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ABSTRACT 16 

Even closely related and ecologically similar cichlid species of Lake Tanganyika exhibit an impressive 17 

diversity of social systems, and therefore these fishes offer an excellent opportunity to examine the 18 

evolution of social behaviour. Sophisticated social relationships are thought to have evolved via a 19 

building block design where more fundamental social behaviours and cognitive processes have been 20 

combined, incrementally modified, and elaborated over time.  Here, we studied two of these putative 21 

social building blocks in two closely related species of cichlids: Neolamprologus pulcher a group-22 

living species, and Telmatochromis temporalis, a non-grouping species. Otherwise well matched in 23 

ecology, this pair of species provide an excellent comparison point to understand how behavioural 24 

processes may have been modified in relation to the evolution of sociality. Using social assays in both 25 

the laboratory and in the field, we explored each species’ motivation to interact with conspecifics, and 26 

each species’ conflict resolution tactics. We found that individuals of the group living species, 27 

Neolamprologus pulcher, displayed higher social motivation and were more likely to produce 28 

submission displays than were individuals of the non-grouping species, Telmatochromis temporalis. 29 

We argue that the motivation to interact with conspecifics is a necessary prerequisite for the emergence 30 

of group living and that the use of submission reduces the costs of conflict and facilitates the 31 

maintenance of close social proximity. These results suggest that social motivation and conflict 32 

resolution tactics are associated with social complexity, and that these behavioural traits may be 33 

functionally significant in the evolution and maintenance of sociality.  34 

 35 

Keywords: cooperative breeding; sociality; group living; aggression; submission; Lake Tanganyika   36 
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1. Introduction 37 

 Sociality is not a single cohesive unit of behaviour, but instead is comprised of a diverse set of 38 

socially relevant actions and cognitive processes (Goodson, 2013). Complex social behaviours are 39 

thought to have evolved from a combination of basic behavioral units. Examples include the tendency 40 

to approach conspecifics, recognition and discrimination of individuals, and the use of tactics to resolve 41 

conflicts at minimal cost (Soares et al., 2010). Small behavioural changes, mediated by subtle 42 

alterations in the underlying physiological machinery, are gradually added and modified to form 43 

complex social phenotypes (Goodson, 2005; Donaldson and Young, 2008; Soares et al., 2010; 44 

O'Connell and Hofmann, 2011; Zayad and Robinson, 2012). Therefore, in order to understand the 45 

emergence of complex social behaviour and group living lifestyles, it is necessary to understand how 46 

these basic behavioural building blocks have changed in form and function during the divergence of 47 

social systems.  48 

The explosive radiation of the African cichlid fishes has generated an impressive diversity of 49 

species with considerable variation in morphology, ecology, and behaviour and has made this family a 50 

classic ecological, evolutionary and behavioural model system (Meyer et al., 1994; Barlow, 2000; 51 

Kocher, 2004). The lamprologine cichlid tribe of Lake Tanganyika, East Africa, shows particularly 52 

remarkable diversity in social behaviour among its more than 80 species (Kuwamura, 1986; Konings, 53 

1998; Day et al., 2007; Sturmbauer et al., 2010). As a result, this group offers excellent opportunities 54 

for comparative social behaviour research. Of special note, the lamprologine cichlids count amongst 55 

their ranks all known cooperatively breeding fishes (Taborsky and Limberger, 1981; Taborsky, 1994; 56 

Heg and Bachar, 2006). These cooperative species live in relatively permanent social groups in which 57 

non-breeding subordinates assist the dominant breeding pair in their reproductive efforts. A high level 58 

of social complexity characterizes cooperative breeding societies, with group members that interact 59 

frequently and have individualized relationships (Freeberg et al., 2012; Dey et al., 2013). Cooperative 60 

breeding has emerged multiple times among the lamprologine cichlids and is derived from the pair 61 
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breeding system typical for cichlids (Dey et al., in review), in which adult fish are generally intolerant 62 

of other conspecifics other than their own mate (Kuwamura, 1986; Desjardins, et al., 2008).  63 

In order to better understand the behavioural building blocks of sociality, we investigated 64 

socially relevant behavior in two closely related lamprologine cichlids, Neolamprologus pulcher and 65 

