the coefficient of variation. 

Any value of this distribution can be recalled when the interval in the reference 

memory is needed for the task, causing the variability of the timing responses. 

Although there is evidence supporting reference memory’s role in scalar variance, 

tasks which eliminate the use of references memory, known as episodic tasks, still 

produce behaviour exhibiting scalar variance (e.g., Wearden & Bray, 2001). This 

suggests that the reference memory is not the only source of the scalar variance, 

which potentially is any number of other components of the model (e.g., pacemaker).  

 

 

1.1.3.3 – Decision component 

Originally, Church and Gibbon (1982) proposed a model to explain decision rule 

employed by rats in a fixed interval task, the animal analogue of the temporal 

generalisation task (see section 1.1.2, page 20). Rats learnt a standard interval 

through reinforcement (i.e., food pellets) and then were rewarded if they recognized 

the same interval in a series of other interval presentations (comparisons) in a yes or 

no option. Church and Gibbon (1982) suggested that rats identified the comparison 

stimulus as the standard following the rule: 

|𝑠∗−𝑡|

𝑠∗
< 𝑏∗       Equation 1 

where t is the comparison duration stored in the STM, b* is a threshold that varies 

from trial to trial with a coefficient of variation of x and s* is the standard duration 

stored in the reference memory as a Gaussian distribution with coefficient of 

variation c, where scalar variance arises. In words, the rat would identify the 

comparison stimulus as the standard one when the absolute difference between the 

Gaussian representation of the standard and the comparison, divided by the 
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Gaussian representation of the standard, is lower than a threshold that varies from 

trial to trial. 

 

The rule proposed by Church and Gibbon (1982), however, did not fit human 

behaviour on the human analogue of the task (temporal generalisation). The main 

difference between rats and human timing behaviour is due to the symmetry of the 

responses: rats confuse the comparison duration as the standard with equal 

probability whether the comparison is actually longer or shorter (symmetrical 

pattern). In contrast, humans produce right skewed gradients in which YES responses 

to durations longer than the standard are more common than YES responses to 

durations shorter than the standard (Figure 1.7). Wearden (1992) introduced a 

modified Church and Gibbon (MCG) model, suggesting that humans identify the 

comparison stimulus as the standard following the rule: 

|𝑠∗−𝑡|

𝑡
< 𝑏∗       Equation 2  

where the terms are as in Equation 1. Here, the comparison stimulus is identified 

as the standard when the absolute difference between the Gaussian representation 

of the standard and the comparison, divided by the comparison, is lower than a 

threshold that varies from trial to trial. In the MCG model, although the absolute 

difference between two comparisons and the standard may be the same, the 

response is more likely to be yes when comparison is greater than the standard rather 

than shorter, resulting the right skewed gradients observed from human subjects 

(Figure 1.7). 

 



33 | P a g e  

 

 

Figure 1.7. Simulated data of a temporal generalisation task completed by human 

participants (solid line) and rats (dotted line). Note the symmetry of the ‘YES’ 

responses in rats and the right skewed gradient in human participants. 

 

 

The same structure model of Equations 1 and 2 has been also proposed to address 

the human behaviour during other temporal tasks, such as episodic temporal 

generalisation tasks (Wearden, 2004), temporal bisection tasks (Wearden & Ferrara, 

1996) and temporal reproduction tasks (Ogden, Wearden, & Montgomery, 2014). In 

all the decision rules, a threshold is compared to a difference between two durations 

that is divided by one of the two durations or by their mean. The verbal estimation 

task has been found more difficult to model, however. Data from a verbal estimation 

task has been found to violate the scalar principles (see section 1.1.2, page 20) and 

presents the problem of ‘quantization’: when participants estimate the duration of 

an event in milliseconds, they almost always round their estimates adding ‘00’ or ‘50’ 

at the end. Participants therefore use only a fraction of the possible values. Wearden 

(2015a) proposed an ‘attractor model’ to address human behaviour during a verbal 

estimation task, which suggests that the used values are attractors that differ in 
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weight and distance to the presented stimulus and they compete for priority as 

output value. The priority is given to the value with greater weight and closer to the 

presented stimulus. Whilst this model provided an accurate fit for the data in 

Wearden (2015a), it is yet to be widely tested.  

 

 

1.1.3.4 – Strengths and limitations of the Scalar Expectancy Theory 

SET has received recognition in the timing field, being able to accurately describe 

a great variety of timing behaviours (Church & Gibbon, 1982; Wearden, 1992, 2004; 

Wearden & Ferrara, 1996). Nevertheless, it has also received numerous criticisms. 

The principles of scalar timing have been criticised, in part, because these two 

principles can occur in contexts other than time perception (Wearden, 1991); scalar 

principles have been demonstrated when animals and humans discriminate stimuli 

by their numerosity (Emmerton & Renner, 2006), visual contrast (Gorea & Sagi, 2001) 

and brightness (Treisman, 1964). In part, the principles of scalar timing have been 

criticised because timing behaviour can violate the scalar principles (Lejeune & 

Wearden, 1991; Wearden & Lejeune, 2008). The second principle has been found to 

be violated when short durations (< 100ms) are used (Wearden & Lejeune, 2008), 

when participants were exposed to an extensive practice (Kristofferson, 1980), and 

when more versions of the same task with different difficulties are compared 

(Ferrara, Lejeune, & Wearden, 1997). Additionally, ‘classical’ timing procedures (i.e., 

verbal estimation task and (re)production tasks) frequently violate both scalar 

principles of timing. However, it should be noted that the absence of a scalar property 

in timing behaviour does not necessarily imply the absence of underlying scalar 

representation; there is the possibility that the motor/decision response is 

modulated, masking the scalar properties. 

 

SET has been also accused of being so flexible in its components (particularly the 

decision process) that it can always explain the data independently of how they look, 

by simply choosing appropriate decision processes (Wearden, 1999). This makes the 

model impossible to falsify because any experimental design cannot definitively 
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prove that the model is erroneous (Staddon & Higa, 1999). In fact, previous studies 

used computer modelling and manipulated each SET component separately to 

identify their operating parameters (Jones & Wearden, 2004; Wearden & Grindrod, 

2003). However, thanks to the flexibility of the parameters, a plausible mathematical 

model can be always found to fit the data, even if this requires adding bias responses 

(Droit-Volet, Clément, & Wearden, 2001). Therefore, “no data can disprove, or even 

modify, SET” as stated by Jones and Wearden (2003, p. 322). 

 

Finally, SET (together with the other internal clock models) has been criticised to 

be a cognitive model that lacks a neurobiological counterpart (Matell & Meck, 2004). 

In fact, SET has been said to lack neurobiological plausibility, because the 

components do not reflect the neural functions of the brain. New neurobiological 

models therefore have been developed to integrate timing behaviour and neural 

correlates. Among these, the Striatal Beat Frequency (Matell & Meck, 2000, 2004) 

has received great attention and popularity.  

 

 

1.2 – The Striatal Beat Frequency Model 

Matell and Meck (2000, 2004) developed the Striatal Beat Frequency (SBF) model 

which aimed to explain the neurobiological basis of time perception. A number of 

different brain areas have been identified as potential sources of the neural timing 

mechanism: cerebellum (Breukelaar & Dalrymple-Alford, 1999), hippocampus (Meck, 

Church, & Olton, 1984), putamen (Coull, Vidal, Nazarian, & Macar, 2004), pre-frontal 

cortex (Harrington, Haaland, & Knight, 1998), pre-supplementary motor cortex 

(Coull, 2004), basal ganglia (Matell, Meck, & Nicolelis, 2003; Meck, 2006) and 

thalamus (Teki, Grube, Kumar, & Griffiths, 2011). Collectively, studies show that 

damage to these brain areas is associated with impaired timing behaviour and their 

neural activity is increased during timing tasks. Particularly consistent is the evidence 

indicating that correct functioning of the basal ganglia is necessary for timing (Matell 

& Meck, 2004; Matell et al., 2003; Meck, 2006). The basal ganglia is a section of the 

forebrain that includes the striatum, globus pallidus, subthalamic nucleus and 
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substantia nigra pars compacta (SNPC), which have extensive connections with the 

thalamus and cerebral cortex. Brain damage in this area prevents from temporal 

perception and production (Matell & Meck, 2004; Meck, 2006) and activity of the 

striatum mirrors the time behavioural patterns in a peak interval task (Matell et al., 

2003).  

 

Matell and Meck (2000, 2004) developed SBF model integrating the 

neurobiological evidence of timing with the Beat Frequency model (Miall, 1989), 

which proposed that intervals are encoded and represented by patterns of 

oscillators. Miall (1989) proposed that the encoding of the stimulus duration begins 

at stimulus onset by resetting a series of oscillators that soon lose synchrony due to 

their different frequency speed, leading to a new, unique oscillatory pattern at every 

moment. The encoding of the stimulus duration ends at stimulus offset by reading 

the oscillatory pattern, which is associated to a unique time interval (Figure 1.8).  

 

 

Figure 1.8. Visual representation of four oscillators with different speeds starting 

together at stimulus onset (0) and leading to different oscillatory patterns for a 

stimulus of 500ms and 600ms. 

 

SBF advanced Miall’s model by making explicit links between the oscillator process 

and neural structures/networks previously associated with timing. The model 

integrates the neurobiological evidence that supports the role of dopamine, cortical 

oscillations and basal ganglia in time perception. SBF describes a neural network 
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responsible for timing, referred to as the cortico-striato-thalamic loop (Figure 1.9). 

Within it, the oscillators proposed by Miall (1989) have been replaced by the 

oscillating neural activity of the cortex, that is, the oscillations naturally generated by 

the cortical activity (e.g., alpha waves), which have been suggested to be associated 

to timing behaviour (Bartolo, Prado, & Merchant, 2014; Rohenkohl & Nobre, 2011). 

The rate at which the cortical activity oscillates is influenced by the DA levels, which 

is regulated by the thalamus; greater DA releases are associated to faster cortical 

oscillations, meanwhile minor DA releases are associated to slower oscillations.  

 

As in Miall, the duration of an event is determined by resetting cortical oscillators 

at stimulus onset and by reading the pattern of the oscillators at stimulus offset, 

which is detected by the striatal integrators in the striatum and forms the 

representation of duration. Critically, the model predicts that the speed of the 

cortical oscillations is associated with time distortions: at the end of a time interval 

(e.g., 500ms), faster oscillations reach a pattern associated to longer durations (e.g., 

600ms), meanwhile slower oscillations reach a pattern associated to shorter 

durations (e.g., 400ms). Because DA affects the speed of cortical oscillations, this 

model can account for the pharmacological studies showing that DA agonists (e.g., 

methamphetamine and cocaine) lengthen time perception meanwhile DA 

antagonists (e.g., haloperidol) shorten time perception in animals (Buhusi & Meck, 

2002; Maricq et al., 1981).  
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Figure 1.9. The Striatal Beat Frequency model (Matell & Meck, 2004) readapted for 

human timing showing the connections between cortex, basal ganglia and 

thalamus (continuous arrows), the excitatory direct pathway (short dotted arrow) 

and the inhibitory indirect pathway (long dotted arrows). 

 

 

1.2.1 – The cortico-striato-thalamic loop  

At stimulus onset, the cortical oscillators and striatal integrators are reset by a 

burst of DA release of the thalamus. During stimulus presentation, cortical oscillators 

lose synchrony, generating a unique oscillatory pattern every moment (as in Miall, 

1989; Figure 1.8). The cortical oscillatory activity is detected by the medium spiny 

neurons of the striatum (1), each of which is sensitive to a specific pattern of 

oscillators (i.e., a specific time duration). The striatum is connected to the thalamus 

through direct and indirect pathways, which have opposite effects. Through the 

direct pathway (2), striatum activity activates the Globus Pallidus internal segment 

(GPis) and Substantia Nigra Pars Compacta (SNPC). Through the indirect pathway (3), 

striatum activity elicits the Globus Pallidus external segment (GPes, 3a), which elicits 

the Subthalamic Nucleus (3b), which inhibits GPis and SNPC (3c), contrasting the 

direct pathway’s effect. The direct pathway is predominant during stimulus 
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presentation, leading in activation of GPis and SNPC that have an inhibitory effect on 

the thalamus (4), that is, the direct pathway prevents thalamus from releasing burst 

of DA into cortex (5) and striatum (6). In contrast, the indirect pathway is 

predominant during stimulus offset, leading in inhibition of GPis and SNPC that have 

an excitatory effect on the thalamus (4), that is, the indirect pathway promotes bursts 

of DA of the thalamus into cortex (5) and striatum (6). At stimulus offset, thalamus 

releases DA to the striatum (6) reinforcing the striatal integrators that are active in 

that moment and the associated oscillatory pattern, forming the mental 

representation of the stimulus duration. The mental representation is then stored in 

the hippocampus, where the long-term memory is located (Oprisan & Buhusi, 2014), 

if the stimulus duration has to be remembered; otherwise, the mental representation 

is immediately used for the ongoing task.  

 

 

1.2.2 – Strengths and limitations of SBF 

Through data modelling, Matell and Meck (2004) and Oprisan and Buhusi (2014) 

showed that SBF model can provide a good fit for data from humans and animals. 

Furthermore, SBF explains scalar variance through variability of neural activity (e.g., 

varying dynamic threshold of the cortical activity between trials). Perhaps the most 

widely stated advantage is the neurobiological plausibility. However, this has some 

limitations; for example, the actual oscillatory activity of the cortex is more irregular 

than that allowed by the model (Matell & Meck, 2004) and lesions to the cortex do 

not lead to such a critical disruption of timing as the model would predict (Olton, 

1989). Moreover, there is limited neural evidence supporting a reset of the cortical 

oscillators at the onset of the stimulus, without which the timing process would not 

be possible as described by SBF (Kononowicz & van Wassenhove, 2016). 

Furthermore, because the model lacks an accumulator component, SBF is not able to 

address the linear timing experience, which is the perception of time as an entity 

varying in magnitude. The accumulator in SET can easily address linear timing by 

indicating that the relationship between interval durations is determined by the 

amount of pulses generated; hence the interval where more pulses are generated is 
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longer than the interval with fewer pulses. In contrast, although SBF predicts that 

striatal neurons are related to specific oscillatory patterns and interval durations, it 

is not clear how the striatal neurons interact to establish the relationship of the 

duration they respond to.  

 

The model also predicts the use of DA in multiple phases of the timing process: (I) 

DA is thought to reset cortical and striatal activity at stimulus offset, (II) regulate 

oscillatory speed during stimulus presentation and (III) ‘save’ the striatal activity at 

stimulus offset. However, the model does not indicate how DA achieves these 

multiple tasks. Finally, the model cannot take in account the ability of simultaneous 

temporal processing (Matell & Meck, 2004). 

 

 

1.3 – Craig’s model of awareness 

Craig (2002, 2009b) proposed a neurobiological model of time perception in which 

temporal processing is integrated into subjective awareness, where awareness is 

defined as the sum of the representation of self “at each immediate moment (now) 

extended across a finite period of present time (the specious moment)” (Craig, 2009a, 

p. 1933). Given that the model considered awareness as a process that occurs across 

time, Craig (2009a) elaborated the model to address subjective timing. 

 

The single representations of self that compose awareness (also called global 

emotional moments) are defined as the integration of salient feelings in the 

immediate moment. Craig (2009a) used ‘salient feelings’ as a broad term to indicate 

the personal components (emotion, sensation, cognition, etc.) that are relevant to 

the individual homeostasis. The sum of the salient feelings in the immediate moment 

forms the global emotional moment. The model suggests that the anterior insular 

cortex (AIC) generates the global emotional moment after a series of stages in the 

insula with a posterior-to-mid-to-anterior progression, through which insula 

integrates interoception, situational context, hedonic impulses and motivational, 

social and cognitive feelings (Figure 1.10). Craig (2009b) suggested that the repetition 
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of the posterior-to-mid-to-anterior circuit leads to a meta-representation of the 

global emotional moment across a finite period of time, resulting in awareness. 

 

 

 

Figure 1.10. The posterior-to-mid-to-anterior progression of the global emotional 

moment expected by the model of awareness (Craig, 2009b). 

 

 

1.3.1 – Adaptation of the model in time perception 

With awareness being postulated as a process that occurs across time, Craig 

(2009a) suggested that perceived duration is linearly related to the number of 

generated global emotional moments, which varies depending on the AIC activity. 

AIC activity is also associated with homeostasis of the autonomic nervous system 

(ANS) (Craig, 2002; Wittmann, 2009). Right activation of the AIC is associated with 

increased activity of the sympathetic nervous system (SNS), which is the branch of 

the ANS that modulates body homeostasis in stressful situations. Whereas, left 

activation of the AIC is associated with increased activity of the parasympathetic 

nervous system (PSNS), which is the branch of the ANS that modulates body 

homeostasis in resting situations (see section 2.1, page 44). Craig (2009a) suggested 

that right AIC activation due to SNS activity leads to greater production of global 

emotional moments, which results in longer perceived duration (bottom part Figure 

1.11). In contrast, left AIC activation due to PSNS activity increases leads to reduced 

production of global emotional moments, which results in shorter perceived 
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duration. This suggestion is supported by studies showing AIC activation during 

temporal perception and homeostasis processing simultaneously (Craig, 2009a). 

 

 

 

Figure 1.11. The generation of global emotional moments across time during left AIC 

activation (top part) and during right AIC activation (bottom part) (Craig, 2009b). 

 

 

1.3.2 – Strengths and limitations of the model of awareness 

The model of awareness (Craig, 2002, 2009b) has received recognition due to its 

integration of behavioural and neurological evidences. However, the original aim of 

the model was to address awareness rather than subjective timing (Craig, 2009a). 

Therefore, whilst the model is able to predict the directional effect that external 



43 | P a g e  

 

situations have on perceived durations, the model lacks mathematical modelling to 

compare expected and experimental results, contrarily to SET and SBF. Moreover, 

Craig (2009a) acknowledges that the model cannot explain the phenomenon ‘time 

flies when having fun’: the shortening effect that pleasant and engaging situations 

have on subjective timing. The model of awareness would predict that pleasant 

situation would increase the generation of global emotional moments increasing 

right AIC activation, resulting in lengthening effect as for dangerous situations. 
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Chapter 2 

The effect of emotion on time perception 

 

2.1 – Emotions  

Emotions are automatic patterns of behavioural and physiological responses that 

have developed to adapt body and mind to the current state of the external world, 

so as to provide the best survival and reproductive chances (James, 1884). Emotions 

therefore involve changes of physiological and cognitive states (Vuilleumier, 2005). 

Physiological changes occur through the autonomic nervous system (ANS), the 

division of the peripheral nervous system that automatically regulates the activity of 

the internal organs (e.g., the heart) adapting the body to the external context 

(Robertson, Low & Polinsky, 2011). The ANS consists of two branches, the 

sympathetic nervous system (SNS), which is dominant during stress and fight/flight 

responding, and the parasympathetic nervous system (PSNS), which is dominant 

during relaxation (Robertson et al., 2011). Emotional experience is associated with 

SNS dominance over PSNS, resulting in increases of heart rate, peripheral 

vasoconstriction (Mendes, 2009; Sztajzel, 2004) and electrical activity of the skin 

(Critchley, 2002). Particularly, the emotions related to survival (e.g., fear) induce 

greater SNS activity compared to other emotions (e.g., happiness) (LeDoux, 2012). 

 

Emotions have also privileged routes in cognitive and neural processes. Early 

sensory processes (e.g., P1 and N1 event-related potentials) have greater amplitude 

when the stimuli are emotional than neutral (Grandjean et al., 2005; Vuilleumier, 

Armony, Driver, & Dolan, 2001). Emotional stimuli also capture more attention than 

non-emotional stimuli leading to enhanced detection of emotion stimuli (Ohman, 

Flykt, & Esteves, 2001) and impaired performance on tasks performed simultaneous 

to emotion processing (Richards & Blanchette, 2004). Memory and executive 

functions are also impacted by emotions, with emotional stimuli more likely to be 

remembered (Kensinger & Corkin, 2003; Lindström & Bohlin, 2011) and less likely to 

inhibit automatic responses (Verbruggen & De Houwer, 2007) than neutral stimuli. 

Critically however, although there is evidence that all emotional states can affect 
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cognitive processing, the greatest effects appear to occur when the emotion induced 

is survival-related (Lake, LaBar, & Meck, 2016; Vuilleumier, 2005). 

 

 

2.2 – The effects of emotions on timing 

“Time flies when having fun” and “time drags when bored” are common 

statements that describe the ability of emotions to distort human time experience in 

daily life. However, these expressions frequently are passage of time judgments, that 

is, judgments of how fast or slow the time seems to pass compared to normal. 

Passage of time judgments are not related to duration judgment (i.e., judgments of 

how long an interval lasts), and to date it is still unclear how passage of time 

judgments are related to the underlying mechanisms of timing. For example, the 

feeling of “time flying” has been associated with longer perceived duration in some 

studies (Gil & Droit-Volet, 2011) and with shorter perceived duration in others (Droit-

Volet, Bigand, Ramos, & Bueno, 2010). It is therefore difficult to interpret passage of 

time judgments to address the effects of emotions on time perception (see Wearden, 

2015b for review). 

 

In the last few decades, the effects of emotion on duration judgments have been 

intensively investigated. Studies consistently show that subjective time is distorted 

by emotional experience (e.g., Bar-Haim, Kerem, Lamy, & Zakay, 2010; Campbell & 

Bryant, 2007; Droit-Volet & Gil, 2009; Droit‐Volet, Brunot, & Niedenthal, 2004; 

Stetson, Fiesta, & Eagleman, 2007; Yamada & Kawabe, 2011). The most consistently 

reported effect is that negatively valenced stimuli are perceived as lasting for longer 

than neutral stimuli presented for the same duration (Lake et al., 2016). The relative 

overestimation of threating stimuli appears consistent across modalities. Static visual 

stimuli, negatively valanced IAPS images (Angrilli, Cherubini, Pavese, & Manfredini, 

1997; Droit-Volet & Meck, 2007; Gil & Droit-Volet, 2012; Grommet et al., 2011), angry 

faces (Doi & Shinohara, 2009; Thayer & Schiff, 1975; Tipples, 2008), taboo words 

(Tipples, 2010), life-threatening situations (Campbell & Bryant, 2007; Castellà, Cuello, 

& Sanz, 2017) are all perceived as lasting for longer than their neutral counterparts. 
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Comparable effects are observed for negatively valanced, dynamic visual stimuli such 

as video-clips (Droit-Volet, Fayolle, & Gil, 2011). Similarly, the duration of emotional 

auditory stimuli are overestimated relative to neutral stimuli (Noulhiane, Mella, 

Samson, Ragot, & Pouthas, 2007). Furthermore, individual differences influence the 

extent to which emotion distorts time; the magnitude of the overestimation of 

negatively valenced stimuli correlates positively with the empathy quotient of the 

participant (Mondillon, Niedenthal, Gil, & Droit-Volet, 2007) and distortions are 

attenuated when embodiment is prevented (Effron, Niedenthal, Gil, & Droit-Volet, 

2006). 

 

The effect of threating stimuli on perceived duration is also broadly consistent 

across experimental tasks; it has been observed on temporal bisection (Droit-Volet 

et al., 2011; Droit-Volet, Fayolle, Lamotte, & Gil, 2013), verbal estimation (Angrilli et 

al., 1997), temporal generalisation (Mella et al., 2011) and temporal reproduction 

tasks (Angrilli et al., 1997; Bar-Haim et al., 2010). However, findings are not consistent 

in the temporal generalisation and reproduction tasks. For example, Gil and Droit-

Volet (2011) did not find emotional distortions of performance during temporal 

generalisation task and suggested that temporal generalisation and reproduction 

tasks demand greater memory resources compared to verbal estimation and 

bisection tasks, which might mask the emotional effects on the ‘raw’ temporal 

encoding (Baudouin, Vanneste, Isingrini, & Pouthas, 2006; Droit-Volet & Rattat, 

2007).  

 

Whilst fear inducing negatively valenced stimuli are consistently perceived as 

longer than neutral stimuli, positively valenced stimuli are generally perceived as 

lasting for less time than neutral stimuli (Smith et al., 2011). For example, participants 

perceived the duration of happy music (Droit-Volet et al., 2010) and positive images 

(Smith et al., 2011) as shorter than neutral stimuli. Similarly, Ogden et al. (2015) 

found that a square presented while experiencing pleasant touch was perceived as 

lasting shorter than a square presented while experiencing unpleasant or no touch. 

Stimulus valence therefore appears critical in determining the direction of emotional 
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distortions to time. However, it should be noted that the shortening effect of 

positively valenced stimuli is not universally observed: for example, positive sounds 

were found to be overestimated compared to neutral sounds (Noulhiane et al., 2007) 

and to lengthen the perceived duration of concomitant visual stimuli (Droit-Volet, 

Mermillod, Cocenas-Silva, & Gil, 2010). Moreover, the magnitude of the time 

distortion of positive stimuli is lower compared to the magnitude of the time 

distortion of negative stimuli (Noulhiane et al., 2007).  

 

Other emotional states have been less widely studied making conclusions about 

their effects more difficult. For example, disgust has been found to induce (i) time 

overestimation when using high-arousal images (e.g., mutilated corpses; Gil & Droit-

Volet, 2012), (ii) no time distortion when using low-arousal images (e.g., an ashtray; 

Gil & Droit-Volet, 2012), and (iii) time underestimation when using images of rotten 

food (Gil, Rousset, & Droit-Volet, 2009). It should be noted, however, that the choice 

of the high-arousal disgust stimuli might be inaccurate given that mutilated bodies 

can also be rated as threatening (Lang & Bradley, 2007). Similarly, attractive faces 

showed contrasting effects on perceived duration; for example, Arantes et al. (2013) 

found that attractive faces were overestimated compared to neutral faces, 

meanwhile Ogden (2013) found no difference in perceived durations between 

neutral and attractive faces.  

 

 

2.3 – Theoretical explanation of emotion effects on time  

Within the frameworks of the models of time perception discussed in Chapter 1, 

two hypotheses have been proposed to explain the mechanisms that lead emotions 

to distort time: 1) the arousal hypothesis and 2) the attention hypothesis.  

 

 

2.3.1 – The arousal hypothesis 

Since emotional distortions to time were first reported, it has been theorized that 

emotion induced changes in arousal is the causal mechanism by which emotion 
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distorts duration (Thayer & Schiff, 1975). Emotion evokes widespread changes in 

physiological arousal (Russell & Mehrabian, 1977), which are thought to act on the 

mechanisms used to judge duration. The role of arousal in emotional distortions to 

time is supported by observations that high arousal stimuli have greater effects on 

timing than low arousal stimuli; for example, Gil and Droit-Volet (2012) found that 

low arousing sad images induced a time distortion with reduced magnitude 

compared to high arousal sad images. Similarly, negative stimuli are thought to lead 

to greater time distortion than positive stimuli (as in Noulhiane et al., 2007) because 

negative stimuli are more arousing (Cacioppo & Gardner, 1999).  

 

Arousal is determinant of perceived duration in the three main models of temporal 

perception (SET, SBF and Craig’s model of awareness; see Chapter 1). In SET, arousal 

affects the speed at which the pacemaker emits output. At a basic level, increases in 

arousal are thought to increase the output rate, leading to a greater accumulation 

and a longer perceived duration. In contrast, decreases in arousal are thought to 

decrease output rate leading to less accumulation and a shorter perceived duration 

(Gibbon et al., 1984).  

 

Because arousal acts on the pacemaker, its effect on perceived duration is thought 

to be multiplicative, that is, greater time distortions occur with longer stimulus 

durations (Maricq et al., 1981; see section 1.1.3.1.1, page 23). A series of studies 

investigated the arousal hypothesis by testing the multiplicative effect with 

emotional stimuli: if emotional stimuli induce time distortion because they are more 

arousing, then time distortion should be greater when presenting longer emotional 

stimuli. However, studies have shown contrasting findings with evidence of the 

multiplicative being found in some studies (e.g., Droit-Volet et al., 2004; Mella et al., 

2011) but not in others (e.g., Grommet et al., 2011; Lui, Penney, & Schirmer, 2011). 

Additionally, to date no study has shown whether emotions affect the slope of time 

judgments during a verbal estimation task, which is an additional indication of a 

multiplicative effect (see section 1.1.3.1.1, page 23) and a direct evidence of 

pacemaker speed modulation (Matthews, 2011). In fact, the hastening effect of 
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emotions on pacemaker speed should result in steeper verbal estimates. Due to the 

inconsistent presence of multiplicative effect and the absence of studies showing the 

effect of emotions on slope, the argument that emotions affect the pacemaker speed 

is therefore unsupported by empirical data. 

 

Inconsistency in the presence of multiplicative effect might arise because the 

multiplicative effect prediction assumes that emotions affect only arousal and 

therefore only pacemaker changes should be observed. This is unlikely given that 

emotional experience affects a range of cognitive a physiological processes (see 

section 2.1, page 44) and it is thus possible that multiplicative effects are masked by 

other affected components (e.g., memory). This suggestion is supported by studies 

that found that emotional events had both additive and multiplicative effects on time 

perception (Gil & Droit-Volet, 2012; Smith et al., 2011).  

 

In SBF, arousal affects DA, which regulates the frequency of the cortical oscillators. 

At a basic level, increases in arousal are thought to increase DA release, leading to 

faster desynchronization of cortical oscillators and longer perceived duration (Matell 

& Meck, 2004). In contrast, decreases in arousal are thought to decrease DA release, 

leading to slower desynchronization of cortical oscillators and shorter perceived 

duration. During emotional events, the thalamus releases greater doses of DA into 

the cortex; for example, Bromberg-Martin et al. (2010a, 2010b) found a phasic DA 

release to the cortex in response to appetitive and aversive events. This hastens the 

cortical oscillators, resulting in longer perceived durations compared to neutral 

events (see Lake et al., 2016 for discussion).  

 

In Craig’s model of awareness, physiological arousal affects the activity of the 

anterior insular cortex (AIC), promoting the generation of global emotional moments 

(Craig, 2009a). At a basic level, increases in SNS dominance are thought to increase 

right side AIC activity, leading to a faster production of global emotional moments 

and resulting in longer perceived duration. In contrast, increases in PSNS dominance 

are thought to increase left side AIC activity, leading to a slower production of global 
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emotional moments and resulting in shorter perceived durations. During emotional 

events, there is an increase of SNS activity, particularly for threatening, negatively 

valenced stimuli. This leads to right side AIC activation, producing more global 

emotional moments during emotional stimuli presentation, which are therefore 

perceived to last longer than neutral stimuli. 

 

The mediation role of arousal in the emotional distortions to time is supported by 

emerging evidence that there is indeed a direct relationship between physiological 

arousal and the perceived duration of sub-second stimuli (Cellini et al., 2015; Fung, 

Crone, Bode, & Murawski, 2017; van Hedger, Necka, Barakzai, & Norman, 2017). For 

example, Pollatos et al. (2014) observed that greater PSNS dominance was associated 

with less error on a reproduction task and Cellini et al. (2015) observed that higher 

PSNS activity was associated with lower error rates on a temporal production task. 

However, these findings showed how resting state of ANS activity is associated with 

temporal perception, rather than how changes in ANS activity are associated with 

temporal distortions. Both Pollatos et al. (2014) and Cellini et al. (2015) acknowledge 

that their findings might just indicate the influence of PSNS on attention and working 

memory required for performing the timing task (see Thayer, Hansen, Saus-Rose, & 

Johnsen, 2009). 

 

In addition, there are studies using physiological measures that are not specific to 

the SNS and PSNS activity (Fung et al., 2017; Hawkes, Joy, & Evans, 1962; Osato, 

Ogawa, & Takaoka, 1995). For example, Fung et al. (2017) found that low frequency 

heart rate variability (LF HRV) was associated with less accurate perceived durations 

in a temporal reproduction task. However, LF HRV is modulated by both SNS and 

PSNS activity (see Reyes del Paso, Langewitz, Mulder, van Roon, & Duschek, 2013 for 

discussion), making it therefore difficult to disentangle the effects of ANS activity on 

temporal distortion. 

 

Van Hedger et al. (2017) tested the effect of a social stressor on the temporal 

reproduction of neutral, negative and positive images and used Pre-ejection Period 
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(PEP) and high frequency heart rate variability (HF HRV) to measure changes in SNS 

and PSNS activity, respectively. They found a significant correlation between changes 

in PEP (before and after the social stressor) and changes in reproduction durations 

for the negative images at short durations (400ms). In contrast, changes in SNS 

activity did not correlate with changes in reproduction durations for the negative 

images at long durations (4000ms), and for the neutral and positive images. No 

relationship was also found between HF HRV and any reproduction. This study had 

methodological issues, however; in a reproduction task, a state change between the 

presentation of the to-be-timed stimulus and participants’ reproduction is required 

to test temporal distortions. Here, the to-be-timed stimulus was presented and the 

reproductions were made in the same emotional state, i.e., before the social stressor 

and after the social stressor. The social stressor therefore equally affected the 

stimulus presentation and the stimulus reproduction, which may have masked the 

temporal distortions. Moreover, given that SNS and PSNS activities were not 

recorded separately for the different emotional categories (neutral, negative and 

positive), it is not possible to relate the physiological response to the emotional 

stimulus with its perceived duration. 

 

The arousal hypothesis, in summary, states that the time distortion induced by the 

emotion is directly associated with its ability to regulate arousal: the greater the 

changes in arousal the greater the changes in perceived duration. Whilst this 

hypothesis enjoys some support, there are some limitations. Firstly, the hypothesis is 

unable to explain why positive stimuli are perceived as lasting for less time than 

neutral stimuli. Positive emotional stimuli have the capacity to increase arousal in a 

manner akin to that observed with negative stimuli (Lang & Bradley, 2010). If positive 

stimuli are increasing arousal, they should be perceived as lasting for longer than 

neutral stimuli, not shorter. Secondly, although van Hedger et al. (2017) 

demonstrated a direct relationship between changes in physiological arousal and 

temporal distortions, there were methodological issues that reduced the validity of 

the findings. Systematic measurement and evaluation of the relationship between 
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physiological arousal and perceived duration is therefore required before it can be 

concluded that arousal change directly influences perceived duration. 

 

 

2.3.2 – The attention hypothesis 

Emotions affect attentional processing, capturing attention leading to enhanced 

processing of emotional stimuli often at the cost of ongoing tasks (Öhman, Lundqvist, 

& Esteves, 2001; Vuilleumier, 2005; see section 2.1, page 44). Because veridical 

timing is dependent on adequate attentional resources (see section 1.1.3.1.2, page 

26), attention capture by emotion is thought to affect the perceived duration of 

emotional events.  

 

Experimental evidence supports this; Ogden et al. (2015) suggested that visual 

stimuli are underestimated while receiving a pleasant stroke because the pleasant 

feeling detracts participants’ attention away from the timing task. Similarly, it has 

been suggested that the perceived duration of rotten food (Gil et al., 2009), shameful 

expressions (Gil & Droit-volet, 2011) and unattractive faces (Ogden, 2013) are 

underestimated because attention is dedicated to avoiding rotten food and shameful 

expressions and locating atypical features in face-space, reducing attention to time 

and resulting in reduced perceived duration.  

 

Enhanced attention to emotional stimuli has also been used to explain subjective 

lengthening of duration. For example, Grommet et al. (2011) presented participants 

with neutral (i.e., lamps) and threatening images (i.e., snakes) during a temporal 

bisection task and found that threatening images produced more long responses 

compared to neutral ones. Critically, Grommet et al. (2011) found that this effect was 

independent of the stimulus duration, suggesting an additive effect of emotion on 

verbal estimation, which is an index of a switch modulation rather than a pacemaker 

speed modulation within SET (see section 1.1.3.1.2, page 26).  
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Different theoretical models of time perception provide different levels of 

specificity about the precise way in which emotion alters attention to time. In SET, 

attention influences switch operation; because emotions capture more attention at 

stimulus onset than neutral stimuli, emotions reduce the latency with which the 

switch closes, allowing more pulses to access the accumulator compared to the usual 

switch latency when presenting neutral stimuli (see section 1.1.3.1.2, page 26). 

Furthermore, emotions increase sustained attention (see section 2.1, page 44), which 

is thought to affect the openness of the attentional gate, regulating the amount of 

pulses allowed into the accumulator (Zakay & Block, 1995). 

 

SBF suggests that emotional affects attention to time in two ways; firstly, 

emotional stimuli capture more attention at their onset than neutral stimuli leading 

to faster resetting of cortical oscillators. This allows cortical oscillators to 

desynchronize during a greater time window, resulting in time overestimation for 

emotional stimuli compared to neutral ones. Secondly, SBF predicts that sustained 

attention to time has similar effects of the ones induced by arousal (Matell & Meck, 

2004); that is, greater attention for emotional stimuli increases dopamine level in the 

brain leading to faster desynchronization of cortical oscillators and resulting in longer 

perceived duration. In contrast, a lack of sustained attention leads to a decrease in 

dopamine levels and fire ratings of the cortex, resulting in time underestimation.  

