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Highlight 

Protein S-Acyl Transferase is involved β-oxidation of seed storage triacylglycerol in 

Arabidopsis which is required for normal post-germination growth of seedlings  

 

Abstract 

Seeds of Arabidopsis contain ~40% of triacylglycerol. It is converted to sugar to support post 

germination growth. We identified an Arabidopsis T-DNA knockout mutant that was sugar 

dependent during early seedling establishment. Our study showed that the β-oxidation 

process involved in catabolising the free fatty acids released from the seed triacylglycerol 

was impaired in this mutant. This mutant was confirmed to be transcriptional null for the 

Protein Acyl Transferase 15, AtPAT15 (At5g04270), one of the 24 protein acyl transferases 

in Arabidopsis. Although it is the shortest AtPAT15 contains the signature ‘Asp-His-His-Cys 

cysteine rich domain’ which is essential for the enzyme activity of this family of proteins. 

The function of AtPAT15 was validated because it rescued the growth defect of the yeast 

protein acyl transferase mutant akr1 and it was also auto-acylated in vitro. Transient 

expression of AtPAT15 in Arabidopsis and tobacco localized AtPAT15 in the Golgi 

apparatus. Taken together, our data clearly demonstrated that AtPAT15 is involved in β-

oxidation of triacylglycerol, revealing the importance of protein S-acylation in seed storage 

lipid breakdown during early seedling growth of Arabidopsis.  

 

Key words: Protein Acyl Transferase, S-acylation, DHHC-CRD, AtPAT15, lipid breakdown, 

β-oxidation, seedling establishment, Arabidopsis 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz282/5519103 by guest on 19 Septem

ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

3 

 

Introduction 

Seed germination and seedling establishment are two important processes for spermatophytes 

before they acquire efficient photosynthesis to achieve self-sufficiency for further growth.  

While the mRNAs of genes required for seed germination have already been transcribed and 

accumulated during seed maturation, therefore, little energy is consumed, seedling 

establishment after post germination requires energy and carbon skeletons for DNA synthesis, 

new mRNA transcription, cell division, radicle elongation and other complex metabolic 

processes, hence relies on the complete breakdown of the major reserves in most seeds such 

as carbohydrates, proteins and lipids (Bewley, 1997; Rajjou et al., 2004; Zhao et al., 2018). 

In Arabidopsis and other oilseed crops up to 40% of oil in the form of triacylglycerol 

(TAG) are stored in their fresh seeds. TAG is present in the cytosolic droplets that are 

enclosed by a phospholipid monolayer embedded with structural proteins (Eastmond, 2006; 

Siloto et al., 2006). It has to be broken down completely to become accessible to support 

post-germination growth. TAG is first hydrolysed by lipases, releasing glycerol and free fatty 

acids (FFAs). Glycerol is then phosphorylated and converted to dihydroxyacetone phosphate 

(DHAP), while fatty acids are activated to acyl-CoAs at peroxisome, broken down to acetyl-

CoAs via β-oxidation, and converted to organic acids such as oxaloacetate (OAA) via the 

glyoxylate cycle. DHAP and OAA enter gluconeogenesis and are converted to sugar which is 

used to fuel the early seedling growth (Eastmond and Graham, 2001; Canvin and Beevers, 

1961; Cornah et al., 2004; Theodoulou and Eastmond, 2012). Complete oxidation of TAG 

can produce more than twice the energy than the hydrolysis of protein and carbohydrate 

(Theodoulou and Eastmond, 2012). 

Therefore, it is not surprising that many Arabidopsis mutants that are defective in early 

seedling establishment after germination are caused by the disruption of one or more genes 
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involved in the catabolism of their seed storage oil, and this defect can often be rescued by 

the addition of external sugar, such as sucrose (Graham, 2008). For example, the defective 

mutant of a lipase, Sugar Dependent 1 (SDP1), showed strong impairment in breaking down 

TAG, and the seedling of sdp1 mutants grew much slower than wild type after germination. 

This defect was rescued by external sucrose supplement, indicating that TAG breakdown was 

essential in energy supply during early seedling growth and establishment (Eastmond, 2006). 

Similar phenotype was found in the loss-of-function mutant of Peroxisomal ABC 

Transporter1 (PXA1). PXA1 is involved in the transportation of FFAs or fatty acyl-CoAs to 

peroxisomes (Zolman et al., 2001). The conversion of FFAs to active fatty acyl-CoAs are 

catalyzed by two peroxisomal long-chain acyl-CoA synthetases (LACS6/7) and the lacs6 

lacs7 double mutant exhibited similar phenotype as the pxa1 mutant in the reliance of sugar 

for seedling growth (Fulda et al., 2004).  

β-Oxidation is responsible for the breakdown of FFAs released from seed TAG thus 

disruption in β-oxidation results in stalled post-germination growth of seedling. For example, 

the first step of β-oxidation is mediated by the acyl-CoA oxidase (ACX) family proteins and 

seedlings of the double mutant acx1acx2 failed to establish which is rescued by the addition 

of external sugar (Pinfield-Wells et al., 2005). Multifunctional protein 2 (MFP2) and 3-

ketoacyl-CoA thiolase 2 (KAT2) are involved in the second and final steps of β-oxidation 

process, therefore are also necessary for seedling establishment (Rylott et al., 2006; Germain 

et al., 2001). The isocitrate lyase (ICL) and malate synthase (MS), the key enzymes of 

glyoxylate cycle (Eastmond et al., 2000; Cornah et al., 2004), and phosphoenolpyruvate 

carboxykinase1 (PCK1), the catalytic enzyme for the first step of gluconeogenesis (Penfield 

et al., 2004) are also proved to be essential for seedling establishment in Arabidopsis. 
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Protein S-acyl transferases (PATs) is a large family of enzymes that catalyse the S-

acylation of proteins involved in signalling, trafficking and many other important functions in 

the cell (Resh, 2006; Li and Qi, 2017; Chen et al., 2018). S-acylation is a reversible post-

translational lipid modification where a long chain fatty acid, commonly the 16-carbon 

palmitic acid, is attached to the cysteine residue(s) of a protein via a thioester bond. Many 

PATs have been characterised from yeast (Zhao et al., 2002; Roth et al., 2002; Valdez-

Taubas and Pelham, 2005; Smotrys et al., 2005; Lam et al., 2006), mammals (Huang et al., 

2004; Fukata et al., 2004; Swarthout et al., 2005; Vetrivel et al., 2009; Lakkaraju et al., 2012;  

Yeste-Velasco et al., 2015) and Arabidopsis (Hemsley et al., 2005; Qi et al., 2013; Li et al., 

2016). The common features of these PATs are the predicted 4-6 transmembrane domains 

(TMDs), and importantly, a conserved Asp-His-His-Cys cysteine rich domain (DHHC-CRD) 

which is proved to be the enzymatic catalytically active (Li and Qi, 2017; Chen et al., 2018).  

In plants different numbers of DHHC-CRD containing proteins were reported in different 

plant species, from 6 in Volvox carteri to 52 in Panicum virgatum (Yuan et al., 2013). 

Arabidopsis genome encodes 24 DHHC-PATs which were named as AtPAT1 to AtPAT24 

(Hemsley et al, 2005; Batistic, 2012). From the characterisation of 4 AtPATs, AtPAT10 (Qi 

et al., 2013), AtPAT13 (Lai et al, 2015), AtPAT14 (Li et al., 2016) and AtPAT24 (Hemsley 

et al., 2005), it is clear that AtPATs play important roles in plant growth, development, 

abiotic stress and senescence. For example, AtPAT24 (TIP1) loss-of-function mutants are 

semi-dwarf with very short root hairs (Hemsley et al., 2005); atpat10 was dwarf with much 

reduced fertility (Qi et al, 2013); the T-DNA knockout mutant plants of AtPAT14 exhibit an 

early leaf senescence phenotype which was enhanced by the introduction of a mutant allele of 

AtPAT13 (Lai et al., 2015; Li et al., 2016).  