Telmatochromis temporalis (Figure 1). These two species split approximately 2 million years ago (Day 66 

et al., 2007; Sturmbauer et al., 2010) and continue to share a similar ecology, but have diverged 67 

dramatically in their social system. Neolamprologus pulcher are cooperative breeders that live in 68 

permanent social groups consisting of a single dominant breeding pair, and an average of 5-7 69 

subordinate fish that act as helpers at the nest, assisting with brood care, territory maintenance and 70 

defence (Taborsky and Limberger, 1981; Taborsky, 1984; Balshine-Earn et al., 1998; Balshine et al., 71 

2001; Heg et al., 2005; Wong and Balshine, 2011). These subordinate group members are often not 72 

closely related to the dominant breeding pair (Stiver et al., 2004, 2005, Hellman et al., 2015). In 73 

contrast, T. temporalis never form groups (Mboko and Khoda, 1999; Heg and Bachar, 2006). However, 74 

both species live in the same areas of the rocky littoral zone in Lake Tanganyika and share similar 75 

habitat requirements and predation regimes (Kuwamura, 1986; Brichard, 1989; Konings, 1998). 76 

Furthermore, both cichlids are territorial substrate spawners with biparental care (Kuwamura, 1986). 77 

Both species are small bodied (<80 mm standard length) and readily adapt to the laboratory 78 

environment. 79 

Using these two species (one group living and one not), we measured and compared behaviours 80 

hypothesized to be building blocks of sociality (Soares et al., 2010). Using newly collected data from 81 

the laboratory and the field, we examined social motivation, the tendency to value interactions with 82 

conspecifics compared to other alternatives. Additionally, by reanalyzing previously published data, we 83 

tested conflict resolution tactics that are used to settle an agonistic interaction. We predicted that 84 

relative to the non-grouping T. temporalis, the group-living N. pulcher would display greater social 85 

motivation and make greater use of submissive behaviour, a conflict resolution tactic that facilitates 86 
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group formation and maintenance (Bergmüller  and Taborsky, 2005). Through this set of studies, we 87 

hoped to gain insight into some of the basic behavioural building blocks that make up a highly social 88 

phenotype, and broaden our understanding of the evolution and maintenance of sociality.  89 

  90 

2. Methods 91 

2.1. Measurement of social behaviour in the field 92 

 Field based behavioural studies were conducted at our long-term study site located at 93 

Kasakalawe Bay (8°46'52" S, 31°5'18" E) in Lake Tanganyika, Zambia. This site is characterized by 94 

mixture of sand and cobble substrate with a gentle descent to depth (for detailed descriptions of the 95 

study site, see Balshine-Earn et al., 1998; Balshine et al., 2001; Stiver et al., 2005; Bergmüller et al., 96 

2005; Dierkes et al., 2005; Heg et al., 2005). We performed underwater behavioural observations at 97 

depths of 8-12 m using SCUBA. All of the wild fish included in the current study were observed 98 

between October-December 2008. To control for ecological conditions, 10 T. temporalis territories and 99 

10 N. pulcher territories were located such that pairs of territories (one belonging to each species) were 100 

within 2 m of each other and were observed on the same day. Two 10 min focal observations (one in 101 

the morning and one in the afternoon) were conducted on each breeder in each selected territory. 102 

During the observation periods, we recorded all behaviours performed by and directed towards the 103 

focal individual. Dominant breeding individuals are easily identified for both species, as the dominants 104 

are typically the largest individuals in the N. pulcher group and the only fish in T. temporalis territories  105 

(Wong and Balshine, 2011). Observed N. pulcher groups ranged in size from 4 to 9 adult sized 106 

individuals (mean ± S.E.M. = 6 ± 0.4. The behaviours recorded are detailed in published ethograms for 107 

N. pulcher and T. temporalis and were based on extensive behavioural observations of males and 108 

females of both species in the field and in the laboratory (Sopinka et al., 2009; Hick et al., 2014; 109 

Reddon et al., 2015). Briefly, behavioural acts and displays recorded included aggressive, submissive, 110 

affiliative, workload, and self-maintenance behaviours. Aggressive behaviours included head-down 111 
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postures and frontal displays, as well as overt aggressive acts with physical contact, such as chases, 112 

rams, bites, or mouth wrestles. Submissive behaviours are typically produced in response to aggressive 113 

behaviour from another individual, and consist of head-up submissive postures and quivering 114 

submission displays (Reddon et al., 2015). Affiliative behaviors are spontaneously produced towards 115 

another individual, and include behaviours such as swimming closely in parallel, and soft touches. 116 