 

Craig’s model of awareness does not explicitly state how attention would affect 

time perception. However, the model predicts that the timing process is based on the 

saliency of the to-be-timed event (Craig, 2002) and salient events capture more 

attention than non-salient ones (Kim & Cave, 1995). Salient stimuli lead to greater 

right side AIC activity, greater production of global emotional moments and longer 

perceived duration. Emotional stimuli are more salient than neutral ones (Craig, 

2002), therefore leading to greater AIC activity, which explains why they are 

perceived as lasting for longer. However, because the model predicts that time 

perception is affected by the stimulus saliency, which is always greater in emotional 
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stimuli than in neutral ones, Craig (2009a) acknowledged that the model is not able 

to address why sometimes emotions lead to time underestimation. 

 

The attention hypothesis, in summary, states that the time distortion induced by 

the emotion is directly associated with the quantity of attention captured by the 

emotion at stimulus onset and with the quantity of sustained attention dedicated to 

time during stimulus presentation. It should be noted however, that whilst the 

attentional explanations used in these experiences are plausible they are simply 

inferred from the presence of underestimation or additive effect, but they are not 

explicitly tested. Moreover, additive effect was not consistently found across studies 

(e.g., Droit-Volet et al., 2004; Mella et al., 2011). 

 

 

Although the field of time perception treats arousal and attention as fairly distinct 

components. There is substantive evidence demonstrating that arousal and attention 

are collaborative processes that enable priority for the detection and encoding of 

emotional events in the external world (see Vuilleumier, 2005 and Coull, Cheng, & 

Meck, 2011 for review). It therefore seems highly likely that arousal and attention 

interact during time perception. This is also supported by evidence showing that 

simply instructing participants to direct attention toward the emotional component 

rather than the time component of the event affects physiological responses and 

perceived duration (Mella et al., 2011). The current approach of prescribing either 

attentional or arousal explanations for findings is therefore problematic as any 

explanation is likely to be incomplete. An integrative account of how attention and 

arousal dually impact on time perception is therefore required.   
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Chapter 3 

The effect of pain on time perception 

 

3.1 – Pain 

In the earliest models, pain was conceived only as a biological phenomenon to 

promote survival and avoid body damage. The psychological states of the sufferer 

were not thought to play any role on the pain experience (see Brown, 1989 for a 

description of the Cartesian Dualism). Nowadays, pain is considered a complex 

biopsychosocial construct, where physiological, social, affective and cognitive 

dimensions all interact to create the experience of pain (Engel, 1980). Pain is a 

subjective experience which can be measured only through self-reported techniques. 

This is because, although the activity of the skin receptors can be measured, this 

activity does not always reflect the pain intensity experienced by the sufferer (Smart, 

Blake, Staines, & Doody, 2012). Biopsychosocial models, therefore, considered pain 

as a survival mechanism that can be modulated by the sufferer’s social and 

psychological state. 

 

3.1.1 – Physiology of pain  

The skin contains a variety of receptors with different functions (Bear, Connors, & 

Paradiso, 2007); mechanoceptors detect pressure and vibration, thermoceptors 

detect variation of temperature and nociceptors detect noxious stimulations. 

Nociceptors are divided in sub-categories, with each sub-category detecting a single 

threat source; thermal nociceptors are responsible for the burning sensation when a 

hot object is in contact with the skin, meanwhile mechanical nociceptors are 

responsible for the pain sensation when a blunt or sharp object hits the body. 

Nociceptors are also divided in two categories based on the presence of myelination, 

which affects the axon’s speed in transferring the information from the skin to the 

spinal cord. Aδ nociceptors are myelinated and have a speed of 5-30m/sec, 

meanwhile C nociceptors are not myelinated and have a speed of 0.5-2m/sec. This 

difference in speed between C and Aδ nociceptors are also responsible for the 

biphasic response to pain; Aδ nociceptors are responsible for the first, sharp and 
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short-lasting sensation of pain; meanwhile C nociceptors are responsible for the 

second, dull and long-lasting sensation of pain (Figure 3.1). The first phase has the 

aim of interrupting the contact of the skin with the threating source (e.g., removing 

the hand from the hot pan); meanwhile the second phase has the aim of making the 

injured body part sensitive so to promote protection and avoid further damage (e.g., 

the use of a burnt finger is reduced). 

 

 

Figure 3.1. First and second pain phases mediated by fast Aδ and slow C nociceptors 

respectively (Bear et al., 2007). 

 

 

3.1.2 – Neural correlates of pain 

Once a threat has been detected by the nociceptor, the information follows the 

spinothalamic medial and lateral pathways before being perceived (Brooks, 

Nurmikko, Bimson, Singh, & Roberts, 2002). The nociceptor’s axon projects to the 

nerve in the dorsal column of the spinal cord, which follows the lateral side of the 

spinal cord projecting to the medial or lateral nuclei of the thalamus. The lateral 

nuclei of the thalamus project to the primary and secondary somatosensory cortex, 

meanwhile the medial nuclei project to the limbic regions of the brain (e.g., cingulate 

gyrus and insula). Historically, the lateral pain pathway would be responsible for the 

sensory-discriminative aspects of pain (e.g., the pain intensity; Treede, Kenshalo, 
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Gracely, & Jones, 1999); meanwhile the medial pathway would be responsible for the 

affective aspects (Vogt & Pandya, 1987). For example, Lamm et al. (2011) found that 

the anterior insula and cingulate gyrus were also activated while seeing someone in 

pain (that is, in empathy for pain), supporting the limbic systems relationship with 

the affective aspects of pain rather than with its sensation itself. Craig (2002) also 

suggested that pain has a privileged route, compared to other stimulations (e.g., 

thermal stimulation), to the posterior insular cortex, which is responsible for the 

sense of interoception. The sense of interoception, in fact, is enhanced while 

experiencing pain (Craig, 2002). However, the historical pathways were contested by 

Brooks et al. (2002), who observed that only a small area in the posterior insula has 

the sensory-discrimination role. Brooks et al. (2002) found that distracting 

participants from pain with a perceptive task (i.e., detecting the moving direction of 

a series of dots) changed the neural activity associated with pain processing (i.e., 

insula, inferior frontal gyrus, secondary sensory cortex and cingulate gyrus), with the 

only exception of that small area in posterior insula. Brooks et al. (2002) therefore 

suggested that this might be the only area with a sensory-discriminative role.  

 

Pain also activates the hypothalamus, which regulates the activity of the 

autonomic nervous system (Bear et al., 2007). Pain alters the activity of the two 

branches of the ANS, the sympathetic and parasympathetic systems, leading to the 

SNS dominance over the PSNS because the SNS is activated during threatening 

situations and has the function of preparing the body for the fight/flight response in 

order to survive. Pain induced increases in SNS activity result in increased heart rate 

(Dowling, 1983; Hamunen et al., 2012), electro-dermal activity (Dowling, 1983; Dubé 

et al., 2009), breathing rate (Boiten, 1998) and peripheral vasoconstriction (Awad et 

al., 2001). These effects are thought to enhance muscle oxygenation, predisposing 

the body to react to the threat and reducing harm (Gordan, Gwathmey, & Xie, 2015). 

 

3.1.3 – Experimental induction of pain 

Historically, in experimental settings, pain has been induced using two types of 

stimulus: electrical and thermal (Kyle & McNeil, 2014). The most widely used 
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technique to induce thermal pain is activating thermal nociceptors through the cold 

pressor test, which consists of placing the participant’s hand in freezing water (0-5oC) 

(Richardson et al., 2013). The popularity of this test is due to the contained cost of 

the equipment, the ease of administration and its excellent validity and reliability 

(Edens & Gil, 1995). However, the method also has limitations: the temperature used 

and the number of hand immersions vary across studies, leading to difficulties when 

comparing the findings (Mitchell, MacDonald, & Brodie, 2004).  

 

Other thermal pain stimulators include the use of a thermode (e.g., Moore, Keogh, 

& Eccleston, 2013) and a laser (e.g., Stancak, Raij, Pohja, Forss, & Hari, 2005) that 

activate thermal nociceptors. The former consists of a thermode placed on 

participant’s skin, whose temperature can be controlled by the experimenter to 

reach from 0oC to 55oC. The latter consists of a laser beam on participant’s skin whose 

intensity can be controlled to produce burning sensation. Although these techniques 

are less popular and have higher financial costs compared to the cold pressor 

technique, they bring other advantages. For example, the laser technique has the 

advantage that none of its components is in direct contact to the skin, avoiding the 

activation of mechanoceptors (activated by the thermode and by the water in the 

cold pressor test), which may interfere with the nociceptors’ activity. In contrast, the 

thermode can both increase and decrease its temperature based on the experimental 

design. 

 

Electro-cutaneous stimulation, on the other hand, induces pain through alteration 

of the membrane potential of the stimulated cells and through alteration of electrical 

energy into thermal energy, resulting in (potential) tissue damage (Lee, Zhang, & 

Hannig, 2000). Electrical pain has been used for its high degree of temporal and 

intensity acuity: the electrical stimulation delivers the selected pain intensity from 

the stimulation onset until the stimulation offset, contrarily to the thermal 

stimulation that usually requires a ramp time before reaching the selected 

temperature and before returning to baseline. Moreover, the duration of the 

electrical stimulation can be in the sub-second range within an error of one 



59 | P a g e  

 

millisecond. However, electrical pain is not specific to any particular type of 

nociceptor (e.g., thermal nociceptor) because the electrical stimulation affect the 

membrane potential of all the cells invested by the shock. This leads the electro-

cutaneous stimulation to activate all receptors (i.e., nociceptors, mechanoceptors, 

etc.), resulting in a complex sensation that is not only limited to pain, but involves 

also a feeling of vibration and heat (Lee et al., 2000). Moreover, the density of the 

receptors differs depending on the body area, leading to different sensations; for 

example, the perception of an electric shock on the arm may differ to the perception 

of a shock on the chest (Lee et al., 2000). 

 

Method 
Nociceptors 
activated 

Advantages Disadvantages 

Cold 
pressor 
test 

Thermal 
nociceptors 

▪ Contained costs. 
▪ Ease of 

administration. 
▪ Excellent validity 

and reliability. 
▪ Stimulation in 

minutes range. 

▪ Impossible 
stimulation with hot 
temperature. 

▪ Impossible 
stimulation in sub-
second range. 

Thermode 
Thermal 
nociceptors 

▪ Dedicated software 
for experimental 
and clinical settings. 

▪ Stimulation in 
minutes range. 

▪ High costs. 
▪ Impossible 

stimulation in sub-
second range. 

Laser 
Thermal 
nociceptors 

▪ Dedicated software 
for experimental 
settings. 

▪ Activates only 
thermal nociceptors 
and no other 
receptors. 

▪ High costs  
▪ Impossible 

stimulation with cold 
temperature. 

▪ Impossible 
stimulation in 
minutes range. 

Electrical 
shock 

All nociceptors 
(thermal, 
mechanical, etc.) 

▪ Contained costs. 
▪ High degree of 

temporal and 
intensity acuity. 

▪ Impossible 
stimulation in 
minutes range.  

▪ Activates all 
receptors of the skin. 

Table 3.1. The most common techniques to induce experimental pain with the 

activated nociceptors, the advantages and disadvantages. 
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3.1.4 – The effect of pain on cognition 

Pain is a highly salient stimulus that grabs attention from ongoing tasks (Eccleston 

& Crombez, 1999; Moore, Keogh, & Eccleston, 2012; Moore et al., 2013), resulting in 

rapid detection (Van Damme, Crombez, & Lorenz, 2007). These attention effects 

occur to maximize the likelihood of survival (Somov, 2000); the faster the attentional 

shift toward the noxious stimulus, the sooner the avoidance response, resulting in 

increased chances of survival. Pain also affects other cognitive functions, such as 

long-term memory (Kuhajda, Thorn, & Klinger, 1998), working memory (Buhle & 

Wager, 2010) and executive functions (e.g., inhibition and task switching; Moriarty, 

McGuire, & Finn, 2011). For example, people exposed to painfully cold water whilst 

viewing a series of words later recalled fewer words compared to people who were 

exposed to room temperature water (Kuhajda et al., 1998). Moreover, increasing the 

intensity of thermal pain disrupts working memory performance in an n-back task 

(Buhle & Wager, 2010). Overall, these findings suggest that painful stimuli receive 

priority in the distribution of the cognitive resources, which are limited, at the 

expenses of non-pain related tasks (see Moriarty et al., 2011 for review). 

 

 

3.1.5 – Regulation of pain 

Physiologically, perceived pain can be regulated through afferent (bottom-up) and 

descending (top-down) pathways; the former consists of activating the 

mechanoceptors near the injury, for example rubbing the skin, to decrease the 

nociceptors fire rate and therefore the pain sensation (see Gate Control Theory by 

Melzack & Wall, 1965). The latter consists of activating the periaqueductal grey 

matter through cognitive and emotional regulation to induce body analgesia 

(Hampton, Hadjistavropoulos, Gagnon, Williams, & Clark, 2015).  

 

Emotional suppression strategies modulate the perception of pain; for example, 

seeing arousing, positive pictures decreases pain ratings (Godinho, Magnin, Frot, 
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Perchet, & Garcia-Larrea, 2006), meanwhile seeing arousing, negative pictures 

increases pain ratings (Godinho et al., 2006) and inhibits pain threshold (Meagher, 

Arnau, & Rhudy, 2001). Descending regulation of pain can be also achieved by 

distracting sufferers with classic cognitive tasks, such as the Stroop task (Valet et al., 

2004), perceptive tasks (Brooks et al., 2002) and working memory task (Buhle & 

Wager, 2010). More ecological techniques, such as playing video games (Stamp, 

Dobbins, Fairclough, & Poole, 2017) and reading a book (Hussein, 2015), can be also 

used to reduce pain experience. Finally, control over pain has also been found to 

affect pain ratings; pain ratings are higher when the sufferer lacks of control (Turk, 

Meichenbaum, Genest, & Berntzen, 1984), meanwhile increasing the control 

decreases the pain ratings (Kanfer & Seidner, 1973).  

 

In clinical contexts, pain is effectively management using psychologically based 

therapies, such as Cognitive Behavioural Therapy (Eccleston & Crombez, 1999) and 

Acceptance and Commitment Therapy (Hayes, Levin, Plumb-Vilardaga, Villatte, & 

Pistorello, 2013). Particularly, mindfulness-based interventions (e.g., Mindfulness-

Based Stress Reduction) have recently increased their popularity for the pain 

management (Malinowski, 2017; Zeidan, Gordon, Merchant, & Goolkasian, 2010). 

For example, mindfulness-based interventions reduce perceived intensity of clinical 

pain (Veehof, Trompetter, Bohlmeijer, & Schreurs, 2016) and reduce stress and 

depression symptoms improving the quality of life and wellbeing of chronic pain 

patients (Kuyken et al., 2015). 

 

 

3.2 – The relationship between pain experience and time perception. 

Einstein famously observed that “put your hand on a hot stove for a minute and it 

feels like an hour”. This distorting effect of pain experience on time experience has 

since been explored in numerous experimental (Ogden, Moore, Redfern, & McGlone, 

2014; Thorn & Hansell, 1993) and clinical (Somov, 2000) studies. Here, experimental 

studies have been referred to those studies that induced experimental pain to 

healthy participants comparing their time perception between painful and non-
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painful condition. In contrast, clinical studies have been referred to those studies 

where time perception of healthy participants was compared to the time perception 

of clinical patients who suffered pain (e.g., back pain). 

 

 

3.2.1 – Experimental studies 

In experimental settings, pain has been shown to lengthen perceived duration in 

a range of studies using a variety of pain induction techniques. Hare (1963) tested the 

effects of electric shocks on the verbal estimation of empty intervals delimited by a 

click sound at the beginning and at the end. The study adopted a prospective verbal 

estimation paradigm, where participants were asked to estimate the duration of a 

series of 5- and 20-second intervals, half of which were followed by a painful shock. 

Participants were told before the interval whether the shock would occur. 

Participants overestimated the duration of the intervals with the shock compared to 

intervals without a shock, suggesting that pain experience lengthened the perceived 

duration of the intervals. The lengthening effect of electric shock was recently 

replicated by Fayolle et al. (2015) using a temporal bisection task.  

 

Ogden et al. (2014) observed comparable results when testing the effects of heat 

pain on the perceived duration of neutral visual stimuli. In this study, participants 

were first conditioned to associate one visual symbol with the occurrence of pain and 

another with no pain. Participants then completed a prospective verbal estimation 

task in which the pain-conditioned stimulus and the neutral conditioned stimuli were 

re-presented, however pain was only delivered on 30% of pain-stimulus trials. The 

stimuli could last between 50 and 1500 milliseconds. Results showed that the pain-

related stimulus was overestimated compared to the neutral stimulus, suggesting a 

lengthening effect of pain on perceived duration. Overestimation also occurred in 

trials where the pain-related stimulus was presented but the pain was not delivered, 

suggesting that the anticipation of pain induces time distortions. The authors also 

showed that the pain effect on subjective timing has a greater magnitude than the 
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time distortion magnitude generated by visual emotional stimuli in previous studies 

(e.g., angry faces in Gil & Droit-volet, 2011).  

 

Rey et al. (2017) also found time overestimation of neutral visual stimuli (e.g., a 

gray square) using the cold pressor test. Participants completed a temporal bisection 

task where they first learnt a short (250ms) and a long (750ms) duration and then 

were presented with a series of comparison durations whilst their hand was 

immersed in the water. Results showed that comparison stimuli were perceived as 

more similar to the long duration more often when participants’ hand was in painful, 

cold water (12oC) compared to when their hand was placed in room temperature 

water (25°C). Accordingly, the pain stimulation also induced a left shift of the point 

of subjective equality (see 1.1.3.2, page 29), suggesting that pain stimulation 

lengthened the perceived duration of visual stimuli. 

 

It should be noted, however, that lengthening effects of pain are not universally 

observed. Evidence of pain shortening perceived time can be found in studies of 

retrospective timing, where participants are informed about the timing task only 

after the presentation of the to-be-timed event. In two similar studies, Thorn and 

Hansell (1993) and later Hellström and Carlsson (1997) asked participants to 

retrospectively estimate the duration of cold pressor trials where participants’ hand 

was placed in a tank with water at freezing (7oC and 2oC) or room (35oC and 26oC) 

temperature. Participants underestimated the duration of the trial when the water 

was painfully cold compared to when it was at room temperature.  

 

Collectively, these studies suggest that in prospective timing studies pain related 

stimuli are perceived as longer than neutral stimuli. Furthermore, this distorting 

effect of pain is substantial, producing greater lengthening effects than emotional 

distortions to time. However, in retrospective studies, pain has a shortening effect on 

perceived time. Differential effects of pain on pro and retrospective timing support 

suggestions that the two types of timing are based on different cognitive and 

neurological processes (Zakay & Block, 2004). Previous studies also compared time 
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perception between a painful and a non-painful condition, considering pain as a 

binary experience (pain vs no pain) rather than a single dimension with a spectrum 

of intensities. Pain intensity is critical for the magnitude of pain effects on cognition 

(Eccleston & Crombez, 1999) and arousal (Möltner, Hölzl, & Strian, 1990), which is 

particularly important in clinical settings where patients have a variety of symptoms 

and pain intensity experience (Somov, 2000). 

 

 

3.2.2 – Clinical studies 

Clinical studies of time experience during pain have typically recruited participants 

who suffered of pain caused by a medical pathology (e.g., migraine) experienced for 

long periods (e.g., days) (Zhang et al., 2012). In clinical settings, how long patients 

report pain to last for forms part of pain’s clinical assessment, with longer periods 

potentially indicating greater treatment need (Somov, 2000). However, numerous 

studies show that clinical pain affects the perception of time with pain sufferers often 

reporting time as “dragging” or “standing still” during pain (Somov, 2000). For 

example, Bilting et al. (1983) asked patients with facial pain and pain free participants 

to read aloud a list of random letters for a fixed time interval (30 – 120 seconds) and 

then to retrospectively estimate this interval. Results showed that pain sufferers 

estimated the time interval as longer than the control group.  

 

Comparable effects are observed in neuropathic pain populations; Somov (2000) 

observed that people with neuropathic pain overestimated a 3-minute interval whilst 

completing a series of questionnaires compared to healthy people. The 

overestimation was predicted by pain intensity, with great pain experience 

associated with greater time overestimation, and persisted after controlling for the 

effects that anxiety, depression and perceived control over pain have on time 

perception. All relationships were also invariant of the type of pain (e.g., back pain or 

migraine).  
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However, clinical studies have not always found patients to perceive time longer 

than healthy people. For example, Zhang et al. (2012) found that pain sufferers 

(migraineurs) overestimated time compared to healthy controls in a temporal 

reproduction task when using a 600ms duration, whilst there was no temporal 

distortion when using a 3- or 5-second duration. Moreover, using a temporal 

discrimination task in which participants were presented with pairs of stimuli and 

their task was to decide if the second was longer or shorter than the first, Anagnostou 

and Mitsikostas (2005) failed to observe a difference between migraineurs and 

healthy controls. Additionally, Isler et al. (1987) found that patients who suffered of 

migraine retrospectively underestimated respiratory biofeedback sessions compared 

to healthy people. The sessions could vary in length (3-42min) and consisted of 

presenting participants with their respiratory activity, whilst participants were asked 

to use this feedback to relax as much as possible. 

 

Some of these inconsistencies may result from methodological differences in the 

studies. Anagnostou and Mitsikostas (2005) gave feedback to participants after every 

trial of the temporal discrimination task. Giving feedback to participants has been 

showed to improve participants performance (Failing & Theeuwes, 2016), which may 

have corrected the time distortion originally present in patients. In contrast, Isler et 

al. (1987) asked participants to estimate the duration of respiratory and EMG 

biofeedback sessions, which may have been judged as more pleasant by migraineurs 

than by healthy people (Van Diest et al., 2014). The difference in pleasantness may 

have caused the difference in verbal estimation as in Ogden et al. (2015), where a 

pleasant stimulation is underestimated compared to a neutral or unpleasant 

stimulation. Patients may have enjoyed the biofeedback session more and dedicated 

less attention to time than healthy participants, leading to patients’ shorter 

estimates. 

 

Although clinical studies have produced somewhat inconsistent findings, possibly 

caused by differences in the clinical populations of each study and the methods of 

temporal assessment, time distortions are increasingly used in clinical settings as a 
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measure of patient wellbeing. For example, Conev et al. (2018) asked chemotherapy 

patients to complete the standardized National Comprehensive Cancer Network 

Distress Thermometer and to produce 1 minute. Results showed that the time 

production of patients with higher distress was shorter than the time production of 

patients with lower distress, suggesting that more distressed patients perceived time 

to go faster. Conev et al. (2018) therefore proposed the implementation of a simple 

time perception task as an efficient tool to assess patients’ distress. 

 

 

3.2.3 – The effect of temporal information on pain experience 

There is evidence to suggest that the relationship between pain and time 

perception is bidirectional; information about time has the capacity to influence the 

experience of pain. Pomares et al. (2011) observed that it is possible to reduce the 

perceived intensity of pain by manipulating its perceived duration. The study required 

participants to be administered heat pain twice for 30 seconds. During pain 

stimulation, participants were provided with information about the amount of time 

the pain would last for in the form of a clock with a moving hand. In one condition, 

the hand completed an entire revolution; in the other condition, the hand completed 

only three-fourths of the revolution. After pain stimulation, participants rated the 

pain intensity. Pain intensity ratings were significantly higher on the former condition 

than on the latter condition. Similar findings were found by Coldwell et al. (2002) who 

asked children to take part to nine cold pressor trials of increasing duration (from 10s 

to 240s) where they were asked to keep their hand in cold water (10oC) while Garfield 

cartoon character was shown on the screen in front of them. Children were divided 

in three groups depending on the movements made by Garfield: in the correct 

feedback group, Garfield was shown descending a series of steps and the cold pressor 

trial ended once Garfield reached the bottom of the stair. In the misleading feedback 

group, Garfield randomly jumped from one step to the other of the stair during the 

trial, and in the no feedback group, Garfield remains static. Results showed that 

children who were given correct feedback about how long the pain lasted for, also 

reported reduced pain intensity compared to those who received no or misleading 
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feedbacks. This evidence therefore indicates that the temporal characteristics of pain 

is intrinsically related to its intensity and Pomares et al. (2011) suggested that 

temporal information of pain could affect its perceived intensity. 

 

 

3.3 – Theoretical explanation of pain effects on time 

Experimental studies showed that pain lengthens time perception when using 

prospective timing tasks and that time distortion induced by pain has greater 

magnitude than the time distortion induced by emotional stimuli (Ogden, Moore, et 

al., 2014). The lengthening effect of pain in experimental studies is ascribed by pain 

ability of increasing arousal and capturing attention, which, in turn, affects the 

internal clock (in SET), dopamine level (in SBF) and AIC activity (in Craig’s model of 

awareness). Clinical studies, in contrast, often merely state that time distortion of 

pain sufferers (e.g., migraineurs) might be due to the comorbidity with other clinical 

conditions that showed time distortion (e.g., depression), failing to make the link 

between time distortion due to clinical pain and theories of time perception (Bilting 

et al., 1983).  

 

 

3.3.1 – The arousal hypothesis of pain induced distortions to time 

Experimental studies of pain induced distortions to time typically suggest that pain 

distorts time because it increases physiological arousal which in turn affects the 

processing of duration (see section 2.3.1, page 47). Clinical studies support this 

suggestion by observing a direct relationship between patients’ pain intensity and the 

degree of time distortions they experience (Somov, 2000). In SET, arousal regulates 

the frequency production of pulses by the pacemaker. At high arousal levels, pulses 

are generated more frequently, resulting in greater number of pulses stored into the 

accumulator, leading to longer time estimations. Arousal increases due to pain are 

therefore thought to lead to longer perceived duration through hastening of 

pacemaker and increasing of pulses production. In other words, pain increases 

arousal, which hastens the pacemaker speed, producing a greater number of pulses 
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later stored into the accumulator, leading to longer estimations. Within SET 

framework, the arousal modulation hypothesis is also supported by Ogden et al. 

(2014) and (Fayolle et al., 2015), who found a multiplicative effect (the index of 

arousal/pacemaker modulation; see section 1.1.3.1.1, page 23) of pain on perceived 

duration.  

 

In SBF, the thalamus regulates the dopamine level to modulate the oscillatory 

cortical activity; the higher the dopamine level released by the thalamus the higher 

the oscillatory activity, leading to longer perceived durations (Matell & Meck, 2004). 

Nociceptors are directly connected to the thalamus through the pain pathways 

(Brooks et al., 2002), leading to an increase of dopamine release by the thalamus to 

the cortex, causing an increase of cortical frequency and subsequently leading to 

longer perceived durations of pain related events. 

 

In Craig’s model of awareness, time distortion is caused by the saliency of the 

environment; settings that are highly salient (i.e., contains highly important stimuli 

for the individual survival) increase AIC activity promoting the generation of global 

emotional moments (Craig, 2009a). A time window where numerous global 

emotional moments are generated is perceived to last longer than another time 

window where few global emotional moments are generated. Pain is a highly salient 

stimulus and has a privileged route to the insula, whose activity is increased during 

pain (Craig, 2002). Following Craig’s model, therefore, a greater number of global 

emotional moments are generated while experiencing pain, leading to the feeling of 

time dragging.  

 

For all the major models of timing there are therefore clear biological and 

neurological pathways between pain experience and time perception which provide 

plausible explanations for pain-time distortions. However to date, no studies have 

directly tested some of the explanation proposed. Firstly, no studies have tested 

whether physiological arousal resulting from pain (e.g.; SNS reactivity) is predictive 

of the perceived duration of pain. For example, Fayolle et al. (2015) found that an 
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electrical shock increased physiological arousal (indexed by EDA) and increased 

perceived duration of visual stimuli concomitantly presented in a temporal bisection 

task. However, authors did not test whether the pain distortion of time and 

physiological arousal were related. It is therefore unclear whether arousal attention 

have direct influences on time perception. Secondly, neuroimaging studies are yet to 

demonstrate how thalamic changes in activity due to nociception are related to time 

perception. Thirdly, no neuroimaging studies have tested the extent to which AIC 

activation during pain is correlated to pain-time distortions, and thus testing the 

homeostatic model of timing. Further work is clearly required to evidence the 

theoretical explanations proposed. 

 

 

3.3.2 – The attention hypothesis 

Adequate attention is required for accurate duration processing (see section 

1.1.3.1.2, page 26). Recent individual differences studies have also demonstrated 

that individual differences in working memory, attention, executive function and 

information processing speed are predictive of duration processing accuracy (Ogden, 

MacKenzie-Phelan, Mongtomery, Fisk, & Wearden, 2018). However, pain impairs 

attention on ongoing tasks and performance on executive tasks and working memory 

tasks (see section 3.1.4, page 60). It is therefore plausible that pain may affect time 

experience because it impairs the cognitive and attentional resources on which 

timing is dependent. However, it is unclear why this would result in a lengthening of 

perceived duration, because distraction from timing/inadequate resourcing of timing 

is typically associated with shorter prospective duration estimates (Brown, 2006).  

 

One possibility is that because pain is attention grabbing it leads to more effective 

processing of pain duration (Ogden, Moore, et al., 2014). This would manifest in two 

ways: firstly, pain stimuli are identified quickly, leading to fast switch closure and 

greater pulses accumulation. Secondly, because pain captures attention from 

ongoing tasks, the duration of pain is attended to throughout its experience leading 

to an increase in its perceived duration (i.e., there is no temporal output lost through 
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an attentional gate fluctuation). Ogden et al.'s (2014) suggestions are supported by 

their observation that pain produced additive and multiplicative effects, indexes of 

switch and attentional gate variation respectively (see section 1.1.3.1, page 23). 

 

In SBF, the thalamus is also responsible for resetting the oscillators at stimulus 

onset (Matell & Meck, 2000, 2004) and the preferential route that pain has to reach 

it (i.e., the pain pathways; Bear et al., 2007) might lead to faster oscillatory resetting 

at stimulus onset. If the oscillators’ reset occurs earlier for noxious stimuli than for 

neutral ones, oscillators have more time to desynchronize before the striatum reads 

their pattern at stimulus offset, leading to longer perceived durations. However, at 

present there is no neural evidence indicating a shorter reset of cortical oscillators at 

painful stimuli onset compared to non-pain related stimuli onset. 

 

In Craig’s model of awareness, attention does not appear to have a clear effect on 

time estimations. Whilst a salient environment requires more attentional resources, 

the model does not predict different outcomes based on where the attention is 

directed. The saliency of the environment is always directly proportionate to the 

number of global emotional moments generated by the AIC and to the perceived 

duration, independently to whether the attention is directed to the to-be-timed 

stimuli or elsewhere. Following Craig’s model, pain should therefore lengthen the 

perceived duration of the noxious stimuli and of concomitantly neutral stimuli. 

 

 

3.3.3 – Retrospective estimates 

Whilst there is a clear theoretical and biological rationale for pain induced 

distortions to prospective timing, it is unclear how or why pain shortens retrospective 

estimates of duration (as in Thorn & Hansell, 1993). Retrospective estimates of 

duration are often understood in terms of information processing load or contextual 

change; periods of greater information processing/contextual change result in longer 

retrospective estimates than periods of low information processing 

activity/contextual change (Zakay & Block, 2004). Because pain interrupts ongoing 
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cognition and captures attention from ongoing tasks, it is possible that it reduces 

information processing. It is also possible that it reduces contextual change because 

the individual is only focusing on pain and not other stimuli in the environment. These 

may therefore be the mechanisms by which pain shortens retrospective estimates of 

duration. However, because pain is intrusive and hard to ignore, it seems likely that 

information processing relating to pain itself would be high during pain. It therefore 

remains unclear why pain appears to shorter retrospective estimates.  
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Chapter 4 

Aims, equipment and methodology 

 

4.1 – Summary of the literature review and research strategy 

From Chapters 2 and 3, it is clear that stimuli associated with changes in arousal 

(e.g., emotional images, sounds and pain) affect perceived duration. However, the 

precise mechanisms driving these effects remain unclear. This is due to the stimuli 

used in previous studies and to the absence of direct tests of the relationship 

between objective measures of arousal and changes in perceived duration. For 

example, previous studies investigating the effect of emotions on subjective time 

have used different physical stimuli in the neutral and arousing conditions (e.g., 

neutral, positive and negative sounds from the IADS; Noulhiane et al., 2007). 

However, different properties of the stimuli (e.g., luminance and numerosity) alter 

their perceived duration (Xuan, Zhang, He, & Chen, 2007). Moreover, Gil and Droit-

Volet (2012) suggested that the semantic content of an image could affect the 

magnitude of the time distortion it generates, even if there is no change in the arousal 

level. This evidence led Lake et al. (2016) to suggest that future studies should have 

a broader control over the properties of neutral and arousing stimuli, such as 

complexity and familiarity. Reducing the physical differences between the neutral 

and arousing stimuli is therefore necessary to investigate the direct relationship 

between arousal and perceived duration. 

 

Studies using emotional faces reduced the differences between neutral and 

arousing stimuli given their structural similarity. However, the neural networks 

involved in the processing of emotional expressions are different from the neural 

networks involved in the processing of other emotional stimuli (Kanwisher & Yovel, 

2006), limiting the generalisation of the findings. The use of pain-inducing techniques 

proved to be the most effective way to overcome this issue, given that there are no 

significant physical differences between painful and non-painful stimuli (Ogden, 

Moore, et al., 2014). The present thesis therefore used pain-related stimuli 
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throughout to induce changes in arousal levels and reduce the risk of altering other 

properties of the stimuli. 

 

A further issue is that previous studies used low and high levels of arousal rather 

than a range of arousal levels, which limits the supporting evidence for the arousal 

hypothesis on time perception (see sections 2.2 and 3.2, pages 45 and 61). In fact, 

arousal hypothesis predicts that increases steps of arousal are associated with 

increases steps of perceived duration. Testing perceived durations at different 

arousal levels therefore forms an indirect test of the arousal hypothesis. In addition, 

studies have primary investigated the effect of arousal when the to-be-timed 

stimulus is itself arousing, and little research has been conducted when arousal arises 

from other sources. Models of timing (SET, SBF and Craig’s model) predict that 

arousal increases affect the central timing mechanism leading to longer perceived 

duration of all subsequent stimuli, not just of the stimulus that is the source of arousal 

(see section 2.3.1, page 47). However, the few studies that investigated the effect of 

arousal when arousal originated from sources other than the to-be-timed stimulus, 

found contrasting results. For example, a short fearful film induced longer perceived 

durations in a subsequent temporal bisection task with neutral stimuli (Droit-Volet et 

al., 2011). However, perceived durations of neutral stimuli were not affected by a 

concomitant, negatively valenced tactile stimulation (Ogden et al., 2015). 

Furthermore, physiological activation induced by social stress was associated with 

the perceived duration of negative stimuli but not with the perceived duration of 

neutral and positive stimuli in a subsequent temporal reproduction task (van Hedger 

et al., 2017). It is therefore unclear whether arousal originating from sources other 

than the to-be-timed stimulus also affect perceived duration.  

 

Previous studies have also failed to directly test the relationship between 

physiological arousal and perceived duration (see Lake et al., 2016 for discussion). For 

example, previous studies that tested the effect of arousal on perceived duration 

used stimuli which experimenters believed to be arousing (e.g., Tipples, 2008) or used 

self-reported measures of arousal rather than objective measures of arousal. 
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Furthermore, those studies that recorded physiological measures of arousal rarely 

related them back to perceived durations. For example, Angrilli et al. (1997), Droit-

Volet et al. (2010), Fayolle et al. (2015) and Mella et al. (2011) showed that their 

arousing stimuli did increase physiological arousal, but they did not relate the 

changes in physiological arousal back to the changes in perceived duration. The 

absence of direct testing led Lake et al. (2016) to state that “Without demonstrating 

such a relationship between temporal estimates and measures of these emotional 

dimensions [valence and arousal], it is difficult to conclude that such dimensions, 

rather than other differences between presented stimuli, are driving temporal 

distortions.” (p. 412). It is therefore paramount that future studies relate objective 

measures of arousal to changes in perceived durations directly. 

 

A further issue in our understanding of arousal modulation of time perception is 

that research has predominantly investigated the effect of arousal on the “raw” 

encoding of durations (e.g., the internal clock in SET), meanwhile fewer studies 

investigated the effect of arousal on following processes (e.g., the memory process 

in SET). For example, numerous studies assessed the perceived duration of arousing 

stimuli immediately after their presentation (see sections 2.2 and 3.2, pages 45 and 

61), but little research has been conducted to assess how the duration of stimuli of 

high arousal are remembered over periods of delay. As a result, there is a lack of 

clarity surrounding the non-immediate effects of arousal on perceived duration. If 

models of temporal processing are going to comprehensively explain how and why 

arousal affects timing, then further studies are required to expand their investigation 

on the processes following the initial “raw” encoding of the stimulus. 

