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Abstract 

Physical activity in children is important as it leads to healthy growth and  

physiological benefits. However, a cardiovascular health benefit can be partially negated by 

overloading in musculoskeletal tissues if there are excessive  loads beyond the physiological 

range within the joints. To gain an initial understanding into this issue, the present study 

sought to compare joint loading between physiological effort-matched walking and 

cycling in children. With institutional ethical approval, 14 pre-pubertal children aged 

8-12 walked on an instrumented treadmill and cycled on a stationary ergometer. Two 

methods were used to match physiological load. Cardiovascular loads between walking 

and cycling were matched using heart rate. Metabolic load was normalised by matching 

estimates of oxygen consumption. Joint reaction forces during cycling and walking as 

well as joint moments were derived using inverse dynamics. Peak compressive forces 

were greater on the knees and ankles during walking than during cycling. Peak shear peak 

forces at the knee and ankle were also significantly larger during walking than during 

cycling, independent of how physiological load was normalised. For both cycling 

conditions, ankle moments were significantly smaller during cycling than walking. No 

differences were found for knee moments. At equivalent physiological intensities, cycling 

results in less joint loading than walking. It can be speculated that for certain 

populations and under certain conditions cycling might be a more suitable mode of 

exercise than weight bearing activities to achieve a given metabolic load.  

Keywords: JOINT LOADING, PAEDIATRIC OBESITY, PHYSICAL 

ACTIVITY, WEIGHT MANAGEMENT 
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Introduction 

Physical activity (PA) is a key component for healthy growth in children. The current UK 

PA guidelines state that children should engage in at least 60 minutes of moderate to 

vigorous PA every day (Department of Health Physical Activity Health Improvement and 

Protection, 2011). Although following PA guidelines can protect children against 

cardiovascular diseases (Andersen et al., 2006) and overweight and obesity (de 

Bourdeaudhuij et al., 2013; Katzmarzyk et al., 2015; Ramires, Dumith, & Goncalves, 

2015), evidence shows that the majority of children and adolescents are not meeting PA 

recommendations (Kalman et al., 2015). There has been a discussion in the literature 

regarding benefits of different PAs for children. 

Children are advised to engage in weight bearing activities such as walking, jumping rope 

and hopscotch (Landry & Driscoll, 2012) as this can improve bone health (U.S. 

Department of Health and Human Services, 2008). Due to the fact that walking is a 

moderate intensity PA (Haskell et al., 2007; Landry & Driscoll, 2012; U.S. Department 

of Health and Human Services, 2008) that has been recommended for children (Lafortuna et 

al., 2010), incorporating it in children’s daily activities seems to be an inexpensive and 

effective strategy for children to achieve PA recommendations. However, a recent study 

(Lerner et al., 2016) suggested that walking duration was related to increased loading on the 

medial knee compartment. Whilst a certain amount of loading on joints and bones is 

necessary for healthy bone development in children (Landry & Driscoll, 2012), excessive 

or increased physiological loading of the hip, knee and ankle joints, and increased plantar 

pressures during walking (Pau, Leban, Corona, Gioi, & Nussbaum, 2016) may be related to 

lower-limb and foot pain (Smith, Sumar, & Dixon, 2014; Stovitz, Pardee, Vazquez, Duval, 

& Schwimmer, 2008) and may act as a barrier to participation in PA (Smith et al., 2014). 

Thus, for certain populations which are more prone to 
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bearing activities 48 lower limb injuries (e.g., children with excess body weight), non-

weight might more suitable activities to encourage PA engagement.  49 
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Additionally, cycling has been shown to be a protective factor against excess body 

weight (Bere, Seiler, Eikemo, Oenema, & Brug, 2011; Dudas & Crocetti, 2008), lead 

to good cardiorespiratory fitness (Maher, Voss, Ogunleye, Micklewright, & Sandercock, 

2012; Oja et al., 2011), increase agility, balance, reaction response (Lirgg, Gorman, 

Merrie, & Hadadi, 2018; Rissel, Passmore, Mason, & Merom, 2013) and be an enjoyable 

activity for children (Chandler et al., 2015). However, although many benefits of cycling 

have been documented in the literature, no study has contrasted and documented joint 

loading characteristics between walking and cycling in children.  