Workload behaviors included territory defence, maintenance and offspring care. Finally, self-117 

maintenance behaviors such as feeding and scraping were also recorded. The frequencies of these 118 

behaviors from the morning and afternoon observations were averaged for each individual. From these 119 

field observations on wild fishes, we calculated the following measures of social investment: 1) total 120 

social behaviour performed (the sum of all aggressive, submissive, and affiliative behaviours 121 

performed by each focal individual); and 2) proportion of social behaviour performed (total social 122 

behaviour divided by the sum of all behaviours performed). To normalize this field data by the 123 

opportunity for social interactions, we divided the number of interactions observed by group size 124 

(always n=2 for T. temporalis breeders but variable for the N. pulcher breeders, n = 4-9). 125 

 126 

2.2. Measurement of laboratory behaviour 127 

 Laboratory-based behavioural studies were conducted between May-November 2012 at 128 

McMaster University in Hamilton, Ontario, Canada. The N. pulcher and T. temporalis used were 129 

laboratory-reared descendants of wild-caught fish. All fish were sexually mature but had not yet 130 

reproduced. The fish used were measured, weighed, sexed by examination of the external genital 131 

papillae, and each was given a unique dorsal fin clip for identification on the day prior to the behavioral 132 

trial. These fin clips do not affect the behaviour of the fish and grow back within a week or two (Stiver 133 

et al., 2004). Focal fish of each species were housed in 189 L aquaria in mixed sex groups of 8 to 12 134 

individuals (approximately equal numbers of males and females). Both housing and test aquaria 135 

contained 3 cm of coral sand substrate, a water filter, heater, and a thermometer. Housing aquaria also 136 
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contained 2 flowerpot halves for use as shelters. The water temperatures of all aquaria were held at 26 137 

± 2ºC. All fish were fed dried prepared cichlid food ad libitum six times per week, and kept on a 13:11 138 

light:dark cycle.  139 

 140 

2.3. Social approach assay  141 

 To assess the basic social motivation of each species, fish were placed in a 189 L experimental 142 

tank (Figure 2). Sample sizes were n=20 individuals per species, with equal numbers of males and 143 

females tested. A conspecific stimulus fish, always of the same sex, and unfamiliar to the focal fish 144 

(i.e., from a different housing aquarium) was used.  This stimulus fish was between 5-20% larger by 145 

mass than the focal individual (Reddon et al., 2011a). The focal fish was initially placed within a 146 

perforated transparent cylinder (11 cm diameter) in the center of the tank for 10 minutes. During this 147 

acclimation period the focal fish could see an unfamiliar conspecific in an identical cylinder on one 148 

side of the aquarium, and a shelter (an opaque black PVC tube; 6.5 cm diameter x 10 cm length) on the 149 

other side of the aquarium (Figure 2a). These tubes are readily used as shelter and nesting sites by both 150 

species and fish will vigorously fight for access to them (Reddon et al., 2011b; Hick et al., 2014). As 151 

result, this test creates a conflict between two potentially rewarding stimuli, the opportunity to interact 152 

with an unfamiliar conspecific and access to a desirable shelter. Placement of the unfamiliar fish versus 153 

the shelter on the left or right side of the apparatus was determined randomly by coin toss. Following 154 

the 10 minutes of acclimation, the central transparent cylinder was lifted remotely by means of a pulley 155 

system, releasing the focal fish (Figure 2b). During the 15 minute trial, we then measured social 156 

motivation versus motivation to use the shelter in three different ways: 1) initial preference or approach 157 

(i.e., whether the fish first approached the conspecific or the shelter); 2) time spent near each stimulus 158 

