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ABSTRACT Cloud computing has been one of the most popular distributed computing paradigms. Elasticity is a crucial feature 
that distinguishes cloud computing from other distributed computing models. It considers the resource provisioning and allocation 
processes can be implemented automatically and dynamically. Elasticity feature allows cloud platforms to handle different loads 
efficiently without disrupting the normal behavior of the application. Therefore, providing a resource elasticity analytical model 
can play a significant role in cloud resource management. This paper presents Controlling Elasticity (ControCity) framework for 
controlling resources elasticity through using “buffer management” and “elasticity management”. In the proposed framework, 
there are two essential components called buffer manager and elasticity manager in the application layer and middleware layer, 
respectively. The buffer management controls the input queue of the user’s request and the elasticity management controls the 
elasticity of the cloud platform using learning automata technique. In the application layer, applications are received by cloud 
applications and, then, placed in the control of the buffer. Buffer manager controls the queue of requests, and elasticity manager 
of the middleware layer using the learning automata provides a solution for controlling the elasticity of the cloud platform. The 
experimental results indicate that ControCity reduces the response time by up to 3.7%, and increases the resource utilization and 
elasticity by up to 8.4% and 5.4%, respectively, compared with the other approaches. 

INDEX TERMS Cloud Computing, Elasticity, Buffer Management, Learning Automata 

I. INTRODUCTION 
In recent years, the computing trend moved toward the cloud 
computing paradigm, particularly when large computing 
resources are required to serve a cloud application, using the 
ideas of computing power as a utility to deliver a unified service 
to the end-users [1, 2]. In cloud computing, the IT 
infrastructures such as storage, servers, and network can be 
dynamically provisioned according to the user requirements 
using on-demand self-service delivery model [3, 4]. One of the 
considerable properties that differentiate cloud computing from 
other computing paradigm is elasticity [5]. Elasticity property 
allows the cloud platforms to efficiently add or remove the 
cloud infrastructures (e.g., VMs) automatically according to the 
number of users for supporting the rapid fluctuation of loads to 
serve better. 

A. Research motivation and challenges 
Since the end-users may have irregular access to cloud 
applications over time, it is difficult to handle load fluctuations 
with the traditional infrastructure [6, 7]. Load fluctuations are 
the points where the workload of the system changes 
continuously. This is one of the important issues that should be 
considered for managing cloud infrastructure as the backbone 
of the cloud platform. If load fluctuations of cloud applications 
using elasticity property is not correctly managed, the whole 
cloud platform can fail and Quality of Service (QoS) would be 
adversely affected and it may face to the over-provisioning or 
the under-provisioning issues [8-10]. In the over-provisioning 
issue, the cloud infrastructures allocated are greater than the 
user needs, and this leads to useless cost to lease the cloud 
infrastructures while QoS requirements can be satisfied. In the 
under-provisioning issue, the allocated cloud infrastructures are 
smaller than the user needs, and this causes violation of Service 
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Level Objectives (SLOs) agreed between end-users and cloud 
platform. Therefore, managing the cloud infrastructure to 
guarantee elasticity property of cloud platform can play an 
important role in cloud resource management to deal with the 
under or over-provisioning issues. 

B. Our approach 

In this paper, we designed an autonomous framework for 
controlling elasticity in a cloud platform that includes two 
major components named buffer manager and the elasticity 
manager. The buffer manager component is responsible for 
controlling the input queue of the requests, and it follows a 
reference autonomous computing model proposed by IBM 
[11-13], which is called the MAPE (monitoring-analysis-
planning-execution) control loop. The monitoring phase 
observes the number of incoming requests and the buffer 
remaining space as inputs analysis phase to predict the number 
of future requests. The planning phase using learning 
automata [14] determines the size of buffer memory to be low 
or high, or kept in the same state [15]. Besides, the elasticity 
manager component is responsible for controlling the 
elasticity of the cloud platform using the learning automata 
technique based on QoS analysis. 

C. Contributions 
The main contributions of this research can be summarized as 
follows: 
• Designing an autonomous framework for managing of 

elasticity feature in a cloud platform. 
• Utilizing a learning automata technique as a decision-

maker into the elasticity manager component of the 
proposed framework to control the elasticity of the cloud 
platform. 

• Evaluating the performance of the proposed solution 
under three real workloads by performing a series of 
experiments for improving elasticity and resource 
utilization. 

D. Organization of the paper 
The rest of this paper is organized as follows: In Section 2, we 
focus on a literature review of related works. Section 3 
describes the proposed solution in more details. Section 4 
presents an evaluation and discuss the experimental results. In 
Section 5, we conclude the paper and present future works. 
 

