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Abstract  27 

Objective: To support future developments of field-based biomechanical load monitoring tools, this 28 

study aimed to identify generalised segmental acceleration patterns and their contribution to ground 29 

reaction forces (GRFs) across different running tasks. 30 

Design: Exploratory experimental design. 31 

Methods: A multivariate principal component analysis (PCA) was applied to a combination of 32 

segmental acceleration data from all body segments for fifteen team-sport athletes performing 33 

accelerated, decelerated and constant low-, moderate- and high-speed running, and 90° cutting trials. 34 

Segmental acceleration profiles were then reconstructed from each principal component (PC) and used 35 

to calculate their specific GRF contributions. 36 

Results: The first PC explained 48.57% of the acceleration variability for all body segments and was 37 

primarily related to the between-task differences in the overall magnitude of the GRF impulse. 38 

Magnitude and timing of high-frequency acceleration and GRF features (i.e. impact related 39 

characteristics) were primarily explained by the second PC (12.43%) and also revealed important 40 

between-task differences. The most important GRF characteristics were explained by the first five 41 

PCs, while PCs beyond that primarily contained small contributions to the overall GRF impulse. 42 

Conclusions: These findings show that a multivariate PCA approach can reveal generalised 43 

acceleration patterns and specific segmental contributions to GRF features, but their relative 44 

importance for different running activities are task dependent. Using segmental acceleration to assess 45 

whole-body biomechanical loading generically across various movements may thus require task 46 

identification algorithms and/or advanced sensor or data fusion approaches. 47 

Keywords: Biomechanical loading; Principal component analysis; Segmental contributions; Running; 48 

Accelerations 49 

 50 
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Practical Implications 51 

  A multivariate PCA approach can be used to simultaneously identify general segmental 52 

coordination patterns and specific segment contributions to GRF across running tasks, but 53 

segment contributions to GRF vary between different movements. 54 

 Caution should be practiced when using segmental acceleration signals to evaluate 55 

biomechanical loads (e.g. from popular body-worn accelerometers), especially across different 56 

tasks. 57 

 Segmental acceleration information likely requires task identification algorithms and/or 58 

advanced sensor or data fusion approaches to assess whole-body biomechanical loading 59 

generically across various running movements. 60 

61 
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Introduction 62 

Although the physiological demands of sports have been monitored and investigated extensively in the 63 

field, biomechanical loads are still poorly quantified and not well understood 1. Ground reaction forces 64 

(GRF) have, therefore, been suggested as a measure of external whole-body biomechanical loading, 65 

which might be estimated from currently popular body-worn accelerometers 2,3. Estimating GRF from 66 

single accelerometers is, however, not straightforward 4–6. Whilst there might be the potential of using 67 

full-body segmental accelerations to estimate GRF, reducing the number of segments to a number 68 

more feasible in a practical setting has been shown to substantially increase the GRF error 2,7. These 69 

findings collectively suggest that estimating whole GRF waveforms accurately from segmental 70 

accelerations across different tasks is unlikely to be feasible. Since human running comprises a 71 

complex combination of simultaneous segmental movements however, more complex analyses may 72 

identify fundamental movement features that contribute to the GRF and could still be captured with 73 

accelerometers. 74 

Principal component analysis (PCA) is a technique that can be used to reduce the amount of redundant 75 

information and extract key characteristics (e.g. magnitude, difference and phase shift operators 13,20) 76 

of highly-dimensional biomechanical data. For example, PCA has been used to analyse gait patterns 8–77 

