
Chinese Herbal Formulas and Renal Fibrosis: An Overview

http://researchonline.ljmu.ac.uk/id/eprint/11491/

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
Chinese herbal formulas and renal fibrosis: An overview

Yu-Li Shena, Su-Juan Wanga,b, Khalid Rahmanc, Li-Jun Zhanga,c and Hong Zhanga,d*

aCentral Laboratory, Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China

bDepartment of Drug Preparation, Hospital of TCM and Hui Nationality Medicine, Ningxia Medical University, Wuzhong, China

cSchool of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, England, UK

dInstitute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Abstract: All forms of chronic kidney disease (CKD) eventually lead to renal fibrosis irrespective of its origin. It is generally characterized by an excessive accumulation and deposition of extracellular matrix (ECM) and to date no ideal treatment has been established. Bian-Zheng-Lun-Zhi (syndrome differentiation and treatment), a classic feature of traditional Chinese Medicine (TCM), is a unique method used to diagnose and treat the pathology of a disease. Zheng (syndrome) is used to demonstrate the nature of a disease completely in an extensive and specific manner. Chinese herbal formulas are determined according to TCM theory and this review highlights these formulas (treatment has been established. This therapeutic principle is suggested according to the results of syndrome differentiation and the process is named Lun-Zhi, which is the standard methodology used in clinical treatment by TCM practitioners [9].

In the viewpoint of TCM, renal fibrosis is a pathological process due to a long-term imbalance between healthy qi and pathogenic factors leading to deficiency of healthy qi. Therefore, spleen-kidney deficiency (kidney-yin or yang deficiency) is an internal condition and a key factor in the development of renal fibrosis. This provides the main principle on which the treatment of renal fibrosis is based. Chinese herbal formulas are determined on the basis of TCM theory, which provides multiple functions with several medicines, and appropriate herbs can be prescribed with flexibility to suit the specific syndrome.

Due to different factors and mechanisms involved in the pathogenesis of renal fibrosis, Chinese herbal formulas which display multi-channel and muti-target properties are being applied to clinical practice to treat renal fibrosis. Therefore, this review mainly focuses on the formulas which have been commonly used in patients and display potential antifibrosis properties. Peer-reviewed articles were gathered by consulting the databases PubMed, Elsevier, Springer and Scholar and the search terms included renal, kidney, fibrosis, traditional Chinese medicine and formula.

\begin{itemize}
 \item Address correspondence to these authors at the Central Laboratory, Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China; Tel/Fax: +86-21-58670561–6388; E-mails: hqzhang51@126.com (HZ); zhanglijun0407@163.com (LJZ)
\end{itemize}

\begin{center}
XXX-XXX/14 $58.00+0.0$ © 2014 Bentham Science Publishers
\end{center}
2. THE PATHOPHYSIOLOGICAL MECHANISM OF RENAL FIBROSIS

The histological characteristics of renal fibrosis include tubular atrophy and dilatation, interstitial leukocyte infiltration, increased fibroblasts and accumulation of collagen and ECM [12-14]. Therefore, an array of intra- and extracellular mechanism is critical in the prevention of renal fibrosis. With the help of molecular and cell biology technology and renal fibrosis animal models, it is generally accepted that the pathophysiology of renal fibrosis has been depicted as four overlapping phases namely: priming, activation, execution and progression [15, 16].

The first phase is cellular activation and injury stage, ongoing inflammatory stimulation triggers the activation of tubular epithelial cells and infiltration of inflammatory cells, including lymphocytes, monocytes/macrophages, dendritic cells and mast cells [17, 18]. The second phase is the fibrogenic signaling phase when several profibrotic cytokines are released accompanying the activation of matrix-producing cells. Recent studies have focussed on myofibroblasts, a subpopulation of activated fibroblasts, which are derived from bone-marrow, renal interstitial fibroblasts, vascular pericytes, endothelial and tubular cells, which contribute to the massive proliferation and excessive ECM accumulation [15, 19-21]. During the third phase, the excessive deposition of ECM, such as collagen I, III and fibronectin, leads to the development of renal fibrosis [22, 23]. In the last phase, the renal structure and function gradually disappear with sustaining ECM accumulation, which results in the majority of the undesirable consequences of fibrosis.

Renal fibrosis is an enormously complex, dynamic process that involves almost all types of renal cells and the infiltrated cells. Nevertheless the mechanisms implicated in renal fibrosis are still not entirely clear which raises the question of how to control renal fibrosis.

