
Wilkinson, RR, Ball, FG and Sharkey, KJ

 The deterministic Kermack McKendrick model bounds the general stochastic‒
epidemic

http://researchonline.ljmu.ac.uk/id/eprint/10963/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Wilkinson, RR, Ball, FG and Sharkey, KJ (2016) The deterministic Kermack‒
McKendrick model bounds the general stochastic epidemic. Journal of 
Applied Probability, 53 (4). pp. 1031-1040. ISSN 0021-9002 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


ar
X

iv
:1

60
2.

01
73

0v
3 

 [
q-

bi
o.

PE
] 

 1
0 

Fe
b 

20
17

Applied Probability Trust (26 September 2018)

THE DETERMINISTIC KERMACK-MCKENDRICK MODEL

BOUNDS THE GENERAL STOCHASTIC EPIDEMIC
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Abstract

We prove that, for Poisson transmission and recovery processes, the classic

Susceptible → Infected → Recovered (SIR) epidemic model of Kermack and

McKendrick provides, for any given time t > 0, a strict lower bound on the

expected number of suscpetibles and a strict upper bound on the expected

number of recoveries in the general stochastic SIR epidemic. The proof is

based on the recent message passing representation of SIR epidemics applied

to a complete graph.
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1. Introduction

The so-called general stochastic SIR (Susceptible → Infected→ Recovered) epidemic

(see Bailey 1975, Chapter 6) can be defined as follows. We have a finite population

consisting of a set V of N = |V| discrete individuals. An individual, while infected,
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Table 1: Population-level transition rates for the general stochastic epidemic

From To Rate

(x, y) (x− 1, y + 1) βxy

(x, y) (x, y − 1) γy

makes infectious contacts to any other given individual according to a Poisson process

of rate β (all such Poisson processes are independent). If a susceptible individual

receives an infectious contact, it immediately becomes infected and remains so for an

exponentially distributed period of time, with parameter γ (and hence mean γ−1),

after which it ceases making contacts and becomes permanently recovered. All such

infectious periods are independent and also independent of the Poisson processes that

govern infectious contacts.

The term general is now a misnomer, since far more complicated epidemic models

have been proposed and analysed, but for ease of reference we keep with that termi-

nology. The model has its origin in McKendrick (1926).

For t ≥ 0, let X(t) and Y (t) be discrete random variables representing the number

of susceptible individuals at time t and the number of infected individuals at time

t, respectively. Then the continuous-time Markov chain {(X(t), Y (t)) : t ≥ 0}, with

transition rates as in Table 1 with the constraint that x + y ≤ N and x, y ≥ 0, is

consistent with the dynamics in the general stochastic SIR epidemic (x and y denote

possible values of X(t) and Y (t), respectively). For t ≥ 0, let the random variable

Z(t) = N −X(t)− Y (t) represent the number recovered at time t.

We assume a pure (i.e. non-random) initial state. Thus, we define S0 ⊂ V and I0 =

V \S0 to be the set of initial susceptibles and the set of initial infectives respectively. In

order to avoid triviality we assume that |I0| ≥ 1 and |S0| ≥ 1. For ease of presentation

of the proof, we make the stronger assumption that |S0| ≥ 2, though Theorems 1 and 2

still hold when |S0| = 1; see Remark 1 after Theorem 1.

The deterministic general SIR epidemic (Kermack and McKendrick 1927), in the

case where Poisson infection and recovery processes are assumed, is defined by the

following system of ordinary differential equations, which we refer to henceforth as the
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deterministic SIR system:

Ṡ(t) = −βS(t)I(t), (1)

İ(t) = βS(t)I(t)− γI(t), (2)

Ṙ(t) = γI(t). (3)

Here, and throughout the paper, we use ‘dot’ notation to denote time derivatives. This

model has its origin in McKendrick (1914); Kermack and McKendrick (1927) treat a

more general model in which the recovery and infection rates of an indidvidual may

depend on the time since it was infected.

By setting S(0) = |S0|, I(0) = |I0|, R(0) = 0 and matching the parameters, the

deterministic SIR system approximates the general stochastic epidemic and becomes

‘exact’ in the limit of large population size subject to suitable scaling of the initial

conditions (Ethier and Kurtz 1986, Chapter 11; Andersson and Britton 2000, Chapter

5).

