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Abstract—Grinding monitoring enables the online 
supervision of crucial aspects of the process, such as tool 
state, surface quality, and dimensional accuracy; and 
possesses a great advantage over traditional post-process 
quality control techniques by reducing costs and inspection 
times. Such an advantage relies on a good interpretation of 
monitored signals in relation to grinding behaviours. This 
paper presents an experimental study on acoustic emission 
(AE) features in abrasive grinding scratch experiments. The 
acoustic emission signals are analysed in both the time and 
frequency domains. The results show that the signal feature 
extraction in the frequency domain gives excellent indication 
in correlation to the surface creation with different abrasive 
geometrical characteristics. The AE features in the frequency 
range between 0 and 200 kHz show good correlation with the 
characteristics of interaction between abrasive and 
workpiece in scratching tests and could be an ideal data 
source for the online monitoring of surface creation in 
grinding processes.  

Keywords- acoustic emission; signal feature extraction; 
abrasive scratch, frequency analysis. 

I.  INTRODUCTION  

An online monitoring system for machining processes 
could have remarkable impacts on a CNC machine tools 
system in reducing manufacturing cost and time in the 
product inspections, and avoiding the need for post-
process quality control [1][2]. Online monitoring 
techniques allow the real time evaluation of crucial aspects 
of the machining processes, such as tool condition [3] [4], 
chatter [5], surface finish [6][7], chip formation [8], 
surface damage [9] [10], and so on. In order to provide 
effective information with online monitoring techniques, 
the selection of adequate sensors, signal processing 
methods together with predictive techniques should be 
optimised according to the specific parameters under 
analysis. A broad range of sensors have been used in 
machining process monitoring, including dynamometers, 
accelerometers and acoustic emission sensors [2]. For 
online process monitoring, different signal processing 
methods in time domain and frequency domain have been 
applied, i.e., time direct analysis (TDA) [6], singular 
spectrum analysis (SSA) [11], Fourier transform [6], and 
wavelet transform [12], and so on. Considering correlating 
features of the parameters under study, several predictive 
techniques have been applied in many researches, i.e., the 
multivariate regression [13], the artificial neural networks 
[6] and the support vector machines (SVM) [4]. 

Of all machining processes, grinding is one of commonly 
used processes for finishing operations that produce 
workpieces with close tolerance and high surface quality. 
In grinding, the wheel surface topography is an important 
aspect to evaluate due to the abrasive grain shapes change 
continuously, which directly affect the ground component 
quality. In recent years, online monitoring techniques have 
been extensively applied to grinding process to monitor 
important aspects, such as tool wear [14], surface finish 
[15], surface damage [9], and so on. Nguyen et al. [15] 
developed a model to predict the abrasive wear and the 
surface finish using cutting force signals. The signals were 
processed in time and frequency domain and the wear and 
the surface finish were predicted using adaptive neural 
fuzzy inference system, Gaussian process regression and 
Taguchi methods. Similarly, Tang et al. [16] developed a 
mathematical model of grinding forces to characterise the 
surface topography of the workpieces.  
One of the most important signals used in grinding process 
monitoring has been acoustic emission (AE), which is 
defined as an elastic wave propagation in the bandwidth 
between 20 and 2000 kHz due to material molecular 
displacements under stresses [17]. In grinding, the AE 
signal represents many important aspects of grinding, such 
as: grain and bounding ruptures in the wheel, workpiece 
chipping, cracks, elastic and plastic deformation, phase 
transformation, and so on. Thus, AE signal has been used 
to characterise different physical performances of grinding 
processes. Boaron and Weingaertner [3] analysed acoustic 
emission signals in both the time and frequency domain for 
evaluation of the topographic characteristics of a fused 
aluminium oxide grinding wheel. The method was based 
on the detection of the effective width of the grinding 
wheel with an instrumented diamond tip. Rameshkumar et 
al. [4] registered the acoustic signal in grinding operation 
to predict the wear level of the grinding wheel. The 
acoustic emission was analysed in time domain using 
different features such as root mean square, amplitude, 
ring-down count, average signal level. By using machine-
learning techniques, for example, decision tree, artificial 
neural network, and support vector machine, they could 
estimate if the wheel was sharp or dull. Using the same 
way, Liao [12] developed a grinding wheel condition 
monitoring method based on acoustic emission wavelet 
packet transform to estimate the wheel sharpness or 
dullness. Later, Liao [18] developed a model based on the 
analysis of acoustic emission signal using autoregressive 
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modelling and discrete wavelet decomposition to classify 
the state of grinding wheel. Liu et al. [9] [10] determined 
the wavelet packet transform was an ideal signal 
processing method to evaluate the acoustic emission signal 
and to extract features correlated to the grinding burn 
phenomena. Chiu and Guao [19] constructed an SVM 
model for the state classification of CBN grinding with 
featured data from acoustic emission signal. Dias et al. [20] 
proposed a new methodology to predict and detect the 
surface quality and the dimensional errors by acoustic 
emission in centreless grinding process. The acoustic 
emission was processed in both the frequency and the 
time-frequency domain by fast Fourier transform and 
wavelet analysis, respectively 
Most of the studied in grinding process monitoring have 
used the acoustic emission signal to classify the wear level 
of the grinding wheel. However, the direct relationship 
between the acoustic emission and the surface quality of 
the machined workpiece have been studied in a less extent 
and more research in this field is needed. In this study, the 
objective is to monitor grinding surface creation based on 
the acoustic emission signal acquired during grinding 
scratch tests.  
To evaluate the acoustic emission signal two signal feature 
extraction methods were applied, i.e, the time domain 
analysis (TDA) and the frequency analysis with the fast 
Fourier transform (FFT). The whole bandwidth of the 
acoustic emission signal was analysed to determine the 
frequency ranges with more information correlated with 
grinding process. In order to correlate the signal 
characterization parameters with the surface creation, 
multiple regression predictive models were developed. All 
predictive models were analysed independently for each 
workpiece materials without direct information of abrasive 
grains in the models as the data for the model development 
is based exclusively on the acoustic emission signals. 