II. RELATED WORKS 
In this section, we review research studies about the elasticity 
management mechanisms in cloud environments. 
Ullah et al. [16] have studied the cloud elasticity property by 
focusing on control theoretical mechanisms and provide a 
comprehensive taxonomy from the point of view of control 
theory  as an implementation mechanism. Besides, they 
investigate some research challenges such as heterogeneity, 
interoperability, computational overhead analysis, uncertainty, 

scalability, oscillation, and resource usage analysis that needs 
to be further addressed. Albonico et al. [17]  have proposed a 
mechanism that manages the elasticity feature of web 
applications according to their QoS requirements. Their 
mechanism controls automatically the workload generation to 
manage web applications using elasticity states including 
scaling out, ready, and scaling in states. Finally, they evaluate 
their solution on Amazon EC2 and indicated that their solution 
can manage web applications in minimal time. 
Salah et al. [18] design an analytical model using Markova 
chains to ensure proper elasticity for cloud-hosted applications 
and services. Their model utilizes the offered workload and the 
number of VM instances as an input to estimate the minimal 
number of VMs required to satisfy a given Service-Level 
Objective (SLO) criterion. Besides, their proposed model can 
estimate the number of load balancers needed to achieve proper 
elasticity. They evaluated their proposed model using practical 
scenarios of cloud elastic services that include web service, 
Netflix video streaming, and the Amazon Web Services (AWS) 
cloud platform. Their numerical results indicated the 
effectiveness of their proposed analytical model outperforms in 
capacity engineering and estimation of the cloud computation 
and network resources for different real-world scenarios 
compared with other algorithms.  
Zhang et al. [19] have designed a lightweight container-based 
framework named auto-scaler for controlling the elasticity 
feature to deal with load fluctuations in the small devices. Their 
proposed framework consists of four components namely, the 
monitoring mechanism, history recorder, decision mechanism, 
and execution mechanism. Further, they describe the elasticity 
feature mathematically for quantifying cloud elasticity using 
container-based auto-scaling mechanisms. They validate their 
framework on the Mesosphere Data Center Operating System 
cloud infrastructure using the stress workload and illustrated 
that their framework can manage the tradeoff between stability 
and elasticity. Nouri et al. [20] have presented an autonomic 
decentralized elasticity controller for managing resources on 
web applications in cloud environments. Their proposed 
controller utilized a reinforcement learning-based technique to 
handle workload arrival patterns using a set of states and 
actions. Their simulation results under real-world workloads 
demonstrated that their proposed controller reduces SLA 
violations percentage and cost of provisioning cloud 
infrastructure. 
In [21] an elasticity control algorithm for containerized-based 
cloud infrastructure for augmenting the load balancing is 
introduced. Their proposed algorithm utilized two agents, 
namely the master agent for coordinating between hosts and the 
host agents for monitoring and predicting resource utilization 
using Autoregressive Moving Average (ARMA) prediction 
model. Their numerical results indicated that their proposed 
algorithm outperforms in terms of elasticity and power 
consumption compared with other algorithms. Jrad et al. [22] 
have introduced a framework for evaluating elasticity 
mechanisms for service-based business processes in cloud 
environments. Their proposed framework includes a set of 
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domain-specific languages to facilitate the description and the 
evaluation of elasticity mechanisms. Al-Dhuraibi et al. [23] 
have proposed a model-driven elasticity management system 
according to the Open Cloud Computing Interface (OCCI) 
standard. Their solution considers both VM and container 
virtualization technologies, both vertical and horizontal scaling, 
and multiple cloud providers, simultaneously. Also, their 
proposed elasticity system handles the heterogeneity of 
elasticity mechanisms on three popular cloud providers namely, 
Amazon Web Services (AWS), Microsoft Azure and Google 
Cloud Platform. 
Finally, Jamshidi et al. [24] propose a dynamic self-adaptive 
method based on the fuzzy controller for organized elasticity 
management in cloud computing. The proposed method has 
applied to Azure and OpenStack based on self-learning fuzzy 
controller that confirms and improves fuzzy rules at real-time 
execution. 
Overall, since elasticity property is trying to adapt the load 
changes to available resources at any time by allocating 
/reallocating/deallocating resources in an autonomous manner. 
First, the current studies focused on controlling elasticity 
property on behalf of resources and infrastructure and did not 
pay attention to controlling the elasticity from the perspective 
user requests using a buffering technique. Secondly, most of the 
previous studies have only utilized the prediction models or 
machine learning techniques for controlling elasticity, while 
our proposed solution combines machine learning techniques 
(i.e., learning automata) and prediction models (i.e., Moving 
Average prediction model) to ensure elasticity feature. 
 
