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Abstract 

This research concerns the detection of abnormal data usage and unauthorised access in 

large-scale critical networks, specifically healthcare infrastructures. The focus of this 

research is safeguarding Electronic Patient Record (EPR) systems in particular. Privacy is a 

primary concern amongst patients due to the rising adoption of EPR systems. There is 

growing evidence to suggest that patients may withhold information from healthcare 

providers due to lack of Trust in the security of EPRs. Yet, patient record data must be 

available to healthcare providers at the point of care. Roles within healthcare organisations 

are dynamic and relying on access control is not sufficient. Access to EPR is often heavily 

audited within healthcare infrastructures. However, this data is regularly left untouched in a 

data silo and only ever accessed on an ad hoc basis. In addition, external threats need to be 

identified, such as phishing or social engineering techniques to acquire a clinician’s logon 

credentials. Without proactive monitoring of audit records, data breaches may go 

undetected. This thesis proposes a novel machine learning framework using a density-based 

local outlier detection model, in addition to employing a Human-in-the-Loop Machine 

Learning (HILML) approach. The density-based outlier detection model enables patterns in 

EPR data to be extracted to profile user behaviour and device interactions in order to detect 

and visualise anomalous activities. Employing a HILML model ensures that inappropriate 

activity is investigated and the data analytics is continuously improving. The novel 

framework is able to detect 156 anomalous behaviours in an unlabelled dataset of 

1,007,727 audit logs. 
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1. Introduction 

Data behaviour within healthcare infrastructures needs to be monitored for malicious, 

irregular or unusual activity. For example in May 2017, a well-documented global 

ransomware campaign, referred to as WannaCry, targeted Windows operating systems 

worldwide and in doing so, adversely affected approximately 60 NHS trusts, 595 General 

Practices (GPs) and thousands of patients [1]. Response to the WannaCry cyber-attack 

resulted in many hospital networks being taken offline, and non-emergency patients being 

refused care. However, there is still a perceived lack of threat within healthcare 

organisations with regards to cyber-security. Hospitals must maintain patient trust and 

ensure that the information security principles of Integrity, Availability and Confidentiality 

are applied to EPR data. Hospital infrastructures present a unique threat vector, with a 

dependence on legacy software, medical devices, and bespoke software. Additionally, many 

PCs are shared by a number of users, all of whom use a variety of disparate IT systems. 

Hospitals in the UK are now connecting their traditionally isolated equipment on a large 

scale to Internet-enabled networks to enable remote data access. With a push for all 

hospitals in the UK to be paperless by 2020 [2], access to this healthcare data needs to be 

proactively monitored for malicious activity. This step-change makes sensitive data 

accessible to a broader spectrum of users. Every healthcare infrastructure configuration is 

unique and a one-size-fits-all security solution cannot be applied to healthcare. Existing 

cyber-security technology within hospital infrastructures is typically perimeter-focused [3], 

so once a malicious user has compromised the boundary through a backdoor, there is a lack 

of security architecture monitoring active potential threats inside the network.  
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Modern Information Technology (IT) systems are crucial to clinical care service providers. 

They are relied upon to collect and store sensitive patient data, govern human life-support 

devices and enable communication for archiving and information sharing [4]. Disabling or 

disrupting any of these systems would have far reaching consequences within healthcare 

infrastructures. Relying on traditional security models to safeguard these systems has 

proven to be ineffective; particularly in relation to the emergence of new technology such 

as mobility, cloud, social media and Bring Your Own Device (BYOD) [4].  

Digitised data in healthcare is growing. Data is now processed simultaneously from internal 

and external sources, including mobile devices, wearable sensor devices, EPRs, Radiology 

Images, Videos, clinical notes, social media, blogs and remote health monitoring systems 

[5]. Terabytes of data that is generated from medical sensors is also used to increase the 

likelihood of reliable health diagnosis through accurate and detailed real-time data analysis 

[6]. However, this volume of data is growing beyond the capacity of health care 

infrastructures and is expected to increase further in the coming years [5]. The datasets 

produced are often unstructured, existing in formats which are isolated, disparate or 

incompatible [7]. There is often a lack of processing capabilities within healthcare networks 

to load and query the data effectively [5].  

Additionally, the boundaries for healthcare systems are evolving, with many patients having 

the option of accessing their healthcare data from home PCs and mobile devices. This 

increases the attack surface significantly. Medical data must be private, with data misuse 

and violation detected in order to release and share data with authorised parties and public 

institutions [8]. A lack of security for healthcare devices leads to both a loss of patients’ 

privacy and potential physical harm to the patient. There is also a risk that erroneous data is 

introduced or legitimate data is modified or suppressed by adversaries [9]. The security 

implications mean that bespoke systems need to be put in place to safeguard and protect 

data. However, the reliance on legacy software and bespoke systems results in an increased 

vulnerability to cyber-attacks [10]. The following successful hospital security breaches are 

testament to this: 

 In May 2017, the WannaCry ransomware campaign exploited a Windows Server 

Message Block (SMB) vulnerability on TCP Port 445. SMB is a legacy protocol used to 
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share files and printers over local networks. The exploit enabled the malware to use 

worm-like network propagation, encrypting files and demanding ransom payment, 

unless the system had been patched by Microsoft security bulletin MS17-010. The 

attack resulted in network downtime for 60 NHS hospitals [1], with 6 suffering 

disruption lasting several days. 

 In October 2016, a UK Hospital in Lincolnshire was taken offline for four days due to 

a variant of the Globe2 ransomware [11]. All planned operations, outpatient 

appointments and diagnostic procedures were cancelled, with patients turned away 

and 2,800 patient appointments cancelled as a result of the disruption. 

 In 2008, three London hospitals (St. Bartholomew’s, the Royal London Hospital and 

the London Chest Hospital) lost all network connectivity due to several malware 

infections by the MyTob worm [10].  

The UK government also invests heavily into cyber-security schemes, such as the £1.9billion 

investment into the national cyber security strategy [12], aiming to make the UK one of the 

safest places in the world to do business. Yet within healthcare infrastructures, privacy and 

security are still seen as a secondary consideration [13]; though the importance to establish 

data access regulations is imminent due to the geographical requirements for healthcare 

data being stored. Compliance with NHS guidelines, the Information Governance Toolkit, 

internal audit processes and information security standards (e.g. ISO27001 and ISO27002) is 

an additional concern to adhere to [14]. 

1.1. Background 

The health sector receives consistently the highest number of reported data security 

incidents [15];  For example, in 2016, 450 data breaches occurred affecting more than 27 

million patient records; 26.8% of these breaches were due to hacking and ransomware [15]. 

The remaining percentage of data breaches were due to non-cyber breaches relating to 

human error, such as posting/faxing/emailing personal data to the incorrect recipient. EPRs 

are valuable due to the wealth of sensitive and valuable detailed personal information held 

within, and the potential to commit identity fraud as a result. This data is often sold on the 

black market, where patient data can be profitable to illegal actors either through direct sale 

or extortion by ransom [16]. At the time of writing this thesis, patient privacy within EPR 
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systems is enforced typically through corrective mechanisms, managed through role-based 

access [17]. However, once a user has been authenticated, they are essentially granted 

unhindered access. Additionally, employees present a persistent threat as they are able to 

access the data of almost any patient without control or reprimand. Without proactive 

monitoring of audit records, data breaches go undetected and employee behaviour is not 

deterred. With a requirement for all hospitals in the UK to be paperless by 2020 [18], access 

to healthcare data needs to be monitored proactively for malicious activity.  

EPR systems are vulnerable to both insider and outsider threats [19]. A potential insider 

threat refers to a legitimate user looking at data when it is not appropriate to do so; such as 

looking at the record of a celebrity [13]. An external threat is comprised of the theft of a 

legitimate user’s credentials, allowing the attacker uninhibited access to EPR data. This is 

known as an Advanced Persistent Threat (APT) [20]. It is, therefore, a challenge to mitigate 

both types of threats. Confidentiality and patient privacy within EPR systems is typically 

managed through an agreed and signed code of practice between the organisation and its 

users. A healthcare organisation that collects, analyses, publishes or disseminates 

confidential patient data must commit to ensuring that the data is only accessed by relevant 

personnel and only when it is appropriate to do so [21]. However, in many cases, measures 

are not taken to detect and prevent patient privacy violations, any breaches of 

confidentiality are only brought to light once an investigation is launched, which is often too 

late. EPR systems are audited; however, the quantity of EPR audit data is significant and a 

challenge for regular analysis by an Information Security Analyst. Only a big data-capable 

solution is able to proactively monitor data for patient privacy violations. 

To detect abnormal data behaviours, visualisation techniques provide both situational 

awareness and modelling capabilities for the benefit of computing in critical infrastructures. 

Situational awareness is defined in this thesis as extracting knowledge from existing 

information, enabling decision making by improving perception and comprehension of a 

situation within the EPR environment [22]. This allows an analyst to understand data 

correlations and identify anomalies for investigation through the shape or colour of data 

patterns [23]. Current procedural solutions to these issues are effective at detecting 

predictable insider threats [24]. They can process the large quantities of audit data, and can 
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process procedures against that data. The three primary procedures processed against the 

data are 1) a staff member is looking at their own patient record, 2) a staff member is 

looking at a patient record with the same surname and 3) a staff member is looking at a 

patient record who lives in close proximity to their own address (taken from Human 

Resources data). For example, a rule can be set to inform Information Security if anyone 

other than a set list of clinicians accesses the patient record of a celebrity or famous 

individual. Any violation of this is reported automatically to the Information Security team. 

However, this cannot detect the threat of an attacker who has acquired the logon 

credentials of a clinician; which is achieved through either phishing or social engineering 

techniques and enables EPR data exfiltration by cybercriminals.  

1.2. Motivation 

To address the lack of information about the rise in cyber-attacks on EPRs [25], this research 

investigates the growing concern of cyber-security for the critical health care infrastructure. 

The project examines the recent increase in attacks on the NHS in particular; and proposes a 

methodology for visualising real-world EPR audit logs in order to better understand cyber-

attacks on EPRs. Therefore, we propose an advanced data analytics and visualisation-based 

approach to patient privacy violation detection within EPR systems. Advanced data analytics 

algorithms have the capability to learn patterns of data and profile users’ behaviour, which 

can then be represented visually. Advanced data analytics detect when a user’s behaviour 

has changed, by comparing behaviours, such as the type of actions being taken and the 

patients they are viewing. 

We present a framework for a novel anomaly detection system which integrates density-

based outlier detection, human-in-the-loop machine learning and visualisation techniques 

to ensure patient privacy within EPR systems. The system visualises relationships between 

users and patients in a novel and interactive way. Outlier detection algorithms have the 

capability to explore complex datasets, detect hidden patterns and anomalies within them, 

and learn from analyst feedback. Additionally, they can identify when a user’s behaviour has 

changed, by comparing behaviours such as the type of actions being taken and the patients 

they are viewing. HILML models employ active learning techniques to leverage human 

expertise and iterate training the machine learning model. Visualisation techniques are used 
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to represent dense data, to augment the interpretation process. In this way, potentially 

illegitimate access to patient records can be highlighted and investigated. The results 

demonstrate the potential for data analysis and visualisation techniques to aid the 

situational awareness of patient privacy officers within healthcare infrastructures.  

1.3. Aim and Objectives 

The aim and objectives of the project focus on addressing the issue of internal and external 

threats to EPRs, through proactive monitoring of EPR audit logs. 

1.3.1. Research Question 

The following research questions are considered in the context of this research. How can 

inappropriate access of patient records be proactively detected without explicitly defining 

what constitutes inappropriate access? Once this has been achieved, how can this be ranked 

for prioritisation? And how can feedback be provided if the access is, in fact, appropriate? 

1.3.2. Aim 

The aim of this project is to develop a novel system framework to enable situational 

awareness of anomalous data behaviour within EPRs in order to secure patient privacy, 

particularly within the NHS critical infrastructure network. 

1.3.3. Objectives 

In order to fulfil the aim of this research, the following objectives are considered.  

 Perform a literature review of healthcare infrastructures, including medical devices, 

hospital networks and hospital systems 

 Review related work, including machine learning and visualisation techniques for 

outlier detection, in addition to related applications. 

 Define and develop a novel framework for a system which concerns the use outlier 

detection algorithms, human-in-the-loop machine learning and visualisation 

techniques to detect potential patient privacy violations within an EPR.  
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 Validate the framework through using a real-world dataset and flag potential 

fraudulent access to patient medical records within the partner healthcare 

organisation. 

 Disseminate findings and results to conferences and journals 

1.3.4. Research Scope 

The focus of this project is to design a novel framework for a machine learning system 

capable of identifying patterns and anomalies od data behaviour to identify potentially 

illegitimate accesses to patient records. The framework will combine a density-based outlier 

detection machine learning algorithm, human-in-the-loop machine learning, and 

visualisation techniques. The framework can be used in all healthcare infrastructures. The 

proposed system is limited through a focus on the NHS healthcare network and the use of a 

single real-world dataset, rather than multiple datasets. 

1.4. Novelties 

The research project has the following novel contributions: 

 The development of a system framework that is able to analyse automatically EPR 

audit data and present it as a visualisation is novel. The system framework provides 

the operator valuable insights into the flow of data within the EPR using the machine 

learning algorithm Local Outlier Factor (LOF) [26].  

 The system framework is bespoke to the healthcare infrastructure due to its use of a 

density-based clustering approach rather than following a procedure-based analytics 

approach. In doing so, the system framework can understand the unique 

characteristics of each user’s activity rather than a one size fits all approach to 

appropriate and inappropriate access to EPR data. The use of machine learning 

algorithms enables hidden patterns of data to be detected which current procedure-

based solutions cannot detect. 

 The system framework flags up potential patient privacy violations for review to an 

analyst, and takes feedback from users to continually refine alerts. This aids in 

preventing alert fatigue. To our knowledge this is the only patient privacy detection 
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system that allows the user to interact with the system and provide feedback in 

order to tailor results to their specific EPR solution. 

 Through combining existing research areas, (e.g. Cyber Security, Patient Privacy 

Analytics, Big Data Analysis, Visualisation Techniques and Machine Learning) the 

level of existing research is driven forward through the completion of this project.  

The contributions and novelties of this work have been published in 6 conference papers 

(UKAIS 2016 [27], DeSE 2016 [28], IML 2017 [29], CLOUD COMPUTING 2018 [30], ICM 2019 

[31], HEALTHINFO 2019 [32]) and 2 journal articles (MDPI Open Access 2019 [33] and IEEE 

Open Access 2019 [34]). 

1.5. Research Methodology 

The methodology firstly includes the assessment of real-world data sets collected from 

within a healthcare infrastructure. The analysis process has the goal of identifying how 

attacks are performed and modelling infrastructure behaviour in high detail.  

The second phase includes the engagement of data visualisation techniques to envision 

both the generation and effects of data exfiltration on the EPR, and the changes occurring in 

a system when an attack has taken place. The output is used to educate and create 

awareness between stakeholders and communicate knowledge of existing threats in order 

to improve health care infrastructure security. 

Thirdly, the development of a novel framework for a system capable of autonomously 

generating visualisations of cyber-attacks and critical infrastructure behaviours. As cyber-

attacks on EPRs in the Healthcare Infrastructures are increasing [35], the research is timely 

and directly applicable to a real-world environment. Machine Learning algorithms will allow 

the system to identify patterns and trends in the data without being explicitly taught them. 

This is advantageous to Procedure-Based Analytics, which does not support learning, only 

deduction. For example, if a user typically only logs into their account on weekdays, then if 

the account is logged in on a weekend, it may be an indication that the user’s username and 

password has been compromised by an attacker. The attacker could either be illegally 

accessing hospital records, or searching for further vulnerabilities within the EPR in order to 

perform a privilege escalation attack. In the case that this activity is legitimate, such as a 
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member of staff working an irregular shift, this activity can be recorded by the analyst using 

HILML. 

The seriousness of critical information infrastructures’ protection is a key issue. Their 

vulnerability to the growing cyber-threat enforces this further. Using the system framework  

to identify system threats within EPRs, a layer of security is added to the defence-in-depth 

approach currently in place [36]. Healthcare EPRs are the most integral component of the 

healthcare critical infrastructure and must be monitored and protected [37]. Additionally, it 

is well known that the dangers of cyber-crime increase exponentially with the number of 

interconnected computers and devices [38]. Therefore, the increasing reliance on EPRs for 

data capture and transmission is an increasing reliance on devices vulnerable to attacks 

from the cyber domain. 

Health care data is an extremely attractive target for a cyber-criminal, the compromise of 

this data could lead to severe loss of patient privacy or the tampering and malicious 

falsifying of data could even lead to patient death. Therefore, unique analysis and reporting 

tools need to be developed to combat the increasing risk of data compromise and a focus 

on cyber security innovations is required to maintain patient trust in digital health care 

innovations. A novel framework to increase situational awareness for cyber security experts 

within health care infrastructures is proposed. The system framework creates a visualisation 

of data flow of the information systems used in the health care infrastructure. Through 

doing so, the operator can more accurately predict potential cyber vulnerabilities within its 

systems. The system framework  furthers knowledge and understanding of EPRs and 

prevents data compromise from within them. 

1.6. Thesis Structure 

The structure of the thesis is as follows.  

 Chapter 2 details hospital infrastructures, including hospital networks, medical 

systems and EPRs. The hospital networks section includes a topology detailing the 

network infrastructure. Hospital network security challenges are then discussed. An 

exploration of hospital network data using a real-world dataset is presented, 

demonstrating the complexity of hospital networks and dataflows. The medical 
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systems section presents a topology of the number of medical systems within a 

hospital infrastructure and the exchange of patient data. This section also includes a 

detailed flow chart  of patient journeys within the complex adaptive network of a 

hospital. Finally, EPR systems are discussed in detail, presenting related privacy 

challenges, the use of access control and its limitations, before discussing audit logs 

and their potential use in detecting confidentiality breaches. 

 Chapter 3 details a literature review of related work and techniques. Visualisation 

techniques are presented as a tool for providing situational awareness of 

information security breaches. Machine learning is then discussed as an approach for 

anomaly detection within big data sets, including related algorithms. Finally, related 

work is discussed, in both academic and commercial fields. 

 Chapter 4 demonstrates the detailed system design of the proposed framework. The 

approach is discussed including where the system is located within the medical 

systems topology. Then a detailed breakdown of the framework architecture is 

presented with each component of the framework including figures of the structure, 

functions, behaviours and interface with accompanying discussions. 

 Chapter 5 presents a case study of real-world EPR data. The chapter discusses the 

dataset in detail, including the fields it is comprised of, how it was obtained and 

tokenised in order to protect patient privacy. The IDs within the dataset are then 

extracted, profiled and explored in order to determine anomalous data within the 

dataset. 

 Chapter 6 presents the results of the system framework process on the EPR data. In 

the first section, the results are presented for one month of data and compares LOF 

against Density-Based Spatial Clustering of Applications with Noise (DBSCAN). In the 

second section six months of data is presented. In the third section eighteen months 

of data is presented. Finally, there is a discussion of the comparisons between each 

of the results. 

 Chapter 7 presents the Thesis conclusion including  the contribution to knowledge 

and a summary of the Thesis; the results and an evaluation of the framework, and a 

discussion on future work to be considered. 
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1.7. Summary 

In this chapter, the background and motivation for this work are presented, outlining the 

incentive for the thesis. A research question, aim, objectives and research scope are 

detailed, contextualising the work within the wider research. The novelties of the work are 

described, along with the research methodology detailing how this will be achieved. Finally, 

an outline of the thesis structure is presented. In chapter 2, healthcare infrastructures are 

investigated in detail, describing hospital networks with a case study using real-world data, 

medical system interactivity and a focus on EPR systems.
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2. Healthcare Infrastructures 

2.1. Introduction 

Hospital infrastructures are classified as mission-critical infrastructures [39], where damage 

to network communications and the loss of patient data would have a detrimental impact 

on the healthcare services they provide. In addition, mobile devices are being increasingly 

deployed within these networks, to support applications ranging from biomonitoring to 

materials handling and transportation [40]. Healthcare is an essential part of the national 

critical infrastructure network [41] and one of the four critical infrastructure groups (safety, 

mission, business and security). Damage to EPRs and the loss of patient data would have a 

detrimental impact on the health provision, potentially resulting i 

n patient death or theft of sensitive data [42]. Yet, healthcare infrastructures are 

complacent towards the risks of patient privacy violations [43]. 

This project is timely due to i) a fundamental switch from paper to technology being used by 

beneficiaries within health care infrastructures; [44] ii) the increased need for 24-hour data 

access; iii) GPs increasingly using Virtual Private Networks (VPN) and 3G connections [45]; iv) 

Most UK hospitals have/are upgrading to the EPR system EMIS-web [46], v) more patient 

remote monitoring is taking security outside hospitals. Such trends reduce security levels 

and increase access to hospital networks and exposed Application Programming Interfaces 

(APIs). 

2.2. Hospital Networks 
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In this section an overview of the hospital networks that host healthcare systems is 

presented. Figure 1 presents a 3-Layer Network Topology overview of how a typical hospital 

network is configured. This was provided by the network manager at a UK hospital. The 

diagram demonstrates the principle of the network configuration; as in reality it is replicated 

several times over and therefore too substantial to fit on a single diagram. The diagram 

shows the network layers involved between the server layer and the access layer, and 

demonstrates that they are duplicated throughout in order to provide network resilience. 

The servers connect to the server switch, providing the server access layer of the network 

topology, also known as the application layer. This then connects to the distribution layer, 

also known the transport layer. The transport layer connects to the core layer, or the 

network layer, providing access to routing, wireless and the firewall. This then again 

connects to another distribution/transport layer. This connects to the access layer where 

networked devices connect. 

 

Figure 1. 3-Layer Network Topology 
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Further to this, Figure 2 presents an overview of a typical healthcare network infrastructure 

for enabling remote access within a hospital. The layout enables staff the ability to work and 

provide on-call services remotely. Figure 2 demonstrates the locations of the LANs and 

VLANs within a typical hospital network infrastructure. This was also provided by the 

network manager at a UK hospital. In addition, the firewall placements, in relation to the 

Internet, are depicted.  
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Figure 2. Network Infrastructure for Remote Access 

Figure 2 also displays the relationship between a typical hospital’s typical ‘Community of 

Interest Network’ (CoIN)/WAN and the HSCN (a WAN used to connect many sites across the 

UK National Health Service). The system layout leaves a vulnerability to attackers being able 

to eavesdrop on traffic. From there messages can be injected, replay attacks can be 

performed, such as maliciously replaying or delaying a valid data transmission, and spoof 

messages can be generated [10]. In doing so, it is possible to compromise the integrity of 

the device operation [9]. If successful, patient privacy would be invaded and legitimate data 

supressed. This compromises patient privacy whilst attempting not to interfere with medical 

device operation. 

With healthcare organisations using electronic records, cyber-based transactions (such as 

ordering diagnostic tests and e-prescribing) and mobile electronics, the risk of a data breach 

is an increasing concern. Healthcare data is intrinsically valuable; the repercussions of data 

compromise within healthcare infrastructures can range from loss of patient privacy and 

fraud, to patient injury or potentially death. Therefore, protecting intrinsically private 

patient data and preventing data compromise is critically important. Visualisation tools can 

be used by cyber security officers within healthcare organisations to increase their 

situational awareness of data flow and actively address this issue. Additionally, visualisation 

tools allow system operators to be proactive about cyber security within healthcare 

organisations, through highlighting unusual activity for investigation. This is in contrast to 

the accepted and fundamentally flawed approach of reactivity to cyber security attacks, 

which does not attempt to address the underlying security flaws within healthcare 

organisations [47]. 

With healthcare networks, devices (medical, clinical and personal) are connected to global 

networks for convenient access [48]. However, modern healthcare networks are complex 

systems, with hospitals each having their own unique structure [49]. Healthcare 

organisations differ from other enterprise networks through their use of Medical Cyber 

Physical Systems (MCPSs). MCPSs are inexpensive personal monitoring devices that can 

record and transmit multiple physiological signals [50]. Encryption of this data is required for 

secure storage, secure transmission, and secure computation. MCPSs consist of four layers, 
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which need to be considered and secured. Firstly, the Data Acquisition layer consists of a 

Body Area Network (BAN), which are wearable sensors that facilitate the collection of 

patient medical information. Secondly, the Data Concentration/Aggregation Layer, 

consisting of transmitting the gathered information to a gateway server through short range 

wireless, such as Bluetooth, due to the low computational power of sensors with a BAN. 

Thirdly, the Cloud Processing and Storage Layer consists of the long-term secure storage, 

processing and analytics of medical information. Finally, the Action Layer consists of either 

active or passive usage of the data. Active usage consists of an actuator using the data and 

the algorithms used to perform data analytics to be directly influenced by the data, such as 

through the use of a robotic arm in robot-assisted surgery. Passive action visualises the data 

in order to provide decision support to medical professionals [50]. Intrusion Detection 

System (IDS) techniques for MCPSs are still in their infancy [51]. Attacks are detected 

through recording state information for both local nodes and peers. This information is then 

updated to a state machine, which models the subject device. This state machine generates 

a detection when state information becomes malicious [51]. In practice, this means that if a 

heart rate component is reporting normal cardiac function, but the Cardiac Device (CD) is in 

defibrillator mode, then the IDS should report a detection instead. Wireless communication 

security is handled by contemporary secret key technology, such as Public Key Infrastructure 

(PKI). This provides authentication and  prevents man-in-the-middle attacks [14]. 

2.2.1. Hospital Networks Security Challenges 

With increasing requirements for valuable and accurate information, patients need to be 

confident that their data is being stored safely and securely. Procedures are employed to 

detect if a user is looking at the record of a patient with the same surname as them to 

identify potential patient confidentiality violations.  However, it is impractical to set 

procedures for every single user and patient with an EPR [49] as 1) Information Security 

teams are typically under resourced and 2) even if the resource is available to do this, it 

often would not provide meaningful information due to the unpredictable nature of 

healthcare workflows. Procedure-based solutions cannot detect violations (such as APTs) in 

these contexts as criteria which constitutes appropriate behaviour cannot be 

comprehensively defined pre-emptively [4]. Additionally, it is unfeasible to detect fully all 

illegitimate access within EPR systems [49], but it is feasible to eliminate legitimate access. 
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In doing so, it becomes possible to focus the attention of information security analysts to 

where it is needed, within the comprehensive EPR audit datasets.  

Healthcare organisations have sensitive data spread across a number of devices. Mobile 

devices, such as laptops or tablets are all used for inputting medical data. Furthermore, 

specialised devices, such as the Draeger patient monitoring systems [52], require network 

connectivity. Draeger systems, are medical devices for use in patient bedside care, which 

operate using a custom OS Shell running Windows XP/7. The system is currently installed in 

a number of hospitals throughout the UK [52].  

 

Figure 3 - Draeger Technology 

This custom Windows shell is known as the Infinity Explorer [52]. For system security, the 

Draeger Omega system (see Figure 3) uses Infinity Explorer Security, which functions as both 

Virus and Intrusion Protection, in addition to a Firewall. At present the majority of hospital 

systems are outward facing, meaning that they are resistant to external attack sources, yet 

vulnerable to insider attacks. Draeger medical devices, including the Omega system, employ 

the use of a touch screen interface and customisable user interface for designed 

patient/diagnosis specific layouts. The intention of Draeger devices, as with most medical 

devices, is to provide the highest quality of patient care, by providing Data Accessibility, 

Integrity and Security. The Draeger Omega system runs Windows XP, which is inherently 

vulnerable since it is no longer supported by Microsoft and its vulnerabilities are well known 

to attackers. 
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This risk is further exacerbated by the BYOD revolution. This is a term referring to the 

technologies enabling employees to access and utilise internal corporate IT resources, with 

their personal devices [53]. BYOD policies have numerous benefits including reduced costs 

and improved productivity, convenience and efficiency of work. The practice also means 

that users from visiting healthcare organisations have access to hospital networks and the 

Internet. However, BYOD also carries numerous risks including data loss/leakage or theft, 

application security, network availability, legal liability and regulatory compliance and loss of 

brand identity, posing various challenges for IT departments who support and secure them 

[53]. BYOD is a large contributor to the era of ubiquitous computing, also known as 

pervasive computing, where various technologies interact with one another, with 

potentially sensitive data being transmitted over less secure means of communication, such 

as wirelessly [54]. With an increased use of technology there is a corresponding risk of 

increased exposure to cyber security threats. These wireless vulnerabilities pose a particular 

risk to the healthcare network, in that potentially insecure devices are granted access to 

hospital infrastructure and confidential data. An attacker is able to use this to their 

advantage by hacking a BYOD in order to gain back-door access onto a hospital network.  