(i.e., within 10 cm of either the conspecific or the shelter; a distance that is approximately equal to 2 159 

body lengths of the average focal fish); and 3) time spent in association with each stimulus (i.e., 160 

interacting across the barrier with the conspecific in the transparent cylinder or using the shelter). The 161 
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interactions with the stimulus fish consisted primarily of rapid swimming into the cylinder directed at 162 

the stimulus fish in an apparent effort to access the other fish.  163 

 164 

2.4. Conflict resolution assay  165 

 To assess how the two cichlid species differed in terms of their conflict resolution behaviour, 166 

we  reanalyzed  data initially presented in Hick et al., (2014) by focusing on conflict resolution tactics 167 

between unfamiliar fish. Full methodological details can be found in Hick et al., (2014), however, in 168 

brief: Focal fish were placed with a same-sex conspecific in a 38 L experimental aquarium (Figure 3) 169 

and allowed to compete over a shelter for 30 minutes. The fish were given a 1-hour acclimation period 170 

prior to the interaction during which they were restricted to a third of the experimental aquarium on 171 

opposite ends of the tank and were unable to see the middle or other end chamber. Solid opaque 172 

dividers separated the fish from the middle chamber of the aquarium, and from each other. An opaque 173 

black tube, identical to the one used in the social approach assay, was placed into each third of the test 174 

apparatus (Figure 3a). The solid opaque dividers and the two end shelters were removed after the 175 

acclimation period, allowing the two fish to interact and compete over the remaining shelter in the 176 

center third of the tank (Figure 3b). This staged sequence reliably elicits a resource contest in both 177 

species (Desjardins et al., 2005; Taves et al., 2009; Reddon et al., 2011b). Competitors were always 178 

unfamiliar fish that came from different housing aquaria. We ensured that one fish was always 5-20% 179 

heavier than its competitor, as this size difference reliably elicits contest behaviour but also allows the 180 

eventual winner to be predicted a priori (Reddon et al., 2011b). In total, 35 pairs (i.e., 70 fish) were 181 

used, with 9 male pairs for each species, 9 pairs of female N. pulcher and 8 pairs of female T. 182 

temporalis. Trials were scored live. All aggressive and submissive behaviours performed by both the 183 

eventual loser and the eventual winner were recorded during each 30 min trial. We assigned loser status 184 

to any fish that ceased aggressing against its rival and displayed submission or fled from the other fish 185 

three times in succession (Reddon and Hurd 2009; Reddon et al., 2011b). Because acts of submission 186 



 8 

and fleeing are commonly observed in direct response to aggressive behaviour, we divided the rates of 187 

submission and fleeing by the number of aggressive acts received (following the measures used in 188 

Reddon et al., 2012; O’Connor et al., 2013).  189 

 190 

2.5. Statistical analyses 191 

 Statistical analyses were conducted using IBM SPSS Statistics Version 23. We compared the 192 

species in their social motivation in the field using generalized linear mixed models fitted to a gamma 193 

distribution with a log link, appropriate for positively skewed values. We included species and sex as 194 

fixed factors and breeding pair identity as a random factor. Species differences in social motivation and 195 

conflict resolution tactics in the laboratory were examined using ANOVA for continuous dependent 196 

variables. We included species, sex and their interaction as fixed factors in these models. In order to 197 

assess which stimulus the focal fish approached first in our laboratory social motivation assay, we 198 

conducted a binary logistic regression with first stimulus visited (shelter vs. conspecific) as the 199 

response variable, and species, sex and their interaction as fixed factors. The relative use of fleeing 200 

compared to submission as a conflict resolution tactic for each species was further explored using 201 

ANCOVA with submission per aggressive act received set as the response variable, flees per 202 

aggressive act received as continuous covariate with species, sex and their interaction as fixed factors. 203 

We checked the residuals from all reported models for adherence to model assumptions and 204 

transformed the raw data where appropriate (indicated below). In the majority of our models, sex was 205 

not a statistically significant factor (p > 0.05), however we do note below those cases in which males 206 

and females showed different patterns of behaviour.  207 

 208 

2.6. Ethical note 209 

 All laboratory trials were continually monitored. Following the recommendations of 210 

Huntingford (1984) we minimally handled each fish, and limited the contests to a short duration. The 211 
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fish were not overtly stressed by the contest and no signs of injury (torn fins or missing scales) were 212 

observed during any of the trials. Had any such injuries been sustained, the trial would have been 213 

stopped immediately. Neither species is threatened, nor endangered, and are both extremely abundant 214 

at our study site.  The methods described for animal housing, handling and observations in the 215 

laboratory and in the field were assessed and approved by both the Animal Research Ethics Board of 216 