10 and postural control 11,12, differentiate between pathological groups 10,13,14, or quantify and evaluate 78 

sports technique 15–17. Although applications of PCA in biomechanics have typically focussed on 79 

waveform data for individual variables, multivariate PCA approaches allow for structures of 80 

variability to be uncovered across multiple parameters at the same time 8,9,15. Given the complexity of 81 

segment coordination and interdependency of segmental accelerations during human running, a 82 

simultaneous analysis of multiple acceleration profiles is desirable to examine if generalised 83 

acceleration patterns across various segments exist and are related to specific GRF features. A 84 

multivariate PCA approach in which different variables (e.g. segments, tasks, time) are combined, 85 

might help to uncover such acceleration patterns and related GRF features across different running 86 

tasks, and reveal which specific segmental accelerations together influence changes in GRF profiles. 87 
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It is unlikely that GRF can be predicted from one or several segmental accelerations using mechanical 88 

methods 3,4,6. However, these approaches typically use acceleration signals from predefined segments 89 

deemed important for GRF but do not allow for an agnostic identification of generalised multi-90 

segmental contributions to the GRF. We hypothesised that if explicit GRF features are related to 91 

generalised acceleration patterns across different running tasks, this could further inform the potential 92 

for using segmental accelerations to assess whole-body biomechanical loads in running-based sports 93 

(such as the choice of relevant segments or the feasibility to generalise across tasks). Therefore, this 94 

study aimed to use a multivariate PCA approach to identify segmental acceleration patterns that 95 

contribute to GRF features, to more comprehensively understand biomechanical loading and support 96 

future developments of field-based biomechanical load monitoring tools. 97 

Methods 98 

Data. A previously described data set of full-body kinematics and GRF data for right foot 99 

contacts of fifteen healthy team-sport athletes (12 males and 3 females, age 23±4 years, height 178±9 100 

cm, body mass 73±10 kg, sports participation 7±5 h per week) were used for this study 2. This study 101 

was approved by the Liverpool John Moores University ethics committee and participants provided 102 

written informed consent according to the ethics regulations.  103 

Participants performed accelerated, decelerated, low- (2-3 m·s-1) moderate- (4-5 m·s-1) and high-speed 104 

(>6 m·s-1 including maximal sprinting) running, and 90° cutting 2. Seventy-six marker trajectories 105 

were measured from a three-dimensional motion capture system (Qualisys Inc., Gothenburg, Sweden), 106 

while GRFs were measured from a force platform (Kistler Holding AG, Winterthur, Switzerland). 107 

Kinematic and kinetic data were exported to Visual3D (C-motion, Germantown, MD, USA), which 108 

was used to build a fifteen segment (head, trunk, pelvis, upper arms, forearms, hands, thighs, shanks 109 

and feet) six-degree-of-freedom model 2. Centre of mass (CoM) accelerations for each segment were 110 

calculated as the double differentiation of segmental CoM positions. 111 

Normalisation and scaling. All fifteen segmental CoM acceleration and GRF waveforms in 112 

the mediolateral (x), anteroposterior (y) and vertical (z) direction during ground contact were 113 

normalised to 101 data points for each trial. Segmental accelerations were then expressed as 114 
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acceleration vectors a for every time point t (equation 1) (note: vectors and matrices will be referred to 115 

by using bold lowercase or capital letters respectively). 116 

𝐚(t) =  [ax1(t), ay1(t), az1(t), ax2(t), … , az15(t)] Eq.1 

The combination of acceleration vectors for each trial thus formed a 10145 acceleration matrix Atrial. 117 

Trial-specific acceleration matrices were then combined in participant- and task-specific matrices 118 

𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤 by vertically stacking each trial matrix Atrial per participant and task. These combined 119 

acceleration matrices 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤 were normalised and scaled to 1) assure that every participant equally 120 

contributed to the variance of the total acceleration matrix, 2) reduce anthropometric differences 121 

between participants, 3) preserve relative segmental acceleration amplitudes and 4) correctly represent 122 

the portion of the total body mass of each segment 12. First, a participant- and task-specific mean 123 

acceleration vector 𝐚𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ was calculated and subtracted from each acceleration vector a (equation 124 

2), to assure that the first PC described the direction of maximum variance in the segmental 125 

acceleration data. 126 

𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′(t) =  [(ax1(t) − ax1
part,task̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), (ay1(t) − ay1

part,task̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), … , (az15(t)