Understanding the differences in joint loading between these two activities will be a useful 

first step to differentiate PA recommendations in relation to paediatric populations of 

different characteristics in children. For example, those children who are more prone to 

lower limb injury or pain may be better advised to achieve their PA recommendations by 

means of non-weight bearing activities. Therefore, the purpose of this study was to 

investigate differences in joint loading between walking and cycling, but at similar 

physiological intensities in pre-pubertal children in order to compare activities that provide 

equivalent cardiovascular benefit. 
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Methods 

Participants 

With institutional ethical approval (reference number 0523-MHR-Jan/2016-1202), 17 pre-

pubertal children (11 males) volunteered to participate in this study. The inclusion criteria were 

(1) to be aged 8-12 years and (2) to be able to cycle on a cycle ergometer and to walk on a 

treadmill; exclusion criteria were any physical impairment that prevented the practice of 

regular PA i.e. physical education classes or the practice of sports. The Physical Activity 

Readiness Questionnaire (PAR-Q) (Shephard, 1988) was used to assess any physical 

impairments or injuries in children. PA background of children was assessed using the 

validated (Kowalski, Crocker, & Faulkner, 1997) Physical Activity Questionnaire for Older 

Children (PAQ-C) (Crocker, Bailey, Faulkner, Kowalski, & McGrath, 1997). Written consent 

was obtained from parents in addition to written assent from children prior to their participation 

in the study. 

Procedure 

Participants were invited to attend the laboratory with their parents on one occasion. Data 

collection consisted of three different parts: 1) assessing anthropometric measurements of 

participants, 2) adjusting the stationary bicycle (Serotta International Cycling Institute, 

Boulder, CO, USA) according to the anthropometry of each child (see text below) and 3) the 

assessment of kinematics and kinetics during walking and cycling. Two methods were used to 

match physiological load. First, cardiovascular loads between walking and cycling were 

matched using heart rate (HR matched). A familiarization trial was performed on the treadmill 

and heart rate of children was obtained while they walked at a fast pace. Children were asked 

to walk on the treadmill as fast as they could.  A submaximal test was performed on a cycle 

ergometer in order to match the physiological load achieved while walking on a treadmill. 94 
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Heart rate data were recorded using a validated (Giles, Draper, & Neil, 2016) V800 Polar heart 

rate monitor and a Polar H7 chest strap (Polar OY, Finland). During the second cycling trial 

the metabolic load between walking and cycling was normalised by matching oxygen 

consumption (VO2 matched; equations are displayed below) using the following equations 

proposed by the American College of Sports Medicine (Glass & Dwyer, 2007). Subsequently, 

the equations were then readjusted to calculate equivalent work rate for children to perform 

another cycling trial. 

Walking 

VO2 (ml.kg-1.min-1) = (0.1 x speed) + (1.8 x speed x grade) + 3.5 

Cycling 

VO2 (ml.kg-1.min-1) = 1.8 x (work rate/mass in kg) + 3.5 + 3.5 

Before each trial an acclimatisation period was used where participants had the chance to walk 

or cycle for at least five minutes. The acclimatisation period was ended once children were able 

to walk on a treadmill without holding the guard rails with their hands and verbally reported 

that they were walking comfortably on the equipment. For cycling, the acclimatisation period 

ended once the child was able to maintain a cycling pace of 65 revolutions per minute at a 

power output of 52 watts on a cycle ergometer and reported that they were comfortable with 

the equipment. 

Anthropometrics 

Stature was measured to the nearest 0.1 cm using a calibrated stadiometer (Charder HM200P 

Portstad Stadiometer) and body mass was assessed to the nearest 0.1 kg using a calibrated 119 
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electronic weight scale (Seca, Hamburg, Germany). Standing height, sitting height and 

leg length were measured for assessing biological maturity. These variables are required to 

predict maturity offset according to predictive equations for boys and girls proposed by 

Mirwald et al. (2002). All participants were confirmed to be prepubertal. For adjusting the 

bicycle setup for each participant, measurements of inside leg, standing torso height, arm 

length and medial malleolus to first metatarsal were obtained using the FitKit Inseam 

Measurement Device (Fit Kit Systems, Montana, USA). Body mass index (BMI) was 

calculated as mass (in kg) divided by height (in m) squared. 