Here we report the functional characterization of another AtPAT, AtPAT15. Being the 

smallest PAT within the 24 PATs in Arabidopsis AtPAT15 is predicted to have 4 TMDs and a 
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conserved signature DHHC-CRD motif. It has PAT activity and localizes in the Golgi. The 

loss-of-function mutant of AtPAT15 exhibits multiple defects, such as delayed germination, 

failed seedling establishment, de-etiolation in the dark, reduced vegetative growth, and 

abnormal shoot apical meristem. We carried out in-depth analysis of the mutant seedling and 

found that the mutant failed to develop further after germination, importantly this defect was 

rescued by sucrose. Further studies proved that the breakdown of seed storage oil of the 

mutant is blocked and this is due to the ineffective β-oxidation, leading to the disruption for 

the FFAs released from TAG to convert to sugar. To our knowledge this is the first report to 

link protein S-acylation to seed lipid breakdown during early seedling growth, hence provide 

a new mechanism for lipid catabolism in Arabidopsis. 

 

Materials and methods 

Plant material and growth conditions 

Wild-type Arabidopsis and the T-DNA insertion line SALK_006515 in the background of 

Columbia-0 were obtained from the Arabidopsis Biological Resources Center (ABRC, 

http://www.arabidopsis.org/abrc/). Seeds were surface sterilized, germinated and seedlings 

grown under long-day (LD) conditions as described previously (Qi et al., 2013). 

 

Identification of AtPAT15 T-DNA insertion mutant 

PCR-based genotyping was carried out to isolate homozygous T-DNA insertion mutant plants 

from SALK_006515 line using primer pairs of LBb1/SALK006515RP and 

SALK006515LP/SALK006515RP (Table S1), respectively. PCR products amplified from the 

junction of the T-DNA insertion site were sequenced to confirm the exact T-DNA location in 

SALK_006515 according to Qi et al (2013). 
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In vitro pollen germination 

The in vitro pollen germination assay was carried out according to Rodriguez-Enriquez et al 

(2013) with some adaptations. Briefly, mature pollen grains from WT and pat15-1 were 

collected and placed on freshly prepared pollen growth media containing 18% sucrose, 0.8% 

agarose, 0.01% boric acid, 0.03% casein enzymatic hydrolysate, 1mM CaCl2, 1mM 

Ca(NO3)2, 1mM KCl, 0.25mM spermidine, 0.01% myo-inositol and 0.01% ferric ammonium 

citrate. After   incubation at 24
o
C for 16 hours the growth of pollen tubes were observed and 

recorded under a dissecting microscope. The pollen germination rate was calculated as 

percentage of the number of germinated pollen grains out of total pollen grains placed on the 

media. 

 

Complementation in yeast and Arabidopsis 

The coding region of AtPAT15 was amplified from the plasmid (in pGPTVII, Batistic, 2012) 

containing the 51-bp short version of AtPAT15 by over-lapping PCR with primer pairs of 

PAT15F1/attB2PAT15R1, attB1PAT15F1/attB2PAT15R1 and attB1/attB2 (Table S1). The 

PCR product was recombined in the Gateway entry vector pDONR
TM

/Zeo to create 

AtPAT15-pDONR (Invitrogen). To replace cysteine with serine in the DHHC motif PCR was 

performed with primer pairs of attB1/PAT15DHHC-S Rev and PAT15DHHC-S For/attB2 

(Table S1) to generate two DNA fragments. The full length AtPAT15DHHC
122

S was 

assembled by over-lapping PCR with primer pair of attB1/attB2 using these two DNA 

fragments as template and cloned in pDONR
TM

/Zeo to generate AtPAT15DHHC
122

S-pDONR 

(Qi et al, 2003). These two plasmids were re-combined into pYES-DEST52 (C-terminal V5 

fusion) (Invitrogen) and pEarleyGate 103 (C-terminal GFP fusion) (Earley et al., 2006) for 

expression in yeast and Arabidopsis, respectively. Transformation of yeast cells (wild-type 

and akr1), Arabidopsis plants and their subsequent growth were carried out as described 
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previously (Qi et al., 2013; Li et al., 2016). 

 

Auto-acylation assay in yeast 

The Acyl-RAC method was carried out on total proteins isolated from the transgenic akr1 

cells expressing AtPAT15-V5 and AtPAT15C
122

S-V5 (Forrester et al. 2011). The proteins 

were separated via 10% SDS-PAGE and PAT15/PAT15C
122

S were detected by Western blot 

with an anti-V5 antibody (mouse monoclonal antibody, KWBio, China) and ECL as 

described previously (Li et al., 2016).   

 

Subcellular localization of AtPAT15 

Co-transformation and transient expression of the GFP tagged AtPAT15 and AtPAT15C
122

S 

(in pEarleyGate103) and the mCherry tagged Golgi marker GNT1 (N-

acetylglucosaminyltransferase I, At4g38240) in Nicotiana benthamiana leaves was 

performed as described previously (Batistič, 2012). For transient expression in Arabidopsis 

agrobacteria (strain GV3101) harbouring the above plasmids were grown for 16 hours. The 

cells were harvested, re-suspended in 10mM MES/KOH, 10 mM MgCl2, 600 µM 

acetosyringone (pH 5.7) and incubated for three hours. Five-day old Arabidopsis seedlings 

that were grown on 1x MS were completely submerged in the agrobacteria solution 

(supplemented with 0.0002% Tween 20) and vacuum was applied with a water jet pump for 5 

minutes. The vacuum was repeated twice more. After the agrobacteria were completely 

removed the seedlings were grown on fresh 1xMS media for further three days. The 

transiently expressed florescent proteins were observed by laser scanning confocal 

microscopy (Batistič, 2012). 
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RT-PCR and Real Time PCR 

Total RNA was extracted with Trizol reagent (Invitrogen) according to the manufacturer’s 

instructions. Oligo (dT)-primed cDNAs were synthesized from 1μg RNA using the First-

Strand cDNA Synthesis Kit (Transgen, China). To detect transcripts in WT and pat15-1 T-

DNA homozygous insertion line, different primer pairs were used to amplify truncated 

transcripts spanning the T-DNA insertion site (F139+R981, F564+R910), up- (F139+R453) 

and down-stream (F813+R1045) of the T-DNA insertion site.  

To detect expression of genes involved in lipid breakdown real time PCR was performed 

using the UltraSYBR PCR Mixture (With ROX, CWBIO, China) and the programme was run 

on a Stepone Plus real-time PCR system (Applied Biosystems). The relative transcript levels 

were calculated by the 2
-ΔΔt

 method with the AtEF-1α gene (ACCESSION AAB07882) as an 

internal control (Livak et al., 2001). At least three replicates were included in each 

experiment and this was repeated 3 times. The sequences of all primers used are listed in 

Supplemental Table S1&2. 

 

Lipid analysis 

The content of C20:1, a reliable TAG marker, was quantified from total fatty acids isolated 

from seedlings (Thazar-Poulot et al., 2015). Briefly, 30 seeds or 40 five-day-old etiolated 

seedlings from each sample were collected, ground under liquid nitrogen and freeze-dried to 

constant weight. One mL of methylation solution (10% H2SO4 in methanol) and 10µl of 

0.5mM heptadecanoic acid (as internal standard) were added. This was followed by heating 

at 85°C for 1 hour with occasional mixing. After cooling down to room temperature 1 mL of 

1% NaCl and 0.5 mL of hexane were added and the content was mixed thoroughly by 

vortexing. After centrifugation the hexane layer containing the fatty acid methyl esters was 

removed and analyzed by gas-liquid chromatography-mass spectrophotometry (GC-MS) as 
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described previously (Browse et al., 1986; Qi et al., 2004).  