II. EXPERIMENTAL PROCEDURE 

The experimental procedure was carried out by abrasive 
scratch experiments on a numerical control grinding 
machine XR 610 VMC Heidenhein, using abrasive cutting 
tools assembled to a rotating steel wheel (see Fig. 1a). Five 
different types of diamond abrasives were used for the 
cutting tools. The workpiece materials selected for testing 
were zirconia and sapphire. Each test was carried out in 
dry conditions, with a cutting speed (Vs) of 1 m/s, a 
downward feed rate (Vw) of 1000 mm/min and a cutting 
depth (ae) of 1 μm. The cutting spindle rotational speed 
was 238 rpm. In each machining trial, the acoustic 
emission (AE) was registered using a Physical Acoustics 
WD sensor mounted as near as possible to the cutting zone 
with a sampling frequency (fs) of 2 MHz. As show in Fig. 
1b, each scratch surface was measured using a Bruker 
interferometer and the deepest cut (D) and its width of cut 
(W) were evaluated. The parameter selected to characterize 
the surface creation was the ratio W/D. The registered 
acoustic emission signal in each test was subdivided into 
scratch n signals (Fig. 1c). This subdivision enabled the 
direct correlation between the acoustic emission signals 
and the experimental values of the W/D parameter. 

 
Figure 1. Experimental set-up. 



III. METHODOLOGY  

Fig. 2 shows the methodology applied in this study to 
determine the optimum signal feature extraction for the 
monitoring of surface creation in relation to W/D 
parameter. The first step (a) involved the application of the 
TDA and FFT signal processing methods to the acoustic 
emission signal. The next step (b) was statistical signal 
characterization by evaluating the features shown in Table 
I. In step (c), signal feature parameters were correlated 
with the W/D parameter using predictive regression 
models. Finally, (d) an exhaustive analysis of signal 
feature extraction method was carried out to build and 
assess the targeted predictive models based on 
multivariable polynomic regression method.  
 

 
Figure 2. Methodology. 

 

TABLE I.  STATISTICAL FEATURE EXTRACTION OF ACOUSTIC 
EMISSION SIGNAL. 