Walking 

Prior to the walking trials, participants practiced walking on an instrumented treadmill at a self-

selected cadence. Subsequently, participants were asked to walk at their fastest walking speed 

on the treadmill. This walking trial started with a slow cadence and it was gradually increased 

to a point where the child would start running. Testing started once children reached their 

fastest walking cadence and lasted for approximately three minutes. Kinematic data 

were collected using a ten-camera three-dimensional motion capture system (Motion Analysis, 

Santa Rosa, CA, USA) at a sampling rate of 120 Hz. Ground reaction forces were 

measured simultaneously with force plates on a fully instrumented dual-belt treadmill at 960 

Hz (Bertec Corp, Columbus, OH, USA). Thirty-one spherical retro-reflective markers 

were bilaterally positioned on surface anatomical landmarks of the lower limbs, trunk and 

head: first and fifth metatarsal head, lateral and medial malleoli, right and left calcanei, 

lateral and medial femoral epicondyles, the greater trochanters, base of sacrum, anterior 

superior iliac spines, at the distal end of each clavicle, c7, proximal sternum, right and left 

occipital bone landmarks, right and left orbital bone landmarks. Four additional markers 

were placed on thighs and shanks to identify these segments. . 144 
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Cycling 

Participants performed two cycling trials and were instructed to maintain a pedalling rate of 65 

revolutions per minute on a cycle ergometer. A metronome was set at 65 beats per minute to 

assist the participants in maintaining this target cadence. In addition, the cadence was closely 

monitored “online” by the experimenter, and instructions were given so children were aware 

when their pedalling rate was lower or higher than the one that was previously 

instructed. Equally to walking trials, each cycling trial lasted for approximately three 

minutes. Kinematic data were collected using a ten-camera three-dimensional motion capture 

system at a sampling rate of 120 Hz. Pedal reaction forces were collected at 960 Hz 

using a custom-made instrumented force pedal (model 9251AQ01, Kistler, Winterthur, 

Switzerland). Eleven spherical retro-reflective markers were bilaterally positioned on 

anatomical landmarks of the right leg: first and fifth metatarsal head, lateral and medial 

malleoli, calcanei, lateral and medial femoral epicondyles, the greater trochanters, anterior 

superior iliac spines. Two additional markers were placed on the right thigh and right shank 

to identify these segments. Prior to each cycling trial, participants familiarised themselves 

with the equipment and practiced cycling with the metronome. The order of the cycling 

trials, HR matched and VO2 matched, was randomized. Each participant was fitted to the 

bike based on the recommendations of Grainger, Dodson, & Korff (2017). 

Data analysis 

Cycling trials were digitised with Cortex-64 3.6.1.1315 64-bit (Motion Analysis, Santa Rosa, 

CA, USA) and exported for further computations. Right-sided data, from walking and cycling 

trials, were selected for analysis. Kinematic cycling data were filtered using a 2nd order 

Butterworth low pass filter with a cut-off frequency of 10 Hz. Kinetic cycling data were filtered 169 
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using a 2nd order Butterworth low pass filter with a cut-off frequency of 20 Hz. Joint Reaction 

forces and moments at the knee and ankle joints during cycling trials were estimated using 

inverse dynamics as described by  Barratt, P.R. , Martin,  J.C. , Elmer, S. J. & Korff, T.   (2016).. All 

data from the cycling trials were analysed with a custom written script (MATLAB, Natick, 

MA, USA). The dependent variables considered to represent joint loading (Ericson & Nisell, 

1986) were peak joint moments, shear (anterior-posterior) forces and compressive joint 

reaction forces at the knee and ankle joints. All dependent variables were average values across 

all available full revolutions.  

For the walking trials, kinematic data were digitised and trimmed using Cortex. Kinetic 

data were filtered using a low pass fourth order Butterworth filter with a cut-off frequency of 

6 Hz was used to remove noise (Shultz, D’Hondt, Fink, Lenoir, & Hills, 2014). All 

dependent variables relating to the walking trials were processed with Visual 3D software 

(C-Motion, Inc., Germantown, MD, USA) version 5. Reliability analyses were 

performed to obtain coefficients of variation. Ten consecutive gait cycles were used 

to calculate dependent variables from walking trials (Mills, Morrison, Lloyd, & Barrett, 

2007; Neptune, Sasaki, & Kautz, 2008). From walking trials, dependent variables were 

calculated from right heel strike until right toe-off phase of each stride.  Joint moments and 

reaction forces from cycling and walking trials calculated through inverse dynamics, 

were normalised by dividing by the participant’s body mass. Time normalisations were 

computed for each stride and 101 points were exported to represent equal intervals from 0 to 

100%.  

