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ABSTRACT

We present 25 new eclipse times of the white dwarf binary NNt&een with the high-speed
camera ULTRACAM on the WHT and NTT, the RISE camera on the igeel Telescope,
and HAWK-I on the VLT to test the two-planet model proposeckplain variations in its
eclipse times measured over the last 25 years. The planetadgl| survives the test with
ying colours, correctly predicting a progressive lag inipse times of 36 seconds that has
set in since 2010 compared to the previous 8 years of pranigs.tAllowing both orbits to
be eccentric, we nd orbital periods at9 0:5yr and15:3 0:3yr, and masses ¢t:3
0:5M; and7:3 0:3Mj;. We also nd dynamically long-lived orbits consistent withe data,
associated with 2:1 and 5:2 period ratios. The data scatt@i0i seconds relative to the best-
t model, by some margin the most precise of any of the prodasgipsing compact object
planet hosts. Despite the high precision, degeneracy iroithi¢ ts prevents a signi cant
measurement of a period change of the binary and dfody effects. Finally, we point out a
major aw with a previous dynamical stability analysis of Nbér, and by extension, with a
number of analyses of similar systems.

Key words: (stars:) binaries (including multiple:) close — (starsrjasies: eclipsing — (stars:)
white dwarfs — (stars:) planetary systems

1 INTRODUCTION [Potter et all_2011). In all the cases cited one of the binanypm
nents is evolved which helps observationally because thivey
star is hot and relatively small, leading to sharply-de neéep
edges in eclipse light curves which make for precise times.

The discovery of hundreds of planets around stars other tthen
Sun has alerted researchers to the possible in uence oéfdan
a wide variety of circumstances. Amongst these are the apect

ular Kepler discoveries of planets transiting across baanssof Planets discovered through timing complement those found
the tighter binary systems around which they orbit_(Doylel=t in radial velocity and transit surveys as they are easieisooger

[2011: Welsh et jmllz)_ The transits in these systems Ileave the larger (and thus longer period) their orbits are. Theterce
doubt as to the existence of planets in so-called “P-typéiter ~ of planets around evolved stars raises interesting quessts to
(Dvorak/1985) around binaries. Even before the Kepler gisco ~ Whether the planets are primordial and managed to survevexta-
ies there was evidence for planets around binaries fronmgrab- lution of the host binary, or whether they instead formedtfroate-
servations of a variety of systems where the presence obfsian  rial ejected during the course of stellar evolution (Beusmmet al.
is indicated through light travel time (LTT) induced vaitats in 12011 Veras & Tolit 2012; Mustill et &l. 2013), and may alsapla
the times of eclipses. This method has led to claims of ptaget ~ unusual constraints upon the binary's evolutibn (Porediwart
and/or sub-stellar companions around hot subdwarf/M dbarf )-
naries (Lee etal. 2009: Qian ef al. 2009b), white dwarf/M dwa The Kepler discoveries prove that circumbinary planetstexi
binaries [(Qian et al._2009a, 2010; Beuermann etal. 12010}, an p¢ when it comes to those discovered through timing, thityea
cataclysmic variables_(Beuermann etlal. 2011: Qianletal120  of the planets is not clear-cut. The history of the eld is eot-
couraging in this respect. For instance, the orbits meddorethe
white dwarf/M dwarf binaries NN Ser and QS Vir m al.
? Partly based on observations collected at the Europeam&uouDbser- (12_0_0_9_5) anmﬂ—e-t-hl-‘—(zdlo) were both ruled out as soonvas ne
vatory, La Silla and Paranal, Chile (programmes 087.D-0598.D-0277 data were acquired (Parsons et al. 2010b), as were the awepl
and 091.D-0444) orbits proposed MMOQ) for the sdB+dM binary HW V
y E-mail: t.r.marsh@warwick.ac.uk (Beuermann et al. 2012). Likewise, some multiple planetesys
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claimed from timing studie$ (Qian et/al. 2011) have had mwoisi
with long-term dynamical stability (Horner etlal. 2011; et al.
[2012;| Potter et al. 201L1). These are serious issues bedaeise t
is no independent evidence yet for the existence of the wario
third-bodies suggested by timing, while the mere fact thaing
variations can be tted by planetary models is not entiretysua-
sive, since with enough extra bodies the process is akintitog &
Fourier series, and any set of data can be matched. At prékent
main rival model for the period changes is one in which they ar
caused by uctuations in the gravitational quadrupolar reats
of one or both star 92). In some cases thisaeppe
to fail on energetic grounds_(Brinkworth et al. 2006), ancthet
moment this constitutes the only, rather indirect, indeleen sup-
port for the planetary hypothesis for the eclipse timingations

of compact binary stars, although artefacts of measurensenh
as wavelength-dependent eclipse timings, are a possile i

the case of accreting systerhs (Gozdziewski et al.|2012).

Useful scienti ¢ hypotheses have predictive power. So lfigr t
planetary explanation of LTT variations has fared poorlytiois
basis. In this paper we present new observations of the myste
NN Ser which is currently the most convincing example of aiLT
discovered planetary system around a close binary starai@uis
to see whether the planetary model develope et
M) can withstand the test of new data. NN Ser is a white
dwarf/M dwarf binary with an orbital perioB = 3:1hours which
was discovered to eclipse 989). The combinati@
hot white dwarf and low mass M dwar®:L11 M ,[Parsons et al.
), allows the white dwarf to dominate its optical uxneco
pletely, giving very deep, sharply-de ned eclipses whiodlg pre-
cise times. The very low mass of the M dwarf is an important
feature since its low luminosity greatly restricts the effeness
0f2)'s period change mechanism, as pointed o
by [Brinkworth et al. [(2006), who rst detected period chasde
NN Ser! Brinkworth et dl. interpreted the period changes sigm@a
of angular momentum loss, but Beuermann ét al. (2010) rgsecl
an early observation of NN Ser from the VLT and were able to
show that the orbital period was not simply changing in omedi
tion but had shown episodes of lengthening as well as shingen
They showed that the timing variations could be well expdiif
there were two objects of minimum ma€®1 M; and 2:28 M,
in orbit around the binary. This nicely solved the probleratttine
period changes appeared to be much larger than expected ba-th
sis of the angular momentum mechanisms thought to driverpina

evolution (Brinkworth et al. 2006; Parsons ef al. 2010a).