To visualize the oil droplets in the hypocotyls 5-day-old dark-grown seedlings were 

immersed in 10μg/mL Nile Red solution for 5 minutes (Chen et al., 2009). The stained 

hypocotyls were observed under excitation/emission of 488nm/583nm using a Nikon 90i 

Eclipse microscope. 

 

GUS staining 

To see the spatial and temporal expression of AtPAT15 promoter of AtPAT15 (1,071bp 

upstream from the start codon of AtPAT15) was cloned with primers pPAT15attB1 and 

pPAT15attB2 (Table S1) and recombined to the Gateway plant expression vector pMDC162 

containing the GUS reporter gene (Curtis and Grossniklaus, 2003). This was transferred in 

wild-type Arabidopsis Col-0 via the floral dipping method (Clough and Bent, 1998). Tissues 

from AtPAT15promoter:GUS transgenic Arabidopsis plants were stained in the staining 

buffer (100mM sodium phosphate buffer, pH7.0; 10mM EDTA; 0.1% triton X-100; 1mM 

K3Fe(CN)6; 2mM X-Gluc) at 37°C for 16 hours. There were cleared with 100% alcohol for 

12 hours with several changes before imaging under a dissect microscope (Jefferson, 1987). 

 

Assay for ß-oxidation  

2, 4-Dichlorophenoxyacetic acid (2, 4-D), an herbicide that inhibits root growth, is 

synthesized via ß-oxidation from its precursor 4-(2, 4-dichlorophenoxy) butyric acid (2, 4-

DB). Therefore, the conversion efficiency from 2,4-DB to 2,4-D is often used as an indication 

of the functionality of ß-oxidation. To see the effect of 2,4-D and 2,4-DB on root growth of 

seedlings, surface sterilized WT and pat15-1 seeds were germinated and grown on  ½ MS 

media with or without 0.5 μM 2,4-D or 2,4-DB for 7 days under LD conditions. The plates 

were then scanned and the root lengths measured with the ImageJ software. Similarly, the 
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effect of 1 μM of 2,4-D or 2,4-DB was observed and the hypocotyl lengths were measured of 

seedlings that were grown for 5 days in the dark (the plates were wrapped with double 

layered foil). 

 

In vitro pollen germination 

The in vitro pollen germination assay was carried out according to Rodriguez-Enriquez et al 

(2013) with some adaptations. Briefly, mature pollen grains from WT and pat15-1 were 

collected and placed on freshly prepared pollen growth media containing 18% sucrose, 0.8% 

agarose, 0.01% boric acid, 0.03% casein enzymatic hydrolysate, 1mM CaCl2, 1mM 

Ca(NO3)2, 1mM KCl, 0.25mM spermidine, 0.01% myo-inositol and 0.01% ferric ammonium 

citrate. After   incubation at 24
o
C for 16 hours the growth of pollen tubes were observed and 

recorded under a dissecting microscope. The pollen germination rate was calculated as 

percentage of the number of germinated pollen grains out of total pollen grains placed on the 

media. 

 

Statistical analysis 

One-way ANOVA and Tukey’s HSD test were applied to compare three or more sets of data 

with Minitab, where different letters indicate significant differences between different 

treatments at p<0.05. To compare two sets of data the Student’s t-test was used where * 

indicates significant difference with p values given in each figure legends. All the figures 

were drawn using Excel. 

 

Results  

Identification of AtPAT15 loss-of-function mutant 

In order to understand the biological roles that AtPAT15 plays in the growth and 

development of Arabidopsis, we searched all the available mutant collection centres and 

identified an AtPAT15 T-DNA insertion line, SALK_006515 from ABRC. Through 
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sequencing the PCR product amplified using primers LBb1 and AtPAT15 specific RP primer 

(Table S1) followed by sequence alignment with the AtPAT15 genomic DNA sequence, the 

T-DNA insertion site was confirmed to be at nt1765 in the 6th exon of AtPAT15. RT-PCR 

using cDNA synthesized from RNA isolated from leaves of WT and the T-DNA insertion 

homozygous plants was carried out to determine the knockout status of this line. The result 

showed that no transcripts were detected with primers across the T-DNA insertion site 

(F139+R981, F564+R910). However, transcripts upstream (F139+R453) and downstream 

(F813+R1045) of the T-DNA insertion site were present. PCR products from all primer 

combinations were recovered from the WT (Fig. 1B), therefore confirming that 

SALK_006515 is a T-DNA knockout mutant for AtPAT15, hence, this line named as atpat15-

1 hereafter.  

We next performed detailed phenotypic analysis of this line. As shown in Fig. 1 the rosette 

leaves of pat15-1 were smaller, more rounded and crinkled compared to WT. The growth of 

pat15-1 mutant plant during early developmental stages was very slow and the plant 

struggled to establish (Fig. 1D&E). However, as soon as the plant bolted this defect became 

less obvious and in fact, the mature mutant plant showed little difference compared to WT in 

terms of the number of branches, flower size and general appearance although it was slightly 

shorter than WT (Fig S1, Fig. S2A-F, Table 1). Because GUS expression level is higher in 

anthers (Fig. 2B, see below) we reasoned that pat15-1 may have defect in pollen or/and 

pollen germination. However, the mutant pollen grains were germinated as well as WT where 

approximately 94% from both genotypes were germinated (Fig. S2C and G, and data not 

shown). Interestingly, the mutant produced larger seeds (26.3±0.79µg) that were about 20% 

heavier than WT seeds (21.2±0.79µg) (Fig. 1F&G) whilst the structure of the immature seeds 

at 3-day-after-pollination (DAP) was comparable between WT and the mutant (Fig. S2D&H).  
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AtPAT15 is ubiquitously expressed 

To understand how AtPAT15  (gene locus: AT5G04270) functions in Arabidopsis, we 

monitored the transcript levels of PAT15 by RT-PCR from total RNA isolated from seedlings 

and different tissues of mature WT Arabidopsis plants. We found that PAT15 was expressed 

in samples with higher levels in young seedlings and rosette leaves (Fig. 2A). This is 

consistent with the expression pattern of PAT15 analysed by online Arabidopsis eFP Browser 

(http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi; Batistic, 2012). To further confirm this 

result, we observed the GUS distribution in transgenic Arabidopsis expressing 

PAT15promoter:GUS. Consistent with the RT-PCR result, GUS expression was detected in 

all tissues and seedlings where much higher levels were found in 7-day-old seedlings, rosette 

leaves and anthers (Fig. 2B). It is also noted that in 1- and 2-week-old seedlings, AtPAT15 

expressed especially high in leaf veins (Fig. 2B-a&b).  