III.  PROPOSED CONTROCITY APPROACH 
In this section, we explain our ControCity framework in 
more details, as shown in Figure 1. The proposed framework 
consists of three main layers: the application layer, the 
middleware layer, and the infrastructure layer. In this 
framework, there are two important components called buffer 
manager in the application layer and the elasticity manager in 
the middleware layer. In the application layer, applications are 
received by cloud applications and then placed in the control of 
the buffer. Buffer manager controls the queue of requests, and 
the elasticity manager of the middleware layer using the 
learning automata provides a solution for controlling the 
elasticity of the cloud platform.  
In the proposed approach, elasticity management has a part 
called QoS mapper unit, which is responsible for receiving 
cloud information including the amount of Machine Instruction 
Per Second (MIPS) allocated and the MIPS consumed. The next 
step of the workload and the degree of service provision 
violation occurred and the learning automata will be used to 
provide the right amount of resources. The infrastructure layer 
is responsible for underlying cloud resource management. In 
this layer, each VM is placed in one of these layers. The VM 
may migrate from one layer to another by reconfiguration [2]. 
If the input requests to each layer exceed the service limit, the 
load regulator on each layer creates a queue request, by which, 
after being released, each virtual machine is offered a request.  

In the following, we describe the main components of the 
ControCity framework in more details. Also, the existing 
applied notations of the proposed solution are shown in Table 
1. 

A. Buffer manager 
Figure 2 shows the overall structure of the buffer in the 
proposed method. Specifically, in the proposed solution, the 
buffer is composed of two parts of an administrator and 
decision-maker and a part of management. The decision-maker 
part is responsible for increasing or decreasing buffer memory 
based on the input request traffic, and the management part is 
responsible for sorting and scheduling the input requests to 
send. The amount of buffer remaining space and the input 
request traffic are effective in decision making of the 
monitoring and decision unit. Specifically, the decisions of the 
monitoring and decision unit are applied to buffer memory by 
management.  
 

Table 1. Notations of the proposed solution 
Description Notation 

Request priority i-th 𝑃𝑟𝑖	%	 
Time To Live of request TTL 
Low Threshold for number of requests qmin 

Removed request Drop 
Ready request to send Send_Req 
Response Time Violation Rate 𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛	01234521  
The cost of the violation 𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛	6427 
Final cost of answering requests 𝐶𝑜𝑠𝑡012 
Initial request cost 𝐶𝑜𝑠𝑡01: 
Low Threshold for queue capacity  L_Thr 
High Threshold for queue capacity H_Thr 
The data volume of the input request in the i-
th queue 

RequestedBytes_Queuei 

The total capacity of the i-th queue AvailableBytes_Queuei 

Current workload WLCurrent 

Predicted workload WLPredict 
Response time of the request R 
Maximum Response Time of Request Rmax 

Minimum response time of request Rmin 

Request cost C 
The maximum cost of request Cmax 

The minimum cost of request Cmin 
Scaling type Scaling_Type 
Scaling rate Scaling_Amount 

 
According to the structure in Figure 3, each request contains the 
user ID, the cost, and the deadline for the response time. If the 
cost and response time exceed this limit, the violation of the 
terms of service has occurred. In the proposed method, the 
buffer management comprises three queues; in which each 
queue specifies the priority of the requests. In order to specify 
the priority of requests, Eq. (1) is used.  
 
𝑃𝑟𝑖	%	= 𝛼	 × 	 =

		6>??157_7%@1A
+ (1 − 𝛼) 	× 	 =

		G1HIJ%51K%@1A
    (1) 

 
In Eq. (1), the Current_Time i, is the arrival time of the request 
and the DeadlineTimei is the time limit for the response. α is the 
amount of weight for each of the parameters. Therefore, the 
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input requests are placed in one of the queues based on the 
request time and the priority. The three types of priorities of top, 
normal and low are considered.  
Figure 4 shows the structure of the input request segmentation. 
If the length of each queue is considered in buffer B, the buffer 
length is equal to B* 3 and generally, if the queues are B1, B2, 
and B3 respectively, then, the following relationship can be 
used about the buffer memory.  
 

 (2) 

 
According to Figure 4, the input request is initially prioritized 
by the classifier and then it is placed in its queue. Due to the 
attempts made in the previous step, the size of buffer memory 
varies with traffic, but the overflow may happen due to any 
reason; so, there is no more space in buffer memory to add a 
new request; in this case, the request must be deleted from the 
buffer. 
 

 
 

 
Fig 1. A high-level overview of ControCity framework 

 

 
Fig .2. The overall buffer structure in the proposed method 

 
In the proposed solution, the user’s request is made under SLA 
rules. Each SLA consists of several objectives or SLOs. In this 
research, the user’s request structure includes two objectives of 
cost and response time. The user can simultaneously submit 
multiple requests to the cloud provider. Figure 3 shows the 

structure of each user’s request. 
 

User SLA 

Time User id SLO2 SLO1 

Deadline 
Time Cost 

Fig. 3. Structure of each user request 
 
The deletion of requests from each queue is made separately. 
The key point in eliminating the request from the queue is that 
a request must be removed from a queue that has the maximum 
amount of survival time. This means that the oldest request with 
the longest queuing time in the queue will be excluded; but the 
most important thing is that low- priority queries must be 

{ }1 2 3B B B B= ! !
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removed first, and then in the absence of space, the medium- 
priority queries, and at last in the absence of space, high priority 
queries will be removed. So, if the buffer memory space is full 
and a new request arrives, one of these three modes will occur: 
 
A) First mode (receiving a high- priority request)  
In this mode, equation (4) is performed. First, if the number of 
requests in the low- priority queue is more than the considered 
threshold, it will be removed. Otherwise, if the number of 
requests in the average-priority queue is more than the 
considered threshold, it will be removed and, otherwise, the 
queue will be executed from the high- priority queue.  
 

