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Putative drivers of adrenocortical activity in captive African lesser 17 

bushbaby, Galago moholi 18 

Juan Scheun, Nigel C. Bennett, Julia Nowack, Pete N. Laver, Andre Ganswindt 19 

Abstract  20 

In seasonal breeders periods of reproductive activity, often coincide with high levels of 21 

glucocorticoids. We studied seven male and female African lesser bushbabies, Galago 22 

moholi, over two mating periods via non-invasive faecal hormone metabolite monitoring to 23 

investigate the relationship between reproductive and adrenocortical hormone activity. We 24 

used linear mixed-effect models to investigate the effect of physiological (endocrine) variables 25 

on faecal glucocorticoid metabolite concentrations. Our results indicate faecal androgen 26 

(males) and progestagen metabolite concentrations (females) as the variables best able to 27 

explain variability in faecal glucocorticoid metabolite concentrations. However, the models 28 

explained only a fraction (26 and 12%, respectively) of the observed variability and graphical 29 

analysis suggests a biologically relevant difference in faecal glucocorticoid metabolite 30 

concentrations between captive and free-ranging animals during non-reproductive periods. 31 

Thus, captivity may have affected glucocorticoid output in our focal animals, potentially 32 

weakening the expected relationship between reproductive activity and faecal glucocorticoid 33 

metabolite variability. Due to the ease of faecal and observational sample collection, a large 34 

number of studies monitoring adrenocortical activity in wildlife are conducted using only 35 

captive settings, with inferences unquestioned when applied to free-ranging scenarios. Our 36 

study cautions against this practice, as particular housing or management conditions may 37 

influence the pattern of adrenocortical activity. 38 

Keywords: Galago moholi, African lesser bushbaby, reproduction, stress; glucocorticoids; 39 

non-invasive hormone monitoring, captivity 40 

 41 
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Introduction 42 

Reproductive events are important parts of an animal’s annual’s life history and of critical 43 

importance in determining an individual’s fitness and hence the viability of a population (Olive 44 

et al. 2000). Reproductive hormones, which are secreted by the hypothalamic-pituitary-45 

gonadal (HPG) axis, are responsible for regulating behavioural, physical and physiological 46 

parameters during reproductive events (Johnson 1986; Nieschlag et al. 2012). In seasonal 47 

breeders, periods of reproductive activity, though often short in duration, are characterised by 48 

group instability (in social species), heightened intra-sexual competition and high energy 49 

demands, all of which can activate the stress-response (Creel 2005; DeVries et al. 2003). This 50 

is an important mechanism allowing an organism to restore homeostasis through the activation 51 

of the hypothalamic-pituitary-adrenal axis (HPA axis) and the subsequent secretion of 52 

glucocorticoids (O'connor et al. 2000). Consequently, glucocorticoid concentrations are often 53 

used as an index of perceived stress in an organism (Sapolsky et al. 2000). Secreted 54 

glucorticoids stimulate cardiovascular activity and energy mobilisation, while triggering 55 

important behavioural changes in order to cope with perceived stressors (Reeder and Kramer 56 

2005). However, a functional cross-talk has been found to exist between the HPA and HPG 57 

axes, with substantial increases in glucocorticoid concentrations inhibit the secretion of 58 

reproductive hormones, directly influencing the reproductive capabilities of an individual 59 

(Dobson and Smith 2000).  60 

The regulation of parts of the HPG axis, such as gonadotrophin-releasing hormone 61 

(GnRH), by parts of the HPA axis such as corticotrophin-releasing factors (CRF) occurs 62 

through both direct and indirect mechanisms. The indirect regulation is thought to occur by 63 

modulation of various components of the HPA-axis such as the activation of the sympathetic 64 

nervous and limbic systems, as well as glucocorticoid production and excretion (Chand and 65 

Lovejoy 2011; Sapolsky 1985). Evidence for such regulation can be seen through the 66 

administration of corticotrophic-releasing hormones which results in a sudden decrease of 67 

GnRH and luteinizing hormones (Feng et al. 1991). The more direct regulation of the HPG-68 
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axis occurs through the suppression of GnRH-expression neurons, by CRF, at signal 69 

transduction and transcription regulation levels (Kinsey-Jones et al. 2006; Tellam et al. 1998). 70 

Although the regulatory effect of CRF on the HPG-axis has been observed numerous times, 71 

instances exist where an increase in cortisol concentrations in non-human primates does not 72 

translate into suppression of reproductive function (Cameron 1997; Vugt et al. 1997).   73 