 

AtPAT15 has a conserved DHHC-CRD and 4 trans-membrane domains 

Previous studies showed that there are 24 DHHC-CRD proteins that may function as PATs in 

Arabidopsis (Hemsley et al., 2005; Batistic, 2012). Among them, 3 have been identified to 

have PAT activity by in vitro and in vivo assays (Hemsley et al., 2005; Qi et al., 2013; Li et 

al. 2015). AtPAT15 was predicted to be the shorted PAT with only 3 TMDs and a luminal N-

terminus (Batistic, 2012). However, the database of Arabidopsis, TAIR (The Arabidopsis 

Information Resource), has recently updated the information of AtPAT15 where an extra 51 

bps were added upstream of the previous cDNA sequence. Although it remains to be the 

shortest with the coding region being 816bp long, encoding a putative protein of 271 amino 

acids (molecular weight of approx. 30.6 kD) AtPAT15 now has 4 TMDs and the signature 

enzyme catalytic conserved DHHC-CRD resides in the cytosolic loop between the 2
nd

 and 3
rd
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TMDs (Fig. S3B). This predicted structure of AtPAT15 resembles that of the majority of the 

PATs characterised so far. Other conserved domains/motifs in this family of proteins, such as 

the DPG and TTxE are also present (Montoro et al., 2009; Batistic, 2012). The importance 

and function of these 2 domains are currently unknown. 

 

AtPAT15 has PAT activity in yeast  

Akr1 is one of the 7 yeast PATs and its knockout mutant akr1is sensitive to high temperature 

(37°C) and grows poorly under this restrictive temperature (Feng and Davis, 2000; Hemsley 

et al., 2005). This feature is often used in complementation assays to show the functionality 

of a putative PAT. For example, the three functionally identified AtPATs, AtPAT24 

(Hemsley et al., 2005), AtPAT10 (Qi et al., 2010) and AtPAT14 (Li et al., 2016) of 

Arabidopsis can partially complement the growth defect of akr1, confirming them being 

PATs. To see if AtPAT15 also has this ability, we observed the phenotype of transgenic yeast 

cells harbouring AtPAT15 and its DHHC
122

S point-mutation variant. As shown in Fig 3A 

AtPAT15 largely rescued the growth defect of akr1 because the phenotype of the cells 

appeared to be round (though larger) which was similar to the wild-type. However, the 

PAT15C
122

S expressing akr1 yeast cells showed an elongated cell phenotype that resembles 

the mutant akr1 cells.  

To see if AtPAT15 is auto-acylated, we extracted total proteins from the above yeast cells 

and subjected to the acyl-RAC assay (Forrester et al., 2011). As shown in Fig 3B while 

AtPAT15 was captured on the beads and detected by Western blotting with anti-V5 antibody 

AtPAT15DHHC
122

S was not. This demonstrated that a fatty acid was attached to AtPAT15 

via a liable thioester bound, i.e., it is auto-acylated whilst the mutant AtPAT15DHHC
122

S 

was not.   
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The above combined results demonstrate that AtPAT15 has PAT activity in yeast and this 

relies on the cysteine residue within the DHHC domain.   

 

AtPAT15 is predominately localised in Golgi  

Expression of GFP fusion of PAT15 in Arabidopsis and tobacco revealed that it is mainly 

localized in Golgi. This is further confirmed by co-localization with the mCherry tagged 

Golgi marker TGN1 (Fig 4; Fig S4). Similar localization profiles were observed with 

PAT15C
122

S-GFP. Therefore, AtPAT15 is predominantly localized to the Golgi apparatus, 

indicating that the first TMD is required for correct localization of AtPAT15 as this is 

different from the previous observation made on the shorter 3 TMD containing AtPAT15 

where a possible endoplasmic reticulum (ER) localization was indicated (Batistic, 2012).  

 

Both WT DHHC-PAT15 and the point mutant DHHS-PAT15 can rescue the defect of pat15-1  

To see if the altered phenotype of pat15-1 is caused by the disruption of AtPAT15 by T-DNA 

insertion we transformed 35S:PAT15 construct to pat15-1 mutant. This showed that 

AtPAT15 can completely rescue the growth defect of pat15-1 mutant since the transgenics 

appear identical to WT, demonstrating that the growth defect is indeed caused by disruption 

of AtPAT15 in the mutant (Fig. 5). However, surprisingly, when we introduced the AtPAT15 

variant where the cysteine residue in the DHHC domain was changed to serine 

(PAT15DHHC
122

S) the mutant plants can still rescue the growth defect of pat15-1 (Fig. 5). 

The presence of T-DNA, its homozygosity and the presence of the transgene in PAT15 or 

PAT15DHHC
122

S expressing lines were confirmed by PCR and sequencing (data not shown). 
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Therefore, the combined data demonstrate that the function of AtPAT15 does not rely on the 

Cys in the DHHC motif of AtPAT15 in Arabidopsis.  

 

Post-germination growth of the pat15-1 mutant is sugar dependent 

We routinely germinate and culture our seedling of Arabidopsis on sugar free ½ MS agar 

plate before putting them out in soil. For pat15-1, however, we noticed that although seed 

germination (appearance of radicle) was nearly normal but the early seedling growth of the 

mutant was defective where majority of the seedlings failed to develop further to produce true 

leaves. As shown in Fig. 6B followed by germination seedlings of the WT Arabidopsis 

continue to grow, leading to the fully expanded cotyledons, emergence of true leaves and 

elongated primary roots. However, seedlings of pat15-1 mutant failed to grow, resulting in 

the arrest of cotyledon expansion and primary root elongation (Fig. 6B left). Interestingly, 

this was not due to failure in seed germination of pat15-1 because at 92% majority of the 

mutant seeds were germinated after 72 hours compared to 98% of WT seeds did on the same 

sucrose-free media (Fig. 6A).  

To see if sugar can help the mutant grow better we added 1% of sucrose to the ½ MS 

media. To our surprise the mutant seedlings could indeed develop and grow at a comparable 

rate as the WT seedlings (Fig. 6B right). Therefore, it is clear that the AtPAT15 loss-of-

function mutant is sugar dependent during early seedling establishment. 

 

AtPAT15 is involved in lipid catabolism during early seedling growth 

In Arabidopsis, seed germination relies on the very limited sugar present in the seed. 

However, post-germination growth is supported by the breakdown of oil reserves 
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accumulated and stored in the seeds (Cornah et al., 2004). Because seedlings of pat15-1 

failed to develop properly after germination without external sugar, we suspected that the 

lipid breakdown pathway during post germination growth may be defective in this mutant. 

Therefore, we measured the content of fatty acid C20:1 to monitor the efficiency of TAG 

breakdown in dark-grown pat15-1 seedlings at the post-germination stage. C20:1 is a reliable 

marker routinely used to indicate the level of triacylglycerol (Thazar-Poulot et al., 2015). 

Sugar Dependent Protein1 loss-of-function mutant sdp1 has a similar phenotype to pat15-1 

in post-germination growth due to a defect in lipid breakdown (Eastmond, 2006). Therefore, 

a direct comparison was made between WT, pat15-1 and sdp1. First, we compared the C20:1 

level in seeds of these three lines. However, we found no significant difference between these 

three lines, indicating that they all accumulated TAG normally during seed maturity (Fig. 

7A). However, in 5-day-old seedlings of WT and sdp1 9.7% and 96.8% of C20:1 was 

detected, confirming the previous observation that most of the TAG in sdp1 seedlings 

remains un-digested (Eastmond, 2006). Interestingly, C20:1 in pat15-1 seedlings was 24.9%, 

which was significantly lower than WT but higher than sdp1 (Fig. 7A), demonstrating that 

pat15-1 mutant also has defect in lipid breakdown during post-germination growth although 

it is not as severe as sdp1.  

Next, we analyzed the C20:1 content in 5-day-old etiolated seedlings that were grown on 

1% sucrose containing media. This showed that only 22.2% in the WT was detected while 

96.7% was found in pat15-1 (Fig. 7A). Therefore, this clearly showed that sugar had 

inhibitory effect on lipid breakdown in both WT and pat15-1 mutant seedlings, and this was 

particularly severe in the mutant where most of the seed storage lipid (~78%) remained 

intact.  
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To validate the above conclusion we observed the lipid droplets in Nile red stained 

hypocotyls of these seedlings. Consistent with the quantitative data the pat15-1 hypocotyls 

were densely packed with oil droplets whilst there hardly any were observed in WT (Fig. 