Of all the planets discovered through timing around birgrie
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2 OBSERVATIONS AND THEIR REDUCTION

We observed 25 eclipses of NN Ser, over the period 25 February
2011 to 26 July 2013, extending the baseline of the timespted
in Beuermann et &Il (2010) byyears (Tablg]l). The majority of
data were acquired with the high-speed cameras ULTRACAM
.[2007) and RISE (Steele et al. 2008; Gibsorllet a
M). These employ frame transfer CCDs so that deadtime be-
tween images is reduced to less tiad5 seconds. ULTRACAM,
a visitor instrument, was mounted either at a Nasmyth fodus o
the 3.5m New Technology Telescope (NTT) in La Silla or the
Cassegrain focus of the 4.2m William Herschel Telescope T)VH
in La Palma, while RISE is permanently mounted on the rolsatic
Liverpool Telescope (LT). The robotic nature of the LT alkws
to spread the observations, while ULTRACAM provides thehhig
est precision data. We used andg® lters in the blue and green
channels of ULTRACAM and® or i°in the red arm, as listed in
Table[1. RISE operates with a single xed lter spanning tife
andR bands. We also observed NN Ser with the infrared imager
HAWK-I installed at the Nasmyth focus of VLT-UT4 at Paranal
(Kissler-Patig et al. 2008) in March and April 2013. We uskd t
fast photometry mode which allowed us to window the detsctor
and achieve a negligible dead time between frames. Obgmrsat
were performed using thi-band Iter; the white dwarf contributes
60% of the overall light in this band meaning that the eclijsse
still deep and suitable for timing.

All data were at- elded and extracted using aperture pho-
tometry within the ULTRACAM reduction pipelin
). We tted the resulting light curves using the lightresl
model developed in our previous analysis of NN
). Holding all parameters xed except the eclipse tiet
to the measurements listed in Table 1, with the uncertairdi
rived from the covariance matrix returned from the Levegber
Marquardt minimisation used. In each case we scaled thetainte
ties on the data to ensure & per degree of freedom equal to one.
We estimate uncertainties on our data by propagation ofbphard
readout noise through the data reduction. In good conditibase
give realistic estimates of the true scatter in the data thedcal-
ing therefore makes little difference. In poor conditiohe scatter
can be larger than the error propagation suggests in whightbe
scaling returns larger, more realistic uncertaintiess ithanges in
the observing conditions, as well as the instruments, dgely
account for the variation in the uncertainties listed inl&&h with
the addition of pickup noise that affected ULTRACAM in Janua
2012 owing to a faulty data cable. In the case of the ULTRACAM
data, we combined the times from the three independent afms o
ULTRACAM, weighting inversely with variance to arrive ateth
times listed. The rst two times listed in Tadlé 1 represeptiates

e

those around NN Ser are arguably the most compelling becauseof times listed il Beuermann etlal. (2010) which were baseshup

the data quality is so high with the best times having unaowrés

< 0:1 sec because it is a well-detached binary with an extremely
dim main-sequence component, and since the two planet nisdel
the eclipse times almost perfectly (Beuermann 2t al.|204R)Ser
thus provides us with a chance to see if the planet model ibtap

of predicting eclipse arrival times in detail. This was thetivation
behind this study.

Shortly after submitting this paper, another paper présgnt

the g%arm of ULTRACAM only; the remainder of the times we
used are as listed In Beuermann etlal. (2010). Adding our tdata
those of Beuermann etlal. (2010) gives a total of 76 times. One
eclipse listed in Tablgl1, that of cycle 66905, was very badty
fected by cloud on both ingress and egres90% and 50% loss

of light). During egress, the cloud was thinning, leading tdsing
trend in throughput which weights the ux towards the secbatf

of each exposure, and can be expected to delay the measueed ti
Consistent with this, the time for this eclipse is signi ¢gnde-

echpse times of NN Ser appeard_d_(_&e_uﬁm_ann_lé_t_a]ﬂ_l 2013) We |a.yed W|th I’espect to the best t, and |nC|ud|ng it in the tslds

have elected not to update our paper with their times to reade
comparison with their results more independent. We haJediecl
such a comparison in sectibnB.7.

14:5t0 2. We therefore decided to exclude it from the analysis of
the paper, but list it in Tablg 1 for completeness.

For timing, precision is largely a matter of telescope aper-
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Table 1. New eclipse times of NN Ser

Cycle BMJD(TDB) Error{ ) Sampling Tel/Inst Comments
(days) (seconds) (seconds) Transparency, seeing, etc.
61219 55307.4003018 0.084 3.0 NTT/UCAM Update of time tisteBeuermann et al. (2010).
61579  55354.2291437 0.064 2.6 NTT/UCAM Update of time tisteBeuermann et al. (2010).
63601 55617.2511773 0.341 6.0 LT/RISE Clear, se&igy
63816 55645.2184078 0.500 6.0 LT/RISE Cler,
64032 55673.3157097 0.132 3.0 NTT/UCAM Cler5”, bright Moon; u®, g, r .
64054 55676.1774753 0.402 6.0 LT/RISE Cler,
64322 55711.0389457 0.397 6.0 LT/RISE Cler,
64330 55712.0795926 0.057 2.3 NTT/UCAM Clers”; u® o ro.
64575 55743.9492287 0.369 6.0 LT/RISE Cler,
64836 55777.9001514 0.347 5.0 LT/RISE Cler,
65992 55928.2728113 1.134 5.0 LT/RISE Varialde,
66069 55938.2889870 0.256 3.4 WHT/UCAM  Clouds, bright Moon, twilight; u®, g° r°
66092 55941.2808293 0.062 2.0 WHT/UCAM  Clebs”; uf, go rO
66545 56000.2071543 0.425 5.0 LT/RISE Clear]:8".
66868 56042.2230409 0.035 2.0 WHT/UCAM  Clezi, u® g% i%
66905 56047.0360108 0.080 2.0 WHT/UCAM  Clouds on ingreskegmess?”. Caution! See text.
67581 56134.9702132 0.421 5.0 LT/RISE Cler,
67903 56176.8560256 0.034 2.0 WHT/UCAM  Clest, twilight; u®, g° r°.
67934 56180.8885102 0.044 2.1 WHT/UCAM  Clezi, u® ¢@ r°
69067 56328.2693666 0.536 5.0 LT/RISE Cleag’
69291 56357.4073373 0.657 7.0 VLT/HAWK-l  Clear, 1, twhig
69298 56358.3178846 0.245 7.0 VLT/HAWK-l  Clefr5”.
69336 56363.2609298 0.506 5.0 LT/RISE Clouthg”
69597 56397.2118717 0.491 7.0 VLT/HAWK-l  Cleat,
69598 56397.3419520 0.392 7.0 VLT/HAWK-l ~ Cle@rg”.
70287 56486.9672059 0.037 2.4 WHT/UCAM  Cle@9"; u® g% i°.
70387  56499.9752252 0.041 2.1 WHT/UCAM  Clebn”; uf go rC

ture and noise control; accuracy is down to the data acoprisit |6), an insigni cant error compared to thegist
system and the corrections needed to place the times onté a un tical uncertainties of our observations. We quote the timebe
form scale. Signi cant timing errors have been found in tlagedof form of modi ed Julian dates, wher®1JD = JD 24000005,
m) for UZ For, and in the data@t@ll because this is how we store times for increased precisiane®
for HU Aqr (Potter et all. 2011; Gozdziewski et lal. 2012), dnese upon a TDB timescale this becomes MJD(TDB), and it takes-its
are just ones that have been spotted from independent wark, t  nal form BMJID(TDB) when corrected to the barycentre of thaiso
attention must always be paid to the absolute timing acguoéc system.