  

(4) 
 

 
Fig .4. Buffer Management structure. 

 
B) Second mode (receiving an average priority request) 
In this mode, equation (5) is performed. First, if the number of 
requests in the low- priority queue is more than the considered 
threshold, it will be removed. Otherwise, the elimination is 
done from the average-priority queue. 
 

𝐷𝑟𝑜𝑝 = O
𝑅𝑒𝑞	𝐹𝑟𝑜𝑚	𝑄V		𝑊𝑖𝑡ℎ	𝐿𝑒𝑎𝑠𝑡	𝑇𝑇𝐿							𝑖𝑓				𝐶𝑜𝑢𝑛𝑡	(𝑄V	) > 𝑞@%5	

	
𝑅𝑒𝑞	𝐹𝑟𝑜𝑚	𝑄]		𝑊𝑖𝑡ℎ	𝐿𝑒𝑎𝑠𝑡	𝑇𝑇𝐿																										𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒		

 (5) 

 

C) Third mode (receiving a low priority request) 
In this mode, equation (6) is applied, in which the request is 
only deleted from the lower priority queue. 
 

    (6) 
 
When there are multiple requests in queues, and each one is 
ready to be sent, first, the buffer scheduler sends the top queue 
requests and after completing, it will go to the average and low 
priority queue, respectively. Equation (7) shows the structure of 
sending requests according to their priority. 
 

    (7) 

 
The requests are submitted to the Elasticity Management Unit, 
respectively, so that the unit decides on resource allocation 
based on the information received from the service quality 
mapping unit. 

B. Monitoring and Decision System 
The monitoring and decision system in the proposed approach 
acts on the MAPE structure. Due to the fact that this structure 
consists of 4 phases of monitoring, analysis, planning, and 
execution, all phases have a specific function in the proposed 
method. The proposed method is based on the loop and acts on 
the buffer decision-maker. Figure 5 shows the MAPE structure. 
According to Figure 5, the monitoring phase observes the 
number of incoming requests and the buffer remaining space as 
inputs analysis phase. Data collected by the monitoring system 
is provided to the analysis phase. The analysis phase is 
responsible for predicting the future status of input requests 
based on the current status. According to the prediction of the 
analysis phase and the amount of buffer space remaining, the 
planning phase using learning automata determines the size of 
buffer memory to be low or high, or kept in the same state. The 
decisions taken by the planning phase is sent to the execution 
phase to make this decision operational. 

 

 
Fig .5. Monitoring decision system in buffer management.
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The monitoring phase of the MAPE structure monitors the 
received traffic requests and the amount of buffer space 
available. The monitoring phase has a knowledge base. It 
checks the buffer status at certain intervals and extracts its 
required variables and records them in its knowledge base. The 
knowledge base consists of two parts: the storage sections of 
input traffic and remaining buffer space. The structure of the 
knowledge base records part I is shown in Table 2 and the 
structure of the knowledge base records part II is shown in 
Table 3. 

 
Table 2. Structure of the Knowledge Base Records Part I 

data Required 
layer data Request ID 

 
Table 3. Structure of the Knowledge Base Records Part II 

The amount of 
Residual buffer 
from queue 3 

The amount of 
Residual buffer 
from queue 2 

The amount of 
Residual buffer amount 

from queue 1 

 

C. QoS Mapper Unit 
This unit is responsible for saving responsive information and 
service delivery to the request. After recording the data, the unit 
calculates the amount of violation of service terms and informs 
the elasticity management about it. The data storage structure 
of this unit is presented in Table 4.  
 

Table 4. Structure of Service Quality Information for a Request 

Cost 
Layer 

III 

Respo
nse 

Time 
Layer 

III 

Cost 
Layer 

II 

Respo
nse 

Time 
Layer 

II 

Cost 
Layer 

I 

Respon
se 

Time 
Layer I 

The 
reque
st ID 

The 
user 
ID 

 
The amount of violations of service conditions is calculated by 
the knowledge of service quality. If the response time exceeds 
the allowed response time to the request, the Equation (8) shows 
how to calculate the amount of service violation for the 
response time. Similarly, if the cost of responding to a request 
exceeds the intended cost, Equation (9) shows how to calculate 
the amount of service violation for the cost.  
 