7B). Further, the mutant appeared to have even more oil droplets when grown on 1% sucrose 

containing media. This was in line with the higher C20:1 content (96.7%) in seedlings grown 

on sugar containing media compared to 24.9% of C20:1 found in those on sugar free media 

(Fig. 7A).  

Taken together, the above results clearly demonstrated that AtPAT15 plays important roles 

during early seedling growth and this is mediated by its role in the regulation of seed storage 

lipid breakdown. 

 

The expression of key genes during lipid breakdown is down-regulated in pat15-1 

In order to determine which step(s) along the lipid breakdown pathway is defective in pat15-

1 we monitored the transcript levels of some key genes that are known to be involved in the 

different steps of this important process during early seedling growth. For this real time PCR 

was carried out by using cDNAs synthesized from total RNAs extracted from 10-day-old 

dark-grown WT and pat15-1 seedlings. The genes tested included those encoding for 3-

ketoacyl-CoA thiolase 2 (KAT2), Isocitrate lyase (ICL), malate synthase (MLS) and 

phosphoenolpyruvate carboxykinase1 (PCK1). The reason to choose these 4 genes is because 

their knockout mutant plants exhibited severe defect in lipid breakdown, leading to failed 

seedling establishment (Eastmond et al., 2000; Germainet al., 2001; Cornah et al., 2004; 

Penfield et al., 2004), which is similar to what was observed in pat15-1 seedlings. As shown 

in Fig. 8 the expression level of KAT2 in pat15-1 was only 14.9% of that in WT while that of 

ICL and MLS in the mutant was even lower and accounted for 7.8% and 9.5% of those in WT 

respectively. At 36.6% the reduction in the transcript level of PCK1 was not as severe as 
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KAT2, ICL and MLS but it was only 1/3 of that in WT. Therefore, the expression of all these 4 

genes in pat15-1 was much down regulated, indicating that the key genes for lipid breakdown 

in young seedlings of pat15-1 were much less active than their counterparts in WT. This 

could lead to much less lipid breakdown hence less sugar synthesized to fuel the growth of 

the mutant seedlings. Therefore, these results further confirmed the regulatory role of 

AtPAT15 in lipid breakdown during the early seedling growth of Arabidopsis. 

 

AtPAT15 affects lipid breakdown through β-oxidation process 

Because the transcript of KAT2, the key enzyme involved in β-oxidation was down-regulated 

in the mutant we reasoned that β-oxidation is most likely to be defective in pat15-1. To prove 

this we carried out an assay to observe the root growth of WT and pat15-1 seedlings that 

were cultured on 2, 4-D and 2, 4-DB. 2,4-D is a common herbicide which inhibits root 

growth in the light and hypocotyl elongation in the dark (Estelle and Somerville, 1987). 

Importantly, 2, 4-DB, the precursor of 2, 4-D can be converted to 2, 4-D through β-oxidation. 

Hence this process has been used previously to test β-oxidation efficiency in mutants that are 

defective in β-oxidation during lipid breakdown (Richmond and Bleecker, 1999; Eastmond et 

al., 2000). Utilizing this method we first tested the inhibitory effect of 2, 4-D and found that 

the roots of both WT and pat15-1 seedlings were indeed arrested when 0.5 μM of 2, 4-D was 

added in the media (Fig. 9A). Next, we added 0.5 μM of 2, 4-DB to the media and found that 

the roots of WT seedlings cannot elongate at all whilst those of pat15-1 seedlings can still 

elongate although they were shorter compared to those grown on the control media lacking 2, 

4-DB (Fig. 9B). Similar results were obtained when the hypocotyl lengths were measured 

from the dark-grown seedlings where the hypocotyls of pat15-1 seedlings were much longer 

than those of WT when 0.5 μM 2, 4-DB was supplemented in the media (Figs. 9C & D).  
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From these experiments we can draw a conclusion that pat15-1 seedlings produced much 

less herbicide 2, 4-D from its precursor 2, 4-DB and this is most likely due to the fact that β-

oxidation was impaired in the mutant. Therefore, AtPAT15 plays positive roles in β-oxidation 

to breakdown the FFAs that are released from the seed storage TAG during early seedling 

growth. 

 

Discussion  

AtPAT15 has PAT activity  

The ability of a putative PAT to completely or partially rescue the growth defect of the yeast 

PAT Akr1 knockout mutant is routinely used to validate its PAT activity of this newly 

identified PAT. Indeed, 4 yeast PATs, Akr1, Pfa3, Pfa4 and Pfa5 (Zhao et al., 2002; Roth et 

al., 2002; Valdez-Taubas and Pelham, 2005; Smotrys et al., 2005; Lam et al., 2006), 17 

human PATs (DHHC1, 2, 3, 5–9, 10, 12, 14–18, 20 and 21, Huang et al., 2004; Fukata et al., 

2004; Swarthout et al., 2005; Vetrivel et al., 2009; Lakkaraju et al., 2012;  Yeste-Velasco et 

al., 2015) and 3 Arabidopsis PATs, AtPAT10, 14 and 24 (Hemsley et al., 2005; Qi et al., 2013; 

Li et al., 2016) have been confirmed using this method. Therefore, we carried out similar 

assays by introducing AtPAT15 into the akr1 yeast cells. We found that the growth defect of 

akr1 was partially restored as the cells were round although larger than the WT. However, the 

PAT15C
122

S transformed akr1 yeast cells remained elongated that were similar to the akr1 

mutant cells (Fig. 3A). Furthermore, we also found that AtPAT15 is auto-acylated but 

AtPAT15C
122

S is not (Fig. 3B). This demonstrates that AtPAT15 has PAT activity in yeast and 

the cysteine in the DHHC motif is important for this function. However, in the Arabidopsis 

complementation study we discovered that both the WT- and DHHS-PAT15 can fully 

complement the growth defect of pat15-1 (Fig. 5). This is different from other characterized 
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Arabidopsis PATs where the Cys in the DHHC was found essential for the enzyme activity 

because mutation to change Cys in the DHHC motifs to Aln or Ser of AtPAT10, 14 and 24 

failed to rescue the phenotype of their respective knockout mutants (Hemsley et al., 2005; Li 

et al., 2015; Qi et al., 2013).  

Previous studies on the two yeast PATs Swf1 and Pfa4 also found that the mutants DHHR-

Swf1 and DHHR- or DHHA-Pfa4 can still rescue the defects of swf1 and pfa4 (Montoro et 

al., 2015). Therefore, it seems that the cysteine residue in the DHHC motif may not be the 

key functional residue in some PATs and AtPAT15 may fall into this category of PATs. As 

suggested these PATs may use other cysteine residues within the DHHC-CRD, or a different 

domain(s) to carry out their PAT activity, such as the PaCCT (Palmitoyltransferase Conserved 

C-Terminus) motif in Pfa3 and Swf1 (Montoro et al., 2009). At least 70% of all PATs possess 

this domain and for AtPAT15 its PaCCT motif is found to be located between the 246-260th 

amino acids (Fig. S5). This PaCCT and/or indeed other cysteine residues within the DHHC-

CRD may also play an important role in PAT activity of AtPAT15.  

The lipid breakdown defect of pat15-1 is caused by defect in β-oxidation  

For TAG in oilseed fully accessible to support early seedling growth it has to be firstly 

hydrolyzed by lipases. The free fatty acids released from TAG will undergo further 

breakdown by β-oxidation, glyoxylate cycle and gluconeogenesis to finally generate sugar. 