With regards to the aforementioned tendency for organisational complacency towards the 

risks of cyber security [43], issues of reduced information visibility due to data complexity, 

fragmentation, interoperability and lack of specialisation, all undermine the security of 

these organizations [43]. Organisations need to bridge the gap between cyber operations, 

resilience and the priorities of the business. In addition to this, the decision makers need to 

be able to synthesize highly disparate data into a coherent and concise narrative [43]. The 

goal of security engineers is to develop tools capable of detecting malicious, multistage 

intrusion attacks, weighting the individual attacks, and comparing them against the universe 

of attacks within the network [10]. This is a  plain recognition problem and an intruder’s 

objectives should be determined based on the analysis of the entire dataset of attacks, 

rather than just individual attacks [10]. Healthcare network security challenges can be 

summarised into four categories [55]: 1) system structure, 2) mobile device, 3) medical 

equipment and 4) user-based challenges. Where, system structure refers to the 

vulnerabilities in the physical system layout; mobile device challenges relate to issues 

surrounding on-demand network access; medical equipment challenges concern low 
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security in medical and biomedical devices. Finally, user-based challenges refer to the 

general staff-awareness of existing cyber-threats or good cyber-security practices. For 

example, a hospital staff member may click unsuspectingly on a link in an email, which 

contains a Trojan virus and creates a back door into the hospital network.  

Recent attacks, such as the WannaCry campaign [29], have further reduced the levels of 

public trust in security leading to widespread concern about the health sector’s ability to 

maintain the privacy of patient data. Bell-LaPadula [56], and FairWarning [57], are the staple 

access control systems employed but are i) inflexible, presenting issues when considering 

the dynamic boundaries of many modern healthcare networks and ii) do not consider  an 

attacker who has acquired the logon credentials of an approved clinician (e.g. through 

phishing or social engineering) [58]. This has been a challenge for security experts for many 

years; referred to as a plain recognition problem [10], Information Security Officers and IT 

Managers need to interpret disparate data behaviours to preserve privacy and safeguard 

EPR data [7]. They constantly balance privacy with a need for more intuitive security 

solutions. Therefore, confidentiality and patient privacy within EPR systems is typically 

managed through an agreed and signed code of practice between the organisation and its 

users [21]. 

2.2.1.1. Healthcare Data Breaches 

Healthcare regularly appears in the top three industries for data breaches [4]. Traditional 

approaches to endpoint security are no longer viable in the modern cyber-threat landscape 

[4]. Attack models have changed from attacks on single PCs to large scale attacks on entities 

through APTs. For example, zero day exploits, spear phishing, watering hole models and 

encrypted side channel methods are being used increasingly to infect critical systems [14]. 

In addition, modern malwares have adopted and evolved Evasion Techniques, such as 

malware packing, obfuscation and polymorphism [4]. As such, the discussion in this section 

is focused on the specific threats and attack vectors facing healthcare infrastructures. 

Information Security is based on three key concepts: confidentiality, integrity and 

availability [59]. Confidentiality and integrity ensure that only an authorised user can access 

and edit protected data [59]. Confidentiality ensures the inaccessibility of private medical 

information to unauthorised users [6]. BYODs are vulnerable due to the lack of 
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confidentiality, isolation and compliance on BYODs [60]. Confidentiality refers to sensitive 

data being stored on a personal device and the difficulty in monitoring unauthorized and 

illegal access to that data.  

Within healthcare infrastructures, MCPSs are personal monitoring devices that can record 

and transmit multiple physiological signals [50]. For safety-critical MCPSs the ability to 

detect attackers, whilst limiting false alarms in order to protect the well-being of patients, is 

of critical importance [51]. However, threats to MCPS components are increasing with the 

malicious users aiming to cause node compromise [51]. This process can be initiated 

through over-the-air software updates, stack overflow exploits or ‘logic bombs’ through 

third party developers [51]. Security is a concern especially for small medical devices 

attached to a patient [61]. Compromise of data storage could potentially result in patient 

death. Similarly, attacks on pharmacy systems could result in the wrong medication being 

prescribed, due to compromise of patient information leading healthcare providers to make 

decisions based on incorrect data, leading to long term health concerns for the patient [61]. 

MCPSs need to prevent the disclosure of information to unauthorised individuals [61]. 

Particularly, in regards to healthcare, patient personal data needs to be transmitted 

confidentially though the use of encryption techniques [61]. Additionally, information 

generated from medical devices is required to only be accessible to authorized users [9].  

The most frequent outcome of a cyber-attack on a system is the unavailability of patient 

care due to computer outages [62]. Other common attacks, which are a challenge to 

healthcare security systems, are outlined as follows: 

 Scanning attacks involve adversaries gathering meaningful information in order to 

launch a sophisticated attack upon an infrastructure [63]. These scans commonly 

include, IP address scanning, port scanning and version scanning. With regards to 

Healthcare Infrastructures, an adversary can carry out segment scanning on Health 

Level Seven (HL7) information, which is the standard framework for the exchange 

and integration of healthcare data [64]. In doing so, they can learn personal 

identifiers, order numbers or patient visit information [63]. 

 Spoofing attacks involve malicious users masquerading as legitimate [63]. 

Masquerading is a passive spoofing attack where attackers acquire legitimate 
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account credentials and then log in. Impersonation is an active spoofing attack, 

sometimes known as a replay attack, wherein attackers capture authentication 

traffic and replay the traffic in order to gain access to the healthcare infrastructure. 

 Injection attacks involve exploiting vulnerabilities of SQL, JavaScript and other 

computer programs in order to successfully insert untrusted data [63]. In doing so, 

attackers may gain access to healthcare databases, attack web users and propagate 

viruses. Additionally, they may inject malicious segments commands or responses in 

order to reduce the security of healthcare infrastructures.  

 Broken Authentication and Session Management involves attackers exploiting 

vulnerabilities in authentication mechanisms in order to assume the identities of 

legitimate users [63]. A brute force attack is an example of this kind of attack, taking 

advantage of weak passwords and small encryption keys, ultimately allowing a 

malicious user to perform all the functions available to a legitimate user. 

 DDoS involve exhausting system and network resources in order to make them 

unavailable [63]. For example, a flooding-based DDoS sends a large number of 

packets to a web server; in doing so, legitimate requests are blocked as the server 

CPU is overwhelmed. 

Healthcare organisations should have processes in place to identify data loss and wipe data 

remotely. The challenge is that the volume of data and number of connected network 

devices makes detecting cyber-intrusions a considerable difficulty. Security threats within 

healthcare have farther reaching implications than other industries. Due to the increased 

adoption of trends such as the use of mobile, social and cloud, the ease for hackers to 

infiltrate the healthcare infrastructure massively increases [4]. Medical data must be 

private, with data misuse and violation detected in order for authorised users to release and 

share data to authorised parties and public institutions [8]. 

2.2.2. Hospital Network Data 

In this sub-section, further investigations into hospital networks are presented through the 

visualisation of real-world netstat hospital data on three servers. This serves as a 

background demonstration of the data within a hospital network setting. Through these 

investigations further insights into hospital networks are gained. The investigation highlights 
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the complexity of the network data and the structure of network packets from the medical 

systems within the hospital infrastructure. 

Transmission Control Protocol (TCP) socket connections to three different servers offering 

an Electronic Prescribing and Medications Administration (EPMA) System, a Patient 

Administration System (PAS) and an Active Directory Domain Controller (AD). Data from a 

Liverpool-based hospital is analysed. TCP data was captured as it allows for two hosts to 

establish a connection and exchange data streams. Specifically, three visualisation 

techniques were investigated, 1) Force-Directed Visualisation algorithms, 2) Logarithmic 

Heatmaps and 3) Nonparametric Statistical Graphics to present network data in such a way 

as to highlight anomalies and identify relationships between data points. 

This TCP data employed in the visualisations was captured using the netstat command with 

the command line utility. In addition to running a netstat command [65] a number of 

additional parameters were included in the command (-nab). These parameters are defined 

as follows: 

 The netstat command (without any additional parameters) displays the Protocol, 

Local Address, Foreign Address and State of the TCP connections. 

 The netstat–n command displays active TCP connections numerically and no attempt 

is made to determine names, in order to facilitate the dataset analysis. 

 The netstat–a command displays all active connections of the TCP and UDP ports, on 

which the computer is listening.  

 The netstat–b command displays the executable program name associated with the 

creation of the connection or listening port.  

For each of the three datasets, the four separate netstat commands were executed. Firstly, 

without any parameters, secondly with the parameters –nab, thirdly with the parameter –b, 

and finally with the parameter –n. The first command returns a dataset which attempts to 

determine the names of the Foreign Address, so that the devices which the servers are 

connected to are known. The –nab command displays all TCP connections numerically 

alongside the executable involved in creating the connection. The –b command displays TCP 
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connections with named Foreign Address values. Finally, the –n command produces a clean 

dataset.  Specifically, the netstat commands are executed on these servers: 

 The AD server, which manages directory-based services for the hospital.  

 The PAS server, which manages core functionality, such as patient administration, 

across the hospital.  

 Finally, the EPMA server, which generates, transmits and files prescriptions across 

the hospital. 

Additionally, for each dataset, the most recurring items for both local and foreign addresses 

are shown. The Liverpool-based hospital has currently 274 servers, a combination of both 

physical and virtual servers, providing specialist applications and functions across the 

hospital network. Of these, there are 5 Domain Controller servers, 4 Patient Administration 

System servers and 2 Electronic Prescribing servers. The three server types used for the 

purpose of this are chosen for two reasons; 1) they are the most active servers on the 

network, and 2) there potential value to a malicious attacker. For example, if the attacker is 

able to infiltrate the Active Directory Domain Controller, then they have access to an 

authentication certificate and access to the wider hospital network. By accessing the 

Electronic Prescribing System, the attacker has access to large quantities of pharmaceutical 

drugs. Additionally, by accessing the Patient Administration System, intrinsically valuable 

and confidential medical data would be reachable. If an attacker were to, instead, attempt 

to shut down any of these servers through a DDoS attack, it could limit the ability of 

legitimate medical professionals to provide appropriate patient care and could potentially 

lead to patient harm. 

In Table 1, a sample of the analysed netstat data is shown displaying (i) the connection type, 

(ii) the IP source connecting to the DC, (iii) the target of the IP address (the DC server), and 

(iv) the state of the connection. All data presented is anonymised. The data is a single 

snapshot of the domain controller server and comprises of 590 established connections of 

5,688 total ports. 

Table 1. TCP Socket Connections Sample Data (Anonymised) 

Active Directory Domain Controller Electronic Prescribing System 

Proto Local Foreign State Proto Local Address Foreign State 
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Address Address Address 

TCP 0.0.0.0:***** 0.0.0.0:0 LISTENING TCP 0.0.0.0:***** 0.0.0.0:0 LISTENING 

TCP **.**.***.16:53 0.0.0.0:0 LISTENING TCP **.**.***.197:139 0.0.0.0:0 LISTENING 

TCP **.**.***.16:135 **.**.**.148:53173 ESTABLISHED TCP **.**.***.197:8194 **.**.***.133:50176 ESTABLISHED 

TCP **.**.***.16:135 **.**.***.51:63068 ESTABLISHED TCP **.**.***.197:8194 **.**.***.133:50326 ESTABLISHED 

TCP **.**.***.16:135 **.**.***.92:29550 ESTABLISHED TCP **.**.***.197:8194 **.**.***.133:50640 ESTABLISHED 

In Table 2 a sample of the netstat data displays, the connection type, the IP source 

connecting to the PAS, the target of the IP address (the PAS server) and the connection 

state. The data is a single snapshot of the domain controller server and comprises 93 

established connections of 173 total ports. 

Table 2. Patient Administration System – TCP Socket Connections Sample Data (Anonymised) 

Proto Local Address Foreign Address State  

TCP 0.0.0.0:***** 0.0.0.0:0 LISTENING 

TCP **.**.***.16:53 0.0.0.0:0 LISTENING 

TCP **.**.***.16:135 **.**.**.148:53173 ESTABLISHED 

TCP **.**.***.16:135 **.**.***.51:63068 ESTABLISHED 

TCP **.**.***.16:135 **.**.***.92:29550 ESTABLISHED 

In Table 3 a sample of analysed netstat data is shown displaying firstly, the connection type, 

secondly the local IP address (the AD server), thirdly the local port number, fourthly the 

foreign address connecting to AD, fifthly the foreign port number, sixthly the state of the 

connection and finally the process running on the connection. All data presented is 

anonymised. The data is a single snapshot of the domain controller server and comprises of 

590 established connections of 5,688 total ports. Netstat tables without parameters for the 

AD, EPMA and PAS servers are presented in the Appendix in Table 40, Table 41 and Table 42 

respectively. 

Table 3: Active Directory Dataset Sample 

Proto Local Address Local Port Foreign Address Foreign Port State Process 

TCP 0.0.0.0 49288 0.0.0.0 0 LISTENING dns.exe 

TCP 0.0.0.0 49293 0.0.0.0 0 LISTENING services.exe 

TCP 0.0.0.0 49331 0.0.0.0 0 LISTENING PolicyAgent 

TCP **.***.***.16 53 0.0.0.0 0 LISTENING dns.exe 

TCP **.***.***.16 135 **.**.**.148 53173 ESTABLISHED RpcSs 

TCP **.***.***.16 135 **.**.***.51 63068 ESTABLISHED RpcSs 

TCP **.***.***.16 135 **.**.***.81 62264 ESTABLISHED RpcSs 

TCP **.***.***.16 135 **.**.***.92 29550 ESTABLISHED RpcSs 

TCP **.***.***.16 135 **.**.***.135 55335 ESTABLISHED RpcSs 
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TCP **.***.***.16 135 **.**.***.143 50150 ESTABLISHED RpcSs 

TCP **.***.***.16 135 **.**.***.158 58659 ESTABLISHED RpcSs 

In order to provide an appropriate visualisation, the dataset undertakes a pre-processing 

phase. To do this, node and edge data are extracted and isolated into individual datasets. 

Three datasets are then produced for each data capture procedure. Examples of the node 

dataset and the two edge datasets are found in Table 4. 

In Table 4, the Source column refers to a common ID number indicating the TCP connection 

or listening port. Table 4(a) contains the port process running on the IP connection. Table 

4(b) contains the local port number and  Table 4(c) contains the foreign port number. In 

order to provide a proof of concept, the data is manually cleansed of low-risk data. 

Unknown port processes, or processes running on unfamiliar ports, are left in the dataset, 

whilst common processes, running on secure and known port mappings are removed. 

Table 4: AD Data Preparation – (a) Port Process – (b) Local Port – (c) Foreign Port 

Source Label  Proto Local Address  Proto Local Address  

24 dns.exe  24 49288  24 0  

25 services.exe  25 49293  25 0  

26 PolicyAgent  26 49331  26 0  

27 dns.exe  27 53  27 0  

28 RpcSs  28 135  28 53173  

29 RpcSs  29 135  29 63068  

30 RpcSs  30 135  30 62264  

31 RpcSs  31 135  31 29550  

32 RpcSs  32 135  32 55335  

33 RpcSs  33 135  33 50150  

34 RpcSs (a) 34 135 (b) 34 58659 (c) 

2.2.2.1. Network Visualisation Algorithms 

ForceAtlas2 [66], Yifan Fu [67] and Fruchterman-Reingold [68], are force directed placement 

algorithms allowing the display of complex graph structures. This is achieved through sorting 

and placing nodes into structured topologies satisfying several visual requirements such as 

even distribution, symmetry, non-overlapping edges and minimising distance between close 

nodes. ForceAtlas2, for example, is a force directed layout algorithm, simulating a physical 

system in order to spatialise a network [66]. Nodes repulse one another and edges attract 

nodes, which ultimately creates a balanced state and allows for a visual representation of 
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data structure. This enables data communities with denser relations to appear as groups of 

nodes. Yifan Fu is a graph drawing algorithm combining a multilevel approach, to overcome 

local minimums, and the Barnes-Hut octree technique, to approximate short and long range 

forces [67]. Fruchterman-Reingold is an algorithm intended to draw undirected graphs 

through distributing vertices evenly, making edge lengths uniform and reflecting symmetry 

[68]. Furthermore, two principles are adhered to. Firstly, that vertices connected by an edge 

should be drawn near each other, and secondly, that vertices should not be drawn too close 

to each other [68]. In addition to these criteria, the Fruchterman-Reingold algorithm adds 

even vertex distribution and treats vertices as atomic particles or celestial bodies, exerting 

attractive and repulsive force from one another [69]. In other words, the algorithm 

distributes vertices evenly, makes edge lengths uniform and reflects symmetry by placing 

spring-like attractive forces on each edge, and letting the system stabilise. The algorithm is 

considered a standard in graph-drawing [64]. Employing an iterative approach for 

determining the position of all the nodes and the distance between the nodes connected by 

an edge, using the sum of force vectors to calculate the direction and distance a node 

should be moved at each step, and updating the forces between them, until stability (i.e. 

minimum energy) is reached.  

The optimal distance k between two vertices is defined as [68]: 

𝑘 = 𝐶√
𝑎𝑟𝑒𝑎

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
 

(2.1) 

where C is the constant to be found experimentally and represents the width step a node is 

moved at each iteration [68]. 

The Fruchterman-Reingold attractive force is defined as: 

𝑓𝑎(𝑑) = 𝑑2/𝑘 

(2.2) 
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where 𝑓𝑎 is the attractive force, d  is the distance between two vertices and k  is the radius 

of the empty area around a vertex [68]. 

The Fruchterman-Reingold repulsive force is defined as: 

𝑓𝑟(𝑑) =  −𝑘2/𝑑 

(2.3) 

where 𝑓𝑟 is the attractive force, d  is the distance between two vertices and k  is the radius 

of the empty area around a vertex [68]. 

OpenOrd is an open-source graph-drawing algorithm specialised for drawing large-scale 

real-world graphs incorporating edge-cutting, a multi-level approach, average-link clustering 

and a parallel implementation of a force-directed method [70]. It is based upon and 

implementation of the Fruchterman-Reingold algorithm known as the VxOrd [71]. All of 

these visualisation algorithms are employed and evaluated as part of the data processing 

case study in section 2.2.2.2. 

Yifan Hu, which is a force-directed graph drawing algorithm, is used to model the network 

data through a system of bodies, with forces acting between them [67]. It is the first 

algorithm to combine both techniques for large scale graph drawing [67]. Typically, this 

multilevel approach has three phases, as described in Algorithm 1: 

 Coarsening: In this phase, a series of graphs are generated, with the aim of 

encapsulating the information of its parent, while containing fewer vertices and 

edges. The process continues until the coarsest graph layout is determined. 

 Coarsest graph layout: In this stage, the graph is then presented using an algorithmic 

technique that combines an adaptive step length control scheme. 

 Prolongation and Refinement: The layout on the coarsest graphs are then prolonged 

recursively to the finer graphs. Once this has been carried out, the layout is then 

refined again using the algorithm used in phase 2. This is an iterative process. 

The algorithm uses the repulsive forces on one node from a cluster of distant nodes. The 

algorithm calculates both the attraction and repulsions forces to visually demonstrate the 
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component nodes within a hospital network structure. The Yifan Hu repulsion Fr formula is 

mathematically defined as [67]: 

𝐹𝑟 =
𝑘

𝑑^2
 

(2.4) 

Here, d represents the distance between the two nodes, while the attraction Fa formula is 

expressed as [67]: 

𝐹𝑎 =  −𝑘 ∙ 𝑑 

(2.5) 

 

Algorithm 2.1 – Yifan Hu Multilevel algorithm [67] 

1) Coarsest Graph Layout, which is as modelled as follows: 

𝒊𝒇 (𝒏(𝒊+𝟏) < 𝑴𝒊𝒏𝑺𝒊𝒛𝒆 𝒐𝒓 𝒏(𝒊+𝟏)/𝒏𝒊  > 𝒑){ 

∗  𝒙𝒊 ≔ 𝒓𝒂𝒏𝒅𝒐𝒎 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒍𝒂𝒚𝒐𝒖𝒕 

∗  𝒙𝒊 = 𝑭𝒐𝒓𝒄𝒆𝑫𝒊𝒓𝒆𝒄𝒕𝒆𝒅𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎(𝑮𝒊, 𝒙𝒊, 𝒕𝒐𝒍) 

∗  𝒓𝒆𝒕𝒖𝒓𝒏 𝒙𝒊} 

2) The Coarsening Phase, calculated as outlined: 

𝒔𝒆𝒕 𝒖𝒑 𝒕𝒉𝒆 𝒏𝒊 × 𝒏(𝒊+𝟏) 𝒑𝒓𝒐𝒍𝒐𝒏𝒈𝒂𝒕𝒊𝒐𝒏 𝒎𝒂𝒕𝒓𝒊𝒙 𝑷𝒊 

𝑮(𝒊+𝟏) =  𝑷(𝒊𝑻)𝑮𝒊 𝑷𝒊 

𝒙(𝒊+𝟏) = 𝑴𝒖𝒍𝒕𝒊𝒍𝒆𝒗𝒆𝒍𝑳𝒂𝒚𝒐𝒖𝒕𝑮(𝒊+𝟏), 𝒕𝒐𝒍) 

and 3) the Prolongation and Refinement Phase, where prolongation is employed to acquire 

initial layout: 

 𝒙𝒊 = 𝑷𝒊 𝒙(𝒊+𝟏) 

𝒓𝒆𝒇𝒊𝒏𝒆𝒎𝒆𝒏𝒕: 𝒙𝒊 = 𝑭𝒐𝒓𝒄𝒆𝑫𝒊𝒓𝒆𝒄𝒕𝒆𝒅𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎(𝑮𝒊, 𝒙𝒊, 𝒕𝒐𝒍) 

𝒓𝒆𝒕𝒖𝒓𝒏 𝒙𝒊 

The starting point is the original graph, 𝐺0 =  𝐺 and 𝑛𝑖 =  | 𝑉𝑖 | is the coefficient for the 

number of vertices in the 𝑖𝑡ℎ level graph, represented as 𝐺𝑖. 𝑥𝑖 is defined as the coordinate 

vector for the vertices in 𝑉𝑖. 𝐺𝑖 is represented by a symmetric matrix 𝐺𝑖, where all entries of 

the matrix act as the edge weights. 𝐺𝑖 + 1  to 𝐺𝑖  is the continuation operator, also 

represented by a matrix 𝑃𝑖, of dimension 𝑛𝑖 ∗  𝑛𝑖 + 1. 

2.2.2.2. Network Visualisation Examples and Techniques 

Figure 4 depicts visualisations of the raw data connections at the Liverpool hospital. The 

nodes, depicted by black circles, represent devices connecting to the domain controller. 
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Visualisations of the hospital’s Active Directory Domain Controller, are presented in Figure 4 

(a) and (b). In Figure 4 (a), the algorithm performed on the data is a ForceAtlas2 [66] [72]. 

The fundamentals of ForceAtlas2 are intended to be simplistic, nodes repulse and edges 

attract continuously, while the layout is running and can be manipulated by the user while 

running. Figure 4(b) displays the algorithm applied to the data using the Yifan Hu Multilevel 

layout [67]. In this case, the repulsive forces on a node from a cluster of nodes are 

approximated by a Barnes-Hut calculation [72], which treats them as a super-node. The 

repulsive force is global and proportional to the inverse of the (physical) distance between 

vertices. The attractive force (the spring force) is only between neighbouring vertices [67]. 

The effect of this is that one node may be attracted to two other nodes, but those nodes 

may be repelling each other. This leads to a stretching effect. As the graph shows, visualising 

the raw data provides a challenging insight into security detection. The identification of 

anomalous behaviour for one device is arduous due to the volume of data present. 

Additionally, there is no clear differentiation between low-risk data, and medium to high-

risk data, which may indicate a potentially malicious device. Therefore, the visualisation of 

the data without being pre-filtered provides a limited insight into network behaviour; as the 

data is dense, with no clear indication of anomalous data points to be highlighted for 

security analysts.  

   

(a) Domain Controller Data with 
ForceAtlas2 algorithm 

(b) Domain Controller Data Yifan Hu 
Multilevel layout algorithm 

(c) Electronic Prescribing Data with 
Frutcherman-Reingold layout algorithm 
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(d) Electronic Prescribing Data with 
Yifan Hu Multilevel layout 

(e) Patient Administration System 
Data with OpenOrd layout algorithm 

(f) Patient Administration System Data 
with Yifan Fu Multilevel layout algorithm 

Figure 4. Netstat Visualisations 

Figure 4 (c) and (d) depict visualisations of data connections for the EP system at the 

Liverpool hospital. In Figure 4 (c) the data is processed through the Frutcherman-Reingold 

layout algorithm, which simulates the graph as a system of mass particles [68]. The nodes 

are mass particles and the edges are springs between the particles. The arrows on the 

visualisation represent weighted edges, where there are two or more edges between two 

vertices, with the larger arrows representing more edges. In Figure 4(d) the algorithm 

applied to the data is the Yifan Hu Multilevel layout [67]. Figure 4 (c) and (d) demonstrates 

that, at a glance, current industry standard visualisation algorithms cannot present the data 

in a meaningful way without first pre-processing the data. Advanced data analytics 

techniques would, therefore, allow the data to be filtered in such a way that the resulting 

visualisations would highlight the potential security risks more clearly in the data [73]. 

Figure 4 (e) and (f) presents visualisations of data connections for the PAS system at the 

Liverpool hospital. Figure 4 (e) displays the PAS data visualised through the ‘OpenOrd 

layout’ algorithm, which expects undirected weighted graphs and aims to distinguish 

clusters of data [70]. It is based on the Frutcherman-Reingold [68] algorithm. In Figure 4 (f), 

the Yifan Fu layout algorithm is applied. In Figure 4 (e) and (f), even with a much smaller 

dataset, it is shown the data is still unmanageable. It is unreasonable to expect the user to 

identify which operators are potentially high-threat, what the data points tell the user about 

the overall state of the system, and the anomalies within it. 
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In order to demonstrate the interconnectivity of the three datasets, the data is combined 

into a single dataset and visualised. Figure 5 presents visualisations of data connections for 

the DC, EP and PAS systems at the Liverpool hospital.  

   

(a) Full Dataset with Frutcherman-Reingold 
algorithm 

(b) Full Dataset with OpenOrd layout 
algorithm 

(c) Full Dataset with Yifan Hu 
Multilevel layout algorithm 

Figure 5. Full Dataset 

In Figure 5 (a), the data is visualised through the Frutcherman-Reingold layout. In Figure 5 

(b), the OpenOrd layout algorithm is used to visualise the data. In Figure 5 (c), the Yifan Hu 

Multilevel layout algorithm is presented. The visualised data presents snapshots from three 

servers of the hospital networks, representing only a small section of the hospital network 

infrastructure. With the ultimate aim of the process to capture snapshots at regular 

intervals on all the hospital servers the visualised data demonstrates that this is problematic 

due to the sheer quantity of data. Once the data has been visualised, interactions between 

the user and the visualisation itself are a challenge. For this reason, captured network data 

needs to be pre-filtered in order to simplify the visualisation and the visualisation process. 

In Figure 6, several heatmaps are presented, comparing frequency of Local Address and 

Foreign Address counts in the datasets. Additionally, in Figure 6, a comparison of IP 

addresses (converted to integer values) are presented. 

Calculating the integer value of an IP address is commonly calculated by breaking the 

address into 4 octets and using the equation: 

(𝑓𝑖𝑟𝑠𝑡 𝑜𝑐𝑡𝑒𝑡 ∗  256³) + (𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑐𝑡𝑒𝑡 ∗  256²)  +  (𝑡ℎ𝑖𝑟𝑑 𝑜𝑐𝑡𝑒𝑡 ∗  256)  +  (𝑓𝑜𝑢𝑟𝑡ℎ 𝑜𝑐𝑡𝑒𝑡) 

(2.6) 
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Representing the data as a logarithmic heat-map is an approach for identifying data points 

of interest. Using a logarithmic scale, lower-scale values are not compressed down into the 

congested section of the graph where the unique values would be challenging to identify. 

However, the density of the dataset prohibits valuable insights from being derived. 