     (8) 
 
𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛	6427 = 	 𝐶𝑜𝑠𝑡012 −	𝐶𝑜𝑠𝑡01: 
𝑆𝐿𝐴_𝐶𝑜𝑢𝑛𝑡	6427 = 	𝐶𝑜𝑢𝑛𝑡	(𝑆𝐿𝐴_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛6427 > 	0)    (9) 
 
In Equation (8), Response Time is the response time to the 
request, and Deadline Time is the allowed response time for a 
request. In Equation (9), CostReq is the initial cost considered for 
the request and CostRes is the final cost of responding to the 
request.  

D. Workload Prediction 
One of the most important parts of the MAPE structure is the 
analysis of results. Future requests will be considered in the 
traffic prediction analysis phase. The more accurate the 
prediction is in this part; the planning design phase will have a 
higher quality. In the proposed method, the average mobility 
prediction structure of Moving Average (MA) has been used. 
In this model, the prediction is obtained based on the average 
number of requests in the preceding steps, and the number of 
requests in the following steps. Equation (10) displays how to 
calculate the number of requests in the following step by using 
MA,  
 

 (10) 
 
where µ is the average number of requests in the previous steps. 
θ1…θq are the parameters of the MA prediction model that are 
determined based on the number of requests. 𝜖7 … 𝜖7c: are 
random values with the normal distribution and zero mean. 
Generally, these values are referred to as white noise. In the 
planning phase, each queue of the buffer consists of three 
modes of busy, idle and normal. In order to determine the 
different states of a queue, the upper and lower thresholds need 
to be defined. The method is that if the buffer is not in normal 
mode, it should be modified. If each buffer queue is placed in a 
state for two successive times and the predicted workload is 
proportional to the buffer queue state, the changes in the buffer 
queues will be adapted and strengthened. The amount of buffer 
overflow (Eq. (11)) is obtained by dividing the two variables of 
Available Bytes (the available residual space) and Requested 
Bytes (bytes required for current requests). These are two input 
variables. Comparing the amount of overflow determines the 
upper and lower thresholds. Buffer increasing, decreasing or 
being idle is done based on these actions. 
 
𝐵𝑢𝑓𝑓𝑒𝑟_𝑄𝑢𝑒𝑢𝑒e% = 	

01:>1271Ifg712_h>1>1i
A

jkH%lHml1fg712_h>1>1A
            (11) 

 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% 	determines the data volume of the 
input request in the i-th queue at time t and 
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒% determines the total capacity of the i-
th queue. In the following, three modes of busy, idle and normal 
are introduced. Suppose that the amount of input traffic to the 
provider is greater than the queue length in the buffer. In this 
case, the provider confronts a lack of memory to hold input 
requests. Then, the queue is fully engaged, and the algorithm 
increases the buffer length queue. Equation (12) shows the busy 
mode of the i-th queue in the buffer.  
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 The queue memory is generally idle when the amount of input 
traffic to the queue is lower than the least capacity considered 
for the queue in the buffer. Then the buffer queue will be in the 
idle mode and memory space reduction must be done. Equation 
(13) shows the idle mode of i-th queue in the buffer. 
 

 (13) 

 
When the buffer queue is sufficient for input traffic, the buffer 
is in a normal state and it does not do anything. Equation (14) 
shows the normal mode in the queue. 
 

 (14) 

Let  denote the buffer state of the i-th 

queue at time t and , be the lower threshold 
and the higher threshold to determine the buffer state according 
to the capacity of the i-th queue, respectively, where 

. Generally, the buffer state is expressed by 
Equation (15): 

                   

(15) 

,  depends on the amount of input traffic to 
the queue (i.e., workload changes) and determined according to 
the queue capacity. Let denote the 
difference between the lower threshold and the higher threshold 
for the capacity of the i-th queue.  The higher value leads to 
waste of the provided queue capacity (i.e., under-load state) and 
extra and unnecessary cost while QoS requirements can be 
satisfied. Whereas, the lower value results in performance 
degradation due to inadequate the provided queue capacity (i.e., 
over-load state) for serving user requests. Therefore, we will 
need to adjust an appropriate value to determine the buffer 
state, accurately.  

According to the i-th queue state at time t ( ), 
for comparative training, the values of U and P are calculated 
as adding and decreasing queues. 

 

   

(16) 
 

 (17) 

 
Then, based on A and B, the final calculation is done. 
 

r
𝑈7c= + t	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% − 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑%	t	𝑖𝑓	𝐴 = 1	𝑎𝑛𝑑	𝐵 = 1	𝑎𝑛𝑑	𝑈7c= > 0

t	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% − 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑% 	t	𝑖𝑓	𝐴 = 0	𝑎𝑛𝑑	𝐵 = 1	𝑎𝑛𝑑	𝑈7c= = 0
0																																																𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18) 
 

𝐿7 = r
𝐿7c= + t	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑠_𝑄𝑢𝑒𝑢𝑒e% −	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑%	t	𝑖𝑓	𝐴 = 1	𝑎𝑛𝑑	𝐵 = 0	𝑎𝑛𝑑	𝐿7c= > 0
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0																																																𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     

    (19) 
 
According to the values, Ut is considered as increasing the 
queue and Lt is considered as decreasing the queue. Increasing 
and decreasing the length of each queue are performed, 
respectively, by Equations (19) and (20). 
 