SDP1 encodes a triacylglycerol lipase, which initiates lipid reserves breakdown by removing 

the fatty acids from the glycerol backbone (Eastmond, 2006). The loss-of-function mutant 

sdp1 has complete blockage in lipid breakdown, resulting in the failure in seedling 

establishment whilst its germination is unaffected (Eastmond, 2006). We found that seedlings 

of sdp1 grown on sugar free media retained higher percentage of lipid storage than pat15-1 

(Fig. 7A). This indicates that sdp1 failed to catabolize TAG to support seedling growth whilst 
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pat15-1 can still do so although to a much less extent than WT. This suggests that AtPAT15 

functions differently from SDP1, therefore, it may not be involved in the SDP1/lipase 

mediated first step of TAG hydrolysis.  

Further, we have observed that external carbon source can block lipid breakdown in pat15-

1 during early seedling growth. On the contrary, the lipid breakdown efficiency was enhanced 

by the addition of external sugar in the icl mutant which is defective in the glyoxylate cycle 

(Eastmond et al., 2000). Therefore, it is unlikely that the lipid breakdown defect in pat15-1 is 

caused by its involvement in the glyoxylate cycle, the last step of lipid breakdown that is 

mediated by ICL.  

Therefore, AtPAT15-mediated lipid breakdown is distinctive from both SDP1 and ICL-

mediated lipid breakdown during early seedling growth in Arabidopsis. 

The fact that pat15-1 is more resistant to 2,4-DB than WT demonstrates that less 2,4-D 

was produced in pat15-1 compared to WT, i.e., the efficiency of β-oxidation in pat15-1 is 

lower than that in WT seedlings (Fig. 9). This result provides evidence that the second step of 

lipid breakdown, the β-oxidation, was partially inhibited in pat15-1. Therefore, the sugar-

dependent phenotype observed in early seedling growth of pat15-1 is most likely caused by 

defect in β-oxidation during lipid catabolism. This is further supported by the very low 

transcript level of KAT2 detected in the mutant seedlings as it is the key enzyme involved in 

β-oxidation (Fig. 8).  

Beyond its role in the breakdown of storage lipid, β-oxidation has also been shown to be 

involved in the biosynthesis of fatty acid-based plant signalling molecules, such as jasmonic 

acid (JA), indole-3-acetic acid (IAA) and salicylic acid (SA), therefore, it regulates growth, 

development and stress responses in plants (Li et al., 2005; Baker et al., 2006; Nyathi and 
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Baker, 2006; Goepfert and Poirier, 2007; Zolman et al., 2008). Consistent with this many 

mutants that have defective β-oxidation also exhibit altered growth and development patterns 

apart from the usual reduction of lipid breakdown during post-germination growth (Goepfert 

and Poirier, 2007). For example, the loss-of-function mutant of AIM1 (abnormal 

inflorescence meristem1), a multifunctional enzyme that also catalyzes the second step of β-

oxidation during lipid catabolism showed severe defects in both vegetative and reproductive 

growth (Richmond and Bleecker, 1999). PXA1 (or PED3, PEROXISOME DEFECTIVE 3) 

supplies substrates for β-oxidation, and its loss-of-function mutant not only shows severe 

defects in seedling establishment but also strong abnormal phenotype in vegetative growth 

and seed size (Hayashi et al., 2002; Mendiondo et al., 2014). Acyl-coenzyme A oxidases 

which catalyze the first step of β-oxidation are also essential for JA production in 

peroxisomes. This exemplified by the fact that the wound-induced JA accumulation was 

abolished in the double mutant acx1acx5, leading to its enhanced sensitivity to chewing 

insects (Schilmiller et al., 2007). Nevertheless, none of these mutants resemble the JA or IAA 

related mutants, indicating β-oxidation is also involved in other processes during plant 

growth and development in addition for pathways related to these phytohormones (Goepfert 

and Poirier, 2007). Similarly, pat15-1 also shows multiple defects throughout its growth and 

development in addition to the early seedling stage (Fig. 1C and data not shown). The fact 

that sucrose could not rescue the growth defect in larger seedlings of pat15-1 that were grown 

on sugar containing agar plates (Fig. 1C), or mature plants grown in soil (Fig. 1D) where 

sugar is synthesized and available by photosynthesis suggests that other cause(s) such as 

phytohormones may play roles in the altered phenotype.  

 

The possible mechanism of the involvement of AtPAT15 in β-oxidation  
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It is clear that AtPAT15 is involved in the seed storage lipid breakdown process by regulating 

β-oxidation during early seedling establishment. The question is how this is carried out on a 

molecular level, i.e., what are the protein target(s) of AtPAT15 in this process? The most 

important role of a PAT is to catalyze the S-acylation of specific substrate protein(s). 

Therefore, we looked through the dataset of over 500 putative S-acylated proteins recently 

identified from Arabidopsis through proteomics (Hemsley et al., 2013). We found that ACX3, 

one of the key enzymes involved in β-oxidation of fatty acids are included in the dataset. 

ACX3 is one of the 6 acyl-CoA oxidase family proteins found in Arabidopsis that are 

involved in the first step of β-oxidation to breakdown FFAs released from TAG (Pinfield-

Wells et al., 2005). It is a medium-chain acyl-CoA oxidase, which is a cytoplasmic protein 

localized in peroxisome (Eastmond et al., 2000). AtPAT15 may target ACX3 to the 

peroxisome membrane via S-acylation where it carries out its function to convert the fatty 

acyl-CoA released from TAG to 2-trans-Enoyl-CoA, the product of the first step of ß-

oxidation. If this is true, in the AtPAT15 loss-of-function mutant the lipid molecule attached 

to ACX3 by the action of AtPAT15 would be lost, causing the mis-localization hence 

dysfunction of ACX3 mediated lipid breakdown. This is supported by the fact that the acx3 

mutant showed similar resistance to 2, 4-DB as pat15-1 (Rylott et al., 2003). Further 

experimentation will be carried out to validate this assumption. 

In summary, we have characterized a DHHC-CRD containing protein in Arabidopsis, 

AtPAT15, which has similar structure as other identified PATs and has PAT activity. 

Importantly, the loss-of-function mutant of AtPAT15 has impaired function in hydrolyzing the 

seed storage lipid. This is because the β-oxidation for the breakdown of fatty acids released 

from triacylglycerol in its seed is defective. This leads to the failed seedling establishment of 

pat15-1 without the supplementation of external sugar. Therefore, our data clearly 

demonstrated that AtPAT15 mediated protein S-acylation plays positive roles in seed storage 
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lipid catabolism during post-germination growth and early seedling establishment.  
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Supplementary data 

Table S1. Sequences of primers used for cloning and genotyping 

Table S2. Sequences of primers used for real time PCR 

Fig. S1. Six week old soil grown plants of WT and pat15-1.  

Fig. S2. Observation of fully opened flowers and in vitro pollen grain germination assays of 

WT and pat15-1.  

A-D, WT; E-H, pat15-1. (A), (B), (E) and (F), fully opened flowers. (C)&(G), pollen 

germination assays. Pollen grains were germinated in vitro and observed according to 

Rodriguez-Enriquez et al (2013) (see Supplemental Method). (D)&(H), ovules at heart-stage 

(3 days after pollination). Arrows in C&G indicate pollen tubes. Scale bars in A&E=1mm, 

B&F=0.25mm and D&H=20μm. 

Fig. S3. Prediction of protein topology of PAT15.  

(A) The trans-membrane domains (TMDs) of PAT15 was predicted using TMHMM 2.0 

software. The numbers on the horizontal axis represents the positions of the amino acids of 

PAT15 and the vertical axis the probability for each TMD at that position.  