Similarly, increased production of reproductive hormones can exert both a positive and 74 

negative feedback pattern on adrenocortical activity (Stavisky et al. 2003; Viau 2002). One 75 

mechanism responsible for the modulation of adrenal activity is the binding of testosterone 76 

and oestrogen cognate receptors within the central nervous system, influencing the stress 77 

response (Handa et al. 1994). Such actions suggest that reproductive hormones directly 78 

regulate HPA activity in order to avoid the numerous deleterious effects of elevated 79 

glucocorticoid secretion on reproductive function. As with the regulatory effect of CRF on the 80 

HPG-axis, elevated reproductive hormones do not necessarily result in the suppression of 81 

adrenocortical activity in mammal species (Ziegler et al. 1995). As the interplay between the 82 

HPG and HPA axes can be species specific, a general link should not be assumed for all 83 

mammal species.  84 

Aside from the possible HPG-HPA cross-talk affecting adrenocortical activity in 85 

mammals, other extrinsic factors such as predator-prey interactions (Monclús et al. 2009) and 86 

social interactions (Girard-Buttoz et al. 2014) have been shown to alter adrenocortical activity 87 

in mammals. In an attempt to better understand the association between reproductive function 88 

and adrenocortical activity, we monitored reproductive hormones and mating activity as well 89 

as glucocorticoid concentrations in several captive pairs and a surrounding free-ranging 90 

population of African lesser bushbabies (Galago moholi). We hypothesized that both 91 

reproductive hormones and mating activity will be major drivers for alterations in adrenocortical 92 

activity in both male and female individuals.   93 
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Methods and Materials 94 

Study site  95 

We conducted the study at Ithumela Primate Sanctuary (IPS, Buffelsdrift Conservancy, South 96 

Africa, 25°35’55.79”S, 28°19’30.82”E) between March and November 2013. We collected 97 

temperature and rainfall data for the area from the South African Weather Service. The study 98 

site has a hot, wet season from October to March, whereas a cold, dry season occurs from 99 

April to September. During the study the maximum temperatures varied between 13.8 °C and 100 

35.8 °C (mean ± SD:  25 ± 3.06 °C), whereas minimum temperatures varied between -1 °C 101 

and 17.6 °C (mean ± SD: 8.29 ± 4.61 °C). A total of 209 mm of rainfall occurred during the 102 

study period, with the majority occurring in March (34.8 mm), April (81.6 mm), and September 103 

(78 mm). 104 

Study animals 105 

The African lesser bushbaby is a small nocturnal prosimian distributed throughout sub-106 

Saharan Africa (Bearder 1987). Male and female G. moholi individuals have separate, but 107 

overlapping, home ranges, with frequent interaction occurring among individuals (Bearder & 108 

Martin 1979). G. moholi has been described as polygynandrous, with two mating periods per 109 

year (May and September; Pullen, Bearder & Dixson 2000; Scheun et al., 2016b). Our study 110 

animals comprised seven male and female individuals held in captivity at IPS, as well as 14 111 

males and 12 females from the surrounding wild population of Buffelsdrift Conservancy. All 112 

individuals were marked with subcutaneously injected passive identification transponders 113 

(ID100 Trovan, EURO I.D., Weilerswist, Germany). The seven adult male and female G. 114 

moholi were housed in mating pairs in separate cages at IPS. Although this pairing of G. 115 

moholi individuals is unnatural, compared to the natural social structure of the species 116 

(Bearder and Martin 1979), this was done to observe mating instances as well as track 117 

reproductive hormone patterns in the species during mating and pregnancies (Scheun et al. 118 

2016b). The average age of the seven captive females was 3.4 ± 1.3 years of age (range: 2-119 
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5 years), while males were 2.9 ± 0.7 years of age (range: 2-4) years old. Thus all captive 120 

individuals were older than 8.5 months, the minimum reproductive age of G. moholi (Nekaris 121 

and Bearder 2007). Throughout the study period trained personnel from IPS, as well as local 122 

veterinarians, conducted frequent health care assessments of all captive individuals. All 123 

individuals were found to be healthy throughout the study period. For the captive setup we 124 

designed enclosures (3 × 1.5 × 2.8 m) which allowed for easy separation (< 30 min) of paired 125 

animals during periods of sample collection. Each enclosure consisted of three compartments, 126 

the middle of which functioned as the sleeping area. Upon their exit each individual would 127 

move to one of the side compartments, through a small opening which contained a trap door 128 

mechanism, allowing for the successful separation of individuals and eliminating the chances 129 

of cross contamination of samples.  A small amount of hair was removed from the tail of all 130 

captive males. This allowed for individual identification and sample assignment. We fed 131 

captive individuals a combination of yogurt, fresh fruit and dry cat food (Whiskas, South Africa) 132 

at 18:00 each night (which lasted their entire active phase), with fresh water being available 133 

ad libitum. Close proximity and contact of captive individuals by the researchers were kept at 134 

a minimum throughout the study. For the free-ranging setup we trapped individuals from the 135 

surrounding area using walk-in live (40 x 15 x 15 cm) and Sherman traps (7 x 7 x 30.5 cm, H. 136 