− az15
part,task̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)] 

Eq.2 

Matrix 𝐀𝐬𝐮𝐛𝐣,𝐭𝐚𝐬𝐤′ thus represented the acceleration deviations from the participant’s mean segmental 127 

acceleration for each task. Secondly, acceleration vectors for each participant were divided by the 128 

mean Euclidean norm 𝐞𝐮𝐜𝐧𝐨𝐫𝐦
𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of all acceleration vectors (equation 3), to ensure that 129 

participants equally contributed to the variance of the total acceleration matrix and to minimise 130 

amplitude differences due to anthropometric differences 11,18. 131 

𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′(t) =  
𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′(t)

𝐞𝐮𝐜𝐧𝐨𝐫𝐦
𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 Eq.3 

Thirdly, each acceleration vector was normalised for the relative segmental masses to further account 132 

for anthropometric differences between segments. Acceleration vectors were multiplied by a weight 133 

vector w (equation 4), which contained mass ratios of each segment relative to the total body mass 19. 134 
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𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′′(t) =  𝐰 ∙ 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′(t) Eq.4 

Finally, the participant- and task-specific acceleration matrices for each participant 𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤′′′ were 135 

combined in one 4878345 (15 participants ∙ 6 tasks ∙ number of trials per task (483 in total) ∙ 101 136 

data points per trial) acceleration matrix A. 137 

Principal component analysis. A PCA was performed on the normalised and combined 138 

acceleration matrix A. The results included 1) eigenvector matrix EV consisting of 45 orthogonal 139 

eigenvectors evk, (or ‘principal component vectors’) each indicating the largest acceleration variability 140 

for all segments, 2) eigenvalue matrix λ containing the eigenvalues λk which quantified the amount of 141 

variability described by each eigenvector evk, with a strict decrease in the amount of variability with 142 

increasing k, and 3) time evolution coefficient matrix C (or ‘score matrix’) describing how the original 143 

segmental acceleration data evolved along the new principal acceleration axes. C was calculated by 144 

projecting each original normalised and scaled acceleration vector a onto each PCk of the eigenvector 145 

matrix 12, according to equation 5. 146 

𝐜𝐤(t) = 𝐚(t) ∙ 𝐞𝐯𝐤 Eq.5 

Principal accelerations and principal GRF. Participant- and task-specific principal 147 

acceleration (PA) matrices 𝐏𝐀𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤 were reconstructed for each individual PCk (equation 6) to 148 

investigate how patterns of acceleration contribute to the GRF, or the sum of the first k PCs (equation 149 

7) to examine the number of PCs required to adequately describe the whole GRF waveform. PCs were 150 

expressed in the original segmental acceleration space by decomposing reconstructed acceleration 151 

matrices into participant- and task-specific matrices, after which the normalisation and scaling steps 152 

were retraced.  153 

𝐏𝐀𝐤
𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤(t) = 𝐚𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐞𝐮𝐜𝐧𝐨𝐫𝐦

𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐰−𝟏 ∙ [𝐂𝐤 ∙ 𝐞𝐯𝐤]
𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤 Eq.6 

𝐏𝐀𝟏−𝐤
𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤(t) = 𝐚𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐞𝐮𝐜𝐧𝐨𝐫𝐦

𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐰−𝟏 ∙ [ ∑ 𝐂𝐤 ∙ 𝐞𝐯𝐤

𝟏,𝟐,…,𝟒𝟓

𝐤=𝟏

]

𝐩𝐚𝐫𝐭,𝐭𝐚𝐬𝐤

 Eq.7 

Since the reconstructed PAs are consistent with the laws of Newtonian mechanics, the principal 154 

segmental acceleration vectors pa can be used to calculate principal GRF (PGRF) profiles. PGRF was 155 
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defined as the part of the overall GRF that is associated with the totality of all segment PAs combined. 156 