Statistical analysis 

The assessment of the normality of the data was performed using the Shapiro-Wilk 

test. Descriptive statistics were used to report the following variables: body mass, stature, 

BMI, age, 
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PAQ-C score and the prediction of age of peak height velocity (biological maturity). To test 

the hypothesis that peak joint moments, peak shear and peak compressive forces would be 

different between walking and HR-matched cycling, a Hotelling’s t-test was conducted. 

Another Hotelling’s t-test was performed to test the hypothesis that peak joint moments, peak 

shear and peak compressive forces would be different between walking and VO2-matched 

cycling In case of significance post-hoc paired t-tests with a Bonferroni correction were 

conducted. Analyses were performed on the statistical software SPSS (Statistical Package for 

the Social Sciences Inc., Chicago, IL, USA), version 23. 

Results  

Descriptive characteristics of participants and overall results 

Three participants failed to maintain 65 revolutions per minute during the HR matched 

cycling trial and five participants failed to maintain this pace during the VO2 matched 

cycling trial. These participants cycled consistently faster than 65 revolutions per minute, 

so their cycling data were not compared to their walking trials. Table 1 presents participant 

characteristics. The mean PA score was 3.1, according to the PAQ-C. The prediction of the 

biological maturity of children was -2.2 years from the maximum velocity in stature growth 

during adolescence. The Hotelling’s t-test for differences between HR matched walking 

and cycling was significant (F(9,5)=129.14, p<0.001). Similarly, results from the 

Hotelling’s t-test testing the difference between VO2 matched walking and cycling were also 

significant (F(9,2)=61.201, p=0.016). 

Table 1. Participant characteristics. 
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The mean and standard deviation (SD) walking speed achieved on the treadmill during walking 222 

trials was 1.43 metres per second (SD=0.3). The mean work rate achieved during cycling trials 223 

is described in table 2. Average work rate during the HR matched cycling trial was 46.0W 224 

(SD=15.9) and was 23.6W (SD=6.9) during the VO2 matched cycling trial. Physiological 225 

demand values from the HR matched cycling trial was 126.6 beats per minute (SD=12.8) and 226 

was 12.1 ml.kg-1.min-1 (SD=1.6) from the VO2 matched cycling trial. 227 

228 

Table 2. Description of average work rate from cycling trials (in watts). 229 

230 
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236 

Knee and ankle joint moments 

Results revealed that ankle plantarflexion peak moments were greater during walking 

than during HR matched cycling (Table 3; p<0.001). Results also revealed that ankle 

plantarflexion peak moments were smaller during VO2 matched cycling compared to 

walking (Table 4; p<0.001). There was no significant difference in knee extension and 

knee flexion moments between the cycling and walking (p=0.616 and p=0.801, respectively). 237 

238 

Body mass (kg)

Stature (m)

BMI (kg/m2)

Age (yr)

PAQ-C score (1 to 5)

APHV (yr) -2.2

APHV: Prediction of Age of Peak Height Velocity

Mean SD

12.6

0.1

3.1

1.6

0.7

1.5

38.3

1.43

18.3

10.5

3.1

Mean SD Mean SD

Work rate 46.0 15.9 23.6 6.9

n=14

Cycling (heart rate matched) Cycling (VO2 matched)



Table 3. Mean, standard deviation, peak moment (Nm/kg) and mean difference with 95% CI in peak 239 

moment between walking and cycling physiologically matched using HR. 240 

241 

242 

Table 4. Mean, standard deviation, peak moment (Nm/kg) and mean difference with 95% CI in peak 243 

moment between walking and cycling physiologically matched using VO2. 244 

245 

246 

Knee and ankle shear forces 247 

Table 5 shows peak anterior and posterior shear forces on knees and ankles during walking and 248 

HR matched cycling. Shear peak anterior forces at the knee and ankle were significantly greater 249 

during walking than during cycling (p<0.001). Similarly, shear peak posterior forces at the 250 

knee and ankle were greater during walking than during cycling (p<0.001). 251 

252 

Table 5. Mean, standard deviation, peak shear force (N/kg) and mean difference with 95% CI in peak 253 

moment between walking and cycling physiologically matched using HR. 254 

255 

256 

Peak anterior and posterior shear forces on knees and ankles were also greater during walking 257 

than in VO2 matched cycling. Table 6 shows that shear peak anterior forces for VO2 matched 258 

cycling were lower at knee and at the ankle than during walking (p<0.001). Shear peak 259 