B. Sherman Traps, Tallahassee, Florida, USA) baited with banana, honey and peanut butter. 137 

As a result of wild individuals roaming freely, data could only be collected during time of 138 

capture. We collected faecal samples from free-roaming individuals to evaluate whether the 139 

hormone data from the captive setup were representative of a free-ranging G. moholi 140 

population. We performed the study with the approval of the University of Pretoria Animal Use 141 

and Care Committee (Reference EC056-12).  142 

Faecal sample and data collection 143 

During the study, we collected fresh faecal samples three times a week from all captive 144 

animals. Our cages allowed for a separation of both sexes until samples of each individual 145 

were obtained and individuals were reunited. In addition, we set traps tri-weekly and collected 146 
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all fresh faecal material from trapped free-ranging individuals. As an increase in glucocorticoid 147 

concentration is only observed in faecal matter approximately 12 hours following a stressful 148 

event (Scheun et al. 2015), we were confident that capture stress would not reflect in the 149 

collected samples. For our captive population, we collected a total of 631 faecal samples from 150 

the males (range: 87-94 per animal) and 626 faecal samples from the females (range: 84-93 151 

per animal) during the study period. For free-ranging animals we collected 39 faecal samples 152 

from males (from 14 animals) and 38 faecal samples from females (from 12 animals). As a 153 

result of the low number of samples collected from each free-ranging animal (range: 1-5), we 154 

were unable to conduct any statistical analysis on the free-ranging sample set. 155 

We noted the reproductive status of males and females in captive and free-ranging 156 

groups. To do so we conducted nightly observations (ad libitum sampling, 20:00 h - 04:00 h, 157 

Dr Juan Scheun, Altmann 1974) throughout the study, using red-filtered light, on all animals 158 

to assess the incidence of reproductive behaviour (i.e the period of reproductive vs non-159 

reproductive activity). As such we did not set out to quantify the occurrence of behaviours, as 160 

this has been done previously for the species both in captivity as well as the natural 161 

environment (Bearder and Martin 1979; Lipschitz et al. 2001; Pullen et al. 2000), but simply to 162 

determine whether individuals were sexually activate in either population (as seen by mating 163 

activity). As female vaginal opening only occurs during periods of mating, this was used to 164 

determine mating periods in captive and free-ranging individuals. We categorised reproductive 165 

status in females as an animal being ‘pregnant’, ‘non-reproductive’ or ‘lactating’. We assessed 166 

pregnancy status in females by increased mass of an animal between weighing events, the 167 

presence of a foetus through the careful palpation of the lower stomach or backdating from 168 

the parturition. To confirm lactation we applied pressure to the mammary glands of female 169 

post-partum to attain whether milk production was present. We defined males as 170 

reproductively active when increased male-female follows, excessive male-female grooming, 171 

regular vaginal sniffing and licking, attempted mounts and intromission were observed 172 

(Lipschitz et al. 2001). An increase in androgen concentrations and testis volume was further 173 
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used as evidence of reproductive activity in males, as observed in other seasonal breeders 174 

(Goeritz et al. 2003; McLachlan et al. 1996). 175 

As a result of the low recapture rate, we were unable to determine the reproductive 176 

status of free-ranging males (18 individuals), but managed to reliably determine reproductive 177 

status for the captive males (7 individuals). For free-ranging females, pregnancy could be 178 

reliably determined 50 days post conception (6 individuals), while pregnancy status for captive 179 

females could be determined accurately from the date of conception until parturition. 180 

Hormone extraction and analysis 181 

We froze fresh faecal material directly after collection and stored all samples at -20 °C until 182 

hormone extraction. We lyophilised, pulverised, and sieved faecal samples through a thin 183 

mesh to remove fibrous material (Fieß et al. 1999). We then extracted 0.050-0.055 g of faecal 184 

powder by vortexing for 15 min with 1.5 ml of 80 % ethanol. Subsequently, we centrifuged 185 

steroid extracts for 10 min at 1500 g, after which, supernatants were transferred into new 186 

microcentrifuge tubes and stored at -20 °C until hormone analysis. 187 

Faecal glucocorticoid metabolite (fGCM) concentrations as well as reproductive steroid 188 

concentrations (for males: faecal androgen metabolites [fAM], for females: faecal oestrogen 189 

metabolites [fEM] and faecal progestagen metabolites [fPM]) were determined via enzyme-190 

immunoassay (EIA) techniques. Details for the respective EIAs, including cross-reactivities, 191 

are given in Palme and Mostl (1997) for measuring fGCMs, in Palme and Möstl (1993) for 192 

fAMs and fEMs and in Schwarzenberger et al. (1996) for fPMs. Sensitivities of the respective 193 

assays were 3 ng/g dry weight (DW) for fGCMs and fEMs, 7.5 ng/g DW for fAMs and 1.5 ng/g 194 