Producing a real-time heatmap would be inefficient, as frequencies would need to be 

calculated in real time. IP addresses would also need to be converted into integers in real 

time, and this is a computationally intensive process. Additionally, many of the IP values are 

within the same range, as they are communicating locally within the hospital. In comparison 

to Figure 5, individual data points cannot be visualised separately, as they all fall on the 

same point on the heatmap, with only colour range to represent density. This approach is 

inefficient for visualising hospital network data. 

The visualisation is constructed using a logarithmic algorithm, outlined in (7). 

𝑓(𝑥) = 𝑙𝑜𝑔𝑏(𝑥) 

(2.7) 

Where the base b logarithm of x is equal to f(x). In this sense, a logarithmic heat-map is 

appropriate as the log scales enable a significant range of coefficients to be displayed. 

Lower-scale values are not compressed down into the congested section of the graph where 

the unique values would be challenging to identify. Representing the data as a logarithmic 

heat-map is a clear approach for identifying data points of interest. However, the density of 

the dataset prohibits valuable insights from being derived, and a real-time graph would be 

inefficient. The quantity of data prohibits all the data points from being visualised. In section 

2.2.2.3., data normalisation, feature extraction and machine learning algorithms are applied 

to the dataset to detect abnormal EPR access. Once the dataset has been administered by 

these algorithms, visualisation techniques are applied. In doing so, the situational awareness 

of a patient privacy officer is enhanced. 
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(a) Logarithmic Heatmap 
comparing frequency of the Local 

Address and Foreign Address 
counts in the Domain Controller 

server 

(b) Logarithmic Heatmap comparing 
frequency of the Local Address and 

Foreign Address counts in the 
Electronic Prescribing server 

(c) Logarithmic Heatmap comparing 
frequency of the Local Address and 

Foreign Address counts in the Patient 
Administration System server 

   

(d) Logarithmic heatmap 
comparing IP addresses (converted 

to Integer values) of the Domain 
Controller server 

(e) Logarithmic heatmap comparing 
IP addresses (converted to Integer 

values) of the Electronic Prescribing 
server 

(f) Logarithmic heatmap comparing IP 
addresses (converted to Integer values) 

of the Patient Administration System 
server 

Figure 6. Logarithmic Heatmaps 

Figure 7 presents histograms of the most frequent items of Local and Foreign Address values 

in the Domain Controller dataset. Displayed in Figure 7 (a) the frequency for Local Addresses 

on the Domain Controller is shown. The output is varied, where the most significant IP 

address item counts comprise around 4% of the local IP address ports. 89.84% of the IP 

addresses in the dataset are unique values. In Figure 7 (b), the common most value is that of 

an asterisk due to the port not having been established indicating that at this time the 

Domain Controller had approximately 11.4% of its ports connected. 

These ports are comprised of unique values displaying the port number of the remote 

computer to which the socket is connected. In the case of this dataset, all port numbers 

begin with the IP ranges used within the hospital, which indicates that all devices connected 

to the domain controller are devices on site and on the hospital network. 
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Figure 7 (c) and (d) presents the most frequent items of Local and Foreign Address values in 

the Electronic Prescribing dataset. Displayed in Figure 7 (c) the most frequent items for Local 

Addresses on the Electronic Prescribing is shown. The output is varied with the largest IP 

address item counts comprising around 7% of the local IP address ports. There are 3 sets of 

two value counts, with the rest being unique values; however, the Electronic Prescribing 

dataset is the smallest of the three datasets. Figure 7 (d) depicts the most frequent value is 

that of an asterisk due to the port not having been established. 

   

(a) Domain Controller – Frequency 
of Local Address 

(b) Domain Controller – Frequency of 
Foreign Address 

(c) Electronic Prescribing – Frequency of 
Local Address 

   

(d) Electronic Prescribing – 
Frequency of Foreign Address  

(e) Patient Administration System – 
Frequency of Local Address 

(f) Patient Administration System – 
Frequency of Foreign Address 

Figure 7. Boxplots of Local and Foreign Addresses 

Similarly, there are comparable data patterns between the data trends in Foreign Address 

frequencies for the Electronic Prescribing data in Figure 7 (d) and for the Domain Controller 

displayed in Figure 7 (b). Similarly, open port values such as 0.0.0.0:0 and [::]:0 are available 

indicating that the Electronic Prescribing had approximately 21.5% of its ports connected. 

This indicates that in both the Electronic Prescribing and Domain Controller, at any given 

time, most ports are open and waiting for a connection. 

Figure 7 (e) and (f) presents the most frequent items of the Local Address and Foreign 

Address values in the Patient Administration System (PAS) dataset. Displayed in Figure 7 (e) 

the most frequent items for Local Addresses on the PAS are shown. Uniquely here, the 
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output is largely comprised of a single port, accounting for almost 37% of the total Local 

Address connections. This number then quickly decreases and the majority of the IP 

addresses are unique values much like the Electronic Prescribing dataset. Figure 7 (f) shows 

the most frequent value is that of the 0.0.0.0:0 port, the [::]:0 port and the asterisk due to 

the port not having been established indicating that at this time the PAS had approximately 

54.5% of its ports connected. Again, similar to the Domain Controller and Electronic 

Prescribing Datasets, the values for the Foreign Address have more than half the ports open. 

This indicates that each server has a large number of open ports, waiting for a connection to 

a device. 

2.2.2.3. Situational Awareness Example 

Situational awareness of network data enables end users to be able to identify where 

further cyber security systems need to be put in place. In addition, identifying where best 

practices and policies can be implemented minimises the risk of a cyber-attack; such as 

scanning attacks, injection attacks and jamming attacks (as detailed in Section 2.2.1.1), on 

highly confidential personal data.  

Through removing irrelevant data from the dataset, only pertinent and useful data is 

analysed. For example, each of the datasets used has more than half of their Foreign 

Address data points ‘Open’, waiting for a connection to be made. When processed, this 

creates a large amount of unwanted noise in the visualisation which can be removed and 

potentially replaced with a figure representing the percentage of the dataset whose data 

points are open. This allows cyber security analysts’ attention to be focused on the more 

important, and potentially threatening data points. 

Advanced data analytics techniques are used to further refine the data, removing low-threat 

data. This allows cyber security analysts to focus their attention on only the data points that 

are presenting any clear potential of moderate to high level threat, and differentiating 

between the two at the top-level visualisation. These algorithms filter the initial datasets in 

order to remove noise from the visualisation in order to present salient points to the 

analyst. The analyst then explores the visualisation and marks the highlighted data as either 

safe, or as malicious and pertaining to a certain attack type. Additionally, through the use of 

information-rich packet data captured at regular minute intervals, the visualisation draws 
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from a wider database and highlight commonalities between them. In this case the refined 

visualisation may look more like the visualisation in Figure 9 (a). Rather than simply showing 

clusters of all data, as the visualisation in Figure 9 (b) does, the data has been processed and 

cleaned, so that only clusters with moderate to high level threats are present. As such, the 

visualisations further enable the situational awareness of network activity, over time, to 

become clearer. The visualisation clearly highlights any unidentified Foreign Address IP, 

regularly connecting to a Local Address IP or several IP addresses, for further investigation. 

Comparing the four netstat command datasets, for each server after initially processing the 

data, enables it to become clearer. For example, with regards to the Domain Controller 

dataset, once the data has been processed for most frequent IP values as in Figure 8, this 

data can be investigated further. This process would identify and remove superfluous low-

risk data connections in order to present further, refined data visualisations. Doing so would 

present the data without unnecessary noise cluttering the visualisation and leaving only the 

relevant and potentially malicious data connections highlighted for the situational 

awareness analysts.  

For example, with a frequency of 225, representing almost 4% of the Local Address IP 

values, are a single IP Address open on port 445. This data point therefore, can be isolated 

in the four separate netstat command datasets to determine which Foreign Address devices 

these are connecting to and which processes are running, in order to determine their 

potential risk. Once this data point is isolated it becomes clear that this Local IP Address is 

connecting to a number of hospital devices with the hospital prefix, and that Foreign 

Addresses were resolving to a device name with a hospital device name prefix, initially 

suggesting that this could be ignored. The netstat was unable to obtain ownership 

information of the binary program involved in the creation of the connection on every value 

of these IP connections using the netstat –b parameter. This is due to netstat not having the 

necessary administration privileges to call this information. Through the use of the 

Hospital’s Resource Monitor, and checking the active TCP Connections against current 

processes with network activity, the process running on this port can be determined as the 

Server Message Block (SMB). The SMB operates as an application-layer network protocol, 

which is used for providing shared access between nodes on a network, such as access to 
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shared files, printers and serial ports. In May 2017, the WannaCry ransomware campaign 

exploited an SMB vulnerability on Port 445. The exploit enabled the malware to use worm-

like network propagation, encrypting files and demanding ransom payment, unless the 

system had been patched by Microsoft security bulletin MS17-010. The attack resulted in 

network downtime for 48 UK hospitals, with 6 suffering disruption lasting several days [29]. 

Through removing noise within the network infrastructure this vulnerability is detected. 

Having isolated the Foreign Address values not resolving to a hospital device or server name 

with a known prefix, there were two discernible data points worth investigating further. The 

first is connected to a device/server with a notably unusual name. While this may be benign 

it would still be worthwhile leaving data points like this in the visualisation system, in order 

to highlight this unusual data connection to a cyber security analyst and the hospital IT 

team. A noteworthy factor is a Foreign Address value, to which the device name cannot be 

resolved by netstat; it returns an IP Address. So, this connection is established to be the 

most frequent IP address value assigned by the Domain Controller. Yet the device name 

cannot be resolved by netstat, nor can the program which initiated the connection. Through 

filtering the data in this way, a prominent data point becomes apparent. 

 

Figure 8. Domain Controller – Frequency of Local Address 

The other most common address values present in the Domain Controller dataset, in Figure 

8, have value counts of 153, 79, 62 and 44 respectively. With the exception of a value of 

count 3, all other Local Address IP values in the dataset have counts of 2 or fewer. The Local 

Address value with the count of 153 are all running the lsass.exe process. The lsass.exe 
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process is the Local Security Authority Subsystem Service and it verifies the validity of logons 

to the server, handles password changes and creates access tokens. It is a critical system 

process but is sometimes targeted by malware because of this. All but two of the IP address 

are resolving to known hospital devices. So, these can all be categorised as low-risk 

connections initially and filtered from the dataset and the two connections with unresolved 

Foreign Address device names can be isolated and visualised for further investigation.  

The Manufacturer and User Facility Device Experience (MAUDE) database is a publicly 

available database managed by the Food and Drug Administration (FDA) [62]. It was 

established through the Safe Medical Devices Act of 1990 which requires sites in which 

medical devices are used to report device-related fatalities and serious adverse events to 

the FDA [74]. The data has been publicly available since 1995 [75]. Attackers can attempt to 

masquerade malicious software through techniques such as naming their file Isass.exe (with 

a capital I rather than lower case l). If an lsass.exe file is located in a folder other than 

C:\Windows\system32 it can be considered malware [76]. Anti-malware software is a 

potential solution for malware security risks such as this; however, in 2016 a medical device 

monitoring a patient’s physiological data whilst undergoing a heart catheterization 

procedure shut down and required a reboot. This caused a 5 minute delay to patient care, 

and was due to an anti-malware software performing hourly scans [77].  

In order to remove noise from the data in Figure 9, the data was analysed. The Local 

Address values with a count of 79 are resolving to known hospital network devices and 

running the lsass.exe process. The Local Address values with a count of 62 are largely 

resolving to known hospital network devices and running the lsass.exe process. In this case 

there are some more unusual device names being returned suggesting that it is connected 

to some more niche hospital devices and some hospital servers. There are a further 7 

unresolved Foreign IP Address values in this subsection of the dataset. Finally, the Local 

Address values, with a count of 44, are primarily resolving to known hospital network device 

names. Albeit similar to the previous count, there are some more unusual device names, 

and there are a further 6 unresolved Foreign IP Address values. The process involved in 

creating these connections is the svchost.exe process. The svchost.exe process is the ‘Service 

Host’ and is a critical Windows component. It allows a number of services to share a process 
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in order to reduce resource consumption, often with a number working in tandem, to 

prevent a failure in one causing a full system crash. From our research, comparable to 

lsass.exe, malicious attackers sometimes masquerade their malware to look like the 

svchost.exe process and, if it is located in a folder other than C:\Windows\system32, it can 

be considered malware [76]. In addition to reporting the process svchost.exe the netstat –b 

command also returns in this instance the process RPCSS [78]. RPCSS are Remote Procedure 

Call System Services, which is a Service Control Manager for servers. It performs activation 

requests, object exporter resolution and distributed garbage collection designed to make 

client/server interaction easier and safer by factoring out these common tasks. 

Of the remaining data therefore, there are no further unresolved Foreign Address device 

names, however these connections were initiated by some interesting and unique processes 

in the dataset on these connections and as they are running on unique Local IP Addresses, 

they have been included in the refined dataset for the visualisation in Figure 9. In Figure 9 

the data is visualised again, with the data points identified as low risk removed from the 

dataset to reduce noise, in addition to removing the data points of the Listening UDP ports. 

  

(a) Visualisation of Domain Controller 
dataset before noise reduction using 

ForceAtlas2 algorithm 

(b) Visualisation of Domain Controller 
dataset after noise reduction using 

ForceAtlas2 algorithm 

Figure 9. Visualisation of Domain Controller dataset before and after noise reduction 

It is worth noting that in the interim between running the netstat –b command (the dataset 

executables, for investigation purposes), and running the netstat –n command (the 

numerical dataset, for visualisation purposes), a few of the connections disconnected. 

Therefore, some anomaly data connections identified in the netstat –b dataset were no 

longer present in the netstat –n dataset. 
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As demonstrated, hospital network data is complex. Visualisations of potentially anomalous 

data behaviour is difficult to achieve, but necessary to form a situational awareness of the 

hospital infrastructure. The complexity of this problem is amplified with the complexity of 

medical systems’ data structure, specifically EPRs. This section demonstrates that 

highlighting unusual data points within healthcare infrastructures can focus analyst 

attention on potentially malicious activity within a dataset. 

2.3. Medical System Interactivity 

Reduced information visibility due to data complexity, fragmentation, interoperability and 

lack of specialisation undermine the security of healthcare organisations [43]. Due to the 

increased need for 24-hour data access the boundaries for healthcare systems is evolving; 

GPs are progressively using VPNs and 3G connections to remotely access patient data. As a 

result, the number of access points for hackers is increasing [4] and healthcare organisations 

should have processes in place to identify data loss and wipe data remotely if necessary. 

Hospital networks are frequently upgraded with new digital technologies, rather than being 

replaced, due to the cost involved with new developments. The reliance on legacy software, 

and small scale bespoke software solutions, results in an increased vulnerability to cyber-

attacks from external sources [10].  

Healthcare has only recently been digitised [78]. The result is that organisations are still 

understanding how best to protect their digital assets. As detailed in section 2.2.2.3, 

attaining situational awareness of data flow within hospital infrastructures is already a 

considerable challenge. The inclusion of more complex and bespoke medical systems only 

compounds this problem. One of the main challenges is that a significant number of users 

require access to patient records to facilitate their occupation [79]. Healthcare 

infrastructures may also involve temporary employees or visitors from partner 

organisations. As such, in this section, a background discussion is put forward on the layout 

of medical infrastructures and the existing healthcare network security challenges. This 

background aids with the development of an approach to understanding the overall 

network behaviour. 

Figure 10 is the medical system topology of the partner hospital in this research, showing 

the data flow process currently in place within the network. A single directional arrow 
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indicates data flow in that direction. A bi-directional arrow indicates data flow in both 

directions. A system that overlaps the EPR is directly integrated, such that it works 

seamlessly within the EPR, but is still a separate system that can be accessed independently 

if required.  

Each piece of software in the green section represents primary care software, for the aid of 

GPs. Typically, they use a software called EMIS-Web (Egton Medical Information Systems) 

[80]. A number of pieces of software are hosted by NHS Digital and interact with both the 

Health Information Exchange platform for secondary care and the GP System. These sit on a 

platform named the SPINE which supports the IT infrastructure for health and social care 

[81]. SPINE software includes: 

 Message Exchange for Social Care and Health (MESH), as the primary messaging 

service across the NHS 

 E-Referral Service (eRS) enables GPs and patients to directly book a hospital 

appointment electronically (rather than sending a referral letter manually) 

 Personal Demographics Service (PDS) is the authoritative source of patient 

demographics data in the NHS. When a GP updates a patient’s demographic data it is 

updated on the PDS. If a patient presents at another NHS service (such as a walk-in 

centre, or A&E), this information can be pulled down given some key patient data 

(such as surname, postcode and date of birth). 

 The Child Protection Information Sharing (CP-IS) project enables staff to be quickly 

notified across the NHS if a child known to Social Services as a “Looked After Child” 

presents in an unscheduled NHS setting (such as A&E). The Social Care systems 

across the country populate the CP-IS.  
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Figure 10 – Medical System Topology 

The Health Information Exchange (HIE) platform enables integration of data from a number 

of different pieces of software with the EPR. The EPR itself sits on a server within the Trust 

and is the most comprehensive record of clinical information within the hospital. It enables 

a number of clinical workflows, such as:  

a) Patient administration - registering patients, admitting them, managing 

clinics, booking appointments etc. 

b) Order Communications - enabling clinicians to order diagnostic tests and 

medications) 
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c) Emergency & Urgent Care, Theatres and Critical Care, Maternity, Oncology - 

bespoke tools for these settings 

d) Clinical Documents – digitised versions of clinical documentation enabling 

information in one place and across the organisation 

e) ePrescribing – prescribing and administering medications to patients 

f) Clinical Procedure Support – procedure-based decision support enabling 

clinicians to provide more standardised healthcare, such as alerting an 

unfamiliar doctor/nurse that a patient is showing signs of Sepsis/Pneumonia 

based on unusual vital signs 

Software in yellow are used by secondary care such as hospitals. These include the 

Laboratory Information Management System (LIMS), which manages the flow of the clinical 

Labs within the healthcare infrastructure. The Trust Integration Engine (TIE), which enables 

a number of specialty specific local systems to deposit data to be provided to the HIE. A 

number of Specialty Specific Systems also integrate directly with the HIE, as do some 

Medical Devices and patient Arrival Kiosks. Additionally, a number of pieces of software are 

directly integrated with the EPR, though are themselves standalone systems and can be 

accessed independently. These include 1) the Picture Archiving and Communication System 

(PACS), which includes X-Ray images, 2) the Radiology Information System (RIS) which 

operates in conjunction with the PACS for managing radiology tasks, 3) Electronic Document 

Management System (EDMS), which stores scanned images of paper documents, used to 

manage the transition from paper to digital, 4) Ultrasound System, allowing integration with 

the maternity flow, and finally 5) Electronic Clinical Forms system, which is another way of 

managing digital versions of clinical documents.  

Figure 11 is the hospital flow overview process and details the hospital flow of all NHS 

Trusts. Figure 11 was created with the partner hospital in this research and demonstrates 

the complex adaptive network of the hospital, and the number of interactions with the 

Electronic Patient Record involved within a patient’s care. 
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Figure 11 - Hospital Flow Overview 
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The NHS has an 18-week Referral to Treatment (RTT) pathway for all patients [82]. 

Therefore, each stage of this process is monitored in order to progress patients through 

their journey. A typical journey is that a patient is referred to the hospital, who then process 

the referral by admin and a clinician vets the referral as appropriate. They are then brought 

in for an Outpatients clinic consultation, where they are either sent for diagnostics, given 

treatment, or admitted (Inpatients). However, a number of clinical decision points affect this 

flow and a comprehensive understanding and tracking of each patient journey is required in 

order to maintain patient safety. Using an EPR is typically the most effective way of collating 

this information and enabling a holistic view of patient care.  

2.4. Electronic Patient Records 

Electronic Patient Record (EPR) systems support clinical operations within healthcare 

organisations [83] and improve the safety [84] and efficiency [85] of healthcare delivery, 

whilst reducing costs [86]. The shift from paper-based to computer-based patient records 

has improved the availability of patient data without limitations of time or place [87]. 

Additionally, availability is one of the three principles of information security. However, this 

shift in making health information accessible and useable by a range of health professionals 

conflicts with public perception of patient confidentiality and autonomy [88]. To ensure 

patient privacy in this landscape, there is a requirement for focus on the other two 

principles of information security, confidentiality and integrity [89]. A continued focus on 

trustworthy security and privacy mechanisms for health information sharing is necessary 

due to public concern regarding privacy of EPRs [90]. 

Patient data privacy, security and confidentiality concerns are validated through numerous 

reports of patient information being stolen, lost, misplaced, or released without 

authorisation [91]. Hacking and identity theft is often cited as a cause for concern regarding 

EPR security, alongside unauthorised access [92]. In particular, patients are often sceptical 

regarding the ability of the NHS to safeguard medical information and manage large 

technological projects, due to failed programs such as NPfIT (National Programme for IT) 

[93]. This view is particularly held amongst those who had worked in the NHS themselves 

[92]. 
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2.4.1. Patient Privacy Considerations 

Patient privacy within EPR systems is typically enforced through corrective mechanisms, 

such as two factor authentication, training and confidentiality agreements [94][95]. 

Approaches for detecting illegitimate access to EPRs [96] include i) restricting access control 

[97], ii) applying patient-user matching algorithms [98], iii) applying scenario-based rule 

extraction [99], and iv) information gathering from EPR and non-EPR systems using a secure 

protocol [100]. This is in addition to commonly-used security mechanisms, such as secure 

networks with firewalls, encrypted devices and messages, strong user passwords, auditing 

and device timeouts [95]. Authorised users can access EPR data from virtually anywhere; 

allowing increased productivity compared with paper-only records and allowing clinicians to 

make informed decisions towards improving healthcare quality for patients [96]. The 

management of patient data in electronic form decreases healthcare administration costs, 

strengthens care provider productivity and increases patient safety [101].  

There are 13 features required for security and privacy in EPRs [102]. These include system 

and application access control, compliance with security requirements, interoperability, 

integration and sharing, consent and choice mechanism, policies and regulation, 

applicability and scalability and cryptography techniques. 

Additionally there are 3 primary focuses of HIPAA (Health Insurance Portability and 

Accountability Act of 1996) regulations for attaining security in an EPR [103]. 

1. Provide sufficiently anonymous release of information for research purposes. 

2. Provide appropriate controls to prevent unauthorised people from gaining access to 

an organisation’s information systems and control of external communications links 

and access. 

3. Provide mechanisms for controlled and user-differentiated access to individual patient 

records. 

Traditional methods for defining security policies within organisations are problematic 

within the context of healthcare organisations due to their reliance on the knowledge of 

domain experts, or observations of external specialists [104]. Within healthcare the number 

of security policies are large, defined in an ad hoc manner and can be revised at a moment’s 
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notice [105]. A primary feature of patients’ desire for widespread EPR adoption is 

transparency, with patients enquiring who has the ability to access their medical records, in 

addition to determining who has viewed them [106]. 

Due to the risk of unauthorised use, access and disclosure of patient information, patient 

privacy and confidentiality concerns need to be addressed [107]. The patient privacy 

perspective is operationalised through using privacy concern as the most common measure 

[108]. Leakage or modification of patient data can be intentional or unintentional and can 

derive from both external attackers and internal staff [109]. The intrinsic value of stolen 

healthcare data on the black market is well recognised [110]. Additionally, the healthcare 

sector mandates public disclosure of data breaches, increasing public awareness and 

concern over privacy [111]. 

Patient Privacy concerns within EPRs is resulting in a loss of trust in healthcare providers by 

patients [112]. This is evidenced by the following studies: 

Table 5 – Patient Privacy concerns by patients 

Year Findings 

2015 78.9% of participants would worry about the security of their record if it 

was part of a national EPR system and 71.3% felt the NHS was unable to 

guarantee EPR safety [92]. Additionally, 46.9% responded that EPRs 

would be less secure compared with how their health record was held at 

the time of the survey [92]. 

2014 64.5% of patients expressed concerns regarding data breaches when 

personal health information was being transferred between healthcare 

professionals electronically [113]. 

2013 48% of people believed health IT would worsen privacy and security 

[114]. 

2012 Approximately 60% of respondents believed that widespread adoption of 

EPR systems will lead to more personal information being lost or stolen 

[115]. 
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2012 31% have concerns that the privacy and security of their medical 

information may be at risk within EPRs [116]. 

2010 California Healthcare Foundation found that 68% of patients are 

concerned about the privacy of personal medical records [117]. 

2009 76% of people thought it was likely that an unauthorised person would 

get access to an EPR [118]. 

2008 62% of respondents did not think data stored within an EPR would 

remain confidential [119]. 

2006 80% of people were very concerned about identify theft or fraud [120]. 

Additionally, concerns about patient privacy can lead to patients being selective about the 

information they provide to healthcare providers, or offering incomplete or misleading 

information [112]. Withholding information due to privacy concerns among patients is 

evidenced in the following studies: 

Table 6 – Studies evidencing patients withholding information due to privacy concerns 

Year Findings 

2014 The Office of the National Coordinator for Health Information Technology 

(ONC) found 7% of patients have withheld information from their 

healthcare provider due to privacy of security concerns, with this 

percentage increasing to 33% among those who strongly disagree that 

there are reasonable protections in place for EPRs [121]. 

2014 12.3% of patients withhold information out of concern for a data breach, 

with the likelihood of withholding information higher among respondents 

who perceived they had little say regarding how their medical records 

were used [113]. 

2011 FairWarning in Canada found that 43.2% of patients withhold 

information based on privacy concerns, and 31.3% would postpone 

seeking care for a sensitive medical condition [121]. Additionally, 61.9% 

reported that if there were serious or repeated breaches at a hospital 
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where they had treatment it would reduce their confidence in the quality 

of healthcare at the hospital. 

2010 California Healthcare Foundation found that 48% of patients may hide 

information from their doctor if it was shared through an EPR [117]. 

2007 Harris Interactive found that 17% of patients would withhold medical 

data due to worries of data disclosure [122]. 

The proliferation of technology within healthcare has brought the advantages of improved 

efficiency of record keeping, easier detection and prevention of fraud, waste and abuse, and 

an improvement in the overall quality of care [94]. However, with the added benefits of 

technology in healthcare, the potential for unauthorised and illegal access to patient 

information has increased [123]. Users may abuse their privileges for personal reasons, such 

as viewing records of relatives, friends, neighbours, co-workers or celebrities [96]. 

Therefore, patients are becoming increasingly concerned regarding the privacy and security 

of their health data [124]. The cost to a healthcare organisation caused by a security breach 

is one of the highest of any industry and leads to the loss of trust of patients [95]. Examples 

of privacy protection within healthcare include encrypted devices, strong passwords, two 

factor authentication, training and confidentiality agreements [95]. It is difficult to impose 

an access control policy on employees in a healthcare setting due to the dynamic and 

unpredictable care patterns of hospital care [94]. 

2.4.2. Access Control Limitations 

Access to EPR systems is often managed through role based access, where once a user has 

been authenticated, they are allowed unhindered access inside the perimeter [96]. Access 

to EPR data is audited heavily within healthcare infrastructures. However, it is often left 

untouched in a data silo and only accessed on an ad hoc basis. When there is reason to 

suspect that illegitimate accesses have occurred, a review of the audit logs is undertaken by 

a security expert. VIPs are an exception, for which the audit logs are regularly monitored. 

Otherwise, only if an official complaint is logged by a patient are audit logs reviewed. The 

majority of breaches are currently discovered by the person whose confidentiality has been 

breached. However this is inefficient, as it requires the information to be collated and 

reviewed by a security expert, is purely retrospective, and the process is only triggered 
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when there is cause to believe that illegitimate access has occurred [96]. Therefore, there is 

a motivation to automate and alleviate partially the burden of this process [94]. The 

fundamental limitations in privacy officers manually reviewing audit logs for potentially 

suspicious accesses are threefold [96]. Firstly, the volume of audit records means that audit 

logs are only practically useful as adjuncts to investigate suspected breaches, rather than a 

tool that can be utilised to proactively find inappropriate accesses. Secondly, audit records 

can only provide data regarding the access itself, and contain no situational or relationship 

information or knowledge regarding the access. Thirdly, the process is labour-intensive, 

without guidance of where to look for potential breaches, inappropriate accesses are buried 

amongst the audits of appropriate accesses. 