instruments in such work. For ULTRACAM we have measured the

absolute timing to be good to 0:001 sec RISE is measured to be

good to better thaf:1 sec(Pollacco, priv. comm.). While this up-

per limit potentially allows systematic errors which aregler than 3 ANALYSIS AND RESULTS

the smallest uncertainties from ULTRACAM timing of NN Setiisi

below the uncertainties of times based upon RISE itself A We begin our presentation of the results with two sectiortining

I's fast photometry mode data is collected in blocks of expes. the analysis methods we used. The second of these concerns th
There is an overhead between blocks of 1-2 seconds as the dat@umerical aspects of tting models to data, while we starthva

are written to disk. Only the rst exposure of each block imis- discussion of the physical models adopted.

tamped (to an accuracy of10 milliseconds) therefore we used a

small block size of 30 exposures in order to reduce the tirmimg

certainties on the subsequent exposures within a blockeShme 3.1 Description of the orbits

dead time between exposures within a block is negligibleesre

timate that the timing accuracy of HAWK-I is better than Oets We assume the binary acts as a clock which moves relativeeto th

onds, smaller than the uncertainties on the eclipse timesuned observer under the in uence of unseen bodies, hereaftengst”,
with HAWK-. in bound orbits around the binary. Labelling the binary wittiex

0 and the planets with indicek 2, ...N, we need to describe the
The times were placed on a TDB (Barycentric Dynamical orbits of N + 1 bodies. The most direct method is to specify the
Time) timescale corrected for light travel effects to theyban- Cartesian coordinates and velocities of khe- 1 bodies at a given
tre of the solar system to eliminate the effect of the motibn o time, 6(N + 1) parameters in all. By working in the barycentric
Earth (sed_Eastman et al. (2010) for more details of time sys- (centre-of-mass) frame, this can be reduce@Nowithout loss of
tems). We carried out these corrections with a code based upo generality. We use théN parameters to specify the barycentric
SLALIB, which we have found to be accurate at a leveb6fmi- positionsR; and velocitiesVi,i = 1:::N, of theN planets at
croseconds when compared to the pulsar timing package TEMPO a speci ¢ time, with the binary's position and velocity detened
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through the re ex condition

X
moRo = miRi;

i=1

@)

wheremo and m; are the masses of the objects, with a similar
condition on the velocity. This is how we initialise obt-body
integrations, which we will describe later.

For two-body orbits it is more usual to characterise orhits i
terms of six Keplerian orbital elements, E,i, ,!, To, to be de-
ned later) together with Kepler's third law which gives tloebital
angular frequency in terms of the masses of the bodies and sem
major axis of the orbit. For two-body orbits, Keplerian ekts are
time-independent, unlike the Cartesian vectors. In trymgxtend
them to the case of more than one plarét$ 1), we face two
problems. First, when there are more than two bodies, Kigpler
orbits are only an approximation to the true, hereafter [devan,
orbits and we need to determine whether the degree of appaoxi
tion is signi cant. Second, there is more than one way to pera
terise the orbits in terms of Keplerian motion, and eachediffin
terms of how well it approximates the Newtonian paths.

We consider three alternative orbit parameterisations. fgt
two have already appeared in the literature, while the thiftich

has not been presented before as far as we are aware, patforme

better than the other two. The three parameterisationsrdiffhow
we de ne the vectors which undergo Keplerian motion and & th
precise forms of Kepler's third law that we use.

We call our rst parameterisation “astrocentric”. The cdier
nates of each planet are referenced relative to the binadywe
assume that each astrocentric vector follows its own Kepleéwo-
body orbit, with angular frequencies given by

nZa® = G(mo + mj);

@)

fori =
eclipse times by most researchers to date. In astrocertoidic

nates each planet is placed upon the same footing, and isdras.
if the other planets were not there. Denoting astrocentitars by
the lowercase greek letter the position vector , points from the
barycentre of all the bodies to the binary, and then the vecto

point from the binary to the planets. In astrocentric couatis the
re ex condition Eq[1 becomes

®)

wherek; = m;=M, whereM = szo m; is the total mass. We
will encounter these parameters in slightly modi ed fornr tbe
other two parameterisations. A typical procedure is tot stéth
N sets of Keplerian elements from which tNevectors ;, i =

Eq.[3, and the equivalent barycentric vectors follow from

Ri= ;+ 4

4)

Despite their simplicity, astrocentric coordinates arattrac-
tive from a theoretical point of view. If one transforms from
barycentric to astrocentric coordinates, the kinetic gngrart of
the Hamiltonian, which in barycentric coordinates is
X 2,

Hk = = mi R,

2 i (5)

i=0
develops cross-terms such as_,. This problem can be avoided
using Jacobi coordinatem?a%&@%), and orbits ptovee

Marsh, Parsons, Bours, Littlefair, Copperwheat, Dhill@reedt, Caceres & Schreiber

closer to Keplerian in these coordinates than they do imesitric
coordinate 03); this was rst pointed outdian-
ets around white dwarf binaries by Gozdziewski étlal. (J0¥2e
use Jacobi coordinates for the second and third paranstteris
as we now discuss.

Jacobi coordinates, which we indicate with lowercase latin
letterr, are de ned as follows: vectary points from the system
barycentre to the binary;1 points from the binary to the rst
planet;r , points from the centre of mass of the binary and rst
planet towards the second planet, and so on, with each newrvec
pointing from the centre of mass of the combined set of objapt
to that point to the next object. These coordinates diff@mfthe as-
trocentric series,, ;, 5, ..., only from the third term onwards,
and are therefore no different in the two body case. It carhbe/s
) that in Jacobi coordinates the kinetic gngrart
of the Hamiltonian takes the simple form

X
3k ©)
i=1
where ; is the reduced mass of planien orbit with a single object
consisting of the binary and all planets up to number1:

HK:

11 1
— =Pyt = @)
i i=o M mi

For three bodies the overall Hamiltonian can then be wriien

X2 )
H= 1oz Smomio o ®)
) 2 ri
i=1
where
1 Gmlmz
H°= G = S ()
momz e kry itz @ K9] ©)

andk{ is one of a series of factors related to the centre-of-mass
sequence:

(10)

Sincek? = m;=(mo+ m1), both terms in EQ]9 are of order;m,
(Malhotral 1993). If the planet masses are very small conapare
mo, we can negledd °with respect to the terms of the summation,
and the problem simpli es to two Kepler orbits in the Jacobor:
dinates for each planat; andr », with orbital angular frequencies
n, andn; given by

nZad G0 = G(mo+ my); (11)
I K
2.3 Mo Mo(Mo + My + M2)
G =G : 12
nzaz 1 K Mo + M. 12)

The factorsk? are analogous to thie introduced for astrocentric
coordinates, and appear in the following relations thatespond

to EqL3 andK4:

ki
i=1

o= (13)

and

X
Ri=ri krj:

j=i

(14)

Eq.[12 relating the orbital frequenay to the semi-major axis
ay, is slightly unexpected. The form of the reduced massug-
gests that this should represent a composite object cinmsist
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the binary and rst planet with total masso + m1, in orbit with

the second planet of mass,. Hence one might have guessed that
Eq.[I2 would simply reads(mo + m; + m2) on the right-hand
side. This is the motivation behind our third and nal set obadi-
nates, which, for want of a better term, we name “modi ed faco
coordinates”. The only change we make for the modi ed Jacobi

coordinates is to alter EQ. 112 to read
n3a3 = G(mo + my + my): (15)

This choice corresponds to a slightly different partitigniof the
Hamiltonian in which the perturbation Hamiltonian takes tbe
modi ed form

0o _ 1 1
H = Gmoms - jirz n klrlj
1 1
Gmimy; — - - 16
Y e (T korg (16)

Just as foH °, both terms are of orden.m,, butH %is better for
a truly hierarchical set of orbits sincerif r,, the second term
is much smaller than it is ik °.