DW for fPM. Serial dilutions of extracted G. moholi faecal samples gave displacement curves 195 

that were parallel to the respective standard curve. Intra- and inter-assay coefficients of 196 

variation, determined by repeated measurements of high- and low- value quality controls, 197 

ranged between 6.9 % and 13.1 %. Reliability of the EIA for monitoring adrenocortical activity 198 

has been shown in (Scheun et al. 2015). EIA parameters, as well as biological validations, for 199 
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the fAM, fEM and fPM are given in Scheun et al. (2016a) and (Scheun et al. 2016b). We 200 

conducted all assays at the Endocrine Research Laboratory at the Faculty of Veterinary 201 

Science, University of Pretoria. 202 

Data analysis 203 

A priori model-building and selection 204 

We explored a priori population-level covariates of captive male and female bushbaby fGCMs 205 

using fGCM concentrations in 638 faeces from seven males and in 630 faeces from seven 206 

females. We modelled natural-log-transformed fGCM concentrations as the response variable 207 

(yi’s, Eqn 1) in linear mixed models, fitted with the ‘identity’ link function (Eqn 2), using lmer in 208 

Package ‘lme4’ (Bates et al. 2012) in R, v 3.2.0 (R Team, 2014). We used all global model 209 

subsets (all were plausible) and omitted interaction terms, allowing for balanced-design model 210 

averaging. The global model for the male bushbabies included a total of four fixed effects (βj’s, 211 

Eqn 3): fAM; reproductive status (reproductive, non-reproductive); female pregnant (yes, no); 212 

female lactating (yes, no). The global model for the female bushbabies included a total of five 213 

fixed effects: fEM; fPM; reproductive status (reproductively active, reproductively non-active); 214 

pregnant (yes, no); lactating (yes, no). We modelled repeated measures on each animal as 215 

random effects (uik’s, Eqn 3,4): animal (1|animal). 216 

 217 

  𝑦𝑖 ~ 𝑁 (µ𝑖, 𝜎2) (1)                                    218 

                                                  𝑔(𝜇𝑖) =  𝑛𝑖  (2) 219 

                                 𝑛𝑖 =  ∑ 𝛽𝑗
𝑠
𝑗=1 𝑥𝑖𝑗 +  ∑ 𝑍𝑖𝑘𝜇𝑖𝑘

𝑟
𝑘=1     (3) 220 

                                          𝑢𝑖𝑘 ~ 𝑁 (0, 𝜎𝑘
2)  (4) 221 

                                              222 
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2

0

We standardized variables using Package ‘arm’: numeric variables to x = 0; σ = 0:5 and 223 

binary variables to x  = 0 with a difference of 1 between categories (Gelman 2008). We used 224 

variance inflation factors (VIFs, Anderson et al. 2001) to assess multicolinearity, using an a 225 

priori cut-off of VIF = 5 for rejecting collinear variables. We evaluated candidate models with 226 

Akaike’s Information Criterion (Akaike 1974) with small sample size correction (AICs, 227 

Anderson 2008). We performed multi-model inference and model averaging (Burnham and 228 

Anderson 2002) using Akaike weights (wi) of all candidate models. We assessed goodness of 229 

fit of parameter estimates using 85% confidence intervals (Anderson 2008; Arnold 2010) and 230 

assessed variation explained by the global model using Ω   (Xu 2003). 231 

Post hoc graphical comparisons 232 

After the a priori linear mixed model analyses, we performed post hoc graphical analyses of 233 

the faecal metabolite (glucocorticoid, androgen, progestagen, and oestrogen) data (formal 234 

analysis was inappropriate for post hoc comparisons). We plotted longitudinal faecal hormone 235 

metabolite data for the four captive study pairs that conceived (range: 87- 93 samples for each 236 

individual). For the fGCM data, we provided the baseline concentration for free-ranging 237 

animals for comparison, which we derived using the median of baselines of free-ranging 238 

animals (18 males of unknown reproductive status and 11 non-reproductive females; thick 239 

dashed line, Fig. 2a and 2f). FGCM concentrations of free-ranging individuals were used as 240 

baseline fGCM concentrations as this represents the stress levels present in the natural 241 

environment. We also included the peak fGCM response to an adrenocorticotropic hormone 242 

challenge (the median of peak responses for three captive male and females; thin dashed line, 243 