3. CHINESE HERBAL FORMULAS FOR TREATING RENAL FIBROSIS

Many beneficial medicinal formulas, including patent medicines, classic prescriptions and empirical recipes, are extensively documented in the TCM systems in many cultures. Among these, there are plenty of Chinese herbal formulas with anti-fibrotic effects which have been used for the treatment and prevention of renal fibrosis. Here are some typical examples, and others are presented in Table 1.

Niaoduqing granule (NDQG), also known as Uremic Clearance granules, includes: radix et rhizoma rhei, radix astragali, radix glycyrrhiza, rhizoma atraclylodis macrocephalae, radix polygoni multiflori preparata, Flos chrysanthemi, radix salviae miltiorrhizae, radix codononis, radix bupleuri, cortex mori, radix sophorae flavescentis, radix paeoniae alba, herba plantaginis, rhizoma pinelliae, poria and rhizoma ligustici. This is the first TCM approved by the State Food and Drug Administration (SFDA, China) for the treatment of CKD as a Chinese patent medicine, and has been widely used in clinical practice for the lowering of serum creatinine (Scr), blood urea nitrogen (BUN) and renal protection [24-26]. NDQG therapeutical effects are due to the promotion of ECM degradation, regulation of MMP-2/TIMP-1 balance and the inhibition of TGF-β1/Smad signal pathway in an unilateral ureteral obstruction (UUO) model. NDQG also can prevent EMT and suppress vimentin and α-SMA expression, as well as restore E-cadherin expression thus confirming that NDQG may be a promising agent of anti-fibrosis [27, 28].

Huangqi decoction (HQD), which comprises of Astragalus, Poria, Trichosanthes, Ophiopogon, Schisandra, Licorice and Rehmannia, is originally recorded in Yang shiying’s Renzhai Zhizhi Fanglun at Northern Song Dynasty. It is one of the most classic recipes in the clinical treatment of CKD and according to the TCM theory, HQD can tonify kidney-qi [29, 30]. Recently, significant progress has been made in the molecular mechanisms responsible for the treatment of CKD by HQD. It was reported that HQD can reverse structural and functional alterations in 5/6 nephrectomized rats by inhibiting NAPDH oxidase expression, ROS production and promoting NO production [31]. In addition, HQD ameliorates renal fibrosis in an (UUO) model through not only inhibiting transforming growth factor-β1 (TGF-β1)/Smad signal pathway, but also by activating Wnt/β-catenin signal pathway [29, 32].

Kangxianling granule (KXLG), which is composed of Radix salviae miltiorrhizae, prepared rhubarb, angelica, Achyranthes and peach kernel, is an empirical formula which was developed to treat CKD as well as early and mid-stage renal fibrosis by Shuguang Hospital of Shanghai University of TCM [33-35]. Based on previous studies, KXLG prevents renal fibrosis probably by inhibiting TGF-β, Smads, angiotensin II, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), and eventually leads to a series of changes that: 1) inhibit tubular epithelial cell apoptosis; 2) inhibit myofibroblasts trans-differentiation; 3) inhibit the proliferation of inflammatory cells and 4) reduce the EMT transition [36, 37].

4. SUGGESTED MECHANISMS

From the perspective of TCM, renal fibrosis is a leading cause of kidney-qi deficiency syndrome [38]. Therefore, tonifying kidney-qi, including invigorating kidney-yang and nourishing kidney-yin, is the main consideration in clinical practice. Yogu pill, a yang-tonic prescription, is used for the empirical treatment of renal fibrosis [39] and Fuzheng huayu formula is a SFDA approved anti-fibrotic medicine in China, which can not only activate blood and remove stasis, but also nourish yin [40].

At present, extensive studies have been carried out to explore the molecular mechanisms of Chinese herbal formula in the treatment of renal fibrosis. The development and progression of renal fibrosis is primarily involved in the trans-differentiation of kidney inherent cells such as mesangial, epithelial or endothelial cells or fibroblasts into myofibroblasts, and infiltration of inflammatory cells, regulated by numerous growth factors and cytokines, eventually leading to ECM excessive deposition [41, 42]. Emerging evidence indicates that about 30% of myofibroblasts are generated via EMT (epithelial-mesenchymal transition) pathway in diseased kidney [43].
Hence epithelial cells lose intercellular adhesion molecules E-cadherin and synthesize α-smooth muscle actin (α-SMA) as well as actin reconstruction, which plays a crucial role in renal fibrosis [44-46]. Qizhuxiezhuo Fang protects kidney against fibrosis through inhibiting EMT transition via upregulating E-cadherin and downregulating α-SMA [47].