(B) Topological structure of PAT15 within the membrane drawn according to (A). The 

position of the DHHC-CRD was indicated. 

Fig. S4. PAT15 is targeted to the Golgi in tobacco leaves. 

AtPAT15-GFP or AtPAT15DHHS-GFP were co-expressed with AtGNT1-mCherry transiently 

in N. benthamiana leaves. Localization of the florescent proteins were observed by laser 

scanning confocal microscopy. Bars = 15 µm.  

Fig. S5. Protein sequence alignment of some well characterized PATs by CLUSTAL Omega 

software.  The DHHC-CRD (Asp-His-His-Cys Cystein rich domain, Green box) and PaCCT 

(Palmitoyltransferase Conserved C-Terminus, Yellow box) domains are highlighted. DPG 

(Asp-Pro-Gly) and TTxE (Thr-Thr-x-Glu) are also highlighted (both in purple boxes). Erf2, 

ACCESSION Q06551; Pfa3, ACCESSION NP_014073; Swf1, ACCESSION NP_010411; 

AtPAT24 (TIP1), ACCESSION NP_197535; HIP14 (DHHC17), ACCESSION AAH50324; 

AtPAT15, ACCESSION NP_196047 
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Figure legends 

 
Fig 1. Characterization of the Arabidopsis SALK T-DNA homozygous mutant insertion line 

for AtPAT15.  

(A) Schematic structure of the PAT15 gene and position of the T-DNA insertion in 

SALK_006515. Solid boxes represent exons, empty boxes untranslated regions and lines 

introns.  

(B) RT-PCR with different primer pairs to show that the pat15-1 mutant is devoid of the 

transcripts spanning the T-DNA insertion site (F139+R981, F564+R910) although 

transcripts upstream (F139+R453) and downstream (F813+R1045) were detected. 

Positions of the primers are indicated in A.  

(A) &(D) 1-week (C) and 4-week (D) old WT and pat15-1 plants. Arrow in C indicates curled 

cotyledon and arrowhead the smaller meristems of atpat15-1. Arrow in D indicates small 

abnormal meristem in atpat15-1. 

(E) Rosette leaves of WT and pat15-1 plants taken from 26-day-old plants. 

(F) Morphology of mature seeds from WT and pat15-1 plants. 

(G) Dry weight per seed of WT and pat15-1. The experiment was repeated five times using 

approximately 100 seeds in each replicate. * p<0.05 in Student’s t-test.  
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Fig 2. The temporal and spatial expression of PAT15 in seedlings and different tissues of the 

mature plant of Arabidopsis.  

(A) RT-PCR was carried out on total RNA isolated from WT Col-0 whole seedlings and 

different parts of the mature plants. Se, 7-day-old seedlings grown on ½ MS media; R, 

roots of 2-week-old seedlings grown on ½ MS media; St, stem of the first node of 35-day-

old soil-grown plants; L, the 5
th

 and 6
th

 rosette leaves of 4-week-old soil-grown plants; F, 

fully-opened flowers; Si, 3-day-old siliques after pollination. GAPC was used as loading 

control.  

(B) Histochemical localization of PAT15. A construct containing PAT15promoter:GUS fusion 

was transformed to WT Arabidopsis plants. GUS-staining was performed on whole 

seedlings and different tissues of the mature transgenic plants. a, 1-week-old seedlings; b, 

2-week-old seedlings; c, the fully expended rosette leaf of 5-week-old plant; d&e, 

inflorescence and flower from 5-week-old plants.  

 

Fig 3. AtPAT15 is an S-acyltransferase.  

(A) AtPAT15 partially rescues the growth defect of akr1. Yeast cells of all 4 genotypes 

were cultured in the induction media at 37ºC and observed by DIC light microscopy. 

Cells were transformed with empty vector pYES2 (WT and akr1), or with AtPAT15 

and AtPAT15C
122

S (akr1-PAT15, akr1-PAT15C
122

S). Arrows indicate elongated cells. 

Scale bar = 10 µm.  

(B) AtPAT15 is auto-acylated. The Acyl-RAC assay was carried out on total proteins 

extracted from transgenic akr1 yeast cells expressing AtPAT15 and AtPAT15C
122

S and 

detected by Western blotting with anti-V5 antibody using the ECL method. The 

molecular weight of AtPAT15 and AtPAT15C
122

S is ~ 30.6 kDa. A band 

corresponding to AtPAT15-V5 was detected in the + NH
2
OH treated sample, 

indicating that it is bound to an acyl group via a labile thioester linkage confirming 

that it is auto-acylated. However, no signal was detected for AtPAT15C
122

S indicating 

that it is not auto-acylated. LC: loading control, lanes +: NH
2
OH treated and lanes -: 

non NH
2
OH treated. 

 

Fig 4. PAT15 is targeted to the Golgi. 

AtPAT15-GFP or AtPAT15C
122

S-GFP were co-expressed with AtGNT1-mCherry transiently 

in Arabidopsis seedlings. Localization of the florescent proteins were observed by laser 

scanning confocal microscopy. Bars = 15 µm.  
 

Fig 5. Both PAT15 and PAT15DHHC
122

S can rescue the growth defect of pat15-1. 3-week-

old plants are shown. 
 

Fig 6. Defects in seed germination and early seedling growth of pat15-1. 

(A) Seed germination of pat15-1 is slower than WT. Germination rate of WT and pat15-1 

after 16-, 24-, 48- and 72 hours on ½ MS media without 1% sucrose. * p<0.05 in 

Student’s t-test.   

(B) Early seedling growth of pat15-1 is sugar dependent. Seedlings were vertically 

cultured on ½ MS media for 7 days without (left) or with (right) 1% sucrose.  

 

Fig 7. pat15-1 has defect in lipid breakdown during post-germination growth.  
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(A) Content of C20:1 in seeds and dark-grown seedlings. Total fatty acids were extracted 

from seeds or 5-day-old etiolated seedlings of WT, pat15-1 and sdp1 that were grown 

on ½ MS without (-SUC) or with 1% sucrose (+SUC). The content of C20:1, a marker 

for TAG, was analyzed by GC-MS. The values are the means±SE of measurements 

from four separate batches of 30 seeds or 40 seedlings. Different letters above the 

columns indicate statistically different values analyzed by one-way ANOVA and post 

hoc test.  

(B) Observation of oil droplets in the hypocotyls of WT and pat15-1 seedlings. 5-day-old 

etiolated seedlings were stained with Nile Red and the hypocotyls were observed 

under DIC light microscopy (left), or confocal laser scanning microscopy (right). Bars 

= 0.1mm. 

 

Fig 8. Transcript levels of the key genes involved in lipid breakdown pathway were down-

regulated during early seedling growth. Total RNA was extracted from 10 seedlings of WT or 

pat15-1 that were grown on ½ MS+1% Suc for 10 days in the dark. The relative expression 

level of each gene in the mutant was calculated where the transcript level of WT was 

regarded as 1. The experiments were repeated three times. * p<0.05 in Student’s t-test. KAT2, 

3-ketoacyl-CoA thiolase 2; ICL, isocitrate lyase; MLS, malate synthase; PCK1, 

phosphoenolpyruvate carboxykinase1.  
 

Fig 9. β-oxidation process is disrupted in the loss-of-function of PAT15 mutant.  

(A) Effect of 2, 4-D and 2, 4-DB on root growth. Both WT and pat15-1 seedlings were 

grown on agar plates containing ½ MS+1% sucrose (control), or supplemented with 

0.5 µM 2, 4-DB or 2, 4-D as indicated. The seedlings were grown under LD 

conditions for 7 days.  