 

Finally, whilst previous studies have consistently demonstrated that arousing 

stimuli such as pain and fear are relatively overestimated, to date there have been 

few attempts to prevent this lengthening effect. Pomares et al. (2011) indicated that 

the perceived duration of pain is related to its perceived intensity. Therefore 

establishing intervention or mechanisms that reduce the perceived duration of pain 

could reduce perceived pain intensity with potential benefits to sufferers. Particularly 
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in a clinical context, the intervention could improve the daily experience of pain 

sufferers, who have reduced quality of life and wellbeing due to the constant pain 

experience (Somov, 2000). Coldwell et al. (2002) and Pomares et al. (2011) used 

inaccurate feedback regarding the duration of experimentally induced pain to reduce 

its perceived duration and intensity. However, it could be difficult to transpose this 

methodology into clinical settings, where the intervention could bring the greatest 

benefits. In clinical settings, pain has biological origins and it is often experienced for 

long periods of time. It is therefore difficult to give (in)accurate feedback when pain 

is not controlled by the experimenter and for such long periods. New interventions 

that could potentially reduce perceived duration of pain are therefore needed.  

 

 

4.2 – Research aims 

This thesis aims to examine the effect of pain on human temporal perception and 

the experiments conducted aim to give a clear account of the effect of pain on 

temporal processing. This will be achieved by examining how different levels and 

sources of pain affect duration perception and memory for duration, how the pain-

induced physiological arousal influences perceived duration, and whether the 

perceived duration of pain can be reduced using a mindfulness intervention, which 

has been previously demonstrated to reduce the perceived intensity of pain (Zeidan 

et al., 2011). 

 

Chapters 5 and 6 aimed to examine the effect of arousal on perceived duration, 

testing the arousal hypothesis when arousal arises from the to-be-timed stimulus or 

from other sources. Experiments 1 and 2 (Chapters 5) used stimulations at no pain, 

low pain and high pain intensity during a verbal estimation task to examine the effect 

of different arousal levels on perceived duration. Experiment 1 tested the effect of 

arousal on perceived duration when the to-be-timed stimulus is the source of arousal. 

Experiment 2 tested the effect of arousal on perceived duration when arousal arises 

from the background. Experiments 3 and 4 (Chapter 6) also used stimulations at no 

pain, low pain and high pain intensity during a verbal estimation task and included 
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physiological measures to directly test the relationship between changes in 

physiological arousal and changes in perceived duration when arousal arises from the 

to-be-timed stimulus (Experiment 3) and from the background (Experiment 4). 

 

Chapter 7 aimed to examine the effect of arousal on the processes following the 

initial “raw” encoding of the stimulus. Experiments 5 and 6 used a modified temporal 

generalisation task where participants had to remember the standard duration over 

a period of delay to examine how pain affects the memory for duration. In 

Experiment 5, participants experience a low pain stimulation during the presentation 

of the standard duration. In Experiment 6, participants experienced a high pain 

stimulation during the presentation of the standard duration. 

 

Chapter 8 aimed to establish an intervention to prevent the lengthening effect of 

pain on duration perception. In Experiment 7, participants completed a verbal 

estimation tasks before and after practicing 1-week mindfulness intervention to 

examine whether the intervention could reduce the perceived duration of pain. 

Experiment 8 also used the experimental design employed in Experiment 7 to 

examine whether mindfulness intervention could reduce the perceived duration of 

pain in a chronic pain population. 

 

It is hoped that the findings of this thesis will illuminate the effect of pain on time 

perception, which will in turn progress our knowledge of human time perception. 

 

 

4.3 – Pain induction techniques 

Two common pain-inducing techniques that previous research has used to affect 

time perception are electro-cutaneous stimulation (Fayolle et al., 2015) and thermal 

stimulation (Ogden, Moore, et al., 2014) (see section 3.1.3, page 57). The 

experiments here presented induced acute and long-lasting pain with different 

intensities to participants. Electro-cutaneous stimulation was selected to induce 

acute pain for its high degree of temporal and intensity acuity; electro-cutaneous 
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equipment controls the duration of the stimulation to the millisecond and 

microampere range. The same temporal acuity could not be obtained using other 

means such as thermal stimulation, which requires time to reach the target 

temperature. However, a state of pain could not be achieved through electro-

cutaneous stimulation for safety reasons; electrical stimulation in the range of 

minutes has high risks of inducing tissue damage. Thermal stimulation was therefore 

selected to achieve a state of pain for two main reasons: 1) it is possible to maintain 

thermal painful stimulation for several minutes without risking skin damage; and 2) 

the state of pain was not required to have a millisecond precision. 

 

The intensity of the pain stimulation varied depending on the study and/or the 

condition and the intensities were based on the participants’ subjective experience 

rather than the objective intensity of the stimulation. The subjective intensities were 

therefore selected through an intensity rating task prior to the timing task, where 

participants rated the pain sensations through a Numeric Rating Scale (NRS, Jensen 

& McFarland, 1993). Below there is the description of the equipment and of the 

intensity rating task procedures for the electro-cutaneous and thermal pain. 

 

 

4.3.1 – Electro-cutaneous pain (Digitimer DS7A Current Stimulator) 

A Digitimer DS7A Current Stimulator (Digitimer Ltd) was used to present the 

electro-cutaneous stimulation (Figure 4.1). This equipment provides up to 100mA 

current intensity at up to 400V voltage. In the experiments that required the 

Digitimer DS7A (Experiments 1, 3, 7 and 8), two lubricated Fukuda standard Ag/AgCl 

electrodes (1cm diameter) electrodes were placed on the left volar forearm of 

participants 10cm from the wrist and the stimulation consisted of a train of 2ms 

pulses at 300V, which were repeated for the desired duration. Current intensity 

varied depending on the condition and/or study.  

 

The required intensities were selected through an intensity rating task prior the 

timing task. Participants were informed that their task was to use an 11-point NRS to 
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indicate how painful a series of electro-cutaneous stimuli were (0 = no pain at all, 10 

= worst pain imaginable). Initially, participants experienced a stimulus of 0.20mA for 

750ms on their forearm. If at this initial level of intensity participants did not 

experience any pain, but the stimulus was clearly perceptible as stimulation, this was 

reported as 0 in the NRS. The electro-cutaneous stimulus was then increased at a rate 

of 0.20mA per trial until participants indicated the scores required by the study on 

the NRS (e.g., 6), or until the stimulus intensity reached 4.0mA. If at the initial level 

of intensity participants experienced pain and if the study required a non-painful 

intensity, the electro-cutaneous stimulus was decreased at a rate of 0.05mA per trial 

until participants indicated a score of 0 on the NRS. Then participants were asked to 

rate again the initial stimulus of 0.20mA before increasing the stimulus at a rate of 

0.20mA per trial to reach the other required intensities. The task was administered 

using E-Prime software (http://www.pstnet.com). 

 

 

 

Figure 4.1. Digitimer DS7A Current Stimulator. 

 

 

4.3.2 – Thermal pain (Method PATHWAY-Advanced Thermal Stimulator) 

A Medoc PATHWAY-Advanced Thermal Stimulator was used to present thermal 

stimulation (Figure 4.2). This equipment is designed for use in clinical and research 

http://www.pstnet.com/
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settings, and induces thermal stimulation through a thermode placed on the skin. 

Specialist hardware and software, designed for experimental purposes, delivered and 

controlled the temperature of the thermode. In the experiments that required the 

Medoc (Experiments 2, 4, 5 and 6), thermal pain was induced through a 30 x 30mm 

Peltier thermode attached to the participants’ left volar forearm. This equipment is 

able to increase the temperature at a ramp rate up to 8oC/second and to decrease it 

at a ramp rate of 4oC/second. In all the experiments that required the Medoc, thermal 

stimulation was induced through a 30 x 30mm Peltier thermode attached to the 

participants’ left volar forearm. Temperature of the thermode varied depending on 

the condition and/or study.  

 

The required intensities were selected through an intensity rating task prior to the 

timing task. A search protocol was used to establish subjective intensity levels of 

stimulation that were then used during the timing task. Participants were informed 

that their task was to use the 11-point NRS (0 = no pain at all, 10 = worst pain 

imaginable) to identify the intensities of thermal stimulation required by the study 

(e.g., 0 and 6). Starting from a baseline temperature of 32oC participants were 

instructed to increase the temperature by pressing a mouse button. Each time the 

participant pressed the button a small increase of approximately 0.1oC occurred. 

Participants’ aim was to increase the temperature until reaching the first intensity 

required by the study on the NRS (e.g., 0). Once this percept was achieved 

participants were asked to keep the temperature at that intensity for 15 seconds 

before being asked to confirm whether the sensation was still at the same intensity. 

If participants reported that the sensation was not the same they were asked to 

adjust the temperature and this check was performed again until a reliable percept 

was reached. Participants then repeated this procedure with the next target intensity 

level on the NRS (e.g., 6). Again, after 15 seconds, participants were asked to confirm 

whether the pain was still at the same intensity and, if not, to adjust it. A temperature 

of 48oC was never exceeded given the sustained period of stimulation to ensure 

participants’ safety.  
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Figure 4.2. Medoc PATHWAY-Advanced Thermal Stimulator. 

 

 

4.4 – Temporal perception assessment 

The studies here reported have a consistent structure: participants completed a 

timing task where participants estimated the duration of painful stimuli or the 

duration of neutral stimuli during a state of pain. The verbal estimation task was 

chosen as the timing task for the majority of the studies in the present thesis. This 

paradigm consists of presenting stimuli to participants who have to verbally indicate 

their duration (generally in seconds or milliseconds). The verbal estimation task is one 

of the first procedures used in the time perception literature (Fraisse, 1964) and it 

has been later used in numerous studies (Gil & Droit-Volet, 2012; Jones, Poliakoff, & 

Wells, 2009; Ogden et al., 2015; Ogden, Moore, et al., 2014; Penton-Voak et al., 

1996). This technique has the advantage over other techniques (e.g., timing 

reproduction tasks) of not involving the timing of a motor response that can lead to 

limitations when estimating very short durations (Wearden, 2015a). Additionally, the 

verbal estimation task has a lower cognitive load than tasks such as the temporal 

generalisation task, which could be disrupted by the painful stimulation. This task has 

been therefore used in the present thesis maintaining the procedure consistent 

across the studies.  

 

The verbal estimation task was substituted with the temporal generalisation task 

only in Experiments 5 and 6 (Chapter 7), which required participants to remember 
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the duration over a period of delay. The verbal estimation task, in fact, is not an 

efficient paradigm to test the memory for duration over a delay because participants 

apply a numerical value to the stimulus at its offset and then recall the numerical 

value after the delay. The temporal generalisation task, in contrast, requires 

participants to memorize the duration of a stimulus and then to indicate whether a 

series of comparison stimuli have the same duration. A numerical value therefore 

cannot help to accomplish the task. The temporal generalisation procedure is 

described in detail in Chapter 7 (see section 7.1.1.2, page 147). 
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PART II 

 

EXPERIMENTAL STUDIES 
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Chapter 5 

Perceived duration of pain and in a state of pain 

 

Chapters 2 and 3 described the effects of emotion on subjective timing. A 

consistent finding is that threatening events lengthen perceived duration, whether 

using images (Gil & Droit-Volet, 2012), facial expressions (Tipples, 2008), sounds 

(Noulhiane et al., 2007) or pain (Fayolle et al., 2015). These effects are frequently 

explained through an arousal hypothesis: threatening events lengthen perceived 

duration because they increase arousal (see section 2.3.1, page 47). The arousal 

hypothesis, although widely discussed, lacks of appropriate testing (see Lake et al., 

2016 for discussion) in terms of the effects of 1) different levels of arousal and 2) 

different sources of arousal on perceived duration.  

 

A key issue for the arousal hypothesis is that previous studies have used neutral 

and high arousing stimuli rather than a range of arousal levels. For example, Ogden 

et al. (2014) showed that people give different verbal estimates for pain and non-

pain related events, but did not test whether different pain intensities (e.g., high pain 

vs low pain) have different effects on perceived duration. The arousal hypothesis 

predicts that greater arousal levels are related to longer perceived durations. If the 

arousal hypothesis is correct, we would expect to see different degrees of temporal 

distortion for different degrees of arousal.  

 

A further issue is that previous research has predominantly investigated the 

arousal hypothesis using arousing stimuli as the to-be-timed stimuli. For example, 

participants’ task is to report the duration of a negative image or painful stimulus. In 

these studies, the arousal is task-relevant as it is also the to-be-timed event. Few 

studies, however, have examined the effect of arousal when it arises from sources 

other than the to-be-timed event and is therefore task-irrelevant. Arousal hypothesis 

and other models of timing (SET, SBF and Craig’s model) all suggest that any change 

in arousal should influence perceived duration. At present, they do not suggest that 

arousal needs to be task-relevant to timing to induce temporal distortions. If these 
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suggestions are correct then task-relevant and task-irrelevant sources of arousal 

should have comparable effects on perceived duration.  

 

However, the findings of studies investigating the effect of task-irrelevant arousal 

are often inconsistent. For example, Droit-Volet et al. (2011) found that a fear 

inducing film led to longer perceived durations of neutral stimuli in a subsequent 

temporal bisection task; meanwhile, Ogden et al. (2015) found no effect of an 

unpleasant tactile stimulation on the perceived duration of concurrent neutral 

stimuli. Furthermore, van Hedger et al. (2017) found that the physiological activation 

induced by a social stress test was related to the temporal reproductions of negative 

stimuli, but not to the temporal reproductions of positive and neutral stimuli.  

 

Some of these contrasting findings may be due to methodological issues: in Droit-

Volet et al. (2011) and van Hedger et al. (2017) there was an absence of a clear state 

change between the learning and testing phases on the bisection and reproduction 

tasks making interpretation of the findings difficult. The use of stimuli with semantic 

content (e.g., IAPS images) also means that there were differences between the 

physical properties of the arousing and neutral stimuli, such as complexity and 

familiarity, which may have influenced the results (Lake et al., 2016). Although many 

of these issues were overcome in Ogden et al. (2015) through the use of a to-be-

timed stimuli with no semantic content that did not change across conditions, they 

did not assess the arousal change induced by the tactile stimulation that they 

employed. It is therefore possible that the unpleasant stimulation used did not 

increase arousal enough to induce temporal distortions. Due to these issues, it is 

therefore unclear whether the effects of arousal on perceived duration are limited to 

circumstances in which the source of arousal is the to-be-timed event (i.e., from task-

relevant sources), or whether duration perception is affected by any arousal change 

per se (i.e., from task-relevant and task-irrelevant sources). It is also unclear whether 

the effects of arousal on perceived duration are limited to emotional stimuli (e.g., 

negative images), or whether duration perception is also affected by non-emotional 

stimuli (e.g., vibration). Establishing more precisely the circumstances in which 
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arousal does and does not affect perceived duration is critical for understanding the 

mechanisms by which time distorts. 

 

The experiments reported in this Chapter aimed to further our understanding of 

the effect of arousing stimuli on perceived duration. Specifically, the experiments 

aimed to establish 1) whether differing levels of arousal produced different 

distortions to time. 2) Whether changes in the intensity of neutral stimuli distorted 

time in a comparable way to changes in the intensity of emotional stimuli. 3) Whether 

task-relevant and task-irrelevant sources of arousal had different effects on temporal 

perception. Two experiments were conducted. In the first, participants completed a 

series of verbal estimation tasks in which they were asked to estimate the duration 

of electro-cutaneous stimuli at no pain, low pain and high pain intensities and 

vibrotactile stimuli at perceptible vibration, low vibration and high vibration 

intensities. Arousal in these tasks was therefore task-relevant because it originated 

from the to-be-timed stimulus. Comparison of the estimates for the different 

intensities tested whether differing levels of arousal produced different distortions 

to time. Comparison of the emotional (electrocutaneous) and neutral (vibrotactile) 

tasks tested whether changes in the intensity of neutral stimuli distorted time in a 

comparable way to changes in the intensity of emotional stimuli.  

 

In Experiment 2, participants completed a series of verbal estimation tasks in 

which they were asked to estimate the duration of neutral stimuli while concurrently 

experiencing thermal stimulation at no pain, low pain and high pain intensities. Here, 

pain was task-irrelevant because it originated from a source other than the to-be-

timed stimulus. Comparison of the findings of Experiments 1 and 2 would establish 

whether task-relevant and task-irrelevant sources of arousal had different effects on 

temporal perception. In all tasks measure of mean verbal estimates, estimate 

accuracy and estimate variability were calculated.  

 

It was expected that intensity increases would be associated with analogous verbal 

estimate increases; the high vibration intensity was expected to lead to longer verbal 
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estimates than the low vibration intensity, which in turn was expected to lead to 

longer verbal estimates than perceptible vibration. Similarly, the high pain intensity 

was expected to lead to longer verbal estimates than the low pain intensity, which in 

turn was expected to lead to longer verbal estimates than the no pain intensity. This 

was expected in both Experiments 1 and 2, confirming arousal hypothesis.  

  

 

5.1 – Experiment 1 

5.1.1 – Method 

5.1.1.1 – Participants 

Thirty participants (22 females; mean age = 23.03, SD = 4.26) were recruited. 

Sample size was determined by examining those used in previous research 

investigating the effect of pain on time perception (Rey et al., 2017; Ogden et al., 

2014). The same approach was also applied in the following studies of the present 

thesis. Participants were required not to be pregnant, not to have a history of 

epilepsy and not to have chronic pain, heart disease, skin problems (e.g., eczema) or 

any impairment of body sensation. Additionally they were asked not to take any 

analgesic during the 8 hours prior to the experiment. Participants were reimbursed 

£15 for taking part. The study was approved by the Liverpool John Moores University 

ethics committee and informed consent was obtained from all participants. 

 

 

5.1.1.2 – Apparatus and materials 

Pain stimulation: The Digitimer DS7A Current Stimulator (Digitimer Ltd) was used 

to present the electro-cutaneous stimulation (see section 4.3.1, page 77 for 

equipment description).  

Tactile vibrations: A tactile pulse (vibration) was used as the non-noxious stimulus. 

Tactile vibrations (150Hz square wave vibrations) were produced by sending 

amplified sound files (using a TactAmp, 4.2, Dancer Design, St Helens, UK), controlled 

via E-Prime software (Psychology Software Tools, Inc., Pittsburgh, PA, USA), to a 

tactor. The tactor had a diameter of 18mm (Dancer Design, St Helens, UK) and was 
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attached to the participants forearm (10cm from the wrist) with a double-sided 

adhesive pad. The intensity of the stimulus was determined modifying the amplitude 

(0 to 1) of the tone.  

 

 

5.1.1.3 – Procedure 

Participants completed a health-screening questionnaire to confirm suitability to 

participate. Each participant then completed two experimental conditions where 

vibrotactile or electro-cutaneous stimulation were delivered. Conditions were 

presented to participants in a counterbalanced order. Each condition included an 

initial intensity rating task, a verbal estimation task and a follow-up intensity rating 

task (described below). Throughout all tasks, participants listened to white noise 

through headphones to prevent any auditory feedback influencing performance. All 

tasks were administered using E-Prime software (http://www.pstnet.com). 

 

 

Pain Condition 

Initial intensity rating task: Participants performed the task with the Digitimer 

DS7A to select electrical intensities equal to 0, 3 and 6 on the NRS; that is no pain, 

low pain (Serlin, Mendoza, Nakamura, Edwards, & Cleeland, 1995) and high pain 

(Khoshnejad, Martinu, Grondin, & Rainville, 2016), respectively (see section 4.3.1, 

page 77 for task description). 

 

Verbal estimation task: The verbal estimation task employed a 3 (intensity: no 

pain, low pain and high pain) x 5 (duration: 242ms, 455ms, 767ms, 1058ms and 

1296ms) repeated measures design. Participants were informed that a series of 

stimuli would be presented to their forearm, lasting between 50ms and 1700ms, and 

that their task was to estimate the duration of each stimulus in milliseconds, by typing 

a numerical value using the keyboard. Participants completed nine blocks of trials in 

total, with three blocks per intensity (no pain, low pain and high pain). Block order 

was counterbalanced between participants. Each block contained 16 stimuli; five 

http://www.pstnet.com/
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standard duration (242ms, 455ms, 767ms, 1058ms and 1296ms) each of which was 

repeated twice and six additional stimuli, the duration of which was selected at 

random from a uniform distribution ranging from 100ms to 1500ms. The purpose of 

these additional trials was to disguise the repeated use of the same five experimental 

stimulus durations across the experimental blocks. The data from these six additional 

stimuli were not analysed (as in Ogden et al., 2015). A inter trial interval, the duration 

of which was selected from a normal distribution between 1500 to 2500 milliseconds, 

was interposed between trials. The order of presentation of the trials was 

randomised by E-Prime for each participant. A total of 144 trials were delivered 

across the entire task. To prevent habituation or hypersensitivity to the stimulation, 

the location of the electrodes on the forearm (originally placed 10cm far from the 

wrist) was altered by 1cm between each block.  

 

Follow-up intensity rating task: To establish the perceived intensity of the 

experimental stimuli at the end of the testing session, participants were asked re-rate 

the three intensity levels (no pain, low pain and high pain) using the 11-point NRS 

from in the initial rating task. Each intensity was presented five times for 750ms, in a 

random order, for a total of 15 stimuli.  

 

Vibration Condition 

Initial intensity rating task: Participants selected three vibration intensities 

(perceptible vibration, low vibration and high vibration) for use in the subsequent 

verbal estimation task. Participants were asked to rate the intensity of a series of 

vibrations using an 11-point NRS (0 – no vibration sensation; 10 – the maximum 

stimulation that the machine was capable of producing). To familiarise participants 

with a sensation which would score 10, participants were given three, 750ms 

stimulations at the maximum amplitude (1). Participants were informed that 3 

represented a low intensity vibration and 6 a high intensity vibration. An initial 

stimulus amplitude of 0.05 for 750ms was then presented and stimulus amplitude 

was then increased at a rate of 0.05 per trial until a score of 6 on the NRS was 

achieved. The three stimulus intensities selected for the verbal estimation task were: 
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the last stimulus rated as 1 on the NRS (perceptible), the first stimulus rated as 3 (low 

vibration), and the first stimulus rated as 6 (high vibration).  

 

Verbal estimation task and follow-up intensity rating task: Participants completed 

the same procedure used in the pain condition. Only the perceptible, low and high 

vibration intensities were used. 

 

 

5.1.2 – Results  

Out of 30 participants tested, data from three participants were excluded from the 

analysis because one participant withdrew from the experiment because of excessive 

pain, and two participants appeared to have not been able to detect the stimulus for 

an entire block of the verbal estimation task. Therefore, it has been reported the 

results based on data from the remaining 27 participants. To establish the effect of 

the pain on time perception, three measures of performance were derived for each 

condition: mean verbal estimates, estimate accuracy and estimate variability (see 

Wearden, 1999 for further details). Greenhouse-Geisserr correction was applied to 

ANOVAs when the Sphericity assumption was violated and post-hoc were Bonferroni 

corrected. 

 

Pain Condition 

 

Pain 
intensity 

Electrical 
current 

Follow-up 
rating 

Verbal estimate 
Estimate 
accuracy 

Estimate 
variability 

No pain 0.44 (0.38) 0.24 (0.67) 437.00 (196.93) 0.59 (0.05) 0.61 (0.04) 

Low pain 1.21 (0.88) 1.47 (1.11) 566.14 (228.43) 0.76 (0.06) 0.41 (0.03) 

High pain 2.39 (1.26) 4.27 (1.68) 683.85 (250.55) 0.93 (0.07) 0.34 (0.02) 

Table 5.1. Means (and standard deviations) of electrical current (mA), follow-up pain 

ratings, mean verbal estimate of all durations (ms), estimate accuracy and 

estimate variability for the pain condition. 
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Table 5.1 shows the intensity current (mA) for the three pain intensities used 

during the verbal estimation task. Repeated measures ANOVA showed a significant 

effect of stimulus intensity on intensity current F(1.32, 34.24) = 89.80, p < .001, ηp
2 = 

.78; post-hoc tests showed that intensity current values were significantly different 

in all intensities (all ps < .001). Repeated measures ANOVA confirmed that the follow-

up pain intensity ratings were also significantly different in all intensities F(1.39, 

36.07) = 106.58, p < .001, ηp
2 = .80, p < .001 for all post-hoc tests. 

 

Verbal estimates 

Figure 5.1 (panel A) shows mean verbal estimates for each stimulus duration, in 

each pain intensity. Inspection of Figure 5.1 (panel A) and Table 5.1 suggests that the 

longest verbal estimates were given in the high pain intensity and the shortest verbal 

estimates were given in the no pain intensity. Moreover, the differences in verbal 

estimates seem to increase with stimulus durations. A repeated measures ANOVA 

with pain intensity (no, low, high) and experimental stimulus duration (242ms, 

455ms, 767ms, 1058ms, 1296ms) as within subject factors, showed a significant main 

effect of stimulus duration (F(1.28, 33.34) = 88.77, p < .001, ηp
2 = .77) and of pain 

intensity (F(1.60, 4.63) = 30.00, p < .001, ηp
2 = .54) on verbal estimate. Post-hoc tests 

showed that estimates were significantly longer in the high pain intensity than in the 

low pain (p = .002) and no pain intensity (p < .001). Estimates were also significantly 

longer in the low pain intensity than in no pain one (p < .001). There was also a 

significant interaction between stimulus duration and pain intensity (F(8, 208) = 

10.52, p < .001, ηp
2 = .29). When each stimulus duration was tested separately with a 

series of repeated measures ANOVAs, verbal estimates were significantly different 

across intensities (all ps < .05) with the only exception of verbal estimates of the 

shortest duration (242ms). Verbal estimates of the 242ms duration in the low 

intensity were not significantly different than estimates in the high intensity (p = .14) 

or in the no pain intensity (p = .14). Verbal estimates therefore increased with pain 

intensity and greater time distortions occurred with longer durations. 
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Figure 5.1. Means (and standard errors) of (A) verbal estimates (ms), (B) estimate 

accuracy and (C) estimate variability for each standard duration in each pain 

intensity (no pain, low pain and high pain) in Experiment 1. 
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To explore the interaction between stimulus duration and pain intensity further, 

slope and intercept of verbal estimates were calculated by conducting individual 

linear regressions on the mean verbal estimates produced by each participant for 

each condition. This allowed to examine whether the lengthening effect of pain on 

verbal estimates was multiplicative (slope) or additive (intercept) (see sections 

1.1.3.1.1 and 1.1.3.1.2, page 23 and 26). Inspection of Table 5.2 suggests that pain 

intensity increases were associated with a steeper slope and greater intercept. A 

repeated measures ANOVA with pain intensity (no, low, high) as within subject 

factors confirmed a significant main effect of pain intensity on slope (F(2, 52) = 14.22, 

p < .001, ηp
2 = .35). Post-hoc tests showed that slope was significantly steeper in the 

high pain intensity than in the low pain (p = .014) and no pain intensity (p < .001). 

Slope was also significantly steeper in the low pain intensity than in the no pain 

intensity (p = .034). However, a repeated measures ANOVA with pain intensity (no, 

low, high) as within subject factors showed no significant effect of pain intensity on 

slope (F(2, 52) = 1.25, p = .30, ηp
2 = .05). Pain intensity increases therefore affected 

slope but not intercept, suggesting that the lengthening effect of pain on verbal 

estimates was multiplicative rather than additive. 

 

Pain intensity Slope Intercept 

No pain 0.55 (0.36) 48.98 (151.38) 

Low pain 0.67 (0.39) 60.54 (182.03) 

High pain 0.78 (0.35) 90.55 (213.64) 

Table 5.2. Means (and standard deviations) of slope and intercept for the pain 

condition. 

 

 

Estimate accuracy 

Estimate accuracy was calculated using the following formula: mean verbal 

estimate/stimulus duration. An accuracy of 1 indicates a correct estimate, below 1 
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indicates underestimation of duration and above 1 indicates overestimation of 

duration. Figure 5.1 (panel B) and Table 5.1 suggest that more accurate estimates 

were given in the high pain intensity condition compared to the no and low intensity. 

A repeated measures ANOVA with pain intensity and stimulus duration as within 

subject factors, showed a significant main effect of pain intensity (F(1.62, 41.98) = 

24.99, p < .001, ηp
2 = .49) but no significant effect of stimulus duration (F(1.36, 35.39) 

= 1.73, p = .20, ηp
2 = .06) on estimate accuracy. Post-hoc tests showed that estimates 

were significantly more accurate in the high pain intensity than in the low pain 

intensity (p = .003) and no pain intensity (p < .001). Estimates were also significantly 

more accurate in the low pain intensity than in the no pain intensity (p < .001). There 

was no significant interaction between stimulus duration and pain intensity (F(4.25, 

110.47) = 1.03, p = .40, ηp
2 = .04). Estimate accuracy therefore increased with pain 

intensity. 

 

Estimate variability 

Estimate variability was calculated using the following formula: standard deviation 

verbal estimate/mean verbal estimate. The higher the value, the more variable the 

participants’ responses. Figure 5.1 (panel C) and Table 5.1 suggest that verbal 

estimates had higher variability in the no pain intensity compared to the low and high 

pain intensities. A repeated measures ANOVA with pain intensity and experimental 

stimulus duration as within subject factors, showed a significant main effect of 

stimulus duration (F(2.42, 63.00) = 5.04, p = .006, ηp
2 = .77) and of pain intensity (F(2, 

52) = 32.34, p < .001, ηp
2 = .55) on variability. Post-hoc tests showed that variability 

was significantly higher in the no pain intensity than in the low pain (p < .001) and 

high pain intensities (p < .001). Variability was not significantly different in the low 

pain and high pain intensities (p = .10). Additionally, there was no significant 

interaction between stimulus duration and pain intensity (F(4.48, 116.54) = 1.51, p = 

.20, ηp
2 = .06). Verbal estimates were therefore more variability in the no pain 

intensity than in the pain intensities. 

 

 



94 | P a g e  

 

Vibration Condition 

 

Vibration 
intensity 

Amplitude 
Follow-up 

rating 
Verbal estimate 

Estimate 
accuracy 

Estimate 
variability 

Perceptible 
vibration 

0.13 (0.04) 0.56 (0.67) 316.04 (196.32) 0.42 (0.05) 0.71 (0.09) 

Low 
vibration 

0.29 (0.08) 1.90 (0.92) 549.45 (239.46) 0.71 (0.06) 0.38 (0.03) 

High 
vibration 

0.49 (0.09) 4.62 (2.22) 558.24 (212.43) 0.71 (0.05) 0.36 (0.02) 

Table 5.3. Means (and standard deviations) of vibration amplitude, follow-up 

vibration ratings, mean verbal estimate of all durations (ms), estimate accuracy 

and estimate variability during the vibration condition. 

 

 

Table 5.3 shows the vibration intensity (amplitude) for the three intensity levels 

used during the verbal estimation task. Repeated measures ANOVA showed a 

significant effect of stimulus intensity on stimulus amplitude (F(2, 52) = 329.42, p < 

.001, ηp
2 = .93) post-hoc tests showed that amplitude values were significantly 

different in all intensities (ps < .001). Repeated measures ANOVA confirmed that 

follow-up stimulus intensity ratings were also significantly different in all intensities 

F(1.12, 29.19) = 86.86, p < .001, ηp
2 = .77, p < .001 for all post-hoc tests.  

 

Verbal estimates 

Figure 5.2 (panel A) shows mean verbal estimates for each vibration intensity. 

Inspection of the panel and Table 5.3 suggests that the shortest duration estimates 

were given in the perceptible intensity, but there was no difference in estimates given 

for the low and high intensities. A repeated measures ANOVA with vibration intensity 

(perceptible, low and high) and stimulus duration (242ms, 455ms, 767ms, 1058ms, 

1296ms) as within subject factors, showed a significant main effect of stimulus 

duration (F(1.41, 36.66) = 117.68, p < .001, ηp
2 = .82) and of vibration intensity (F(1.26, 

32.75) = 36.80, p < .001, ηp
2 = .59) on verbal estimates. Post-hoc tests showed that 
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estimates were significantly shorter in the perceptible vibration intensity than in the 

low vibration (p < .001) and high vibration intensities (p < .001). Estimates were not 

significantly different in the low and high vibration intensities (p > .99). There was a 

significant interaction between stimulus duration and vibration intensity (F(3.49, 

90.76) = 13.61, p < .001, ηp
2 = .34). When each stimulus duration was tested 

separately with a series of repeated measures ANOVAs, verbal estimates appeared 

to be shorter in the perceptible intensity compared to the low intensity (all ps < .002) 

and high intensities (all ps < .001) which, in turn, did not differ between each other 

(all ps > .23). The only exception were estimates of the shortest stimulus (242ms) 

which did not differ across vibration intensities (F(1.45, 37.64) = 1.32, p = .27, ηp
2 = 

.05). Verbal estimates were therefore longer in the high and low vibration intensities 

compared to the perceptible vibration intensity. Moreover, the effect of vibration 

intensity increased with stimulus duration. 
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Figure 5.2. Means (and standard errors) of (A) verbal estimates (ms), (B) estimate 

accuracy and (C) estimate variability for each standard duration in each vibration 

intensity (perceptible vibration, low vibration and high vibration) in Experiment 1. 
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Estimate accuracy 

Examination of Figure 5.2 (panel B) and Table 5.3 also suggest that more accurate 

estimates were given for the high and low vibration intensities compared to the 

perceptible intensity. A repeated measures ANOVA with vibration intensity and 

experimental stimulus duration as within subject factors, showed a significant main 

effect of vibration intensity (F(1.31, 33.96) = 29.35, p < .001, ηp
2 = .53) but no 

significant effect of stimulus duration (F(1.72, 44.77) = 2.22, p = .13, ηp
2 = .08) on 

estimate accuracy. Post-hoc tests showed that estimates were significantly less 

accurate in the perceptible vibration intensity than in the low vibration (p < .001) and 

high vibration intensity (p < .001). Estimate accuracy was not significantly different 

between the low and high vibration intensities (p > .99). There was a significant 

interaction between stimulus duration and vibration intensity (F(4.07, 105.74) = 4.17, 

p = .003, ηp
2 = .14). When each stimulus duration was tested separately with a series 

of repeated measures ANOVAs, verbal estimates appeared to be less accurate in the 

perceptible intensity compared to estimates in low intensity (all ps < .002) and high 

intensities (all ps < .001) which, in turn, did not differ between each other (all ps > 

.23). The only exception were estimates of the shortest stimulus (242ms) which did 

not differ between vibration intensities (F(1.45, 37.64) = 1.32, p = .27, ηp
2 = .05). 

Estimate accuracy was therefore lower in the perceptible vibration intensity than in 

the high and low vibration intensities, except for the shortest duration (242ms). 

 

Estimate variability 

Figure 5.2 (panel C) and Table 5.3 suggest that estimates had higher variability in 

the perceptible intensity compared to the low and high vibration intensities. A 

repeated measures ANOVA with vibration intensity and experimental stimulus 

duration as within subject factors, showed a significant main effect of stimulus 

duration (F(2.52, 65.43) = 3.58, p = .009, ηp
2 = .12) and of vibration intensity (F(1.16, 

30.17) = 17.38, p < .001, ηp
2 = .40) on variability. Post-hoc tests showed that variability 

was significantly greater in the perceptible vibration intensity than in the low 
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vibration (p = .001) and high vibration intensities (p < .001). Variability did not differ 

between the low and high vibration intensities (p > .99). There was no significant 

interaction between stimulus duration and vibration intensity (F(3.50, 90.99) = 1.65, 

p = .18, ηp
2 = .06). Verbal estimates were therefore more variability in the perceptible 

vibration intensity than in the low and high vibration intensities. 

 

 

5.1.3 – Discussion 

Experiment 1 tested whether different levels of task-relevant arousal produce 

different distortions to time and whether changes in neutral stimulus intensity 

distorts time in a comparable way to changes in emotional stimulus intensity. This 

was achieved by examining the perceived duration of electro-cutaneous and 

vibrotactile stimulations at different intensities. For both stimulations, it was 

expected a positive relationship between intensity and perceived duration. 

 

As expected, pain intensity increases were associated with analogous verbal 

estimate increases; verbal estimates were longer in the high pain intensity than in 

the low and no pain intensities, and verbal estimates were longer in the low pain 

intensity than in the no pain intensity. Moreover, the lengthening effect of pain was 

greater for longer durations than for shorter ones and pain intensity increases were 

associated with grater slope values. In contrast, pain did not affect intercepts. This 

suggests that pain affects verbal estimates with a multiplicative effect, which is 

thought to be the index of the arousal effect on pacemaker in SET (however see 

Williams et al., 2017). These findings were compatible with the arousal hypothesis 

and replicate previous work (Fayolle et al., 2015; Rey et al., 2017). Pain intensity 

increases were also associated with more accurate and less variable estimates. This 

was compatible with Ogden et al.'s (2014) study showing greater estimate accuracy 

for pain related stimuli than for neutral stimuli.  

