Eucapnic Voluntary Hyperpnea Testing in Asymptomatic Athletes

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
EUCAPNIC VOLUNTARY HYPERPNEA TESTING IN ASYMPTOMATIC ATHLETES

Oliver J. Price1 PhD, Les Ansley4 PhD, Irisz Levai5 MD, John Molphy6 PhD, Paul Cullinan2 PhD, John W. Dickinson*5 PhD, James H. Hull2,3 MRCP, PhD

1Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom (UK).
2National Heart and Lung Institute, Imperial College London, London, UK.
3Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.
4Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
5Sports Therapy, Physical Activity and Health Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK.
6Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.

*Authors contributed equally

Corresponding author:

Dr Oliver J Price, PhD
Carnegie School of Sport, Leeds Beckett University, Leeds,
LS6 3QT, UK
Tel: 0113 812 0001
Email: o.price@leedsbeckett.ac.uk

Word Count: 1115.

Keywords: Asthma, Athletes, Bronchoprovocation, Diagnosis, Exercise-induced bronchoconstriction.
To the Editor:

The prevalence of exercise-induced bronchoconstriction (EIB) is consistently reported to be greater in athletic individuals than in the general population (1). The reason for this difference remains to be fully determined, but may be explained by the development of airway hyper-responsiveness arising from repeated episodes of exercise hyperpnea when performed in noxious environments (2). Equally however, it is important that the prevalence of EIB is not over-estimated (i.e. false positive) by the application of overly sensitive diagnostic test methodologies. The aim of this study was to determine the normative response to a eucapnic voluntary hyperpnoea (EVH) challenge, in cohort of entirely asymptomatic athletes.

Traditionally EIB was diagnosed using an exercise test, accompanied by a spirometric assessment of expiratory airflow. A positive result was typically defined by a 10% pre-post challenge reduction in forced expiratory volume in one second (FEV₁), based largely on population studies evaluating the ‘normative’ response to exercise (3). Although this approach is logical, there are several limitations when employing this methodology in competitive athletes; these include the difficulties inherent to standardizing and controlling both the effective cardiorespiratory workload and environmental conditions (4). On this basis, several surrogate means for securing a diagnosis have been recommended (1), including both direct and indirect bronchoprovocation tests. Of these, EVH testing is cited as one of the best means to confirm or refute a diagnosis of EIB; principally due to its simplicity and the fact that it mimics the desiccating stimulus driving the development of EIB (4).

The diagnostic threshold for a positive EVH test was originally established from a cohort of asthmatic army recruits ($n = 90$) and ‘normal’ healthy controls ($n = 30$). A 10% fall in FEV₁ was recommended as the cut-off on the basis of optimising the relationship between specificity (90%) and sensitivity (63%) and approximates the threshold most commonly utilised with exercise testing (5, 6). The published data in athletes, is however limited and confounded by a selection bias with inclusion of individuals with a prior diagnosis of airways disease, history of respiratory symptoms and/or those prescribed asthma medication (3). Indeed, it is our experience that despite having normal baseline lung function and no respiratory symptoms, the majority of competitive athletes completing an EVH
challenge experience a fall in FEV$_1$ following EVH, frequently close to or beyond the 10% diagnostic cut-off. To describe this further we undertook a retrospective analysis of EVH tests performed in a large cohort of entirely asymptomatic athletes without a prior diagnosis of asthma or use of asthma medication. In accordance with previous methods (4) the EVH protocol consisted of breathing a dry compressed gas mixture (21% O$_2$, 5% CO$_2$, balance N$_2$) at a target ventilation equivalent to 85% maximum voluntary ventilation for 6 min. Spirometry was performed in triplicate at baseline and in duplicate at 3, 5, 7, 10, 15 min post EVH.

All athletes assessed (n = 224) were competitive at elite (i.e. either national or international standard) (n = 161) or recreational level (i.e. training/competing ≥6 hours/week) (n = 63) from a variety of sporting disciplines: athletics (i.e. competing in track and field events) (n = 71); rugby (n = 61); badminton (n = 4); boxing (n = 28); soccer (n = 22); hockey (n = 13); swimming (n = 9); rowing (n = 8); and biathlon (n = 8). All had normal predicted lung function values with no evidence of airway obstruction at rest (Table 1). The majority of athletes (98%) met accepted minimal target ventilation (i.e. minute ventilation ≥60% MVV) (4). The mean (+/- SD) maximum fall in FEV$_1$ was calculated as -7.6 ± 6.7% (Figure. 1) with the vast majority of athletes (98.2%) presenting with bronchoconstriction (i.e. reduction in FEV$_1$) at all time-points post EVH. The mean fall in FEV$_1$ was greater in elite (-8.0 ± 7.2%) than in recreational athletes (-4.2 ± 2.0%) (P<0.01). In the very few athletes eliciting bronchodilation post challenge (1.8%, n = 4), the ‘improvement’ in FEV$_1$ was only minor (i.e. approximately 1-2% increase post EVH). When athletes who failed to achieve their target ventilation were excluded from the analysis (n = 5), the findings remained unchanged (P>0.05) (data not shown).

Likewise, when those with a severe fall in FEV$_1$ (>30%, n = 4) were excluded, the mean fall was not significantly altered (-7.2 ± 5.9%) (P>0.05).