McMaster University (Animal Utilization Protocol numbers 06-10-59 and 10-11-71) and the Zambian 217 

Department of Fisheries. All procedures adhered to Canadian and Zambian laws, and the guidelines of 218 

the Canadian Council for Animal Care and the Animal Behavior Society/Association for the Study of 219 

Animal Behaviour. 220 

 221 

3. Results 222 

3.1. Social motivation 223 

  In the wild, N. pulcher were involved in approximately 3x more social interactions than T. 224 

temporalis (Generalized linear mixed model: F1,36 = 13.91. p = 0.001; Figure 4a). Females of both 225 

species performed more total social behaviours than did males (Generalized linear mixed model: F1,36 = 226 

18.84, p < 0.001). Social interactions also made up a higher proportion of all behaviours in the group 227 

living species when compared with the non-grouping species (Generalized linear mixed model: F1,36 = 228 

4.63, p = 0.038; Figure 4b), demonstrating that N. pulcher breeders spend more of their time budget 229 

socializing. After controlling for group size, dominant N. pulcher did not show more social interactions 230 

than T. temporalis (Generalized linear mixed model: F1,36 = 1.68, p = 0.20; Figure 4c).  For complete 231 

results, see Supplemental Table 1.  232 

In the laboratory assessment of social motivation, there was no clear tendency for fish to 233 

approach the conspecific or the shelter first, nor was there a species difference in which stimulus was 234 

approached first (Binary logistic regression: Wald  F2
 =1.96, df = 1, p=0.16, Figure 5a). However, there 235 

was a sex difference, with males of both species more likely to approach the fish first while females 236 
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were more likely to approach the shelter first (Binary logistic regression: Wald F2 = 6.15, df = 1, p = 237 

0.013). Both species spent about the same amount of time within 10 cm of the conspecific (ANOVA: 238 

F1,36 = 1.16, p = 0.29, Figure 5b). However, members of the group living species (N. pulcher) spent 239 

more time interacting with the conspecific than did individuals of the non-grouping species (T. 240 

temporalis; ANOVA: F1,36 = 5.53, p = 0.024; Figure 5c). For complete results see Supplemental Table 241 

2.  242 

 243 

3.2. Conflict resolution 244 

 In the staged contests over a shelter in the laboratory, we found that N. pulcher fights contained 245 

fewer aggressive acts relative to the contests among T. temporalis (Log transformed data; ANOVA: 246 

F1,31 = 14.87, p = 0.001; Figure 5a). The N. pulcher were also far more likely to use submission 247 

displays to terminate a resource contest with an unfamiliar conspecific (Log transformed data, 248 

ANOVA, F1,31 = 8.56, p = 0.006; Figure 5b), while T. temporalis were more likely to flee (ANOVA, 249 

F1,31 = 4.37, p = 0.045; Figure 5c). Across both species, there was a strong negative relationship 250 

between the individual tendency to perform submission displays and the tendency to flee from their 251 

opponent (ANCOVA, F1,30 = 16.44, p < 0.001; Figure 5d). For complete results see Supplemental Table 252 

3. 253 

 254 

4. Discussion 255 

 By studying two closely related species of cichlids (Day et al., 2007; Sturmbauer et al., 2010) 256 

that are well matched in terms of their habitat requirements, diet, and ecology, but that differ in their 257 

social system (Kuwamura, 1986; Heg and Bachar, 2006), we can examine how behavioral processes 258 

and cognition may have diversified in relation to sociality. We found that in both the laboratory and the 259 

field, individuals of the group-living species, N. pulcher, are more motivated to interact with 260 
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conspecifics. In the laboratory, N. pulcher also use submission more frequently to end conflicts when 261 

compared to the non-grouping T. temporalis.  262 

 In the wild, N. pulcher have more social interactions than the less social T. temporalis. Thus, 263 

individuals of the more social species invest a greater proportion of their time budget engaged in social 264 

interactions than the non-grouping T. temporalis. However, it can be argued that the greater number of 265 

social interactions observed in wild N. pulcher are due at least in part to the greater opportunity to 266 

interact with conspecifics because of the group living situation. Indeed, when we controlled for group 267 