It is reported that EMT can be initiated by transforming growth factor-β1 (TGF-β1) [48] a well known cytokine, which is regarded as a central mediator of renal fibrosis [49]. There is considerable evidence which suggests that TGF-β1 is substantially increased in the injured kidney in both animal disease models and CKD patients [50, 51]. TGF-β1 not only induces proliferation, migration of different types of renal cells, but also regulates various ECM proteins synthesis and degradation [52, 53].

In addition to these, previous studies have suggested that TGF-β1 can decrease the activation of MMPs, induce the expression of connective tissue growth factor (CTGF) and platelet derived growth factor-B (PDGF-B) [54-56]. MMPs are a large family of zinc-dependent endopeptidases that play a central role in the degradation of ECM, while the activity of MMPs can be down regulated by tissue inhibitors of metalloproteinases (TIMPs) [57]. Among these, gelatinases (MMP-2, -9) predominantly degrade collagen, a major component of ECM [58, 59]. CTGF has been shown to promote myofibroblast activation and ECM accumulation [60] whilst PDGF is known to stimulate glomerular mesangial cell proliferation and ECM deposition [61, 62].

The current evidence shows that TGF-β1/Smads signal pathway is the most classic signaling pathway in the progression of renal fibrosis [63]. Consistent results from numerous studies indicate that TGF-β1/Smads signal pathway can be inhibited by decreasing Smad2/3 and increasing Smad7 and these may have antifibrosis effects [64, 65]. Above of all, targeting the TGF-β1downstream effectors or the signaling that mediates its fibrogenic action will become a new therapy in the treatment of renal fibrosis, and several Chinese herbal formulas are being developed for this purpose such as Shenqi Wan and Tongxin Luo [66, 67].

Current research shows that renal fibrosis also can be considered as an inflammatory process which is associated with the increased expression of tumor necrosis factor-α (TNF-α) and with the activation of NF-κB [68, 69]. TNF-α participates in the infiltration and activation of inflammatory cells and in the transformation of epithelial cells and fibroblasts into myofibroblasts [52]. Decreased NF-κB levels has been reported to attenuate renal injury and inflammation in different animal models of CKD [70, 71]. Therefore, anti-inflammation agents are attractive therapeutic target for attenuating the inflammatory process, such as Fuzheng Huayu Formula [40].

Oxidative stress in progressive renal disease has been highlighted by emerging data in which antioxidiant therapeutics target mitochondrial reactive oxygen species (ROS) and especially ameliorate renal fibrosis lesions in the experimental models [72]. Recent studies indicate that TGF-β1 stimulates the generation of ROS by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase that activates p38 mitogen-activated protein kinases (MAPK), Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) signaling [73]. Some Chinese herbal formulas could prevent renal fibrosis via antioxidative stress, such as Wenpitang Hab Wuling san [74].

From what has been discussed above, the underlying mechanisms of Chinese herbal formulas to prevent renal fibrosis could inhibit renal cell proliferation, inflammatory cell infiltration and reduce oxidative stress via stimulating or suppressing growth factors, cytokines, proteins, as well as modulating signaling pathways. However, more evidence is needed to confirm or investigate new mechanisms for treating renal fibrosis. The common pathway involved in the treatment of renal fibrosis is shown in Fig.1.

5. CONCLUSIONS AND PERSPECTIVES

CKD is an increasingly common condition with limited treatment options that is placing a major financial and emotional burden on the community. Renal fibrosis is also most relevant with the rate of progression of renal dysfunction [75]. The pathogenesis of renal fibrosis can be artificially divided into four phases. However, such a division is arbitrary, as in reality renal fibrogenesis is a dynamic process in which many of these events occur concomitantly [16], hence, using a single-target strategy for the renal fibrosis treatment is not reliable. At present, more attention has been focused on TCM with its well defined and established therapeutic system. Bian zheng lun zhi, the classic theory of TCM, provides a multi-link and multi-path comprehensive method for preventing and treating renal fibrosis. Chinese herbal formulas combine different herbal compounds to increase or promote therapeutic effectiveness, minimize toxicity and side effects, and optimize the therapeutic effects of each component, which can provide a safe and effective therapy in the treatment of renal fibrosis.