Resultant PGRF curves were calculated as the sum of the product of each segmental mass and 157 

principal CoM acceleration in the three directions, from each individual PCk (equation 8), or from the 158 

sum of PAs reconstructed from the first k PCs (equation 9; Fig. 1). 159 

𝐏𝐆𝐑𝐅𝐤 = √(∑(𝐩𝐚𝐤,𝐧,𝐱 ∙ mn)

15

n=1

)

2

+ (∑(𝐩𝐚𝐤,𝐧,𝐲 ∙ mn)

15

n=1

)

2

+ (∑(𝐩𝐚𝐤,𝐧,𝐳 ∙ mn)

15

n=1

+ g · BM)

2

 Eq. 8 

∑𝐏𝐆𝐑𝐅𝟏−𝐤 = ∑

[
 
 
 
 
√(∑(𝐩𝐚𝐤,𝐧,𝐱 ∙ mn)

15

n=1

)

2

+ (∑(𝐩𝐚𝐤,𝐧,𝐲 ∙ mn)

15

n=1

)

2

+ (∑(𝐩𝐚𝐤,𝐧,𝐳 ∙ mn)

15

n=1

+ g · BM)

2

]
 
 
 
 k

pc=1

 Eq. 9 

In which k is the PC number, pa the principal segmental acceleration in x, y or z direction, m the 160 

segmental mass, n the number of segments (n=15), g the gravitational acceleration (-9.81 m·s-1) and 161 

BM the total body mass. Measured and calculated PGRF curves were normalised to each participant’s 162 

body mass and accuracy evaluated as the curve root mean squared error (RMSE) relative to the 163 

measured GRF.    164 

Results 165 

Visual screening of PC results revealed that distinct acceleration and GRF features were primarily 166 

explained by the first five PCs, which explained 77.8% of all segmental acceleration variability across 167 

participants and tasks. Each additional PC (i.e. k>5) explained <3% variance of the original 168 

acceleration data and contributed <1% to the overall GRF. Therefore, only the first five PGRF and 169 

∑PGRF profiles (see Fig. 1 for an example), and associated PAs were used for further qualitative 170 

analysis.  171 

PC1 explained 48.6% of the acceleration variability of all segments, which accounted for the majority 172 

of the overall GRF impulse (Fig. 2; Table 1). The largest amplitude of PA1 occurred between ~10-70% 173 

of stance (Fig. A.1 and A.2) for decelerated and constant-speed running, but later during stance (~30-174 

90%) for accelerated running. PA1 magnitudes were typically the lowest for 90° cutting and running at 175 

slower speeds and the highest for the forearms and hands.  176 
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Including PC2 reduced ∑PGRF errors by 25.5% across tasks (Table 1). PC2 primarily explained high-177 

frequency acceleration contributions to the GRF impact peak associated with landing (Fig. 2), for all 178 

tasks except accelerations, and were primarily expressed in PA2 profiles of the right thigh, shank and 179 

foot (stance leg segments) and pelvis. In contrast to the other tasks, PGRF2 features for accelerated 180 

running occurred during the second half of stance (i.e. ~50-90%). 181 

Segmental accelerations from PC3 were associated with two GRF features for constant-speed running, 182 

but not for the other tasks. PGRF3 contained small impact peak force components during early stance 183 

(~20-30%), as well as a general contribution to GRF impulse during the second half of stance (Fig. 2). 184 

Magnitudes for both GRF features increased with running speed and were primarily associated with 185 

accelerations of leg and arm segments (Fig. A.2). 186 

Compared to the first three PCs, PC4 and PC5 contained considerably less segmental acceleration 187 

variability and distinct GRF features (Table 1). For accelerated running, these PCs made constant (but 188 

small) GRF contributions from ~10-80% (PGRF4) and ~0-50% (PGRF5) of stance (Fig. 2), while for 189 

other movements, PA4 profiles were mainly associated with small GRF contributions during the first 190 