In contrast to the astrocentric case, the two planets are not
treated symmetrically by Jacobi coordinates and thus tindaring
matters. Consideringl ®° the order-of-magnitude of both terms is
Gmimari=r3, thus the correct choice is to label the planets so
thatr, >r 1, i.e. planet 1 should be the closest to the binary. This
reduces the size of by the ratio of the semi-major axes squared,

(a1=ap)?, relative to the reverse choice. Hence in the rest of
the paper, we number the planets in ascending order of thii-s
major axes, with planet 1 the innermost.

We have emphasised that Keplerian orbits are an approxima-
tion for N > 1. However, Keplerian elements can simply be re-
garded as a set of generalised coordinates which vary with ti
for N > 1. Such “osculating” elements precisely specify the paths
of the bodies, although the way in which the elements evolite w
time must be determined through numeridhtbody integration.
Each of the three parameterisations can be used in this wayela
as in the Keplerian approximation with all elements xed. do
so one starts from a set of elements at a particular time, hwhic
are then translated into barycentric Cartesian coordin@ae then
proceeds usindl -body integration thereafter. The translation step
varies with the parameterisation in use, so identitabody paths
correspond to slightly different sets of elements accagrdanthe
chosen parameterisation, but used in this way the orbitexaet
within numerical error, which allows us to judge the degréam
proximation involved in the Keplerian approximation.

We wrote a numerical -body integrator in C++ based upon
the Burlisch-Stoer method as implementedm @020
which we ran from within a Python wrapper. We veri ed our in-
tegrator on the Kepler 2-body problem, an equal-mass syramet
three-body problem, against an entirely independent cattéew
by one of us (MB), and against the Burlisch-Stoer option efdh
bit integrator, MERCURY6 (Chambérs 1999). For each of thegh
parameterisations we computidbody-integrated paths to equiv-
alent Keplerian approximated orbits. We seledi&iD = 54500,
which corresponds to Feb 4, 2008 as the reference epochisince
is weighted towards the era when the bulk of high qualitypesdi
times have been taken. We veri ed the signi cance of the ptan
ordering for the two forms of Jacobi coordinates, ndingtttize
correct choice was better than the reverse by of order arfat®
in terms of RMS difference versus Newtonian models.

Fig.[ compares the difference between Keplerian and Newto-
nian predictions for the three parameterisations for ait trpical

¢ 2012 RAS, MNRASD00,[1HI4
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Delay time difference (seconds)

15 20

10
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Figure 1. The difference in the planet-induced light-travel-timé (1) de-
lays of Keplerian versus Newtonian models for a typical planet t
for NN Ser. Three cases are shown: astrocentric (dashéedjlotiacobi
(dashed) and modi ed Jacobi (solid). TMID = 54500 reference time
corresponds to the time around 19 years in when all mode&eagor ref-
erence the LTT variations in NN Ser have a range @f0seconds. The
Newtonian comparison orbits are calculated separatelgdoh of the three
coordinate systems.

of NN Ser. The ordering seen here with astrocentric cootdia
worst, and our modi ed version of Jacobi coordinates begtees
with what we found looking at a much broader range of orbit ts
The differences in Fid.]1 range from a few tenths of a second to
more than one second, which given the timing precision of BN S
can be expected to have a noticeable effect upon paraméktene
are instances where deviations as large as 5 seconds gpica/lty

on dynamically very unstable orbits. We will see that theseltave

a quantitative effect upon the parameters, meaning thakekiap
models, whatever the coordinate parameterisation, aredesfuate
for tting the NN Ser times. In consequence, the majority bét
orbit ts in this paper, were undertaken using Newtonldrbody
integrations, without Keplerian approximation. We emgldythe
modi ed Jacobi representation to translate from orbiteheénts to
initial position and velocity vectors to initialise thesgegrations,
because, as Fifl] 1 shows, they are the best of the three watiinve
gated. We make one exception where we compare the resutts fro
N -body integrated and equivalent Keplerian models, baseddh
case upon the modi ed Jacobi prescription. When we needdo-sp
ify exactly what system we are using, we will use expresssuth

as “astrocentric Keplerian” and “Newtonian modi ed Jacofihe

rst means orbits in which two astrocentric vectors exeddpler
ellipses, i.e. an approximation; the second means thabieoor-
dinates are used to initialise the orbits, using our modiedsion

of angular frequency, but thereafter the paths are compugatd)

N -body integration with no approximation beyond numerical u
certainties.

3.2 Model tting approach

Sometimes-sparse coverage, and often-long orbital periméan
that timing work on circum-binary planets is plagued by dege
eracies amongst t parameters. This can cause problemdysimp
locating best- t models, and even more so in the determomadif
uncertainties. For instance the widely-used Levenberggitardt
method often fails to locate the minimum in such circumsgsnc
and the covariance matrix it generates can be far from dapttie
complexity of very non-quadratic, and possibly multiplenmia. A
widely-used method that can overcome these dif cultiesiciviive
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Figure 2. Eleven years of eclipse times of NN Ser, starting in May 200% dashed line marks the end of 2010; the data before thig p@ those listed

in IO), including the two updates ligteBable[1. The times are plotted relative to the ephen@MgD(TDB) = 47344 0258547 +
0:130080113%, whereE is the cycle number. This was chosen to give a at trend in sifrem 2002 to 2010. The light-grey smooth curves show 50
Newtonian orbit ts to the pre-2011 data only, generatedM@MC iteration, corresponding to the models of the lowétanel of Fig[4; the models were
picked from the nal 100 models of the MCMC chain. The timeteaf2010 are from this paper and were not used to create thants yet they match the

predicted trend well. For clarity, only data with uncert@a< 2 sec are shown.

adopt here, is the Markov Chain Monte Carlo (MCMC) method.
The aim of MCMC analysis is to obtain a set of possible mod-
els distributed over model parameter space with the Baygsia-
terior probability distribution de ned by the data. Thisascom-
plished by stochastic jumping of the model parametersoviat by
selection or rejection according to the posterior proligbdf the
modelM given the dat®, P (M jD). This process results in long
chains of models, which, if long enough to be well-mixed,éthe
desired probability distribution. By Bayes' theorem thesygior
probability is proportional to the product of the prior peddility of

the modelP (M), and the likelihoodP (D jM ), which in our case

is determined by the fact@xp( 2=2), where 2 is the standard
goodness-of- t parameter.