FEATURES 
TIME 

DOMAIN 
FREQUENCY 

DOMAIN 

Root mean square RMS RMSfi 

Standard deviation SD SDfi 

Maximum amplitude - Afi 

Peak to peak amplitude PP - 

Kurtosis K Kfi 

Skewness S Sfi 

Energy E Efi 

Entropy SE SEfi 

Mean X Xfi 

Frequency of maximum - Ffi 

Where the superscript fi indicates the frequency range (f1,…,fn) 

 
All of the models obtained were diagnosed by analysing 
atypical values, multicollinearity, independence and 
normality of the residuals, homoscedasticity, and 

hypothesis contrast tests. The predictive models were built 
using stepwise regression method to obtain only variables 
statistically significative at 90 % of confidence (p-value). 
Predictive models were assessed in three ways. Firstly, the 
goodness of fit to experimental data was evaluated using 
the adjusted determination coefficient (adjusted R-
squared, R2

adj). Secondly, the sum of squares type III and 
the p-values [21] were studied in other to determine the 
variables more correlated with the W/D parameter. Finally, 
the goodness of fit was evaluated by the graphical 
representation of the experimental values of W/D versus 
the predicted values with the predictive model. 
 

IV. RESULT AND DISCUSSION 

A. Time domain analysis (TDA) 

The TDA method directly analyses the raw AE signals 
in the time domain, with no transformation or 
decomposition. This method provides fast signal 
processing at a low analytical-computational cost, making 
it suitable for real time applications. The efficacy of the 
TDA method mainly depends on the type of the machining 
process, the registered signal and the process parameter 
under assessment. In many occasions, working directly 
with the time signal provide an adequate signal 
characterization, however, in some cases, this method 
cannot extract significant distinctive information, which 
often is hidden or masked in the signal itself. The signal 
feature extraction using TDA method in this study is based 
on the parameters showed in Table 1.  

Considering the models built by TDA method to 
estimate W/D parameter in relation to AE signal features, 
Table 2 depicts the determination coefficient (R2

adj) of the 
regression models, the type III sum of squares [21]  and the 
p-values for the significant characterization parameters. For 
both sapphire and zirconia materials, it can be observed that 
the obtained predictive models give very poor results in 
correlation to the parameter W/D. The model for sapphire 
expressed only 10.6% of the variability of the experimental 
data, and the model for zirconia expressed the 25.5 %. This 
implies that the signal feature extraction method in time 
domain (TDA) failed to achieve an adequate signal 
characterisation.   

TABLE II.  SIGNIFICANT PARAMETERS OF THE SAPPHIRE AND 
ZIRCONIA PREDICTIVE MODELS FOR THE TDA METHOD. 

Sapphire  Zirconia 

R2
adj = 10.6 %  R2

adj = 25.25 % 

Features 
SS 

Type III 
p‐Value  Features 

SS 
Type III 

p‐Value 

K  4871  0.018  RMS  1611.5  0.001 

Error  31942  ‐  E  949.6  0.010 

‐  ‐  ‐  Error  5066.6  ‐ 

 

The analysis of the goodness of fit to the experimental 
data of the TDA method are shown in Fig. 3, which 
revealed that TDA method failed to provide adequate signal 
feature extraction for the prediction of W/D parameter. 



 
Figure 3. Estimated values vs experimental values of the parameter W/D 
for TDA method. a) Sapphire, b) Zirconia. 

 

B. Frequency analysis (FFT) 

In the machining process monitoring, Fourier transform 
analysis provides the information of the frequency 
spectrum of monitored signals. For the succession x[i] the 
discrete Fourier transform (DFT) was defined by (1): 
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The main restriction of (1) is its high computational 
cost, due to requires the calculus of N multiplications of the 

term (2 / ) j ki N
ix e    for each of the N values of Xk, in other 

words, this algorithm entails the calculation of 
approximately N2. Thus, for high frequency sample signals, 
as acoustic emission signal is, the use of this algorithm may 
not be a suitable processing method. To overcome this 
drawback, the DFT is implemented by using the algorithm 
with the highest computational efficiency denominated fast 
Fourier transform (FFT), which reduces the number of 
operations to 2logN N . 

Typical power spectrums of AE signal for both the 
sapphire and zirconia materials are shown in the top of Fig. 
4 with similar behaviours in all diamond scratch tests. The 
AE spectrum reaches the maximum amplitude at 
approximately 35 kHz. After that frequency, the power 
spectrum gradually decreases until around 400 kHz, then, a 
few feature peaks of power spectrum were found between 
450 and 600 kHz.   