Fig. 2a and 2f; Scheun et al. 2015). We compared the median faecal hormone metabolite 244 

concentrations for free-ranging and captive bushbabies in non-reproductive and reproductive 245 

periods.  246 

When we compared fPM and fEM concentrations between captive and free-ranging 247 

animals, we used only data from the same reproductive period (50 days post conception to 248 
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parturition). Number of faecal samples per free-ranging animal was low (range: 1-6, median 2 249 

for males; range: 1 to 5, median 2 for non-reproductive females; range: 1-4, median 2.5 for 250 

reproductive females) compared to captive animals (range: 67-76, median 73 for non-251 

reproductive males; range: 16-22, median 19 for reproductive males; range: 29-78, median 252 

35 for non-reproductive females; range: 36-40, median 36.5 for reproductive females; 8 to 10, 253 

median 8 for late reproductive females). 254 

Results 255 

A priori models of faecal glucocorticoid metabolite variability 256 

For the female bushbabies in our study, the covariate that best explained variation in fGCMs 257 

was fPM concentration (Table 1, Fig. 1). We selected this variable in all of our best candidate 258 

models (ΔAICc < 2, Table 1). Female pregnancy and lactation status also explained some of 259 

the variation in fGCMs, but both of these variables had high variability in parameter estimates, 260 

had a small effect size, and were not selected in all the top models (Fig. 1). Our global model, 261 

which included all four variables, explained 12% of variation in fGCMs, with Ω
2

0 = 0.12. 262 

Variance inflation factors for all covariates were below 2.1, suggesting that multicolinearity 263 

was not problematic in our models.  264 

 For male bushbabies, the covariate that best explained variation in fGCMs was fAM 265 

concentration (Table 2, Fig. 1). We selected this variable in all of our best candidate models 266 

(ΔAICc < 2, Table 2). Reproductive status of the male and the lactation and reproductive status 267 

of that animal’s female all had high variability in parameter estimates or had a small effect size 268 

(Fig. 1). Our global model (containing all variables) explained 26% of variation in fGCMs, with 269 

Ω
2

0  = 0.26. Variance inflation factors for all covariates were below 2, suggesting that 270 

multicolinearity was not problematic in our models. 271 

Post hoc longitudinal profiles of faecal glucocorticoid metabolites 272 
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Longitudinally, fGCM concentrations displayed high variability during non-reproductive and 273 

reproductive periods for both males and females (Fig. 2 a, f). In females, both the fEM and 274 

fPM concentrations increased approximately 60 days after conception, declining to their pre-275 

conception baseline values approximately 135 days after conception (Fig. 2 b, c). The highest 276 

fGCM concentrations appeared to coincide with the final 21 days of gestation and the peak 277 

fPM concentrations (Fig. 2 a, c, d). In males, fAM concentrations increased around the period 278 

of first conception, and again around the period of parturition and second conception (Fig. 2 279 

g). At the study population level, the putative association (suggested by our models) in captive 280 

animals between fGCM concentration and fPM concentration (for females) or fAM 281 

concentration (for males) appears weak (Fig. 2 a, c, f, g). In both captive females and males, 282 

the fluctuations in fGCM concentrations appear to be higher than the median non-reproductive 283 

baseline values for free-ranging animals (dashed lines, Fig. 2 a, f), and in males appear to 284 

approach the median peak fGCM response for captive animals challenged with 285 

adrenocorticotropic hormone (dotted lines, Fig. 2 a, f). 286 

Post hoc graphical comparison by population and reproductive status 287 

Captive bushbabies of both sexes appeared to have higher fGCM concentrations than those 288 

of free-ranging animals (Fig. 3 a). Within a captive animal, fGCM concentrations appear to 289 

increase from the non-reproductive to the reproductive period for males and from the non-290 

reproductive to the late reproductive period for females (Fig. 3 a). While free-ranging males 291 

and females had similar concentrations of fGCM, captive females in the late reproductive 292 

period may have higher fGCM concentrations than captive males (Fig. 3 a). 293 

 For male bushbabies, captivity status seemed to have little effect on fAM 294 

concentrations during the non-reproductive period (Fig. 3 b). Within captive males, fAM 295 

concentrations increased from the non-reproductive to the reproductive period (Fig. 3 b). 296 

Captive female bushbabies had higher fPM and fEM levels than free-ranging individuals during 297 
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reproductive and non-reproductive periods (Fig. 3a), although it is more likely that the low 298 

sample size within a free-ranging animal resulted in missing the peak hormone concentrations. 299 

 In the captive setup two periods of mating activity were observed during the study, 300 

namely at the end of May and mid-September. During the May mating event all seven male 301 

and females were involved in mating activity, with four females conceiving. However, as a 302 

result of ongoing pregnancies during the September mating event, only three of the seven 303 

females were observed mating with their paired males (see Scheun et al. 2016b for more 304 

information on mating activity). Mating activity in the free-ranging population was observed 305 

during the same period, though for only a brief period of time compared to the captive setup 306 