size, the N. pulcher no longer show significantly more social interactions per group member (4-9 268 

individuals) that did the T. temporalis (always 2 individuals). However, the pattern of the results 269 

suggests that N. pulcher may interact more than T. temporalis after controlling for group size, but a 270 

larger sample size is needed to resolve this issue. Controlling for group size in this way is also not 271 

without caveats, given that interactions within N. pulcher groups are strongly size dependent, and 272 

individuals that are very different in body size rarely interact (Dey et al. 2013). Larger groups are more 273 

likely to contain numerous small helpers that seldom interact with the large dominant individuals that 274 

we observed, therefore potentially creating the misleading impression that fish in larger groups interact 275 

less after accounting for their apparent opportunity to do so. We argue that the fact that N. pulcher 276 

spend a greater proportion of their time interacting socially in the face of other competing motivations 277 

(e.g., foraging, territory maintenance etc.) than do the non-grouping T. temporalis does support the 278 

notion that N. pulcher are more socially motivated.  Concordant with this argument, N. pulcher spent 279 

more time interacting with a conspecific compared to T. temporalis during a standardized preference 280 

trial in the laboratory. The tendency to interact with conspecifics is among the most fundamental 281 

aspects of social behavior. Without the motivation to remain close to other individuals, no other more 282 

complex social interactions are possible (Thompson and Walton, 2004; Soares et al., 2010; Goodson, 283 

2013). 284 
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The conflict resolution tactics used by N. pulcher are likely to aid in the formation and 285 

maintenance of stable social groups. Neolamprologus pulcher were more prone to use submission 286 

displays than were T. temporalis. Conversely, T. temporalis were much more likely to flee from a 287 

conflict. Our laboratory results indicate that fleeing and submission may be alternative tactics for 288 

ending a conflict, and the use of these different approaches to giving-up appear to trade off against each 289 

other in both species. Submissive behaviour in general allows competitors to settle a conflict, minimize 290 

the costs of fighting (e.g., energy, time and injury risk Mastumura and Hayden, 2006), and can 291 

facilitate the establishment of a stable dominance relationship (Drews, 1993), all while allowing the 292 

individuals to remain in the same spatial location after the hostilities cease (Ligon, 2014). In contrast, 293 

fleeing creates a physical separation between the competitors and thus may be antithetical to the 294 

formation of spatially delimited social groups. When animals are limited in their mobility, it can select 295 

for the use of submission displays because of the reduced ability to flee (Mastumura and Hayden, 2006; 296 

Ligon, 2014). Restrictions on dispersal unrelated to mobility per se, for example because of habitat 297 

saturation, or predation risk may similarly constrain the ability for animals to flee from a conflict. 298 

Dispersal into a new territory is a dangerous activity for both N. pulcher and T. temporalis. The 299 

additional burden of establishing social relationships and achieving acceptance within a new social 300 

group may make dispersal away from a current territory a particularly daunting challenge in N. pulcher 301 

(Balshine et al., 2001; Stiver et al., 2005; Hellmann et al., 2015a, 2016). Thus, a group living lifestyle 302 

in and of itself incentivizes the use of submissive displays in N. pulcher (Heg et al., 2004, Bergmüller 303 

et al., 2005, Arnold & Taborksy 2010). Interestingly, large male N. pulcher from outside of the group 304 

will occasionally challenge the breeder male for his reproductive position (O’Connor et al., 2015a). In 305 

these breeder male contests, N. pulcher never show submissive behaviour and always flee from their 306 

opponent to terminate the contest (O’Connor et al., 2015a). So when there is no social incentive to 307 

remain in the same location, N. pulcher will flee when losing a fight, similar to T. temporalis.  308 
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Both N. pulcher and T. temporalis show very similar repertoires of agonistic displays (Hick et 309 

al., 2014). For example, both species, indicate aggressive intention by taking on a head-down posture, 310 

while submission is signaled through the opposite pose, with the fish’s head up exposing its ventral 311 

aspect (Hick et al., 2014; Reddon et al., 2015). The contrasting forms of submissive and aggressive 312 

postures in these species appear to conform to Darwin’s principle of antithesis, which predicts that 313 

signals that are designed to elicit opposite responses from their receivers should evolve towards 314 