It is a challenge to impose an access control policy on employees in a healthcare setting due 

to the dynamic and unpredictable care patterns of hospital care [94]. Access control based 

approaches are limited due to several factors [95], including: 

 In a hospital setting, it is safer to detect anomalous behaviour than prevent it, as 

preventing access to patient data could lead to patient harm 

 Unpredictable and dynamic care patterns, including scheduled and unscheduled 

inpatient, outpatient and emergency department visits 

 Varied workflows, with providers requiring access in unexpected areas 

 A mobile workforce, with access required at unexpected locations and times 

 The collaborative nature of clinical work and teaching environments 

 A large number of users with varied job titles and roles 

 Users job titles not directly relating to a list of patients whose records it would be 

appropriate to access 

 Access Control can stifle innovation within a healthcare setting. If anomalous 

behaviour is detected it can be justified, if it is prevented altogether it inhibits 

potential improvements 

Due to these limitations, access control approaches are insufficient as the sole method of 

anomaly prevention within EPRs. For example, the Access Matrix Model (AMM) is a 

conceptual framework that specifies each user’s permissions for each object in the system 

[125]. Although it allows for a thorough mapping of access rights, it does not scale well, and 
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lacks the ability to support dynamic changes of access rights, which makes it difficult to 

apply to EPRs [126]. 

Role-Based Access Control (RBAC), however, maps users to roles and maps permissions to 

the roles [127]. Job positions within the enterprise and tasks the employees need to 

perform are identified, and privileges are assigned to these positions to enable the 

employees to accomplish their tasks [128]. Whilst more computationally tractable, RBAC 

roles tend to be static and inflexible, and therefore not responsive to the shifting nature of 

roles [129]. 

Attribute-Based Access Control (ABAC) provides flexible, context-aware access control 

through evaluating the attributes of entities, their subject and object, the operation, and the 

contextual environment, such as time and location, of the request [130]. Boolean logic can 

then be applied to the operational request to determine access rights, such as “IF, THEN” 

statements regarding the request, the resource and the action. ABAC therefore allows for a 

higher number of discrete inputs and provides a larger, more definitive set of rules to 

express policies than RBAC. 

Experience Based Access Management (EBAM) emphasises the accountability and use of 

audit data to detect illegitimate access [128]. EBAM enterprises often manually review the 

audit logs of VIPs to determine inappropriate accesses [131]. Break The Glass (BTG) is a 

policy, which allows users to override access controls in necessary instances [132]. EBAM 

enterprises would manually review the audit logs every time a user broke the glass [128]. 

Task-based Access Control (TBAC) extends the user-object relationship though the inclusion 

of task-based and contextual information [133]. However TBAC is limited to contexts that 

relate to tasks, or workflow progress and EPRs cannot always be easily portioned into tasks 

[126]. 

Team-based Access Control (TeBAC) groups users in an organisation and associates a 

collaboration context with the activity to be performed [134]. However, these models have 

not been fully developed or implemented and it remains unclear how to implement them 

within a dynamic framework [126]. 
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2.4.3. Audit Logs 

Without audit mechanisms, EPR systems are vulnerable to undetected misuse, as users 

could modify or delete health information without their actions being traceable [135]. Audit 

Logs are usually recorded and stored for the purposes of access management [136]. 

However, they can also be used for the benefits of monitoring employee behaviour and 

system failures [137]. Audit Logs should have at least these elements: 1) Time; 2) Date; 3) 

Information Accessed and 4) User ID [138]. 

Thorough and frequent analysis of audit logs have been shown to discourage abuse [139]. 

Yet, this analysis often consists of manual audit log review [140]. Motives for a breach of 

confidentiality within an EPR that may be detected through audit log analysis include [139]: 

1. Characteristics of the patient or patient record (such as a VIP).  

2. A relationship between the user and the patient. 

3. A relationship between the user and another person represented in the patient record 

(such as a spouse or child). 

Indicators of confidentiality breaches can also be separated into positive and negative 

indicators, where positive indicators are evidence of a potential breach and negative 

indicators are evidence of expected behaviour, typically based on the established provider 

role [139]. Probability scoring and an indicator weighting mechanism can aid in prioritising 

possible breaches for further investigation. 

To detect accurately a confidentiality breach, Motivational Indicators can be applied at the 

Patient Access Level. Whilst Behavioural Deviation Indicators can be applied at the Session 

Level [139]. Motivational Indicators include considerations given to: 1) any relationship 

between the user and patient that could be a motivator to breach confidentiality, such as a 

friend or spouse; and 2) characteristics of the patient or of the patient record that could be 

a motivator to breach confidentiality, such as a high-profile person. Behavioural deviation 

indicators include considerations given to: 1) session level statistics, such as total session 

length and number of patient records accessed; and 2) login characteristics such as failed 

attempts prior to successful login, time of day of login, and location from which login occurs. 
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Visualising audit log data can provide some initial insights into these datasets. In Figure 12, a 

heatmap is presented of a dataset comparing User ID to the duration of the patient record 

access. Figure 12 is extracted from a dataset of 1,515 unique User IDs and 72,878 unique 

Patient IDs. The graph shows a consistent point density of up to 47,341 patient records in 

the first row of the matrix, indicating that the majority of patient records are only accessed 

for fewer than 300 seconds (5 minutes). This would represent normal (expected) behaviour 

within the hospital (as revealed in consultation with the hospital). Whereas, 6 clusters (A-F) 

require investigation, as they represent users performing routines for over 16,000 seconds 

(4.44 hours); which would be classed as abnormal (unexpected) behaviour.  

 

Figure 12 – Heat-maps (logarithmic) comparing 1million rows of ID data to the duration of the patient record access 

2.5. Summary 

In this chapter, a discussion of hospital infrastructures is presented. Hospital networks are 

discussed, along with their security challenges. This is highlighted through an investigation 

incorporating a real-world dataset, discussed in detail in Chapter 5. Through this work the 

complexity of acquiring situational awareness of data flow is demonstrated. Medical 

systems and their topology within the hospital infrastructure is then detailed. This further 

adds to the complexity of maintaining an awareness of data flow, due to the incorporation 
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of more bespoke software’s interacting and a reliance on legacy software. EPRs allow a 

holistic view of patient activity within a hospital, however the wealth of patient information 

they hold presents a key challenge for maintaining patient data confidentiality. Therefore, 

Patient Privacy within EPRs is noted as the focus of this work, along with a discussion on 

current solutions such as access control methods and reactively monitoring audit logs. In 

chapter 3, artificial intelligence and machine learning is presented as the area of research to 

be applied to the context of patient privacy within EPRs. Multiple machine learning 

algorithms are detailed and investigated, along with a review of related work and 

applications of machine learning in similar contexts.
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3. Artificial Intelligence and Machine 
Learning 

3.1. Introduction 

Organisations need to bridge the gap between cyber operations/resilience and the priorities 

of the business [43]. Organisational decision makers should synthesize highly disparate data 

into a coherent and concise narrative [43]. However, they face considerable challenges such 

as data complexity, fragmentation, interoperability issues and lack of spatialisation, which, 

together, degrade information visibility within organisations. Relating to healthcare security, 

the challenges are as follows; 1) a lack of labelled data from previous attacks; 2) constantly 

evolving bespoke attacks and 3) the analyst’s limited investigative time and budget [141]. 

Artificial Intelligence aims to simulate human intelligence processes using machines, broadly 

making appropriate generalisations based on limited data [142]. The scientific field of 

Machine learning is an intersection of Computer Science and Statistics and seeks to answer 

the following question ‘How can we build computer systems that automatically improve 

with experience, and what are the fundamental laws that govern all learning processes?’ 

[143]. Machine learning systems aim to learn automatically from data [144]; with an  

emphasis on the design of self-monitoring systems and take advantage of the data flowing 

through the program, rather than simply processing it [143]. Deep Learning is a subset of 

machine learning which aims to imitate the human brain in processing data using neural 

networks [145]. Big Data refers to information assets characterized by such a high volume, 
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velocity and variety to require specific technology and analytical methods for its 

transformation into Value [146]. 

Current EPR privacy solutions employ either analyst driven solutions, or unsupervised 

machine learning solutions [96]. Both of these approaches are inadequate on their own. 

Analyst driven solutions often lead to a high number of false negatives, due to their reliance 

on human judgement, in addition to delays between attack detection and the 

implementation of countermeasures [141]. Similarly, unsupervised machine learning 

solutions are typically insufficient when unsupported by other classification techniques. 

Often an unsupervised approach leads to high numbers of false positive alarms, alarm 

fatigue and distrust by analysts [141]. 

3.2. Machine Learning 

Typically, for an analytic process, machine learning approaches are considered in most 

modern-day applications [147]. This is because machine learning emphasises the design of 

self-monitoring systems, which self-diagnose and self-repair [143]. The technique is used 

commonly in web search algorithms, spam filters, recommender systems, ad placement, 

credit scoring, fraud detection, stock trading, drug design and many other real-world 

applications [144]. 

Machine Learning methods are most valuable in applications where it is too complex for 

people to manually design the algorithm. Machine learning models are trained on historical 

access data to classify future data access patterns [94]. Supervised machine learning 

models, such as Support Vector Machines (SVMs), linear regression and logistic regression 

have been applied successfully to the challenge of detecting inappropriate access within 

Electronic Patient Record systems [94]–[96]. The use of statistical and machine learning 

techniques have also been used previously to detect fraud in financial reporting [148], to 

detect fraud in credit card transaction data [149], to construct a spam email detector [150], 

and to solve a fraud detection problem at a car insurance company [151]. 

Machine learning algorithms observe and learn data patterns and profile users’ behaviour, 

which can then be denoted. Combined with cloud infrastructure and data visualisation, the 

way large datasets are understood is being transformed; allowing extraction of otherwise 
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unobtainable meaning from vast quantities of information. This is now a proven approach 

for detecting zero day attacks and uncovering unknown threats [141]. There is a large 

volume of literature concerning big-data-based privacy-preserving machine learning 

algorithms. Genetics-based machine learning (GBML) [152], clustering fuzzy rule-based 

classifiers [153] and Linear Support Vector Machines (SVMs) [154] are examples of the 

general conventional means of choice for researchers. 

There are three primary challenges facing information security that can be addressed 

through the use of machine learning [141]: 

1. Lack of labelled data 

2. Constantly evolving attacks 

3. Limited investigative time and budget 

To address these problems, a solution should use analysts’ time effectively, detect new and 

evolving attacks in the early stages, reduce response times between detection and 

prevention and have a low false positive rate [141]. 

Machine Learning workflows require iterative experimentation in order to attain a desired 

accuracy. Through analysis of an existing model, the workflow is modified to improve 

performance with a developer-in-the-loop during the development cycle. Such iterations 

include  adding/removing features, introducing new data sources, changing the machine 

learning model, adding ensemble averaging to the model and adding a Human-in-the-Loop 

Machine Learning (HILML) model. 

Ensemble and semi-supervised machine learning techniques involve the combination of 

both labelled and unlabelled data to change learning behaviour [155]. Through the 

application of active learning, outlier detection is improved [156]. Due to the lack of labelled 

data for patient privacy violations within EPRs, semi-supervised learning has been applied 

for healthcare fraud detection [157].  

3.2.1. Machine Learning Workflow 

Machine learning techniques principally consist of combinations of three components, 

Representation, Evaluation and Optimisation [144] where the data is modelled as a set of 
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variables [158]. The following metrics are employed, a particular task T, a performance 

metric P, and a type of experience E. If a system reliably improves its performance P at task 

T, following experience E, then it can be said to have ‘learned’ [143].  

The machine learning workflow is presented in Figure 13. Features and labels are extracted 

from raw data. If the workflow is supervised, a testing and a training dataset is formed of a 

subset of the data. In an unsupervised workflow the whole dataset is typically used as the 

training dataset. The algorithm is then applied to the data. This algorithm is then evaluated 

and validated, with hyperparameters selected and tweaked in order to achieve a desired 

model. Finally a model is obtained which can provide predictions [159]. 

 

Figure 13 - Machine Learning Workflow 

The classifier is trained using the training data set. This must be represented in a formal 

language to be interpreted by the computer [144]. Additionally, choosing the representation 

of the learner defines the set of classifiers it can learn. This is known as the hypothesis space 

of the learner. The evaluation function distinguishes accurate classifiers from inaccurate 

ones [144]. The function used internally by the machine learning algorithm may differ from 

the external one the classifier is intended to optimise, for ease of optimisation. The 

optimisation technique provides a method to search among classifiers in the language in 

order to identify the highest scoring classifier [144]. It is integral to the efficiency of the 

learner and determines the classifier produced if the evaluation function produces more 

than one optimum. 

Statistical and machine learning techniques have been used with great success to detect 

fraud in financial reporting [148]. They detect fraud in credit card transaction data [149], 

construct spam email detectors [150] and solve fraud detection problems [151]. Their 

success is partly due to the fact that machine learning models can be trained on historical 
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data access behaviours to identify future abnormal patterns [94]. This is known as a 

supervised learning approach. 

 

3.2.2. Supervised Learning 

In supervised learning, the goal is to map input variables 𝑋1, … 𝑋𝑝 to output variables Y. A 

sample is defined as a pair of values ([𝑋1, … 𝑋𝑝]
𝑇

, 𝑦) of these variables [158]. A pair of 

matrices is often used to represent the data set, one for input values and one for output 

values, with each row corresponding to a sample of the dataset, and each column to a 

variable [158]. In supervised anomaly detection approaches, a set of labelled training 

instances are provided, typically in the form of anomaly and non-anomaly [126]. The 

instances are then trained using a classification model based on their variable features. The 

resulting models are used to classify new actions. Supervised machine learning models, such 

as SVMs, linear regression and logistic regression have been successfully applied to the 

challenge of detecting illegitimate access within EPR systems [94]–[96]. A clearly labelled 

training dataset, however, is too resource intensive to generate for EPRs, particularly in the 

context of a dynamic, evolving environment [126]. 

Classifier detection determines a classification function based on a labelled training set 

[160] and can be fast, accurate and assign risk scores to all events [154]. However, acquiring 

class labelled data is expensive and scoring unlabelled events is important in large scale data 

mining, as human validation is limited and costly [161]. A classifier is a machine learning 

system which inputs a vector of discrete and/or continuous feature values and outputs a 

single discrete value, the class [144]. A learner inputs a training set of examples, with the 

observed input and corresponding output, and outputs a classifier. The purpose of the test 

is to analyse whether the classifier correlates with the corresponding output, in order to 

determine the accuracy for future data input, for which the corresponding output is not 

known [144].  

Traffic analysis is a common application of a classifier detection method. Traffic 

classification techniques aim to identify flow patterns within a data stream, including 

anomalies sent or received by a host on the network [73]. Online traffic classification serves 



 

60 | P a g e  

 

as the input for practical solutions such as network monitoring, quality-of-service and 

intrusion detection [162]. Machine learning algorithms have the capability of accurately 

classifying 99.8% of TCP network traffic performance, such as accuracy, throughput and 

latency [162]. Machine learning is desirable over port and signature based systems due to 

the capability of identifying encrypted flows or flows using irregular ports, and identifying 

previously unknown applications [162]. Network Traffic Flow Classification can utilise 

visualisation techniques to assist an analyst in discovering the root cause of network 

malfunction, showing normal and abnormal data activities in parallel and classifying traffic 

with 92% accuracy [163]. 

Signature detection are rules-based algorithms that construct a set of rules based on historic 

breaches and can detect correctly known patterns whilst being interpretable [164]. 

However, it cannot detect unseen patterns and cannot assign risk scores [165].  

3.2.2.1. Linear Discriminant Classifier (LDC) 

Within the classification domain, LDC is one of the most rudimentary approaches. The 

algorithm sorts or divides data into groups based on its characteristics in order to create a 

classification [166]. It performs an ordered transformation of unknown quantities, which are 

separated by a linear vector.  

LDC consists of statistical properties of data which are calculated for each class [167]. In 

addition to the assumption of normally distributed classes, the LDC assumes equal class 

covariance matrices [168]. The LDC is derived as the minimum-error, or Bayes, classifier for 

normally distributed classes with equal covariance matrices [169]. In other words, for a 

single input variable, the mean and variance of the variable for each class is calculated. For 

multiple variables, the mean and variance are calculated over the multivariate Gaussian, 

which assumes that each variable is shaped like a bell curve when plotted [167]. These 

statistical properties are estimated from the data and then the LDC equation is performed in 

order to make predictions. 

The Linear Discriminant function can be defined as [170]: 

𝛿𝑘(𝑥) = 𝑥𝑇𝛴−1𝜇𝑘 −
1

2
𝜇𝑘

𝑇𝛴−1𝜇𝑘 + log(𝜋𝑘) 
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(3.1) 

3.2.2.2. Quadratic Discriminant Classifier (QDC) 

Unlike the LDC approach, the Quadratic Discriminant Classifier (QDC) divides data using a 

quadratic surface, rather than a one-dimensional one, into groups based on its 

characteristics [166]. QDC assumes that each class has its own covariance matrix and 

assumes that the changing of two random variables will not be the same [167]. 

Comparatively to LDC, QDC uses supervised learning to separate data using a curved line. 

QDC is therefore more flexible than LDC and is a better fit for large training sets. Whereas 

LDC is a better fit if there are few training observations and reducing variance is an 

important factor. 

The QDC can be defined as [170]: 

𝛿𝑘(𝑥) = −
1

2
log|𝛴𝑘| −

1

2
(𝑥 − 𝜇𝑘)𝑇𝛴𝑘

−1(𝑥 − 𝜇𝑘) + log(𝜋𝑘) 

(3.2) 

3.2.2.3. Genetic Algorithms 

Genetic algorithms are evolutionary algorithms intended to obtain more accurate solutions 

as time progresses [152]. The algorithms encode a set of parameters to define a set of 

potential solutions to a problem as a binary string, referred to as a chromosome (or 

genotype), and apply recombination and mutation operators to the structures so as to 

preserve critical information and improve the utility/objective/fitness function [171]. A 

number of initial solutions are generated (which act as ‘parents’). Crossover and mutation 

operators are applied and new solutions are then generated, with the stronger solutions 

remaining and the weaker solutions being eliminated [152]. This process continues until the 

convergence criteria is fulfilled, which may lead to the “near”-optimum solution, and in 

some simple problem or exceptionally well-designed GA, the best solution can be found. 

There is therefore potential for the application of genetic algorithms to the field of 

anomalous access behaviour detection within healthcare infrastructures. 

3.2.3. Unsupervised Learning 
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In unsupervised anomaly detection approaches, the inherent structure, or patterns in a 

dataset, are utilised in order to determine when a particular instance is sufficiently different 

[126]. Unsupervised techniques, such as k-nearest neighbour anomaly detection, are 

designed to measure the distances between instances using features such as social 

structures [172]. Anomaly detection compares incoming instances to previously built 

profiles and can detect novel patterns, although it requires a large quantity of historic data 

[173]. Additionally, the output is known to be problematic to interpret and the technique 

produces false positives [174].Clustering is invoked to integrate similar data instances into 

groups [175].  

Clustering evaluates each instance with respect to the cluster it belongs to, while nearest 

neighbour analyses each instance with respect to its own local neighbourhood [126]. 

3.2.3.1. Local Outlier Factor (LOF) 

Nearest neighbour anomaly detection techniques are designed to measure the distances 

between instances using features such as social structures [172]. They determine how 

similar an instance is to other nearby instances, and if the instance is not sufficiently similar 

it is classified as an anomaly. The Local Outlier Factor (LOF) process involves five stages [26]: 

i) k-distance computation: Euclidian distance of the k-th nearest object from an object p is 

computed and defined as k-distance, where a user defined parameter k is the number of 

nearest neighbours.  

ii) k-nearest neighbour set construction for p: Set kNN(p) is constructed by objects within k-

distance from p. 

iii) A reachability distance computation for p: Reachability distance of p to an object o in 

kNN(p) is computed as which is defined as follows: 

𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝒑, 𝒐)  =  𝑚𝑎𝑥{𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒐), 𝑑(𝒑, 𝒐)} 

(3.3) 

where d(p, o) is Euclidian distance of p to o. 

iv) lrd computation for p: Local reachability density (lrd) of p, defined as follows: 
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𝑙𝑟𝑑𝑘(𝒑) =
𝑘

𝚺0∈𝑘𝑁𝑁(𝒑)𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝒑, 𝒐)
 

(3.4) 

v) LOF computation for p: Local Outlier Factor of p is computed defined as follows: 

𝐿𝑂𝐹(𝒑) =

1
𝑘

𝚺0∈𝑘𝑁𝑁(𝒑)𝑙𝑟𝑑𝑘(𝑜)

𝑙𝑟𝑑𝑘(𝒑)
 

(3.5) 

The LOF process exposes anomalous data points by measuring the local deviation. In other 

words, patterns in data that do not conform to the expected behaviour are revealed. In the 

case of EPR data, employing the LOF process can be effective in that it recognises points, 

which are outliers from similar/related points in one area of the dataset. Therefore, the 

algorithm is particularly applicable to a dataset, where multiple job types/roles are present. 

It considers the relative density of points and can detect data in biased datasets. This means 

that it is advantageous over proximity-based clustering. LOF employs the relative-density of 

a coefficient against its neighbours as the indicator of the degree of the object being an 

outlier [176]. 

If a global outlier is employed, the detection of irregular behaviours would not be possible 

without correlating the different hospital roles with each other; adding an extra stage to the 

detection process – one which might not be possible. This is due to the process that a global 

outlier detection process undertakes in identifying data points that are far from other points 

in the dataset.  

3.2.3.2. LOOP 

Local Outlier Probability (LoOP) is a method that derives a local outlier factor which provides 

an outlier score in a range of 0 to 1 [177]. The advantage of this method is the outlier is 

interpretable as a probability of a data point being an outlier, rather than interpreting a 

threshold for outliers as in LOF.  

The Local Outlier Probability (LoOP), indicating the probability that a point 𝑜 ∈ D is an 

outlier is defined as [178]: 
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𝐿𝑜𝑂𝑃𝑠(𝑜) ≔ 𝑚𝑎𝑥 {0, 𝑒𝑟𝑓 (
𝑃𝐿𝑂𝐹λ, 𝑠(𝑜)

𝑛𝑃𝐿𝑂𝐹 ∙ √2
)} 

(3.6) 

Where the Probabilistic Local Outlier Factor (PLOF) can be defined as follows: 

𝑃𝐿𝑂𝐹λ,S(𝑜) ≔
𝑝𝑑𝑖𝑠𝑡(λ, o, S(o))

𝐸𝑠𝜖𝑆(𝑜)[𝑝𝑑𝑖𝑠𝑡(λ, s, S(s))]
− 1 

(3.7) 

And a normalised PLOF (nPLOF) can be defined as: 

𝑛𝑃𝐿𝑂𝐹 ≔ λ ∙ √𝐸[(𝑃𝐿𝑂𝐹)2] 

(3.8) 

3.2.3.3. Collaborative Filtering 

Collaborative filtering is a dyadic prediction method, where the task is to predict a label for 

the interaction of a pair of entities [94]. Within a hospital setting, these entities would be 

the system user, and the patient record. Collaborative filtering approaches for detecting 

unauthorised access to EPR data have been successful in recognising the identity of users 

and patients involved in patient record access [94]. Through the use of explicit and latent 

features for staff and patients, the following scenarios can be understood to be more likely 

to be involved in a future violation 1) a patient, whose record has previously been involved 

in a violation, or 2) a staff member who has performed a violation in the past [94]. In 

addition to the use of latent features of a dataset to fingerprint a user based on historical 

access data, collaborative filtering can collate data for reliable parameter estimation and 

create interaction-specific predictions [94]. 

A latent feature model of collaborative filtering where 𝑎 is the suspiciousness of access can 

be modelled as [178]: 

�̂�(𝑎; 𝜃) = 𝑓(𝑤𝑇𝜙(𝑎) + 𝛼𝑢
𝑇𝛽𝑝 + 𝛾𝑢 + 𝛿𝑝 + 𝜇) 

(3.9) 
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For an appropriate link function 𝑓(∙). Including a global bias 𝜇, user and item-specific biases 

𝛾𝑢 and 𝛿𝑝.  𝑎𝑢 and 𝛽𝑝 compromise latent features of user and patient. Additionally, 𝑤𝑇𝜙(𝑎) 

leverages information present in explicit features 𝜙(𝑎). 

3.2.3.4. DBSCAN 

Density-based spatial clustering of applications with noise (DBSCAN) is a cluster analysis 

method [179]. DBSCAN divides a dataset into n dimensions and forms an n-dimensional 

shape around each datapoint creating data clusters. The clusters are then expanded by 

including other datapoints within the cluster and adding their n dimensions in the cluster. It 

requires two parameters. 1) ε – the minimum distance between two points to be considered 

neighbours and 2) MinPoints – the minimum number of points which form a dense region. 

Any datapoints that do not fall within a cluster can be handled as an outlier. DBSCAN is 

often compared with LOF as an outlier model even with large scale analysis [180]. 

DBSCAN can be presented as Pseudocode as [179]:  

Algorithm 3.1 – DBSCAN Pseudocode 

DBSCAN (SetOfPoints, Eps, MinPts) 

// SetOfPoints is UNCLASSIFIED 

ClusterId := nextId(NOISE); 

FOR i FROM 1 TO SetOfPoints.size DO 

Point := SetOfPoints.get(i); 

IF Point.CiId = UNCLASSIFIED THEN 

IF ExpandCluster(SetOfPoints, Point, 

ClusterId, Eps, MinPts) THEN 

ClusterId := nextId(ClusterId) 

END IF 

END IF 

END FOR 

END; // DBSCAN 

3.2.3.5. K-Nearest Neighbour 

k-nearest neighbours (k-NN) is a non-parametric algorithm for classification and regression 

[183]. For classification, an output of class membership is given, where an object is assigned 

to a class most common among its neighbours. For regression, an output of a property value 
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is given, which is the average of the values of its neighbours. k-NN is often used when little 

is known about the data as the model structure is determined by the data. k-NN uses 

instance-based learning and therefore defers generalisation of the data until classification. 

k-NN is often used as an outlier score for anomaly detection, as the larger the distance to 

the k-NN and the lower the local density, the more likely a datapoint is an outlier [184].  

The k-Nearest Neighbour algorithm can be presented as Pseudocode as [179]:  

 

 

Algorithm 3.3  – k-Nearest Neighbour Pseudocode 

Where 𝐖 = {𝐱𝟏, 𝐱𝟐, ⋯ , 𝐱𝐧} is a set of 𝐧 labeled samples.  

BEGIN 

Input 𝐲, of unknown classification. 

Set 𝐊, 𝟏 ≤ 𝐊 ≤ 𝐧. 

Initialise 𝐢 = 𝟏. 

DO UNTIL (K-nearest neighbours found) 

Compute distance from 𝐲 to 𝐱𝐢. 

IF (𝐢 ≤ 𝐊) THEN 

Include 𝐱𝐢 in the set of K-Nearest neighbours 

ELSE IF ( 𝐱𝐢 is closer to 𝐲 than any previous nearest neighbour) THEN 

Delete farthest in the set of K-Nearest neighbours 

Include 𝐱𝐢 in the set of K-Nearest neighbours. 

END IF 

Increment 𝐢. 

END DO UNTIL 

Determine the majority class represented in the set of K-Nearest neighbours. 

IF (a tie exists) THEN 

Compute sum of distances of neighbours in each class which tied. 

IF (no tie occurs) THEN 

Classify 𝐲 in the class of minimum sum 

ELSE 

Classify 𝐲 in the class of last minimum found. 

END IF 
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ELSE 

Classify 𝐲 in the majority class. 

END IF 

END 

3.2.3.6. OPTICS 

Ordering Points to Identify the Clustering Structure (OPTICS) is a cluster analysis method 

[181]. Like DBSCAN, OPTICS considers both ε and MinPoints parameters. However, like LOF, 

OPTICS also includes 1) a core distance – the minimum epsilon which makes a distinct point 

a core point and 2) a reachability distance – the distance of object x to object y is the 

smallest distance from y, if y is a core object and cannot be smaller than the core distance of 

y. OPTICS-OF is an outlier detection method based on OPTICS and is similar to LOF in 

application and concept [181]. 