    

(20) 
 

   
(21) 

 
After calculating the amount of increasing or decreasing, the 
value and its decision are announced to the implementation 
unit. After decision making in the planning phase, the decision 
is to implement in the implementation section. According to the 
type and amount of change, the implementation section 
announces the changes to the buffer manager to adjust the 
structure based on the decision-maker. According to the type of 
a decision, the volume of the buffer increases or decreases in 
one of the queues 1, 2, or 3. 

E. Elasticity Manager 
Specifically, no decision will be made for the first workload, 
because the output of the service quality mapping unit does not 
exist; but in the later stages, based on workload prediction, 
scaling is performed at the buffer management stage. So, 
according to the need for each layer request, the scaling is done 
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proportionally for that layer. For scaling each layer, the 
decision-making structure is based on the current and the 
predicted workload of each layer. Equation (22) specifies how 
to calculate the type and the extent of scaling.  
 

          (22) 

 
In the proposed structure, a learning automaton is placed on 
each layer. If the structure of each layer is considered as an 
automaton performance environment, this environment can be 
represented by the triplet E≡ {α, β, c}, in which the set of 
environmental inputs or actions selected by the automaton α = 
{ScaleDown, ScaleUp, NoOp}, and the outputs of β and C are 
likely to be penalized. The key point about the environment 
inputs is that these actions have been taken by the previous 
decision-maker and will be reinforced or weakened by the 
automaton. In this environment, β = 1 is considered as an 
undesirable response or failure, and β = 0 is considered as a 
desirable or successful response. C specifies the probabilities of 
the penalty (i.e., failure) for the environment responses and is 
defined as follows.  
 

   (23) 
 

Figure 6 shows the structure of the automata connection with 
each application layer. According to the mentioned parameters, 
by choosing any action by automata, the probability of doing 
that will change. The equations (24) and (25) are used for the 
reward or penalty of the selected operation, where a is a reward 
coefficient and b is a penalty coefficient. Pi (n) is the probability 
of the occurrence of the action i in the step n, and specifically 
Pi (n + 1) is the probability of the occurrence of the future event. 
 

 
Fig .6. Automaton connection with the layer 

 

(24) 
 

                   (25) 
 
One of the most important points is how to fine and encourage 
selective action. In each cycle, after action selection, if the Scale 
Up, Scale Down or No Op action is selected, respectively the 
equations (26), (27) or (28) of the β - reinforcement signal will 
be calculated. If β = 1, then, the selected operation is fined by 
equation (26); otherwise, if β = 0, then it is rewarded according 
to equation (27). If R_Ci is the mean of the response time of the 
i-th layer and C_Ci is the average cost of the i-th layer, then it 
is rewarded according to equation (28). 
 

           
(26) 

 

     
(27) 

 

         (28) 

 
The dependent structure is used to determine the amount of 
penalty and reward. Equation (29) specifies how to calculate the 
reward coefficient. 
 

        (29) 

 
Equation (30) specifies how to calculate the penalty 
coefficient. 
 

                 (30) 

 
IV. PERFORMANCE EVALUATION 
In this section, we evaluate the effectiveness of the proposed 
approach for improving the elasticity feature in the cloud 
environment. We first explain the experimental setup and 
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performance metrics, and, then, the experimental results 
are discussed. 

A. Experimental setup 
In this section, we explain the simulation setup in more details. 
The CloudSim toolkit [25] as a simulation framework is 
utilized for modeling and developing the cloud computing 
infrastructures. Besides, there are five physical hosts at each 
cloud data center, so they all have the existing specification 
according to Tables 5 and 6. 
 

Table 5. Data centers specification  
Architecture Operating System Virtual Machine 

Manager 
X64 Cloud Linux XEN 

 
Table 6. Host specification 

Name Processor 
Type 

Number 
of cores 

Frequency 
(MIPS) 

main 
memory 

(GB) 

Bandwidth 

Host1 Intel 
Xeon 
5370 

16 4096 16 1 Gbit/s 

Also, we can consider three types of VMs that are offered 
by any cloud provider: small, medium, and extra-large. The 
configuration details of different types of VMs into the 
three categories with the different capabilities are shown in 
Table 7. 