~40% of stance. For high-speed running, PGRF5 contained a considerable amount of GRF impulse, 191 

but not for the other tasks. 192 

Including more PCs (i.e. k>5) gradually increased the overall GRF and reduced ∑PGRF errors but 193 

were not related to specific GRF features. To achieve ∑PGRF errors within 10% of the mean RMSE 194 

for GRF from all 45 PCs (i.e. the original data), a total of 18 (accelerations), 2 (decelerations), 15 (90° 195 

cuts), 7 (low-speed running), 4 (moderate-speed running) and 18 (high-speed running) PCs were 196 

required, respectively.  197 

Discussion 198 

Task-specific accelerations. The aim of this study was to identify key contributions of 199 

generalised acceleration patterns and specific segments to the GRF. The three primary modes of 200 

variation described by PCA; a magnitude operator, difference operator and phase shift 13,20, were 201 

evident in the first five PAs and PGRFs. First, segmental acceleration magnitude differences 202 
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associated with GRF impulse (i.e. overall loading of the body) and the impact peak were captured by 203 

PC1 and PC2 respectively. Substantial amplitude variability in PA and PGRF profiles between tasks 204 

showed that the magnitude of these GRF characteristics was strongly dependent on task (Fig. 2). 205 

Secondly, PC3 and PC5 highlighted difference operator features. For accelerated running for example, 206 

the main contributions of PGRF3 and PGRF5 to the overall GRF was during the first half of stance but 207 

explained a much lower amount of force during push-off, while for constant-speed running this was 208 

the other way around. Thirdly, clear phase shift characteristics were manifested in the first two PCs. 209 

For example, the impulse peak (PGRF1) and high-frequency acceleration and force features of PC2 210 

appeared in the first ~10-40% of stance for decelerations, constant-speed running and cutting tasks, 211 

but much later during stance for accelerated running. These results show that PCA can identify general 212 

acceleration patterns underlying specific GRF profiles, as well as highlight the relative importance of 213 

these features for different running tasks. 214 

PC2 primarily contained acceleration and force features related to the GRF impact peak, for all tasks 215 

except accelerations. These force peaks were mostly explained by high PA2 peaks of the support leg’s 216 

foot, shank and thigh segment, and the pelvis to a lesser extent (Fig. A.1 and A.2). This supports 217 

previous suggestions that the impact peak is primarily associated with stance leg accelerations 21–23. 218 

Moreover, despite the absence of visual impact peaks in GRF waveforms for non-rearfoot running 219 

gaits (e.g. sprinting), force frequencies associated with these initial force peaks are still present 24,25. 220 

Clear impact force peaks were indeed found in PGRF2 profiles for high-speed running, for which 221 

runners typically switched to a forefoot landing technique (Fig. 2). The present PCA approach thus 222 

further supports the presence of impact force peaks in non-rearfoot running, despite their visual 223 

absence in the GRF waveform. 224 

For accelerated running, PA2 profiles of the support leg’s foot, shank and thigh segments were mainly 225 

related to a force peak during the second half of stance (Fig. 2). In addition, the smoother impacts of 226 

landing during accelerations were better explained by PC5 and thus less important for the overall 227 

biomechanical load on the body. This highlights the importance of force production when pushing off 228 

the ground in acceleration movements, compared to other tasks in which braking (force) is emphasised 229 
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more. Using PCA across multiple tasks can thus not only identify generic acceleration patterns, but 230 

also explain their relative importance for different running movements. 231 

The results of this study highlight that segment contributions to GRF are movement dependent. These 232 

findings could explain why generalised methods to predict GRF from one or a few acceleration signals 233 

cannot lead to accurate GRF estimates across different tasks 2,7. For example, a specific segment (or 234 

combination of segments) might be suitable to estimate GRF profiles for sprinting, while the same 235 

segments are not so suitable to describe the GRF for decelerated running. Therefore, one should be 236 

cautious when using generic biomechanical models or approaches to estimate GRF and/or assess 237 

external biomechanical loads from segmental accelerations across different running tasks. 238 