 

As expected, changes in the intensity of a neutral stimulus also affected perceived 

duration, although this was limited to a difference between the perceptible intensity 
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condition and low and high intensity conditions; perceived durations were not 

different between the low and high vibration intensities. Estimate accuracy was also 

higher and estimate variability was lower in the low and high vibration intensities 

than in the perceptible vibration intensity but did not differ between low and high 

vibration intensity. One possibility is that this finding suggests that arousal increases 

originating from a task-relevant neutral source also have the capacity to distort time, 

albeit less effectively than pain intensity increases. This finding is compatible with 

previous studies showing that increasing the intensity of neutral tone lengthens its 

perceived duration (Matthews, Stewart & Wearden, 2011). Furthermore, given that 

changes in pain intensity lead to greater arousal variations, it is reasonable that 

increasing the intensity of a neutral stimulus had a reduced effect on perceived 

duration compared to increasing the intensity of a painful stimulus. 

 

However, it is also possible that the difference in estimates between the 

perceptible condition and other conditions is a result of an absence of consistent 

perception of the entire “just-perceptible” stimuli. Indeed, it should be noted that in 

the follow-up ratings, the perceptible vibration was rated 0.56, where 0 

corresponded to no vibration. It is therefore possible that the perceptible vibration 

was close to the detection threshold, making the stimulation difficult to detect and 

causing the less accurate and more variable estimates in this vibration intensity. 

Furthermore, it is also possible that the difference between the low vibration 

intensity and the high vibration intensity was simply too little to induce sufficiently 

different arousal levels, resulting in similar time judgments between the two 

conditions. 

 

Experiment 1 shows that for task-relevant sources of arousal, greater stimulus 

intensity is associated with greater temporal distortion. Experiment 2 therefore 

tested whether comparable effects would be observed with task-irrelevant sources 

of emotional arousal. In Experiment 2, participants completed three verbal 

estimation tasks in which they had to estimate the duration of a neutral visual 

stimulus while experiencing a concurrent constant thermal stimulation on their arm. 
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The thermal stimulation was set at no pain, low pain and high pain intensity. 

Measures of verbal estimate, estimate accuracy and estimate variability were 

calculated. As in Experiment 1, pain intensity increases were expected to lead to 

longer verbal estimates. 

 

 

 

5.2 – Experiment 2 

5.2.1 – Method 

5.2.1.1 – Participants 

Thirty participants (17 females and 13 males; aged between 20 and 35 years old) 

were recruited. Participants were required not to be pregnant, not to have a history 

of epilepsy and not to have chronic pain, heart disease, skin problems (e.g., eczema) 

or any impairment of body sensation. Additionally they were asked not to take any 

analgesic during the 8 hours prior to the experiment. Participants were reimbursed 

£10 in vouchers for taking part. The study was approved by the Liverpool John 

Moores University ethics committee and informed consent was obtained from all 

participants. 

 

 

5.2.1.2 – Apparatus and materials 

Pain stimulation: The Medoc PATHWAY-Advanced Thermal Stimulator was used 

to present the sustained thermal stimulation (see section 4.3.2, page 78 for 

equipment description).  

 

 

5.2.1.3 – Procedure 

Participants were initially asked to complete a health screening questionnaire to 

confirm their suitability to participate. Participants then performed an intensity 

rating task with the Medoc PATHWAY-Advanced Thermal Stimulator to select 

thermal intensities equal to 0, 3 and 6 in the NRS; that is warm but no pain, low pain 
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(Serlin et al., 1995) and high pain (Khoshnejad et al., 2016), respectively (see section 

4.3.2, page 78 for task description).  

 

Participants then completed a verbal estimation task, which employed a 3 

(intensity: no pain, low pain and high pain) x 5 (duration: 242ms, 455ms, 767ms, 

1058ms and 1296ms) repeated measures design. Participants were informed that a 

series of visual stimuli (white squares on a black background, 300x300 pixels, 8x8cm) 

would be presented on the screen, lasting between 50ms and 1700ms, and that their 

task was to estimate the duration of each stimulus in milliseconds, by typing a 

numerical value using the keyboard. Participants were also informed that the 

thermode on their forearm would be active during the task. 

Participants completed nine blocks of trials in total, with three blocks per intensity 

(no pain, low pain and high pain). The thermode was active during the entire block 

(about 2 minutes). Block order was counterbalanced between participants. Each 

block contained 16 stimuli; five standard duration (242ms, 455ms, 767ms, 1058ms 

and 1296ms) each of which was repeated twice and six additional stimuli, the 

duration of which was selected at random from a uniform distribution ranging from 

100ms to 1500ms. The purpose of these additional trials was to disguise the repeated 

use of the same five experimental stimulus durations across the experimental blocks. 

The data from these six additional stimuli were not analysed (as in Ogden et al., 2015). 

A inter trial interval, the duration of which was selected from a normal distribution 

between 1500 to 2500 milliseconds, was interposed between trials. The order of 

presentation of the trials was randomised by E-Prime for each participant. A total of 

144 trials were delivered across the entire task. 

 

 

5.2.2 – Results 

Out of 30 participants tested, five chose temperatures too low to be considered 

painful (i.e., below 40oC as high pain) (Yarnitsky, Sprecher, Zaslansky, & Hemli, 1995) 

and one gave temporal estimates below 100 or above 1000. Therefore, reported 

results are based on data from the remaining 24 participants. To establish the effect 
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of the pain on time perception, three measures of performance were derived for each 

condition as in Experiment 1: mean verbal estimates, estimate accuracy and estimate 

variability. Greenhouse-Geisserr correction was applied to ANOVAs when the 

Sphericity assumption was violates and post-hoc were Bonferroni corrected. 

 

 

 

 

 

Pain intensity Temperature Verbal estimate 
Estimate 
accuracy 

Estimate 
variability 

No pain 36.58 (2.28) 558.02 (187.70) 0.74 (0.29) 0.66 (0.16) 

Low pain 41.50 (2.59) 535.53 (180.04) 0.70 (0.26) 0.68 (0.16) 

High pain 44.47 (1.95) 505.34 (199.47) 0.68 (0.30) 0.70 (0.19) 

Table 5.4. Means (and standard deviations) of temperature (°C), mean verbal 

estimate of all durations (ms), estimate accuracy and estimate variability in 

Experiment 2. 

 

Table 5.4 shows the temperature for the three pain intensities individuated during 

the initial intensity rating task. Repeated measures ANOVA showed a significant 

effect of stimulus intensity on temperature (F(2, 46) = 200.74, p < .001, ηp
2 = .90), p < 

.001 for all post-hoc tests. 

 

Verbal estimates 

Figure 5.3 (panel A) shows mean verbal estimates for each stimulus duration, in 

each pain intensity. Inspection of Figure 5.3 (panel A) and Table 5.4 suggests that the 

shortest verbal estimates were given in the high pain intensity and the similar verbal 

estimates were given in the no pain and low pain intensity. A repeated measures 

ANOVA with pain intensity (no, low, high) and experimental stimulus duration 

(242ms, 455ms, 767ms, 1058ms, 1296ms) as within subject factors was conducted. 

ANOVA analysis showed a significant main effect of stimuli duration (F(1.52, 34.90) = 
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134.52, p < .001, ηp
2 = .85) and of pain intensity (F(2, 46) = 6.25, p = .004, ηp

2 = .22) 

on verbal estimates. Post-hoc tests showed that estimates were significantly longer 

in the no pain intensity than in the high intensity (p = .010). Verbal estimates in the 

low pain intensity were not significantly different than verbal estimates in the no pain 

(p = .17) and high pain (p = .26) intensities. There was no significant interaction 

between stimuli duration and pain intensity (F(3.91, 89.99) = 1.40, p = .24, ηp
2 = .06). 
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Figure 5.3. Means (and standard errors) of (A) verbal estimates (ms), (B) estimate 

accuracy and (C) estimate variability for each standard duration in each pain 

intensity (no pain, low pain and high pain) in Experiment 2. 
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Estimate accuracy 

Figure 5.3 (panel B) and Table 5.4 suggest that more accurate estimates were given 

in the no pain intensity condition compared to the high pain intensity. ANOVA with 

pain intensity and stimulus duration as within subject factors, showed a significant 

main effect of pain intensity (F(2, 46) = 3.83, p = .029, ηp
2 = .14) but no significant 

effect of stimulus duration (F(1.24, 28.41) = .21, p = .71, ηp
2 = .01) on estimate 

accuracy. Post-hoc tests showed that estimates were significantly more accurate in 

the no pain intensity than in the high pain intensity (p = .048). Estimate accuracy in 

the low pain intensity was not significantly different from estimate accuracy in the no 

pain (p = .13) and high pain (p = .98) intensities. There was no significant interaction 

between stimulus duration and pain intensity (F(8, 184) = .64, p = .68, ηp
2 = .03). 

 

 

Estimate variability 

Figure 5.3 (panel C) and Table 5.4 suggest that verbal estimations of the shortest 

duration had higher variability in the high pain intensity compared to the no pain 

intensity. A repeated measures ANOVA with pain intensity and experimental stimulus 

duration as within subject factors, showed no significant main effect of stimulus 

duration (F(2.53, 55.73) = 2.68, p = .065, ηp
2 = .11) and pain intensity (F(2, 44) = .47, 

p = .63, ηp
2 = .02) on estimate variability. There was also no interaction effect 

between stimulus duration and pain intensity (F(8, 176) = 1.16, p = .33, ηp
2 = .05). 

 

 

5.2.3 – Discussion 

Experiment 2 tested whether different levels of task-irrelevant arousal produce 

different distortions to time. Participants estimated the perceived duration of neutral 

visual stimuli whilst experiencing concurrent constant thermal stimulation at no pain, 

low pain and high pain intensity. It was expected that the different levels of pain 

intensity would produce different effects on time perception, specifically, greater 

distortion in the high pain than low pain condition.  
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Contrary to expectations, however, Experiment 2 showed that rather than 

lengthening perceived duration, task-irrelevant high pain resulted in a shortening of 

perceived duration. Estimates were also more accurate in the no pain condition than 

the high pain condition, meanwhile estimate variability was unaffected by task-

irrelevant stimulation. These findings contrast with the findings of Experiment 1 and 

with the arousal hypothesis, which predicts that any increase of arousal should be 

associated with an increase in the perceived duration (see section 3.3.1, page 67). 

Task-irrelevant arousal does not therefore appear to be related to perceived duration 

in the same way as task-relevant arousal. This suggests that the effects of arousal on 

perceived duration are more complex than suggested.  

 

 

5.3 – Discussion Chapter 5 

Chapter 5 examined whether different levels of arousal produced different 

distortions to time when arousal arises from 1) a task-relevant emotional stimulus, 2) 

a task-relevant neutral stimulus and 3) a task-irrelevant emotional stimulus. This was 

tested in two experiments. Experiment 1 tested the estimate, accuracy and variability 

of electro-cutaneous and vibrotactile stimulations. Experiment 2 tested the estimate, 

accuracy and variability of neutral visual stimuli while experiencing constant thermal 

stimulation. In both experiments, it was expected that increasing the intensity of the 

stimulation would increase arousal, resulting in longer estimates. 

 

Findings showed that increasing the intensity of electro-cutaneous, vibrotactile 

and thermal stimulation resulted in different time distortions depending on whether 

the source of arousal was task-relevant or task-irrelevant. Increases in task-relevant 

electro-cutaneous intensity were associated with longer, more accurate and less 

variable verbal estimates, which were different between each pain intensity. 

Increases in task-relevant vibrotactile intensity were also associated with longer, 

more accurate and less variable verbal estimates; however, there was no difference 

between low and high vibration intensity. Finally, task-irrelevant high thermal 
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intensity was associated with shorter and less accurate verbal estimates of the 

concomitant neutral stimulus; however, estimate variability was unaffected across 

pain intensities. 

 

Experiment 1 findings showed that increases in task-relevant electro-cutaneous 

intensity were associated with longer verbal estimates. This confirmed previous 

studies showing that pain is an effective method to lengthen perceived duration 

(Fayolle et al., 2015; Ogden, Moore, et al., 2014). This supports the predictions of the 

arousal hypothesis, which suggests that increases in arousal due to increases of pain 

intensity are associated with longer perceived durations. Greater pain intensity was 

also associated with greater estimate accuracy and reduced estimate variability, 

again replicating Ogden et al. (2014). These later findings are perhaps surprising 

because increasing pain intensity has been found to disrupt attention (Moore et al., 

2012) and executive functions (Moriarty et al., 2011), which are required for correct 

timing judgments (Ogden, Moore, et al., 2014). Therefore, rather than impairing 

timing, pain appears to result in a perceptual advantage for timing. This suggestion 

will be expanded in the next chapter.  

 

Findings of Experiment 1 also showed that increases in vibration intensity were 

associated with longer verbal estimates, suggesting that arousal originated from task-

relevant, non-emotional sources can affect time perception and supporting the 

predictions of the arousal hypothesis. However, interpretation of the findings is 

difficult due to the potential of inconsistent perceptions of the perceptible condition 

and a lack of sufficient difference between the low and high vibration conditions 

affecting the findings. 

  

In Experiment 2 however, task-irrelevant pain intensity increases had a shortening 

effect on the perceived duration of the concomitant neutral stimuli. Estimates of the 

neutral stimuli were shorter and less accurate while experiencing the high pain 

intensity than while experiencing the no pain intensity. Comparing the findings of 

Experiment 1 and 2 suggest that task-relevant and task-irrelevant sources of arousal 
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have different effects on perceived duration. It is important to note that the differing 

findings between Experiments 1 and 2 are unlikely to be due to the use of thermal 

stimulation in Experiment 2, as opposed to the electro-cutaneous stimulation in 

Experiment 1, because thermal stimulation has been previously found to lengthen 

perceived duration (Ogden, Moore, et al., 2014). 

 

The arousal hypothesis predicts a linear relationship between arousal and 

perceived duration; any change in arousal level should be associated with an 

analogous time distortion. Moreover, models of timing do not differentiate between 

time distortions caused by task-relevant and by task-irrelevant arousal. Any arousal 

increase leads to faster internal clock in SET, higher DA levels and faster cortical 

oscillators in SBF, and higher AIC activation in Craig’s model of awareness, all resulting 

in longer perceived durations. Results of Experiment 1 therefore supported these 

predictions of a simple relationship between arousal and perceived duration, by 

demonstrating longer verbal estimates for stimuli with higher pain intensity than for 

stimuli with lower pain intensity. In Experiment 2, however, the absence of a 

lengthening effect of task-irrelevant pain, suggests that the relationship between 

arousal and perceived duration is more complex than that proposed by the arousal 

hypothesis (Angrilli et al., 1997; Burle & Casini, 2001) and perhaps limited to 

circumstances in which arousal is specific to the event being timed. 

 

One possible explanation for the differing findings of Experiment 1 and Experiment 

2 is that time perception was influenced by arousal and attention differently in the 

two tasks. In Experiment 2, it is plausible that pain could have disrupted attention to 

time, reducing perceived durations. Increasing pain intensity captures attention 

(Moore et al., 2012) and disrupts executive functions (Eccleston, 2011), impairing 

performance on ongoing tasks. In addition, attention is modulated by negatively 

valenced stimuli through bottom-up (i.e., stimulus driven) and top-down (i.e., 

cognitive driven) mechanisms, leading to faster identification of the emotional 

stimulus and higher performance on tasks requiring their processing (Vuilleumier, 

2005). Both bottom-up and top-down mechanisms were aligned with the electro-
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cutaneous stimulus in Experiment 1; meanwhile they were in conflict in Experiment 

2, where bottom-up mechanisms directed the attention to the source of pain and the 

top-down mechanisms directed attention to the ongoing task (i.e., the neutral visual 

stimuli). This conflict may have taken the attentional resources away from the neutral 

visual stimuli. 

 

Sufficient attentional resources are required for correct timing; perceived 

durations are shorter when participants’ attention is impaired (Tse, Intriligator, 

Rivest, & Cavanagh, 2004). In SET, attention modulates the openness of the 

attentional gate, with reduced attention associated with reduced openness, resulting 

in shorter perceived durations (Zakay & Block, 1995). In SBF, impairments in 

attentional processes also results in shorter perceived durations due to disruption of 

DA release and of reset of cortical oscillators. In Experiment 2, increasing the pain 

intensity may have therefore distracted participants from the temporal task, leading 

to reduced attention for the encoding of the neutral visual stimulus, which resulted 

in shorter perceived durations. This would also explain the reduced estimate accuracy 

in high pain intensity compared to the other conditions. 

 

It is also possible that the arousal hypothesis is perhaps too general, and that, 

rather than arousal per se affecting perceived duration, the effect of arousal on 

perceived duration is perhaps limited to circumstances in which arousal is task-

relevant. Pain has also been suggested to reprioritise cognitive processes and affect 

arousal to react promptly to the threat so to promote survival (Eccleston & Crombez, 

1999). A large number of studies have found pain effects on attention (Moore et al., 

2013), memory (Buhle & Wager, 2010) and executive functions (Moriarty et al., 2011) 

compatible with this interpretation. It is therefore possible that pain effects on time 

perception also aim to promote survival. There were potential benefits to accurately 

encode the duration of the painful stimulus in Experiment 1; meanwhile there were 

no evident benefits to accurately encode the duration of the neutral stimulus in 

Experiment 2. In Experiment 2, greater survival benefits should be given to those who 

ignored the to-be-timed stimulus and directs attention to the painful, threatening 
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stimulation. Lake et al. (2016) also suggested that the variety of effects of emotions 

on time perception may be due to the biological relevance of the target emotion; the 

greater the stimulus importance for the survival of the individual the greater the time 

distortion induced by the stimulus. This is compatible with Gil and Droit-Volet (2012), 

who suggested that the semantic of the stimulus affects time perception even if there 

is no difference in arousal.  

 

Whilst this survival based explanation addresses the results of this Chapter, it 

should be taken with caution. Attentional disruptions due to pain are associated with 

more errors during ongoing tasks (Moore et al., 2013). This should be mirrored with 

less accurate and more variable estimates in the verbal estimation task. However, in 

Experiment 2, although estimate accuracy decreased at the high pain intensity, the 

variability of the verbal estimates did not change across pain intensities. An 

attentional, survival based explanation might be therefore too simplistic. 

 

In summary, this Chapter found that increasing pain intensity leads to longer, 

more accurate and less variable estimates when arousal is task-relevant (Experiment 

1), meanwhile it leads to shorter and less accurate estimates when arousal is task-

irrelevant (Experiment 2). Whilst results of Experiment 1 support the arousal 

hypothesis, results of Experiment 2 suggest a more complex relationship between 

arousal and perceived duration. To better understand the circumstances in which 

changes in physiological arousal are related to perceived duration, a direct test of the 

relationship between physiological arousal and perceived duration is required. 
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Chapter 6 

The relationship between pain induced autonomic arousal and perceived 

duration 

 

Chapter 5 shows that pain affects the perceived duration of event differently 

depending on whether it is the to-be-timed stimulus, and therefore task-relevant, or, 

a task-irrelevant source of stimulation. This implies a more complex relationship 

between arousal and perceived duration than that currently detailed in current 

models of timing. To further understand how pain induced arousal affects perceived 

duration, Chapter 6 tested the relationship between the physiological arousal evoked 

by a stimulus and its perceived duration. This Chapter has been published as an article 

in the journal Emotion with the title: “The relationship between pain induced 

autonomic arousal and perceived duration” (Piovesan, Mirams, Poole, Moore, & 

Ogden, 2018). 

 

Although arousal is consistently implicated in temporal distortions, there is not a 

clear and shared definition of arousal in the time perception literature (e.g., 

Wearden, Philpott, & Win, 1999). For example, the term “arousal” is used 

interchangeably to describe arousal resulting from emotion induction (see Gil & 

Droit-Volet, 2012) but also from hypothesised changes in cortical activity as a result 

of repetitive stimulation (see Droit-Volet, 2010 and Jones, Allely, & Wearden, 2011for 

examples). Furthermore, the relationship between arousal and perceived duration is 

often assumed rather than tested. For example, the association between heightened 

arousal and longer perceived durations has been evidenced by participants stating 

that they feel aroused, or, experimenters choosing stimuli which they believe to be 

arousing (e.g., Tipples, 2008) rather than measuring arousal directly. In studies in 

which measures of the physiological response to the to-be-timed stimuli are taken, 

the measures are rarely related back to the verbal estimates themselves. For 

example, although Angrilli et al. (1997), Droit-Volet et al. (2010), Fayolle et al. (2015) 

and Mella et al. (2011) demonstrate that their arousing stimuli do produce 
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physiological arousal, they do not then demonstrate that the change in physiological 

arousal itself is related to the change in duration perception.  

 

One way to define arousal is through changes in the activity of sympathetic and 

parasympathetic branches of the autonomic nervous system (ANS). The sympathetic 

nervous system (SNS) is dominant during stress and fight/flight responding. Increases 

in SNS activity increase heart rate (HR), decrease heart rate variability (HRV) and 

increase peripheral vasoconstriction (Mendes, 2009; Sztajzel, 2004). Increased SNS 

activity also modulates the electrical activity of the skin resulting in increased 

sweating (Sztajzel, 2004). Skin Conductance Level (SCL) can be measured as an index 

of SNS activity. The parasympathetic nervous system (PSNS) is dominant during 

relaxation and rest. Increases in PSNS activity decrease HR, increase HRV and increase 

peripheral vasodilatation (Mendes, 2009; Sztajzel, 2004). PSNS activity is measured 

by calculating High Frequency Heart Rate Variability (HF HRV), which is HRV in the 

range of 0.15-0.4 Hz. This range is associated with the respiratory sinus arrhythmia 

(the increase and decrease of heart rate during inhalation and exhalation, 

respectively), which is considered to be solely determined by the PSNS (Task Force of 

the European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology, 1996). Increases in HF HRV correspond to increased PSNS activity. 

 

Few studies have directly tested the relationship between physiological arousal 

defined as ANS activity and time perception (Cellini et al., 2015; Fung et al., 2017; 

Meissner & Wittmann, 2011; Pollatos et al., 2014; van Hedger et al., 2017). Of those 

existing studies, the majority have focused on how resting state cardiac activity is 

related to temporal perception, rather than how changes in ANS reactivity relate to 

temporal distortions. For example, Cellini et al. (2015) observed that higher vagal 

tone was associated with lower error rates on a temporal production task and 

Pollatos et al. (2014) observed that greater vagal control was associated with less 

error on a reproduction task. Both Cellini et al. (2015) and Pollatos et al. (2014) 

acknowledge that this may just reflect the influence of vagal tone on attention and 

working memory (see Thayer, Hansen, Saus-Rose, & Johnsen, 2009). Other studies 
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have used measures which, although indicating changes in ANS activity, are non-

specific to the SNS and PSNS branches (Fung et al., 2017; Hawkes et al., 1962; Osato 

et al., 1995). Fung et al. (2017), for example, tested the relationship between baseline 

levels of low and high frequency HRV and duration reproduction and found an 

association between low frequency HRV and less accurate duration reproduction. 

Although this indicates a relationship between the ANS and perceived duration, low 

frequency HRV is difficult to interpret as it is influenced by both SNS and PSNS activity 

(see Reyes del Paso et al., 2013 for discussion).  

 

Van Hedger et al. (2017) used more direct measures of SNS (Pre-ejection Period) 

and PSNS activity (HF HRV) to test the effect of a social stressor on temporal 

reproductions of neutral, negative and positive images. By manipulating emotional 

state, they were therefore able to explore how changes in ANS reactivity relate to 

emotional distortion of time. There was a significant correlation between changes in 

reproduction durations for the negative images (before and after the stressor) and 

changes in SNS activity, although this correlation was found only for short stimulus 

durations (400ms) and not long ones (4000ms). No relationships were found between 

SNS activity and reproductions of positive or neutral stimuli. There were also no 

relationships between PSNS and any reproduction. The absence of an overall 

lengthening effect of the stressor on duration perception suggests that the 

relationship between ANS activity and duration perception may be more complex 

than initially indicated. The fact that a relationship between SNS activity and 

perceived duration was only observed for the negative stimuli perhaps suggests that 

SNS activity only affects perceived duration when there is a large change in SNS 

activity, not a small one. Negative stimuli produce larger physiological responses than 

positive stimuli (Cacioppo & Gardner, 1999). Thus, physiological change may only 

have been sufficient to affect timing when the effect of the stressor and the negative 

IAPS images combined. It may also suggest that ANS activity only affects duration 

processing when the to-be-timed stimulus is itself arousing. However, it should also 

be noted that the use of a reproduction method in van Hedger et al. (2017) meant 

that participants experienced the to-be-timed-stimulus and made their reproduction 



114 | P a g e  

 

in the same state (i.e., prior to the stressor and after the stressor). The absence of a 

state change between stimulus presentation and stimulus reproduction is likely to 

have limited any temporal distortion observed as any effect of the stressor (i.e., 

change in internal clock speed) would be present during the timing of the stimulus 

and the timing of the reproduction. Furthermore, because separate physiological 

recordings were not taken for the different emotional categories (positive, negative 

and neutral) it is not possible to identify how the physiological response to the 

emotional stimuli itself related to their perceived duration.  

 

A complex relationship between arousal and temporal distortions is evident in 

Chapter 5, where task-irrelevant arousal shortened perceived duration, and in other 

studies, where time distortions were observed even if arousal was unaffected 

(Angrilli et al., 1997; Burle & Casini, 2001; Gil & Droit-Volet, 2012; Mella et al., 2011). 

This suggests that a basic model of temporal distortions in which increases in arousal 

result in increases in perceived duration may be too simplistic (Cheng, Tipples, 

Narayanan, & Meck, 2016; Lake, 2016; Lake et al., 2016). A direct test to clarify the 

relationship between ANS activity and perceived duration is therefore required. 

 

One effective way of manipulating ANS activity is through the induction of noxious 

somatosensory stimulation; increasing the intensity of electro-cutaneous and 

thermal stimulations is positively correlated with both ANS activity and verbal reports 

of pain experience (Möltner et al., 1990; Vassend & Knardahl, 2005). SNS and PSNS 

activity can therefore be modified by administering differing intensities of electro-

cutaneous and thermal stimulation to participants. Electro-cutaneous and thermal 

stimulations are also effective methods of distorting perceived duration (Fayolle et 

al., 2015; Ogden, Moore, et al., 2014). Whilst their effectiveness is suggested to be 

because of their ability to modify arousal, the direct relationship between the arousal 

that they evoke and their perceived duration has never been tested. 

 

The present study therefore aimed to test the relationship between physiological 

arousal, defined as ANS activity, and perceived duration using noxious 
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somatosensory stimulation. Two experiments are reported. In Experiment 3, 

participants were required to estimate the duration of electro-cutaneous stimuli 

previously rated as inducing no pain, low level pain and high level pain. In Experiment 

4, participants were required to estimate the duration of a neutral visual stimulus 

whilst concurrently experiencing task-irrelevant thermal stimulation previously rated 

as inducing no pain, low pain and high pain. Throughout both experiments, measures 

of SCL and HF HRV were recorded as indicators of SNS and PSNS arousal, respectively.  

 

For both experiments it was expected that the high pain stimulus would elicit 

greater SNS activity compared to the low pain and a no pain stimulus. It was also 

expected that increasing stimulus intensity would lengthen duration estimates in 

Experiment 3 and would shorten duration estimates in Experiment 4, replicating 

findings of Chapter 5. In all conditions of Experiment 3, greater SNS reactivity was 

expected to be associated with longer perceived durations. 

 

 

6.1 – Experiment 3 

Experiment 3 tested the hypothesis that changes in ANS activity are correlated 

with distortions of perceived duration. Participants were asked to estimate the 

duration of electro-cutaneous stimuli they had previously rated as not painful, low 

level pain and high pain, whilst SCL and HF HRV were recorded. Different stimulus 

intensities (no pain, low pain and high pain) were used to establish whether different 

levels of arousal have different relationships to perceived duration. It was expected 

that electro-cutaneous stimuli rated as low level pain and high pain would be 

perceived as lasting longer than stimuli rated as not painful, replicating Experiment 

1. It was further expected that increased electro-cutaneous stimulus intensity would 

be associated with increased SCL, reflecting greater SNS activity for the high pain than 

for the low pain and no pain conditions. Critically, it was also expected that SNS 

activity would be positively related to perceived duration. As previous evidence 

suggests that only large changes in arousal affect perceived duration (e.g., Gil & Droit-

Volet, 2012; van Hedger et al., 2017), we expected this relationship to be stronger in 
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the high compared to the low pain condition. In contrast, we did not expect to find 

any correlation between PSNS arousal (indexed by HF HRV) and verbal estimation, as 

in van Hedger et al. (2017).  

 

 

6.1.1 – Method 

6.1.1.1 – Participants 

Forty participants (30 females and 10 males; mean age = 26.20, SD = 3.91) were 

recruited. Participants were required not to be pregnant, not to have a history of 

epilepsy and not to have chronic pain, heart disease, skin problems (e.g., eczema) or 

any impairment of body sensation. Additionally they were asked not to take any 

analgesic during the 8 hours prior to the experiment. Participants were reimbursed 

£10 in vouchers for taking part. The study was approved by the Liverpool John 

Moores University ethics committee and informed consent was obtained from all 

participants. 

 

 

6.1.1.2 – Apparatus and materials 

Pain stimulation: The Digitimer DS7A Current Stimulator (Digitimer Ltd) was used 

to present the electro-cutaneous stimulation (see section 4.3.1, page 77 for 

equipment description).  

Physiological apparatus: Biopac MP30B-CE was used to record EDA and ECG 

signals through two separate sets of electrodes. For EDA a set of two electrodes were 

applied on the index and middle finger of the right hand. For the ECG a set of three 

electrodes were applied on the torso to reproduce the Einthoven’s triangle (one 

electrode on each shoulder and one on the left hip). The Biopac MP30B-CE was 

connected to a computer which recorded the physiological activity through the 

Biopac Student Lab Pro 3.7 software. The software was programmed to filter the EDA 

and the ECG signals in real time with band-pass of 0 – 35 Hz and .5 – 35 Hz, 

respectively. SCL and HF HRV were extracted by EDA and ECG signals, respectively 

(extrapolation is described below). 
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6.1.1.3 – Procedure 

The procedure was similar to the one used in Experiment 1. Participants 

completed a health screening questionnaire to confirm suitability to participate. 

Participants then performed three tasks; 1) an initial intensity rating task to establish 

three stimulus intensity levels (no pain, low pain and high pain); 2) a verbal estimation 

task and 3) a further post-timing intensity rating task to establish whether the three 

intensity levels were still perceived as different after the verbal estimation task. 

These tasks were administered using E-Prime software (http://www.pstnet.com). 

 

Initial intensity rating task: Participants performed the task with the Digitimer 

DS7A to select electrical intensities equal to 0, 3 and 6 in the NRS; that is no pain, low 

pain (Serlin et al., 1995) and high pain (Khoshnejad et al., 2016), respectively (see 

section 4.3.1, page 77 for task description).  

 

Verbal estimation task: Participants were asked to judge the duration of a series 

of electro-cutaneous stimuli delivered to their arm, which were set to the intensities 

established during the intensity rating task. The experiment consisted of three blocks, 

one for each pain intensity condition (no pain, low pain and high pain), presented in 

a counterbalanced order across participants. Before each block, participants were 

asked to watch an 8 minute relaxing video-clip in order to measure their SCL and HF 

HRV in a baseline condition. This clip consisted of scenes of ocean life accompanied 

by relaxing music. Following this baseline recording period participants completed a 

block of verbal estimation. 

 

At the start of each block, participants were instructed that a series of stimuli 

would be presented to their forearm, lasting between 50ms and 1700ms, and that 

their task was to verbally estimate the duration of each stimulus in milliseconds. After 

the participant pressed spacebar to initiate the start of the block, there was an inter-

stimulus interval (ISI) randomly chosen from a 1500-2500ms range, which preceded 

http://www.pstnet.com/
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the stimulus presentation. After stimulus presentation, there was an ISI of 1000ms 

then the response prompt was displayed cueing the participant to estimate the 

stimulus duration. A microphone and Audacity software were used to record 

participant’s estimations. Participants then pressed the spacebar for the next trial. 

Each block contained 48 stimuli; five standard durations (242ms, 455ms, 767ms, 

1058ms and 1296ms) each of which was repeated six times and eighteen additional 

stimuli, the duration of which was selected at random from a uniform distribution 

ranging from 100ms to 1500ms. The purpose of these additional trials was to disguise 

the repeated use of the same 5 experimental stimulus durations across the 

experimental blocks. The data from these 18 additional stimuli were not analysed (as 

in Ogden et al., 2015). In each of the three blocks there were therefore 48 trials, giving 

a total of 144 trials for the entire task. The order of presentation of the trials was 

randomised by E-Prime for each participant. SCL and HF HRV were recorded through 

each block. 

 

Post-timing intensity rating task: To establish whether the three intensity levels 

were still perceived as different after the verbal estimation task, participants rated 

the three intensity levels (no pain, low pain and high pain) using an 11-point NRS (0 = 

no pain at all, 10 = worst pain imaginable). Each intensity level was presented 5 times 

(a total of 15 stimuli) in random order. Each stimulus lasted 750ms. 

 

 

6.1.1.4 – Physiological data extrapolation 

EDA and ECG were measured during the three experimental blocks and the three 

baselines, resulting in a total of 6 recordings per participant. Using Biopac software, 

recorded signals were visually explored for artefacts which were manually removed. 

Six SCLs per participant were extrapolated averaging across each EDA signal (three 

representing the three baseline recording and a further three representing the no 

pain, low pain and high pain recordings). Three baseline-corrected SCLs were then 

calculated by subtracting baseline SCLs from their respective experimental SCLs. The 
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baseline-corrected SCLs were later used for all the analyses described in the below 

results section. 

 

ECG signals were imported into Kubios HRV software (University of Kuopio, 

Kuopio, Finland) for the frequency domain measure of the High Frequency band 

(0.15-0.4 Hz). From the original ECG signal, the software retrieved the inter-beat (or 

RR) intervals and applied the smoothness priors method to remove the low frequency 

baseline trend component. Frequency domain estimates of HF HRV (in normalized 

units) were then derived using the power spectrum density with the fast Fourier 

transformation based on Welch’s periodogram method (Welch, 1967). Six estimates 

of HF HRV per participant were therefore obtained and three baseline-corrected 

estimates of HF HRV were then calculated by subtracting baseline values from their 

respective experimental values. The baseline-corrected estimates were later used for 

all the analyses described in the below results section. 

 

 

6.1.2 – Results  

Out of forty participants tested, data from six participants were excluded from the 

analysis because their estimates did not display temporal sensitivity or they did not 

comply with the task instructions. These participants were excluded for having 

estimates which did not show sensitivity to the stimulus duration in the neutral 

condition i.e. short estimates for long stimuli and long estimates for short stimuli, or, 

flat gradients due to the repetitive use of a single duration estimate e.g., 1500ms. 

Therefore, we report the results based on data from the remaining 34 participants. 

Greenhouse-Geisserr correction was applied to ANOVAs when the Sphericity 

assumption was violates and post-hoc were Bonferroni corrected. 
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Pain 
intensity 

Electrical 
current 

Follow-up 
rating 

Mean SCL Mean HF HRV Verbal estimate 

No pain 0.65 (0.40) 0.28 (0.60) 1.28 (1.65) -14.26 (14.66) 602.43 (195.33) 

Low pain 1.70 (0.68) 2.37 (1.38) 1.51 (1.72) -13.25 (17.76) 627.36 (178.56) 

High pain 3.02 (1.03) 4.83 (1.57) 2.37 (1.76) -10.39 (14.86) 683.12 (186.68) 

Table 6.1. Means (and standard deviations) of electrical current (mA), post-timing 

pain ratings, baseline-corrected Skin Conductance Levels (SCL, µmho), baseline-

corrected High Frequency Heart Rate Variability (HF HRV, normalized units) and 

mean verbal estimate of all durations (ms) in the three intensity level conditions 

(no pain, low pain and high pain) in Experiment 3. 

 

 

Table 6.1 shows means and standard deviations of intensity current (mA) for the 

three pain intensities individuated during the initial intensity rating task and used 

during the verbal estimation task. Repeated measures ANOVA indicated that stimulus 

electrical currents were significantly different to each other, F(1.15, 37.95) = 216.61, 

p < .001, ηp
2 = .87; confirmed by post-hoc tests (all ps < .001). Data from the post-

timing intensity-rating task confirmed that the three intensity levels were still 

perceived as different to each other at the end of the task F(2, 66) = 200.61, p < .001, 

ηp
2 = .86. 

