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Abstract: We demonstrate controllable poration within ≈1 µm regions of individual cells, mediated 

by a near-IR laser interacting with thin-layer amorphous silicon substrates. This technique will allow 

new experiments in single-cell biology, particularly in neuroscience. 

 

As our understanding of the fundamental mechanistic processes underpinning biology expands, so 

does the need for high-precision tools to allow the dissection of the heterogeneity and stochastic 

processes that dominate at the single- and sub-cellular level. Here, we demonstrate a highly 

controllable and reproducible optical technique for inducing poration within specific regions of a 

target cell’s plasma membrane, permitting localized delivery of payloads, depolarization and lysis 

experiments to be conducted in unprecedented detail. Experiments support a novel mechanism for 

the process, based upon a thermally-induced change triggered by the interactions of a near-IR laser 

with a biocompatible thin film substrate at powers substantially below that used in standard 

optoporation experiments. 
OCIS codes: (170.1530) Cell analysis; (240.0310) Thin films. 

 

1. Introduction  

The toolkit of techniques that makes up the bulk of biochemical research has achieved many notable successes and 

has provided us with our first real glimpses into the fundamental workings of the cell, but the miniscule sample 

volumes presented by individual cell means that the approaches are unsuitable for the analysis of anything less than 

ensembles of tens of thousands of cells. This is a serious limitation, as stochastic processes have been demonstrated 

to make a substantial if not the dominant role in any number of cellular responses, even amongst supposedly clonal 

cell cultures [1]. This leads to a significant loss of resolution as a major percentage of a tissue sample or culture 

must respond similarly in order to be detected, and meaning that outliers and rare cells (such as potentially 

dangerous cancer precursor cells damaged through oxidative stress) are lost into the noise [2]. 

As a result, efforts have focused upon the development of extremely sensitive platforms for the quantitative (or 

at least semi-quantitative) analysis of single cells, focusing particularly on rare cell types such as the circulating 

tumor cells thought to be one of the major factors behind cancer metastases [3,4]. These technologies are typically 

based around microfluidic [5] or optical [6] technologies (and often in combination), to provide the levels of both 

precision and throughput required to make such single cell investigations feasible. In particular, the experiments 

seek to quantify the differences in individual cellular responses to stimuli, be they drugs, oxidative environments or 

nucleic acids. These experiments have the added complexity that a technique must generally be employed to deliver 

the stimulus to the cell interior, across its plasma membrane, whilst ideally causing minimal perturbation to the rest 

of the cell so as not to induce artefacts. Previous techniques have focused upon either delivery vectors such as 

cationic polymers which stimulate endocytosis (but often introducing chemical species which are broken down 

slowly inside the cell, if at all) [7], or using directly applied forces such as high voltage gradients [8] or extremely 

high-intensity pulsed lasers [9] which may risk damaging the target cell. 

Here we present a novel, optically-mediated cell poration technique which combines a gentle and non-

destructive approach with single-micron spatial precision. This technique has demonstrated high reproducibility 

across cell lines alongside essentially quantitative success rates and post-experimental cell viability, and for the first 

time allows the direct delivery of material to regions of interest at a sub-cellular level  [10]. Quantitative 

investigations and computer modelling of the structure and dynamics of the pore formation process has suggested a 

mechanism radically different from those previously identified, based upon rapid and reversible changes within the 

lipids of the cell’s plasma membrane itself. 