When the recovery rate γ = 0, the above models reduce to the simple, or SI

(Susceptible → Infected), stochastic and deterministic epidemics (Bailey 1975, Chapter

5). For these SI models, the deterministic model underestimates the expected number

of susceptibles in the stochastic model at any given time t > 0 (Bailey 1975, page

46; Ball and Donnelly 1987). For the Markovian SIS (Susceptible → Infected →

Susceptible) model, it has also been shown (Allen 2008; Simon and Kiss 2012) that

its deterministic counterpart underestimates the expected number susceptible at any

time. A long-standing conjecture is that this comparison holds also for the general

stochastic SIR epidemic. The SI and SIS models are essentially one-dimensional, in

that X(t) + Y (t) = S(t) + I(t) = N for all t ≥ 0. For these models, the comparison

between the stochastic and deterministic counterparts is proved easily by using the

Kolmogorov forward equation to express Ė[X(t)] as the expectation of a quadratic

function of X(t) and then using the fact that E
[

X(t)2
]

> E [X(t)]2 to compare Ė[X(t)]

with Ṡ(t). This approach has proved to be unfruitful for the general stochastic SIR

epidemic as that model is not one-dimensional.

The aim of the present paper is to use the recently developed message passing

approach to general epidemics on graphs (Karrer and Newman 2010; Wilkinson and

Sharkey 2014) to prove the above-mentioned conjecture. This is achieved in section
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2, where we show that for finite populations, the deterministic SIR system strictly

underestimates (overestimates) the expected number susceptible (recovered) in the

general stochastic epidemic, at any positive time point (Theorems 1 and 2) and also

at the end of the epidemic (Corollary 1). In section 3, we give some brief concluding

comments.

2. The deterministic general SIR epidemic provides rigorous bounds for

the general stochastic SIR epidemic

We show that the deterministic SIR system, expressed as (1)-(3), provides a rigorous

lower bound on the expected number susceptible at all time points in the general

stochastic SIR epidemic (Table 1). We state this main result in the following theorem.

Theorem 1. For the same initial conditions and parameters,

E[X(t)] > S(t) for all t > 0.

Proof. From Lemmas 1 and 2 (below),

E[X(t)] ≥ Smes(t) > S(t) for all t > 0, (4)

where Smes(t) is defined by (5) below. �

Let T = inf{t > 0 : Y (t) = 0} denote the duration of the general stochastic SIR

epidemic, so |S0|−X(T ) is the size of the epidemic, i.e. the number of initial susceptibles

that are infected by the epidemic. The following corollary shows that the expected size

of the general stochastic epidemic is strictly less than the size S(0) − S(∞) of its

deterministic counterpart.

Corollary 1. For the same initial conditions and parameters,

E[X(T )] > S(∞).

Proof. The duration T is bounded above by the sum of the infectious periods of

all individuals infected during the epidemic, which is almost surely finite, so X(T ) =
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limt→∞X(t) almost surely and the dominated convergence theorem yields that E[X(T )] =

limt→∞ E[X(t)]. Letting t → ∞ in Theorem 1 implies immediately that E[X(T )] ≥

S(∞). Moreover, in view of (4), the inequality is strict, since Smes(∞) > S(∞), see

Remark 2 after Lemma 2. �

In the following subsections we present two systems which approximate the general

stochastic SIR epidemic, and show that, for any t > 0, they increasingly underestimate

the expected number of susceptibles E[X(t)] and increasingly overestimate the expected

number recovered E[Z(t)]. The inequalities are stated in Lemmas 1 and 2, and Theorem

2.

2.1. The message passing system

Here we form an approximating system for the general stochastic SIR epidemic from

the message passing equations of Karrer and Newman (2010), where we make use of

the generalisation of initial conditions provided by Wilkinson and Sharkey (2014). It

has been shown that a message passing approach can be applied to a general class of

SIR epidemics on finite graphs (Karrer and Newman 2010). If the underlying graph

is a tree or forest, then the equations give results which match expectations of the

stochastic process exactly; otherwise they give a lower bound on the probability of

any given individual being susceptible at time t, and hence also a lower bound on the

expected number susceptible at time t.