(B) Root lengths of seedlings from A. 20 seedlings were measured. * p<0.01 in Student’s 

t-test.  

(C) Effect of 2, 4-D and 2, 4-DB on hypocotyl length. Both WT and pat15-1 seedlings 

were grown in the dark for 4 days on ½ MS (control), or media supplemented with 

1µM 2, 4-D or 2, 4-DB.  

(D) Hypocotyl length. The hypocotyl lengths of at least 30 seedlings of each line shown in 

(C) were measured. Different letters above the columns indicate statistically different 

values analyzed by one-way ANOVA and Tukey’s HSD test. 
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Table 1. Phenotypic analysis of WT and pat15-1 

 WT (n=9) pat15-1 (n=10) 

Plant height (mm) 476.0±18.9 420.9±10.1* 

Length of silique (mm) 17.0±0.7 16.3±1.1 

No. of branches 23.0±2.8 20.1±3.2 

No. of siliques in main branch 55.8±1.9 45.4±3.8* 

62-day-old plants were analysed. *p<0.01 in Student’s t-test. 
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Fig. 1. Characterization of the Arabidopsis SALK T-DNA homozygous mutant insertion line for AtPAT15.

(A) Schematic structure of the PAT15 gene and position of the T-DNA insertion in SALK_006515. Solid boxes represent exons, empty boxes untranslated

regions and lines introns.

(B) RT-PCR with different primer pairs to show that the pat15-1 mutant is devoid of the transcripts spanning the T-DNA insertion site (F139+R981, F564+R910)

although transcripts upstream (F139+R453) and downstream (F813+R1045) were detected. Positions of the primers are indicated in A.

(C) &(D) 1-week (C) and 4-week (D) old WT and pat15-1 plants. Arrow in C indicates curled cotyledon and arrowhead the smaller meristems of atpat15-1.

Arrow in D indicates small abnormal meristem in atpat15-1.

(E) Rosette leaves of WT and pat15-1 plants taken from 26-day-old plants.

(F) Morphology of mature seeds from WT and pat15-1 plants.

(G) Dry weight per seed of WT and pat15-1. The experiment was repeated five times using approximately 100 seeds in each replicate. * p<0.05 in Student’s t-test.
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Fig. 2. The temporal and spatial expression of PAT15 in seedlings and different tissues of the mature plant of

Arabidopsis.

(A)RT-PCR was carried out on total RNA isolated from WT Col-0 whole seedlings and different parts of the

mature plants. Se, 7-day-old seedlings grown on ½ MS media; R, roots of 2-week-old seedlings grown on ½

MS media; St, stem of the first node of 35-day-old soil-grown plants; L, the 5th and 6th rosette leaves of 4-

week-old soil-grown plants; F, fully-opened flowers; Si, 3-day-old siliques after pollination. GAPC was used

as loading control.

(B) Histochemical localization of PAT15. A construct containing PAT15promoter:GUS fusion was transformed to

WT Arabidopsis plants. GUS-staining was performed on whole seedlings and different tissues of the mature

transgenic plants. a, 1-week-old seedlings; b, 2-week-old seedlings; c, the fully expended rosette leaf of 5-

week-old plant; d&e, inflorescence and flower from 5-week-old plants.
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Fig 3. AtPAT15 is an S-acyltransferase.

(A)AtPAT15 partially rescues the growth defect of akr1. Yeast cells of all 4 genotypes were cultured in

the induction media at 37ºC and observed by DIC light microscopy. Cells were transformed with

empty vector pYES2 (WT and akr1), or with AtPAT15 and AtPAT15C122S (akr1-PAT15, akr1-

PAT15C122S). Arrows indicate elongated cells. Scale bar = 10 µm.

(B) AtPAT15 is auto-acylated. The Acyl-RAC assay was carried out on total proteins extracted from

transgenic akr1 yeast cells expressing AtPAT15 and AtPAT15C122S and detected by Western

blotting with anti-V5 antibody using the ECL method. The molecular weight of AtPAT15 and

AtPAT15C122S is ~ 30.6 kDa. A band corresponding to AtPAT15-V5 was detected in the + NH2OH

treated sample, indicating that it is bound to an acyl group via a labile thioester linkage confirming

that it is auto-acylated. However, no signal was detected for AtPAT15C122S indicating that it is not

auto-acylated. LC: loading control, lanes +: NH2OH treated and lanes -: non NH2OH treated.
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Fig 4. PAT15 is targeted to the Golgi.

AtPAT15-GFP or AtPAT15C122S-GFP were co-expressed with AtGNT1-mCherry 

transiently in Arabidopsis seedlings. Localization of the florescent proteins were 

observed by laser scanning confocal microscopy. Bars = 15 µm. 
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Fig 5. Both PAT15 and PAT15DHHC122S can rescue the growth

defect of pat15-1. Three-week-old plants are shown.
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Fig 6. Defects in seed germination and early seedling growth of pat15-1.

(A)Seed germination of pat15-1 is slower than WT. Germination rate of WT and pat15-1 after

16-, 24-, 48- and 72 hours on ½ MS media without 1% sucrose. * p<0.05 in Student’s t-test.

(B) Early seedling growth of pat15-1 is sugar dependent. Seedlings were vertically cultured on ½

MS media for 7 days without (left) or with (right) 1% sucrose.
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A B

Fig. 7. pat15-1 has defect in lipid breakdown during post-germination growth.

(A)Content of C20:1 in seeds and dark-grown seedlings. Total fatty acids were extracted from seeds or 5-day-old etiolated seedlings of

WT, pat15-1 and sdp1 that were grown on ½ MS without (-SUC) or with 1% sucrose (+SUC). The content of C20:1, a marker for

TAG, was analysed by GC-MS. The values are the means±SE of measurements from four separate batches of 30 seeds or 40

seedlings. Different letters above the columns indicate statistically different values analyzed by one-way ANOVA and post hoc test.

(B) Observation of oil droplets in the hypocotyls of WT and pat15-1 seedlings. 5-day-old etiolated seedlings were stained with Nile Red

and the hypocotyls were observed under DIC light microscopy (left), or confocal laser scanning microscopy (right). Bars = 0.1mm.
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Fig. 8. Transcript levels of the key genes involved in lipid breakdown pathway were

down-regulated during early seedling growth. Total RNA was extracted from 10

seedlings of WT or pat15-1 that were grown on ½ MS+1% Suc for 10 days in the

dark. The relative expression level of each gene in the mutant was calculated where

the transcript level of WT was regarded as 1. The experiments were repeated three

times. * p<0.05 in Student’s t-test. KAT2, 3-ketoacyl-CoA thiolase 2; ICL, isocitrate

lyase; MLS, malate synthase; PCK1, phosphoenolpyruvate carboxykinase1.
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Fig 9. β-oxidation process is disrupted in the loss-of-function of PAT15 mutant.

(A)Effect of 2, 4-D and 2, 4-DB on root growth. Both WT and pat15-1 seedlings were grown on agar plates containing

½ MS+1% sucrose (control), or supplemented with 0.5 µM 2, 4-DB or 2, 4-D as indicated. The seedlings were

grown under LD conditions for 7 days.

(B) Root lengths of seedlings from A. 20 seedlings were measured. * p<0.01 in Student’s t-test.

(C) Effect of 2, 4-D and 2, 4-DB on hypocotyl length. Both WT and pat15-1 seedlings were grown in the dark for 4 days

on ½ MS (control), or media supplemented with 1µM 2, 4-D or 2, 4-DB.

(D)Hypocotyl length. The hypocotyl lengths of at least 30 seedlings of each line shown in (C) were measured. Different

letters above the columns indicate statistically different values analyzed by one-way ANOVA and Tukey’s HSD test.
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