For the prior probabilities, we adopted uniform priors fdr a
temporal zero-points, the eccentricities (0 to 1), and theraents
of periapsis ( 180 to+180 ). We used Jeffreys priord£a, 1=m)
for the semi-major axes and masses. Some care is neededhever t
eccentricitye and the argument of periapdis which sets the ori-
entation of the ellipse in its own plane, becalisbecomes poorly
constrained as! 0. This can cause dif culties if one gerates us-
ing e an%! directly. We therefore transformed o= " ecos!
andy = " esin! , which since the Jacobigi@x;y)=@e;! )jj is
constant, maintains uniform priors éand! , but causes no dif -
culties for small values oé. The choice of priors has a small but
non-negligible effect upon the results. For instance wearsignif-
icant range of semi-major axes in some models, and thereasly|
a difference between a uniform prior atda. Although the priors
can have a quantitative effect upon results in such caseghtwe
no qualitative impact upon the conclusions of this paper.

Armed with the MCMC runs, we are in a position to compute
uncertainties, and correlations between parameters. TG&M®
method is useful in cases of high dimensionality such as we fa
here (the models we present require from 10 to 13 t pararsgter

and can give a good feel for the regions of parameter space sup
ported by the data. Requiring no derivative informatiois highly
robust, a signi cant point for the Newtonian models where can
generate trial orbits which do not even last the span of tiseved
data. These cause dif culties for derivative-based meshseth as
Levenburg-Marquardt for example. Generation of model# wie
correct posterior probability distribution is also ideat §ubsequent
dynamical analysis where one wants to tests models thatoare ¢
sistent with the data.

The main disadvantage of the MCMC method is the
sometimes-large computation time needed to achieve wigldn
and converged chains. The way in which the models are jumped
during the iterations is important. Small jumps lead to slow
random-walk behaviour with long correlation times, whitde
jumps lead to a high chance of rejection for proposed models
and long correlation times once more. Ideally one jumps \&ith
distribution that re ects the correlations between partare but
it is not always easy to work out how to do this, and there is
no magic bullet to solve this in all cases. For instance if -mul
tiple minima are separated by high enough “mountains”, a
chain may never jump between them. In this paper we adopted
the af ne-invariant method implemented in the Python pagka
emcee (Foreman-Mackey et al. 2013). This adapts its jumps to the
developing distribution of models, which is a great advgetaver
having to estimate this at the start, but even so, the probiehis
case turned out to be one of the most dif cult we have encaedte
and in several cases we requiredL0° orbits to reach near-ergodic
behaviour. We computed the autocorrelation functions ohipe-
ters as one means of assessing convergence, but our maiodneth
and the one we trust above any other, was visual, by makirtg plo
of the mean and root-mean-square (RMS) values of paranssers
function of update cycle number along the chains. Initiairfizin”
sections are obvious on such plots, as are long-term tr&hése is
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Figure 3. This plot is identical to Figi]2 but now the orbital ts are leals
upon all data, incorporating the new times, and it includgsoa of the
residuals relative to the best of the orbits shown. For tgladnly points
with uncertainties< 0:5 sec are shown.

no way to be absolutely certain that convergence has beehaea

in MCMC because there can be regions of parameter space that[

barely mix with each other. Even if one comput&d!® models,

there would be no guarantee that a new region of viable models

would not show up aftet0'?. From the very many computations
we have carried out, including large numbers of false stestsbe-
lieve that we have explored parameter space very fully, hacet
are no undiscovered continents of lower. However, as we will
describe later, we did encounter one case that convergesiaaty

to give reliable results. This is fundamentally an issueagaher-
acy and it should improve greatly with further coverage.

3.3 Predicting the future

We start our analysis with our primary objective: how weleddahe

two-planet model developed by Beuermann ét al. (2010) féawerw

[Beuermann et all (2010)'s assumption of zero eccentricitytte
outer orbit, which is largely responsible for the very tigtde ned
t. The dispersion increases once this constraint is lifedepen-
dent of whether Newtonian or Keplerian models are adopted).

3.4 Comparison with[Beuermann et al.[(2010)

The ts plotted in Figs2 anfl]3 were based upon allowing theesam
parameters to vary as used in Beuermann et al. (2010)'s rizalel
(their best one), so in this section we look at the effect that
new data has upon the parameters. We also consider the- differ
ence made by using integrated Newtonian models comparee-to K
plerian orbits; in all subsequent sections we use Newtomad-
els only. For reference, in their (astrocentric Kepleriamgdel 2a,
Beuermann et al. (20110) allowed a total of 10 parameters frele
which were the zero-point and period of the binary's ephésner
the period, semi-major axis and reference epoch of the plaeet,
and the period, semi-major axis, reference epoch, ecceéntand
argument of periastron of inner and lower mass planet. Thi¢ afr
he outer planet was assumed to be circular.
[Beuermann et all (2010) give a detailed description of their
ts in terms of the periods P.” and “Py4” of the two planets (cor-
responding to ouP, andP;), so we rst focus upon this. Fid]4
shows the range d?;—P, space supported under either the Kep-
lerian or Newtonian interpretations, and making use ofegithe
data used by Beuermann et al. (2010) only, or the full setiinl
our new times. The top-left panel is equwalem
-) and indeed matches the range of models they locdted, a
though the MCMC results show that the supported region issmor
complex than their division into just two models perhapsgasgs.
The top-right panel shows a signi cant shrinkage with thdiddn
of new data and supports Beuermann etlal. (2010)'s selecfion
their model 2a. While some shrinkage is expected, the erfahe
change is notable, given that we have have only increasdzhde

confronted with new data? Fifl] 2 shows the most recent eleven line of coverage by around 15%. We believe this is a comhbnati
years of data on NN Ser, dating back to May 2002 when we rst of degeneracy when tting to pre-2011 data alone, combinét w
started to monitor it with ULTRACAM. The vertical dasheddin our having turned the corner of another orbit of the outengta
at the end of 2010 marks the boundary between the times listed (planet 2), as shown by Fifgl 2. Beuermann ét al. (2010) fohat t

in Beuermann et all (2010) and the new times of this paper. The there is little to choose between their two models in termgoafd-

grey curves are a sub-set of 50 MCMC-generated Newtoniar mod
elsbased upoh Beuermann ef al. (2010)'s times alabihout the
new times or orbit ts to guide the eye, one might have guessed
that the new times would perhaps range&din C around 3 sec

on this plot. However earlier data, which are included in tee

but off the left-hand side of the plot windows (

M) and Fid.B later in this paper), cause the planet nTOctEb-

dict a sharp upturn since 2010, corresponding to delayedsecl
times as the binary moves away from us relative to its mean mo-
tion during the previous 8 years. In the planetary modelyiitarn

is primarily the result of th& M, outermost planet. Our new data
are in remarkably good agreement with this (remarkabledathi
thors at least). While this is not a proof of the planetary sipid

has nevertheless passed the test well. We can't say forlsairelt
ternative models such as thosel of Applegate (1992) done av
similarly precise “memory” of the past, but neither is itale¢hat
they do, whereas it is a key prediction of the clockwork psieri

of Newtonian dynamics.