The general stochastic SIR epidemic is equivalent to a Markovian SIR epidemic on

a complete graph. Thus, the message passing equations for the general stochastic SIR

epidemic become (Wilkinson and Sharkey 2014; and see appendix A):

Smes(t) =
∑

i∈V

zi
∏

j 6=i

F i←j(t), (5)

where zi = 1 if i ∈ V is initially susceptible and is zero otherwise, and

F i←j(t) = 1−

∫ t

0

βe−(β+γ)τ
[

1− zj
∏

k 6=i,j

F j←k(t− τ)
]

dτ (i, j ∈ V , i 6= j). (6)

The function Smes(t) is constructed to approximate the expected number of susceptibles

at time t, while F i←j(t) approximates the probability that i ∈ V (in the cavity state;

see appendix A) does not receive any infectious contacts from j ∈ V by time t.
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Note that if i /∈ S0, then zi = 0 and (5) can be expressed as

Smes(t) =
∑

i∈S0

∏

j 6=i

F i←j(t).

By symmetry, F i←j(t) = F i′←j′ (t) for any i, j, i′, j′ ∈ S0 with i 6= j and i′ 6= j′ (let

F1(t) denote this quantity); and, if j ∈ I0 so zj = 0, then F i←j(t) = 1−
∫ t

0
βe−(β+γ)τdτ

for any i ∈ S0 (let F2(t) denote this quantity). Thus, the assumed pure initial system

state and the symmetry in (6) allow us to simplify (5) to:

Smes(t) = |S0|F1(t)
|S0|−1F2(t)

|I0|, (7)

where

F1(t) = 1−

∫ t

0

βe−(β+γ)τ
[

1− F1(t− τ)|S0|−2F2(t− τ)|I0|
]

dτ, (8)

F2(t) =
βe−(β+γ)t + γ

β + γ
. (9)

The message passing system is then completed by

Imes(t) = N − Smes(t)−Rmes(t), Ṙmes(t) = γImes(t), (10)

with Imes(0) = |I0| and Rmes(0) = 0.

Lemma 1. For the same initial conditions and parameters,

E[X(t)] ≥ Smes(t) for all t > 0. (11)

Proof. Lemma 1 follows directly from the extension of the arguments of Karrer and

Newman (2010, section III), provided by Wilkinson and Sharkey (2014, section III)

(for further details, see appendix A). �

2.2. The deterministic SIR system

Here we consider the deterministic SIR system given by (1)-(3). To proceed, we first

reformulate these equations as

ṡ(t) = −βs(t)
[

|S0|i(t) + |I0|e
−γt

]

, (12)

i̇(t) = βs(t)
[

|S0|i(t) + |I0|e
−γt

]

− γi(t),

ṙ(t) = γi(t),
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such that, setting s(0) = 1, i(0) = r(0) = 0, we have

S(t) = |S0|s(t), (13)

I(t) = |S0|i(t) + |I0|e
−γt, (14)

R(t) = |S0|r(t) + |I0|(1 − e−γt).

In this form, s(t), i(t) and r(t) represent the state of the initially-susceptible population

(i.e. the fraction that are respectively susceptible, infected and recovered at time t),

with the initially-infected population becoming recovered at rate γ.

Lemma 2. For the same initial conditions and parameters,

Smes(t) > S(t) for all t > 0.

Proof. By analogy with (7), we first reformulate (13) in terms of two quantities,

S1(t) and S2(t), which are defined such that

S(t) = |S0|S1(t)
|S0|S2(t)

|I0|, (15)

where

Ṡ1(t) = −βS1(t)i(t), S1(0) = 1, (16)

Ṡ2(t) = −βS2(t)e
−γt, S2(0) = 1. (17)

(Differentiating (15) with respect to t and substituting from (13), (16) and (17), shows

that (12) is satisfied.) Note that S1(t) and S2(t) are strictly decreasing from 1 and

greater than 0. Thus, if F1(t) > S1(t) and F2(t) > S2(t) for all t > 0, then Lemma 2

must hold (compare (7) and (15)).