Currently, limited experimental studies involving the level of cytology and protein expression have been conducted on Chinese herbal formulas. This article has presented and analyzed the Chinese herbal formulas effective against renal fibrosis and their suggested mechanisms have been outlined. Chinese herbal formulas can act as anti-fibrosis agents due to their anti-proliferative, anti-inflammatory and anti-oxidant properties and have been applied clinically. However, it is still necessary to search for novel formulas for treating renal fibrosis. Although several distinct targets and common molecular signal pathways have been disclosed, the details of the anti-fibrosis mechanisms of the Chinese herbal formulas involved need to be clarified further. Furthermore, the active substances of the Chinese herbal formulas, their synergy with a variety of prescription drugs and interactions with new pharmaceuticals need to be investigated further.

In summary, the focus of future clinical research should be to combine TCM theory with the latest medical research and in order to explore more effective and less toxic formulas, investigate their underlying mechanisms, and develop effective new dosage forms.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by funds from the National Natural Science Foundation of China (81502515, 81503332, 81703755 and 81773941), Shanghai Municipal Science and Technology Commission (15401902700 and 15401971800), Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai (PWR12015-05), and Pudong New Area Science and Technology Commission (PKJ2015-Y13).

REFERENCES

Journal of Clinical Investigation, 2003; 112: 1486-1494.

Table 1 The Chinese herbal formulas from medicinal plants displaying anti-fibrosis properties

<table>
<thead>
<tr>
<th>Formula</th>
<th>Constitute</th>
<th>Model / Cell type</th>
<th>Mechanism</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granule</td>
<td></td>
<td>UUO</td>
<td>Inhibit TGF-β1-mediated EMT and TGF-β1-Smad-ILK signal pathway</td>
<td></td>
</tr>
<tr>
<td>Shenqi wan</td>
<td>Radix Rehmanniae, Cortex Moutan, Dogwood, Poria cocos, Yam, Alisma, Cassia Presl, Monkshood.</td>
<td>Adenine induced model</td>
<td>Inhibit TGF-β1/Smad signal pathway</td>
<td>[66]</td>
</tr>
<tr>
<td>Tongxinluo</td>
<td>Panax ginseng, Ziziphus jujube Mill. var. spinosa, Paeonia lactiflora Pall, Santalum album, Dalber gia odorifera, Boswellia carteri Birdw, Borneolum syntheticum, Scolopendra subspinipes mutilans, Buthus martensii Karsch, Steleophage planocy, Hirudo nipponica, Cryptotympana pustulata Fabri cus</td>
<td>High-fat induced DN model</td>
<td>Inhibit the transfer of TGF-β1 from GECs to GMCs through exosomes</td>
<td>[67]</td>
</tr>
<tr>
<td>Fuzheng Huayu Formula</td>
<td>Salvia miltiorrhiza, Pollen Pini, Fermentation Mycelium Powder, Semen Persicae, Fructus Schisandrae Chinensis, Gynostemma Pentaphyllam mak</td>
<td>HgCl₂ induced RIF model</td>
<td>Decrease α-SMA, TNF-α, NF-κB, MMP-2, p-IκB</td>
<td>[40]</td>
</tr>
<tr>
<td>Quwan Chencuo Formula</td>
<td>Salvia miltiorrhiza, Radix et Rhizoma Rhei, Cortex Moutan, Semen Persicae, Radix Puerariae, Poria cocos (Schw.) Wolf, Semen Plantiginis Asi-aticae, Arecae Pericarpium, Rehmannia glutinosa (Gaertn.) Li-bosch, Cornus officinalis Sieb. Et Zucc</td>
<td>UUO</td>
<td>Decrease TGF-β1,α-SMA and increase E-cadherin expression,</td>
<td>[78]</td>
</tr>
<tr>
<td>Dahuang Fuzi Decoction</td>
<td>Radix et Rhizoma Rhei, Radix Aconiti Lateralis Preparata, Radix et Rhizoma Asari</td>
<td>Aristolochic acid nephropathy model</td>
<td>Decrease collagenI, III, increase MMP</td>
<td>[79]</td>
</tr>
</tbody>
</table>