According to the previous analysis, it can be seen that 
relevant spectrum frequency range is around 0-600 kHz. 
The frequency analysis of AE signal was undertaken with 
a complete analysis of the bandwidth 0-600 kHz (see Fig. 
4). It should be noted, that the total bandwidth under 
analysis entails certain frequency ranges with significant 
information fails to be adequately characterized, thus, the 
bandwidth 0-600 kHz was  discretized into six independent 
frequency ranges of 100 kHz each (Fig. 4). Secondly, the 
analysis was focused on the lower frequencies due to the 
high power spectrum of this area. As shown in Fig. 5, this 
analysis was assesed in the frequency range 0-200 kHz. To 
achieve a precise signal characterization at lower 
frequencies, each frequency range was fractioned into 
independent intervals of 10 kHz. 

1) Analysis of frequency range 0-600 kHz: The 
Table 3 depicts the results of the regression models for 
estimating W/D parameter by the processing of the AE 
signal in the bandwidth 0-600 kHz with FFT method, for 
both the sapphire and zirconia materials. Table 3 shows the 
determination coefficient (R2

adj), the frequency ranges, the 
type III sum of squares and the p-values for the significant 
characterization parameters.  

 

 
Figure 4. Frequency ranges for AE signal analysis 

 
As it was mentioned in Table I, the superscript of the 
features indicates the frequency range of this variable, for 
example, the feature Xf2 indicate the arithmetic mean of the 
FFT in the frequency range 100-200 kHz. It can be 
observed that both materials, obtained predictive models 
with very poor results, having little impact on the 
parameter W/D. The model for sapphire explained the 
33.62% of the variability of the experimental data, and the 
model for zirconia only the 18.52 %, which indicated a 
very poor correlation to W/D parameter.  
The analysis of the goodness of fit to the experimental data 
of the FFT method in the entire bandwidth are shown in 
Fig. 5. The results were quite similar to TDA analysis, 
where the predictive models for both materials obtained 
poor results. The model for sapphire (Fig. 5a) 
overestimated the data in most of the experimental data, 
and the model for zirconia (Fig, 5b) obtained better results 
with homogeneous distribution, but with higher deviation 
in many data. This implies the analysis of the bandwidth 
0-600 kHz in intervals of 100 kHz is not effective to extract 



significative information of AE signal correlated with W/D 
parameter.  

TABLE III.  SIGNIFICANT PARAMETERS OF THE SAPPHIRE AND 
ZIRCONIA PREDICTIVE MODELS FOR THE FFT METHOD IN 0-600 KHZ. 

Sapphire Zirconia 
R2

adj = 33.62 % R2
adj = 18.52 % 

Features SS 
Type III 

p-Value Features SS 
Type III 

p-Value 

Xf2 1824 0.089 Xf1 901.6 0,016 

Sf3 6218 0.003 Ef5 491.2 0.070 

SEf3 2982 0.031 Error 5522.9 - 

Ef6 5957 0.003 - - - 

Error 22051 - - - - 

 

 
Figure 5. Estimated values vs experimental values of the parameter W/D 
for FFT method in 0-600 kHz. a) Sapphire, b) Zirconia. 

 

2) Analyis of frequency range 0-200kHz: Table 4 
shows the significative features for the predictive models 
obtained in the frequency range 0-200 kHz. It can be 
observed that the determination coefficient for both 
models the sapphire and zirconia dramatically increase, 
with  R2

adj  values of 95.84% and 90.07%, respectively.  For 
the sapphire model, a broad number of the analysed 
frequency bands showed significative information 
correlated with the parameter W/D. The ranges f4 (30-40 
kHz) provided the most significative feature of the model 
(Af4) with the highest sum of square. This frequency range 
correspond with the higher power spectrum of the AE 
signal (see Fig 4). The next frequency bands providing 
high values of sum of square were in decreasing order f9 
(Sf9), f3 (Af3), f20 (SEf20), f14 (Kf14),  f16 (SEf16). The rest 
of significant frequency ranges provided also information 
but into a less extent. For the model of zirconia, similar to 
sapphire, a broad number of the analysed frequency ranges 
provided information correlated with the W/D paramenter. 
However, in contrast with the model for sapphire, higher 
differences in the sum of squares of the significative 
features were not found for zirconia; the maximum 
difference is reached in the range f16 (Ff16), where a value 
slighly higher than that in the rest of the variables. 
 