Mean SD Mean SD Mean difference t df p-value

Knee extension 0.19 0.16 0.23 0.09 -0.024 -0.51 13 0.616

Knee flexion -0.17 0.05 -0.17 0.06 -0.006 -0.26 13 0.801

Ankle plantarflexion 1.14 0.24 0.35 0.09 0.803 10.50 13 <0.001

95% CI

(-0.13 to -0.08)

(-0.05 to -0.04)

(0.64 to 0.97)

Using the heart rate equation to match phhysiological demands from walking trials n=14

Cycling (heart rate matched)Walking

Mean SD Mean SD Mean difference t df p-value

Knee extension 0.19 0.16 0.14 0.13 0.056 0.87 11 0.405

Knee flexion -0.17 0.05 -0.16 0.09 -0.021 -0.79 11 0.444

Ankle plantarflexion 1.14 0.24 0.31 0.11 0.862 10.86 11 <0.001

Using American College of Sports Medicine equations n=12

95% CI

(-0.09 to 0.20)

(-0.08 to 0.04)

(0.70 to 1.04)

Walking Cycling (VO2 matched)

Mean SD Mean SD Mean difference t df p-value

Knee anterior 1.12 0.37 0.63 0.27 0.576 4.60 13 <0.001

Knee posterior -1.39 0.41 -0.70 0.30 -0.709 -4.71 13 <0.001

Ankle anterior 1.59 0.34 0.80 0.27 0.869 8.37 13 <0.001

Ankle posterior -1.77 0.49 -0.80 0.31 -0.980 -5.37 13 <0.001

(-1.04 to -0.39)

(0.64 to 1.09)

Using the heart rate equation to match phhysiological demands from walking trials n=14

(-1.37 to -0.59)

95% CI

(0.31 to 0.85)

Walking Cycling (heart rate matched)



posterior forces during VO2 matched cycling were also lower, at the knee and ankle (p<0.001), 260 

than during walking. 261 

262 

Table 6. Mean, standard deviation, peak shear force (N/kg) and mean difference with 95% CI in peak 263 

moment between walking and cycling physiologically matched using VO2. 264 

265 

266 

Knee and ankle compressive forces 267 

Table 7 describes compressive peak forces on the knees and ankles of children during walking 268 

and HR matched and VO2 matched cycling trials. Results revealed that compressive peak 269 

forces were greater on the knees and ankles during walking than during cycling (p = <0.001). 270 

Compressive peak forces in the knees and ankles were significantly larger in walking than 271 

during VO2 matched cycling (p = <0.001). 272 

273 

Table 7. Mean, standard deviation, peak compressive force (N/kg) and mean difference with 95% CI 274 

in peak moment between walking and cycling. 275 

276 

277 

Mean SD Mean SD Mean difference t df p-value

Knee anterior 1.12 0.37 0.32 0.21 0.820 5.34 11 <0.001

Knee posterior -1.39 0.41 -0.77 0.27 -0.688 -4.25 11 0.001

Ankle anterior 1.59 0.34 0.50 0.27 1.092 7.25 11 <0.001

Ankle posterior -1.77 0.49 -0.87 0.29 -1.011 -5.32 11 <0.001

(0.77 to 1.42)

(-1.43 to -0.59)

Using American College of Sports Medicine equations n=12

95% CI

(0.48 to 1.16)

(-1.05 to -0.33)

Walking Cycling (VO2 matched)

Mean SD Mean SD Mean difference t df p-value

Knee -11.94 1.79 -3.33 0.99 -8.859 -19.59 13 <0.001

Ankle -12.70 1.74 -3.90 1.01 -9.038 -21.43 13 <0.001

Knee -11.94 1.79 -2.61 0.71 -9.474 -15.85 11 <0.001

Ankle -12.70 1.74 -3.24 0.93 -9.575 -15.26 11 <0.001

Using American College of Sports Medicine equations n=12. Using the heart rate equation to match physiological demands from walking trials n=14

(-10.96 to -8.19)

Walking Cycling (VO2 matched)

(-10.79 to -8.16)

(-9.95 to -8.13)

95% CI

(-9.84 to -7.88)

Walking Cycling (heart rate matched)



278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

Discussion 

The purpose of this study was to compare joint loading between walking and cycling in 

children. To quantify joint loading, we computed joint moments and shear and 

compressive joint reaction forces during both activities. We found that during cycling 

ankle moments as well as shear and compressive forces in knee and ankle joints were 

smaller compared to walking independent of how physiological load was matched 

between the two tasks. The present results thereby contribute important information to the 

body of knowledge relating to PA and the associated physiological and mechanical loads of 

walking and cycling in children. 