CRF: chronic renal failure; CTGF: connective tissue growth factor; DN: diabetic nephropathy; EMT: epithelial-mesenchymal transition; ET/NO: endothelin / nitric oxide; GECs: glomerular endothelial cells; GMCs: glomerular mesangial cells; ILK: integrin linked kinase; MMP: mitochondrial membrane potential; NF-κB: nuclear factor-Kappa B; PDGF-B: platelet-derived growth factor-B; p-IκB: phosphor-inhibitor-Kappa B; RIF: renal interstitial fibrosis; TGF-β1: transforming growth factor-β1; TNF-α: tumor necrosis factor-α; UUO: unilateral ureteral obstruction; α-SMA: α-smooth muscle actin.
<table>
<thead>
<tr>
<th>Formula</th>
<th>Constitute</th>
<th>Model / Cell type</th>
<th>Mechanism</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qingxuan Jiangya Decoction</td>
<td>Caulis Bambusae in Taeniam, Poria cocos, Gentiana scabra, Ligusticum</td>
<td>Spontaneously hypertensive rat model</td>
<td>Inhibit TGF-β1/Smad signal pathway, decrease collagen I, III, MMP-2, -9.</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>chinensis, Acorus calamus, Osdraconis, Ostrea gigas, Gardenia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jasminoides, Taxillus suchuenensis, Prunella vulgaris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uremic Clearance Granules</td>
<td>Adenine administration and UO</td>
<td>Promote ECM degradation, regulate MMP-2/TIMP-1 balance and TGF-β1/Smad signal pathway</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>Radix et rhizoma rhei, Radix astragali, Radix glycyrrhizae, Rhizoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>atracylodis macrocephala, Radix polygoni multiflori preparata, Flos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chrysanthemi, Radix salviae miltiorrhiza, Radix codonopsis, Radix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bupleuri, Cortex mori, Radix sophorae flavescentis, Radix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>paoniae alba, Herba plantaginis, Rhizoma pinelliae, Poria, Rhizoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ligustici.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qi Zhu Xie Zhou Fang</td>
<td>Adenine and potassium oxonate induced</td>
<td>Decrease fibronectin , collagen I, α-SMA, increase E-cadherin expression</td>
<td>[47]</td>
</tr>
<tr>
<td></td>
<td>Astragalus mongholicus, Atractylodes macrocephala, Coix lacryma-jobi,</td>
<td>hyperuricemic nephropathy model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyrosia lingua, Smilax glabra, Salvia Miltoirrhiza, Cuscuta chinensis,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isaria cicadae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qishen Yiqi dropping pills</td>
<td>UO</td>
<td>Decrease TGF-β1, α-SMA, collagen I, β-catenin</td>
<td>[81]</td>
</tr>
<tr>
<td></td>
<td>Radix astragali, Salvia miltiorrhiza, Panaxnototingseng, rosewood</td>
<td>NRK52E, NRK49F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huangqi Decoction</td>
<td>UO</td>
<td>Inhibit TGF-β1/Smad signal pathway</td>
<td>[29, 82]</td>
</tr>
<tr>
<td></td>
<td>Radix astragali, Wolfiporia extensa, Fructus trichosanthis, Radix</td>
<td>HK2 cells</td>
<td>Activate Wnt/β-catenin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ophiopogonis, Shizandra, Liquoric root, Radix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rehmanniae</td>
<td>NRK-49</td>
<td>Inhibit TGF-β1/Smad signal pathway</td>
<td>[39]</td>
</tr>
<tr>
<td></td>
<td>Yougui Pill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radix Rehmanniae Praeparata, Rhizoma Dioscoreae, Fructus Corni, Fructus</td>
<td>UO</td>
<td>Decrease TGF-β1 expression</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>Lycii, Semen Cuscutae, Cervi cornus colla, Eucomniae cortex, Cinnamomi</td>
<td></td>
<td>Decrease TGF-β1, TNF-α, regulate p38MAPK/Akt pathway</td>