 

TABLE IV.  SIGNIFICANT PARAMETERS OF THE SAPPHIRE AND 
ZIRCONIA PREDICTIVE MODELS FOR THE FFT METHOD IN 0-200 KHZ. 

Sapphire Zirconia 
R2

adj = 95.48 % R2
adj = 90.07 % 

Feat. SS 
Type III 

p-Value Feat. SS 
Type III 

p-Value 

Af3 8779.6 0.000 Kf1 556.9 0.000 

Sf3 876.8 0.000 SEf2 166.3 0.005 

Af4 10797.7 0.000 Sf5 221.6 0.001 

Xf5 302.9 0.011 Kf6 353.6 0.000 

Af6 2754.1 0.000 Ff6 169.7 0.004 

Ff6 4189.0 0.000 Ef9 389.0 0.000 

SDf8 2140.2 0.000 SDf10 493.6 0.000 

Sf9 9021.8 0.000 RMSf14 655.5 0.000 

Kf11 3324.4 0.000 Xf14 922.0 0.000 

Kf13 2149.6 0.000 Kf15 491.3 0.000 

Kf14 6879.5 0.000 Ff15 176.4 0.004 

SEf16 5887.5 0.000 Ff16 1472.2 0.000 

Af17 883.9 0.000 SDf19 824.3 0.000 

Ef18 214.2 0.030 Af20 366.8 0.000 

Ff18 1570.6 0.000 Xf20 787.2 0.000 

SEf20 7163.6 0.000 Ff20 804.8 0.000 

Error 1013.6 - Error 431.6 - 

 
The analysis of the correlations of the estimated data versus 
the experimental data for the FFT method in the 0-200 kHz 
frequency band (Fig. 6) revealed the model for zirconia had 
an even distribution in all of the W/D parameter ranges, 
with no bias and a very strong correlation (see Fig 6b). The 
model obtained for sapphire (Fig 6a), in spite of having 
higher determination coefficient than zirconia model, 
showed a higher deviation in all of frequency ranges with 
under-estimation of W/D values between 10 and 20.  

 

 
Figure 6. Estimated values vs experimental values of the parameter W/D 
for FFT method in 0-200 kHz. a) Sapphire. b) Zirconia. 

 
According to the previous analysis, the bandwidth 0-200 
kHz discretized in intervals of 10 kHz was the best 
methodology to obtain an optimal acoustic emission signal 
characterisation. This method provided an optimal 
correlation between the acoustic emission signal and the 
W/D parameter for both materials. The proposed method 



enabled an online monitoring system to obtain the most 
significant information of the process from the frequency 
ranges of AE signals. 

V. CONCLUSIONS  

In this study, the online grinding surface creation 
monitoring was carried out by processing the acoustic 
emission signals in abrasive scratch experiments. The 
surface creation in each scratch was assessed by using the 
ratio W/D of the scratch profile of maximum depth. 
The TDA signal processing method failed to obtain 
applicable signal feature extraction for both materials. For 
the FFT signal processing method, the analysis of different 
frequency ranges with suitable selection of the bandwidth 
is crucial to achieve an optimal signal feature extraction 
that could be able to correlate the acoustic emission signals 
with the ratio W/D. The analysis of the frequency range of 
0-600 kHz did not provide good results due to the length 
of the discretisation intervals (100 kHz) were too long, and 
the information of the AE signal could not be analysed 
adequately, leaving the significant information hidden or 
disguised in the signal appearance. The best bandwidth for 
acoustic emission signal relevant feature extraction was 
obtained at 0-200 kHz. The frequency range discretisation 
with intervals of 10 kHz enabled the isolation and location 
of signal ranges with effective information for the 
monitoring of the W/D parameter. Most of the 20 
frequency intervals analysed in the bandwidth 0-200 kHz 
have a great impact indication on the W/D parameter. 
Finally, the acoustic emission signal in frequency domain 
has proven to be an applicable signal to monitor the surface 
creation in abrasive scratch experiments.  
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