opposite forms (Darwin, 1872; Hurd et al., 1995). The fact that both N. pulcher and T. temporalis show 315 

a similar submission postures implies that this behaviour was likely present in their common ancestor 316 

and thus did not emerge specifically as an adaptation to group living in N. pulcher. Group living  may 317 

have selected for an increased use of this display to deal with frequent and inescapable social conflicts 318 

in N. pulcher, although additionally or alternatively, these differences between the species may also be 319 

partly or wholly due to experience (Arnold and Taborsky, 2010; see below). Submission is a 320 

metabolically costly behaviour and apart from maintenance behaviours, is the largest component of the 321 

time-energy budget of subordinate N. pulcher (Grantner and Taborsky, 1998; Taborsky and Granter, 322 

1998). The greater use of submission by N. pulcher than T. temporalis suggests an up-regulation in the 323 

use of these displays has occurred in N. pulcher, either through evolved changes or as result of 324 

feedback from social experience. It is possible the establishment of submissive signaling within a 325 

species potentiates group living by reducing the costs of frequent social interactions. Therefore the 326 

presence of well developed submissive signaling may be an antecedent to the emergence of group 327 

living. Studies aimed at testing this hypothesis through experimentation and further comparative work 328 

within a phylogenetic framework will be a productive area for future investigation. 329 

Submissive behavior is known to have an important function in promoting hierarchy formation 330 

and stabilization in other social species (e.g., Schenkel, 1967; Drews, 1993; Dugatkin, 1997, 2001; 331 

Sapolsky, 2005). In the group living N. pulcher, submissive behaviour is performed primarily by 332 

subordinate individuals and is directed towards those above them in the dominance hierarchy, 333 
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suggesting that submission displays play a role in the maintenance of the hierarchy in this species (Dey 334 

et al., 2013). Our data link different tactics in conflict resolution with the social system, however, the 335 

causal relationship remains uncertain. Submissive behavior may be a necessary prerequisite for group 336 

living, or appropriate submissive behavior may develop through ontogeny in the group living species as 337 

a consequence of frequent social interactions (see Arnold and Taborsky, 2010; Taborsky et al., 2012b; 338 

Taborsky and Oliveira 2012). In general, social behaviour is a very flexible trait. It is possible that the 339 

differences in social behaviour that we observed could have been caused by different social 340 

environments experienced through ontogeny, rather than adaptations to sociality per se.  However, we 341 

do note that the developmental environment for the fishes in our laboratory studies was similar for both 342 

species. Young of both species were raised in single species stock tanks, without predators or 343 

established social groups. Fish were held in mixed sex groups of 8 to 12 individuals (approximately 344 

equal numbers of males and females) for a minimum of two weeks prior to study in order to minimize 345 

species differences due to recent social experience.  Further experimental manipulation of the 346 

developmental environment may allow these potential relationships to be disentangled, and help to 347 

establish the degree to which the species differences we detected are due to evolved differences in 348 

social tendencies.  349 

The nonapeptide hormones oxytocin and vasopressin (known as isotocin and vasotocin in 350 

teleost fish) are involved in the regulation of social motivation in fish (Thompson and Walton, 2004, 351 

2011; Braida et al., 2011; Reddon et al., 2014), mammals (Lukas et al., 2011; Mooney et al., 2014), and 352 

birds (Goodson et al., 2009; Goodson and Kingsbury, 2011; Goodson et al., 2012) and thus these 353 

neurohormones may be key proximate substrates of the building blocks of sociality (Goodson, 2013).  354 

Recent work in fishes has implicated both of these nonapeptide hormones in the production of 355 

submissive behaviour in fish (Godwin and Thompson, 2012). In the mudskipper, Periophthalmus 356 

modestus, the expression of vasotocin mRNA is greater in the brains of submissively behaving 357 

subordinate fish compared to dominant individuals (Kagawa et al., 2013). Similarly, the expression of 358 
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vasotocin in the parvocellular region of the preoptic area of the hypothalamus is greater in subordinate 359 

than in dominant males of the African cichlid Astatotilapia burtoni, and greater vasotocin gene 360 

expression in this brain area correlates with greater use of submissive behaviour in this species 361 

(Greenwood et al., 2008). When N. pulcher subordinates housed in naturalistic social groups in the 362 

laboratory were given an exogenous administration of isotocin, they increased submissive behaviour 363 