OPTICS can be presented as Pseudocode as follows [182]:  

Algorithm 3.2  – OPTICS Pseudocode 

OPTICS (SetOfObjects, ε, MinPts, OrderedFile) 

OrderedFile.open(); 

FOR i FROM 1 TO SetOfObjects.size DO 

Object := SetOfObjects.get(i); 

IF NOT Object.Processed THEN 

ExpandClusterOrder(SetOfObjects, Object, ε, 

MinPts, OrderedFile) 

OrderedFile.close(); 

END; // OPTICS 

3.2.3.7. TF-IDF 

TF-IDF is based on the intuition that a query term which appears in many documents is not a 

‘good’ discriminator, and should be given less weighting than a query term which occurs in 

fewer documents [185]. TF is based on the idea that the frequency of a term within a 

document itself is an indicator of its importance. Therefore an IDF measure multiplied by a 

TF measure has generically become known as TF-IDF, and this class weighting has proven 

robust and difficult to improve upon [185]. 
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TF-IDF is a numerical statistic which attempts to define the relevance of a word within a 

document in a corpus, and is used as a weighting factor in information retrieval and text 

mining [186]. Term Frequency f measures how frequently a term t appears in a document. 

Inverse Document Frequency measures how important a term is. 

Therefore 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑡) = 𝐿𝑜𝑔 
𝑁

𝑁
 

(3.10) 

Where, N is the total number of documents and Nt is the number of documents with term t 

[186]. 

3.2.4. Ensemble Averaging 

Committee methods operate on the principle that combining the output of a group of 

machine learning algorithms can achieve a decision function superior to any individual 

output [187]. Ensemble averaging is a committee method in artificial neural networks that 

averages the output of a collection of outputs [188]. Ensemble averaging concerns the 

following two properties of artificial neural networks [189]. Firstly, in a network, bias can be 

reduced at the cost of increased variance. Secondly, in a group of networks, the variance 

can be reduced at no bias cost. 

The ensemble average can be calculated through the following, where each expert is 𝑦𝑖, and 

the overall result �̃� can be defined as [190].: 

�̃�(𝑥; 𝛼) = ∑ 𝛼𝑗𝑦𝑗(𝑥)

𝑝

𝑗=1

 

(3.11) 

For a given input, x, the output of the combined model, ỹ, is the weighted sum of the 

corresponding outputs of the component neural networks, yj, j = 1,⋯,p, and the αj's are the 

associated combination-weights [190]. 
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In the context of outlier detection, this process has been described as Feature Bagging 

[191]. Through combining the results of multiple outlier detection algorithms using different 

sets of features. 

3.2.5. Human-in-the-Loop 

A HILML model must be able to generalise across use-cases and accept a declarative or 

semi-declarative specification [192]. Due to the declarative specification, a HILML system 

should capture a model of a Directed Acyclic Graph (DAG) of intermediate data items. 

Through a declarative specification, HILML can identify the logical operator for each node in 

the workflow, such as data preparation or model training [193]. 

The key advantages of an HILML model are as follows [141]: 

1. Overcoming limited analyst bandwidth: An analyst can only feasibly examine less than 

1% of the overall event volume. Therefore, the use of outlier detection can present 

the most pertinent events for investigation. 

2. Overcoming weaknesses of unsupervised learning: An events rarity, or status as an 

outlier, does not necessarily constitute maliciousness. Therefore, an events score does 

not capture intent. Using an HILML model can include an analyst’s subjective 

assessment of malicious intent. 

3. Actively adapts and synthesises new models: Analyst feedback provides labelled data 

regularly, creating a positive feedback loop. The more attacks the machine learning 

mode detects, the more feedback it receives from an analyst, which then improves the 

accuracy of future predictions.  

3.2.6. Algorithm Comparisons 

A comparison table of outlier detection algorithms is presented in Table 7 along their 

advantages and disadvantages. 

Table 7 - Outlier Detection Algorithms 

Detection Algorithms Advantages Disadvantages 

Local Outlier Factor 

(LOF) 

Uses a local approach, which is able to identify 

outliers in data that would not be an outlier in 

Determining a threshold for anomaly 

score representing an outlier varies 
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another area of the data. Therefore, a point 

with a small distance to a dense cluster can be 

an outlier, whereas a point in a sparse cluster 

may be an inlier. 

Can be generalised to multiple datasets. 

Often outperforms other algorithms, such as in 

network intrusion detection [194] and on 

classification benchmark data [180]. 

between datasets. 

Local Outlier 

Probabilities (LoOP) 

Scales resulting values to a range of (0,1) which 

can be useful in some applications. 

The requirements for detecting 

anomalous data behaviours require 

determining an outlier factor threshold 

for anomalies, rather than being 

returned in a probability. 

Density-based spatial 

clustering of 

applications with noise 

(DBSCAN) 

Can determine high- and low-density clusters 

within a dataset. 

Can identify outliers in a dataset that do not 

belong to clusters. 

No requirement to define a number of 

clusters. 

More applicable to cluster analysis data 

applications rather than anomaly 

detection. 

Clusters with varying densities cannot be 

easily identified, only high and low 

densities. 

 

 

Ordering points to 

identify the clustering 

structure (OPTICS) 

No requirement to define a radius as in 

DBSCAN, instead using a priority queue for 

unprocessed clusters. 

Can identify clusters of differing densities and 

no requirement to define the number of 

clusters. 

More applicable to cluster analysis data 

applications rather than anomaly 

detection. 

Slower than DBSCAN. 

K-Nearest Neighbour Very fast to process. 

Requires no training to make predictions due 

to instance-based learning.  

Makes no assumptions regarding the dataset. 

Often outperforms other algorithms, such as 

on classification benchmark data [180]. 

Sensitive to irrelevant features and large 

datasets. 
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Based on Table 7, LOF and DBSCAN will be compared in the case study Chapter 6. Both LOF 

and DBSCAN have the common parameter of neighbourhood size k and can identify outliers 

within a dataset. 

3.3. Graphical Applications of Machine Learning 

Due to the complex nature of machine learning models, most security approaches involve 

some visualisation aspect. Visualising complex data facilitates a more comprehensive stage 

for conveying knowledge. In doing so, machine learning models become more practicable. 

Within the medical data domain, there is an increasing requirement for valuable and 

accurate information. Visualisation techniques can, therefore, be used to provide both 

awareness and modelling capabilities for the benefit of an infrastructure [195]. It is proven 

that data visualisation enables meaningful inferences to be extracted from raw data, and 

facilitates cost savings and faster decision support [196]. Detecting anomalous data 

behaviours in healthcare infrastructures is challenging.  Visualisation brings together several 

related data sets and presents them in such a way as to identify relationships between 

them. To achieve this, cyber-threat monitoring systems employ IDSs as network sensors 

[197]. IDSs statistically analyse the time of the attack, the source of the attack, the 

destination of the attack, and can visualise the result. Visualisations are then used in order 

to leverage the perceptual abilities of the user, in order to find features in network 

structures and data.  

Visualisation provides a framework for providing situational awareness at both i) a high-

level, enabling an overview of data flows within a hospital infrastructure and ii) a low-level, 

enabling a detailed view for the investigation of a specific interaction within the hospital. 

There are three levels of situational awareness [198]; i) user must be able to identify all the 

information relevant to a decision being made, i.e. objects, identities; ii) user must be able 

to use the situational awareness model to make connections in order to understand what is 

happening; iii). the user must be presented with the information in such a way so as they 

can process it in order to accurately make predictions about events that may occur in the 

near future.  

Figure 14 demonstrates cyber-situational awareness as a three-phase process. Situation 

recognition, situation comprehension and situation projection [199]. These phases can 
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further be broken down into seven aspects. 1) Situation Perception, 2) Impact Assessment, 

3) How Situations Evolve, 4) Attacked Behaviour, 5) How the Current Situation is Caused, 6) 

Quality and Trustworthiness of Information and 7) Assessing Plausible Features. Situation 

Recognition incorporates aspects 1-6, Situation Comprehension includes aspects 2, 4 and 5, 

finally Situation Projection includes aspects 3 and 7. Figure 14 is a visual representation of 

the overlap between the three phases and seven aspects of cyber-situational awareness. 

For example, all aspects of Situation Comprehension phase are also incorporated into the 

Situation Recognition phase. 

 

Figure 14 - Cyber-Situational Awareness 

Firstly, the user must be aware of the current situation, also known as Situation Perception, 

incorporating both situation recognition and identification. Situation perception includes 

identifying the type of attack, the source of an attack and the target of an attack. Secondly, 

the user must be aware of the impact of the attack, also known as Impact Assessment. 

Impact assessment involves the assessment of the current impact and damage, and the 
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assessment of the future impact and potential damage. Thirdly, the user must be aware of 

how situations evolve, often heavily involving situation tracking as a major component. 

Fourthly, the user must be aware of attacker behaviour. This is achieved through attacker 

trend and intent analysis, which analyses attacker behaviours within situations. Fifthly, the 

user must be aware of how and why the situation is caused, including causality analysis and 

forensics. Sixthly, the user must be aware of both the quality and trustworthiness of the 

situational awareness information items. Quality metrics used to assess this include 

truthfulness, completeness and freshness. Finally, the user must be able to assess the 

plausible futures of the situation.  

3.3.1. The Theory of Gamified Learning 

Research has shown that gamification can be utilised to enable situational awareness [147]. 

The Theory of Gamified Learning infers that gamification can positively affect learning and 

decision making through a more direct mediating process and a less direct moderating 

process [200]. Gamification affects learning via mediation when a user’s behaviour is 

encouraged in such a way that it improves learning outcomes itself, such as a fitness app 

[201]. The theory therefore mediates the relationship between game elements and learning. 

For the next stage, gamification affects learning via moderation when pre-existing 

information is improved through strengthening the relationship between instructional 

design quality and outcomes [202]. For the moderation theory, the moderator does not 

influence the outcome construct independently of the causal construct, therefore the pre-

existing information must be of high quality, or the addition of gamification techniques 

would be of no benefit. The Theory of Gamified Learning is outlined in Figure 15 [200].  
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Figure 15 - The Theory of Gamified Learning 

The Mediating process follows the flow of 1) Game Characteristics, 2) Behaviour/Attitude 

and finally 3) Learning Outcomes. The Moderating process is described by the influence of 1) 

Behaviour/Attitude on 2) Instructional Content to 3) Learning Outcomes. 

 

 

3.3.2. Feature Testing 

Given the mean expressed previously in (15), the scatter matrix is the m-by-m positive semi-

definite matrix. Where T denotes matrix transpose, and multiplication is with regards to the 

outer product [203], as expressed in (19). 

𝑆 = ∑(𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇 =

𝑚

𝑖=1

∑(𝑥𝑖 − 𝜇) ⊗ (𝑥𝑖 − 𝜇)𝑇 =

𝑚

𝑖=1

(∑ 𝑥𝑖𝑥𝑖
𝑇

𝑚

𝑖=1

) − 𝑚𝜇𝜇𝑇 

(3.12) 

A scatter matrix visualises the relationship between the features to predict the most 

appropriate for the machine learning classification. The scatter matrix displays the positive 

and negative correlation between the features. Figure 16 outlines the feature testing 



 

75 | P a g e  

 

process. Through testing the features in this way, the most pertinent features can be 

selected and applied [204]. 

 

Figure 16 - Feature Testing Process 

3.4. Related Applications of Machine Learning 

This section presents an overview of related works which incorporate machine learning (or 

advanced analytics) techniques in order to provide situational awareness of information 

security issues within audit logs. Four peer-reviewed applications are presented, with a 

discussion of strengths and weaknesses in relation to PARISS. Finally, a table featuring 

commercial solutions is presented with a description and a list of limiting factors. 

3.4.1. SIEM 

Security Information and Event Management (SIEM) systems are distributed systems, which 

collect and process logs generated by both network hardware and software assets, and 

perform real-time and centralised event analysis [205]. In doing so, event correlation 

mechanisms are implemented by the analysis server to identify the occurrence of malicious 

actions and foresee an attack. However, there are a number of issues present in current 

SIEM solutions. Specifically, current SIEM solutions have processing constraints which limit 

the effectiveness of discovering violations within the business logic. Additionally, SIEMs 

cannot process data at the edge of the deployed architecture. This presents limits in 

addressing data disclosure and privacy issues, a particularly relevant problem within large 

scale deployments. Finally, no mechanisms are provided to improve the dependability of 

data storage systems that contain evidence of security breaches and maintain and store the 

sensitive data of involved parties [205].  

3.4.2. MAP1/MAP2 

Monitoring Access Pattern Phase 1 (MAP1) attempts to identify illegitimate access to EPRs 

and score each access for appropriateness, so the top scoring cases can be prioritised and 

investigated by privacy officers. The production of scores indicating suspiciousness of access 
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is preferable to simple procedure-based patterns. A training set is created through labelling 

selected events as either suspicious or appropriate by privacy officers. LR and SVM models is 

trained on 10-fold cross-validation sets of 1,291 labelled events [95] MAP1 demonstrates 

that statistical and machine learning methods can assist in identifying potentially illegitimate 

accesses to EPRs [95]. MAP2 is an extension of the work of MAP1 and relates to fine-tuning 

the detection algorithm [96]. MAP2 focuses on the construction of classifiers with 

appropriate filtering techniques to detect rare events. MAP2 uses a combination of 

Signature detection, Anomaly detection and Classifier detection, extending the capabilities 

of the previous MAP1 classifier algorithm. Privacy officers identified 78 illegitimate accesses 

to the EPR during the study period, and MAP2 identified 75 of those accesses 

independently, demonstrating that the technique has the capability to facilitate the 

detection of rare, but important events [96].  

3.4.3. CADS 

Community Based Anomaly Detection Systems (CADS) is an unsupervised learning 

framework to detect insider threats based on information recorded in audit logs of 

collaborative environments [126]. It is based on the observation that typical users tend to 

form community structures, so users with a low connection to such communities are 

indicative of anomalous behaviour. The model consists of two primary components. Firstly, 

relational pattern extraction infers community structures from access logs and subsequently 

derives communities, which serve as the CADS core. Secondly, potentially illicit behaviour, 

where CADS uses a formal statistical model to measure the deviation of users from the 

inferred communities to predict which users are anomalies [126]. CADS does not implement 

supervised learning techniques to further classify the data with feedback from patient 

privacy officers. 

3.4.4. AI2 

AI2 is a cyber-security machine learning system, which improves its accuracy over time 

through feedback from security analysts [141]. AI2 is composed of the following four 

components. Firstly, a Big Data Processing System, which quantifies the behaviours and 

features of raw data [141]. Secondly, an Outlier Detection System, which learns a 

descriptive model of data features extracted via unsupervised learning, using either density, 
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matrix decomposition, or replicator neural networks [141]. Thirdly, a Feedback Mechanism 

and Continuous Learning, which incorporates analyst input through a user interface [141]. 

The system highlights the top k outlier events or entities and tasks the analyst with 

identifying whether they are malicious; the feedback is then input back into the supervised 

learning module. Fourthly, a Supervised Learning Model, which predicts whether a new 

incoming event is normal or malicious, and uses analysts’ feedback to refine the model 

[141]. Raw data is input into AI2 which computes features describing the entities of the data 

set. Using these features, an unsupervised machine learning module identifies extreme and 

rare events in the data. These events are then ranked based upon a predefined metric and 

presented to the analyst, who ranks the behaviours as normal or malicious (and as 

pertaining to a particular attack type). Finally, these labels are input to the supervised 

learning module [141].  

3.4.5. Commercial Solutions 

Table 8 compares existing commercial solutions and their limiting factors. 

 Table 8 – Comparison to Commercial Solutions and their Limiting Factors 

Commercial 

Solution 

Description  

(Taken from websites as most aren’t peer reviewed)  

Limiting Factors 

FairWarning 

Patient 

Privacy 

Intelligence 

FairWarning is a Procedure-Based Analytics Patient Privacy 

Violation detection system [108] deployed in some UK 

hospitals. Fair Warning’s Patient Privacy Intelligence is an 

open platform that secures patient data held in mission-

critical applications. We give healthcare providers the 

tools and support they need to manage the full lifecycle of 

security incidents as required by regulations like HIPAA, 

HITRUST, and NIST. 

Procedure-Based Analytics 

approach, rather than a 

machine learning approach. 

Lack of visualisation tools to 

provide situational awareness. 

Although deployed in NHS 

Trusts the system is tailored to 

HIPAA (US Health Insurance 

Portability and Accountability 

Act of 1996) compliance, rather 

than an ICO (UK Information 

Commissioner’s Office) focus. 

Protenus Protenus uses artificial intelligence to help healthcare 

organizations protect patient privacy and secure health 

data [206]. 

Lack of visualisation tools to 

provide situational awareness. 

A focus on HIPAA compliance, 
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rather than an NHS focus. 

Iatric 

Security 

Audit 

Manager 

Security Audit Manager iQ [206] empowers privacy 

auditors to: 

 See ranked suspicious activities automatically in 

personalized worklists, dynamically increasing 

productivity 

 Increase accuracy and ensure fewer false positives by 

combining our proven expert-based deterministic 

algorithms with machine-learning 

 Uncover patterns once difficult to find through role-

based behavioural analysis 

 Detect, prevent, and respond to privacy incidents and 

breaches for a complete end-to-end solution 

Lack of visualisation tools to 

provide situational awareness. 

A focus on HIPAA compliance, 

rather than an NHS focus. 

Maize 

Analytics 

Maize Analytics' Explanation-Based Auditing System 

(EBAS) reporting and filtering capabilities allow healthcare 

privacy officers to more quickly identify suspicious 

activities . 

Lack of visualisation tools to 

provide situational awareness. 

A focus on HIPAA compliance, 

rather than an NHS focus. 

Spher SPHER is the front line defence against the day-to-day 

threat of patient privacy violations (PHI data breaches) 

resulting from inappropriate access to Protected Health 

Information [206]. As required by HIPAA, HITECH and 

MACRA, every comprehensive compliance strategy must 

include User Activity Monitoring, a requirement that 

SPHER is specifically designed to achieve. 

Lack of visualisation tools to 

provide situational awareness. 

A focus on HIPAA compliance, 

rather than an NHS focus. 

Intruno Intruno uses advanced behavioural analysis to provide the 

ultimate intelligent notification against data breaches and 

privacy violations originating from both stolen credentials 

by external hackers and malicious insiders [206]. 

Lack of visualisation tools to 

provide situational awareness. 

A focus on HIPAA compliance, 

rather than an NHS focus. 

Arcus Data As electronic health records (EHRs) steadily replace paper 

records, healthcare institutions struggle to prevent 

security breaches without resorting to laborious manual 

audits of EHR accesses. Arcus Data dashboards and 

reporting capabilities allow healthcare privacy officers to 

more quickly identify suspicious activities [206]. 

Lack of visualisation tools to 

provide situational awareness. 

A focus on HIPAA compliance, 

rather than an NHS focus. 

PatternEx PatternEx is the commercial solution for AI^2, as Lack of focus on healthcare 



 

79 | P a g e  

 

described in 3.4.4. PatternEx delivers Artificial Intelligence, 

combining Analyst Intuition with machine learning to 

defend the enterprise against cyber security threats [206]. 

infrastructures. Lack of focus on 

EPRs. 

SolarWinds Improve security and compliance with an easy-to-use, 

affordable SIEM tool [206]. 

Detect suspicious activity - Identify threats faster with 

event-time detection of suspicious activity. 

Mitigate security threats - Conduct security event 

investigations and forensics for mitigation and compliance 

with SolarWinds SIEM software. 

Regulatory compliance readiness - Demonstrate 

compliance with audit-proven reporting for HIPAA, PCI 

DSS, SOX, DISA STIG, and more. 

Maintain continuous security - Improve security measures 

with SolarWinds
®
 Log & Event Manager (LEM) SIEM tool, a 

hardened virtual appliance with encryption capabilities for 

data in transit and at rest, SSO/smart card integration, and 

more. 

Lack of focus on healthcare 

infrastructures. Lack of focus on 

EPRs. 

DarkTrace DarkTrace [207], based in the UK, is among the world’s 

most advanced machine learning technologies for cyber 

defence and an advocate for using AI for safeguarding 

critical systems. 

 

Lack of focus on healthcare 

infrastructures. Lack of focus on 

EPRs. 

3.5. Summary 

A proactive approach to data confidentiality is required to safeguard EPR systems. 

Visualisation and machine learning techniques have the potential to enhance situational 

awareness of patient privacy violations within EPRs. Visualisations allow the user to explore 

the data and understand the patterns and trends within the comprehensive EPR audit data 

sets. Unsupervised machine learning techniques are able to classify this data as there is 

limited abnormal data and a lack of labelled training data. Feedback from the analysts can 

inform the machine learning algorithms and refine the results to reduce alert fatigue. 

Machine Learning algorithms will allow the system to pick up on patterns and trends in the 

date without being explicitly taught them, as in Procedure-Based Analytics. Through 

https://www.solarwinds.com/topics/it-hipaa-compliance
https://www.solarwinds.com/topics/pci-dss-compliance-tool
https://www.solarwinds.com/topics/pci-dss-compliance-tool
https://www.solarwinds.com/topics/sox-it-compliance-tool
https://www.solarwinds.com/topics/disa-stig-compliance-tool
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detecting abnormal behaviours using machine learning and visualising the results, patient 

privacy officers can avoid the ‘needle in a haystack’ challenge of detecting this activity 

manually.  

In this chapter, artificial intelligence and machine learning techniques are described in order 

to determine a suitable density-based outlier detection algorithm for the novel system 

framework. Additionally, related applications and work in this area are described, in both an 

academic and commercial context, detailing their use and limitations. In chapter 4, the 

proposed system framework is presented and detailed.
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4. Proposed System Framework 

4.1. Introduction 

There is a clear need for an anomaly detection system to ensure patient confidentiality 

within EPR systems. PARISS is an information security system, which improves its accuracy 

over time through feedback from security analysts. The system assists information security 

officers within healthcare organisations to improve the situational awareness of patient 

data confidentiality risks. The issues of scalability require the system to be deployed on a 

cloud domain due to the requirements of storage of the EPR audit data and the processing 

of the algorithms. An approach is put forward for analysing data within healthcare 

infrastructures, processing it to eliminate low-risk data points and visualising it in such a way 

that data anomalies become apparent.  

4.2. System Development Life Cycle 

The novel contribution in this framework involves the use of advanced data analytics 

techniques, a Human-In-The-Loop (HILML) and the use of visualised attack events. Low-risk 

data is analysed, processed and pre-filtered using advanced data analytics techniques. The 

output is then visualised and presented to an analyst. The analyst then classifies events 

within the presented visualisation, which provides feedback to the system. Through the use 

of the analyst-in-the-loop, both models are used to continuously defend the healthcare 

infrastructure against current attack vectors. The aim is to collect, process, and filter big 

data sets to provide users with an overall understanding of system behaviour in order to 

detect security breaches and general anomalies. The system provides situational awareness 

to detect anomalous behaviour within EPR audit activity.   
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4.2.1. Requirements Specification 

EPR audit data is input to PARISS and features are extracted and scaled. The data is 

processed using the technique, Local Outlier Factor (LOF). The results are visualised to 

highlight potentially malicious activity in a broad overview of the activity within the EPR. 

From here the analyst explores the visualisation and the highlighted data points.  

Interaction with the visualisation allows for in-depth exploration of the data, providing 

detailed technical information regarding the data points. This provides insight as to why the 

data is ranked as potentially malicious by LOF. HILML techniques are implemented to 

compliment the unsupervised LOF scores. Upon investigation an analyst can label the data 

as legitimate or illegitimate. Through this process, a semi-supervised approach is applied to 

the challenge of detecting EPR misuse. In doing so a feedback loop is embedded in the 

system to continuously improve PARISS. 

4.2.2. Location 

Figure 17 demonstrates where PARISS is situated within the hospital infrastructure layout. 

Data from the EPR (and any other relevant hospital systems if the EPR is not a 

comprehensive and holistic view of patient record activity) is extracted and input into the 

Data Warehouse. This is hardcoded and occurs daily at 4AM as this is statistically the period 

of quietest activity within a hospital. Data from the data warehouse is then extracted and 

input to PARISS. 

 

Figure 17 - PARISS Location 

4.3. Algorithm Design 
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The algorithm process steps are described. The novelty of this work is implementing 

previous techniques in a novel way. Broadly, the use of the Local Outlier Factor algorithm, in 

conjunction with a Human-in-the-Loop and a visualisation element, applied to the context of 

patient privacy in EPRs. Detailed diagrams of the system components are presented and 

discussed throughout the remainder of this Chapter. 

1. EPR Audit Data: This audit data is captured by the EPR and records at every 

interaction with the EPR. This data is extracted into the data warehouse where it is 

stored and input into the PARISS pipe-delimited format on a daily basis. 

2. Feature Extraction: Features of the EPR audit data are extracted for the analysis 

purposes. A statistical features-based approach is taken. 

3. User Profiling: This phase is only executed on initial set up. Through profiling users, 

the anomaly threshold benchmark is set. This enables the selection of a local outlier 

factor anomaly threshold. 

4. Feature Scaling: Features are scaled in order to conform to a common scale for the 

classification algorithms. 

5. Feature Testing: Features are tested and selected to determine the most suitable 

features for the Local Outlier Factor algorithm. 

6. Local Outlier Factor: LOF is applied to extract anomalies from the data. After the data 

has been processed by LOF, the data is ranked and selected based on previous user 

interaction. This is to ensure the most notable data points are presented to the user 

first. 

7. Quantifying LOF: LOF results are quantified for Infinite (Inf) and Not a Number (NaN) 

values. Inf indicates a point that is next to identical points, but is not a member, and 

is therefore anomalous and assigned an anomalous numerical value of 2. NaN 

indicates many neighbours at the same location, therefore the ratio of densities is 

undefined and is not anomalous, so assigned a non-anomalous numerical value of 1. 

8. Visualisation: This component generates the visualisation for the user. The 

component uses the system operator’s input and calls upon the data stored in the 

database component, which is then processed and visualised and passed onto the UI 

Output. 
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9. Data Analyst: The operator interacts with and manipulates the visualisation in order 

to set their own data parameters. This increases their situational awareness of the 

data flow within the healthcare infrastructure. 

10. Human-in-the-Loop Machine Learning (HILML): HILML techniques are applied in 

order to extract knowledge from the analysts. An analyst can rank a detected outlier 

on an accuracy scale, which sets a benchmark multiplier score for the IDs, affecting 

their anomaly score in future iterations. 

11. Data Storage: This component stores the data in a database when not in use by the 

other components. 

4.3.1. UML Diagram 

The PARISS UML Diagram is detailed in Figure 18.  
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Figure 18. PARISS UML Diagram 

Figure 18 presents the flow for how PARISS functions and processes the EPR audit data. 

Each component is discussed throughout the remainder of this section. Figure 18 highlights 

how the Data Acquisition Control function requests data from the data warehouse and 

functions with the Data Control. Figure 18 also displays the PARISS Data Storage 

incorporating both appropriate and inappropriate behaviour accesses as defined by the 

HILML feedback. This feedback is then retrieved during the analysis stage after Local Outlier 

Factor has processed a new batch of data. 

4.3.2. Input Data 
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Input Data to PARISS is extracted from the Data Warehouse. Due to the disparate nature of 

systems in hospitals, a data warehouse is managed by the Business Intelligence team in 

order to extract insight and prevent data siloing. EPRs integrate many aspects of care into a 

single system, which are audited. Each encounter with patient data results in an audit 

footprint, which is stored in the data warehouse. Data is extracted into pipe delimited ( | ) 

values format and extracted into PARISS. A pipe is employed as it is rarely used in normal 

text within EPRs or numeric processing. This process is detailed in Figure 19. 

 

Figure 19 - PARISS Input Data 

EPR Audit Logs consist of the following fields (with slight variance between EPRs):  

 Date & Time: The date/time the patient record was accessed; 

 User ID: The User ID who accessed the patient record;  

 Device ID: The Device ID the patient record was accessed on;  

 Patient ID: The patient ID record that was accessed;  

 Routine: The routine performed whilst accessing the patient record (was the record 

updated, was a letter printed etc.);  
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 Duration: The number of seconds the patient record is accessed for (this number counts 

for as long as the record is on the screen, so may not always be an accurate reflection of 

how long the User was actively interacting with the data);  

 Latest Adm Date: The date the patient is last admitted to the hospital  

 Latest Dis Date: The date the patient is last discharged from the hospital. 

4.3.3. Feature Extraction 

The PARISS Feature Extraction process is detailed in Figure 20. 