 

Physiological response 

Table 6.1 shows SCL and HF HRV for each stimulus intensity. Examination of Table 

6.1 suggests that participants had higher SCL in the high pain than low pain and no 

pain conditions. A repeated measures ANOVA showed a significant effect of electro-

cutaneous intensity (no pain, low pain and high pain) on SCL F(2, 66) = 4.93, p = .01, 

ηp
2 = .13. Post-hoc tests showed that SCL was significantly higher in the high pain 

condition than in the low pain (p = .049) and no pain condition (p = .024). SCL was not 

significantly different between the low pain and no pain condition (p = .99). Although 

examination of Table 6.1 suggests that participants HF HRV increased from the no 

pain to the high pain condition (which would indicate increased PSNS activity), a 
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repeated measures ANOVA showed no significant effect of electro-cutaneous 

intensity (no pain, low pain and high pain) on HF HRV F(2, 66) = 1.12, p = .33, ηp
2 = 

.03.  

 

Verbal estimation 

Figure 6.1 shows mean verbal estimations for each electro-cutaneous stimulus 

intensity condition. Examination of Figure 6.1 suggests that longer duration estimates 

were given in the high pain than in the low pain and no pain conditions. A repeated 

measures ANOVA with electro-cutaneous intensity (no pain, low pain and high pain) 

and stimulus duration (242ms, 455ms, 767ms, 1058ms, 1296ms) as within subject 

factors, showed significant main effects of stimulus duration F(1.78, 58.83) = 360.35, 

p < .001, ηp
2 = .92 and of pain intensity F(2, 66) = 5.93, p = .004, ηp

2 = .15 on verbal 

estimates. Post-hoc tests showed that estimates were significantly longer in the high 

pain condition than in the no pain condition (p = .01). The difference between the 

high pain and low pain condition was approaching significance (p = .054). Estimates 

were not significantly different in the low pain and no pain condition (p = .91). There 

was no significant interaction between stimulus duration and pain intensity F(5.14, 

169.46) = 1.58, p = .17, ηp
2 = .05. 
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Figure 6.1. Means (and standard errors) of the verbal estimations (ms) plotted against 

the standard durations and divided by the intensity level conditions (no pain, low 

pain and high pain) in Experiment 3. 

 

 

ANS activity and perceived duration 

To investigate whether there was a relationship between ANS activity and time 

perception the mean duration estimate for each intensity condition was calculated 

(Table 6.1). The change in mean duration estimate, SCL and HF HRV across the three 

intensity conditions was then calculated producing three change scores. For SCL 

change: 1) no pain to low pain (low pain SCL – no pain SCL), 2) no pain to high pain 

(high pain SCL – no pain SCL) 3) low pain to high pain (high pain SCL – low pain SCL). 

The same calculations were conducted on the HF HRV and the mean duration 

estimates. One-tailed correlations were then conducted to test whether 1) there was 

a positive correlation between changes in SCL change in duration estimate, and 2), to 

test whether there was a negative correlation between changes in HF HRV and 

changes in verbal estimate (i.e., whether decreases in HF HRV were associated with 

increases in duration estimation). Table 6.2 shows this analysis. Examination of Table 

6.2 suggests that there were significant positive correlations between SCL and verbal 
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estimate change for all conditions. That is, increases in SCL with each intensity 

condition were associated with increases in duration estimation. Significant negative 

correlations were observed between HF-HRV and verbal estimate change for the no-

low pain condition and the low-high pain condition.   

 

 
Changes from no pain 

to low pain 
Changes from no pain 

to high pain 
Changes from low pain 

to high pain 

 1 2 3 1 2 3 1 2 3 

1. Verbal 
estimate 

––   ––   ––   

2. Skin 
Conductance 

Level 
.45** ––  .46** ––  .37* ––  

3. High 
Frequency 
Heart Rate 
Variability 

-.35* -.39* ––  -.04 .01 –– -.41** -.14 –– 

Table 6.2. Correlation coefficients between changes of (1) verbal estimate (ms), (2) 

Skin Conductance Level (SCL, µmho) and (3) High Frequency Heart Rate Variability 

(HF HRV, normalized units) from the no pain to the low pain, from the no pain to 

the high pain and from the low pain to the high pain condition in Experiment 3.        

* p < .05; ** p < .01 

 

 

Multiple regression tested whether changes in SCL and HF HRV predicted changes 

in duration estimates. ANS activity explained 18.58% of the variance in the increase 

in duration estimates from the no pain to low pain condition (R2 = .24, F(2, 31) = 4.76, 

p = .016); SCL was a significant predictor (β = .37, p = .04) but HF HRV was not (β = -

.21, p = .24). ANS activity explained 16.35% of the variance in duration estimate 

change from the no pain to the high pain condition (R2 = .21, F(2, 31) = 4.22, p = .024), 

SCL was a significant predictor (β = .46, p = .007) but HF HRV was not (β = -.05, p = 

.78). ANS activity explained 22.02% of the variance in duration estimate change the 

low pain to the high pain condition (R2 = .27, F(2, 31) = 5.66, p = .008), HF HRV was a 
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significant predictor (β = -.37, p = .024) and SCL trended towards significance (β = .32, 

p = .051). 

 

Mediator analysis was conducted to assess whether ANS activity had a direct or 

indirect effect on perceived duration. Mediator analysis tests whether the 

independent variable X has a direct effect on the dependent variable Y, or, whether 

the effect is indirect because it is mediated by one or more other variable M, the 

mediator(s). Mediator analysis calculates the indirect effect of X on Y via M (indexed 

by the coefficient ab), the direct effect of X on Y (c’) and the total effect of X on Y (c), 

which is the sum of the direct and indirect effect. See Figure 6.2.  

 

 

Figure 6.2. Model of the within-participant parallel mediation in path analytic form, 

showing the effect of pain intensity (X) on verbal estimate (Y) mediated by SCL (M1) 

and HF HRV (M2). 

 

 

Mediation analysis was conducted using the Mediation and Moderation for 

Repeated Measures (MEMORE) macros for SPSS developed by Montoya and Hayes 

(2017) using a path-analytic form following the methodology of Judd, Kenny and 

McClelland (2001). MEMORE has been specifically developed to assess mediation in 

within subject repeated measure design where X is defined as a change of condition, 
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as in the present case where X is defined as a change pain intensity. Consequently, 

MEMORE macros can only calculate the mediation effect in a two condition design. 

We therefore conducted three mediator analyses investigating whether SCL (M1) and 

HF HRV (M2) mediated the effect of pain intensity (X) on verbal estimate (Y) when X 

changed (i) from the no pain to the low pain condition and (ii) from the low pain to 

the high condition and (iii) from the no pain to the high pain condition. Each mediator 

analysis first calculated the total effect of X on Y (c). Mediator analysis then calculated 

the effect of X on mediators (a1 for M1 and a2 for M2) and the effect of mediators on 

Y (b1 for M1 and b2 for M2). The indirect effect of X on Y via M1 (a1b1) and via M2 (a2b2) 

and the total indirect effect of X on Y considering both M1 and M2 (ab) were tested 

using a bootstrap estimation approach with 5000 samples. The direct effect of X on Y 

(c’) has been also calculated. All coefficients have been reported in Table 6.3. 

 

 

Table 6.3. Mediation coefficients of Experiment 3. SCL = Skin Conductance Level 

(µmho). HF HRV = High Frequency Heart Rate Variability (normalized units). ǂ p = 

.056; * p < .05; ** p < .001 

 

 

Complete mediation was obtained for the no pain - high pain condition, supporting 

the hypothesis of a direct relationship between SNS reactivity and duration 

distortion. Although complete mediation was not obtained for the no-low pain 

conditions and the low-high pain conditions, the effect of SCL on verbal estimates 

was either significant, or trending towards significant (p = .056).  
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6.1.3 – Discussion 

Experiment 3 tested whether perceived duration was related to changes in ANS 

activity. As expected, SCL was significantly higher in the high pain, compared to the 

low pain, and no pain conditions, indicating increased SNS arousal. SCL did not differ 

between the no and low pain conditions. The effects of stimulus intensity on SCL were 

mirrored in the changes in time perception across the conditions; perceived 

durations were significantly longer in the high pain than low and no pain conditions. 

However, there was no significant difference in perceived duration between the no 

and low pain conditions, contrary to Experiment 1. Moreover, pain increases did not 

have the multiplicative effect on perceived duration as shown in Experiment 1. 

 

The correlational analysis suggested that increases in SCL were associated with 

increases in duration estimation. This was confirmed by the regression and the 

mediation analysis, which showed that changes in SCL significant predicted changes 

in verbal estimate. Together, these findings suggest a direct relationship between 

SNS activity and perceived duration, with increased SNS activity being associated with 

longer perceptions of duration.   

 

HF HRV did not differ significantly between the conditions, indicating no significant 

differences in PSNS activity. Despite this, the correlational analysis suggested that 

increases in HF HRV from the no pain to the low pain condition and from the low pain 

to the high pain condition (indicating increased PSNS activity with greater pain 

intensity) were associated with decreases in duration estimation. Furthermore, the 

regression analysis found change in HF HRV to be a significant predictor of change in 

duration estimation from the low pain to the high pain condition. This contrasts with 

the mediator analysis (which did not indicate any mediation role of HF HRV) and with 

van Hedger et al.'s (2017) finding that changes in HF HRV after a stressful situation 

were not related to changes in the perceived duration of positive or negative images.  
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Together, the results of Experiment 3 suggest that ANS activity influences 

perceived duration. This confirms the predictions of models of timing such as SET and 

which suggest that our internal representation of duration is influenced by our level 

of arousal.  

 

 

6.2 – Experiment 4 

Experiment 4 sought to further understand the circumstances in which ANS 

activity can influence perceived duration. Specifically, the experiment aimed to test 

whether task-irrelevant changes in ANS activity (i.e., from a source other than the to-

be-timed-stimulus) are also associated with changes in perceived duration.  

 

Previous studies investigating the effect of task-irrelevant arousal on the 

perceived duration of neutral stimuli have produced inconsistent effects. For 

example, fear induced by a short film has been found to lengthen the perceived 

duration of neutral stimuli in a subsequent temporal bisection task (Droit-Volet et al., 

2011). However, experiencing negatively valenced tactile stimulation (unpleasant 

rough touch to the arm) does not affect the perceived duration of concurrently 

presented neutral visual stimulus (Ogden et al., 2015). Furthermore, ANS activation 

induced by task-irrelevant stress is associated with changes in the perceived duration 

of negative stimuli but not neutral and positively valenced stimuli (van Hedger et al., 

2017). This latter finding is inconsistent with the SET and SBF models of timing, which 

both predict that increased arousal from the stressor should affect the central timing 

mechanism and therefore influence the perceived duration of all subsequent stimuli, 

not just negative stimuli. Finally, Experiment 2 found that increasing pain intensity 

shortened the perceived duration of concomitantly neutral stimuli. The relationship 

between arousal and perceived duration therefore appears less clear when the to-

be-timed stimulus is not itself the source of arousal and arousal is therefore not task-

relevant.  
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Experiment 4 therefore aimed to test whether task-irrelevant arousal can alter the 

perceived duration of neutral visual stimuli. To do this, participants completed a 

verbal estimation task whilst in states of no pain, low pain and high pain. SNS and 

PSNS activity were indexed through changes in SCL and HF HRV. Thermal stimulation 

was used to induce experimental pain because electro-cutaneous stimulation could 

not be safely delivered for the length of time required for this task (Reilly, 2012). As 

in Experiment 3, SNS activity, indexed by SCL, was expected to increase with 

increasing pain intensity and, as in Experiment 2, verbal estimates were expected to 

decrease with increasing pain intensity. It was therefore expected that changes in SCL 

and HF HRV would not be associated with changes in perceived durations.  

 

 

6.2.1 – Method 

6.2.1.1 – Participants 

Thirty-one participants (26 females and 5 males; mean age = 22.23, SD = 4.74) 

were recruited. Participants were required not to be pregnant, not to have a history 

of epilepsy and not to have chronic pain, heart disease, skin problems (e.g., eczema) 

or any impairment of body sensation. Additionally they were asked not to take any 

analgesic during the 8 hours prior to the experiment. Participants were reimbursed 

£10 in vouchers for taking part. The study was approved by the Liverpool John 

Moores University ethics committee and informed consent was obtained from all 

participants. 

  

 

6.2.1.2 – Apparatus and materials 

Pain stimulation: The Medoc PATHWAY-Advanced Thermal Stimulator was used 

to present the sustained thermal stimulation (see section 4.3.2, page 78 for 

equipment description). 

Physiological apparatus: As in Experiment 3, Biopac MP30B-CE was used to record 

EDA and ECG signals from which SCL and HF HRV were extracted, respectively. 

Technical characteristics were identical to the equipment used in Experiment 3. 
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6.2.1.3 – Procedure 

The procedure was similar to the one used in Experiment 2. Participants were 

initially asked to complete a health screening questionnaire to confirm their 

suitability to participate. Participants then performed two tasks 1) an intensity rating 

task to establish three stimulus intensity levels of the thermode (no pain, low pain 

and high pain) and 2) a verbal estimation task where participants judged the duration 

of a neutral visual stimulus under the three stimulus intensity levels. These tasks were 

administered using E-Prime software (http://www.pstnet.com). 

 

Initial intensity rating task: Participants performed the task with the Medoc 

PATHWAY-Advanced Thermal Stimulator to select thermal intensities equal to 0, 3 

and 6 in the NRS; that is warm but no pain, low pain (Serlin et al., 1995) and high pain 

(Khoshnejad et al., 2016), respectively (see section 4.3.2, page 78 for task 

description). 

 

Verbal estimation task: Participants completed six verbal estimation tasks; two 

whilst experiencing no pain, two whilst experiencing low pain and two whilst 

experiencing high pain. The order of blocks was randomised for each participant. 

Each verbal estimation task contained 24 trials. Within each task there were three 

presentations of each of the standard durations; 242ms, 455ms, 767ms, 1058ms and 

1296ms and nine additional durations which were selected at random from a uniform 

distribution ranging from 100ms to 1500ms. The order of presentation of the trials 

was randomised by E-Prime for each participant. Data from all trials was recorded 

but only data from the standard presentation durations was analysed (as in Ogden et 

al., 2015). Across the whole task, participants therefore received 48 no pain, 48 low 

pain and 48 high pain trials. Trials were divided in this way at the request of the ethics 

panel to avoid lengthy initial exposures to high levels of pain.  

 

http://www.pstnet.com/
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Each verbal estimation task began with a four-minute baseline recording period 

which was followed by the verbal estimation task itself. During the baseline recording 

participants watched a 4-minute clip of the video used in Experiment 3 whilst baseline 

measures of SCL and HF HRV were recorded and no heat stimulation was applied.  

 

Following completion of the baseline recording, heat stimulation was applied to 

the participants’ volar forearm. For each of the three thermal intensities established 

(0, 3 and 6 on an NRS) a protocol was developed for concurrent testing. The 

temperature increased at a rate of 8°C/second to 1°C above each participant’s set 

threshold. This then oscillated between 1°C above and 1°C below the participant’s 

threshold at 8°C/second for 10 oscillations before returning to the baseline 

temperature (32°C) at a rate of 8°C/second. This procedure was repeated on a 

continuous cycle until participants completed each verbal estimation task. This 

protocol was used to reduce habituation to the thermal stimulus. 

 

During the verbal estimation task, participants were instructed to estimate, in 

milliseconds, the presentation duration of a white square (300x300pixels) which 

appeared on a black computer screen. Participants were told that square would be 

presented for between 50ms and 1700ms and were asked to verbalise their 

responses so that they could be recorded by a microphone. After the participant 

pressed spacebar to initiate the start of the block, there was an ISI randomly chosen 

from a 1500-2500ms range, which preceded the stimulus presentation. After 

stimulus presentation, there was an ISI of 1000ms then the response prompt was 

displayed queuing the participant to estimate the stimulus duration. Participants 

then pressed the spacebar for the next trial. Measures of SCL and HF HRV were 

recorded throughout. 

 

 

6.2.1.4 – Physiological data extrapolation 

EDA and ECG were measured during the six experimental blocks and the six 

baselines, for a total of twelve times per participant. For each participant, twelve SCLs 
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and twelve estimates of HF HRV were therefore retrieved using the same 

extrapolation procedure as in Experiment 3. Baseline-corrected SCLs were then 

calculated subtracting baseline SCLs from the respective experimental SCLs, giving a 

total of six baseline-corrected SCLs per participant, two per each intensity level (no 

pain, low pain and high pain). Baseline-corrected SCLs of the same intensity level 

were then averaged to obtain a single SCL value per pain intensity that was used for 

further analysis. An identical procedure was used to obtain three estimates of 

baseline-corrected HF HRV, one per each intensity level. 

 

 

6.2.2 – Results 

Out of thirty-one participants tested, one chose temperatures too low to be 

considered painful (37.5oC as low pain and 39.5oC as high pain). Therefore, we report 

the results based on data from the remaining 30 participants (Yarnitsky et al., 1995). 

Greenhouse-Geisserr correction was applied to ANOVAs when the Sphericity 

assumption was violates and post-hoc were Bonferroni corrected. 

 

Pain intensity Temperature SCL HF HRV Verbal estimates 

No pain 35.70 (1.29) 0.48 (1.04) -1.04 (13.18) 608.89 (182.34) 

Low pain 40.72 (1.12) 0.80 (0.98) -0.54 (17.06) 605.72 (160.59) 

High pain 43.60 (1.28) 1.48 (1.26) -2.08 (15.17) 616.73 (174.39) 

Table 6.4. Means (and standard deviations) of temperature (°C), baseline-corrected 

Skin Conductance Levels (SCL, µmho), baseline-corrected High Frequency Heart 

Rate Variability (HF HRV, normalized units) and mean verbal estimate of all 

durations (ms) in the three intensity level conditions (no pain, low pain and high 

pain) in Experiment 4. 

 

 

Table 6.4 shows means and standard deviations of temperatures (oC) for the three 

stimulus intensities individuated during the initial intensity rating task and used 

during the verbal estimation task. A repeated measures ANOVA indicated that the 
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temperatures in each condition were significantly different F(1.42, 41.15) = 594.69, p 

< .001, ηp
2 = .95.  

 

Physiological response 

Table 6.4 shows SCL and HF HRV of participants for each stimulus intensity. 

Examination of Table 6.4 suggests higher SCL in the high pain than in the low pain and 

no pain conditions. Meanwhile, HF HRV does not appear to decrease or increase 

consistently with pain intensity. A repeated measures ANOVA showed a significant 

effect of stimulus intensity (no pain, low pain and high pain) on SCL F(1.53, 44.48) = 

12.41, p < .001, ηp
2 = .30. Post-hoc tests showed that SCL was significantly higher in 

the high pain condition than in the low pain (p = .013) and no pain condition (p = 

.001). SCL was not significantly different in the low pain and no pain conditions (p = 

.09). A repeated measures ANOVA showed no significant effect of stimulus intensity 

on HF HRV F(2, 58) = 0.11, p = .89, ηp
2 = .004. 

 

Perceived duration 

Figure 6.3 shows mean verbal estimates in each pain intensity condition. 

Examination of Figure 6.3 suggests that similar duration estimates were given for the 

no pain, low pain and high pain conditions. A repeated measures ANOVA with 

stimulus intensity (no pain, low pain and high pain) and stimulus duration (242ms, 

455ms, 767ms, 1058ms, 1296ms) as factors showed a significant main effect of 

stimulus duration on duration estimates F(1.77, 51.26) = 246.14, p < .001, ηp
2 = .90. 

There was no significant effect of pain intensity F(2, 72) = 0.10, p = .91, ηp
2 = .003 and 

no significant interaction between stimulus duration and pain intensity F(4.49, 

130.09) = 0.83, p = .52, ηp
2 = .03. 
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Figure 6.3. Means (and standard errors) of the verbal estimations (ms) plotted against 

the standard durations and divided by the intensity level conditions (no pain, low 

pain and high pain) in Experiment 4. 

 

 

ANS activity and perceived duration 

As in Experiment 3, to test the relationship between ANS activity and time 

perception, the change in mean duration estimate, SCL and HF HRV across the three 

conditions was calculated producing three change scores. One-tailed correlations 

were then conducted to investigate whether there was a positive correlation 

between changes in SCL and changes in verbal estimate and to test whether there 

was negative correlation between changes in HF HRV and changes in verbal estimate 

(see Table 6.5). Examination of Table 6.5 shows that there were no significant 

correlations between ANS reactivity and changes in verbal estimate.  
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Changes from no pain 
to low pain 

Changes from no pain 
to high pain 

Changes from low pain 
to high pain 

1 2 3 1 2 3 1 2 3 

1. Verbal 
estimate 

––   ––   ––   

2. Skin 
Conductance 

Level 
-.09 ––  -.28 ––  -.10 ––  

3. High 
Frequency 
Heart Rate 
Variability 

-.02 .24 ––  -.16 -.16 –– -.02 -.10 –– 

Table 6.5. Correlation coefficients between changes of (1) verbal estimate (ms), (2) 

Skin Conductance Level (SCL, µmho) and (3) High Frequency Heart Rate Variability 

(HF HRV, normalized units) from the no pain to the low pain, from the no pain to 

the high pain and from the low pain to the high pain condition in Experiment 4. 

 

 

Multiple regressions tested whether changes in SCL and HF HRV between each 

intensity condition predicted changes in perceived duration. The ANS activity was not 

able to explain any of the variance in changes from the no pain to the low pain 

condition (R2 = .01, F(2, 27) = 0.11, p = .89); from the no pain to the high pain condition 

(R2 = .12, F(2, 27) = 1.80, p = .18) and from the low pain to the high pain condition (R2 

= .01, F(2, 27) = 0.15, p = .86). 

 

To confirm that the absence of an effect of pain on perceived duration was not 

due to habituation to pain across the task, data from the first block and the second 

block of each condition was compared and analyzed separately. Paired samples t-

tests show that verbal estimates and PSNS activity did not differ from block 1 to block 

2 (all ps > .05). In contrast, paired samples t-tests show that SNS activity was 

significantly higher during block 1 than block 2. SCL was significantly higher in the no 

pain (0.82 µmho), low pain (1.23 µmho) and high pain (1.99 µmho) tasks of block 1 

than block 2 (no pain: 0.23 µmho, p = .025; low pain: 0.38 µmho, p = .001; high pain: 

0.83 µmho, p < .001). Despite this, repeated measures ANOVAs indicated that 
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stimulus intensity (no pain, low pain and high pain) had a significant effect on SCL in 

both blocks 1 and 2, F(1.59, 47.58) = 6.46, p = .006, ηp
2 = .18 and F(1.49, 44.77) = 6.71, 

p = .006, ηp
2 = .18, respectively. Furthermore, paired samples t-tests show that 

changes in SCL between tasks (from the no pain to the low pain, from the no pain to 

the high pain or from the low pain to the high pain) were not significantly different in 

blocks 1 and 2 (all ps > .05). Moreover, even in block 1, where SCL was significantly 

greater than in block 2 there was no significant correlation between changes in SCL 

and verbal estimates (all ps > .05).  

 

As in Experiment 3, path analytic mediator analysis was conducted to test whether 

physiological arousal (indexed by SCL and HF HRV) mediated the effect of pain 

intensity on verbal estimate. The findings of the mediator analysis are shown in Table 

6.6. Pain intensity changes affected SCL in all three conditions, with increases in pain 

intensity increases being associated with increases in SCL. However, neither pain 

intensity nor physiological arousal affected verbal estimates. These results suggest 

that when the to-be-timed stimulus is neutrally valenced, and changes in ANS activity 

are task-irrelevant, the ANS reactivity does not influence perceived duration.  

 

 

Table 6.6. Mediation coefficients of Experiment 4. SCL = Skin Conductance Level 

(µmho). HF HRV = High Frequency Heart Rate Variability (normalized units). * p < 

.05; ** p < .01 
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6.2.3 – Discussion 

Experiment 4 tested whether changes in ANS activity from a task-irrelevant source 

can influence the perceived duration of a neutral stimulus. As expected, SCLs were 

significantly higher in the high pain compared to the low pain and no pain conditions, 

indicating increased SNS activity. SCL did not differ between the no and low pain 

conditions. These effects were not mirrored in the changes in duration perception. 

However, whilst in Experiment 2 verbal estimates were shorter in the high pain 

intensity, participants of Experiment 4 gave similar estimates across the three 

conditions (no pain, low pain, high pain).  

 

The correlation and regression analyses did not show any association between 

ANS activity and verbal estimate. The absence of an effect of task-irrelevant arousal 

on perceived duration is compatible with Ogden et al. (2015) who observed that 

unpleasant tactile stimulation did not affect the perceived duration of a neutral 

stimulus. The absence of a relationship between ANS activity and perceived duration 

replicates van Hedger et al. (2017). Together these findings suggest that when the to-

be-timed stimulus is neutrally valenced and changes in ANS activity are task-

irrelevant, the ANS change does not influence perceived duration. 

 

 

6.3 – Discussion Chapter 6 

Chapter 6 tested the hypothesis that the perceived duration of an event is 

influenced by physiological arousal, defined as ANS activity. This was tested in two 

experiments. In Experiment 3, the to-be-timed stimulus itself was arousing and thus 

arousal was task-relevant. In Experiment 4, the to-be-timed stimulus was neutral and 

arousal originated from a task-irrelevant secondary source. 

 

In both experiments, increased stimulus intensity was associated with greater SCL, 

indicating greater SNS activity. Stimulus intensity did not affect HF HRV suggesting no 

influence on PSNS activity. Despite similar relationships between stimulus intensity 

and ANS activity in both experiments, stimulus intensity had different effects on 
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perceived duration in the two tasks. In Experiment 3, when the to-be-timed stimulus 

was itself arousing, high intensity stimuli were perceived as lasting for longer than 

neutral stimuli, confirming Experiment 1 and previous findings (Fayolle et al., 2015; 

Ogden, Moore, et al., 2014). However, in Experiment 4, when the to-be-timed 

stimulus was neutral and arousal originated from a task-irrelevant source, there was 

no effect of arousal on duration estimation. These contrasting findings support 

previous suggestions that the relationship between arousal and perceived duration 

is more complex than previously predicted (Burle & Casini, 2001; Mella et al., 2011). 

 

The lengthening effect of electro-cutaneous stimulation on perceived duration 

observed in Experiment 3 is compatible with previous suggestions that “arousal” 

increases the perceived duration of events (Gil & Droit-Volet, 2012). By examining 

both SNS and PSNS, Experiment 3 clarifies when and how the different branches of 

the ANS affect timing. SNS activation is positively related to perceived duration for 

lower and higher levels of stimulus intensity. This confirms van Hedger et al.'s (2017) 

observation that the perceived duration of sub-second presentations of negatively 

valenced stimuli was positively related to SNS activation. Whilst a number of previous 

studies have confirmed the arousing properties of their stimuli by measuring SNS 

response (Angrilli et al., 1997; Fayolle et al., 2015) few have established PSNS stimulus 

responses. Those which have directly tested the relationship between PSNS activity 

and perceived duration have concluded that the two were not related (van Hedger 

et al., 2017). Here, however, PSNS activation was found to be related to perceived 

duration, but only when the SNS activity was moving from a moderate to a high level 

(i.e., from the low pain to the high pain condition). In these circumstances, increases 

in HF HRV (indicating increased PSNS activity) were associated with shorter duration 

estimates. This suggests that perceived duration can be influenced by PSNS 

activation, but only when SNS activation is already high. Differing findings in relation 

to HF HRV in this study and others perhaps reflects differences in the levels of ANS 

reactivity produced by the stimulus, with van Hedger et al. (2017) study not using 

sufficiently arousing stimuli to observe an effect of PSNS on perceived duration. This 

highlights the importance of using sufficiently arousing stimuli in these types of 
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studies. However, it is acknowledged that in the current study, PSNS reactivity was 

not affected by the pain manipulation itself. It is therefore possible that 

manipulations specifically designed to increase PSNS activity may produce changes 

which are more clearly related to temporal distortions. Future research should 

explore this.   

 

Whilst the results of Experiment 3 suggest a clear and relatively simple relationship 

between ANS activity and perceived duration, the findings of Experiment 4 suggest 

that this relationship is unique to certain circumstances. Experiment 4 required 

participants to judge the duration of a neutral stimulus whilst experiencing arousing 

stimulation (heat pain) from a task-irrelevant secondary source. Although SCL was 

significantly higher in the high pain condition than in the other conditions, there was 

no effect of pain on duration estimation and changes in ANS activity were not related 

to duration estimation. These results suggest that there is no relationship between 

time perception and physiological arousal when the arousal is not task-relevant. 

 

Models of timing such as SET and SBF do not specify that different sources of 

arousal will have different effects on perceived duration. Instead, they imply that a 

change in arousal resulting from “any” source will affect perceived duration. It is 

therefore unclear why, in Experiment 4, task-irrelevant increases in arousal did not 

affect perceived duration. One possible explanation is that the ANS activation evoked 

in Experiment 4 was not sufficient to affect perceived duration. A comparison of SCL 

and HF HRV recorded in Experiments 3 and 41 suggests that mean SCL was higher and 

                                                      

1Independent samples t-tests show that SCL was significantly higher in Experiment 3 than in 

Experiment 4 for the no pain (p = .024), low pain (p = .043) and high pain (p = .022) conditions. 

HF HRV was significantly higher in Experiment 4 than in Experiment 3 for the no pain (p 

< .001), low pain (p = .005) and high pain (p = .031) conditions. However, between Experiment 

3 and Experiment 4 the changes in SCL (or HF HRV) from one condition to another were not 

significantly different (all ps > .05). Changes in SCL from the no pain to the low pain condition 

(p = .85), from the no pain to the high pain condition (p = .82) and from the low pain to the 

high pain condition (p = .66) were not significantly different in Experiment 3 and 4. Changes 
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HF HRV lower in Experiment 3 than Experiment 4 for all conditions. Thus, SNS 

activation was greater and PSNS was lower in Experiment 3 than in Experiment 4. 

However, comparison of the change scores for SNS and PSNS activation (i.e., the 

change in SCL from one condition to another) do not differ between Experiments 3 

and 4 suggesting that the condition-condition changes in arousal were similar in both 

experiments. Moreover, a lower physiological activation due to thermal pain would 

not explain why the high pain intensity shortened verbal estimates in Experiment 2. 

 

An alternative explanation is that the SNS activation evoked by thermal stimulus 

did increase perceived duration, however, this effect was “wiped-out” by the 

distracting effect of pain. Pain captures attention, reducing the attentional resources 

available for concurrent tasks (Moore et al., 2012). Reduced attention to time can 

result in shorter perceptions of duration (Zakay & Block, 1995), as is observed in dual 

task studies (Brown, 1997). In Experiment 4, dividing attention between pain and the 

timing task may therefore have negated any effect of arousal induced increases in 

pacemaker/oscillation rate. Mella et al. (2011) provide a similar argument to account 

for the absence of temporal distortions when estimating the duration of negatively 

valenced sounds. Attention to time and pain may also have contributed to the 

lengthening effects observed in Experiment 3. Emotional stimuli, particularly 

negatively valenced stimuli, affect attention through both endogenous top-down 

mechanisms (i.e., high cognitive function driven processing) and exogenous bottom-

up mechanisms (i.e., automatic, stimulus driven processing; Vuilleumier, 2005). This 

results in faster identification of negatively valenced stimuli and improved 

performance on tasks requiring their processing (see Vuilleumier, 2005 for a review). 

In Experiment 3, both endogenous and exogenous orientation was aligned to the 

same stimulus (i.e., the electro-cutaneous stimulation), perhaps leading to an 

                                                      

in HF HRV from the no pain to the low pain condition (p = .90), from the no pain to the high 

pain condition (p = .24) and from the low pain to the high pain condition (p = .32) were not 

significantly different in Experiment 3 and 4. 
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attentional advantage during temporal processing which may have contributed to 

longer perceptions of duration.  

 

Although reduced attention to time can perhaps account for the null effects 

observed in Experiment 4, this explanation should be taken with caution. One effect 

of the attentional capture of pain is that it increases errors on ongoing tasks (Moore 

et al., 2013). Similarly, one effect of divided attention during timing tasks is increased 

error or reduced accuracy (e.g., Brown, 1997; Brown & Boltz, 2002). If pain reduced 

the attentional resources devoted to the timing task we would expect performance 

to be different in the no pain condition (in which attention could be fully dedicated 

to the processing of duration), and the high pain condition (in which attention to time 

was reduced). However, in the current study no differences were observed 

suggesting that an attentional explanation for the differing findings from Experiments 

3 and 4 may be too simplistic.  

 

Alternatively, it is possible that previous suggestions that increased arousal 

lengthens perceived duration have been too general, and that the actual relationship 

between arousal and perceived duration is limited to situations in which arousal 

results from a to-be-timed stimulus itself. Although it remains unclear precisely how 

time is processed in the brain, one possibility is that there are a series of sensory 

specific timers associated with each sense (van Wassenhove, Buonomano, Shimojo, 

& Shams, 2008), the output of which contributes to the central timing system. This 

suggestion is supported by Coull et al. (2015) who observed that activation in the 

right inferior occipital cortex increased parametrically with overestimations of 

duration. Coull et al. (2015) suggest that this reflects sensory specific low-level 

passive coding of duration. Active temporal processing instead occurs in the 

supplementary motor area. If time is initially processed in sensory specific timing 

units then greater neural responses to emotional stimuli in those sensory specific 

regions in the brain may contribute to the temporal distortions observed. For 

example, emotional faces and sounds produce greater neural responses than neutral 

ones in the fusiform face area (Vuilleumier et al., 2001) and auditory cortex (Mitchell, 
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Elliott, Barry, Cruttenden, & Woodruff, 2003) respectively. This increased neural 

responding may contribute to the subjective lengthening of perceived duration for 

these types of stimuli. In Experiment 3, increased neural responding in the motor 

cortices in response to the electro-cutaneous stimulation (McKay, Ridding, & Miles, 

2003) may have increased temporal processing in that area, leading to a lengthening 

of duration. In Experiment 4 however, because the to-be-timed visual stimulus was 

neutrally valenced, there would not have been increased neural activity in any 

sensory specific timing unit in the visual cortex and less opportunity for duration 

distortion. This theory therefore suggests that arousal originating from a different 

sense to the to-be-timed stimulus may have less capacity to modulate time 

processing in other modalities. This suggestion is supported by the observation that 

emotional distortions to time are often observed in studies where duration and 

emotion are presented in the same modality (Droit-Volet et al., 2011) but absent or 

inconsistent in studies in which they are presented in different modalities (Ogden et 

al., 2015; van Hedger et al., 2017).  

 

Limited evidence for temporal distortions in cross-modal tasks may be, in part, 

because there is limited contrast between the arousing and the neutral stimuli. 

Matthews, Stewart and Wearden (2011) demonstrated that the contrast between 

the intensity of the stimulus and the intensity of the background is determinant of 

the stimulus’ perceived duration, rather than a stimulus’ absolute intensity. In 

Experiment 3, the contrast between the stimulus and the background changed from 

trial to trial. In Experiment 4, however the arousing stimulus was presented as a 

constant background the task. Therefore the absence of trial-to-trial contrast change 

may have contributed to the absence of a temporal distortion. However, this 

explanation would not address findings of Experiment 2, where the high pain 

intensity shortened verbal estimates. 

 

Limited effects of arousal on time perception may also result from the function of 

arousal induced distortions to time. Emotional distortions to duration are thought to 

have an evolutionary origin (Mella et al., 2011) wherein the subjective lengthening of 
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the duration of arousing events provides some perceptual and cognitive advantage 

for survival (Craig, 2009b). However, if lengthening of subjective duration is to be 

adaptive, it must also be limited to circumstances of specific threat. It would not be 

adaptive for perceived duration to speed up and slow down due to task-irrelevant or 

time irrelevant changes in ANS activation. Craig (2009a) explains this in terms of 

salience; stimuli which are highly salient on a moment to moment basis increase right 

anterior insular cortex activity, resulting in a lengthening of perceived duration. In 

Experiment 3, moment-moment salience was high because the electro-cutaneous 

stimulation, which has a high threat value, was being anticipated and processed. The 

salience of the stimulation may have increased throughout the task due to 

sensitization resulting in heightened neural responding, heightened pain experience 

and greater stimulus salience (Davis & Sheard, 1974). This, coupled with the 

endogenous goal of the task being to process the pain stimulus itself may have 

resulted in a subjective lengthening of duration. In Experiment 4 however moment-

moment salience of the thermal pain was perhaps lower. This is because, although 

pain stimulation was present throughout the task resulting in nociceptive activation, 

cognitive evaluation of the stimulus likely determined that the pain is unavoidable 

and not task-relevant (i.e., the task goal was to judge the visual stimulus not the 

thermal pain). In these circumstances antinociceptive mechanisms may have been 

endogenously activated leading to habituation and reduced pain experience (see 

Bingel, Schoell, Herken, Büchel, & May, 2007 for discussion). The combined effect of 

antinocicpetive mechanisms reducing pain salience and pain processing being task-

irrelevant may therefore have reduced the likelihood of a lengthening of subjective 

duration.  