Including the new times when generating the ts, gives a
much tighter set of possible orbits illustrated in . 3 evhalso
shows residuals between the data and the best of the ts shown
It should be noted however that at this point we are following

¢ 2012 RAS, MNRASD00,[1HI4

ness of t, although their model 2a was marginally favourétis
is con rmed by the stripe of viable models connecting theirahd
2b in the top-left panel of Fig]4.

The lower panels show that, even though our choice of coor-
dinates was motivated by the desire to generate Kepleribitsor
which matched Newtonian orbits as closely as possibleethes
nonetheless regions of parameter space considerablyteaffey
three-body effects. In particular, the kink in the loweit-lpanel
located in the region where the period ratio is closer than&@m-
pared to its relatively simple Keplerian counterpart in thpper-
left panel, is evidence of this. Here deviations betweenldt&m
and Newtonian orbits amount to several seconds, highly sat
given the precision of the NN Ser times, and the favouredmeara
ter distribution is distorted as a result. The effects aretmamaller
above the 2:1 line, and show that the modi ed Jacobi cootdma
can work well. Strangely enough, as we remarked earli¢rpath
three-body effects are signi cant, the data are not goodighdo
prove that they operate (which could provide compellingejmeh-
dent support for the planet model) because there is suftaien
generacy for either Keplerian or Newtonian models to t tregal
equally well, albeit with differing sets of orbital elementObvi-
ously, if there are planets orbiting the binary in NN Ser,treght
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Figure 4. Regions ofP1—P, space supported by the data, shown in each case using 20@fsnsadhpled from MCMC chains. The top-left panel is our

equivalent o

10), i.e. we use only dektart before 2011 and assume Keplerian orbits (althoughamabi formalism leads to a very

small change in position). The top-right panel shows Képtemodels based upon all of the data; the lower panels shevediresponding results for
Newtonian orbit integrations. The grey dashed lines matk(ght-hand) and 5:2 (left-hand) period ratios, while tmesses mark the models “2a” (lower
right) and “2b” (upper left) froni Beuermann et 10)aEt (grey) points delineate models which last either mass{l than 1 million years, the post-

common-envelope age of NN Ser.

of 300 years of classical mechanics favours Newtonian nsotet
it will be some time before this can be proved from the dateddly.

3.5 Dynamical stability

As discussed earlier, some proposed circum-binary orlstse h
been shown to be unstable on short timescales, and if naultipl
planetary orbits are proposed, a check on their stabiligssen-
tial. Having said this, all the data needed for this are ndiand
since we don't know the mutual orientations of the planetbits.
Therefore, in the absence of evidence to the contrary, weness
along with previous researchers, that the orbits are caplémad-
dition we assume that, like the binary itself, we see the gitay
orbits edge-on and for simplicity we set the orbital inctioas pre-
cisely to90 . This minimises the masses of the planets relative to
the binary, which will usually tend to promote stability. NSer
emerged from its common envelope phase around one milliarsye
ago, and prior to this phase would have been signi cantlfedént,

so we checked for stability by integrating backwards in tifoe
just 2 million years. To a certain extent stability is alngautluded
within the Newtonian MCMC runs (lower panels of Fig. 4) since
some proposed orbits generated by MCMC jumps lead to anilési
within the span of the data and are rejected. It would have bee
easy to extend this so that all long-term unstable orbitevsen-
ilarly thrown out, however, the CPU time penalty is far toeajr

to allow this approach. Instead, our approach during the NOCM
runs was simply to integrate for the 25 year baseline of tleeeb
vations, leaving the longer-term dynamical stability cart@pions
to the small fraction of models retained (of order 11f) as we
waited for the MCMC chains to reach a stable state.

The differently shaded symbols in FId. 4 distinguish betwee
“stable” orbits which last fo> 1 million years (black) from the
“unstable” ones which do not (grey). In the upper-left pandbits
are mostly unstable below the 2:1 line (i.e. less extremie)ras
one might expect. They are stabilised near the 2:1 and 53 lin
and there is a mixed set of unstable and stable models in batwe
The pattern of stability and instability is broadly coneist with
[Beuermann et all (20110)'s results, although our models gedra
more stable between the 2:1 and 5:2 lines than their demeript
suggests. The topology of stable and unstable regionsvesrthe
distorting in uence of Newtonian effects in the lower-lgknel. Of
order 50% of these models proved to be stable. Once the new dat
are included (right-hand panels), the supported modelsar@ed
to the largely unstable region lying below the 2:1 line in.fdh
Unsurprisingly therefore, very few of these models turn toube
stable — around 1 in 6000. Although one could argue that just o
stable model consistent with the data is all that is requivezlaim
potential stability, the reduction in the fraction of stlphodels is
a worry for the planet model of NN Ser, because it looks pdssib
that with yet more data, we are likely to be left with no lomget
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Figure 5. Regions ofP1—P> space supported by the data, showing the change as the nacelgiisen greater freedom. The left-most panel is the cainsil

model 2 (“B” for short) frolO) for refiace (i.e. it is identical to the lower-right panel of Hij). #)the centre panel, the eccentricity of
the outermost planet is allowed to be non-zero, while thietnigost panel allows the binary's period to change in additEach panel shows 2000 Newtonian
models based upon all of the data. As before, the grey dastesdrhark 2:1 (top) and 5:2 (bottom) period ratios, and bkwk grey points indicate stable and
unstable models. From left-to-right, 0.02%, 0.7% and 15%hefmodels last more than 1 million years.

models at all. Thus we now turn to look at the consequences of when there was no constraint at all, but cuts off an extendad w

freeing up the orbit ts by allowing non-zero eccentricity the
outermost planetary orbit and changes in the orbital peofathe
binary itself.

3.6 Eccentricity and binary orbital period variation

We have so far followed Beuermann et al. (2010)'s applicatid
Ockham's razor by choosing the most restrictive model «test
with the data. This helps the tting process because of degen
cies, ad Beuermann ef al. (2010) suggest, but it gives arlyover
optimistic view of how well constrained NN Ser is. In follaug
Beuermann et all (20110)'s model 2, we are making the question
able assumptions that the outer planet has a circular andittzat
NN Ser acts as a perfect clock. While we don't need to deviata f
these in order to nd good ts to the data, it would come additt
surprise if they were not entirely accurate, so it is of iagtito ex-
amine the effect relaxing these restrictions has upon theehypma-
rameters, and also upon the issue of stability, which, asave just
seen, is looking marginal in the light of the new data. Weefae
carried out MCMC runs with the outermost planet's orbit aiéal
to be eccentric (two extra free parameters, making 12), hed t
with the addition of “clock drift” in the form of a quadratietm

in the binary ephemeris, bringing the number of free pararset
to 13. We found that the MCMC chain of the last case never con-
verged owing to a strong degeneracy between the quadratic te
and the orbit of the outer planet which allowag to range up to
values> 12 AU compared to a value 5:4 AU when no quadratic
term was included. In order to force convergence upon a reaso
able timescale, we therefore applied a gaussian prior,omhere
the latter is de ned by its appearance in the ephemerisioglat

T=To+ PE+ E 2; (17)

with E the eclipse cycle number arf the time in days. The
prior we applied waP( ) / exp( (= )?=2), with =

7:5 10 ' days, 25 times the magnitude expected for gravitational
wave losses (see later). This allows signi cant extra faeadwith-

out suffering the convergence issues of the unconstrairsien
The constraint on allows the majority of the values we found

¢ 2012 RAS, MNRASD00,1HI4

that reaches values as highas 1:5 10 '? days.