Segment-specific accelerations. Trunk accelerometry is arguably the most commonly used 239 

acceleration signal for assessing biomechanical loads in different sports 26–28. Although the trunk is 240 

thought to be the main contributor to GRF 21, trunk PA1 profiles were very similar to other segments, 241 

for all tasks (Fig. A.1 and A.2). Moreover, higher PCs (i.e. k>1) did not explain any considerable 242 

additional trunk acceleration features. These findings thus suggest that the trunk’s large contributions 243 

to GRF are primarily due to its large mass rather than the characteristics of its acceleration. The value 244 

of using trunk accelerometry alone for biomechanical load monitoring purposes is thus probably 245 

limited. 246 

PAs of the forearm and hand segments typically had a high magnitude of acceleration (Fig. A.1 and 247 

A.2) but did not make any distinct contribution to the specific GRF features in the first five PCs. 248 

Furthermore, for decelerated and low- to moderate-speed running considerably less PCs were required 249 

to achieve ∑PGRF errors within 10% of the mean RMSEs from all 45 PCs. This is possibly caused by 250 

the more profound and complex arm movements (explained by PCs beyond the first five) during 251 

acceleration, cutting and sprinting movements. Therefore, although arm movements (but also swing 252 

leg motion) are not the primary contributors to GRF, these segments do account for a considerable part 253 

of overall GRF impulse. These findings highlight that all segments should be considered when 254 

assessing whole-body loading, especially for sports in which dynamic and high-intensity tasks are 255 

frequently performed.  256 



12 

 

It should be acknowledged that directly measuring PAs (e.g. from multiple body-worn accelerometers) 257 

may not be feasible in training and competition environments, making it difficult to translate the 258 

present findings to a field-based load monitoring context. The multivariate PCA approach used in this 259 

study could, however, uncover a deeper layer of complexity and highlight key characteristics in a 260 

high-dimensional acceleration data set. This complexity adds to previous findings that reconstructing 261 

GRF waveforms from less than all segments across different tasks is unlikely feasible 2. The PCA 262 

allowed for different acceleration combinations and key features to be detected, which provides 263 

practical insight for what sensors to include when using too many sensors is an issue in the field. 264 

Regardless, the complexity of segmental contributions to GRF outlined in this study further 265 

emphasises that estimating biomechanical loading from accelerations is not straightforward, especially 266 

across different tasks. Therefore, using body-worn accelerometry to estimate whole-body 267 

biomechanical loading across various movements likely requires task identification algorithms and/or 268 

advanced sensor or data fusion approaches (e.g.29). 269 

Limitations. The methods described in this study have several limitations. First, PCA was 270 

deliberately performed on the combined segmental accelerations for multiple participants and tasks. 271 

The results are thus a general representation of how segmental acceleration contribute to GRF, across 272 

different running tasks. Unique loading or movement features for individual athletes or tasks may thus 273 

not be highlighted and future research could consider task- and/or participant-specific PCA. Secondly, 274 

using resultant accelerations and GRFs did not allow for identifying direction-specific acceleration and 275 

GRF features. However, this study aimed to evaluate generic acceleration patterns related to overall 276 

biomechanical load features. Moreover, body-worn accelerometers cannot typically distinguish 277 

between global x-y-z directions and using resultant accelerations was deemed more feasible for 278 

potential translations of our findings to a field-based load monitoring context. Thirdly, segmental 279 

acceleration data were normalised by a weighting vector based on a standardised mass distribution 19. 280 

Due to typical anthropometric differences between participants, defining and applying an 281 

individualised mass distribution could affect the results. Although this was beyond the scope of this 282 

study, future work could consider if personalised normalisation may be beneficial. 283 
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Conclusions 284 

This study aimed to identify general segmental acceleration patterns associated with GRF features that 285 

might be used to assess whole-body biomechanical loads. Although a multivariate PCA could reveal 286 

generic acceleration patterns and specific segmental contributions to GRF, the relative importance of 287 

these features varied between tasks. Using segmental acceleration to assess whole-body biomechanical 288 

loading generically across different movements thus likely requires task identification algorithms 289 

and/or advanced sensor or data fusion approaches. 290 
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Figures and tables 389 