Immediately, we can solve (17) for S2(t), yielding

S2(t) = e
β
γ (e
−γt − 1)

, (18)

which allows us to alternatively express its time derivative as

Ṡ2(t) = −γ
[

S2(t) lnS2(t)
]

− βS2(t). (19)
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The time derivative for F2(t) can be similarly expressed as

Ḟ2(t) = −γ
[

F2(t)− 1
]

− βF2(t). (20)

Thus, since S2(t) and F2(t) are strictly decreasing from 1 and greater than 0, and since

0 > x lnx > x − 1 for x ∈ (0, 1), then (19) and (20) show that S2(t) = F2(t) implies

Ṡ2(t) < Ḟ2(t), whence

F2(t) > S2(t) for all t > 0. (21)

Dividing (2) by (1) and using separation of variables yields, after invoking the initial

conditions S(0) = |S0| and I(0) = |I0|, that

I(t) = N − S(t) +
γ

β
ln

S(t)

|S0|
, (22)

which on substituting into (1) gives

Ṡ(t) = −βS(t)

[

N − S(t) +
γ

β
ln

S(t)

|S0|

]

.

We now take (16), and substitute from (14) and (22) to obtain

Ṡ1(t) = −
βS1(t)

|S0|

[

N − S(t) +
γ

β
ln

S(t)

|S0|
− |I0|e

−γt

]

= −
βS1(t)

|S0|

[

N − |S0|S1(t)
|S0|S2(t)

|I0|

+
γ

β
ln
(

S1(t)
|S0|S2(t)

|I0|
)

− |I0|e
−γt

]

, (23)

using (15). Now, lnS2(t) = (β/γ)(e−γt − 1) and |S0| = N − |I0|, so (23) simplifies to

Ṡ1(t) = −γ
[

S1(t) lnS1(t)
]

− βS1(t) + β
[

S1(t)
|S0|+1S2(t)

|I0|
]

. (24)

Substituting u = t−τ in the integral in (8), so that t may be taken out of the integrand,

the time derivative for F1(t) can be expressed similarly as

Ḟ1(t) = −γ
[

F1(t)− 1
]

− βF1(t) + β
[

F1(t)
|S0|−2F2(t)

|I0|
]

. (25)

Note that, since F1(0) = 1 and F2(t) ∈ [0, 1] for all t ≥ 0, then F1(t) ∈ [0, 1] for all

t ≥ 0 (consider the possible values of the right-hand side of (25) when F1(t) = 0, 1).
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Thus, since (i) 0 > x lnx > x− 1 for x ∈ (0, 1), (ii) F2(t) > S2(t) for all t > 0 and (iii)

|S0| ≥ 2, (24) and (25) show that S1(t) = F1(t) implies Ṡ1(t) < Ḟ1(t), whence

F1(t) > S1(t) for all t > 0,

and indeed Lemma 2 must hold.

�

Remark 1. Note that when |S0| = 1, E[X(t)] = F2(t)
|I0| and S(t) = S1(t)S2(t)

|I0|,

so in this case Theorem 1 follows immediately from (21), since S1(t) ∈ [0, 1] for all

t ≥ 0.

Remark 2. Letting t → ∞ in (9) and (18) yields F2(∞) = γ/(γ + β) and S2(∞) =

e−β/γ , whence F2(∞) > S2(∞). Further, letting t → ∞ in (22) shows that S(∞) > 0,

whence F1(∞) > 0 and S1(∞) > 0. Letting t → ∞ in (7) and (15) now shows that

Smes(∞) > S(∞), so the size of the message passing epidemic is strictly less than that

of the corresponding deterministic SIR epidemic.

Remark 3. It can also be shown, by entirely analogous means, that the stochastic

‘carrier-borne’ epidemic of Downton (1968) is underestimated by its deterministic

counterpart, in terms of the expected number susceptible at time t. This model is

equivalent to the general stochastic SIR epidemic, except that when a susceptible

individual receives an infectious contact it becomes infected (a carrier) independently

with probability π, and otherwise becomes immediately recovered. The standard

deterministic version, for tracking the number of susceptibles and the number of

carriers, is obtained from (1) and (2), but with the first term on the right-hand side of

(2) multiplied by π.

We note that the probability of an initially susceptible individual still being sus-

ceptible at time t, in the stochastic carrier-borne model, is the same as in the general

stochastic SIR epidemic when it is modified such that every individual which is not

initially infected is independently vaccinated with probability 1 − π and initially sus-

ceptible otherwise (cf. Ball (1990)). The message passing equations for such initial

conditions were considered by Wilkinson and Sharkey (2014) and shown to provide

a lower bound on the expected number susceptible at time t. The message passing

equations for the carrier-borne epidemic are obtained from (7)-(10), but with the
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integral in (8) multiplied by π.