 

This explanation is also biologically plausible. Electro-cutaneous stimulation 

produces increased activation in the right anterior insular cortex (Freund, Stuber, 

Wunderlich, & Schmitz, 2007) which Craig (2009a) associates with increases in 

perceived duration. Furthermore, right AIC activation in response to pain is positively 

correlated to the perceived intensity of the stimulus (Carlsson et al., 2006; Freund et 

al., 2007; Frot & Mauguière, 2003). Therefore, in Experiment 3 greater stimulus 
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estimates may result from increased AIC activation, as suggested by Craig (2009a). 

Conversely, antinociception and habituation to pain are associated with reductions 

in AIC activation (relative to when pain is first experienced) (Bingel et al., 2007). 

Therefore, in Experiment 4 reducing AIC activity may have prevented temporal 

distortions from manifesting through the combined processing of pain and time in 

the AIC. Further investigation of the role of the AIC in the timing of short durations is 

therefore required.  

 

The experiments presented in this Chapter confirm that there is a relationship 

between physiological arousal and perceived duration. However, this relationship 

appears to be more complex than previously suggested. ANS activity is only predictive 

of perceived duration when the source of ANS activation is task-relevant. When ANS 

activity results from a secondary source, its capacity to influence perceived duration 

appears limited. Furthermore, when ANS activation and perceived duration are 

related, ANS activation only accounts for a small proportion of the variance in 

perceived duration, suggesting that other factors are contributing to temporal 

distortions observed. Although a number of theories are offered relating to attention, 

stimulus modality and stimulus relevance, further behavioural and neuroimaging 

work is required to understand the precise circumstances in which ANS activation can 

alter the perceived duration of events. 
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Chapter 7 

The effect of pain on memory for duration 

 

Experiments 1 and 3 showed that pain can distort the perception of time. When 

people estimate the duration of a painful stimulus, duration estimates increase with 

increasing pain intensity. These findings replicate those of other studies using 

different experimental paradigms (Fayolle et al., 2015; Rey et al., 2017) and different 

pain induction techniques (Ogden, Moore, et al., 2014; Rey et al., 2017). A common 

factor of all of these studies is that they all required participants to make temporal 

judgments immediately after experiencing the stimuli. To date, no studies have 

investigated how pain affects how duration is remembered over a period of delay.  

 

Understanding how the duration of pain is remembered is important because how 

patients remember the duration of pain can have clinical implications. Clinical 

assessments of pain typically require participants to estimate how long pain lasts for 

(Somov, 2000) and it is therefore possible that inaccuracies in recall may affect 

treatment. Furthermore, how pain is remembered from previous clinical 

interventions, such as dental work, can increase pain anxiety and reduce subsequent 

clinical compliance (Boivin et al., 2008). 

 

Pain may be expected to impair memory for duration because it affects the general 

cognitive processes upon which temporal processing is reliant (see section 3.1.4, 

page 60). Accurate temporal processing requires sufficient attention, working 

memory and executive function (see Ogden, Wearden, & Montgomery, 2014 for 

discussion). When these resources are exceeded or impaired timing is disrupted, 

becoming more variable and less accurate (Brown, 1997; Ogden, Salominaite, Jones, 

Fisk, & Montgomery, 2011), possibly because 1) memory representations of duration 

are themselves more variable, or because 2) they are more difficult to retrieve from 

long-term memory when working memory and executive resources are limited 

(Ogden, Wearden, et al., 2014). It is well established that pain impairs the 

maintenance of items in memory (Dick & Rashiq, 2007) and recognition accuracy 
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(Forkmann, Schmidt, Schultz, Sommer, & Bingel, 2016). Leavitt and Katz (2006) 

suggested that pain affects memory processes possibly because pain functions as a 

distractor leading to reduced attentive resources dedicated to the experimental task. 

It is therefore possible that experiencing pain may impair the attentional, memory 

and executive resources required to encode and maintain duration representations 

in memory, leading to more fragile representations.  

 

Conversely, however, it is also possible that pain may enhance the accuracy of 

memory for duration. In general cognition, memories for emotional events are often 

superior to those for neutral events (e.g., flashbulb memories; Reisberg & Heuer, 

2004). Similar effects have also been observed when examining memory for the 

duration of emotional events; for example, Cocenas-Silva et al. (2012) found that, 

whilst perceived duration of neutral stimuli was longer after 24h than after 

immediate presentation, perceived duration of emotional stimuli did not increase 

after 24h. Furthermore, estimate variability after 24 hours was higher for neutral 

stimuli than for emotional stimuli. Memory for time is therefore less vulnerable to 

distortion and decay when emotional than when neutral.  

  

Emotion may enhance memory for time because emotions promote the release 

of adrenal stress hormones that facilitate memory consolidation by the hippocampus 

(LaBar & Cabeza, 2006; McGaugh, 2000). This manifests with faster recall of events 

associated with emotional states and of details related to those events (e.g., location; 

D’Argembeau & Van der Linden, 2004; Dunbar & Lishman, 1984). Particularly, 

arousing emotions have been shown to enhance long-term memory for events 

(Sharot & Phelps, 2004). Given that pain is a high arousing experience and it promotes 

the release of adrenal stress hormones (see section 3.1.2, page 56 and Bear et al., 

2007), it is possible that pain may enhance memory for durations experienced during 

states of pain. 

 

Experiments 5 and 6 therefore aimed to establish the effect of pain on memory 

for duration. Using a temporal generalisation paradigm, the effect of pain and delay 
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to recall were tested. The temporal generalisation task was chosen because it 

requires a higher memory load compared to other temporal tasks, such as verbal 

estimation or temporal bisection task (Ogden et al., 2018) and therefore was perhaps 

more likely to reveal any effects of pain on memory for duration. 

 

In Experiment 5, participants experienced low pain (3 in the NRS), meanwhile 

participants experienced high pain (6 in the NRS) in Experiment 6. Participants first 

selected the thermal intensity that considered painful and then completed four 

temporal generalisation tasks. Each temporal generalisation task was split into two 

phases, a learning phase and a testing phase. In the learning phase, the participants’ 

task was to memorize the duration of a tone whilst they experienced either 1) painful 

stimulation on their arm or 2) neutral stimulation on their arm. In the testing phase, 

the participants’ task was to indicate whether a series of comparison durations were 

the same duration as that presented in the learning stage phase. The testing phase 

either occurred immediately after the learning phase or following a 15-minute delay. 

No additional (i.e., painful or neutral) stimulation was experienced during the testing 

phase. All participants therefore completed four versions of this task (i) no-pain 

immediate testing (ii) pain immediate testing, (iii) no-pain delayed testing and (iv) 

pain delayed testing. 

 

Firstly, it was expected that the 15-minute delay would decrease temporal 

accuracy and temporal discrimination in the no-pain condition, confirming previous 

studies (Wearden & Ferrara, 1993). Secondly, two potential outcomes were 

predicted based on the previous arguments for the potential impairing and 

enhancing effects of pain on memory for duration. The first possibility is that learning 

a duration in a state of pain will impaired memory processing, leading to poorer 

recognition during immediate and delayed testing. The second possibility is that 

learning a duration in a state of pain will enhance memory processes, leading to 

enhanced recall during immediate and delayed testing. 
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7.1 – Experiment 5 

7.1.1 – Method 

7.1.1.1 – Participants 

Twenty-eight participants (18 females and 10 males; mean age = 25.79, SD = 6.05) 

were recruited. Participants were required not to be pregnant and not to have 

chronic pain, skin problems (e.g., eczema) or any impairment of body sensation. 

Additionally, they were asked not to take any analgesic during the 8 hours prior to 

the experiment. Participants were reimbursed £5 in vouchers for taking part. The 

study was approved by the Liverpool John Moores University ethics committee and 

informed consent was obtained from all participants.  

 

 

7.1.1.2 – Procedure 

Participants were initially asked to complete a health screening questionnaire to 

confirm their suitability to participate. Participants then performed an intensity 

rating task with the Medoc PATHWAY-Advanced Thermal Stimulator to establish the 

thermode intensities to be used during the timing task (see section 4.3.2, page 78 for 

equipment and task description). Participants were asked to select thermal 

intensities equal to 0 and 3 in the NRS; that is, 0 a warm but non painful intensity and 

3 a low pain intensity. 

 

Participants then completed the four temporal generalisation tasks: (i) no-pain 

immediate testing (ii) pain immediate testing, (iii) no-pain delayed testing and (iv) 

pain delayed testing. The order of these tasks was counterbalanced across all 

participants. The basic task structure was as follows: 

 

Learning phase: Participants were told that they would be presented with a 

standard tone three times and that their task was to remember how long the tone 

lasted for. The standard was presented as a 500Hz tone and its duration was 

randomly selected from a normal distribution from 400ms to 800ms. This ensured 

that participants were presented with different standard durations across the four 
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tasks, so to avoid learning effect. Each presentation was preceded by an inter-trial 

interval randomly selected from a 2500-3000ms range.  

 

Testing Phase: Participants were informed that they would be presented with a 

series of comparison tones and that their task was to decide whether each tone was 

the same length as the standard tone that they previously learnt pressing ‘Y’ for yes 

or ‘N’ for no. At the start of each trial participants were instructed to press the 

spacebar. A comparison stimulus was then presented in the form of a 500Hz tone and 

participants indicated whether the comparison tone had the same duration as the 

standard. Between trials, a delay randomly selected from a 1000-1500ms range was 

then interposed. On each trial, the duration of the comparison was determined by 

multiplying the standard by 0.625, 0.750, 0.875, 1 (presented 3 times), 1.125, 1.250 

or 1.375. A total of six blocks were presented in each task giving a total of 54 stimuli 

for task. No performance feedback was given to participants. 

 

In the pain conditions, participants felt the thermode being at the low pain 

intensity during the learning phase. The thermode started with a baseline 

temperature of 32°C. At the beginning of the learning phase, the thermode increased 

its temperature at a ramp rate of 8°C/second until reaching the low pain intensity 

selected by participant during the intensity rating scale. The standard tone was 

presented for the first time after 3 seconds from the initial temperature increase of 

the thermode, allowing the thermode to reach the target temperature. After 15 

seconds from the initial temperature increase of the thermode, the temperature 

decreased at a ramp rate of 4°C/second until reaching again 32°C. No thermal 

stimulation was presented during the testing phase. 

 

In the no-pain conditions, the procedure was the same used in the pain conditions 

with the exception of the target temperature; here, the thermode increased its 

temperature until reaching the no-pain intensity selected by participant in the 

intensity rating task. No thermal stimulation was presented during the testing phase. 

 



149 | P a g e  

 

In the delayed testing conditions, a 15-minute delay was interposed between the 

learning and testing phases. During this 15-minute delay, participants listed to either 

“The Wizard of OZ” or “The Jungle Book”. The audiobook assignation to the no-pain 

delayed testing condition or to the pain delayed testing condition was 

counterbalanced across participants. This task was chosen rather than a cognitive 

task to avoid interference on the working memory or executive functions (Mirams, 

Poliakoff, Brown, & Lloyd, 2013).  

 

 

7.1.1.3 – Data analysis 

From the temporal generalisation task, we extrapolated the temporal gradients as 

the proportion of YES responses (i.e., identification of comparisons as the standard) 

given by each participant in each of the conditions. In addition, a measure of accuracy 

and a measure of variability was calculated for each participant in each condition as 

in Ogden et al. (2018). 

 

Accuracy: Accuracy was calculated as the sum of hits and correct rejections divided 

by 2. Hits corresponded to proportion of YES responses when the comparison’s 

duration was equal to the standard (i.e., 1). Correct rejections corresponded to 

proportion of NO responses when the comparison’s duration was not equal to the 

standard (i.e., 0.625, 0.750, 0.875, 1.125, 1.250 and 1.375).  

 

Variability: The mid-three measure used in Ogden et al. (2018) and Wearden et al. 

(1997) was calculated. Mid-three is an index of response dispersion and was 

calculated as the sum of proportion of YES responses in the three middle comparisons 

(i.e., 0.875, 1 and 1.125) divided by the sum of YES responses of all comparisons. 

Higher mid-three scores indicated that gradients were more peaked around the 

standard and that participants had greater temporal discrimination.  
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7.1.2 – Results 

On average, participants selected 37.63oC (SD = 1.91) as no-pain intensity and 

42.77oC (SD = 1.40) as low pain intensity during the initial intensity rating task. Paired-

sample t-test indicated that participants selected a significantly higher temperature 

for the pain conditions compared to the no pain conditions (p < .001). 

 

Figure 7.1 shows temporal generalisation gradients depicting the mean proportion 

of YES responses in the four conditions plotted against comparison/standard ratio. A 

repeated measures ANOVA with pain intensity (no-pain vs pain), delay (immediate vs 

delay) and comparison/standard ratio (0.625, 0.750, 0.875, 1, 1.125, 1.250 or 1.375) 

as within-subject factors was conducted. There was a significant main effect of ratio 

(F(2.02, 54.46) = 32.77, p < .001, ηp
2 = .55) on YES responses. There was no significant 

main effect of pain intensity (F(1, 27) = 0.02, p = .90, ηp
2 = .001) or delay (F(1, 27) = 

0.002, p = .96, ηp
2 < .001) on YES responses. There were also no significant interaction 

effects between delay and ratio (F(3.03, 81.68) = 2.21, p = .09, ηp
2 = .08), between 

pain intensity and delay (F(1, 27) = 0.37, p = .55, ηp
2 = .014) or between pain intensity, 

delay and ratio (F(2.31, 62.35) = 0.70, p = .52, ηp
2 = .03) on YES responses. There was 

however, a significant interaction effect between pain intensity and ratio (F(2.43, 

65.57) = 3.05, p = .045, ηp
2 = .10).  
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Figure 7.1. Proportion of YES responses plotted against comparison/standard ratio in 

Experiment 5. YES responses are divided between immediate (solid line) and delay 

(dotted line), and between no-pain (left panel) and pain (right panel). 

 

To further investigate the interaction between pain intensity and ratio, the 

proportion of YES responses in the pain conditions was calculated averaging the YES 

responses in pain immediate and pain delayed testing conditions for each 

comparisons’ duration. Similarly, the proportion of YES responses in the no-pain 

conditions was calculated averaging the YES responses in no-pain immediate and no-

pain delayed testing conditions (see Table 7.1). Visual inspection of Table 7.1 suggests 

that the proportion of YES responses for the shortest comparison (i.e., 0.625, 0.750 

and 0.875) was higher in the no-pain conditions than in the pain conditions; 

meanwhile the proportion of YES responses for the longest comparison (i.e., 1.125, 

1.250 and 1.375) was lower in the no-pain conditions than in the pain conditions. This 

would suggest that pain related standards were perceived for longer than no-pain 

related standards. A paired-sample t-test between the no-pain and pain conditions 

was then conducted for each ratio (0.625, 0.750, 0.875, 1, 1.125, 1.250 and 1.375). 

To adjust for Type 1 error due to multiple comparisons, the number of comparisons 

(7) has been taken into account: p-value should be < .0071 (= .05/7) to confirm 
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significance. Paired-sample t-tests showed no significant difference between YES 

responses in the pain and no-pain conditions for the 0.625 (p = .18), 0.750 (p = .29), 

0.875 (p = .019), 1 (p = .48), 1.125 (p = .31) and 1.250 (p = .17) ratio. Paired-sample t-

test showed YES responses for the 1.375 ratio significantly higher in the pain 

conditions than in the no-pain conditions (p = .004). This suggests that standard 

stimuli in the two pain conditions were perceived as longer than the standard stimuli 

in the two no-pain conditions. 

 

 Comparison/standard ratio 

 0.625 0.750 0.875 1 1.125 1.250 1.375 

No-pain 
0.20 

(0.23) 
0.39 

(0.22) 
0.65 

(0.22) 
0.67 

(0.19) 
0.57 

(0.26) 
0.39 

(0.25) 
0.19 

(0.20) 

Pain 
0.13 

(0.20) 
0.32 

(0.26) 
0.21 

(0.22) 
0.69 

(0.19) 
0.62 

(0.22) 
0.45 

(0.26) 
0.31 

(0.24) 

Table 7.1. Proportion of YES responses (and standard deviation) averaged across the 

two No-pain conditions (no-pain immediate and no-pain delay) and across the two 

Pain conditions (pain immediate and pain delay). 

 

 

Temporal accuracy 

Table 7.2 shows temporal accuracy in the four conditions. Examination of Table 

7.2 suggests that accuracy was similar in all conditions. A repeated measures ANOVA 

with pain intensity (no-pain vs pain) and delay (immediate vs delay) as within-subject 

factors confirmed these suggestions. There was no significant effect of pain intensity 

(F(1, 27) = .57, p = .46, ηp
2 = .02) nor delay (F(1, 27) = 1.75, p = .20, ηp

2 = .06) on 

accuracy. There was also no significant interaction effect between pain intensity and 

delay (F(1, 27) = 1.49, p = .23, ηp
2 = .05). Temporal accuracy was therefore unaffected 

by pain or delay. 
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Condition Accuracy Mid-three 

No-pain immediate 0.66 (0.11) 0.67 (0.14) 

No-pain delay 0.61 (0.14) 0.56 (0.14) 

Pain immediate 0.65 (0.12) 0.64 (0.17) 

Pain delay 0.65 (0.11) 0.59 (0.16) 

Table 7.2. Means (and standard deviations) of accuracy and mid-three in the four 

conditions (no-pain immediate, no-pain delay, pain immediate and pain delay) in 

Experiment 5. 

 

Temporal variability 

Table 7.2 shows temporal variability (i.e., mid-three) in the four conditions. 

Examination of Table 7.2 suggests that variability was lower (i.e., gradients were 

more peaked) in the immediate testing than delayed testing conditions. A repeated 

measures ANOVA revealed a significant main effect of delay on mid-three (F(1, 27) = 

8.41, p = .007, ηp
2 = .24). Mid-three was significantly higher in the immediate 

conditions compared to the delayed conditions suggesting that delay disrupts 

temporal discrimination of both pain and no-pain related stimuli. There was however 

no main effect of pain intensity (F(1, 27) = .001, p = .97, ηp
2 < .01) and no significant 

interaction effect between delay and pain intensity (F(1, 27) = .68, p = .42, ηp
2 = .03). 

Therefore, although delay per se increased temporal variability, pain did not affect 

temporal variability.  

 

 

7.1.3 – Discussion 

The results of Experiment 5 suggest that memory for the duration was largely 

unaffected when a low level of pain was experienced during the encoding of temporal 

information. This was confirmed by the absence of an effect of pain on temporal 

accuracy and variability. Indeed the only effect of pain was seen when comparing 

responses to the longest of the comparison stimuli. Memory for duration is therefore 

unaffected by low pain during encoding. This contrasts with the expectations of the 
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study: pain neither disrupted the cognitive resources necessary for correct 

memorization of duration, nor enhanced long-term memory of events, as emotions 

do (Cocenas-Silva et al., 2012). 

 

Memory for duration was however affected by delay, with significantly more 

variable responding in the delayed testing conditions than the immediate testing 

conditions. This replicates previous findings that memory for duration can decay over 

short delays (Ogden, Wearden, & Jones, 2008) and confirmed that the methodology 

was appropriate for detecting delay induced changes in responding.  

 

One perhaps unexpected finding of the current study is that generalisation 

gradients were not systematically skewed by the presence of pain. Previous research 

shows that painful events are perceived as lasting for longer than neutral events. We 

may therefore have expected left skewed gradients (i.e., greater proportion of YES 

responses to durations longer than the standard). Although this was observed to 

some extent, that is the multiple comparisons showed that 1.375 comparison was 

recognized more often as the standard in the painful than the neutral conditions, no 

differences were observed for other comparison durations. One possibility is that 

pain did not have a clear and systematic effect on responding in this task because the 

level of pain induced was not intense enough to affect responding. To test this 

possibility a further experiment was conducted using the same experiment design as 

Experiment 5 but with a greater pain intensity. 

 

 

7.2 – Experiment 6 

Experiment 6 used the same experimental design as Experiment 5, however the 

level of pain induced was increased from low to high. Therefore, in the initial intensity 

rating task, participants were asked to select the thermal intensity that corresponded 

to high pain (6 in the NRS). As in Experiment 5, two possible outcomes were 

anticipated: 1) pain could affect the attentional, memory and executive resources 

necessary for the encoding and maintenance of duration information in memory over 
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a period of delay; or 2) similarly to emotional durations, durations encoded in a state 

of pain may be better remembered than those encoded in a neutral state. 

 

 

7.2.1 – Method 

7.2.1.1 – Participants 

Twenty-eight participants (21 females and 7 males; mean age = 24.11, SD = 4.83) 

were recruited. Participants were required not to be pregnant and not to have 

chronic pain, skin problems (e.g., eczema) or any impairment of body sensation. 

Additionally, they were asked not to take any analgesic during the 8 hours prior to 

the experiment. Participants were reimbursed £5 in vouchers for taking part. The 

study was approved by the Liverpool John Moores University ethics committee and 

informed consent was obtained from all participants.  

 

 

7.2.1.2 – Procedure 

Participants completed the same procedure used in Experiment 5. Only, 

participants selected thermal intensities equal to 0 and 6 in the NRS (instead of 0 and 

3) during the intensity rating task, that is a warm but non painful intensity and a high 

pain intensity. During the temporal generalisation task, therefore, participants felt 

the thermode being at high pain intensity during the training phase of the two pain 

conditions (pain immediate and pain delay). Experimental design and data analysis 

were as in Experiment 5. 

 

 

7.2.2 – Results 

Participants selected 36.88oC (SD = 1.52) as warm intensity and 43.86oC (SD = 1.54) 

as high pain intensity during the initial intensity rating task. Paired-sample t-test 

indicated that participants selected a significantly higher temperature in the pain 

condition than in the no pain condition (p < .001). Independent-sample t-test 
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indicated that participants selected a significantly higher temperature for the pain 

condition in Experiment 6 than in Experiment 5 (p = .008). 

 

Figure 7.2 shows temporal generalisation gradients depicting the mean proportion 

of YES responses in the four conditions plotted against comparison/standard ratio. 

Examination of Figure 7.2 suggests that in the no pain condition, there was no effect 

of delay on responding. In the pain condition, gradients appear to be shifted to the 

right following the delay. A repeated measures ANOVA with pain intensity (no-pain 

vs pain), delay (immediate vs delay) and comparison/standard ratio (0.625, 0.750, 

0.875, 1, 1.125, 1.250 or 1.375) as within-subject factors was conducted. ANOVA 

showed significant main effects of ratio (F(2.21, 59.77) = 30.37, p < .001, ηp
2 = .53), 

but no main effect of pain intensity (F(1, 27) = 0.25, p = .62, ηp
2 = .01) nor delay (F(1, 

27) = 0.12, p = .73, ηp
2 = .005) on proportion of YES responses. There were also no 

significant interactions between delay and ratio (F(1.95, 52.60) = .72, p = .49, ηp
2 = 

.03), pain intensity and delay (F(1, 27) = .39, p = .54, ηp
2 = .01), pain intensity and ratio 

(F(1.79, 48.26) = 1.75, p = .19, ηp
2 = .06) nor between pain intensity, delay and ratio 

(F(1.88, 50.78) = 1.02, p = .37, ηp
2 = .04). YES resposes were therefore unaffected by 

pain or delay. 
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Figure 7.2. Proportion of YES responses plotted against comparison/standard ratio in 

Experiment 6. YES responses are divided between immediate (solid line) and delay 

(dotted line), and between no-pain (left panel) and pain (right panel). 

 

 

Temporal accuracy 

Table 7.3 shows temporal accuracy in the four conditions. Examination of Table 

7.3 suggests that accuracy was similar in all conditions. A repeated measures ANOVA 

with pain intensity (no-pain vs pain) and delay (immediate vs delay) as within-subject 

factors confirmed these suggestions. There were no significant effects of pain 

intensity (F(1, 27) = .84, p = .37, ηp
2 = .03) nor delay (F(1, 27) = .52, p = .48, ηp

2 = .02) 

on accuracy. There was also no significant interaction effect between pain intensity 

and delay on accuracy (F(1, 27) = .10, p = .75, ηp
2 < .01). Temporal accuracy was 

therefore unaffected by pain or delay. 

 

 

Temporal variability 

Table 7.3 shows temporal variability (i.e., mid-three) in the four conditions. 

Examination of Table 7.3 suggests that temporal variability was similar in all 
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conditions. A repeated measures ANOVA with pain intensity (no-pain vs pain) and 

delay (immediate vs delay) as within-subject factors confirmed these suggestions. 

There were no significant effects of pain intensity (F(1, 27) = .04, p = .85, ηp
2 < .01) 

nor delay (F(1, 27) = .18, p = .68, ηp
2 < .01) on mid-three. There was also no significant 

interaction effect between pain intensity and delay on mid-three (F(1, 27) = .59, p = 

.45, ηp
2 = .02). Temporal variability was therefore unaffected by pain or delay. 

 

Condition Accuracy Mid-three 

No-pain 
immediate 

0.62 (0.13) 0.62 (0.16) 

No-pain delay 0.62 (0.13) 0.63 (0.15) 

Pain immediate 0.63 (0.11) 0.64 (0.16) 

Pain delay 0.65 (0.13) 0.61 (0.18) 

Table 7.3. Means (and standard deviations) of accuracy and mid-three in the four 

conditions (no-pain immediate, no-pain delay, pain immediate and pain delay) in 

Experiment 6. 

 

 

7.2.3 – Discussion 

Experiment 6 tested whether a high level of pain intensity during the encoding of 

duration information would affect subsequent memory for duration. The results 

showed that temporal responses, temporal accuracy and temporal variability were 

similar between pain and no-pain conditions, suggesting that high pain had no 

significant effect on memory for duration. Furthermore, unlike in Experiment 5, there 

was also no significant effects of delay on responding, contrasting previous studies 

that have found effects of delay on perceived duration (Wearden & Ferrara, 1993).2 

                                                      

2 Additional analyses were conducted excluding participants who showed poor 

temporal sensitivity in the no-pain immediate condition. Results showed no 

difference from the findings here reported (see Appendix). 
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7.3 – Discussion Chapter 7 

Whilst previous studies examined the effect of pain on perceived duration testing 

participants’ perception immediately after the pain presentation (see Chapter 3, page 

55), this study was the first to examine the effect of pain on perceived duration when 

participants are required to remember the duration over periods of delay. 

Participants completed a temporal generalisation task where they encoded a 

standard duration while experiencing concurrent neutral or painful somatosensory 

stimulation. Participants then recalled the standard duration, in the absence of 

somatosensory stimulation, either immediately or after a 15-minute delay. The effect 

of pain was tested in two experiments, where participants experienced a low pain 

intensity (Experiment 5) and a high pain intensity (Experiment 6). 

 

For both pain intensities, when testing occurred immediately after the standard 

presentation, participants gave similar responses in the pain and no-pain conditions, 

suggesting that pain did not affect temporal performance. This is in line with Cocenas-

Silva et al.'s (2013) study, which showed that emotions also did not affect the 

temporal performance in a temporal generalisation task when the testing phase 

occurred immediately after the learning phase.  

 

Participants also gave similar responses in the pain and no-pain conditions when 

testing occurred 15 minutes after the encoding. This contrasts with the two possible 

outcomes that were expected. Pain was expected to either 1) decrease temporal 

accuracy and temporal discrimination because pain disrupts cognitive processes 

required for memory, or 2) increase temporal accuracy and temporal discrimination 

because pain facilitates the memory consolidation in the hippocampus. Experiments 

5 and 6 showed that temporal performances in the delay conditions were not 

affected by the painful thermal stimulations, suggesting that pain neither disrupted 

nor enhanced the memory for duration. 
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The absence of an effect of pain suggests that, unlike emotion (Cocenas-Silva et 

al., 2013), pain does not improve the memorization of duration. However, it is 

possible that these different findings were due to methodological differences. 

Cocenas-Silva et al. (2013) used a 24-hour delay between learning and testing phase, 

which reduced the perceived duration of the neutral stimulus and left the perceived 

duration of the emotional stimulus unaffected. In contrast, the present studies used 

a 15-minute delay, which reduced the temporal variability of both neutral and pain 

related stimuli only in Experiment 5. It is therefore possible that a longer retention 

period would elicit a pain effect not currently evident. However, it should be noted 

that delay effects were observed in studies with shorted retention periods; for 

example, Wearden and Ferrara (1993) found that a 10-second delay between 

learning and testing phases affected temporal performance leading to subjective 

shortening of the standard duration. Here, 15 minutes was chosen as a sufficient 

interval delay also because Lechner et al. (1999) showed that the consolidation 

process is completed after 12 minutes and that the number of errors are not different 

when recalling a list of words after 12 minutes or after 24 hours. Therefore, there is 

no evidence suggesting that testing participants after 15 minutes or 24 hours as in 

Cocenas-Silva et al. (2013) should make a significant difference. 

 

Another possibility is that pain did not affect memory for duration because the 

pain was not task-relevant. Chapters 5 and 6 showed that task-relevancy is a 

determinant feature in the pain distortions to time. It is therefore possible that to 

better remember the duration of a neutral stimulus, even if presented concomitantly 

to a painful stimulation, might not bring any survival advantage. Similar suggestions 

were made by Cocenas-Silva et al. (2013), who suggested that emotion effects on 

memory for duration were greater for threatening stimuli (rather than 

nonthreatening stimuli) for basic survival reasons. It is therefore possible that pain 

could affect the memory for duration if it is task related. 

 

In summary, Experiments 5 and 6 showed that pain does not affect memory for 

duration. Replications of this study could test whether the duration of painful stimuli 
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themselves, which are overestimated (Experiments 1 and 3), are also overestimated 

after a period of delay. This could be particularly relevant in clinical contexts, where 

doctors may want to know how long pain lasted for long after its occurrence. 
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Chapter 8 

Establishing whether mindfulness meditation can reduce the perceived 

duration of pain.  

 

The duration and intensity of pain have a bidirectional interaction; increasing the 

subjective duration of pain increases its subjective intensity (Coldwell et al., 2002; 

Pomares et al., 2011) and increasing the intensity of pain increase the subjective 

duration of pain (see Chapter 5 and 6). The lengthening effect of pain has negative 

impacts on the sufferer, especially in clinical contexts (Somov, 2000) where it is 

associated with pain anxiety and reduced clinical compliance (Boivin et al., 2008). 

Therefore, an intervention that attenuates the perceived duration of pain could 

potentially lead to improved wellbeing and less distress. 

 

To date, beyond pharmacological treatments, attempts to improve sufferers’ 

conditions have focused on psychological interventions which aim to reduce the 

perceived intensity of pain (Roditi & Robinson, 2011; Turk, Swanson, & Tunks, 2008). 

These studies have shown that psychophysiological, cognitive-behavioural and 

psychodynamics approaches, such as biofeedback (Cornel, van Haarst, Schaarsberg, 

& Geels, 2005), Operant-Behavioural Therapy (Thieme, Turk, & Flor, 2007) and 

motivational interviewing (Alperstein & Sharpe, 2016), are effective in reducing the 

perceived intensity of pain (see Adams, Poole, & Richardson, 2006 for review). 

However, to date, studies have neglected to examine the potential effects of 

interventions on shortening the perceived duration of pain, despite the fact that 

perceived duration of pain (i.e., how long it has lasted) forms part of the clinical 

assessment (Somov, 2000). 

 

Among these psychological interventions, Mindfulness Meditation (MM) has been 

regularly used for pain management in clinical settings and shows patient benefit 

(Veehof, Oskam, Schreurs, & Bohlmeijer, 2011; Veehof et al., 2016). MM is a practice 

originated from the core teaching of early Buddhist traditions (Malinowski, 2017), 

through which practitioners aim to reach a state of awareness of one’s own thoughts, 
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feelings and surroundings with a non-judging attitude (Bishop et al., 2004; Kabat-

Zinn, 1990). This practice has been adapted in a number of intervention programmes, 

which successfully reduce sufferers’ symptoms (Morone, Greco, & Weiner, 2008). 

Mindfulness-based programs have been found to reduce perceived pain intensity 

with effect sizes ranging from small to moderate (Lakhan & Schofield, 2013; Veehof 

et al., 2016), independently of whether patients received the intervention via face-

to-face or via videoconference (Gardner-Nix, Backman, Barbati, & Grummitt, 2008). 

Furthermore, 8 weeks of mindfulness practice improved pain acceptance and 

physical function in a chronic low back pain population (Morone et al., 2008) and 

Mindfulness Based Cognitive Therapy (MBCT; Segal, Teasdale, Williams, & Gemar, 

2002) reduced pain severity ratings and pain sensitivity to experimental nociceptive 

stimuli in a clinical population with low back chronic pain (Zgierska et al., 2016).  

 

Mindfulness practice has been also adapted in intervention programmes that 

target conditions other than pain. A whole range of mindfulness-based programs 

have been developed for the treatment of clinical conditions, such as mindfulness-

based eating awareness training and mindfulness-based childbirth and parenting (see 

Chiesa & Malinowski, 2011 for review). Among these, Mindfulness-Based Stress 

Reduction (MBSR; Kabat-Zinn, 1982) and MBCT have become the most common 

meditation programs used for improving health and wellbeing in clinical settings 

(Baer, 2003). For example, MBCT is recommended by the UK’s National Health 

Service as a standard treatment for people with previous episodes of depression 

(NICE, 2009) and Kuyken et al. (2015) found that it is a valid alternative to standard 

antidepressant treatments. 

 

Mindfulness practice is believed to modulate the pain experience of sufferers 

(Zeidan et al., 2010) by improving self-regulation of emotions (Hölzel et al., 2011) and 

emotional cognitive flexibility (Bishop et al., 2004). MM ability of improving self-

regulation of emotions is indexed by the physiological changes during MM sessions 

(Hölzel et al., 2011). Parasympathetic activity was found to increase (Kubota et al., 

2001; Wu & Lo, 2008), meanwhile sympathetic activity was found to decrease during 
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MM (Lush et al., 2009), indicating a greater PSNS dominance and a reduced 

physiological arousal during MM. Within the mindfulness field, PSNS dominance over 

SNS is thought to indicate an increase of self-regulation of emotions (Hölzel et al., 

2011). MM therefore reduce pain experience in sufferers by reducing physiological 

arousal, which is associated with the perceived pain intensity (see section 3.1.2, page 

56). 

 

MM also improves emotional cognitive flexibility (Malinowski, 2017); for example, 

MM was found to improve self-regulating attention (Mirams et al., 2013) and 

cognitive flexibility capacity (Bishop et al., 2004), and MBCT was found to improve 

the ability to inhibit cognitive automatic responses (Heeren, Van Broeck, & Philippot, 

2009) and autobiographical memory recall (Williams, Teasdale, Segal, & Soulsby, 

2000). Moore et al. (2012) also showed that MM selectively modulates the 

electroencephalographic markers (EEG, ERPs) of attentional control. These effects of 

MM on cognition are thought to promote pain regulation by enhancing the activity 

of ACC and AIC (Zeidan et al., 2011), neural areas involved in the descending (top 

down) pathway for pain regulation, resulting in reduced perceived pain intensity (see 

section 3.1.5, page 60).  

 

MM also affects time perception. Kramer et al. (2013) asked participants to 

complete a temporal bisection task before and after completing either a MM session 

or a control audiobook listening exercise. PSE was shifted to the left following MM 

but was unaffected by the listening exercise, suggesting that MM lengthened 

perceived duration. This was confirmed by Droit-Volet et al. (2015), who found a left 

shift of the PSE in a temporal bisection task after that participants had conducted an 

intensive MM training consisting of a 10-minute session per day for 5 weeks. 

Interestingly, the self-measured mindfulness disposition of participants also affects 

their temporal performance on temporal reproduction tasks, with greater 

mindfulness disposition associated with longer and more accurate reproductions 

(Wittmann et al., 2014). These studies explained the effect of MM and mindfulness 

disposition on perceived duration as an attentional effect; mindfulness improve 
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attentional regulation of participants leading to longer and more accurate 

perceptions of duration.  

 

Previous studies observing a lengthening effect on time perception with MM, 

however, have exclusively used neutral stimuli. The effect of mindfulness practice on 

the perceived duration of pain remains therefore unclear. It is plausible that MM may 

reduce the perceived duration of pain because it decreases subjective pain intensity 

(Veehof et al., 2016) and reduces pain-induced physiological arousal (Hölzel et al., 

2011), which are predictors of perceived duration (Coldwell et al., 2002; Piovesan et 

al., 2018). Furthermore, MM shares neural correlates, namely the insular cortex, with 

pain and time perception (Craig, 2002, 2009a; Young et al., 2018). Mindfulness effects 

on insular activity are thought to be causal for MM to reduce the perceived intensity 

of pain (see Bilevicius, Kolesar, & Kornelsen, 2016 for discussion). It is therefore 

possible that MM could also affect the insular activity resulting in shorter perceived 

duration of pain.  