This study reports, for the first time, what may be considered the pattern of response to an EVH test in a cohort of athletes. Approximately 20% (n = 44) of this entirely asymptomatic athletic population would be deemed positive for a diagnosis of EIB based on the accepted 10% cut-off value. Although markers of airway inflammation or other pathological profiling for ‘asthma’ was not performed, the findings highlight that a fall in FEV$_1$ >10% is encountered in a significant proportion of entirely...
healthy asymptomatic athletes and thus in many cases may actually represent a variation of the
‘normative’ airway response following exposure to the highly potent stimulus of EVH. Indeed, if an
abnormal response is based on a mean + 2 SD change, as has been previously used to define a cut-off
for EIB when employing an exercise test (8) our data suggests that a 15% cut-off would be a more
appropriate threshold. Of note, in all athletes with >15% fall in FEV₁, a sustained reduction in lung
function (i.e. minimum of two consecutive time-points) was observed, thus consistent with current
EIB American Thoracic Society committee guidelines (1).

The decision to initiate treatment for EIB should clearly be decided following the synthesis of clinical
findings and objective test results, however the selection of a ‘correct’ cut-off value for detection of a
condition is vital to guarantee diagnostic accuracy and ensure clinical care is optimised. We have
previously highlighted the poor clinical reproducibility of EVH in athletes when a 10% FEV₁ cut-off
threshold is employed (7). Whilst some may consider that a low cut-off threshold ensures that EIB is
‘detected’ and the health and performance of an athlete is optimised, it is equally important to balance
this consideration with both the deleterious impact of unnecessary beta-2 agonist prescription and the
potential for distraction from other potentially important causes of exertional dyspnoea (9).

The findings from this study provide evidence that caution should be applied in the interpretation of a
mild post challenge reduction in lung function (i.e. 10-15% fall in FEV₁), certainly when applying
EVH to screen athletic squads. Further work is required to evaluate differences between athletes with
mild (e.g. 10-15% FEV₁) and more severe (e.g. >30% FEV₁) EIB and in comparison with
commensurate exercise challenge data. Employing inflammatory biomarker analysis and applying
supplementary test methodologies (e.g. impulse oscillometry) would provide additional value in this
setting.

Oliver J. Price¹ PhD
Les Ansley⁴ PhD
Irisz Levai⁵ MD
John Molphy⁶ MSc
Paul Cullinan² PhD
John W. Dickinson⁵ PhD
ACKNOWLEDGEMENTS

Nil.

FUNDING STATEMENT

Nil relevant.

COMPETING INTERESTS

The authors have no real or perceived conflict of interest in respect of this manuscript.

CONTRIBUTION STATEMENT

Conception and design: OP, JD, JH; Analysis and interpretation: OP, JD, JH; Drafting the manuscript for important intellectual content: OP, LA, IL, JM, PC, JD, JH.

GUARANTOR STATEMENT

OP confirms full responsibility for the content of the manuscript.
REFERENCES

Table 1. Clinical characteristics and baseline lung function.

<table>
<thead>
<tr>
<th>Variables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M:F)</td>
<td>178 : 46</td>
</tr>
<tr>
<td>Age (years)</td>
<td>23 ± 4</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>179.6 ± 10.2</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>83.7 ± 17.5</td>
</tr>
<tr>
<td>BMI (kg(\cdot)m(^{-2}))</td>
<td>22.0 ± 4.0</td>
</tr>
<tr>
<td>FEV(_1) (L)</td>
<td>4.52 ± 0.78</td>
</tr>
<tr>
<td>FEV(_1) (% predicted)</td>
<td>101.9 ± 11.2</td>
</tr>
<tr>
<td>FVC (L)</td>
<td>5.36 ± 1.03</td>
</tr>
<tr>
<td>FVC (% predicted)</td>
<td>102.2 ± 12.5</td>
</tr>
<tr>
<td>FEV(_1)/FVC (%)</td>
<td>85.1 ± 7.6</td>
</tr>
<tr>
<td>Target ventilation (L/min)</td>
<td>135.7 ± 23.4</td>
</tr>
<tr>
<td>Achieved ventilation (L/min)</td>
<td>121.0 ± 25.2</td>
</tr>
<tr>
<td>Predicted ventilation (%)</td>
<td>89.6 ± 14.4</td>
</tr>
<tr>
<td>Total fall in FEV(_1) (%)</td>
<td>-7.6 ± 6.7%</td>
</tr>
<tr>
<td>-Elite athlete; fall in FEV(_1)</td>
<td>-8.0 ± 7.2%</td>
</tr>
<tr>
<td>-Recreational athlete; fall in FEV(_1)</td>
<td>-4.2 ± 2.0%</td>
</tr>
</tbody>
</table>

Data presented as mean ± SD. \(n = 224\).
Figure 1. Frequency distribution of the maximum reduction in FEV₁ in asymptomatic athletes post EVH. Broken horizontal line (black) represents current diagnostic threshold (i.e. ≥10% fall in FEV₁) and broken horizontal line (red) represents proposed revised diagnostic threshold (i.e. ≥15% fall in FEV₁). Data presented as Mean ± SD.