2.3. Bounding the expected number recovered

It is now straightforward to show that the deterministic SIR system overestimates

the expected number recovered at all positive time points in the general stochastic SIR

epidemic. We state this result in the following theorem.

Theorem 2. For the same initial conditions and parameters,

E[Z(t)] < R(t) for all t > 0.

Proof. It is straightforward to show using the Kolmogorov forward equation that

for the general stochastic SIR epidemic,

Ė[Z(t)] = γE[Y (t)],

and recall from (3) that for the deterministic SIR system,

Ṙ(t) = γI(t).

It is also straightforward that

E[X(t)] + E[Y (t)] + E[Z(t)] = N

and

S(t) + I(t) +R(t) = N.

Therefore, assuming E[Z(0)] = R(0) = 0,

E[Z(t)] =

∫ t

0

γe−γτ
(

N − E[X(t− τ)]
)

dτ (26)

and

R(t) =

∫ t

0

γe−γτ
(

N − S(t− τ)
)

dτ. (27)

Since we know from Theorem 1 that the expected number susceptible is underestimated

by the deterministic SIR system (at all positive time points) then (26) and (27) imply

that the expected number recovered must be overestimated. �

Remark 4. A similar argument shows that E[Z(t)] ≤ Rmes(t) < R(t) for all t > 0.
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3. Discussion

By applying the the recently developed message passing approach to SIR epidemics

to complete graphs (Karrer and Newman (2010)), we have shown that the Kermack-

McKendrick SIR model with Poisson transmission and recovery processes produces

rigorous bounds for the general stochastic SIR epidemic, as defined in Bailey (1975).

Specifically, the deterministic system (1)-(3) underestimates the expected number of

susceptibles and overestimates the number of recoveries. Equivalent bounds also apply

to the ‘carrier-borne’ epidemic model of Downton (1968).

Although, at any time t > 0 and at the end of an epidemic, the mean number of

susceptibles in the general stochastic SIR epidemic is strictly larger than the number

of suscepibles in the corresponding deterministic epidemic, the law of large numbers

for density dependent population processes (Ethier and Kurtz (1986), Theorem 11.2.1)

implies that the difference is small, relative to the population size, when both the

population and the initial number of infectives are large; the law of large numbers

requires that the fraction initially infected tends to a strictly positive number as

N → ∞. (The law of large numbers assumes that the infection rate β depends

on the population size N , say β = βN , and that βNN tends to a strictly positive

finite limit as N → ∞.) If instead the initial number of infectives is held fixed

and the epidemic is above threshold (i.e. limN→∞ βNN > γ), then, in the limit as

N → ∞, the deterministic model represents the expected behaviour, after a random

time translation, of epidemics that take off (Barbour and Reinert 2013). In these

circumstances, unless the fixed initial number of infectives is sufficiently large or the

epidemic is well above threshold, the deterministic epidemic overestimates appreciably

the expected fraction of the population that is ultimately recovered in the stochastic

epidemic, even in the limit as N → ∞, since the latter includes a contribution from

the non-neglibible proportion of epidemics that do not take off.

The message passing representation falls between the expected behaviour of the

general stochastic epidemic and the deterministic SIR system. Specifically, equation

(4) implies that, for any t > 0, Smes(t) gives a closer approximation than S(t) to

E[X(t)], with both being underestimates, and that, under the above asymptotic regime,

Smes(t)/N converges to the same deterministic limit as E[X(t)/N ].
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An interesting development of our work would be to show that the non-Poisson

form of the Kermack-McKendrick model also provides bounds on the corresponding

stochastic process. Note that such an extension includes SEIR (Susceptible → Exposed

→ Infected → Recovered) models. Another extension worthy of investigation is to

multitype SIR epidemics.

Appendix A. Message passing equations for a class of Markovian

epidemics on finite graphs

We consider a stochastic SIR epidemic on an undirected simple graph having finite

vertex set V . The disease dynamics are the same as those described in Section 1 for

the general stochastic epidemic, except now if individual i ∈ V becomes infected it

makes infectious contacts only to individuals in Ni, the set of neighbours of i in the

graph. The general stochastic epidemic is obtained by taking the graph to be the

complete graph on N individuals. We assume a non-random initial state, in which

each individual is initially either susceptible or infected; for i ∈ V , we set zi = 1 if i

is initially susceptible and zi = 0 otherwise. We outline below the message passing

equations for this model and the proof that they overestimate the expected spread of

infection. The model is a special case of that studied in Wilkinson and Sharkey (2014),

which allowed for heterogeneous and non-Markovian individual-level processes, and

more general (possibly random) initial conditions. The message passing approach was

developed by Karrer and Newman (2010), within the framework of a model with non-

Markovian disease dynamics, in which the initial states of individuals are independent

and identically distributed random variables.