(2 days in total). 307 

Discussion 308 

This study is the first to describe a putative link between reproduction and adrenocortical 309 

activity of a nocturnal prosimian by monitoring reproductive and stress hormone metabolite 310 

concentrations in faeces. Although results from our models indicate that fAM and fPM 311 

concentrations, for male and females respectively, best explain adrenocortical activity, 312 

additional unknown factors seem to be driving fGCM patterns in the captive population. The 313 

association between reproductive factors and adrenocortical activity is consistent with 314 

previous studies on a range of primates, including muriquis (Brachyteles arachnoids 315 

hypoxanthus, Strier et al. 1999), long-tailed macaques (Macaca fascicularis, Stavisky et al. 316 

2003) and common marmosets (Callithrix jacchus, Saltzman et al. 1994). Our study highlights 317 

the influence of certain reproductive parameters such as mating activity and pregnancy status, 318 

specifically as modelled by gonadal hormone production, on mammalian adrenocortical 319 

activity. An important outcome from this study is the relatively weak relationship between male 320 

mating status and adrenocortical activity. Although a putative correlation has been found 321 

between reproductive status (mating: yes/no) and androgen concentrations in seasonal 322 

breeders (Wingfield et al. 1990), our observation only highlights the importance of fAM 323 
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concentrations, but not reproductive status in explaining fGCM variability in bushbabies. This 324 

suggests that the use of simple yes/no dichotomies may not always be sufficient for modelling 325 

complex physiological associations. Similarly, although female pregnancy status was 326 

marginally important in our model, the pregnancy progression, which was modelled via fPM 327 

concentrations, performed considerably better in explaining fGCM variability.  328 

These results suggest that studies investigating drivers of fGCMs should include 329 

robust a priori considerations of causality, defining the potential relationship between all 330 

hormone metabolite concentrations and the physiological processes that produce the 331 

respective hormones, during the model-building phase. The low level of variability explained 332 

by our models indicated that additional factors are likely responsible for a considerable 333 

proportion of the fGCM variability observed during our study. We thus incorporated post hoc 334 

analyses to suggest potential factors driving bushbaby adrenocortical activity for future 335 

investigation. 336 

The post hoc results suggested higher baseline (non-reproductive) adrenocortical 337 

activity in captive versus free-ranging males, and in captive versus free-ranging females. While 338 

the baseline fGCM concentrations for free-ranging males and females were well below median 339 

fGCM concentrations of captive individuals prior to the adrenocorticotropic hormone 340 

challenges conducted on the species (Scheun et al. 2015), baseline fGCM concentrations for 341 

captive females approached the concentrations elicited during that challenge, and captive 342 

males exceeded the adrenocorticotropic hormone challenge concentrations in multiple 343 

samples. As an adrenocorticotropic hormone challenge can elicit a near-maximum 344 

physiological stress response (Palme 2005) depending on the dose administered, our results 345 

suggest that factors associated with our applied captive setup represent biologically significant 346 

physiological challenges for G. moholi. These inferences were drawn from post hoc analysis 347 

and should be interpreted accordingly. The results do, however, suggest avenues for future 348 

research focused on possible drivers of adrenal activity in the captive setup. Further, the 349 

apparent correlation found in the post-hoc graphical analysis between fGCM and fPM, 350 
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particularly 21 days prior to parturition, may be driven by the pregnancy-related physiological 351 

adaptations. As foetal development progresses throughout pregnancy, a steady increase in 352 

progestagen and glucocorticoid concentrations is required to support this, reaching maximum 353 

levels shortly before parturition (Fieß et al. 1999; Lindsay and Nieman 2005). Additionally, the 354 

increase in androgen concentration in male individuals prior to and during periods of 355 

conception is required to activate both reproductive activity and sperm production (Nieschlag 356 

et al. 2012; Scheun et al. 2016a).  357 

 Although a general season-related pattern of glucocorticoid concentrations has been 358 

described for a number of species in the wild (Romero 2002), this pattern can be substantially 359 

altered in captivity by various extrinsic factors. Such circumstances, including restriction of 360 

movement, absence of predation and refugia, forced proximity to humans, and unnatural 361 

grouping of often gregarious and non-gregarious species, can result in a prolonged elevation 362 

of glucocorticoid concentrations (Morgan and Tromborg 2007). Thus, some captive individuals 363 

exhibit chronically elevated glucocorticoid concentrations (a new and higher basal 364 

concentration level, Dickens et al. 2009). Animals in our captive population were housed as 365 

mating pairs, while being confined to a small area. Both of these factors are atypical for free-366 

ranging G. moholi, in terms of social behaviour and movement dynamics (Bearder 1987). Such 367 

chronic adrenocortical activity, in response to a suboptimal captive setup, has been found in 368 

primate species such as the gray mouse lemur (Microcebus murinus, Perret and Predine 369 