Table 7. Virtual machines specification  
Machin 
Name 

CPU(MIPS) RAM 
(GB) 

Storage 
(GB) 

BW 
(Gbps) 

Price 
($ per 
Hour) 

t2.small 10200 2 1 GB - 16 
TB 

100Mbps 0.023 

m3.Medium 12000 3.75 1×4  GB 1Gbps 0.070 

m4.4Xlarge 15000 64 1 GB - 16 
TB 

1Gbps 0.862 

r3.4Xlarge 80000 122 1×320  
GB 

10Gbps 1.330 

m4.10Xlarge 97000 160 1 GB - 16 
TB 

10Gbps 2.155 

d2.4Xlarge 105000 122 12×2000 
GB(24 
TB) 

10Gbps 2.76 

m4.16Xlarge 280000 256 1 GB - 16 
TB 

100Gbps 3.447 

r4.16Xlarge 350000 488 1 GB - 16 
TB 

100Gbps 4.256 

d2.8Xlarge 500000 244 24×2000 
GB(48 
TB) 

100Gbps 5.52 

 
To evaluate our approach, we used three types of real 
workloads, including three data sets of FIFA World Cup, 
ClarkNet and NASA. NASA data set includes 2 months of 
workload and 3461612 requests. FIFA World Cup data set 
includes 88 days of workload and 1352804107 requests. 
ClarkNet data set includes two weeks of workload and 338587 
requests. These workload traces extracted from well-known 
websites and indicates realistic load variations which make the 
results more realistic and reliable to be used in a real cloud 
platform. In this paper, the time intervals are considered in 15-

min intervals. Thus, each day includes 96-time intervals. These 
three real workloads traces are shown in Figure 7. 

 
 (a)  

 
(b) 

          
(c) 

Fig 7. Workload patterns: (a) FIFA world cup (b) NASA (c) ClarkNet 

B. Performance Metrics 
We applied the following metrics for a comparison of our 
approach with other strategies: 
Elasticity: This metric is defined as the degree to which a cloud 
computing platform adapted upon the fluctuation of workloads 
and can be measured by the percentage of time when the cloud 
platform is in normal-provisioning states and is calculated by 
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Equation (31) [26]: 
 

       (31)      

                                 
where denotes the total time that a system is operating for a 
sufficiently long time period, be the total time period that the 

system is in the over-provisioning state,  be the total time 

period that the system is in the under-provisioning state, and  
be the total time period that the system is in the normal-
provisioning state. Therefore, includes all the time periods 
in the normal, over-provisioning, and under-provisioning 
states; that is,   
Utilization: The CPU utilization of the cloud platform is 
defined as the ratio of the average amount of the allocated 
Machine Instruction Per Second (MIPS) of VMs for serving 
user requests to the average amount of the total MIPS that is 
potentially offered by VMs into the cloud platform, and is 
expressed by Equation (32): 
 

(32) 

Response time: The actual response time is the time difference 
between the user request start time and the first response time 

received from the user by the cloud platform. 

C. Experimental Results 
To evaluate the performance of the proposed approach, 
we design three scenarios based on three real workload 
traces and performance metrics that were discussed in 
the previous subsections, as shown in Table 8. We 
compare our approach with two baseline approaches. The 
first on is called Automatic Elasticity- Fuzzy Based 
System “AE_FBS” algorithm [24, 27], which is a fuzzy 
rule-based controller linked with a reinforcement learning 
algorithm that learns and modifies elasticity policies at 
runtime for auto-configuration of VMs in a cloud 
environment. The second approach is called “CTMC” 
[18], which uses an analytical model based on 
Continuous-Time Markov Chain (CTMC) to estimate the 
number of virtual machines needed to adjust the resource 
elasticity value of a cloud platform. Finally, our 
ControCity approach is called Automatic Elastic-Buffer 
Management Automata Learning “AE_BMLA” 
algorithm. The reason for choosing these approaches for 
comparison with ours is (i) these approaches are 
proactive, i.e., try to predict the number of resources at 
any given time to deal with workload fluctuations, and, 
(ii) these approaches follow horizontal scaling (i.e., 
replication) for adding/removing VM instances from a 
cloud platform to provide elasticity. 

 
Table 8. Different scenarios for evaluating the proposed approach 

 
 
 
 
 
 
 
 
 
 
C.1 First scenario: Impact of elasticity metric 
 
In this scenario, the elasticity of the AE_BMLA algorithm is 
examined against CTMC and AE_FBS algorithms. One of the 
important parameters in comparing the performance of the 
resource allocation algorithm is elasticity. To conduct this 
experiment, ten different time intervals were selected from each 
workload in a way that the number of requests from the first to 
the tenth interval is ascending. Figure 8 displays the elasticity 
of the AE_BMLA algorithm in comparison with the CTMC and 
AE_FBS algorithms in the FIFA workload. According to Figure 
8, due to the queuing and use of the controller structure to select 
the appropriate host and accurate increasing and decreasing the 
virtual machine, the proposed method shows a better 
performance about elasticity.  
 

 
Fig .8. Comparison of elasticity in FIFA workloads 

 
Figures 9 and 10 illustrate the elasticity of the AE_BMLA 
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algorithm in comparison with the CTMC and AE - FBS 
algorithms in the NASA and ClarkNet workloads. The elasticity 
of the proposed method is higher than the CTMC and AE_FBS 
algorithms at all three workloads.  
 