Fig.[d shows the change in th—P, MCMC projection as
the orbital models are given these greater freedoms. Thagelsa
are large, showing that parameter degeneracy remainscsighi
The orbital parameters are consequently much more uncehizn
the constrained model 2 lof Beuermann étlal. (2010) suggesist
is no longer even clear whether their model 2a (near 2:1y@iieed
over 2b (5:2) as we see islands of stability correspondinigoth
solutions. Perhaps most importantly however, the incibasadel
freedom allows access to long-lived parts of parameterespeith
signi cant regions of stability, somewhat allaying the \wpbf the
previous section over the likely complete disappearaneaysuch
models. This is particularly the case once the binary'squers
allowed to vary.

The means and standard deviations of the orbital parameters
of models plotted in Fig.]5 are listed in Talile 2, along witle th
values corresponding to the lower-left panel of Eig. 4. Mufsthe
parameters have an obvious meaning, but it should be no&td th
the epochd1 and T, refer to the time when the respective planet
reaches the ascending node of its orbit, not the more usuial pe
astron, as the latter is poorly de ned for small eccentigsit The
eccentricity of the outer planet and the quadratic term in the bi-
nary ephemeris are consistent with zero, although, as we have
just seen, dynamical stability seems to suggestéhat 0, and
it would not be surprising were this the case. THevalues listed
are the minimum of any models of the MCMC chains. The MCMC
method does not aspire to nd the absolute minimufy and tests
we have made suggest that the values listed in the table arderf
0:5 —1:5 above the absolute minimum. The improvement fras
more parameters are added is marginal, so a circular outgri®r
ne for tting the data. It is the requirement of dynamicalkdiility
which leads us to favour the model with eccentricity. In gsihe
numbers of Tablg]2, it should be realised that the mean valaes
not need to correspond to any viable model: for instancemiien
of a spherical shell distribution lies outside the disttibn itself.

The quadratic term produced by a rate of angular momentum
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Table 2. The rst three columns list the means and standard deviatafrthe orbital parameters of the models shown in [Hig. 5. Theehof the left-hand
column uses the same t parameterm &tall (20di6del 2, hence the “B”, with the next two adding the exteeftoms indicated. The right-
hand column is the same as the left-hand one except only ¢h20drl data were used. The reference eclipse for the bipasneeris, marked bYy, is shifted
forward by 43042 cycles relative to the usual ephemeris of3¢Nto reduce the otherwise-strong correlation betwieeandP .

Parameter B B & B+er+ B
all all all pre-2011
To 529429338(MJD) (955 0:1) 10 5 (84 2:8) 105 (5:3 44) 105 (92 08) 10 °
P 0:13008014(d) 24 01) 10° (23 03) 10° (27 05 10° (1:8 26) 10 °
(10 2 d) — — 0:04 0:05 —
ai (AU) 3:488 0:012 343 0:14 337 0:15 328 0:22
P1 (yr) 8:09 0:04 79 05 7.7 05 7.4 038
mi1 (Mj) 2:688 0:036 23 05 22 05 2.2 09
T1 (MJD) 58205 22 58106 228 58043 250 57826 378
el 0:163 0:007 0:19 0:05 0:19 0:04 0:21 0:04
11() 107:4 2.7 111 13 118 15 105 8
ay (AU) 5:313 0:005 535 0:06 5:47 0:15 551 0:18
P2 (yr) 15:125 0:021 1527 0:28 158 07 16:0 0:8
mz (Mj) 7:46 0:05 7:33 0:31 729 0:32 69 14
T, (MJD) 539733 15 54016 106 54096 133 54008 58
e — 0:08 0:05 0:09 0:05 —
12() — 43 119 62 95 —
2 N gof 62.8, 66 62.6, 64 62.5, 63 31.8,32
changel.is given by They tted their data through Levenberg-Marquardt miniatisn
2 of 2, which, apart from the absence of prior probability factors
3P° 1 ; : : .
= TJ_; (18) nds the region of highest posterior probability, but doest ex-

. . . . plore the shape of region of parameter space supported lnathe
whereP is the orbital period and is the angular mome_ntu_m. For  as MCMC does. They imposed conditions of dynamical stabilit
the parameters of NN Ser (Parsons ét al. 2010a), gravitatizave which makes a direct comparison with our results tricky sine

radiation alone gived=J = 1:36 10 ** sec *, and therefore  adopted the strategy of rst seeing what parameter spaceums
= 3:0 10 ' days. Over the entire baseline of observations ported by the data and only then testing dynamical stabilingy
of NN Ser, the E 2 term would then amount t&:5 sec Although found stable orbits close to the 2:1 resonance if they alibtiie
in principle this is detectable, at present, because of ldreegs (or orbit of the outermost planet to be eccentric. This is cdestswith
whatever is causing the timing variability), there is sgategener- what we nd: there are almost no long-lived orbits if the qutest

acy inthe ts once a quadratic term is allowed and we are famfr  orbit is forced to be circular, but some appear near the Beldince
being able to measure a term this small. In fact, as we rerdarke eccentricity is allowed. We refer tQ_B_e_u_e_Lm_annAtla.L_(thB)a
earlier, the degeneracy betweerand the outermost planet's or-  detailed discussion of the nature of the stable solutioas tthey
bital parameters is so strong thats only weakly constrained by nd, in particular a demonstration that they are in mean-iootes-
our data and the uncertainty listed forin Table[2 largely re ects onance. Beuermann et al. (2013) did not consider any peddéd v
the prior restriction we placed upon it. The GWR predictisthie ation of the binary or explore the much wider range of orlifs t
minimum expected angular momentum loss, as one also expectsallows. Thus they did not uncover any of the stable modelsthea
some loss from magnetic stellar wind braking. The secondtely ~ 5:2 ratio which are permitted by the data once period vaniais

in NN Ser has a mass 6f111 M , making it comparable to short- included, and therefore, although we agree that the 2: heese
period @ 90mins) cataclysmic variables for which there is ev- s favoured, we feel that their exclusion of the 5:2 resoraat
idence for angular momentum loss at aro@8l the GWR rate “99.3% con dence” is premature.