1984) and spider monkeys (Ateles geoffroyi rufiventris, Davis et al. 2005), but also in captive-370 

held, non-primate mammal species such as the giant panda (Ailuropoda melanoleuca, Liu et 371 

al. 2006) and the tigrina (Leopardus tigrinus, Moreira et al. 2007). The high variability of fGCM 372 

concentrations as a result of the captive setup may mask putative patterns in adrenocortical 373 

activity during key life stages in bushbabies and potentially in other species. This masking 374 

effect may have resulted in the relatively weak association of predictor variables assessed in 375 

our linear mixed models. Although the fGCM patterns were highly variable and presumably 376 

chronically elevated as a result of the captive setup of our study, no disruption of reproductive 377 
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function was found in five of the seven captive females. As the stress response and the effect 378 

of chronically elevated stress is individual specific (Romero 2002), the suppression of 379 

reproductive function could have occurred for two of the seven females, both showing 380 

irregularity in terms ovarian hormone cycles (Scheun et al. 2016b). 381 

Many studies describing adrenocortical activity are conducted on captive populations 382 

only, due to ease of sample collection and animal observation. Our results suggest that long-383 

term captivity can cause extensive and unpredictable changes in adrenocortical activity, 384 

disrupting the natural hormone cascade that might be observed in free-ranging animals (Künzl 385 

and Sachser 1999; Romero and Wingfield 1999). Because of this disruption, the inference 386 

from captive studies should be applied to free-ranging populations with extreme caution.  387 

Finally, the differences observed graphically in reproductive hormone metabolite 388 

concentrations between the captive and free-ranging females in our study may be an artefact 389 

of the reduced sampling in free-ranging compared to captive females. In captive females, the 390 

fPM and fEM concentrations followed non-uniform longitudinal profiles with peaks toward the 391 

end of pregnancy, which may have been missed in free-ranging females. Studies attempting 392 

to describe the putative role of reproduction in adrenocortical activity, or attempting to compare 393 

hormone concentrations between populations, should ensure that identical sampling protocols 394 

(representative of the entire life history stage in question) are followed for all study populations. 395 

Although our applied models explained relatively little of the variability in fGCM, we 396 

were successful in positing factors potentially responsible for adrenocortical activity in captive 397 

African lesser bushbabies. FGCM variability in males is best described by fAM concentrations, 398 

which may be a proxy for male mating activity, while female fGCM variability is explained by 399 

fPM concentrations, which are potentially a proxy for the progression of pregnancy. As a result 400 

of the possible influence of captivity on adrenocortical activity, future studies should apply 401 

caution when using captive studies to infer patterns of adrenocortical and gonadal activity in 402 

free-ranging animals. Follow up studies are needed, specifically designed to assess 403 
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reproductive and adrenocortical activity in free-ranging bushbabies, and designed to assess 404 

the putative effect of captivity on adrenocortical and gonadal hormone production in captive 405 

versus free-ranging bushbabies. As more than 26 billion animals, from over 10, 000 species, 406 

are kept in captive setups such as zoos, farms and conservation centres (Mason and Veasey 407 

2010) it is important to clarify what effects captivity itself may have on the adrenocortical 408 

activity of a species. Studies on captive and domesticated species have shown that the 409 

perception of confinement-specific stressors is species-specific, making a generalised 410 

assessment difficult (Romero 2002). It is thus important to not only clarify the role of 411 

reproductive season on adrenocortical activity, but also the possible effect of captivity on the 412 

stress concentrations of caged individuals. The potential effect of captivity, the need for 413 

representative faecal sampling throughout the life history stage under study and the potential 414 

use of reproductive hormone concentrations as proxies for reproductive activity (specifically 415 

the progression of pregnancy), are factors that could be applied to non-invasive studies of the 416 

stress physiology of any species.  417 
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Tables 

Table 1. The results from the mixed effects candidate models, modelling natural-log-transformed fGCM 

levels in females of the African lesser bushbaby (G. moholi; 630 samples from seven females’).  
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* Log likelihood (logL), † number of parameters (K), ‡ Akaike’s Information Criterion with small 

sample correction (AICc), § AICc distance from the best model (Δ) and || Akaike weight (wi) 
 

 

Table 2.  

The results from the mixed effects candidate model, modelling natural-log-transformed fGCM levels, in 

males of the African lesser bushbaby (G. moholi; 638 samples from seven males).  