 

Figure 20 - PARISS Feature Extraction 

Features of the EPR audit data are extracted for the LOF classification process. During the 

pre-processing stage, a statistical features based approach is implemented [208]. Four 

‘measures of central tendency’ are calculated through the Frequency, Mean, Median and 

Mode feature extraction process. Five measures of variability are calculated through the 

Standard Deviation, Minimum, Maximum, 1st Quartile and 3rd Quartile features. Finally, two 

measures of position are calculated through the 5th Percentile and 95th Percentile features. 
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The resulting eleven features are extracted from the dataset for each ID (User, Patient, 

Device and Routine). Table 9 displays the features selected, with an accompanying 

description. 

Table 9 - Dataset Feature Names and Descriptions 

Feature 
Name 

Feature Description 

Frequency The number of times the ID featured in the dataset (using a Pivot Table) 

Mean The ‘average’ ID value in the dataset. The sum of the durations for all values for a particular ID, 
divided by the frequency of that ID. 

Mode The value that appears most in the ID range 

Standard 
Deviation 

The measure of the dispersion of the ID range from its mean value 

Minimum The data value that is less than or equal to all other values in the ID range 

5th 
Percentile 

The value below which the lowest 5% of the data falls 

1st 
Quartile 

The median of the lower half of the data set 

Median The value that separates the higher and lower half of the ID range 

3rd 
Quartile 

The median of the upper half of the data set 

95th 
Percentile 

The value above which the upper 5% of the data falls 

Maximum The data value that is greater than or equal to all other values in the ID range 

The mean (μ) is calculated using the equation outlined in (20). 

𝜇 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 

(4.1) 

 

From this, the standard deviation (σ) is calculated using the equation outlined in (21): 

𝜎 = √
1

𝑚
∑(𝑥𝑖 − 𝜇)2

𝑚

𝑖=1

 

(4.2) 
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The remaining frequency, mode, median, minimum, maximum, 5th percentile, 95th 

percentile, 1st quartile and 3rd quartile is calculated using sort functions. For example, the 

mode employs the computation outlined in the pseudo code (22). 

𝑋 = 𝑠𝑜𝑟𝑡(𝑥); 

𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑓𝑖𝑛𝑑(𝑑𝑖𝑓𝑓([𝑋;  𝑟𝑒𝑎𝑙𝑚𝑎𝑥])  >  0); 

[𝑚𝑜𝑑𝑒𝐿, 𝑖] = 𝑚𝑎𝑥 (𝑑𝑖𝑓𝑓([0;  𝑖𝑛𝑑𝑖𝑐𝑒𝑠])); 

𝑚𝑜𝑑𝑒 = 𝑋(𝑖𝑛𝑑𝑖𝑐𝑒𝑠(𝑖)); 

(4.3) 

4.3.4. Profiling IDs 

The approach for profiling IDs for benchmarking typical and atypical behaviours within the 

EPR for PARISS is detailed in Figure 21. This process is undertaken upon initialisation of 

PARISS in a new hospital infrastructure. Initially there is a need to determine a cross section 

of typical behaviour for each staff role. This may be provided by the hospital. Otherwise a 

cross section of staff roles is selected to profile based on the data. If staff information is 

unavailable (due to anomalous data) then the most active ID types are selected. These ID 

types are then filtered and visualised against duration. Through this, a benchmark can be 

determined for typical behaviours and agreed with the hospital. This provides a starting 

point for PARISS. Once PARISS is in use, the HILML feedback tailors the benchmark for each 

hospital. A case study of this process is presented in Chapter 5. 

 

Figure 21 - PARISS Profiling IDs 

4.3.5. Feature Scaling 

Three traditional approaches considered for this process are, 1) Min-Max scaling, 2) Decimal 

scaling and 3) Z-score normalisation.  
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The Min-Max approach scales the data to a fixed range, between 0-1. The normalised value 

is obtained using the method outlined in (23). 

𝑀𝑀(𝑥𝑖𝑗) =
𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

(4.4) 

Having a bounded range results in lower standard deviations and suppresses the effect of 

outliers. Decimal scaling normalises by moving the decimal point of values of feature 𝑥. 

Therefore, a 𝐷𝑆(𝑥) value is obtained using the method outlined in (24). 

𝐷𝑆(𝑥𝑖𝑗) =
𝑥𝑖𝑗

10𝑐
 

(4.5) 

Where max [\(DS(xij))\] < 1  and c  is the smallest integer. The Z-score normalisation 

approach rescales features so that they have the properties of a standard normalisation. 

The Z-score approach scales the data to a standard normal distribution. The scaled value is 

obtained using the method outlined in (25). 

𝑥𝑖𝑗 = 𝑍(𝑥𝑖𝑗) =
𝑥𝑖𝑗 − 𝑥𝑗

𝜎
 

(4.6) 

Where 𝑥𝑗  and 𝜎𝑗  are the sample mean and standard deviation of the jth attribute, 

respectively [143]. 

The bespoke Min-Max feature scaling process for PARISS is outlined in Figure 22. The data is 

loaded and a Min-Max boundary value of 0,1 is assigned. A two-phase process is applied. 

Firstly, PARISS must determine the Min-Max values of each feature. It does this by 

processing each line individually and assessing its feature class. It then assesses if this is a 

new maximum or minimum value for this class and if so, it updates the value stored for that 

feature. This process continues until every line is processed. The second phase normalises 

the data. PARISS processes each line and determines its feature class. It then normalises this 
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data against the Min-Max value it has determined for that feature class based on the first 

phase. This process continues until every line is processed. 

 

Figure 22 - PARISS Min-Max Feature Scaling 

 

 

4.3.6. Local Outlier Factor  

A literature review of outlier detection methods was undertaken in chapter 3 and LOF was 

chosen as the algorithm for PARISS. This was primarily due to LOF providing an anomaly 

score, which allowed nuanced scoring for anomalous behaviour. This enables to behaviours 

to be ranked for prioritisation for the HILML process. For every value of each of the four IDs, 

a LOF anomaly score is calculated. The LOF anomaly score measures the local deviation of 

density through determining how isolated the value given by k-nearest neighbours (k is 

initially set to 5 as this is the recommended default [26]). A value of 1 indicates that an 

object is comparable to its neighbours and represents an inlier. A value below 1 indicates a 
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dense region, and would therefore also be an inlier. A value significantly above 1 therefore 

indicates an outlier (anomaly). Any value below a 1 is an inlier, so all values within the range 

0-1 are classified as inliers. Due to a range of 0-1 being classified as inliers, values within the 

range 1-2 were also determined to be classified as inliers. Therefore initially, any value 

above 2 is considered to indicate an outlier. 

A LOF anomaly score is calculated by taking the number of variants according to the 

mathematical combination and is calculated using the equation in (26). As there are ten 

features, 45 LOF scores are calculated to account for all the feature combinations for every 

ID in the dataset. 

(
𝑛!

𝑘!
) =

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

𝑘(𝑘 − 1) … 1
 

(4.7) 

A flowchart of the Local Outlier Factor Detection process is presented in Figure 23. This 

algorithm is presented in further detail in 3.2.3.1. 

 

Figure 23 - Local Outlier Factor Detection process 

4.3.6.1. Ensemble Averaging 

Highlighting an ID of interest, such as a user, is useful in some cases, where repeated 

inappropriate behaviour is evident. However, if the inappropriate behaviour occurred only 

once then an analyst would need to investigate the user’s entire behaviour for patterns, 

which is not feasible. A model of combining LOF values into ensemble averaged LOF values 

is used in order to identify individual audit logs for review. Through highlighting a specific 

audit log for review, the analyst can review the context around the EPR access and 

determine whether the access was appropriate or inappropriate. The Ensemble Averaging 

process is outlined in Figure 24. 
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Figure 24 - Ensemble Averaging for PARISS 

An ID Anomaly Score does not indicate exactly when a potential inappropriate access has 

occurred. In order to assign an anomaly score to a specific audit log, rather than a specific 

ID, the LOF anomaly scores need to calculate the ensemble average. In order to achieve this, 

a weighted average is applied to each audit log. An additional column is added next to each 

of the IDs with that ID’s associated anomaly score. For every audit log, a weighted average 

of the four anomaly ID scores is calculated. The calculated ensemble average anomaly score 

can then be plotted against the Date & Time stamp and visualised to the analyst. 

4.3.7. Quantifying LOF 
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Quantifying LOF is then performed order to convert the Not a Number (NaN) and infinite 

(Inf) values. A NaN value indicates that a point has many neighbours in the same location, 

therefore the ratio of densities is undefined, and the points are not outliers. An Inf value 

occurs when a point is next to several identical points, but is not itself a member of that 

cluster; they are therefore ‘infinite’ and can be classified as anomalous. The NaN values are 

therefore assigned a value of 1, to indicate they are not anomalous, and the inf values are 

assigned a value of 2, to indicate they are anomalous. Any missing or null values, such as a 

missing mode value due to lack of data, are assigned the median value for their feature 

class. The quantifying LOF process for PARISS is detailed in Figure 25. 

 

Figure 25 - PARISS Quantifying LOF Process 

4.3.8. User Interface Design 

The User Interface concept for PARISS is detailed in Figure 26. The User Interface was 

designed in consultation with a partner hospital. The key requirements were for the primary 

audit log graph to be the focus of the user interface, accompanied by the table of data to 

enable further investigation. There was also a requirement for the graphs of the individual 

ID types to be available to be investigated. The user interface needed to be uncluttered and 

easy to use, so results could be interpreted and actioned quickly. 

Highlighting a single audit log as an outlier enables an analyst to review it within the context 

of the other audit logs and determine intent. Additionally, an event being an outlier does 

not constitute maliciousness. Focusing attention on a single event of interest allows analyst 

intuition to be leveraged in determining context and intent. Therefore, employing an HILML 
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method overcomes the limitations of an unsupervised learning model and incorporates 

analyst feedback to adapt and use new models. In doing so, the analyst’s attention can be 

focused to the most pertinent events within the dataset. 

 

Figure 26 - PARISS User Interface – Dashboard 

The menu section allows the user to change what PARISS presents to the user. The LOF 

Graphs option is the default layout, displayed in Figure 26. In this layout, there are five 

graphs presented to the user, and one table. The LOF Tables option is similar to LOF Graphs 

but swaps the graphs for tables. In this layout, there are five tables presented to the user, 

and one graph (whichever table the user has selected as the primary table). 

The visualisation clearly displays the key logs of interest to be investigated by an Analyst. 

Hovering over a data point displays the date and time of the EPR access (in yy/mm/dd 

hh:mm format), in addition to its anomaly score. The ensemble averaged score initially is 

displayed in the primary LOF graph position, with the ID LOF scores displayed in secondary 

graphs beneath. If a User selects the maximise button on any of the secondary graphs, the 

graph swaps position with the primary graph. The LOF table lists the LOF results for the 

primary graph. This initially lists in order of highest LOF anomaly score though this can be 

changed, for example listing them in date and time order. 

Through visualising the anomalies in this way, outliers can be highlighted to an analyst for 

scrutiny. In our visualisation, outliers in the top quarter of each ID range are highlighted as 
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red, to be investigated as a priority. Outliers in the 3rd quarter appear orange, and outliers in 

the 2nd quarter appear light orange. This creates an interactive live task list for the analyst, 

with an anomaly priority ordering. Clicking on a point displays the ID number, which allows 

the analyst to investigate the activity associated with the ID. The display updates when new 

data is input and new LOF scores are calculated, providing a current view of anomalous EPR 

activity within a hospital. Activity such as insider threats (a staff member misusing their 

access privileges), or external threats (such as credentials accessed through social 

engineering and utilised for data exfiltration), can be investigated. In this way, the system 

provides situational awareness to aid patient privacy officers to monitor for malicious or 

unusual activity proactively.  

4.3.9. HILML Algorithm Design 

The Human-in-the-Loop Machine Learning process for PARISS is detailed in Error! Reference 

source not found..  

 

Figure 27 - Human-in-the-Loop Machine Learning process 

By including the HILML model, an active learning approach employs analyst feedback to 

train the machine learning model. An analyst is asked to review the audit log anomalies and 

assign a feedback score. By default, the feedback score for every anomaly is 1. The analyst 

can provide a feedback score in the range of 0.1 to 2. This LOF score is multiplied by the 

feedback score to provide the final score. Therefore, if a feedback score of 2 is given, 

indicating anomalous behaviour, it multiplies the anomaly score by 2 for the relevant IDs 
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and therefore makes them more likely to be rated highly in future. If an analyst gives a score 

as low as 0.1, this multiplies the anomaly scores by 0.1, which effectively whitelists the IDs, 

making them unlikely to appear as an anomaly in future.  

The feedback scores are being updated throughout the use of PARISS, incorporating analyst 

feedback into the anomaly identification process. The range of 0.1 to 2 is chosen to reflect 

that anomalies within the 0-2 range are classified as appropriate behaviour within PARISS. 

This process is required as some users, such as consultants, will be required to access a 

variety of patients and would otherwise regularly be flagged as acting anomalously. 

4.3.10. Database Design 

Figure 28 outlines the database solution for PARISS.  

 

Figure 28. Database Diagram 

In addition to the extracted data, the stored data includes the assigned LOF score (including 

corresponding neighbourhood radius and density values) and HILML feedback for the audit 

log. 

4.3.11. Overall System Design 
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A high-level view of the PARISS Architecture is presented in Error! Reference source not 

found..  

 

Figure 29. Overall System Design 

4.4.  Summary 

In this chapter, the Patient Record Intelligent Security System (PARISS) is presented. The 

system is deployed within the hospital infrastructure and extracts data from the data 

warehouse. PARISS then pre-processes the data by extracting features, scaling the data and 

testing for appropriate features, before calculating the Local Outlier Factor for each ID type. 

Ensemble averaging is then applied to provide a LOF anomaly score to individual audit logs. 

This is then visualised and presented to the user. The user can provide feedback to PARISS 
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through a Human-in-the-Loop machine learning approach. This data is then stored and 

called upon when more audit data is extracted from the data warehouse. In chapter 5, a 

case study will be used to test the proposed system using a real-world EPR dataset 

containing 1,007,727 rows of audit logs is presented and explored. 
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5. Case Study: EPR Data Validation 

5.1. Introduction 

Data behaviour within healthcare infrastructures needs proactive monitoring for malicious, 

erratic or unusual activity. Patients need to be assured of three crucial security principles 1) 

the data stored is trustworthy and accurate. 2) Data can be reliably accessed by healthcare 

professionals when needed. 3) Only authorised healthcare professionals have access to the 

data, and only access it when it is appropriate to do so. Issues also surround data being 

exchanged across multiple countries that have different laws and regulations concerning 

data traversal, protection requirements, and privacy laws [209]. 

A case study of actual EPR audit data is presented as an exploration of user behaviours 

within an EPR, in order to understand anomalous activity. The data used in this research was 

supplied in three stages by the hospital partner (who currently use the FairWarning 

commercial solution). 1) They provided one month (May 2017) of data to allow for the 

development of a proof of concept. 2) Following on from the successful proof-of-concept 

stage,  a further 6 months of data was provided (July-December 2016) in order to explore 

the effects of a larger dataset on the PARISS process. Finally, 3) the hospital provided 18 

months of data (February 2016 – August 2017), the maximum that could be provided, as 

data was deleted after that point due to lack of data storage at the hospital.  

According to the hospital, the number of anomalous alerts generated are affected by three 

factors. 
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1. The number of staff proportionally increases the number of alerts (a hospital with 4 

times the staff would have 4 times the alerts). 

2. The number of patients also affects proportionally the number of alerts, creating a 

compound effect (similarly if there were 4 times the number of patients, this would have 

another 4 times the number of alerts). 

3. A complexity factor, which is a considerable challenge to define. This refers to the 

complexity of specialties within the hospital (such as in an acute hospital) and the innate 

curiosity of the staff.  

The task of navigating this data for anomalous activity is therefore considerable. 

5.2. EPR Data 

This rich dataset contains 1,007,727 rows of audit logs of every user and their EPR activity in 

a single UK specialist hospital over a period of 18 months (28-02-16 – 21-08-17). The data 

used in this research is from a specialist hospital. A large teaching hospital would have 

approximately four times the number of staff, and would, therefore, have a proportional 

increase in data quantity.  

5.2.1. EPR Data Fields 

The EPR in this case study uses a unique hierarchal relationship data structure. For this 

reason, the data cannot be queried directly and extracted. Instead, it is hard-coded into the 

EPR to push this data on a daily basis at 04:30AM. This data is pushed to a shared data file in 

pipe-delimited format (comma-delimited may cause issues with certain fields such as name, 

or routine). This data remains in .txt format until it is synthesised into a single .csv data file 

using the command prompt. A diagram of this process is presented in Figure 30.  

The process outlined in Figure 30 however is unusual. Many EPRs (and other medical 

systems) use a relationship data structure, therefore this data can instead be extracted 

using an SQL query and the .csv file will be created.  
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Figure 30 – Extraction of EPR Data 

The data provided in this research was previously extracted for input into FairWarning. 

FairWarning is a procedure-based detection system for patient privacy. This work aims to 

expand on the capability of FairWarning through applying machine learning and 

visualisation techniques. Other fields extracted for the benefit of FairWarning (but 

unfortunately not made available to this project due to information governance and staff 

privacy concerns) are outlined in Table 10. This data can be used to give a further picture of 

potentially anomalous behaviour. For example, using a member of staff’s address in the 

Electronic Staff Record (ESR) system along with the patient’s address in the Patient 
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Administration System (PAS) may indicate inappropriate behaviour (such as a member of 

staff reading details of a neighbour without clinical reason). The key alerts generated by 

FairWarning are for i) Self-Exam, ii) Family Snooping, iii) Employee Snooping and iv) 

Neighbour Snooping. 

Table 10 - Other FairWarning Input Data 

EDMS Fields ESR Fields PAS Fields ICE Fields 

Timestamp Employee Number Hospital Number Time Stamp 

User ID First Name GenderDesc User ID 

User First Name Last Name Address Line 1 User First Name 

User Last Name Birth Date Address Line 2 User Last Name 

Patient ID Age Address Line 3 Patient ID 

Patient First Name Position Title Address Line 4 Patient First Name 

Patient Last Name Department Postcode Patient Last Name 

Application Department ID Date of Birth Application 

Event Description Manager Surname Confidential Flag Event Description 

Event Type Manager First Name Marital Status Event Type 

 User Status Family Name  

 User Hire Date Given Name  

 Ctr Hrs   

 Location   

 User Gender   

 Address Line 1   

 Address Line 2   

 Address Line 3   

 Town or City   

 County   

 Post Code   

 Country   

 Telephone Home   

 Marital Status   

A sample of the EPR data used in this research is presented in Table 11. In the first row of 

Table 11, User 865 accesses the ‘Pharmacy Orders’ function of the EPR on Patient 58991 

whilst using Device 362. Each User UID, Patient UID and Device ID is tokenised through 

isolating the unique entries and assigning each value an incrementing number. There are 

1,515 unique User IDs, 72,878 unique Patient IDs, 2,270 unique Devices IDs and 13,722 
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Routine ID combinations within the dataset. Therefore, there are 90,385 unique IDs in the 

dataset in total (for user, patient, device and routine combined). 

Table 11 - EPR Audit Sample Data 

Date&Time Device User 
UID 

Routine Routine Description Patient 
UID 

Duration Location 
Latest Adm 

Date 

Latest Dis 
Date 

28/02/16 
00:00 

362 865 PHA.ORDS Pharmacy Orders 58991 54 28/02/2016 29/02/2016 

28/02/16 
00:02 

923 199 REC REC:(DRP) 
UK.OE 

Recent Clinical Results Recent Clinical 
Results:(Departmental Reports) UK.View Orders 

17278 77 15/02/2016 15/02/2016 

28/02/16 
00:02 

103 677 ASF Assessment Forms 4786 13 22/07/2008 22/07/2008 

28/02/16 
00:02 

103 677 ASF Assessment Forms 4786 54 22/07/2008 22/07/2008 

28/02/16 
00:04 

923 199 REC UK.OE Recent Clinical Results UK.View Orders 62121 147 08/02/2016 08/02/2016 

28/02/16 
00:04 

103 677 ASF VH Assessment Forms Visit History 14067 39 28/09/2004 28/09/2004 

28/02/16 
00:04 

845 1489 PHA.ORDS Pharmacy Orders 49304 22 23/01/2002 23/01/2002 

28/02/16 
00:06 

923 199 REC REC:(DRP) 
UK.OE 

Recent Clinical Results Recent Clinical 
Results:(Departmental Reports) UK.View Orders 

60948 165 08/01/2016 08/01/2016 

28/02/16 
00:08 

775 568 NOTE Patient Care Notes 32826 75 25/01/2012 25/01/2012 

28/02/16 
00:10 

748 797 REC REC:(DRP) Recent Clinical Results Recent Clinical 
Results:(Departmental Reports) 

2166 20 28/01/2016 28/01/2016 

A distribution of durations for each of the ID types in the dataset is presented in Table 12. 

Table 12 - Distributions of Durations 

Value User ID Patient ID Device ID Routine ID 

min 1 1 1 1 

max 32,557 1,011 25,739 214,345 

mean 665.166 13.828 443.933 59.476 

std 1,842.86 25.556 1,373.30 2,153.38 

quantile(0.01) 1 1 1 1 

quantile(0.25) 34 1 8 1 

quantile(0.5) 220 4 63 1 

quantile(0.75) 651 15 295 2 

quantile(0.99) 7,411 116 7,138 253 

A visualisation of this data as a stacked bar chart and line graph is presented in Figure 31. 

Visualising the distribution highlights clear anomalies in the data. The max value is 

significantly higher than the 0.99 quantile for each ID. This can have significant effects on 

the mean. For example, with Routine ID, the median is 1, but the mean is 59.476. The 

visualisation demonstrates how anomalous the max is compared to the rest of the dataset. 
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(a) Distribution of durations as a stacked bar chart  (b) Distribution of durations as a line graph 

Figure 31 – Distribution of durations  

A visualisation of each ID type is presented as radial graphs in Figure 32.  

  

(a) Distribution of durations as radial graph for User ID (b) Distribution of durations as radial graph for Patient ID 

  

(c) Distribution of durations as radial graphs for Device ID (d) Distribution of durations as radial graphs for Routine ID 

Figure 32 – Distribution of durations as radial graphs 
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The visualisation demonstrates for each ID type the extent to which the max can skew the 

feature sets and demonstrates clear anomalies. For example, when compared to the green 

line showing the 0.99 quantile, the extent to which the max value is an anomaly is clear. 

5.2.2. EPR Data Tokenisation 

The dataset contains four distinct ID types, User, Patient, Device and Routine. Each User ID, 

Patient ID and Device ID is tokenised by isolating the unique entries and assigning each 

value an incrementing number, using this bespoke algorithm:  

Algorithm 5.1 – Tokenisation algorithm for PARISS 

Sort values into alphabetical order 

Set 1st a tokenised value of 1 

IF next value is same as previous value 

Assign same tokenised value 

ELSE 

Assign a value +1 to the previous tokenisation value 

END IF 

All values have been tokenised 

END 

 This is done to anonymise the dataset as mandated by the hospital Information 

Governance. The Routine ID was not tokenised as it denotes the tasks performed by the 

User on the EPR for the interaction. This tokenisation process is displayed in Figure 33.  

 

Figure 33 – ID extraction and tokenisation 
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5.2.3. EPR Data Discussion 

In Figure 34, scatter graphs display the relationship between different IDs in the dataset.   

 

a) Scatter graph displaying relationship between User and Patient 

   
b) Scatter graph displaying relationship 

between Patient and Device 

c) Scatter graph displaying 
relationship between Routine and 

Device 

d) Scatter graph displaying 
relationship between User and Device 

  
e) Scatter graph displaying relationship between Patient and 

Routine 

f) Scatter graph displaying relationship between User and 
Routine 

Figure 34 - Scatter graph displaying relationship between ID types 
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Specifically, this includes the relationships between (a) User and Patient, (b) Patient and 

Device, (c) Routine and Device, (d) User and Device, (e) Patient and Routine, (f) User and 

Routine. The graphs are high level representations of which IDs interact with which other 

IDs over 18 months in order to identify trends. The graphs demonstrate the complexity of 

the data, as there is no clear structure at face value. The graphs do not show clustering or 

any clear patterns of behaviour and do not create useful insights within datasets. The data 

therefore needs to have meaningful features selected and users of interest identified. In 

doing so, legitimate accesses can be removed from the visualisation and illegitimate 

accesses highlighted to a privacy officer. The exceptions are in Figure 34(c), (e) and (f), which 

have distinct lines through the centres of the graphs. These graphs have the Routine ID and 

due to high frequency (20%) of some routine IDs, within the dataset, such as Pharmacy 

Orders (which is used 214,345 times), this creates a distinct pattern in the dataset.  

In Figure 35, a profile of 10 Users is presented. Scatter graphs display the relationships 

between User ID and (a) Patient, (b) Device and (c) Routine is displayed. The 10 users are a 

random selection of users, as visualising 10 users represents a reflection of the dataset as a 

whole. Figure 35 is a representation of the potential of the system to filter the larger dataset 

of Figure 34  to users of interest. The selected users are the first 10 in the dataset (having 

been assigned a random number through the tokenisation process). In Figure 34(a), Users 3, 

6 and 7 access a larger number of patients than the rest of the users. This likely indicates 

they are a similar staff role as they are users that access a larger number of patient records 

than other staff, such as admin staff who check patients in. When comparing these same 

users in Figure 34(b), the same users access a large number of devices, indicating that these 

members of staff work in many areas of the hospital, which is in contrast to User 4, who 

only uses 1 device. There’s is less of a correlation when comparing the Users Routines in 

Figure 34(c), indicating most users access a variety of routine functions in the system. In this 

way, roles can be clustered within the data and features extracted. Unusual or erratic spikes 

in activity would indicate illegitimate activity that would warrant further investigation. 
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a) Scatter graph Profile of 10 Users for User and Device 

  
b) Scatter graph Profile of 10 Users for User and Patient c) Scatter graph Profile of 10 Users for User and Routine 

Figure 35 – Scatter graph Profile of 10 Users for ID Types 

5.3. Profiling IDs 

In order to profile behaviour within the hospital, the most active IDs for each ID type is 

described to establish typical behaviour patterns. In PARISS, this process can either be 

provided by the hospital, or can be calculated as detailed in this section. This dataset was 

provided on the condition of anonymity of data; therefore, the latter process is taken in 

order to identify an anomaly within the dataset. Once initial benchmarking values are set, 

the HILML process improves accuracy and reliability and tailors to the hospital as detailed in 

section 4.3.9. The initial benchmark values for each of the ID types are defined by reviewing 

the density of scatter graphs and agreeing the values with the hospital. 
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5.3.1. Profiling User ID 

The most active profiles (as defined by highest frequency value) for User ID are displayed in 

Table 13. The table therefore shows the 5 users’ IDs with the highest frequency values along 

with other features associated with the user ID. 

Table 13 - Profiles for User ID 

User 
ID 

Frequency Mean Mode STD Min 
5th 

Percentile 
25th 

Percentile 
Median 

Duration 
75th 

Percentile 
95th 

Percentile 
Max 

1016 32557 49.50 2 106.66 0 1 5 17 43 219 4751 

1320 23674 69.57 2 117.32 0 3 14 26 72 289 2268 

1025 23104 124.06 2 246.66 0 4 24 67 147 383 7469 

742 20907 27.39 5 79.29 0 2 5 9 22 108 6081 

248 19160 125.23 21 264.26 0 17 37 69 134 371 8360 

A line graph displaying the data profiles is presented in Figure 36(a). The same data with 

Max and Frequency removed is presented in Figure 36(b) to give a more detailed overview 

of the lower data ranges. 

  
a) User ID Profiles b) User ID Profiles (exc. Frequency and Max) 

Figure 36 – User ID Profiles Line Graphs 

Figure 37 displays the 5 most active User IDs and compares each ID with duration for (a) 

User, (b) Patient, (c) Device and (d) Routine.  