 390 

Figure 1 Representative example of individual and summed ground reaction force (GRF) profiles 391 

reconstructed from the first five principal components (PCs), for a single trial of running at a constant 392 

moderate speed. Individual principal GRFs (PGRFs; grey dotted lines) were added together as the 393 

summed PGRFs (∑PGRFs; grey solid lines) for the first k PCs and compared to the measured GRF 394 

(black solid line) by the curve root mean square error (RMSE). 395 

  396 
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 397 

Figure 2 Mean principal ground reaction forces (PGRFs) calculated from the first five principal 398 

components (PCs), for each task. PGRFs were calculated from principal accelerations (PAs) 399 

reconstructed from either the kth PC (top row), or the sum of the first k PCs (∑PGRF1-k; middle row). 400 

Root mean square errors (RMSE; bottom row) are mean errors for the ∑PGRF profiles and the 401 

horizontal black line represents the RMSE for ∑PGRFs from all 45 PCs (i.e. the original data).  402 
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Table 1 Principal components and ground reaction forces for the different tasks 

  Principal components (k) 
 1 2 3 4 5 45 

λk (%) 48.57 12.43 8.56 4.44 3.78 0 

Cumulative λ (%) 48.57 60.99 69.55 73.99 77.77 100 

  ∑PGRF RMSE (N·kg-1) 

Accelerations (n=80) 
4.46 5.37 5.09 4.93 3.88 2.89 

±1.3 ±1.5 ±1.5 ±1.5 ±1.2 ±0.7 

Decelerations (n=83) 
10.69 6.18 6.44 6.11 5.88 5.97 

±3.1 ±2.3 ±2.4 ±2.2 ±2 ±1.8 

90° Cuts (n=88) 
5.11 3.77 3.79 3.65 3.61 2.66 

±1.3 ±0.9 ±0.9 ±0.8 ±0.7 ±0.7 

Constant speed running       

     Low (2-3 m·s-1; n=81) 
2.53 1.89 1.93 1.92 1.87 1.65 

±0.5 ±0.4 ±0.5 ±0.5 ±0.5 ±0.4 

     Moderate (4-5 m·s-1; n=80) 
3.74 2.70 2.82 2.72 2.66 2.51 

±1.1 ±0.8 ±0.9 ±0.8 ±0.7 ±0.6 

     High (>6 m·s-1; n=71) 
5.67 4.14 5.03 4.71 4.84 4.34 

±2 ±1.2 ±1.2 ±1.2 ±1.1 ±1.3 

All tasks (n=483) 
5.38 4.01 4.17 4.00 3.78 3.33 

±3.1 ±2 ±2.1 ±1.9 ±1.8 ±1.8 

Summed principal ground reaction force (∑PGRF) error results from the first k 

principal components (PCs), as well as all 45 PCs (i.e. original data). Eigenvalues λk 

represent the normalised amount of segmental acceleration variance explained by 

each PCk. Root mean square errors (RMSE) are mean ± standard deviation values per 

PCk for each task. 

 403 

  404 
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Appendix A: Principal segmental accelerations 405 

 406 

Figure A.1 Principal accelerations (PAs) from the first five principal components (rows) for 407 

accelerations (blue), decelerations (red) and 90° cuts (green) during a right leg contact phase. PA 408 

profiles are mean ± standard deviation (shaded) curves from 0-100% of stance, for all fifteen segments 409 

(columns). 410 

  411 
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 412 

 413 

Figure A.2 Principal accelerations (PAs) from the first five principal components (rows) for running 414 

at constant low (light grey), moderate (grey) and high speeds (black) during a right leg contact phase. 415 

PA profiles are mean ± standard deviation (shaded) curves from 0-100% of stance, for all fifteen 416 

segments (columns). 417 

 418 