 

Experiment 7 tested this possibility by comparing the effects of mindfulness and a 

control story listening task on verbal estimates of visual, tactile and painful stimuli. In 

the study, participants completed the three verbal estimation tasks before and after 

a 1-week mindfulness intervention or a 1-week control story listening exercise. As in 

previous experiments, participants selected the subjective pain intensity of the 

electrical shock during an initial task. Following this, participants were allocated to 

either the mindfulness or control condition. In the mindfulness condition, 

participants were asked to perform a body-scan exercise, which has previously been 

shown to enhance somatosensory perception and which involved directing attention 

toward one’s own body, once a day for one week. In the control condition 

participants listened for an audiobook for the same amount of time. Following this, 

participants were re-tested on the three verbal estimation tasks.  

 

Mindfulness was expected to have different effects on the perceived duration of 

painful stimuli than of the visual and vibrotactile stimuli, because of the differing 
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effects of the stimuli on SNS activity and attentional processing. The mindfulness 

intervention was expected to decrease physiological arousal and increase self-

regulated attention (Hölzel et al., 2011), leading to decreases in verbal estimates and 

estimate variability of painful stimuli. In contrast, mindfulness intervention was 

expected to increase verbal estimates of visual and tactile stimuli and to reduce 

estimate variability, confirming previous studies (Droit-Volet et al., 2015; Kramer et 

al., 2013). Critically, differences in verbal estimates and estimate variability were 

expected only with the mindfulness intervention group. No changes in perceived 

durations were expected with the group practicing the control story listening 

exercise. These predictions were texted in two groups of participants; 1) healthy 

people (Experiment 7) and 2) chronic pain patients (Experiment 8).  

 

 

8.1 – Experiment 7 

8.1.1 – Method 

8.1.1.1 – Participants  

Forty-four participants (31 females and 13 males; mean age = 38.66, SD = 18.88) 

were recruited. Participants were required not to be pregnant, not to have a history 

of epilepsy and not to have chronic pain, heart disease, skin problems (e.g., eczema) 

or any impairment of body sensation. Additionally they were asked not to take any 

analgesic during the 8 hours prior to the experiment. Regular mindfulness meditators 

(i.e., those who meditated more than once a month) were also excluded. Participants 

were reimbursed £15 in vouchers for taking part. The study was approved by the 

Liverpool John Moores University ethics committee and informed consent was 

obtained from all participants. 

 

 

8.1.1.2 – Experimental design 

This experiment replicated the experimental design described by Mirams et al. 

(2013). Each participant was assigned to either an intervention group, who practiced 

a mindfulness meditation exercise; or the control group, who practiced a story 
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listening exercise. Participants were assigned to each group in alternate order based 

on their participant number. For each participant, active participation in the study 

took 8 days (see Figure 8.1 for a scheme of the experimental structure). On the first 

day, participants attended the pre-testing session which involved 1) completing a 

series of questionnaires including a health screening questionnaire to confirm 

suitability to participate; 2) the intensity rating task; 3) the verbal estimation task and 

4) the assigned intervention exercise (mindfulness meditation or story listening). On 

days two to seven, participants were asked to complete their assigned exercise in 

their own time at home and complete a diary recording their experience. On day 

eight, participants attended a post-testing session, which involved performing their 

assigned intervention exercise, followed by the questionnaires and verbal estimation 

task.  

 

 

Figure 8.1. Experiment 7 structure. 

 

 

8.1.1.3 – Apparatus and material 

Questionnaires: Four questionnaires were administered: the Pain Catastrophizing 

Scale (PCS; Sullivan, Bishop, & Pivik, 1995), the Patient Health Questionnaire-9 (PHQ-

9; Kroenke, Spitzer, & Williams, 2001), the Depression, Anxiety and Stress Scale - 21 

Items (DASS-21; Lovibond & Lovibond, 1995) and the Mindful Attention Awareness 

Scale (MAAS; Brown & Ryan, 2003; Carlson & Brown, 2005). The PCS was used to 

determine the exaggerated negative thoughts and feelings during pain experience. 

The PHQ-9 was used to determine the depressive feelings of participants. The DASS-

21 was used to determine the depressive, anxious and stress feelings. The MAAS was 

used to determine the mindfulness attitude of participants. Questionnaire scores of 

the first and the second session were compared to test the efficacy of the 
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mindfulness intervention. Questionnaire scores were also used to investigate 

whether catastrophizing, depression, anxiety, stress and mindfulness attitude 

correlated with verbal estimates.  

The PCS consisted of 13 items indicating thoughts and feelings usually associated 

to the pain experience (e.g., I worry all the time about whether the pain will end). 

Participants were asked to use a 5-point rating scale to rate the degree of which they 

have those thoughts and feelings while experiencing pain (0 – Not at all; 4 – All the 

time). Final scores were divided in Total scores (score range: 0–52) and three 

subscales: Rumination (score range: 0–16), Magnification (score range: 0–12) and 

Helplessness (score range: 0–24). Higher scores indicated higher pain catastrophizing, 

rumination, magnification and helplessness, respectively. PCS has acceptable 

reliability and validity (Osman et al., 1997). 

The PHQ-9 consisted of 9 items indicating thoughts usually associated to 

depression (e.g., feeling down, depressed or hopeless). Participants were asked to 

use a 4-point rating scale to rate how often they have been bothered by those 

thoughts in the previous two weeks (0 – Not at all; 3 – Nearly every day). Final scores 

ranged from 0 to 27 with higher scores indicating more depressive feelings. PHQ-9 

has high reliability and validity (Löwe, Unützer, Callahan, Perkins, & Kroenke, 2004). 

The DASS-21 consisted of 21 items indicating thoughts and feelings usually 

associated to depression (e.g., I couldn’t seem to experience any positive feeling at 

all), anxiety (e.g., I felt scared without any good reason), and stress (e.g., I tended to 

over-react to situations). Participants were asked to use a 4-point rating scale to rate 

how much those thoughts applied to them over the past week (0 – Not at all; 3 – 

Applied to me very much or most of the time). Final scores were divided in three 

subscales: Depression (score range: 0–56), Anxiety (score range: 0–56) and Stress 

(score range: 0–56). Higher scores indicated higher depression, anxiety and stress, 

respectively. DASS-21 has high reliability and validity (Henry & Crawford, 2005). 

The MAAS consisted of 15 items indicating daily experience that are associated 

with being inattentive and opposite to core characteristics of mindfulness (e.g., I rush 

through activities without being really attentive to them). Participants were asked to 

rate how often they had these experience on a 6-point Likert scale (1 – Almost always; 
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6 – Almost never). Final scores ranged from 15 to 90 with higher scores indicating 

higher mindfulness attitude. The MAAS has acceptable validity and reliability (Brown 

& Ryan, 2003). 

 

Tactile vibrations: A tactile pulse (vibration) was used as the non-noxious stimulus. 

Tactile vibrations were produced on participants’ left arm by using a TactAmp, 4.2 

(Dancer Design, St Helens, UK) with identical settings of Experiment 1 (see section 

5.1.1.2, page 86). The intensity of the stimulus was with amplitude equal to 1. 

 

Pain stimulation: The Digitimer DS7A Current Stimulator (Digitimer Ltd) was used 

to present the electro-cutaneous stimulation (see section 4.3.1, page 77 for 

equipment description).  

 

Intensity rating task: The procedure was the same as the one used in previous 

studies and described in the methodology chapter (see section 4.3.1, page 77). For 

this study, participants were asked to select a single pain intensity rated as a 5 on the 

Numeric Rating Scale. A 5 indicates a moderate intensity of pain (Aun, Lam, & Collett, 

1986). Participants completed this task in the first testing session only and the 

selected intensity was used for the painful condition of the verbal estimation task 

during both the pre- and post-testing sessions. 

 

Verbal estimation task: The procedure was the same as the one used in previous 

studies and described in the methodology chapter (see section 4.4, page 80). The task 

included three conditions, using the following stimulus modality: visual, tactile and 

painful modality. The visual stimulus consisted of a white square (300x300 pixels, 

8x8cm) on a black background. The tactile stimulus consisted of a tactile vibration 

presented to participants’ left arm. The painful stimulus consisted of an electric 

shock, with the intensity selected during the intensity rating task, presented to 

participants’ left arm. Conditions were presented to participants in randomized 

order. In each condition, participants completed 3 blocks of 16 stimuli; five standard 

duration (242ms, 455ms, 767ms, 1058ms and 1296ms) each of which was repeated 
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twice and six additional stimuli, the duration of which was selected at random from 

a uniform distribution ranging from 100ms to 1500ms. The purpose of these 

additional trials was to disguise the repeated use of the same five experimental 

stimulus durations across the experimental blocks. The data from these six additional 

stimuli were not analysed (as in Ogden et al., 2015). Each condition therefore 

contained a total of 48 trials. An inter trial interval, the duration of which was selected 

from a normal distribution between 1500 to 2500 milliseconds, was interposed 

between trials. The order of presentation of the trials was randomised by E-Prime for 

each participant. Throughout the task, participants listened to white noise through 

headphones to prevent any auditory feedback influencing performance.  

 

Mindfulness exercise: Participants were asked to sit, close their eyes and relax 

whilst listening to an audio recording of a guided mindfulness body-scan exercise 

which has been used in previous studies (MacIver, Lloyd, Kelly, Roberts, & Nurmikko, 

2008; Mirams et al., 2013). Participants were given two 20-minute audio tracks to use 

during the week. Both tracks started with 2-minute introduction of MM where 

participants were encouraged to observe the sensations on their body during the 

session without judgment. Both tracks continued suggesting a comfortable position 

and asking participants to relax through directing their attention to the breath cycle 

for 1 minute. Participants were then instructed to direct their attention to different 

parts of their body in succession, noticing the various sensations they felt in each 

area. In track one, participants were asked to focus on the bottom part of the body 

(i.e., legs, feet, toes, ankles, knees, pelvis and hips). In track two, participants were 

asked to focus on the top part of the body (i.e., chest, upper back, neck, shoulders, 

arms, fingers, head, face, eyes and jaw). Both tracks then ended asking participants 

to direct their attention again to the breath cycle and to be aware of the surrounding 

until opening their eyes. During the 8-day intervention, participants listened to the 

two tracks in alternate order and half of participants started with track one and ended 

with track two, and half participants did the opposite. All participants listened to each 

track four times, completing eight twenty-minute meditation exercise in total. For 
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the home practice, participants were told to practice meditation at any moment 

during the day they felt comfortable.  

 

Story listening exercise: Participants were asked to sit, close their eyes and relax 

meanwhile listening to ‘The Jungle Book” audiobook for 20 minutes. The audiobook 

was retrieved from the LibriVox recordings (librivox.org) and the first 160 minutes of 

the story were divided in 8 tracks of 20 minutes each using Audacity software 

(www.audacityteam.org). Participants listened to one track per day in narrative 

order. 

 

Diary: Every day, after the assigned exercise, participants were asked to rate on a 

four point scale 1) the difficulty of the exercise (0 – extremely easy; 3 – extremely 

difficult), 2) the effort taken to pay attention to the audio-track (0 – none at all; 3 – a 

great deal) and 3) the frequency of distraction (0 – very rare; 3 – extremely often). 

This diary was used to encourage and assess participants’ adherence during the home 

sessions and the data obtained with the diary was not analysed.  

 

 

8.1.2 – Results 

Out of forty-four participants tested, data from three participants were excluded 

from the analysis because they did not attend the second session. Therefore, it has 

been reported the results based on data from the remaining 41 participants, 22 in 

the mindfulness group and 19 of the story listening group. Participants’ diary 

reported that there was 94.81% adherence and no participants missed more than 

two home sessions. To establish the effect of the intervention on time perception 

three measures of timing were computed: mean estimate, estimate accuracy and 

estimate variability. Greenhouse-Geisserr correction was applied to ANOVAs when 

the Sphericity assumption was violated and post-hoc were Bonferroni corrected. 
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Verbal estimates  

 

Figure 8.2. Means (and standard errors) of the verbal estimates (ms) plotted against 

the stimulus duration and divided by group (mindfulness and story listening) and 
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by session (pre and post). The three plots show the verbal estimates in the visual 

modality (panel A), tactile modality (panel B) and painful modality (panel C). 

 

 

Figure 8.2 shows the verbal estimates of the visual, tactile and painful stimuli. The 

three graphs show the verbal estimates of the story listening and MM group in the 

pre- and post-session separately. A mixed ANOVA with group (MM and story 

listening) as a between subjects factor and session (pre and post), stimulus modality 

(visual, tactile and painful) and stimulus duration (242ms, 455ms, 767ms, 1058ms 

and 1296ms) as within subject factors was conducted. This showed significant main 

effects of stimulus duration F(1.44, 56.15) = 399.35, p < .001, ηp
2 = .91 and stimulus 

modality F(1.74, 68.02) = 8.57, p = .001, ηp
2 = .18 on verbal estimates. Post-hoc tests 

showed that estimates were significantly shorter in the visual modality compared to 

the tactile (p = .004) and painful modalities (p = .003). Verbal estimates were not 

significantly different between tactile and painful modality (p = .717). There was no 

significant main effect of group F(1, 39) = 0.002, p = .960, ηp
2 < .001 nor session F(1, 

39) = .37, p = .545, ηp
2 = .01. There was however a significant interaction between 

stimulus duration and modality F(3.60, 140.27) = 2.83, p = .032, ηp
2 = .07 but no other 

significant interaction was found (all ps > .05). 

 

To further investigate the interaction effect between stimulus duration and 

modality, a repeated measure ANOVA with stimulus modality (visual, tactile and 

painful) as within subject factors was conducted on each stimulus duration separately 

(242ms, 455ms, 767ms, 1058ms and 1296ms). ANOVAs showed significant main 

effect of stimulus modality on verbal estimates of the 242ms duration F(2, 80) = 5.18, 

p = .008, ηp
2 = .12, the 455ms duration F(1.52, 60.72) = 14.96, p < .001, ηp

2 = .27, the 

767ms duration F(1.63, 65.23) = 8.50, p = .001, ηp
2 = .18, the 1058ms duration F(2, 

80) = 4.34, p = .016, ηp
2 = .10, and the 1296ms duration F(2, 80) = 3.29, p = .042, ηp

2 

= .08. Post-hoc tests showed that verbal estimates were significantly longer in the 

painful modality compared to the tactile modality for the 455ms duration (p < .001), 

meanwhile the estimates for the 242, 767, 1058 and 1296ms stimuli did not differ (all 
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ps > .05). Estimates were significantly longer in the tactile modalities than the visual 

modality for all (ps < .05) but the shortest stimulus (p = .99). Estimates were 

significantly longer in the painful modalities compared to the visual modality for the 

242ms, 455ms and 767ms stimuli (all ps < .05), but not for the 1058ms and 1296ms 

stimuli (p > .05). 

 

 

Estimate accuracy 

Estimate accuracy was calculated for each stimulus duration of each modality in 

each session using the same formula used in Experiments 1 and 2: verbal 

estimate/stimulus duration. An accuracy of 1 indicates a correct estimate, below 1 

indicates underestimation of duration and above 1 indicates overestimation of 

duration. 

 

Figure 8.3 shows the estimate accuracy of visual, tactile and painful stimuli. The 

three graphs show the estimate accuracy of the story listening and MM group in the 

pre- and post-session separately. A mixed ANOVA with group (mindfulness and story 

listening) as a between subject factor and with session (pre and post), stimulus 

modality (visual, tactile and painful) and stimulus duration (242ms, 455ms, 767ms, 

1058ms and 1296ms) as within subject factors was conducted. ANOVA showed 

significant main effects of stimulus duration F(1.28, 50.06) = 5.08, p = .021, ηp
2 = .12 

and stimulus modality F(2, 78) = 9.84, p < .001, ηp
2 = .20 on estimate accuracy. Post-

hoc tests showed that accuracy was significantly lower in the visual modality 

compared to the tactile (p = .024) and painful modalities (p = .001). Estimate accuracy 

was not significantly different between tactile and painful modality (p = .128). There 

was no significant main effect of group F(1, 39) = 1.91, p = .174, ηp
2 = .05 nor session 

F(1, 39) = 1.11, p = .299, ηp
2 = .03 on estimate accuracy. There were however 

significant interactions between stimulus duration and modality F(3.08, 120.24) = 

4.667, p = .004, ηp
2 = .11 and between stimulus duration and session F(1.44, 56.10) = 

3.59, p = .048, ηp
2 = .08, but no other significant interaction was found (all ps > .05). 
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Figure 8.3. Means (and standard errors) of the estimate accuracy plotted against the 

stimulus duration and divided by group (mindfulness and story listening) and by 

session (pre and post). The three plots show the verbal estimates in the visual 

modality (panel A), tactile modality (panel B) and painful modality (panel C). 
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To further investigate the interaction effect between stimulus duration and 

modality, a repeated measure ANOVA with stimulus modality (visual, tactile and 

painful) as within subject factors was conducted per each stimulus duration (242ms, 

455ms, 767ms, 1058ms and 1296ms). ANOVAs showed significant main effect of 

stimulus modality on estimate accuracy of the 242ms duration F(2, 80) = 5.19, p = 

.008, ηp
2 = .12, the 455ms duration F(1.52, 60.85) = 14.90, p < .001, ηp

2 = .27, the 

767ms duration F(1.63, 65.30) = 8.48, p = .001, ηp
2 = .18, the 1058ms duration F(2, 

80) = 4.32, p = .017, ηp
2 = .10, and the 1296ms duration F(1.75, 69.92) = 3.35, p = .047, 

ηp
2 = .08. Post-hoc tests indicated that estimate accuracy was significantly higher in 

the painful modalities compared to the tactile modality for the 455ms stimuli (p < 

.001), meanwhile estimate accuracy for the 242, 767, 1058 and 1296ms stimuli did 

not differ (all ps > .05). Estimate accuracy was significantly higher in the tactile 

modalities compared to the visual for all (ps < .05) but the shortest stimuli (p = .99). 

Estimate accuracy was significantly higher in the painful modalities compared to the 

visual modality for the 242ms, 455ms and 767ms stimuli (all ps < .05), but not for the 

1058ms and 1296ms stimuli (p > .05). Whilst verbal estimates were similarly accurate 

between tactile and painful stimuli, they were consistently more accurate for the 

tactile stimuli than for the visual ones except the shortest duration; meanwhile verbal 

estimates were more accurate for the painful stimuli than for the visual ones for the 

shortest durations.  

 

To further investigate the interaction effect between stimulus duration and 

session, a paired-sample t-test between the first and second session was conducted 

per each stimulus duration (242ms, 455ms, 767ms, 1058ms and 1296ms). Paired-

sample t-test showed no significant difference between estimate accuracy of the first 

and second session for the 455ms (p = .581), 767ms (p = .795), 1058ms (p = .421) and 

1296ms (p = .834) durations, meanwhile the difference of estimate accuracy for the 

242ms failed to reach significance (p = .073). 
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Estimate variability 

Estimate variability was calculated for each stimulus duration of each modality in 

each session using the same formula used in Experiments 1 and 2: standard deviation 

verbal estimate/mean verbal estimate. The higher the value, the more variable the 

participant’s responses. 

 

Figure 8.4 shows the estimate variability of visual, tactile and painful stimuli. The 

three graphs show the estimate variability of the story listening and mindfulness 

group in the pre- and post-session separately. A mixed ANOVA with group 

(mindfulness and story listening) as a between subject factor and with session (pre 

and post), stimulus modality (visual, tactile and painful) and stimulus duration 

(242ms, 455ms, 767ms, 1058ms and 1296ms) as within subject factors was 

conducted. ANOVA showed significant main effects of stimulus duration F(1.87, 

73.06) = 18.48, p < .001, ηp
2 = .32 and stimulus modality F(2, 78) = 4.12, p = .020, ηp

2 

= .10 on estimate variability. Post-hoc tests showed that variability was significantly 

higher in the visual modality compared to the tactile modality (p = .010). Estimate 

variability in painful modality did not significantly differ to tactile (p = .541) and visual 

modalities (p = .503). There was no significant main effect of group F(1, 39) = .15, p = 

.697, ηp
2 = .004 nor session F(1, 39) = .64, p = .429, ηp

2 = .02 on estimate variability. 

There were no significant interactions (all ps > .05), with the modality*duration and 

modality*exercise interactions that just failed to reach significance (ps = .089) 
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Figure 8.4. Means (and standard errors) of the estimate variability plotted against the 

stimulus duration and divided by group (mindfulness and story listening) and by 

session (pre and post). The three plots show the verbal estimates in the visual 

modality (panel A), tactile modality (panel B) and painful modality (panel C). 
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Questionnaires  

 

Group Story listening Mindfulness 

Session Pre Post Pre Post 

PCS total 21.63 (13.23) 14.79 (8.53) 12.05 (8.72) 8.55 (8.35) 

PCS Rumination 8.00 (4.81) 5.32 (3.50) 4.32 (3.23) 3.91 (3.70) 

PCS Magnification 4.63 (2.83) 3.68 (2.33) 2.77 (2.67) 1.73 (1.91) 

PCS Helplessness 9.47 (6.26) 6.00 (3.90) 5.23 (4.12) 3.00 (3.78) 

DASS Depression 8.42 (6.27) 3.47 (3.58) 7.18 (5.65) 4.00 (4.98) 

DASS Anxiety 7.26 (6.15) 4.00 (3.65) 6.09 (6.63) 4.18 (5.52) 

DASS Stress 14.32 (10.61) 8.63 (6.67) 11.82 (7.90) 8.27 (6.30) 

MAAS total 3.78 (0.93) 4.09 (0.71) 4.01 (0.60) 4.10 (0.59) 

PHQ-9 total 6.58 (5.47) 4.74 (3.68) 5.05 (4.10) 4.45 (3.74) 

Table 8.1. Means (and standard deviations) of questionnaire scores divided by group 

(story listening and mindfulness) and by session (pre and post). PCS = Pain 

Catastrophizing Scale. DASS = Depression, Anxiety and Stress Scale. MAAS = 

Mindful Attention Awareness Scale. PHQ-9 = Patient Health Questionnaire-9. 

 

 

Table 8.1 shows questionnaire scores divided by group and session. A mixed 

ANOVA with group (mindfulness and story listening) as between subjects factor and 

with session (pre and post) as within subject factor was conducted per each 

questionnaire and subscale.  

ANOVA showed significant main effect of session F(1, 39) = 17.65, p < .001, ηp
2 = 

.31 and group F(1, 39) = 7.89, p = .008, ηp
2 = .17 on PCS total score. Participants scored 

higher in the pre-session than in the post-session and the story listening group scored 
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higher compared to the mindfulness group. There was no significant interaction 

between session and group F(1, 39) = 1.84, p = .182, ηp
2 = .05. 

ANOVA showed significant main effect of session F(1, 39) = 9.38, p = .004, ηp
2 = .19 

and group F(1, 39) = 5.48, p = .024, ηp
2 = .12 on PCS Rumination. Participants scored 

higher in the pre-session than in the post-session and the story listening group scored 

higher compared to the mindfulness group. There was a significant interaction 

between session and group F(1, 39) = 5.08, p = .030, ηp
2 = .12. To further investigate 

this interaction, a paired-sample t-test was conducted per each group and an 

independent sample t-test was conducted per each session. Paired sample t-test 

showed that story listening group had higher PCS Rumination scores in the pre-

session than in the post-session t(18) = 3.58, p = .002 and that scores of the 

mindfulness group did not change between pre- and post-sessions t(21) = .60, p = 

.554. Independent sample t-test showed a significant difference of PCS Rumination 

scores between story listening and mindfulness group in the pre-session t(30.70) = 

2.83, p = .008, but not in the post-session t(39) = 1.25, p = .220. 

ANOVA showed significant main effect of session F(1, 39) = 8.59, p = .006, ηp
2 = .18 

and group F(1, 39) = 7.68, p = .009, ηp
2 = .17 on PCS Magnification. Participants scored 

higher in the pre-session than in the post-session and the story listening group scored 

higher compared to the mindfulness group. There was no significant interaction 

between session and group F(1, 39) = .02, p = .886, ηp
2 < .01. 

ANOVA showed significant main effect of session F(1, 39) = 21.88, p < .001, ηp
2 = 

.36 and group F(1, 39) = 7.80, p = .008, ηp
2 = .17 on PCS Helplessness. Participants 

scored higher in the pre-session than in the post-session and the story listening group 

scored higher compared to the mindfulness group. There was no significant 

interaction between session and group F(1, 39) = 1.05, p = .313, ηp
2 = .03. 

ANOVA showed significant main effect of session on DASS Depression F(1, 39) = 

24.32, p < .001, ηp
2 = .38. Participants scored higher in the pre-session than in the 

post-session. There was no significant main effect of group F(1, 39) = .06, p = .802, 

ηp
2 < .01 nor interaction between session and group F(1, 39) = 1.15, p = .291, ηp

2 = 

.03 on DASS Depression. 
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ANOVA showed significant main effect of session on DASS Anxiety F(1, 39) = 10.25, 

p = .003, ηp
2 = .21. Participants scored higher in the pre-session than in the post-

session. There was no significant main effect of group F(1, 39) = .10, p = .754, ηp
2 < 

.01 nor interaction between session and group F(1, 39) = .70, p = .407, ηp
2 = .02 on 

DASS Anxiety. 

ANOVA showed significant main effect of session on DASS Stress F(1, 39) = 22.14, 

p < .001, ηp
2 = .36. Participants scored higher in the pre-session than in the post-

session. There was no significant main effect of group F(1, 39) = .39, p = .538, ηp
2 = 

.01 nor interaction between session and group F(1, 39) = 1.19, p = .282, ηp
2 = .03 on 

DASS Stress. 

ANOVA showed significant main effect of session on MAAS total score F(1, 39) = 

5.08, p = .030, ηp
2 = .12. Participants scored lower in the pre-session than in the post-

session. There was no significant main effect of group F(1, 39) = .34, p = .563, ηp
2 = 

.01 nor interaction between session and group F(1, 39) = 1.66, p = .206, ηp
2 = .04 on 

MAAS total score. 

ANOVA showed significant main effect of session on PHQ-9 total score F(1, 39) = 

8.72, p = .005, ηp
2 = .18. Participants scored higher in the pre-session than in the post-

session. There was no significant main effect of group F(1, 39) = .51, p = .481, ηp
2 = 

.01 nor interaction between session and group F(1, 39) = 2.31, p = .137, ηp
2 = .06 on 

PHQ-9 total score. 

 

In summary, the story listening group had higher scores on PCS and subscales 

compared to the mindfulness group, but MAAS, DASS and PHQ-9 scores did not differ 

between groups. Furthermore, both mindfulness and story listening exercises 

appeared to affect questionnaire scores; MAAS scores were lower in the pre-session 

than in the post-session, meanwhile PCS, DASS and PHQ-9 scores were higher in the 

pre-session than in the post-session. As only exception, the story listening exercise, 

but not the mindfulness exercise, decreased the PCS Rumination scores. Overall, 

these findings suggest that both story listening and mindfulness exercises increased 

mindfulness disposition and decreased pain catastrophizing, depression, anxiety and 

stress feelings. 
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Pearson’s correlation was used to establish the relationship between mood, fear 

of pain and perceived duration. To correlate these items, a mean verbal estimate was 

calculate for each stimulus modality averaging the verbal estimate of the same 

stimulus modality across stimulus durations. Table 8.2 shows correlations between 

mean verbal estimates of visual, tactile and painful stimuli and scores of each 

questionnaire/subscale. Pearson correlations did not show any relationship between 

verbal estimates and questionnaire scores. Therefore attitude to mindfulness, mood 

and pain catastrophizing were not related to perceived duration. 

 

Session Pre Post 

Modality Visual Tactile Painful Visual Tactile Painful 

PCS 
total 

r = -.13 
p = .41 

r = -.14 
p = .40 

r = .09 
p = .59 

r = -.12 
p = .46 

r = -.20 
p = .21 

r = -.08 
p = .62 

PCS 
Rumination 

r = -.18 
p = .25 

r = -.16 
p = .31 

r = .10 
p = .52 

r = -.11 
p = .48 

r = -.12 
p = .45 

r = -.05 
p = .75 

PCS 
Magnification 

r = -.14 
p = .39 

r = -.08 
p = .61 

r = .07 
p = .65 

r = -.07 
p = .68 

r = -.18 
p = .27 

r = .02 
p = .92 

PCS 
Helplessness 

r = -.05 
p = .74 

r = -.09 
p = .59 

r = .08 
p = .62 

r = -.16 
p = .31 

r = -.29 
p = .07 

r = -.16 
p = .33 

DASS 
Depression 

r = .01 
p = .94 

r = -.05 
p = .75 

r = .05 
p = .77 

r = .03 
p = .87 

r = -.02 
p = .90 

r = .03 
p = .87 

DASS 
Anxiety 

r = .14 
p = .38 

r = .03 
p = .87 

r = -.01 
p = .95 

r = .14 
p = .39 

r = -.06 
p = .71 

r = .10 
p = .56 

DASS 
Stress 

r = .01 
p = .96 

r = -.04 
p = .80 

r = .16 
p = .31 

r = -.03 
p = .86 

r = -.03 
p = .84 

r = .09 
p = .57 

MAAS 
total 

r = -.19 
p = .23 

r = -.04 
p = .82 

r = -.08 
p = .64 

r = -.12 
p = .46 

r = -.10 
p = .52 

r = -.20 
p = .22 

PHQ-9 
total 

r = -.01 
p = .98 

r = -.13 
p = .43 

r = .06 
p = .69 

r = -.02 
p = .91 

r = -.15 
p = .36 

r = .04 
p = .81 

Table 8.2. Correlation coefficients between questionnaire score and verbal estimates 

of visual, tactile and painful stimuli in the pre- and post-session. PCS = Pain 
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Catastrophizing Scale. DASS = Depression, Anxiety and Stress Scale. MAAS = 

Mindful Attention Awareness Scale. PHQ-9 = Patient Health Questionnaire-9. 

 

 

8.1.3 – Discussion 

Experiment 7 tested whether a 1-week mindfulness intervention could alter the 

verbal estimate, estimate accuracy and estimate variability of visual, tactile and 

painful stimuli. The results indicated that participants gave shorter and less accurate 

estimates for visual stimuli compared to tactile and painful stimuli, confirming 

previous studies that tactile stimuli are perceived more accurately than visual stimuli 

(Jones et al., 2009). Verbal estimates were also more variable for visual than tactile 

stimuli. However, verbal estimate, accuracy and variability were similar between 

tactile and painful stimuli, suggesting that pain did not lengthen time perception in 

comparison with a neutral somatosensory stimulus. The absence of a lengthening 

effect of pain could be due to the absence of intensity contrast between painful and 

neutral blocks of trials. Matthews et al. (2011) demonstrated that an evident contrast 

between two states or stimuli is required for temporal distortion occurrence. In 

Experiments 1 and 3, participants had intermixed blocks of neutral and painful 

stimuli. Here, there was one single pain block and one single neutral block. There was 

therefore a lack of contrast between blocks, which might have contributed to the 

absence of pain distortions to time. 

 

Verbal estimates were expected to decrease for painful stimuli, and to increase 

for visual and tactile stimuli, after the mindfulness intervention but not after the 

audiobook listening exercise. Contrary to expectations, there was no effect of the 

MM exercise or the listening exercise on duration estimates. MM therefore did not 

affect the perceived duration in any stimulus modality. This contrasts previous 

findings showing that a single session (Kramer et al., 2013) and 5 weeks (Droit-Volet 

et al., 2015) of MM lengthened the perceived duration of visual stimuli in a temporal 

bisection task.  
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It is unclear why MM had no effect on the perceived duration of any stimuli. One 

possibility is that participants in this study were new at mindfulness. Droit-Volet et 

al. (2015) found the lengthening effect of MM with participants who were already 

MM practitioners, but not with MM novices. It is therefore possible that MM did not 

affect perceived duration of visual stimuli in this study because only MM novices 

were included. Another possibility is that more than 1-week’s practice is necessary 

before MM induces temporal distortions. In clinical settings, mindfulness based 

interventions frequently consist of several weeks practice (Fjorback, Arendt, Ørnbøl, 

Fink, & Walach, 2011; Forman, Butryn, Hoffman, & Herbert, 2009; Kabat-Zinn, 1982) 

and effects on neural activity are only observed after 16 weeks (Moore et al., 2012). 

Indeed, Droit-Volet et al. (2015) only observed an effect of mindfulness on perceived 

duration after a 5-week training intervention but not after a single MM session. A 

longer training period may therefore reveal effects. 

 

 Although, Kramer et al. (2013) reported an effect of a single 10-minute 

mindfulness session on perceived duration it is important to note that this session 

consisted of a breathing exercise in addition to mindfulness. Droit-Volet et al. (2015) 

found that a single session of breathing exercise, but not a single session of MM, 

lengthened the performance in the temporal bisection task. It is therefore possible 

that in Kramer et al. (2013) the breathing component of the session rather than the 

mindfulness component had an effect on time perception. Therefore, the use of 

novice MM practitioners coupled with the absence of an explicit breathing 

component could have resulted in the absence of an effect of MM in the current 

study. Indeed, given that disentangling the effect of the mindfulness component of 

an intervention from other components is a common issue when testing MM 

effectiveness (see Malinowski, 2017 for discussion), future research should focus on 

establishing whether controlled breathing can affect the perceived duration of pain. 

 

Another possible explanation for the null effect is that MM might not have 

reduced physiological arousal enough to modulate time perception. Whilst MM was 

consistently found to increase PSNS activity (Kubota et al., 2001; Wu & Lo, 2008), MM 
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effects on SNS are less consistent, with studies showing that MM both decreases 

(Lush et al., 2009) and increases (Ditto, Eclache, & Goldman, 2006) SNS activity. 

Experiment 3 showed that time distortions are mediated by SNS changes rather than 

PSNS changes. It is therefore possible that MM did not decrease SNS activity enough 

to lead to temporal distortions. 

 

The questionnaires indicated that mindfulness disposition increased and pain 

catastrophizing, anxiety, stress and depression decreased after the week of MM and 

story listening exercise. This suggests that MM and the control story listening task 

both had beneficial effects for the participants. This could be explained by (i) 

questionnaires re-administration, which could have led to a training effect that 

induced different self-reports, or (ii) both MM and story listening exercise improving 

participants’ wellbeing. The second explanation is preferred because the used 

questionnaires have excellent test-retest reliability; for example, PHQ-9 scores are 

nearly identical after 48 hours (Kroenke et al., 2001). The second explanation is also 

supported by those studies that found that both MM and story listening decrease 

anxiety, stress and depression (Hofmann, Sawyer, Witt, & Oh, 2010; Warnecke, 

Quinn, Ogden, Towle, & Nelson, 2011). Although the questionnaire scores changed 

between pre- and post-sessions, the correlational analysis showed that questionnaire 

scores did not correlate with verbal estimates, suggesting that time perception is not 

related to the self-reported mindfulness disposition and mood traits.  

 

Although MM did not affect the perceived duration of pain in healthy people, it is 

possible that MM could affect time perception in chronic pain patients. There are 

differences in the way in which non-clinical and chronic pain populations experience 

pain. Non-clinical groups primarily experience the first phase of pain (the acute, 

short-lasting sensation); meanwhile clinical groups mainly deals with the second 

phase of pain (the dull, long-lasting sensation) (see section 3.1, page 55). This leads 

to chronic higher physiological arousal in chronic sufferers compared to healthy 

people (Somov, 2000), which is thought to cause the patients’ feeling that daily time 

“drags”. We may therefore expect MM to be particularly beneficial to chronic pain 
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populations because MM has been found to increase emotional self-regulation, 

inhibiting the negative effects of the second phase of pain, such as reducing the 

abnormal arousal of chronic sufferers (Hölzel et al., 2011). In fact, mindfulness-based 

interventions are commonly used in chronic pain management for reducing 

physiological arousal and pain intensity experience (Gardner-Nix et al., 2008; Zeidan 

et al., 2010).  

 

Chronic pain is also frequently in comorbidity with mental health problems, such 

as anxiety, depression and stress reactivity, which are thought to cause the temporal 

distortions of chronic pain patients (Isler et al., 1987; Somov, 2000). Mindfulness 

based intervention are frequently used as treatment for these mental health 

problems; for example, MBCT has the same benefits than drug treatments in 

depression (Kuyken et al., 2015). Furthermore, mindfulness-based programmes 

improve quality of life and wellbeing of clinical populations by inducing positive 

neural changes in brain areas that are involved in stress (Davidson et al., 2003) and 

by reducing self-reported stress and depression (Davidson et al., 2003; Kuyken et al., 

2015). It is therefore possible that MM could reduce perceived duration by reducing 

depression, stress and anxiety symptoms. 

 

Finally, chronic sufferers have an attitude toward pain which differs from healthy 

people; chronic pain patients have higher pain catastrophizing, which is defined as an 

exaggerated negative orientation and fear toward pain experience (Sullivan et al., 

1995) and is a significant predictor of suffering and pain severity (Lackner & Quigley, 

2005; Picavet, Vlaeyen, & Schouten, 2002). Mindfulness disposition was found to 

predict pain catastrophizing with higher mindfulness disposition associated with 

lower pain catastrophizing (Schütze, Rees, Preece, & Schütze, 2010). Mindfulness 

practice could potentially reduce pain catastrophizing in chronic patients, resulting in 

reduced pain experience and shorter perceived duration of pain. 