In Figure 37(a), the density of the scatter graph is around 400 seconds, with one of the most 

active users in the dataset never exceeding 400 seconds. Additionally, in Figure 37(b), a user 
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typically spends 300 seconds (5 minutes) or less performing an action on a patient. Figure 

37(c) demonstrates that users spend longer on certain devices than others, for example 

some devices are never accessed for routines that are longer than 200 seconds, whereas 

others frequently exceed that. Finally, Figure 37(d) demonstrates that most routines have 

consistent usage times within the dataset, with some exceptions, such as the routine that is 

accessed for 7,000 seconds (almost 2 hours). Therefore, 400 seconds is the initial 

benchmark for typical user behaviour in the dataset. 

  
a) Most Active Users Scatter graphs for User and Duration b) Most Active Users Scatter graphs for Patient and 

Duration 

  
c) Most Active Users Scatter graphs for Device and Duration d) Most Active Users Scatter graphs for Routine and 

Duration 

Figure 37 - Most Active Users Scatter graphs 
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5.3.2. Profiling Patient ID 

The most active profiles (as defined by highest frequency value) for Patient ID are displayed 

in Table 14. 

Table 14 - Profiles for Patient ID 

Patient 
ID 

Frequency Mean Mode STD Min 
5th 

Percentile 
25th 

Percentile 
Median 

Duration 
75th 

Percentile 
95th 

Percentile 
Max 

19174 1011 187.59 2 377.12 1 4 23.5 66 196.5 730.5 5822 

51440 800 218.70 2 363.80 1 5 29 88 263.25 817.45 4395 

41 715 206.75 20 439.57 1 6 28.5 82 229.5 715.1 5772 

59625 574 219.28 7 445.48 0 3 28.25 79 258.5 821.3 6312 

10545 527 698.13 2 1174.52 1 3 54 163 633.5 2960.8 6826 

Figure 38(a) is a line graph with the profiles for these patient IDs. Max and Frequency are 

removed in Figure 38(b). 

  
a) Patient ID Profiles b) Patient ID Profiles (exc. Frequency and Max) 

Figure 38 – Patient ID Profiles Line Graphs  

Figure 39 displays the 5 most active Patient IDs and compares each ID with duration for (a) 

User, (b) Patient, (c) Device and (d) Routine. 
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a) Most Active Patients scatter graphs for User and Duration b) Most Active Patients scatter graphs for Patient and 

Duration 

  
c) Most Active Patients scatter graphs for Device and Duration d) Most Active Patients scatter graphs for Routine and 

Duration 

Figure 39 - Most Active Patients scatter graphs 

In Figure 39(a), the density of the scatter graph is around 1,000 seconds (17 minutes), with 

some notable anomalies, such as the user that accesses a patient ID for 3,750 seconds. This 

observation is strengthened by Figure 39(b), which indicates that 1,000 seconds is a typical 

time for a patient record to be accessed. Most clinic sessions last 15 minutes, which would 

confirm this observation. Figure 39(c) also has 1,000 seconds as a typical access time, with a 

few exceptions of over 5,000 seconds. However, unlike with User IDs there are no clear 

observations that patient IDs are accessed for longer on different devices than others. 

Finally, Figure 39(d) demonstrates that most routines have consistent usage times of under 

1,000 seconds within the dataset, with some exceptions, such as the routine that is accessed 

for 7,000 seconds (almost 2 hours). Therefore, 1,000 seconds is the initial benchmark for 

typical patient behaviour in the dataset. 
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5.3.3. Profiling Device ID 

The most active profiles for Device ID are displayed in Table 15. 

Table 15 - Profiles for Device ID 

Device 
ID 

Frequency Mean Mode STD Min 
5th 

Percentile 
25th 

Percentile 
Median 

Duration 
75th 

Percentile 
95th 

Percentile 
Max 

926 25739 144.74 2 159.19 0 8 44 96 187 447 2196 

59 16011 65.18 2 121.28 0 2 12 24 65 275.5 4751 

58 15386 65.56 2 120.07 0 2 12 24 64 276 3372 

552 13140 52.95 2 119.31 0 1 5 18 46 237.05 6268 

1454 13079 49.65 5 96.22 0 4 10 20 43 230 1064 

Figure 40(a) displays the data as a line graph and Figure 40(b) removes the Max and 

Frequency values. 

  
a) Device ID Profiles b) Device ID Profiles (exc. Frequency and Max) 

Figure 40 – Device ID Profile Line Graphs 

Figure 41 displays the 5 most active Device IDs and compares each ID with duration for (a) 

User, (b) Patient, (c) Device and (d) Routine.  
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a) Most Active Devices scatter graphs for User and Duration b) Most Active Devices scatter graphs for Patient and 

Duration 

  
c) Most Active Devices scatter graphs for Device and Duration d) Most Active Devices scatter graphs for Routine and 

Duration 

Figure 41 - Most Active Devices scatter graphs 

In Figure 41(a), the density of the scatter graph is under 400 seconds, with some users 

accessing a device for no longer than a few seconds. However, one user does perform a 

routine on a device for over 1,600 seconds. Additionally, in Figure 41(b), 300 seconds (5 

minutes) or less is typically spend on a device performing an action on a patient. Figure 41(c) 

demonstrates similar observations, with varying datapoints but it is atypical for a device to 

be used for longer than approximately 600 seconds. Finally, Figure 41(d) again demonstrates 

that 400 seconds is the typical time spent on a device in the dataset, with some exceptions, 

such as the routine that is accessed for 1,700 seconds. Therefore, 400 seconds is the initial 

benchmark for accessing devices in the dataset. 

5.3.4. Profiling Routine ID 

The most active profiles for Routine ID are displayed in Table 16. For User, Patient and 

Device only the 5 most active IDs are profiled. However, for Routines a more comprehensive 

view of profiling is required as each routine requires a distinct profile to understand typical 

behaviour for each routine performed within the EPR. 
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Table 16 - Profiles for Routine ID 

Routine ID Frequency Mean Mode STD Min 
5th 

Percentile 
25th 

Percentile 
Median 

Duration 
75th 

Percentile 
95th 

Percentile 
Max 

Pharmacy 
Order 

214345 252.22 24 818.53 1 12 30 56 131 968 18471 

Assessment 
Forms 

86872 128.66 7 228.04 2 6 16 41 117 616 6767 

Current 
Medication 
Orders 

47987 45.23 5 119.33 1 4 8 15 31 189 6290 

Alerts 43696 188.02 23 276.78 1 16 44 101 244 617 10769 

Letters 39091 567.71 15 986.00 3 13 38 134 689 2502.5 10700 

Admissions 
Demographics 
Data 

31402 140.52 9 211.89 1 6 16 37 160 593 5577 

Visit History 28622 137.82 10 224.30 2 8 18 44 142 594 7014 

View Orders 26227 123.29 10 250.20 2 6 15 31 93 603 7294 

UK.View 
Orders 

21971 863.34 70 1242.84 2 27 88 239 1188.5 3107.5 18380 

Recent Clinical 
Results: 
Department 
Reports 

21626 382.52 16 912.81 2 9 24 61 324 1878 9083 

Figure 42(a) shows the 10 most frequently accessed routines in a line graph. Max and 

Frequency are removed in Figure 42(b). 

  
a) Routine ID Profiles b) Routine ID Profiles (exc. Frequency and Max) 

Figure 42 – Routine ID Profile Line Graphs 

Figure 43 displays the 5 most active Routine IDs and compares each ID with duration for (a) 

User, (b) Patient, (c) Device and (d) Routine. 
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a) Most Active Routines scatter graphs for User and Duration b) Most Active Routines scatter graphs for Patient and 

Duration 

  
c) Most Active Routines scatter graphs for Device and 

Duration 

d) Most Active Routines scatter graphs for Routine and 
Duration 

Figure 43 - Most Active Routines scatter graphs 

In Figure 43(a), the density of the scatter graph is around 1,000 seconds. Due to the routines 

having extreme anomalies within the dataset (such as 12,000 seconds), the scale makes 

observations difficult to determine for routine ID. In Figure 43(b), a routine is typically 

performed in under 1,000 seconds on a patient. Figure 43(c) also has 1,000 seconds as a 

typical behaviour benchmark, although the number of devices that exceed that threshold is 

much greater than for Figure 43(a) and Figure 43(b).  Finally, Figure 43(d) demonstrates that 

most routines have consistent usage times within the dataset of 1,000 seconds, however 

others have much more variety, with datapoint exceeding 10,000 seconds, whereas others 

never exceed 1,000 seconds. Therefore, 1,000 seconds is the initial benchmark for typical 

routine behaviour in the dataset. 

5.3.5. Discussion 

A behaviour profile of each ID type is created. Typical behaviour is determined in Error! 

Reference source not found.. If activity significantly deviates from this it should be flagged 

to an analyst for review. This activity represents the baselines that activity will be measured 

against. Through the application of HILML each ID benchmark will be refined as results are 

presented to an analyst.  
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Table 17 – Typical Behaviour 

 User ID Patient ID Device ID Routine ID 

Duration (Secs) 400 1,000 400 1,000 

Limitations are presented here due to the tokenised nature of the data. If the data had not 

been tokenised more insights would be extracted at this stage. For example, all Users do not 

interact with the EPR comparably. A doctor would access the EPR for typically different 

routines from those that a nurse would. Similarly, a pharmacist would interact in a different 

way to an administrative member of staff. If this data was available, role based behavioural 

benchmarks would be produced, giving more nuanced results. Similarly, for Patient ID, 

complex patients, or VIPs may need to be monitored differently to typical patients. A device 

used on a busy ward will be used differently to a device used in a doctor’s office, or on a 

reception desk.  

5.4. Summary 

In this chapter, a case study is presented for the real-world dataset provided by the 

specialist Liverpool based hospital. The extraction of the data is discussed and the 

tokenisation process is described. An exploration of the data including a distribution of 

values is presented, with emphasis on the anomalous nature of max values, which 

significantly deviate from all other data points, including in the 0.99 quantile. In chapter 6, 

the results are detailed and discussed for three datasets, performing the system framework 

on each dataset. The results of each dataset are then compared and discussed.  
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6. Results and Rationale Discussion 

6.1. Introduction 

The PARISS process is applied to the dataset and the results are detailed in this chapter. 

Initial Results of one month (May 2017) of data are detailed in section 6.2 as a benchmark 

experiment comparing the LOF approach with DBSCAN. Follow up results of six months of 

data (July-December 2016) are detailed in section 6.3. Finally, the process is applied to 18 

months of data and these results are discussed in section 6.4. A summary and discussion are 

provided in section 6.5. 

PARISS uses as much information as possible to determine an anomaly score for each ID and 

therefore each audit log. However, with this dataset, due to the way the routine ID is 

captured, it may give misleading results. In order for the LOF scores for routine to be of 

value for routine ID, each routine (rather than the routine combination) would need to be 

calculated. Unfortunately, this cannot be differentiated within the dataset. For each Routine 

ID, all routines involved in that interaction with the User, Device and Patient are stored as 

the Routine ID. Rather than separate Routine IDs for each routine performed on the patient 

record within that interaction. For example, if the LOF scores for each routine are calculated 

individually (rather than as a routine set), such as ‘Assessment Forms’ and ‘Maternity Data’, 

then these values can be compared with other instances of that routine, to determine 

whether certain log accesses are anomalous. However, as these cannot be separated within 

the combinations of routines, then an informative LOF score cannot be determined for 
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Routine ID. Therefore, an anomaly score is calculated both including and excluding the 

routine ID in order to determine which is more effective for the dataset in the case study.  

6.2. Initial Results 

The initial dataset consists of one month of data in May 2017. Based on the background 

research, LOF is selected for use in PARISS; however, DBSCAN experimentation is included 

for comparison. For the initial results, the data contains 60,454 rows. There are 828 User 

IDs, 11,068 Patient IDs, 1,123 Device IDs and 1,891 Routine IDs. 

6.2.1. Feature Extraction 

Table 18 displays the eleven features extracted for the ten most frequent user IDs. Each of 

the 14,910 unique IDs in the dataset has these eleven features extracted, resulting in 

164,010 features in total.  

Table 18 - Feature Extraction for User ID (One Month) 

User 
ID 

Frequency Mean Mode STD Min 
5th 

Percentile 
25th 

Percentile 
Median 

Duration 
75th 

Percentile 
95th 

Percentile 
Max 

720 2191 51.74 2 87.55 0 2 11 22 50 209.5 1012 

556 1870 118.25 2 245.48 0 4 22 59 138 385.2 7007 

202 1796 93.11 2 213.37 0 1 2 4 44 557 1969 

551 1607 67.85 2 126.21 0 2 5 20 69 312.8 1436 

354 1166 204.78 2 235.12 1 2 31 130 298.25 636.5 3421 

405 1124 24.75 5 107.7 0 2 5 7 19 83.85 3240 

295 1122 202.37 1 377.63 0 6 49 113 230.75 600.9 6142 

355 845 65.83 11 89.56 1 6 19 42 74 200.4 909 

119 807 201.31 6 511.81 1 6 24.5 77 223 633.5 7331 

138 758 132.98 45 253.69 0 17 41 73 139 370.15 4150 

6.2.2. Feature Scaling 

Figure 44 displays the Min-Max feature scaling of the dataset. 



 

121 | P a g e  

 

 

Figure 44 - Min-Max Feature Scaling (One Month) 

Table 19 displays the top ten most frequent User IDs, with min-max scaling applied to their 

features. 

Table 19 - MinMax Scaled Features for User ID (One Month) 

User 
ID Frequency Mean Mode STD Min 

5th 
Percentile 

25th 
Percentile 

Median 
Duration 

75th 
Percentile 

95th 
Percentile Max 

720 1.000 0.012 0.000 0.016 0.000 0.001 0.005 0.005 0.008 0.020 0.067 

556 0.853 0.027 0.000 0.046 0.000 0.002 0.009 0.013 0.021 0.037 0.461 

202 0.820 0.021 0.000 0.040 0.000 0.000 0.000 0.001 0.007 0.054 0.130 

551 0.733 0.016 0.000 0.023 0.000 0.001 0.002 0.004 0.011 0.030 0.094 

354 0.532 0.047 0.000 0.044 0.001 0.001 0.014 0.029 0.046 0.062 0.225 

405 0.513 0.006 0.001 0.020 0.000 0.001 0.002 0.001 0.003 0.008 0.213 

295 0.512 0.047 0.000 0.070 0.000 0.003 0.022 0.025 0.036 0.058 0.404 

355 0.385 0.015 0.002 0.017 0.001 0.003 0.008 0.009 0.011 0.019 0.060 

119 0.368 0.046 0.001 0.095 0.001 0.003 0.011 0.017 0.034 0.061 0.483 

138 0.346 0.031 0.010 0.047 0.000 0.010 0.018 0.016 0.021 0.036 0.273 
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6.2.3. Feature Testing 

Figure 45 displays the feature testing scatter matrix of the extracted features. 

  
a) Scatter Matrix of extracted features for UserID b) Scatter Matrix of extracted features for DeviceID 

  
c) Scatter Matrix of extracted features for PatientID d) Scatter Matrix of extracted features for Routine 

Figure 45 - Scatter Matrix of extracted features 

6.2.4. DBSCAN: User, Patient, Device and Routine ID 

As a comparison to the LOF results, the DBSCAN algorithm is applied to the initial dataset. 

DBSCAN is selected for the comparison with LOF as they both use a core and a reachability 

distance in order to determine outliers (as outlined in Chapter 3). Table 20 presents 20 rows 

of DBSCAN results for User ID, Patient ID, Device ID and Routine ID. DBSCAN does not apply 

a weighted score to the results, therefore the results are classified as one of three point 

types. A core point is classified as a point that belongs to a cluster. A boundary point is 
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within the epsilon of a core point, but does not meet the criteria of min_points to be 

considered a core point. Finally, noise points are not assigned to any cluster. 

Table 20 - DBSCAN Benchmark Results Example 

User 
ID 

 User ID 
cluster_id 

User ID 
type 

Patient 
ID 

 Patient ID 
cluster_id 

Patient 
ID type 

Device ID 
row_id 

Device ID 
cluster_id 

Device 
ID type 

Routine ID row_id Routine ID 
cluster_id 

Routine 
ID type 

119  n/a  noise 803  n/a  noise 1  n/a  noise MPI ZCUS.UK.SCH 
ZCUS.UK.LETTER 

 n/a  noise 

126  n/a  noise 804  n/a  noise 2  n/a  noise ZCUS.UK.LETTER 
VH SPC OE 

 n/a  noise 

144  n/a  noise 805  n/a  noise 3  n/a  noise *** ASF 6  core 

203  n/a  noise 806  n/a  noise 4  n/a  noise *** ASF MPI 6  core 

226  n/a  noise 807  n/a  noise 5  n/a  noise *** ASF NOTE 
ZCUS.UK.LETTER 

6  core 

297  n/a  noise 4764  n/a  noise 6  n/a  noise *** ASF NPC 6  core 

359  n/a  noise 4765  n/a  noise 7  n/a  noise *** ASF SPC VH 
ZCUS.UK.SCH 

SPCUS 

6  core 

404  n/a  noise 4766  n/a  noise 8  n/a  noise *** ASF SS 
ZCUS.UK.SCH 

6  core 

432  n/a  noise 4767  n/a  noise 9  n/a  noise *** ASF 
ZCUS.UK.LETTER 

6  core 

442  n/a  noise 4768  n/a  noise 10  n/a  noise *** ASF 
ZCUS.UK.LETTER 

ZCUS.UK.SCH 

6  core 

526  n/a  noise 6674  n/a  noise 11  n/a  noise *** ASF 
ZCUS.UK.SCH BD 

6  core 

770  n/a  noise 8763  n/a  noise 12  n/a  noise *** BD 6  core 

775  n/a  noise 8764  n/a  noise 13  n/a  noise *** BD CM NOTE 6  core 

793  n/a  noise 6 19  core 299  n/a  noise *** BD UK.OE VH 
OE 

6  core 

795  n/a  noise 7 19  core 300  n/a  noise *** CM 6  core 

1 3  core 8 19  core 301  n/a  noise *** CM PHA.ORDS 6  core 

6 6  core 10 19  core 302  n/a  noise *** LAB.DRP 6  core 

14 6  core 11 19  core 303  n/a  noise *** LAB.DRP UK.OE 
REC 

6  core 

18 7  core 12 19  core 304  n/a  noise *** MED 6  core 

28 0  core 13 19  core 305  n/a  noise MPI ZCUS.UK.SCH 
ZCUS.UK.LETTER 

6  core 

In Table 21 the number of core, boundary and noise types for each of the IDs are presented. 

Core Points are points within a DBSCAN cluster. Boundary points are within reachability 

distance of a cluster. Noise points are not within reachability distance and are therefore 

considered outliers. 
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Table 21 - DBSCAN point types for User ID, Patient ID, Device ID and Routine ID 

 Core Boundary Noise 

User ID 331 482 15 

Patient ID 6,822 4,233 14 

Device ID 440 595 88 

Routine ID 1,184 705 2 

In Figure 46 the number of core, boundary and noise types are presented as a bar chart. 

 

Figure 46 – Bar chart of core, boundary and noise types for DBSCAN results 
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Due to the lack of a weighted score, DBSCAN does not allow a patient privacy officer to 

prioritise their investigation into potentially inappropriate behaviour. Once the officer has 

investigated the noise points, there is the ‘needle-in-a-haystack’ problem of investigating 

border points. This is insufficient, and a weighted anomaly score is required to enable more 

nuanced investigation. Therefore, based on the benchmark experimentation, LOF is selected 

for use in the PARISS system. A full breakdown of the DBSCAN results can be seen in Table 

40 in the appendix.  

6.2.5. LOF: User, Patient and Device ID 

A LOF score is calculated for the 45 combinations (of the 10 features) for each of the 14,910 

unique IDs in the dataset. Therefore 670,950 unique LOF scores are calculated in total. An 

average is then taken to assign an anomaly score. In Table 22, LOF identifies anomalous 

User IDs, Patient IDs and Device IDs. The neighbourhood radius is defined in stage 3 of the 

LOF algorithm (Section 3.2.3.1), the density score is defined in stage 4, and the anomaly 

score is the final LOF value, as defined in stage 5.  

Table 22 - LOF (Mean) Anomaly Scores for User ID, Patient ID and Device ID 

User ID 
Density 
Score 

Anomaly 
Score 

Neighbo
urhood 
Radius 

Patient 
ID 

Density 
Score 

Anomaly 
Score 

Neighbou
rhood 
Radius Device ID 

Density 
Score 

Anomaly 
Score 

Neighbo
urhood 
Radius 

821 5.65 3.85 0.49 3760 118.27 9.32 0.02 410 2.66 2.73 0.63 

717 149.13 3.35 0.01 2214 1062.91 7.33 0.00 273 206.22 2.46 0.01 

804 18.35 3.15 0.16 6879 692.70 6.85 0.00 331 286.50 2.39 0.01 

813 9.56 2.91 0.24 2482 651.25 6.58 0.00 931 34.78 2.22 0.04 

828 5.79 2.81 0.60 1293 718.43 6.45 0.00 956 686.16 2.14 0.00 

799 30.79 2.77 0.12 4534 905.26 6.27 0.00 307 212.63 2.11 0.01 

822 9.52 2.76 0.13 3194 807.05 5.95 0.00 75 763.83 2.11 0.00 

718 125.30 2.63 0.02 5124 547.38 5.89 0.00 818 7.36 1.93 0.22 

715 209.59 2.52 0.01 5028 1695.80 5.70 0.00 12 4.28 1.92 0.35 

827 152.55 2.28 0.38 5821 1695.80 5.70 0.00 342 28.50 1.90 0.04 

Within the User ID range, the most notable ID is #821, with an anomaly score of 3.852. 

There are 14 User IDs with an anomaly score above 2. Therefore, LOF has indicated that 

2.69% of the User IDs are anomalous. Similarly, the most notable Patient ID is #3760, with 

an anomaly score of 9.32. There are 82 Patient IDs with an anomaly score above 2; 

indicating 0.74% of the Patient IDs are anomalous. Finally, the most notable Device ID is 

#410,  with an anomaly score of 2.73. There are 7 Device IDs with an anomaly score above 2, 

indicating that 0.62% of the Device IDs are irregular. Overall therefore, LOF identifies 1.35% 
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of IDs as anomalous, which would be highlighted to a patient privacy officer for 

investigation. 

6.2.6. LOF: Routine ID 

However, the LOF technique cannot be applied as effectively to the Routine ID. This is due 

to the concatenation of every routine performed during the interaction with the patient 

being recorded as a single routine within the dataset. Table 23 presents a sample of the 

highest LOF anomaly scores for the Routine ID dataset. 

Table 23 - LOF (Mean) Anomaly Scores for Routine ID 

Routine Set Description Density 
Score 

Anomaly 
Score 

Neighbourhood 
Radius 

RAD.DRP ZCUS.UK.SCH ASF 1105.03 8.40 0.00 

REC ASF MED 1050.68 8.17 0.00 

SPC PHA.ORDS 587.39 7.34 0.00 

PHA.ORDS ASF ZCUS.UK.SCH 1153.80 6.92 0.00 

SS OE 559.91 6.64 0.00 

VH ASF NPC UK.OE MPI ZCUS.UK.SCH SS PHA.ORDS 568.13 6.47 0.00 

SS ZCUS.UK.LETTER WL 368.16 5.85 0.01 

SS MPI ASF ZCUS.UK.LETTER 707.26 5.82 0.00 

SS ASF 648.75 5.30 0.00 

PHA.ORDS REC REC:(DRP) 658.48 4.94 0.00 

There are 57 routine sets with an anomaly score above 2. Therefore, LOF has indicated that 

3.01% of the routine sets are anomalous. The most notable routine set is the combination 

‘Radiology Reports | Cancelled Account.UK.Scheduling | Assessment Forms’, with an 

anomaly score of 8.40.  

6.2.7. Quantifying LOF 

The data is quantified as per the process outlined in chapter 4. NAN and Inf values are 

replaced with 1 and 2 respectively, whilst missing or null values are assigned the median 

value for their feature class. 

6.2.8. Visualisation of LOF Results 

A visualisation of the LOF results for each ID is presented in Figure 47. 
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a) Scatter graph of LOF results for UserID b) Scatter graph of LOF results for DeviceID 

  
c) Scatter graph of LOF results for PatientID d) Scatter graph of LOF results for Routine 

Figure 47 – Scatter graph of LOF results 

6.2.9. LOF: Anomaly Score Ensemble Averaging 

A sample of EPR data with a calculated ensemble average LOF anomaly score is presented in 

Table 24. The table is ordered by the highest LOF anomaly scores. Within the date range, the 

most notable audit log occurred on 16th May 2017 at 02:56. User #344 accessed Patient 

#3760 on Device #951 performing the following Routine combination ‘UK.View Orders View 

Orders’, with an anomaly score of 3.18. There are 241 audit logs with an anomaly score 

above 2. Therefore, PARISS has indicated that 0.399% of the EPR Audit Logs are anomalous. 
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Table 24 - EPR Audit Data with Ensemble Averaging Applied to LOF Anomaly Score (including Routine) 

Date & 
Time 

Device 
Device 

Anomaly 
Score 

User 
ID 

User 
Anomaly 

Score 
Routine ID 

Routine 
Anomaly 

Score 

Patient 
ID 

Patient 
Anomaly 

Score 

Duration 
(sec) 

Adm Date Dis Date 

Ensemble 
Averaging 
Anomaly 
Score (inc 
Routine) 

16/05/17 
02:46 

951 1.251 344 1.108 UK.OE OE 1.041 3760 9.319 1741 22/07/2011 22/07/2011 3.180 

16/05/17 
01:40 

951 1.251 344 1.108 UK.OE 0.967 3760 9.319 1369 22/07/2011 22/07/2011 3.161 

26/05/17 
03:20 

141 1.047 701 1.080 RAD.DRP 
ZCUS.UK.SCH ASF 

8.397 5574 1.051 57 17/09/2012 17/09/2012 2.894 

26/05/17 
15:48 

141 1.047 701 1.080 RAD.DRP 
ZCUS.UK.SCH ASF 

8.397 5574 1.051 193 17/09/2012 17/09/2012 2.894 

01/05/17 
13:33 

1046 1.040 800 1.241 REC ASF MED 8.175 3657 1.045 114 05/09/2016 05/09/2016 2.875 

08/05/17 
20:48 

498 1.015 437 1.080 ZCUS.UK.SCH 2.806 2482 6.581 1448 12/12/2016 12/12/2016 2.870 

19/05/17 
23:50 

278 1.873 479 1.092 UK.OE 0.967 2214 7.334 451 27/02/2017 27/02/2017 2.817 

30/05/17 
17:20 

310 1.092 67 1.102 SS 3.353 6805 5.561 597 08/03/2006 08/03/2006 2.777 

17/05/17 
15:59 

794 1.140 556 1.093 SPC PHA.ORDS 7.338 1506 1.067 112 07/02/2012 07/02/2012 2.660 

25/05/27 
20:34 

1111 1.140 114 1.105 SPC PHA.ORDS 7.338 994 1.053 100 06/07/2008 06/07/2008 2.659 

A sample of EPR data with a calculated ensemble average LOF anomaly score (excluding 

Routine ID) is presented in Table 25. The table is ordered by the highest LOF anomaly 

scores. Within the date range, the most notable audit log occurred on 16th May 2017 at 

01:40. User #344 accessed Patient #3760 on Device #951 performing the following Routine 

combination ‘UK.View Orders’, with an anomaly score of 3.892. There are 145 audit logs 

with an anomaly score above 2. Therefore, PARISS has indicated that 0.182% of the EPR 

Audit Logs are anomalous. 