 
Fig .9. Comparison of elasticity in NASA workload 

 
 

 
Fig. 10. Comparison of elasticity in ClarkNet workload 

 
The average improvement of elasticity in the proposed method 
for all three workloads compared to the CTMC and AE_FBS 
algorithms is 13.3% and 42%, respectively.  
 
C.2. Second scenario: Impact of response time 
metric 
Response time as one of the most effective objectives of SLA 
plays an important role in choosing a virtual machine. If the 
requested response time identified by the allowed response 
time, does not meet, then the correct scaling must be done. 

Figure 11 shows the average response time of the AE_BMLA 
algorithm in comparison with the two CTMC and AE_FBS 
algorithms in the FIFA workload. Due to the desirable 
performance of learning automata as the decision-maker in the 
increasing section of virtual machine system and the two-stage 
queuing structure and finally, the correct control of the 
controller section as one of the important decision- making 
factors, resource allocation is done correctly. More accurate 
resource allocation will increase the response rate. According 
to the results, the proposed method has a better performance 
about the response time. Figure 12 shows the average response 
time in the AE_BMLA algorithm compared to the two CTMC 
and AE_FBS algorithms in the NASA's work load.  
 

 
Fig. 11. Comparison of the average response time in FIFA workloads 
 
According to Figure 13, the average response time of the 
ClarkNet workload in the proposed method is lower than the 
CTMC and AE_FBS algorithms. This is due to the proper 
performance of the learning automata and the appropriate 
buffer management. In all three workloads, the average 
response time in the proposed method is lower than the two 
CTMC and AE_FBS algorithms, which indicates the improved 
quality of service delivery in this structure. Compared to the 
CTMC and AE_FBS algorithms, the average response time in 
the proposed method for all three workloads has decreased by 
11.4% and 18.8%, respectively.  
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Fig. 12. Comparison of the average response time in NASA's 

workload 
 

 
Fig. 13. Comparison of Average Response Time in ClarkNet 

Workload 
 

C.3. Third scenario: Impact of utilization metric 
Figure 14 shows the average utilization in the FIFA workload. 
The precise monitoring of learning automata over request logs 
is a very effective way to control the status of resources. Due to 
the optimal performance of the controller program and the use 
of learning automata, resource allocation is done in a desirable 
manner. Correct resource allocation will provide accurate 
service delivery to the requests. Specifically, due to the correct 
supply of resources, the processor is best suited for requests. Of 
course, when the number of requests is high, the utilization 
level may reach to threshold one, and this is due to the high 
number of requests that need to be received by the processor. 

 
Fig. 14. Comparison of the utilization in the FIFA workload 

 

 
Fig. 15. Comparison of the utilization in the NASA workload 

 
The use of buffer management has greatly influenced the proper 
control of requests and the decision making about the elasticity 
of the cloud system. It means that the learning automata can 
easily decide whether to increases/decreases the virtual 
machine for the occurrence or response to an incoming service. 
Figures 15 and 16 show the utilization of the AE_BMLA 
algorithm in comparison to the two CTMC and AE_FBS 
algorithms in NASA and ClarkNet workloads. In all three 
workloads, the utilization of the proposed method is higher than 
the CTMC and AE_FBS algorithms, which indicates an 
improvement in the quality of service delivery in this structure. 
Compared to the CTMC and AE_FBS algorithms, the average 
utilization in the proposed method for all three workloads 
increased by 8% and 17.2%, respectively.  
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Fig. 16. Comparison of the utilization in the ClarkNet workload 

 

V. CONCLUSION 
Cloud computing is the on-demand delivery of resources 
through a cloud platform via the internet to the end-users. The 
application providers use cloud infrastructures for hosting their 
applications due to its elasticity feature. The cloud elasticity 
feature allows application providers to grow or shrink 
computing resources on-demand, which enables automatic 
scaling of cloud resources according to workload  changes. 
Therefore, any elasticity mechanism must have the capacity to 
estimate the desired resources to deal with workload 
fluctuations and satisfying the SLO requirements for avoiding 
over-provisioning or under-provisioning problems. In this 
paper, an approach was developed to improve elasticity using 
buffer management and centralized elastic management. The 
buffer management is responsible for controlling the input 
queue of the request, and the elastic management is responsible 
for controlling the elasticity of the system using the learning 
automata technique. We evaluated the proposed solution under 
real workloads traces, including three data sets of FIFA World 
Cup, ClarkNet and NASA, and their experimental results 
indicated that it significantly outperforms in terms of the 
elasticity value, response time, and CPU utilization compared 
with the other approaches. In future work, we will arrange to 
investigate: integration of the proposed solution with auto-
scaling mechanisms, evaluation the proposed solution in a real 
cloud infrastructure such as OpenStack and extension of 
proposed solution using colored Petri Net models. Also, we will 
utilize the deep Q-learning instead of learning automata to gain 
higher accuracy.  
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