<td>[84]</td>
</tr>
<tr>
<td></td>
<td>cortex, Radix Angelicca Sinensis, Radix Aconiti Lateralis Preparata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TI-HU-YIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huangkui capsule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abelmoschus manihot</td>
<td>STZ induced DN model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akt: serine-threonine kinase; BMP: bone morphogenetic protein; CTGF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>connective tissue growth factor; DN: diabetic nephropathy; ECM: extracellular matrix; MAPK: mitogen-activated protein kinase; MMP: mitochondrial membrane potential; NRK52E: Normal kidney proximal tubular; NRK49F: renal fibroblast cells; STZ: streptozotocin; TGF-β1: transforming growth factor-β1; TIMP-1: tissue inhibitors of metalloproteinase-1; TNF-α: tumor necrosis factor-α; UUO: unilateral ureteral obstruction; α-SMA: α-smooth muscle actin.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formula</td>
<td>Constitute</td>
<td>Model / Cell type</td>
<td>Mechanism</td>
<td>Ref</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Kangxianling granule</td>
<td>Radix salviae miltiorrhiae, prepared rhubarb, angelica, Achyranthes, peach kernel</td>
<td>UUO</td>
<td>Inhibit TGF-β1/Smad signal pathway</td>
<td>[37]</td>
</tr>
<tr>
<td>Huluba Wan</td>
<td>Trigonella foenum-graecum, Psoralea corylifolia</td>
<td>STZ induced DN model</td>
<td>Reduce oxidative stress via PKC-α/NADPH oxidase signal pathway</td>
<td>[85]</td>
</tr>
<tr>
<td>Fufang Xue Shuan Tong capsule</td>
<td>Panax Notoginseng, Radix Astragalii, Radix Salvia Miltiorrhizae, Radix Scrophulariaeae</td>
<td>STZ induced DN model</td>
<td>Inhibit BMP2- TGF-β-CTGF signal pathway; Reduce oxidative stress</td>
<td>[86, 87]</td>
</tr>
<tr>
<td>Wepitang Hab Wuling san</td>
<td>Codonopsis pilosulae radix, Salviae miltiorrhizae radix, Pinelliae rhizome, Coptis rhizome, Epimedi herb, Rhei radix et rhizoma, Perillae folium, Glycyrrhizae radix, Artemisiae capillaris herba, Alismatis rhizome, Poria, Atractylodis macrocephalae rhizome, Polypropor, Cinnamomi ramulus</td>
<td>UUO</td>
<td>Inhibit TGF-β1/Smad signal pathway</td>
<td>[74, 88]</td>
</tr>
<tr>
<td>Bushen HuoXue formula</td>
<td>Astragali radix, Trigonellae semen, (Rhei radix et rhizoma, Vaccariae semen, Curcumae rhizoma, Smilacis glabrae rhizoma, Coptidis rhizoma)</td>
<td>5/6 nephrectomy rats</td>
<td>Decrease ERK1/2, JNK1/2, p38 and NF-κB</td>
<td>[89]</td>
</tr>
<tr>
<td>Shenkang injection</td>
<td>Rhubarb, Astragalus, Radix Salviae Miltiorrhizae, Carthami Flos</td>
<td>5/6 nephrectomy induced CKD model</td>
<td>Decrease TGF-β1, α-SMA, increase E-cadherin expression</td>
<td>[90]</td>
</tr>
<tr>
<td>Yishen Jiangzhuo Granules</td>
<td>Radix et Rhizoma Rhei, Poria, Radix Pseudostellariae, Radix Astragalii, Rhizoma Atractylodis Macrocephalae, Fructus Mori, Serissa foetida, Crataegus pinnatifida, Angelica sinensis</td>
<td>5/6 nephrectomy</td>
<td>Inhibit renal tubular epithelial cell apoptosis through inhibiting TGF-β1-ROS-MAPK signaling</td>
<td>[73]</td>
</tr>
<tr>
<td>Danggui Buxue Tang</td>
<td>Radix Angelicae Sinensis, Radix Astragali</td>
<td>UUO</td>
<td>Decrease NLRP3 inflammasome and IL-1β expression</td>
<td>[91]</td>
</tr>
</tbody>
</table>

ERK1/2: extracellular signal-regulated kinase 1/2; JNK1/2: c-Jun N-terminal kinase 1/2; IL-1β: interleukin-1β; MAPK: mitogen-activated protein kinase; NF-κB: nuclear factor-Kappa B; NLRP3: NOD-like receptors family pyrin domain-containing 3; ROS: reactive oxygen species; STZ: streptozotocin; TGF-β1: transforming growth factor-β1; UUO: unilateral ureteral obstruction; α-SMA: α-smooth muscle actin.
Fig. 1 The schematic diagram of the anti-fibrosis effects of Chinese herbal formulas