Children are advised to engage in at least 60 minutes of moderate to vigorous PA every 

day (Department of Health Physical Activity Health Improvement and Protection, 2011). 

This recommendation includes a wide range of PA including vigorous activities and activities 

that strengthen muscles and bones (Department of Health Physical Activity Health 

Improvement and Protection, 2011). Specifically, engaging in recommended PA types and 

levels can lead to a number of physiological benefits such as improved 

cardiometabolic fitness, body composition and bone health (Landry & Driscoll, 2012). 

Weight bearing physical activities such walking are advised for children, as they can improve 

bone health (U.S. Department of Health and Human Services, 2008). Walking is a 

moderate intensity task (Haskell et al., 2007; Landry & Driscoll, 2012; U.S. Department of 

Health and Human Services, 2008) has been recommended for children and adolescents 

(Lafortuna et al., 2010) to facilitate physiological benefits. For children with healthy 

weight, walking is a suitable activity to achieve physiological benefits (Landry & 

Driscoll, 2012) and when 
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can provide an 302 combined with other activities such as skipping or jumping, for 

instance, adequate stimulus for healthy bone development (Landry & 

Driscoll, 2012). 
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Whilst a certain amount of joint and bone loading is beneficial for health bone development 

as it can contribute to optimising bone mass in children (Landry & Driscoll, 2012), there may 

also be situations in which excessive or increased physiological forces in the joints can lead 

to pain and injury. In this case, cycling might be an alternative option for PA as it can evoke 

similar physiological benefits in children, such as protecting against excess body fat (Bere et 

al., 2011), leading to good cardiorespiratory fitness (Maher et al., 2012) and increasing 

physical abilities such as agility, balance and reaction response (Lirgg et al., 2018). 

Thus, in situations where there is a predisposition for joint overloading, pain or injury, 

non-weight bearing tasks might be a more suitable mode of exercise to achieve similar 

physiological benefits, whilst reducing the risk for injury. Ericson & Nisell, (1986), for 

example, argued that lower tibiofemoral forces during cycling compared to weight bearing 

activities might make cycling a more appropriate rehabilitative activity for patients 

recovering from surgery. Similarly, Lerner et al. (2016) suggested that walking duration 

and obesity were related to increased loading on the medial knee compartment. Pau et al. 

(2016) documented that walking in association with excess body weight and backpack 

carriage can considerably increase peak plantar pressure in a way that can cause damage to 

the foot structure. Evidence shows that meniscal injuries can affect children early in 

childhood (Millett, Willis, & Warren, 2002; Stanitski, Harvell, & Fu, 1993). 

Findings from this study demonstrate that at similar physiological loads, joint loading during 

cycling is less than during walking. These results let us speculate that in certain 

paediatric 
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clinical population such as children with overweight/obesity or a predisposition for 

joint abnormalities, cycling may result in less joint pain and thereby reduce barriers to PA. 

This in turn could have implications for PA recommendations for such populations 

(e.g., weight management programmes). A limitation to this speculation is that this study 

only investigated healthy weight children. However, it is likely that a study with overweight 

participants would show similar if not exaggerated results. In the present study, the 

external load was adjusted using a fast walking pace as a reference for cycling trials. 

Thus, it is unknown whether the magnitude of the results could have been different if 

children were asked to perform HR matched and/or VO2 matched cycling trials and use 

these tasks as work load references for walking trials. In order to confirm joint loading 

magnitude differences between walking and cycling further studies should investigate 

forces and moments using external loads from cycling as a reference for walking. Another 

limitation of this study was that the joint reaction forces derived from inverse dynamics do 

not consider individual muscle forces or antagonistic contraction surrounding ankle and knee 

joints. 

Thus, further research should specifically investigate the benefits of non-weight 

bearing activities in those populations that are predisposed to joint injuries taking 

individual muscle contributions into consideration. Our results provide a useful basis for 

future research to assess these speculative links explicitly, specifically with respect to 

overweight and obese children. 
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