Message passing relies on the concept of the ‘cavity state’ in order to simplify

calculations. An individual is placed into the cavity state by cancelling its ability

to make contacts. This does not affect its fate (it only affects the fates of others).

However, it means that the probability of an individual being susceptible at time t is

equal to the probability that, when it is in the cavity state, it is initially susceptible

and does not receive an infectious contact from any of its neighbours by time t.

For arbitrary i ∈ V and neighbour j ∈ Ni, let H
i←j(t) denote the probability that

i, when in the cavity state, does not receive an infectious contact from j by time t. We
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can now write

Hi←j(t) = 1−

∫ t

0

βe−(β+γ)τ
(

1− zjΦ
j
i (t− τ)

)

dτ,

where Φj
i (t) is the probability that j does not receive any infectious contacts by time t

when i and j are both in the cavity state. (The probability that j makes an infectious

contact to i during the time interval [t, t + ∆t), where time is measured from the

moment j becomes infected, is given by βe−(β+γ)t∆t+ o(∆t) as ∆t → 0.)

By the arguments of Karrer and Newman (2010), andWilkinson and Sharkey (2014),

it can be shown that

PSi
(t) ≥ zi

∏

j∈Ni

Hi←j(t) (i ∈ V), (28)

where PSi
(t) is the probability that i is susceptible at time t, and

Hi←j(t) ≥ 1−

∫ t

0

βe−(β+γ)τ
(

1− zj
∏

k∈Nj\i

Hj←k(t− τ)
)

dτ (i ∈ V , j ∈ Ni).

(29)

Inequalities (28) and (29) essentially follow from the fact that an individual receiving

no infectious contacts from one subset of its neighbours is positively correlated with it

receiving no infectious contacts from a different subset.

We now state the definition of F i←j(t) (cf. equation (6)), noting that it satisfies

equality in (29):

F i←j(t) = 1−

∫ t

0

βe−(β+γ)τ
(

1− zj
∏

k∈Nj\i

F j←k(t− τ)
)

dτ (i ∈ V , j ∈ Ni). (30)

The unique solution to (30) can be obtained via the system of ordinary differential

equations:

Ḟ i←j(t) = γ
(

1− F i←j(t)
)

− β
(

F i←j(t)− zj
∏

k∈Nj\i

F j←k(t)
)

(i ∈ V , j ∈ Ni).

Reproducing an argument from Karrer and Newman (2010), we can also construct

the solution to (30) as follows. Let F i←j
(0) (t) = Hi←j(t) for all i ∈ V , j ∈ Ni and all

t ≥ 0, and define the following iterative procedure: for m = 1, 2, . . .,

F i←j
(m) (t) = 1−

∫ t

0

βe−(β+γ)τ
(

1− zj
∏

k∈Nj\i

F j←k
(m−1)(t− τ)

)

dτ (i ∈ V , j ∈ Ni).
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It is easily shown, using (29), thatHi←j(t) ≥ F i←j
(m) (t) ≥ F i←j

(m+1)(t) ≥ 1−
∫ t

0
βe−(β+γ)τdτ ,

for all i ∈ V , j ∈ Ni and all t ≥ 0 and m = 0, 1, . . . , whence limm→∞ F i←j
(m) (t) is the

solution of (30) and

Hi←j(t) ≥ F i←j(t) ≥ 1−

∫ t

0

βe−(β+γ)τdτ (i ∈ V , j ∈ Ni). (31)

Thus from (28) and (31) we have

PSi
(t) ≥ zi

∏

j∈Ni

Hi←j(t) ≥ zi
∏

j∈Ni

F i←j(t) (i ∈ V) (32)

Let X(t) denote the number of susceptible individuals at time t. Then E[X(t)] =
∑

i∈V PSi
(t), so, recalling (5), (32) implies (11).
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