  

 Model: log(FGCM)~ * logL †K  ‡AICc §Δ ||wi 

1 FPM + lact + preg + (1|animal) -542.5 6 1097.0 0.0 0.19 

2 FPM +(1|animal) -545.1 4 1098.2 1.2 0.10 

3 FPM + lact + (1 |animal) -544.1 5 1098.3 1.3 0.10 

4 FPM + fEM + lact + preg + (1|animal) -542.2 7 1098.5 1.5 0.09 

5 FPM + preg + (1| animal) -544.3 5 1098.7 1.6 0.08 

6 FPM + fEM + lact + (1|animal) -543.4 6 1098.9 1.8 0.07 

7 FPM + lact + preg + repr + (1|animal) -542.4 7 1099.1 2.0 0.07 

8 FPM +  fEM + (1|animal) -544.6 5 1099.2 2.2 0.06 

9 FPM + repr + (1|animal) -545.1 5 1100.3 3.2 0.04 

10 FPM + fEM + preg + (1|animal) -544.1 6 1100.3 3.3 0.04 

11 FPM + lact + repr + (1|animal) -544.1 6 1100.4 3.3 0.04 

12 FPM + fEM + lact + preg + repr + (1|animal) -542.2 8 1100.6 3.5 0.03 

13 FPM + preg + repr + (1|animal) -544.3 6 1100.7 3.7 0.03 

14 FPM + fEM + lact + repr + (1|animal) -543.4 7 1100.9 3.9 0.03 

15 FPM + fEM + repr + (1|animal) -544.6 6 1101.3 4.2 0.02 

16 FPM + fEM + preg + repr + (1|animal) -544.1 7 1102.3 5.3 0.01 

 Model: log(FGCM)~ * logL †K  

‡AICc 

§Δ ||wi 
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* Log likelihood (logL), † number of parameters (K), ‡ Akaike’s Information Criterion with small 

sample correction (AICc), § AICc distance from the best model (Δ) and || Akaike weight (wi) 

 

1 FAM + (1|animal) -456.1 4 920.4 0.0 0.26 

2 FAM + repr + (1|animal) -455.2 5 920.6 0.2 0.23 

3 FAM + lact + (1 |animal) -456.0 5 922.0 1.6 0.11 

4 FAM + preg + (1|animal) -456.0 5 922.1 1.8 0.11 

5 FAM + preg + repr + (1|animal) -455.1 6 922.3 1.9 0.10 

6 FAM + lact + repr + (1|animal) -455.1 6 922.4 2.1 0.09 

7 FAM + lact + preg + (1|animal) -455.7 6 923.5 3.2 0.05 

8 FAM +  lact + preg + repr + (1|animal) -454.9 7 924.0 3.6 0.04 
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Figure legends 

Figure 1. Standardized parameter estimates (Gelman, 2008) with 85% confidence intervals (Arnold, 

2010), after model averaging of all candidate models, for models of a) female and b) male African lesser 

bushbabies (G. moholi) faecal glucocorticoid metabolites. Parameters were faecal progestagen 

metabolite (fPM) concentration, faecal estrogen metabolite (fEM) concentration, faecal androgen 

metabolite concentration (fAM), reproductive status (reproductive), lactation status of the animal or the 

animal’s paired female (female lactating), and pregnancy status of the animal or the animal’s paired 

female (female pregnant). After parameter labels, we report relative importance-sum of Akaike weights 

(∑wi) over all models that include the parameter. 

  

Figure 2. Longitudinal profiles of a) faecal glucocorticoid metabolite (fGCM) concentrations, b) faecal 

estrogen metabolite (fEM) concentrations, c) faecal progestagen metabolite (fPM) concentrations for 

four captive female African lesser bushbabies (G. moholi) and f) fGCM concentrations, g) faecal 

androgen metabolite (fAM) concentrations for four captive male African lesser bushbabies (G. moholi). 

Individual animals are indicated with grey lines and study population medians with black lines. Dotted 

lines indicate the median peak fGCM response for three animals from each sex challenged with 

adrenocorticotropic hormone. Dashed lines indicate the median or baseline fGCM concentration for wild 

bushbabies for each sex. Individual female longitudinal fPM, fEM and fGCM profile is shown (d, e). 

 

Figure 3. Post hoc comparison of faecal hormone metabolite concentrations between male and female 

bushbabies, between free-ranging (wild [W]) and captive [C] African lesser bushbabies (G. moholi), and 

among bushbabies of varying reproductive status (unknown [unk], non-reproductive [NR], reproductive 

[R] and late reproductive [LR]) for a) glucocorticoids and b) reproductive hormones (androgens, 

progestagens, and estrogens). Dots represent median values for a given animal. Horizontal black lines 

indicate group medians. Grey lines link paired values within an animal. 
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