at the same short periods (Knigge ef al. 2011), but thislisysich Beuermann et all (2013) present a plot of the dynamical life-
smaller than we can measure at present. We expect a suitanti time as a function of the eccentricities of the two planetsand
improvement in this constraint over the next few years agptie e, (their gure 3). This provides us with an opportunity to com-

rameter degeneracy is lifted. Given the current lack of tairs pare the constraints set by our two sets of data, althoughesslgt
upon from the data, at present we favour the model in whida remarked the differences between our two approaches malk ex
xed to zero. comparison dif cult. For instance, we reject the implicatiof the
right-hand two panels of their gure 3 that the dynamicaétifme
. . . ] isa smglle-v.alu.ed function af; ande;; instead, once one gllpws
3.7 Comparison withBeuermann et a.1(2013) for the distribution of other parameters, there must be #illis
As mentioned earlier, shortly after the rst submission lktpa- tion of lifetimes at any given values @& ande;; we discuss a

per, Beuermann et al. (2013) presented new eclipse times siad similar issue at length in the next section. However, a coispa
bility analysis of NN Ser. In this section we compare our sHts can still be made accepting that Beuermann gt al. (2013)seg
results which are based upon the same set of data prior tq 2011 shows the lifetime of the most probable orbits, since foheaee,

but independent sets of new data thereafter, i.e. we do ecans point they re-optimised the other 10 parameters. Our neagesv-

of their new data, Beuermann ef al. (2013) consider only fsode alent to their plot is shown in Fidl] 6 for which we extended our
equivalent to our B + e;” models of the middle panel of Fiff] 5.  dynamical integrations to 100 million years to delineatgions

¢ 2012 RAS, MNRASD00,[1HI4
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Figure 6. The projection onto they—e; plane of the MCMC chain al-
lowing for eccentricity in both orbits but not binary perictiange, i.e. the
models shown in the central panel of Hig. 5. The contours skgions en-
compassing8:3, 95:4 and99:7% of the orbits supported by the data, with
no restriction on stability. Small grey dots mark the orltitat last between

10% and50  10° years; large blue dots mark those that last for more than

50 106 years. The contours are comparable to the left panel of @ure
from13), while the locations of the kived models

are comparable to the other two panels of their gure.

of greatest long-term stability. The gure compares welttwig-
ure 3 of_ Beuermann etlal. (2013) with many similar features. W

see the same tight de nition @& at low values of;, but spread-

ing out ase; increases. The main island of stable models found by

[Beuermann et all (2013) coincides with the island of stabibits
that have higte, values seen in Fif] 6.

There are a few differences as well. Our data support a smalle

region of parameter space, owing to a higher overall pracisi
which more than compensates for a smaller number of eclipee t
measurements. In particular, a spur of lagge/ low e; allowed
by[Beuermann et all (2013)'s data is eliminated by ours, hrdst
is general exclusion of higk, values leading to the large area of
white space on the right-hand side of the plot for which weseho
the same axis limits as Beuermann €tlal. (2013). We ascrémeth
differences to signal-to-noise rather than anything mongldmen-
tal. The other most notable difference is that we nd an idlah
stability fore; = 0:01 — 0:04 as well. Although there are signs

of the same region in_Beuermann et al. (2013)'s gure, it ig no

as marked as we nd. This may be the result of the difference in

approaches, with Beuermann et al. (2013) tracing the higheb-
ability region for eacle;—e, value, versus our exploration of the
larger region of supported parameter space.

The planets around NN Ser: still there 11

highest quality eclipse times with a weighted RMS scatteuad
the best torbit of =0:07sec, where

=N V)
2——pm, (19)

i=1 i

with N the number of datay the number of variable parameters,
and ; the individual uncertainties on the eclipse times. Theestar
rival in this respect as far as we can determine is HU Agr foictvh
[Gozdziewski et 41 (2012) quote a scattet0of sec, and this after
signi cant pruning of discrepant points. Our typical bestalues

of 2 are around 63 with 76 points and 10 — 13 t parameters. The
expected value of 2 is thus 63 to 66 11, so there are as yet no
signs of systematics in the data.

We have shown that the range of orbits consistent with
Beuermann et all (20110)'s data leads to a good predictionhier
location intheO  C diagram of the new data, so the planet model
has predictive power. Moreover, allowing a non-zero egoatyt
of the outer planet's orbit, we nd stable solutions. Thedatresult
is interesting, and perhaps counter-intuitive at rst sighne might
expect if the outer planet's orbit is allowed to be eccerttign it is
more likely to de-stabilise the orbit of the lighter inneapét. This
is what Horner et al[ (2012b) found, but we believe their gsialto
suffer from signi cant technical aws. Some of these are coon
to other papers from the same authors, as we now discuss.

4.1 Previous dynamical stability analyses of NN Ser and
related systems

Beuermann et al| (2010) carried out a limited stability gsial of
NN Ser's putative planetary system usih@0,000 yr-long integra-
tions and identi ed stable regions of parameter space, lwttiey
tentatively associated with 2:1 and 5:2 mean-motion rascesm
[Horner et al.[(2012b) pointed out tha® yr was too short to as-
sess long-term stability, and also criticised the restnicto circu-
lar orbits for the outer planet. They too found signi canalsiity
when the outer planet was held in a circular orbit, but wheiy ti-
lowed its eccentricity to vary and re- tted the orbits, tHeynd that
the solution lay within a broad region of very short-livedits, al-
though uncertainties were suf cient to allow for some loagting
ones too. They concluded this from an examination of théirife
of the system as a function of the inner-planet's semi-majas
a; and eccentricitye; (their gure 5), and ascribed it to the sig-
ni cant eccentricity €, = 0:22) they found for the outer planet's
orbit. Our results do not agree with theirs, and this is noipty to
do with the new data, because we still nd signi cant numbefs
stable solutions when we restrict our analysis to the piet2tata
used by Beuermann etlal, (2010) and Horner et al. (2012b).
Instead, we believe that the work presentemm al.
) suffers from a series of aws, the last of which rensdé

These differences are small, and overall we conclude that we largely irrelevant to the question of stability of NN Ser.eTsame

are in substantial agreement with Beuermann let al. (20183.i%
of course to be hoped for given that we use the same data,wath t
small corrections, up to 2011.

4 DISCUSSION

The two-planet model for the variations in eclipse times df Sker

has survived both new precise data and an updated dynartéeal s

bility analysis. It is the rst compact eclipsing binary aently
hosting planets for which this can be said. It also delivgriabthe

¢ 2012 RAS, MNRASD00,IHI4

problem affects a series of similar papers from the sameoasjth

and thus we devote this section to where we think this work has

gone awry.
We start with minor issues. First of all, NN Ser is not, and
never has been, a cataclysmic variable, and, since its \dtitef
ishot Tery  60,000K, Wood & Marsh (1991)), it only emerged
from its common envelope around one million years ago. Téris r
ders most of Horner et hl.'s 100 million year-long integna8 su-
per uous since the system was undoubtedly very differeigrgo

the common envelope in a way that cannot be modelled with the

Newtonian dynamics of a few, constant point masses. Shil$, t
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