(Reddon et al., 2012). This change in behaviour was specific to submission displays, as the treated fish 364 

did not show any changes in their aggressive or affiliative behaviour and did not differ compared to 365 

control animals.  Hellmann et al., (2015b) repeated this experiment on free-living wild fish in Lake 366 

Tanganyika and again found that exogenous isotocin increased the expression of submissive behaviour 367 

in N. pulcher. Neolamprologus pulcher have a higher expression of the isotocin gene in their brains 368 

than do T. temporalis (O’Connor et al., 2015b, 2016). Together, these data suggests that evolution may 369 

have acted upon the isotocin system during the divergence of social behaviour in the lamprologines, 370 

possibly in part because of its role in promoting submissive behaviour.  371 

 In conclusion, in the current study, we identify behaviours that differ between two species of 372 

cichlids that diverge in social system, namely, social motivation and conflict resolution behavior. The 373 

motivation to approach, interact with, and tolerate other conspecifics is a an essential first step toward 374 

social living (Soares et al., 2010; Goodson, 2013), and our results contrasting the group living N. 375 

pulcher with the non-grouping T. temporalis support the hypothesis that the emergence of complex 376 

social behaviour has coincided with increased social motivation.  Conflict management is another 377 

critical aspect of a social phenotype. The greater use of submission displays in the group living N. 378 

pulcher compared to the non-grouping T. temporalis suggests alternation in the conflict management 379 

mechanisms during the transition to social living in this group. Social motivation and submissive 380 

behaviour are promising candidates for further comparative investigation into how basic behaviors 381 

build to form complex social phenotypes. Experimental work that manipulates the expression of these 382 
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behaviours, and explores the fitness consequences in species that exhibit varying degrees of sociality is 383 

a critical next research step.   384 
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Figure captions   630 

Figure 1. (A) Telmatochromis temporalis and (B) Neolamprologus pulcher are two closely related 631 

Lamprologine cichlid fishes that are similar in body size, appearance, and ecology, but differ in social 632 

system. Neolamprologus pulcher are group living while T. temporalis non-grouping. Photo credits: 633 

Susan Marsh Rollo and Jen Reynolds. 634 

 635 

Figure 2. Experimental setup for the social motivation assay. (A) During a 10 min acclimation period, 636 

the focal fish was confined within a transparent cylinder. (B) Following acclimation, the transparent 637 

cylinder was lifted, and the focal fish was allowed to interact with the stimulus fish across the barrier of 638 

the transparent cylinder or enter the shelter over a 15 min trial duration.   639 

 640 

Figure 3. Experimental setup for the conflict assay. (A) During a 1 hr acclimation period, the two 641 

contestants were each given a shelter, but were separated from each other by opaque dividers. (B) 642 

Following acclimation, the outer shelters and barriers were removed, and fish were allowed to compete 643 

over the remaining central shelter for 30 min.   644 

 645 

Figure 4. Social motivation measured in wild breeding individuals of a group-living cichlid 646 

(Neolamprologus pulcher) and a non-grouping cichlid (Telmatochromis temporalis). (A) Compared to 647 

the T. temporalis, N. pulcher displayed overall more social behaviors (i.e., affiliative, submissive, and 648 

aggressive displays) and (B) social behavior constituted a higher proportion of all observed behaviors. 649 

(C) After controlling for group size, there was no difference in the number of social behaviours 650 

produced per group member.  651 

 652 

Figure 5. In a controlled laboratory test of social motivation, (A) both species were equally likely to 653 

visit the fish or the shelter stimulus first, and (B) there was no species difference in the time spent with 654 
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the stimulus fish, however, (C) N. pulcher spent more time interacting with a conspecific than did T. 655 

temporalis. 656 

 657 

Figure 6. Conflict resolution behavior measured in a group-living cichlid (Neolamprologus pulcher) 658 

and a non-grouping cichlid (Telmatochromis temporalis). During staged contests in the laboratory, N. 659 

pulcher displayed (A) less aggression, were (B) more likely to use submissive displays, and were (C) 660 

less likely than T. temporalis to flee from their opponent. At the individual level, (D) members of both 661 

species that produced high rates of submission rarely fled from their opponents. 662 
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