 

Because MM is able to reduce physiological arousal, mental health symptoms and 

pain catastrophizing, which are abnormal in chronic pain sufferers, MM may be 
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beneficial in attenuating the perceived duration of pain in chronic patients even if 

Experiment 7 showed a null effect in healthy people. Experiment 8 therefore pilot-

tested whether a 1-week mindfulness intervention could affect the perceived 

duration of visual stimuli, vibrations and electro-cutaneous shocks in chronic pain 

patients. The experimental design was a replication of Experiment 7: first chronic pain 

patients selected the subjective pain intensity of the electrical shock during an initial 

task and completed three verbal estimation tasks, one for each stimulus modality. 

Then participants were asked to perform a body-scan exercise once a day for eight 

days, and finally participants were re-tested on the three verbal estimation tasks. The 

intervention was expected to increase verbal estimates of visual and tactile stimuli, 

replicating previous findings (Droit-Volet et al., 2015; Kramer et al., 2013), and to 

decrease physiological arousal and mental health symptoms, leading to reduced 

verbal estimates and estimate variability of painful stimuli. 

 

 

8.2 – Experiment 8 

8.2.1 – Method 

8.2.1.1 – Participants  

Ten participants (4 females and 6 males; mean age = 45.80, SD = 20.33) were 

recruited. Participants were required not to be pregnant and not to have a history of 

schizophrenia, diabetes nor skin problems on their left arm (e.g., eczema). Individuals 

who wore a pacemaker or were regular mindfulness meditators (i.e., meditate more 

than once a month) were also excluded. Participants were reimbursed £15 in 

vouchers for taking part. The study was approved by the Liverpool John Moores 

University and NHS ethics committees and participants were recruited through a 

primary care centre. Informed consent was obtained from all participants. 

 

8.2.1.2 – Experimental design 

The experimental structure was identical to the one used in Experiment 7, except 

that all participants completed the mindfulness intervention and none were assigned 

to the story listening exercise. On the first day, participants attended a pre-testing 
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session which involved 1) completing the questionnaires; 2) the intensity rating task; 

3) the verbal estimation tasks and 4) the mindfulness meditation exercise. On days 

two to seven, participants were asked to complete the mindfulness meditation 

exercise in their own time at home and complete a diary recording their experience. 

On day eight, participants attended a post-testing session, which involved performing 

the mindfulness meditation exercise, followed by the questionnaires and verbal 

estimation tasks (see Figure 8.5 for an experimental structure scheme). 

 

 

Figure 8.5. Experiment 8 structure. 

 

 

8.2.1.3 – Apparatus and material 

Experiment 8 used the same questionnaires (PCS, PHQ-9, DASS-21 and MAAS), 

visual stimulus, tactile vibration, electro-cutaneous stimulation, mindfulness exercise 

and diary of Experiment 7. Intensity rating and verbal estimation tasks used the same 

procedure of the one used in Experiment 7. 

 

 

8.2.2 – Results 

Out of ten participants tested, data from two participants were excluded from the 

analysis because they did not attend the post-session. Therefore, results are reported 

for the remaining eight participants. Participants’ diaries reported that there was 

93.75% adherence and no participants missed more than two home sessions. To 

establish the effect of the intervention on time perception three measures of timing 

were computed: mean estimate, estimate accuracy and estimate variability. 

Greenhouse-Geisserr correction was applied to ANOVAs when the Sphericity 

assumption was violates and post-hoc were Bonferroni corrected. 
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Verbal estimates  

Figure 8.6 shows the verbal estimates of visual, tactile and painful stimuli in the 

pre- and post-session separately. A repeated measures ANOVA with session (pre and 

post), stimulus modality (visual, tactile and painful) and stimulus duration (242ms, 

455ms, 767ms, 1058ms and 1296ms) as within subject factors was conducted. This 

showed significant main effects of stimulus duration F(1.20, 8.39) = 115.80, p < .001, 

ηp
2 = .94 on verbal estimates. ANOVA shows no significant main effect of stimulus 

modality F(2, 14) = 2.39, p = .128, ηp
2 = .25 nor session F(1, 7) = 1.51, p = .259, ηp

2 = 

.18 on verbal estimates. There was however a significant interaction between 

stimulus duration and session (F(4, 28) = 6.28, p = .001, ηp
2 = .47) but no other 

significant interaction was found (all ps > .05). 

 

To further investigate the interaction effect between stimulus duration and 

session, a paired-sample t-test between the pre- and post-session was conducted on 

each stimulus duration separately (242ms, 455ms, 767ms, 1058ms and 1296ms). 

Verbal estimates were significantly longer in the post-session compared to the pre-

session for the 1296ms duration (t(7) = 2.46, p = .043), meanwhile the estimates for 

the 242, 455, 767 and 1058 stimuli did not differ (all ps > .05). 
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Figure 8.6. Means (and standard errors) of the verbal estimates (ms) plotted against 

the stimulus duration and divided by session (pre and post). The three plots show 

the verbal estimates in the visual modality (panel A), tactile modality (panel B) and 

painful modality (panel C). 
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Estimate accuracy 

Estimate accuracy was calculated for each stimulus duration of each modality in 

each session using the same formula used in Experiment 7: verbal estimate/stimulus 

duration. 

 

Figure 8.7 shows the estimate accuracy of visual, tactile and painful stimuli. A 

repeated measures ANOVA with session (pre and post), stimulus modality (visual, 

tactile and painful) and stimulus duration (242ms, 455ms, 767ms, 1058ms and 

1296ms) as within subject factors was conducted. This showed no significant main 

effect of duration (F(1.03, 7.18) = 1.42, p = .273, ηp
2 = .17) and session (F(1, 7) = .31, 

p = .596, ηp
2 = .04) on estimate accuracy. There was a significant main effects of 

stimulus modality F(2, 14) = 4.60, p = .029, ηp
2 = .40. However, post-hoc tests showed 

that the difference between estimate accuracy in the visual and pain modality failed 

to reach significance (p = .080), meanwhile estimate accuracy in the tactile modality 

was not significantly different from the visual (p = .242) and painful (p > .99) 

modalities.  

 

There was a significant interactions between stimulus duration and session 

(F(2.09, 14.61) = 5.41, p = .017, ηp
2 = .44), but no other significant interaction was 

found (all ps > .05). To further investigate the interaction effect between stimulus 

duration and session, a paired-sample t-test between the first and second session 

was conducted per each stimulus duration (242ms, 455ms, 767ms, 1058ms and 

1296ms). Estimate accuracy was significantly higher in the post-session than in the 

pre-session for the 1296ms duration (t(7) = 2.49, p = .041), meanwhile the estimates 

for the 242, 455, 767 and 1058 stimuli did not differ between sessions (all ps > .05). 
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Figure 8.7. Means (and standard errors) of the estimate accuracy plotted against the 

stimulus duration and divided by session (pre and post). The three plots show the 

verbal estimates in the visual modality (panel A), tactile modality (panel B) and 

painful modality (panel C). 
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Estimate variability 

Estimate variability was calculated for each stimulus duration of each modality in 

each session using the same formula used in Experiment 7: standard deviation verbal 

estimate/mean verbal estimate. 

 

Figure 8.8 shows the estimate variability of visual, tactile and painful stimuli. A 

repeated measures ANOVA with session (pre and post), stimulus modality (visual, 

tactile and painful) and stimulus duration (242ms, 455ms, 767ms, 1058ms and 

1296ms) as within subject factors was conducted. This showed significant main 

effects of stimulus duration F(4, 28) = 19.36, p < .001, ηp
2 = .73 and session F(1, 7) = 

14.11, p = .007, ηp
2 = .67 on estimate variability. Post-hoc tests indicated that 

estimate variability was higher for the shortest duration (242ms) than for the 1058ms 

and 1296ms durations (ps < .05). Estimate variability was also significantly higher in 

the pre-session compared to the post-session. There was no significant main effect 

of stimulus modality on estimate variability F(2, 14) = 1.44, p = .269, ηp
2 = .17. There 

were also no significant interactions (all ps > .05). 
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Figure 8.8. Means (and standard errors) of the estimate variability plotted against the 

stimulus duration and divided by session (pre and post). The three plots show the 

verbal estimates in the visual modality (panel A), tactile modality (panel B) and 

painful modality (panel C). 
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Questionnaires 

 

Session Pre Post 

PCS total 16.25 (9.21) 13.88 (11.21) 

PCS Rumination 5.88 (3.18) 4.63 (3.85) 

PCS Magnification 3.50 (2.67) 3.75 (3.99) 

PCS Helplessness 6.75 (4.92) 5.75 (5.01) 

DASS Depression 8.25 (10.00) 5.00 (3.70) 

DASS Anxiety 6.25 (7.74) 4.75 (5.85) 

DASS Stress 13.25 (7.70) 11.75 (2.49) 

MAAS total 4.11 (0.44) 3.93 (0.68) 

PHQ-9 total 6.50 (5.88) 6.13 (4.49) 

Table 8.3. Means (and standard deviations) of questionnaire scores divided by session 

(pre and post). PCS = Pain Catastrophizing Scale. DASS = Depression, Anxiety and 

Stress Scale. MAAS = Mindful Attention Awareness Scale. PHQ- 9 = Patient Health 

Questionnaire-9. 

 

Table 8.3 shows questionnaire scores divided by session. A paired-sample t-test 

was conducted per each questionnaire and subscale. None of the questionnaire 

scores changed significantly from the pre- to the post-session (all ps > .05). Due to 

the reduced size of the sample, correlational analysis of the relationship between 

mood, fear of pain and perceived duration was not conducted. 

 

 

8.2.3 – Discussion 

Experiment 8 pilot tested whether a 1-week mindfulness intervention could affect 

the perceived duration of visual, tactile and painful stimuli in chronic pain patients. 
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This was also the first study examining how chronic sufferers perceive the duration 

of stimuli other than visual (Droit-Volet et al., 2015; Kramer et al., 2013). The results 

indicated that chronic pain patients gave similar verbal estimates across stimulus 

modality. This contrasts with the results obtained from healthy people in Experiment 

7, who gave shorter estimates for visual stimuli than for vibrations and electro-

cutaneous stimulations, as also shown previous studies (E. A. Williams, Stewart, & 

Jones, 2009). However, this finding should be taken with caution due to the small 

sample size and lack of statistical comparison between the two groups. 

 

The MM intervention was expected to increase the perceived duration of the 

visual and vibrotactile stimuli and to decrease the verbal estimates of painful stimuli. 

Furthermore, mindfulness was expected to reduce the variability of duration 

estimates in all stimulus modalities. Results partially confirmed expectations; 

mindfulness lengthened the perceived duration of the visual and tactile stimuli, 

although this occurred only for the longest duration (1296ms). MM also reduced the 

variability of estimates for all modalities. Contrary to expectations, however, MM 

also increased the perceived duration of the pain stimuli, but again, only for the 

longest stimulus duration.  

 

The lengthening effect of mindfulness on the perceived duration of visual and 

tactile stimuli found in this experiment confirmed similar studies using healthy 

participants (Droit-Volet et al., 2015; Kramer et al., 2013). The effect of the MM 

intervention on estimate variability is also in line with the findings of Droit-Volet et 

al. (2015), who found higher temporal sensitivity, indexed by Weber ratio, in a 

temporal bisection task after a 5-week mindfulness intervention. These effects may 

occur because MM enhances attentive processes, such as self-regulating attention 

and inhibition of cognitive automatic responses (Bishop et al., 2004; Mirams et al., 

2013). These processes are related to time perception and responses variability, with 

greater ability to direct attentive resources to the timing task associated with longer 

estimates and reduced temporal variability (Brown, 2006). It is therefore possible 

that the mindfulness intervention enhanced attentive processes leading to greater 
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attention dedicated to the temporal task and resulting in longer perceived duration 

and reduced temporal variability in visual and tactile stimuli. 

 

MM was expected to decrease physiological arousal and mental health symptoms 

(e.g., depression), leading to shorter perceived duration for the pain stimuli. 

However, the results indicated that the longest painful stimulus was perceived longer 

after the intervention than before. It is possible that the attentive resources 

enhanced by MM could have led to this lengthening effect, as for the visual and tactile 

stimuli. It is also possible that the intervention did not shorten verbal estimates 

because the body-scan exercise did not reduce physiological activity and mental 

health symptoms. This possibility is supported by studies showing that MM could 

increase SNS activity (Ditto et al., 2006) and by the questionnaire scores in this 

experiment, which showed no effect of MM on mental health symptoms. In fact, 

questionnaire scores in the pre- and post-sessions were alike, suggesting that MM 

did not decrease anxiety, depression and stress.  

 

The null effect of MM on questionnaire scores contrasts with findings in 

Experiment 7, which showed that MM decreased questionnaire scores in healthy 

participants leading to enhanced mindfulness disposition and reduced pain 

catastrophizing, depression, anxiety and stress. Questionnaire results in Experiment 

8 are particularly unexpected because MM was consistently found to improve 

patients’ wellbeing reducing their depression, anxiety and stress symptoms 

(Davidson et al., 2003; Kuyken et al., 2015). 

 

An evident limitation of Experiment 8 is the small sample size, which reduced the 

statistical power of the analyses (see Button et al., 2013 for discussion). It is therefore 

possible that Experiment 8 did not find an effect of MM on questionnaire scores 

(contrary to Experiment 7) because of the sample size. Additionally, the sample size 

could explain why the mindfulness intervention lengthened only the verbal estimates 

of the longest duration. However, small sample sizes can also lead to increased 
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effects (Button et al., 2013). The promising result that the mindfulness intervention 

reduced estimate variability could therefore disappear with a greater sample.   

 

In conclusion, this pilot study suggest that MM may affect the way in which chronic 

pain patients experience the perceived duration visual, tactile and painful stimuli, 

although not in the expected direction. 1-week body scan exercise lengthened the 

duration of visual, vibrotactile and electro-cutaneous stimuli and reduced their 

estimate variability. With results of Experiment 7, this suggests that mindfulness 

meditation might not be an effective modality to shorten perceived duration and to 

mitigate the lengthening effect of pain on time perception. However, given the 

limited chronic pain sample, further research is required to test the effect of 

mindfulness in clinical populations. 
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Chapter 9 

General discussion 

 

 

9.1 – Review of findings 

This thesis aimed to expand our understanding of the effect of pain on human time 

perception. In particular, this thesis (i) clarifies the conditions under which pain 

distorts time perception, (ii) directly tests the mediating role of arousal in the 

lengthening effect of pain on perceived duration, and (iii) tests an intervention for 

reducing those temporal distortions. This was achieved in a series of studies by 

examining (i) whether changes in neutral and emotional stimulus intensities induce 

comparable time distortions; (ii) whether changes in task-relevant and task-irrelevant 

pain induce comparable time distortions; (iii) the relationship between physiological 

arousal and perceived duration; (iv) whether pain affects perceived durations when 

they are recalled over a period of delay; and (v) whether a mindfulness intervention 

could modulate the perceived duration of visual, somatosensory and painful stimuli. 

 

 

9.1.1 – The effect of changes in emotional and neutral stimulus intensity on time 

perception 

Chapter 5 (Experiment 1) tested whether changes in the intensity of a neutral 

stimulus distorted time in a comparable way to changes in the intensity of an 

emotional stimulus. This was achieved by examining the perceived duration of 

perceptible, low and high vibrotactile stimulation and the perceived duration of no 

pain, low pain and high pain electro-cutaneous stimulation. The results demonstrated 

that increases in electro-cutaneous intensity were associated with longer, more 

accurate and less variable verbal estimates, which were different between each pain 

intensity. Increases in vibrotactile intensity were also associated with longer, more 

accurate and less variable verbal estimates; however, there was no difference 

between low and high vibration intensity. Experiment 1 therefore indicated that 

changing the intensity of a neutral stimulus distorts time in a comparable way, albeit 
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less effectively, to changing the intensity of an emotional stimulus. This finding 

perhaps suggests that arousal increases originating from a neutral source have the 

capacity to distort time in similar ways to that observed with emotional stimuli. This 

confirms previous studies that found temporal distortions induced by neutral stimuli, 

such as click-trains (Penton-Voak et al., 1996), visual flicker (Ortega & López, 2008), 

filled and unfilled durations (Wearden et al., 2007) and modality differences in timing 

(Jones et al., 2009). Although these findings provide support for the suggestion that 

changes in arousal can affect the perceived duration of neutral stimuli, it should be 

noted that there were methodological limitations of the physical properties of the 

vibrotactile stimulus which caution this interpretation (see section 5.1.3, page 98). 

 

 

9.1.2 – The effect of task-relevant and task-irrelevant pain on time perception 

Chapters 5 (Experiments 1 and 2) tested whether changes in the intensity of task-

irrelevant pain could distort time in a comparable way to changes in the intensity of 

task-relevant pain. This was achieved by contrasting the temporal distortions 

observed in two scenarios 1) when pain was the to-be-timed-stimulus and therefore 

task-relevant and 2) when the pain was not the to-be-timed-stimulus and therefore 

task-irrelevant. The results demonstrated that, whilst increases in task-relevant pain 

intensity were associated with longer, more accurate and less variable estimates of 

duration (Experiment 1), increased task-irrelevant pain intensity was associated with 

shorter and less accurate verbal estimates of the concurrently experienced visual 

stimulus (Experiment 2). This contrasts with the prediction of the arousal hypothesis 

and the theories of timing (SET, SBF and Craig’s model of awareness), which suggest 

that any source of arousal should lead to longer perceived durations. The findings of 

Experiments 1 and 2 therefore indicated that this suggestion is likely to be too 

simplistic, instead suggesting that lengthening effects of arousal are limited to 

circumstances in which arousal is relevant to the timing task. This emphasises the 

need for future work to understand how attention and arousal interact to produce 

distortions to time. 
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9.1.3 – The relationship between physiological arousal and perceived duration 

Chapter 6 (Experiments 3 and 4) introduced physiological recording equipment to 

directly test the mediating role of physiological arousal in the lengthening effect of 

pain on perceived duration. This was achieved by replicating Experiments 1 and 2 and 

examining the association between changes in perceived duration and changes in 

physiological activity caused by task-relevant and task-irrelevant pain. The results 

demonstrated that both task-relevant and task-irrelevant pain increased sympathetic 

arousal but only task-relevant pain increased verbal estimates. Critically, changes in 

sympathetic activity were associated with changes in perceived duration only when 

pain was task-relevant, meanwhile sympathetic activity and perceived duration were 

unrelated when pain was task-irrelevant. Sympathetic arousal therefore mediated 

the effect of pain on time perception only when arousal was induced by a task-

relevant source. These findings supported the suggestions of Gil and Droit-Volet 

(2012) that the arousal hypothesis may be too simplistic and that the effect of arousal 

on time perception is not as automatic as previously described. I therefore proposed 

a survival based model, in which arousal leads to time distortions exclusively when 

these distortions promote the best survival chances, that is when pain is relevant (see 

section 6.3, page 136). 

 

 

9.1.4 – The effect of pain on memory for duration 

Chapter 7 (Experiments 5 and 6) tested the effect of low and high pain on memory 

for duration. This was achieved by using a temporal generalisation task where 

participants encoded the duration of a tone whilst experiencing neutral or painful 

thermal stimulation. Participants then recalled the duration in the absence of thermal 

stimulation either immediately after learning or after a 15-minute delay. The findings 

of experiments 5 and 6 were not consistent; 15-minute delay decreased temporal 

performance of both neutral and pain related durations in Experiment 7, but had no 

effect on temporal performance of neither neutral nor pain related durations in 

Experiment 8. In both experiments, however, delay affected neutral and pain related 
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durations in a comparable way, suggesting that pain does not have any unique effect 

on the memorization of duration. These findings indicated that unlike emotion 

(Cocenas-Silva et al., 2012), pain does not enhance the memorization of duration 

information. The findings also indicated that pain did not disrupt the cognitive 

functions required for the correct memorization of duration, such as attention and 

executive functions. Pain therefore neither improved nor disrupted the duration 

encoding and retrieval from memory. It has been argued that the use of a task-

irrelevant source of pain might have limited the effect that pain had on the 

memorization process (see section 7.3, page 159). 

 

 

9.1.5 – Reducing the lengthening effect of pain through a mindfulness intervention 

Chapter 8 (Experiments 7 and 8) tested whether a mindfulness intervention could 

affect the perceived duration of painful, vibrotactile and visual stimuli in healthy 

people and chronic pain sufferers. This was achieved by asking participants to 

complete a verbal estimation task before and after practising a body-scan exercise 

for 20 minutes per day for 8 days. Results showed that mindfulness did not affect the 

perceived duration of any stimulus in healthy participants (Experiment 7). In contrast, 

MM had a lengthening effect on the perceived duration of visual, vibrotactile and 

painful stimuli in chronic pain patients (Experiment 8), although the effect was limited 

to the longest duration (1296ms) and are difficult to interpret due to the small sample 

size. MM therefore failed to achieve the intervention’s purpose of decreasing the 

perceived duration of pain. The results of Experiment 7 also contrast with previous 

findings, which showed that mindfulness lengthened the perceived duration of visual 

stimuli in healthy people (Droit-Volet et al., 2015; Kramer et al., 2013). It is however 

possible that the limited effect of mindfulness on time perception in this study might 

have been due to participants being MM novices and/or the body-scan exercise being 

ineffective in reducing physiological arousal enough to affect time perception (see 

section 8.1.3, page 183).  
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9.2 – Methodological and theoretical issues 

9.2.1 – Reliability of the intensity rating task  

All experiments described in the present thesis included the intensity rating task 

in their procedure. This task consisted of participants selecting the required pain 

intensity based on their subjective experience; each participant had to select the 

somatosensory stimulation that they think corresponded to a target pain intensity in 

the Numeric Rating Scale (e.g., 6, which corresponds to high pain). The physical 

intensity of the electro-cutaneous and thermal stimulations were therefore different 

across participants and studies, which led to limitations in the interpretation of the 

findings when comparing different studies. For example, high pain intensity was 

found to induce temporal underestimation in Experiment 2, but no temporal 

distortion in Experiment 4 and it was not possible to exclude that the use of different 

temperatures between the two studies (i.e., 44.47oC in Experiment 2 and 43.60oC in 

Experiment 4) which may have contributed to the inconsistency between the 

experiments’ findings. 

 

An obvious issue with the intensity rating task, is that some participants may have 

chosen to select temperatures which were not painful. For example, Rolke et al. 

(2006) found that few participants in their sample reported 37°C and 29°C, which are 

within the range of no-pain temperature, as being hot pain and cold pain respectively. 

Selection of temperatures not typically deemed painful was also evident in Chapters 

5 and 6 (Experiment 2 and 4), where participants who selected a temperature below 

40°C as high pain were removed from analysis. However, it is not possible to exclude 

the possibility that other subjects selected an intensity that, although painful, was 

lower than the one required by the experiment. This might have reduced the effect 

of pain on physiological activity and perceived duration contributing to some 

inconsistencies in the findings across chapters. 

 

Despite these known limitations, asking participants to select the stimulus 

intensity based on their perceived pain is common practice in the pain and time 
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perception literatures (Fayolle et al., 2015; Moore et al., 2013). It is also preferred to 

the alternative of using the same physical intensity across participants because the 

same physical stimulation frequently induces different subjective experience across 

participants. For example, a thermode at a fixed temperature may be perceived as 

painful by some participants but non-painful by others (Strulov et al., 2007). This 

variability across participants is particularly common when using electro-cutaneous 

stimulations (Rollman & Harris, 1987), resulting in the same physical stimulation 

inducing different physiological, emotional and cognitive responses across 

participants, which ultimately affects the ability of the IV (pain) to impact on the DV. 

In the present thesis, the presentation of a fixed electro-cutaneous (or thermal) 

stimulation was likely to induce physiological responses and verbal estimates with 

greater variability across participants than using the intensity rating task, potentially 

resulting in inconsistent experimental findings. Furthermore, using a fixed intensity 

might expose people to pain which they experience as unbearable, leading to ethical 

issues. For these reasons, the intensity rating task was preferred in the present 

studies rather than using a fixed stimulation. The Numeric Rating Scale was also used 

due to its higher responsiveness compared to other scales (e.g., Visual Analogue 

Scale; Ferreira-Valente, Pais-Ribeiro, & Jensen, 2011). 

 

 

9.2.2 – The mechanisms underlying the relationship between arousal and 

perceived duration 

The mechanisms underlying human time perception are still unclear. Chapter 1 

described three popular models of time perception, each of which proposed a 

different series of processes that would lead to the conscious time experience. 

Arousal has different roles within these models: arousal is thought to increase the 

pacemaker speed in SET, the DA levels and cortical activity in SBF and the generation 

of global emotional moments in Craig’s model of awareness (see sections 2.3.1, page 

47 and 3.3.1, page 67). Chapter 6 reported the first direct evidence supporting the 

suggestions of these models that arousal can directly mediate the perceived duration 

of a stimulus. Whilst this finding supports the basic tenants of the arousal hypothesis, 



205 | P a g e  

 

it remains unclear how arousal acts on duration perception. It thus remains unclear 

whether arousal affects timing by altering the speed of an internal clock, activity in 

the AIC or neuronal oscillations in striatum.  

 

Chapter 6 did however highlight that arousal has to be task-relevant to distort 

perceived duration. This contrasts with timing theories’ expectation that any arousal 

modulation should lead to temporal distortions. However, this thesis did not address 

why task-relevancy is determinant for the arousal effect. It has been argued that pain 

might have distracted participants from the encoding of the neutral stimulus 

interfering with the arousal effect. In fact, reduced attention is thought to decrease 

the number of accumulated pulses in SET and the DA level in SBF, resulting in reduced 

perceived duration, which could cancel the lengthening effect of arousal. However, 

this argument was not conclusively supported by empirical evidence in this thesis and 

future studies should be conducted to investigate the interaction effect of arousal 

and attention on perceived duration. 

 

 

9.2.3 – The contrast effect 

One theory posited in Chapter 6 was that task-irrelevant pain did not lengthen 

verbal estimates because there was a lack of trail-by-trial contrast between the pain 

and non-pain conditions; when task-relevant pain was presented, the contrast 

between the stimulus and the background changed from trial to trial. When task-

irrelevant pain was presented, however, the arousing stimulus was presented as a 

constant background and there was no trial-to-trial contrast, which might have 

contributed to the absence of a temporal distortion (see section 6.3, page 136). The 

absence of contrast might also explain why pain did not affect memory for duration 

in Chapter 7. In Chapter 7, pain was presented in the background whilst participants 

encoded the neutral tone in the learning phase of the temporal generalisation task. 

There was therefore no trial-to-trial contrast, which might have led to a lack of 

temporal distortion. Finally, the absence of contrast might explain why participants 

did not estimate painful stimuli as lasting longer than neutral somatosensory stimuli 
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in Chapter 8. In Chapter 5 and 6, short blocks of neutral, low and high intensity pain 

were inter-mixed. This mean that there was frequent contrast between blocks. In 

Chapter 8 however, only a single block of pain and a single block of visual and 

vibrotactile stimuli were delivered. As a result, these blocks were longer than in 

Chapters 5 and 6. It is therefore possible that the absence of frequent inter-block 

changes contributed towards the null effects observed.  

 

It should be noted, however, that the absence of contrast could only lead to no 

temporal distortion and cannot explain why Chapter 5 found that task-irrelevant pain 

shortened the perceived duration of a neutral stimulus. Furthermore, background 

pain has been constantly found to disrupt memory and attentional processes 

required in concurrent tasks (Moore et al., 2013). Therefore, although the absence of 

trial-to-trial contrast might have prevented pain affecting the encoding of the neutral 

duration (Chapter 7), it is unlikely that it prevented task-irrelevant pain to disrupt the 

cognitive functions necessary for the correct memorization of the neutral stimulus. 

 

 

9.3 – Directions for future research 

9.3.1 – Why task-relevancy is critical 

This thesis showed that pain lengthened time perception only when pain was task-

relevant (Chapters 5 and 6). Multiple suggestions were made to address why the 

lengthening effect was specific to this circumstance. For example, task-irrelevant pain 

could have induced cognitive responses and antinociceptive mechanisms, which led 

to habituation to pain and reduced AIC activity, resulting in the absence of temporal 

distortions. An additional argument was that experiments testing the effect of task-

irrelevant pain on the perceived duration of a neutral visual stimulus used a cross-

modal task, which has led to inconsistent findings in previous studies (Ogden et al., 

2015). It was also argued that when pain was task-relevant subjects’, attention was 

fully directed toward pain allowing arousal to lengthen perceived duration, but when 

pain was task-irrelevant, pain reduced people’s attention cancelling the lengthening 

effect of arousal. Finally, it was suggested that there could be some perceptual and 
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cognitive advantage for survival in lengthening the perceived duration of pain, but 

this advantage disappears when pain is task-irrelevant (see section 6.3, page 136 for 

full discussion). 

 

Although these arguments are plausible, this thesis did not directly test these 

potential explanations and therefore did not address why the lengthening effect of 

pain was specific to task-relevant situations. Future research should therefore 

examine these suggestions testing whether task-relevancy is determinant for the 

lengthening effect of pain for survival purposes or due to interference of cognitive 

responses, antinociceptive mechanisms, cross-modal tasks or attentional 

disruptions. 

 

 

9.3.2 – The effect of task-relevant pain on memory for duration 

Chapter 7 showed that pain did not affect the memory for duration: pain was not 

found to improve or disrupt the recall of the duration of a concurrent neutral stimulus 

after a period of delay. One possible explanation for this finding is that the retention 

period used (15 minutes) was too short and that a longer delay would elicit a pain 

effect not currently evident (however see section 7.3, page 159). Another possibility 

is that pain was task-irrelevant, which was found to alter the effect of pain on 

perceived duration in Experiments 2 and 4. This possibility could be tested in future 

studies by replicating Experiments 5 and 6 but using task-relevant pain. For example, 

in a temporal generalisation task participants could be asked to memorize the 

duration of neutral and painful electro-cutaneous stimulations and recall it after 15-

minute delay. If the painful stimulation were recalled shorter or longer than the 

neutral stimulation after 15 minutes, this would indicate that pain disrupts or 

enhances the memory processes. Furthermore, this would be an additional 

confirmation of the importance of task-relevancy for the pain effects on temporal 

distortions. 
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9.3.3 – New interventions to reduce the lengthening effect of pain 

Chapter 8 proposed a 1-week mindfulness intervention to reduce the perceived 

duration of pain. However, Experiments 7 and 8 showed that the intervention failed 

to affect time perception in healthy participants; meanwhile it had a lengthening 

effect in chronic pain patients limited to the longest duration. These findings have 

been attributed to the length of the intervention (8 days), which might have been too 

short to lead to significant effects, and to mindfulness being effective only with who 

already has mindfulness experience (see section 8.2.3, page 195). Future studies 

could test this possibility by replicating Experiments 7 and 8 with a longer 

mindfulness practice. For example, participants could practice MM for 8 weeks as in 

the common MBSR and MBCT interventions (Kabat-Zinn, 1982; Segal et al., 2002). 

However, given that the mindfulness intervention appears to have an effect opposite 

to its original aim (i.e., lengthening instead of shortening), future studies should also 

consider new interventions that could have greater beneficial effects in reducing the 

perceived duration of pain. A breathing exercise would be advised, given that Droit-

Volet et al. (2015) and Kramer et al. (2013) found it to affect time perception even 

after a short practice. 

 

 

9.4 – Conclusions 

The investigations conducted in this thesis advanced our knowledge on the effects 

of pain on human time perception. We now know that task-relevancy is critical for 

the lengthening effect of pain on perceived duration: whilst painful stimuli are 

perceived longer than neutral ones, pain does not increase the perceived duration of 

concurrent neutral stimuli. Importantly, this thesis also showed that arousal mediates 

the lengthening effect of pain on perceived duration only in task-relevant situations, 

meanwhile physiological arousal and verbal estimates are unrelated when pain is 

task-irrelevant. Furthermore, this thesis showed that pain does not affect the 

memory processes required to recall the duration of a neutral stimulus after several 

minutes delay. Finally, this thesis demonstrated that 1-week mindfulness body-scan 
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intervention is not able to reduce the perceived duration of painful stimuli in healthy 

people and chronic pain patients. 

 

In summary, this thesis generated new evidence for our understanding of the pain 

effects on time perception. However, the mechanisms underlying these effects are 

yet to be explored and required future investigation, which could also deepen our 

understanding of the processes that lead to the conscious time experience. 

Furthermore, new interventions need to be tested to reduce the lengthening effect 

of pain, which could improve the quality of life of clinical populations. 
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Appendix 

 

In Experiment 6, YES responses in the no-pain immediate condition contrasts 

typical responses of temporal generalisation task, where gradients were more 

peaked around the standard duration (Wearden, 1992). Here in the no-pain 

immediate condition the plot showed the peak of YES responses at the 0.875 

comparison, suggesting that participants had poor temporal sensitivity. Analysis have 

been therefore conducted again removing participants who showed poor temporal 

sensitivity in the no-pain immediate condition. That is, who confused the shortest 

(0.625) or the longest (1.375) comparisons with the standard more than 50% of the 

times. With these criteria, we removed 9 participants, reporting the results based on 

data from the remaining 19 participants. 

  

Temporal sensitivity group 

Figure A.1 shows temporal generalization gradients depicting the mean 

proportion of YES responses in the four conditions plotted against 

comparison/standard ratio. Examination of Figure A.1 suggests that in the no pain 

condition, gradients appear to be slightly shifted to the left following the delay. In the 

pain condition, Figure A.1 suggests that there was no effect of delay on responding. 

A repeated measures ANOVA with pain intensity (no-pain vs pain), delay (immediate 

vs delay) and comparison/standard ratio (0.625, 0.750, 0.875, 1, 1.125, 1.250 or 

1.375) as within-subject factors was conducted. The ANOVA showed a significant 

main effect of ratio (F(1.93, 34.80) = 33.96, p < .001, ηp
2 = .65) on proportion of YES 

responses. There was however no effect of pain intensity (F(1, 18) = 1.34, p = .26, ηp
2 

= .07) or delay (F(1, 18) = 0.11, p = .75, ηp
2 = .01). There were also no significant 

interactions between delay and ratio (F(2.45, 44.04) = .53, p = .63, ηp
2 = .03), pain 

intensity and delay (F(1, 18) = 2.75, p = .12, ηp
2 = .13), pain intensity and ratio (F(2.47, 

44.47) = .47, p = .67, ηp
2 = .03) or pain intensity, delay and ratio (F(2.21, 39.81) = .84, 

p = .45, ηp
2 = .04). Therefore, the absence of effects of pain or delay in the previous 

analysis was not due to the inclusion of participants who responded without 
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temporal sensitivity. This was further confirmed in the analysis of accuracy and 

variability. 

 

 

 

 

Figure A.1. Proportion of YES responses plotted against comparison/standard ratio in 

Experiment 6 with only participants who showed temporal sensitivity. YES 

responses are divided between immediate (solid line) and delay (dotted line), and 

between No-pain (left panel) and Pain (right panel). 

 

Temporal accuracy 

Table A.1 shows temporal accuracy in the four conditions. Examination of Table 

A.1 suggests that accuracy was similar in all conditions. A repeated measures ANOVA 

with pain intensity (no-pain vs pain) and delay (immediate vs delay) as within-subject 

factors confirmed these suggestions. There were no significant effects of pain 

intensity (F(1, 18) = .54, p = .47, ηp
2 = .03) nor delay (F(1, 18) = .01, p = .94, ηp

2 < .001) 

on accuracy. There was also no significant interaction effect between pain intensity 

and delay on accuracy (F(1, 18) = 1.38, p = .26, ηp
2 = .07). Temporal accuracy was 

therefore unaffected by pain or delay. 
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Condition Accuracy Mid-three 

No-pain immediate 0.66 (0.13) 0.69 (0.14) 

No-pain delay 0.63 (0.11) 0.65 (0.15) 

Pain immediate 0.65 (0.11) 0.67 (0.16) 

Pain delay 0.68 (0.13) 0.67 (0.19) 

Table A.1. Means (and standard deviations) of accuracy and mid-three in the four 

conditions (no-pain immediate, no-pain delay, pain immediate and pain delay) in 

Experiment 6 with only participants who showed temporal sensitivity. 

 

Temporal variability 

Table A.1 shows temporal variability in the four conditions. Examination of Table 

A.1 suggests that variability was lower (i.e., gradients were more peaked) in the 

immediate testing than delayed testing conditions. A repeated measures ANOVA 

with pain intensity (no-pain vs pain) and delay (immediate vs delay) as within-subject 

factors confirmed these suggestions. There were no significant effects of pain 

intensity (F(1, 18) = .02, p = .89, ηp
2 = .001) nor delay (F(1, 18) = .40, p = .53, ηp

2 = .02) 

on mid-three. There was also no significant interaction effect between pain intensity 

and delay on mid-three (F(1, 18) = .36, p = .56, ηp
2 = .02).  

 

 

 

 