2.  Summary of methods 

Human-derived cell lines representing a range of tissues and tumor types were cultured inside a 100 µm-deep spacer 

on a ≈1 µm-thick layer of amorphous silicon (a-Si) deposited on indium tin oxide-coated coverslips by plasma-

assisted chemical vapor deposition. During poration experiments, the spacer was loaded with medium containing the 

dye or probe of choice and capped with a second coverslip. The resulting chip was inverted and loaded onto the 

stage of a Nikon TE2000E inverted microscope which had been adapted for holographic optical trapping as 

described by Lanigan et al. [11]. This system was capable of delivering individually addressable laser trapping spots 

of ≈1 µm diameter from a λ = 1070nm Yb-fibre laser, spots which were focused onto the plane of the a-Si layer 

from which the cells were now suspended. The a-Si target was irradiated for a period of 10-60s under typical 

intensities of ≈150 mW. Similar experiments were conducted using a Leica TSC SP5 II inverted confocal 

microscope, irradiating using a Ti Sapphire 1 MHz pulsed laser (λ = 960 nm), scanning the manually selected region 

of interest at a rate of 400 Hz and with a power of 200 mW. After irradiation, the extent of poration was monitored 

via fluorescence and cell viability was monitored using calcein release assays. 

3.  Results and discussion 

A range of probes were used to observe and measure the extent of cellular poration: propidium iodide was used 

initially for proof-of-concept work, while characterization of the pore structure and the dynamics of payload 

delivery was accomplished using CdTe quantum dots (QDs) of a range of diameters, between approximately 3 nm – 

7nm [12,13]. Propidium iodide penetration was observed throughout targeted cells almost immediately, but QD 

experiments revealed far more interesting behavior. QDs up to approximately 4.2 nm diameter were observed to 

diffuse into HCT 116 cells cell at the site of irradiation only. However, once inside their relatively large 

hydrodynamic radii coupled with the high viscosity and crowding within the cell led to them retaining the shape of 

the irradiated region for extended periods, allowing us the ability to tattoo cells with long-lasting shapes as shown in 

Figure 1. QDs of >4.5 nm diameter, however, were excluded from the cell interior, although became adsorbed to the 

cell surface allowing their selective bleaching via two-photon processes. 

 

 

Figure 1: HCT 116 cells after irradiation with λ = 960 nm scanning pulsed laser for 1 minute in the presence of 3.5 nm diameter CdTe quantum 
dots. Note the bright rectangle in the center of the image where the scanning laser was focused. Image frame is 246 x 246 µm. 

 

These pore diameters remained essentially constant for a given cell line, from the first sign of payload delivery 

at minimal laser power through to the cells’ eventual lysis at much higher irradiation intensities. High intensities 

could also trigger flash boiling of the medium, centered upon the site of irradiation, and even etch the a-Si surface 

itself, producing patterns with features of the order of 2 µm (although generally with rough edges). This lack of 

strong temperature dependence above a critical threshold is indicative of some structure or physical force 

maintaining the pore size (as opposed to the pore size scaling with irradiation intensity, as seen in classical 

photoporation experiments [14]). 

These results, alongside those control experiments conducted to exclude factors such as electrical field induction 

or capacitive effects in the membrane, led to the conclusion that the observed phenomena were due to thermally-

induced changes in the membrane, which flipped it from its normal state into a structure with defined pores that 

healed rapidly and reversibly. Subsequent COMSOL simulations have verified that the temperatures generated given 

both the irradiation times and the spatial localization observed are sufficiently slight as to minimize damage taken by 



the cell during the process. The exact structure of the porous region and its mechanism of formation remain a topic 

of debate, but studies are ongoing to characterize its properties in detail with a view to tailoring it for specific 

applications. 

4.  Conclusion 

The discovery of this technique is potentially an extremely wide-ranging one: it allows the non-destructive poration 

of and payload delivery to individual cells of interest in a manner that is both exceptionally precise but also highly 

amenable to automation, dramatically increasing throughput over many previous technologies. As a result it is likely 

to find utility in experiments from chemotherapeutic discovery to genetic modification. Furthermore, though, it 

opens up substantial new fields of study, particularly in areas such as neuroscience where mechanistic study of 

individual cell contributions to the system has previously been very difficult. This approach will allow the design of 

experiments to depolarize small regions of membrane within neurons or even dendrons, in effect ‘tickling the toes’ 

of individual nerves to assess their function. 
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