 

 

 

 

 

 

Table 25 - EPR Audit Data with Ensemble Averaging Applied to LOF Anomaly Score (excluding Routine) 



 

129 | P a g e  

 

Date & 
Time 

Device 
Device 

Anomaly 
Score 

User 
ID 

User 
Anomaly 

Score 
Routine ID 

Routine 
Anomaly 

Score 

Patient 
ID 

Patient 
Anomaly 

Score 

Duration 
(sec) 

Adm Date Dis Date 

Ensemble 
Averaging 
Anomaly 

Score 
(exc 

Routine) 

16/05/17 
01:40 

951 1.251 344 1.108 UK.OE 0.967 3760 9.319 1369 22/07/2011 22/07/2011 3.892 

16/05/17 
02:46 

951 1.251 344 1.108 UK.OE OE 1.041 3760 9.319 1741 22/07/2011 22/07/2011 3.892 

19/05/17 
23:50 

278 1.873 479 1.092 UK.OE 0.967 2214 7.334 451 27/02/2017 27/02/2017 3.433 

24/05/17 
15:55 

280 1.206 479 1.092 UK.OE 0.967 2214 7.334 401 27/02/2017 27/02/2017 3.211 

24/05/17 
03:04 

413 1.302 612 1.067 ZCUS.UK.LETTER 1.323 6879 6.853 550 21/02/2007 21/02/2007 3.074 

24/05/17 
04:22 

413 1.302 612 1.067 ZCUS.UK.LETTER 1.323 6879 6.853 487 21/02/2007 21/02/2007 3.074 

09/05/17 
02:53 

1025 1.056 718 2.631 MPI 1.056 403 5.171 24 21/01/2014 21/01/2014 2.953 

05/05/17 
06:29 

593 1.112 200 1.094 ZCUS.UK.LETTER 
VH OE 

0.976 2482 6.581 368 12/12/2016 12/12/2016 2.929 

08/05/17 
17:28 

476 1.099 677 1.103 OE 1.000 2482 6.581 649 12/12/2016 12/12/2016 2.928 

22/05/17 
20:55 

496 1.119 701 1.080 OE 
ZCUS.UK.LETTER 
ASF RAD.DRP 
ZCUS.UK.SCH 

1.000 2482 6.581 294 12/12/2016 12/12/2016 2.927 

In comparison, the results in Table 24 and Table 25 are similar. The most anomalous audit 

log in Table 24 (16th May 2017 at 02:46) is the second most anomalous audit log in Table 25. 

Similarly the most anomalous audit log in Table 25 (16th May 2017 at 01:40) is the second 

most anomalous audit log in Table 24. There are many other similar results appearing in 

both tables. This is likely due to the fact that the patient anomaly scores in the one-month 

dataset is high, with anomaly scores above 5, compared to the routine anomaly scores 

ranging around 1, indicating typical behaviour. In the case of the one-month dataset, the 

routine anomaly score can be included without offsetting the results. 

6.2.10. Visualisation of LOF Audit Log Results 

In Figure 48, a visualisation of LOF results of calculated ensemble averaged anomaly scores 

is displayed for all 60,454 audit logs. The x-axis displays the date, and the y-axis displays the 

calculated ensemble average anomaly score. 
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Figure 48 - Visualisation of LOF Results for Ensemble Averaged Anomaly Scores (inc Routine) 

In Figure 49, a visualisation of LOF results of calculated ensemble averaged anomaly scores 

(excluding the Routine ID anomaly score). As discussed in section 4.3.8, outliers in the top 

quarter of each ID range are highlighted as red, with the intensity of colour reducing as the 

anomaly score reduces. This creates an interactive live task list for the analyst, with an 

anomaly priority ordering. 

 

Figure 49 - Visualisation of LOF Results for Ensemble Averaged Anomaly Scores (exc Routine) 
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6.3. 6 Months EPR Data 

The second dataset consists of six months of data from July-Dec 2016. The data contains 

340,687 rows of data. There are 1,120 User IDs, 35,159 Patient IDs,  1,671 Device IDs and 

6,690 Routine IDs. 

6.3.1. Feature Extraction 

Table 26 displays the eleven features extracted for the ten most frequent user IDs. Each of 

the 44,640 unique IDs in the dataset has these eleven features extracted, resulting in 

491,040 features in total. 

Table 26 - Feature Extraction for User ID (6 Months) 

User 
ID 

Frequency Mean Mode STD Min 
5th 

Percentile 
25th 

Percentile 
Median 

Duration 
75th 

Percentile 
95th 

Percentile 
Max 

762 13351 44.08 2 97.75 0 1 5 18 37 186.5 4751 

79 8867 79.8 2 133.35 0 2 11 31 102 306 3521 

548 6969 28.23 6 98.90 0 2 5 8 20 111 6081 

768 6604 137.72 2 335.25 0 5 24 68 150.25 411.7 7469 

971 6223 88.43 19 143.81 0 3 17 33 94.5 379 1739 

188 5941 129.63 21 288.89 0 16 36 70 133 382 7169 

480 5674 222.36 291 237.98 0 2 35 148 323 653.35 3458 

481 5640 80.90 23 153.86 1 8 24 46 81 274 5855 

1054 4767 130.35 2 201.86 0 4 29 77 164 419 6268 

210 4006 62.23 15 170.20 1 7 16 30 56 191.5 4839 

6.3.2. Feature Scaling 

Figure 50 displays the Min-Max feature scaling of the dataset. 
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Figure 50 - Min-Max Feature Scaling (Six Months) 

Table 27 displays the top ten most frequent User IDs, with min-max scaling applied to their 

features. 

Table 27 - MinMax Scaled Features for User ID (Six Months) 

User 
ID Frequency Mean Mode STD Min 

5th 
Percentile 

25th 
Percentile 

Median 
Duration 

75th 
Percentile 

95th 
Percentile Max 

762 1.000 0.008 0.000 0.034 0.000 0.000 0.001 0.003 0.006 0.024 0.340 

79 0.664 0.014 0.000 0.046 0.000 0.000 0.002 0.005 0.018 0.040 0.252 

548 0.522 0.005 0.001 0.034 0.000 0.000 0.001 0.001 0.003 0.014 0.436 

768 0.495 0.024 0.000 0.116 0.000 0.001 0.004 0.012 0.026 0.054 0.535 

971 0.466 0.015 0.003 0.050 0.000 0.000 0.003 0.006 0.016 0.049 0.125 

188 0.445 0.023 0.004 0.100 0.000 0.003 0.006 0.012 0.023 0.050 0.514 

480 0.425 0.039 0.051 0.082 0.000 0.000 0.006 0.026 0.056 0.085 0.248 

481 0.422 0.014 0.004 0.053 0.000 0.001 0.004 0.008 0.014 0.036 0.420 

1054 0.357 0.023 0.000 0.070 0.000 0.001 0.005 0.013 0.029 0.055 0.449 

210 0.300 0.011 0.002 0.059 0.000 0.001 0.003 0.005 0.010 0.025 0.347 

6.3.3. Feature Testing 

Figure 51 displays the feature testing scatter matrix of the extracted features. 
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a) Scatter Matrix of extracted features for UserID b) Scatter Matrix of extracted features for DeviceID 

  
c) Scatter Matrix of extracted features for PatientID d) Scatter Matrix of extracted features for Routine 

Figure 51 - Scatter Matrix of extracted features for UserID 

6.3.4. LOF: User, Patient and Device ID 
 

A LOF score is calculated for the 45 combinations (of the 10 features) for each of the 44,640 

unique IDs in the dataset. Therefore 2,008,800 unique LOF scores are calculated in total. An 

average is then taken to assign an anomaly score. In Table 28, LOF identifies anomalous 

User IDs, Patient IDs and Device IDs. The neighbourhood radius is defined in stage 3 of the 

LOF algorithm (Section 3.2.3.1), the density score is defined in stage 4, and the anomaly 

score is the final LOF value, as defined in stage 5.  
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Table 28 - LOF (Mean) Anomaly Scores for User ID, Patient ID and Device ID 

User ID 
Density 
Score 

Anomaly 
Score 

Neigbour
hood 

Radius 
Patient 

ID 
Density 
Score 

Anomaly 
Score 

Neigbour
hood 

Radius Device ID 
Density 
Score 

Anomaly 
Score 

Neigbour
hood 

Radius 

778 1.51 16.95 0.97 17999 627.47 9.19 0.00 1661 179.68 2.78 0.01 

196 6.40 6.18 0.23 17103 278.22 9.12 0.01 869 18.83 2.66 0.27 

325 18.39 4.33 0.08 2756 1282.14 9.11 0.00 1643 5.23 2.24 0.31 

469 24.30 2.42 0.05 9349 107.54 8.88 0.02 1348 337.71 2.13 0.00 

1108 36.96 2.26 0.03 22110 524.28 8.16 0.01 704 398.25 2.00 0.00 

374 44.83 1.99 0.03 25233 1402.74 8.00 0.00 1139 417.52 1.95 0.00 

674 232.47 1.97 0.01 32437 1980.12 7.62 0.00 205 3.70 1.89 0.50 

1037 29.86 1.96 0.07 13656 811.91 6.99 0.00 361 28.75 1.87 0.04 

37 33.17 1.95 0.05 19685 2086.13 6.83 0.00 881 38.93 1.76 0.05 

553 43.59 1.87 0.03 15853 626.51 6.70 0.00 391 21.22 1.72 0.08 

Within the User ID range, the most notable ID is #778, with an anomaly score of 16.95. 

There are 5 User IDs with an anomaly score above 2. Therefore, LOF has indicated that 

0.45% of the User IDs are anomalous. Similarly, the most notable Patient ID is #17999, with 

an anomaly score of 9.19. There are 108 Patient IDs with an anomaly score above 2; 

indicating 0.31% of the Patient IDs are anomalous. Finally, the most notable Device ID is 

#1661,  with an anomaly score of 2.78. There are 5 Device IDs with an anomaly score above 

2, indicating that 0.3% of the Device IDs are irregular. Overall therefore, LOF identifies 0.35% 

of IDs as anomalous, which would be highlighted to a patient privacy officer for 

investigation. 

6.3.5. LOF: Routine ID 

However, the LOF technique cannot be applied as effectively to the Routine ID. Table 23 

presents a sample of the highest LOF anomaly scores for the Routine ID dataset. 

Table 29 - LOF (Mean) Anomaly Scores for Routine ID 

Routine Set Description Density 
Score 

Anomaly 
Score 

Neighbourhood Radius 

BD VH ZCUS.UK.SCH OE 1030.12 12.28 0.00 

SPC SS ASF PHA.MEDS PHA.ORDS 920.94 10.88 0.00 

SS MED MPI 881.46 10.41 0.00 

RAD.DRP LAB.DRP 629.85 9.65 0.01 

ASF CM MED PHA.ORDS 268.97 9.53 0.01 

MPI ASF RAD.DRP 377.45 9.42 0.01 

NPC NOTE MED 1407.53 8.95 0.00 

MPI ZCUS.UK.SCH ZCUS.UK.LETTER SS 416.31 8.87 0.01 

PHA.ORDS OE ZCUS.UK.SCH 865.28 8.66 0.00 

ZCUS.UK.LETTER SS ZCUS.UK.SCH MPI 74.72 8.23 0.03 
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There are 72 routine sets with an anomaly score above 2. Therefore, LOF has indicated that 

1.08% of the routine sets are anomalous. The most notable routine set is the combination 

‘Bulletin Board (Alerts) | Visit History | Cancelled Account.UK.Scheduling | View Orders’, 

with an anomaly score of 12.28. 

6.3.6. Quantifying LOF 

The data is cleaned as per the process outlined in chapter 4. NAN and Inf values are 

replaced with 1 and 2 respectively, whilst missing or null values are assigned the median 

value for their feature class. 

6.3.7. Visualisation of LOF Results 

A visualisation of the LOF results for each ID is presented in Figure 57. 

  
a) Scatter graph of LOF results for UserID b) Scatter graph of LOF results for DeviceID 

  
c) Scatter graph of LOF results for PatientID d) Scatter graph of LOF results for Routine 

 

Figure 52 – Scatter graph of LOF results 
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6.3.8. Anomaly Score Ensemble Averaging 

A sample of EPR data with a calculated ensemble average LOF anomaly score (including 

Routine ID) is presented in Table 30. The table is ordered by the highest LOF anomaly 

scores. Within the date range, the most notable audit log occurred on 16th July 2015 at 

22:10. User #778 accessed Patient #34072 on Device #967 performing the following Routine 

combination ‘Assessment Forms’, with an anomaly score of 5.186. There are 115 audit logs 

with an anomaly score above 2. Therefore, PARISS has indicated that 0.034% of the EPR 

Audit Logs are anomalous. 

Table 30 - EPR Audit Data with Ensemble Averaging Applied to LOF Anomaly Score (including Routine) 

Date & 
Time 

Device 
Device 

Anomaly 
Score 

User 
ID 

User 
Anomaly 

Score 
Routine ID 

Routine 
Anomaly 

Score 

Patient 
ID 

Patient 
Anomaly 

Score 

Duration 
(sec) 

Adm Date Dis Date 

Ensemble 
Averaging 
Anomaly 
Score (inc 
Routine) 

15/07/16 
22:10 

967 1.470 778 16.946 ASF 1.091 34072 1.037 5703 27/06/2007 27/06/2007 5.136 

27/07/16 
21:40 

113 1.079 480 1.137 BD VH 
ZCUS.UK.SCH 
OE 

12.284 8275 1.012 436 06/04/2016 06/04/2016 3.878 

14/11/16 
01:09 

850 1.093 26 1.097 BD VH 
ZCUS.UK.SCH 
OE 

12.284 352 1.018 481 11/01/2010 11/01/2010 3.873 

07/12/16 
20:17 

727 1.107 532 1.130 SPC SS ASF 
PHA.MEDS 
PHA.ORDS 

10.876 18453 1.027 706 02/04/2012 02/04/2012 3.535 

21/11/16 
13:55 

727 1.107 532 1.130 SPC SS ASF 
PHA.MEDS 
PHA.ORDS 

10.876 24489 1.025 757 07/07/2008 07/07/2008 3.535 

07/08/16 
07:07 

1471 1.078 346 1.087 SS MED MPI 10.405 14112 1.067 692 20/07/2016 20/07/2016 3.409 

26/09/16 
03:12 

108 1.069 346 1.087 SS MED MPI 10.405 19699 1.035 634 19/01/2016 19/01/2016 3.399 

09/09/16 
17:35 

378 1.217 944 1.389 ASF CM MED 
PHA.ORDS 

9.533 33536 1.059 1030 14/07/2016 14/07/2016 3.300 

13/10/16 
01:48 

591 1.046 142 1.031 RAD.DRP 
LAB.DRP 

9.651 2396 1.128 672 23/06/2015 01/07/2015 3.214 

15/11/16 
03:35 

1213 1.042 552 1.055 RAD.DRP 
LAB.DRP 

9.651 4287 1.082 539 31/08/2016 17/09/2016 3.208 

A sample of EPR data with a calculated ensemble average LOF anomaly score (excluding 

Routine ID) is presented in Table 31. The table is ordered by the highest LOF anomaly 

scores. Within the date range, the most notable audit log occurred on 16th July 2015 at 

22:10. User #778 accessed Patient #34072 on Device #967 performing the following Routine 

combination ‘Assessment Forms’, with an anomaly score of 9.726. There are 1,250 audit 

logs with an anomaly score above 2. Therefore, PARISS has indicated that 0.367% of the EPR 

Audit Logs are anomalous. 
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Table 31 - EPR Audit Data with Ensemble Averaging Applied to LOF Anomaly Score (excluding Routine) 

Date & 
Time 

Device 
Device 

Anomaly 
Score 

User 
ID 

User 
Anomaly 

Score 
Routine ID 

Routine 
Anomaly 

Score 

Patient 
ID 

Patient 
Anomaly 

Score 

Duration 
(sec) 

Adm Date Dis Date 

Ensemble 
Averaging 
Anomaly 

Score 
(exc 

Routine) 

15/07/16 
22:10 

967 1.470 778 16.946 ASF 1.091 34072 1.037 5703 27/06/2007 27/06/2007 9.726 

29/12/16 
17:27 

1496 1.177 581 1.108 ZCUS.UK.SCH 1.147 17999 9.195 847 11/09/2015 11/09/2015 5.740 

11/10/16 
20:00 

188 1.101 947 1.069 ZCUS.UK.LETTER 1.148 17999 9.195 944 11/09/2015 11/09/2015 5.683 

11/10/16 
01:17 

1532 1.152 139 1.050 ZCUS.UK.SCH 1.147 17103 9.125 1823 N/A N/A 5.663 

17/11/16 
19:05 

1495 1.083 1010 1.065 ZCUS.UK.LETTER 1.148 2756 9.106 828 15/05/2006 15/05/2006 5.626 

08/11/16 
22:37 

448 1.267 198 1.099 ZCUS.UK.LETTER 1.148 9349 8.884 2352 06/04/1994 06/04/1994 5.625 

06/10/16 
09:49 

47 1.083 339 1.057 NOTE 1.150 2756 9.106 883 15/05/2006 15/05/2006 5.623 

28/09/16 
01:24 

264 1.038 1066 1.050 ZCUS.UK.LETTER 1.148 17103 9.125 1472 N/A N/A 5.606 

29/09/16 
18:44 

836 1.102 198 1.099 ZCUS.UK.LETTER 1.148 9349 8.884 2845 06/04/1994 06/04/1994 5.542 

04/10/16 
18:32 

418 1.113 465 1.179 ZCUS.UK.LETTER 1.148 22110 8.158 1332 19/02/2009 19/02/2009 5.225 

In comparison, the results in Table 30 and Table 31 are dissimilar. The most anomalous audit 

log in Table 30 (15th July 2016 at 22:10) is also the most anomalous audit log in Table 31, 

although the ensemble averaged anomaly score ranges significantly from 5.136 to 9.726 

respectively. This is because the anomaly score of User 778 is almost 17 which indicates a 

very anomalous user ID and therefore is the most anomalous behaviour for both results. 

This user only accesses the EPR once in the six months of data available, but spends 5,703 

seconds (over 1.5 hours) accessing the Assessment Forms of a single patient. With the 

exception of this significantly anomalous result, the remainder of both tables vary 

significantly. This is due to both the Patient ID and Routine IDs having statistically high 

anomaly scores within the data (with anomaly scores over 5). Therefore in Table 30 the 

audit logs that include anomalous routines are prioritised for the attention of the analyst, 

whereas in Table 31 the audit logs that include anomalous patient IDs are displayed instead. 

Ultimately, Table 31 is a more useful indicator of anomalous audit logs as discussed with the 

hospital. 
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6.3.9. Visualisation of Audit Log Results 

In Figure 53, a visualisation of LOF results of calculated ensemble averaged anomaly scores 

is displayed for all 340,687 audit logs. The x-axis displays the date, and the y-axis displays 

the calculated ensemble average anomaly score. 

 

Figure 53 - Visualisation of LOF Results for Ensemble Averaged Anomaly Scores (inc Routine) 

In Figure 54, a visualisation of LOF results of calculated ensemble averaged anomaly scores.  

 

Figure 54 - Visualisation of LOF Results for Ensemble Averaged Anomaly Scores (exc Routine) 
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6.4. 18 Months EPR Data 

The final dataset consists of eighteen months of data (28-02-16 – 21-08-17). The data 

contains 1,007,727 rows of data. There are 1,515 User IDs, 72,878 Patient IDs, 2,270 Devices 

IDs and 13,722 Routine IDs. 

6.4.1. Feature Extraction 

Table 32 displays the eleven features extracted for the ten most frequent user IDs, 

determined using a pivot table. Each of the 90,385 unique IDs in the dataset has these 

eleven features extracted, resulting in 994,235 features in total. 

Table 32 - Feature Extraction for User ID (Eighteen Months) 

User 
ID 

Frequency Mean Mode STD Min 
5th 

Percentile 
25th 

Percentile 
Median 

Duration 
75th 

Percentile 
95th 

Percentile 
Max 

1016 32557 49.5 2 106.66 0 1 5 17 43 219 4751 

1320 23674 69.57 2 117.32 0 3 14 26 72 289 2268 

1025 23104 124.06 2 246.66 0 4 24 67 147 383 7469 

742 20907 27.39 5 79.29 0 2 5 9 22 108 6081 

248 19160 125.23 21 264.26 0 17 37 69 134 371 8360 

639 17543 205.39 2 242.25 0 2 21 120 307 644 5876 

640 15159 80.15 16 136.54 0 8 23 46 83 272.1 5855 

1424 13824 125.85 1 177.73 0 4 31 77 157 407 6268 

372 13450 124.04 2 263.45 0 1 2 5 127.75 635 6572 

108 11797 83.7 2 139.66 0 2 11 34 107 314 3521 

6.4.2. Feature Scaling 

As detailed in Chapter 4, a Min-Max approach is taken for PARISS. Here a Z-Score approach 

is also detailed and compared to Min-Max. Figure 55(a) displays the data points on three 

scales, the original dataset (green), the Z-Score standardised features (red) and the min-max 

normalised features (blue). Figure 55(b) displays a comparison of Z-Score and Min-Max 

approaches, without the original dataset. Figure 55Error! Reference source not found.(c) 

displays the Z-Score standardised features independently, whereas Figure 55(d) presents 

the Min-Max approach. 
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a) Scale comparison of original dataset with z-score and min-

max normalisation 

b) Comparison of Z-Score and Min-Max approaches 

  
c) Z-score normalisation d) Min-Max scaling 

Figure 55 – (a) Scale comparison of original dataset with z-score and min-max normalisation (b) Comparison of Z-Score 
and Min-Max approaches 

Table 33 displays the top ten most frequent User IDs, with min-max scaling applied to their 

features. 

 

 

 

 

 



 

141 | P a g e  

 

Table 33 – Feature Scaling for User ID 

User 
ID Frequency Mean Mode STD Min 

5th 
Percentile 

25th 
Percentile 

Median 
Duration 

75th 
Percentile 

95th 
Percentile Max 

1016 1 0.017 0.001 0.019 0 0.001 0.002 0.001 0.010 0.020 0.257 

1320 0.727 0.024 0.001 0.021 0 0.001 0.008 0.009 0.017 0.026 0.123 

1025 0.710 0.043 0.001 0.045 0 0.002 0.014 0.023 0.036 0.034 0.404 

742 0.642 0.009 0.001 0.014 0 0.001 0.002 0.003 0.005 0.010 0.329 

248 0.588 0.043 0.007 0.048 0 0.010 0.021 0.024 0.033 0.033 0.453 

639 0.539 0.072 0.001 0.044 0 0.001 0.012 0.042 0.075 0.058 0.318 

640 0.466 0.028 0.005 0.025 0 0.004 0.013 0.016 0.020 0.024 0.317 

1424 0.425 0.044 0 0.032 0 0.002 0.018 0.027 0.038 0.036 0.339 

372 0.413 0.043 0.001 0.048 0 0.001 0.001 0.001 0.031 0.057 0.356 

108 0.362 0.029 0.001 0.025 0 0.001 0.006 0.012 0.0260 0.028 0.191 

6.4.3. Feature Testing 

The scatter matrix, displayed in Figure 56 (all features have been abbreviated in the graph 

labels) visualises the relationship between the features to predict the most appropriate for 

the LOF classification. The scatter matrix displays the positive and negative correlation 

between the features. In this case, from the visual inspection, the majority of features have 

a positive correlation. However, based on Figure 56, the consideration would be to remove 

the feature Frequency for each Unique Identifier (FUID) for the UserID, Routine and Device 

Interaction classification but retain it for PatientID. Referring to the Routine and Device 

Interaction, the data collected relates predominately to unique routine combinations, so 

logically the FUID feature is less significant, as confirmed by the scatter matrix. 
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a) Scatter Matrix of extracted features for UserID b) Scatter Matrix of extracted features for DeviceID 

  
c) Scatter Matrix of extracted features for PatientID d) Scatter Matrix of extracted features for Routine 

Figure 56 - Scatter Matrix of extracted features 

6.4.4. LOF: User, Patient and Device ID 
 

A LOF score is calculated for the 45 combinations (of the 10 features) for each of the 90,385 

unique IDs in the dataset. Therefore 4,067,325 unique LOF scores are calculated in total. An 

average is then taken to assign an anomaly score. In Table 34, LOF identifies anomalous 

User IDs, Patient IDs and Device IDs. The neighbourhood radius is defined in stage 3 of the 

LOF algorithm (Section 3.2.3.1), the density score is defined in stage 4, and the anomaly 

score is the final LOF value, as defined in stage 5.  
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Table 34 - LOF (Mean) Anomaly Scores for User ID, Patient ID and Device ID 

User ID 
Density 
Score 

Anomaly 
Score 

Neigbour
hood 

Radius 
Patient 

ID 
Density 
Score 

Anom
aly 

Score 

Neigbour
hood 

Radius Device ID 
Density 
Score 

Anomaly 
Score 

Neigbour
hood 

Radius 

685 3.03 4.36 0.546 35888 371.74 9.41 0.006 2258 374.85 4.86 0.003 

260 5.73 3.54 0.518 19327 175.92 8.81 0.018 1082 2.26 4.75 0.730 

1037 69.14 2.80 0.251 58816 794.70 8.58 0.003 1557 168.84 2.92 0.009 

1002 46.81 2.61 0.051 69053 51.59 8.55 0.053 729 5.26 2.80 0.303 

1401 16.55 2.56 0.153 51280 765.21 7.61 0.003 499 29.58 2.52 0.048 

707 19.05 2.28 0.207 41306 150.01 7.53 0.014 527 6.84 2.43 0.206 

1311 83.73 2.23 0.016 46695 647.07 7.32 0.008 896 10.35 2.32 0.170 

242 77.78 2.13 0.024 13704 1315.64 6.99 0.002 2014 6.75 2.29 0.216 

1493 47.75 2.03 0.134 34419 23.12 6.97 0.101 1104 107.50 2.28 0.033 

507 28.66 2.00 0.103 56428 2570.47 6.94 0.003 523 17.38 2.25 0.077 

Within the User ID range, the most notable ID is #685, with an anomaly score of 4.36. There 

are 10 User IDs with an anomaly score above 2. Therefore, LOF has indicated that 0.66% of 

the User IDs are anomalous. Similarly, the most notable Patient ID is #35888, with an 

anomaly score of 9.41. There are 122 Patient IDs with an anomaly score above 2; indicating 

0.17% of the Patient IDs are anomalous. Finally, the most notable Device ID is #2258, with 

an anomaly score of 4.86. There are 12 Device IDs with an anomaly score above 2, indicating 

that 0.53% of the Device IDs are irregular. Overall therefore, LOF identifies 0.45% of IDs as 

anomalous, which would be highlighted to a patient privacy officer for investigation. 

Examples of audit log data classified as inlier, outlier and abnormal data for User ID are 

presented in Table 35. Audit log data classified as an inlier within the dense region (<1) is 

User ID 571, with a LOF score of 0.95. Audit log data classified as an outlier within the 

normal region (>1 and <2) is User ID 1486, with a LOF score of 1.12. Audit log data classified 

as an outlier within the abnormal region (>2) is User ID 707, with a LOF score of 2.28. 

Table 35 - EPR Audit Log Data Examples for Inlier, Outlier and Abnormal Data Points  

Date & Time Device ID User ID Routine Description 
Patient 

ID 
Duration 

(sec) Adm Date Dis Date 

08/03/17 
01:32 

2046 571 Visit History 33727 28 08/03/2017 08/03/2017 

07/08/17 
15:37 

396 1485 Current Medication Orders | Pharmacy Orders 62584 58 16/10/2001 16/10/2001 

30/05/16 
11:09 

936 707 Visit History | Radiology Reports | Maternity 
Data | Cancelled Account.UK.Letter | Cancelled 
Account.UK.Scheduling UK.View Orders 

28160 385 26/01/2016 26/01/2016 
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The results presented here demonstrate a technique for uncovering anomalous or irregular 

behavioural patterns from a complex dataset that would otherwise not be possible from 

either a visual inspection/visualisation of the whole dataset. 

6.4.5. LOF: Routine ID 

However, the LOF technique cannot be applied as effectively to the Routine ID. Table 36 

presents a sample of the highest LOF anomaly scores for the Routine ID dataset. 

Table 36 - LOF (Mean) Anomaly Scores for Routine ID 

Routine Set Description Density 
Score 

Anomaly 
Score 

Neigbourhood 
Radius 

Assessment Forms | Maternity Data | Care-Area Administrative Data | Admissions Demographic Data 1043.094 13.34 0.003 

*** | UK.View Orders | Admissions Demographic Data | Pharmacy Orders 1649.703 11.64 0.005 

*** | Cancelled Account.UK.Letter | Admissions Demographic Data 2213.821 11.41 0.004 

Maternity Data | Theatre Management | Assessment Forms | Visit History 581.246 11.35 0.004 

Theatre Management | Cancelled Account.UK.Letter | Cancelled Account.UK.Scheduling | Admissions 
Demographic Data 

632.774 9.70 0.005 

Recent Clinical Results | Recent Clinical Results:(Departmental Reports) | Pharmacy.Medication Order History 
| UK.View Orders 

70.561 9.54 0.035 

Assessment Forms | Admissions Demographic Data | Visit History | Alerts 601.429 9.29 0.004 

Cancelled Account.UK.Letter | Pharmacy Orders | Admissions Demographic Data 470.423 8.81 0.005 

Assessment Forms | Cancelled Account.UK.Letter | Cancelled Account.UK.Scheduling | Medication Order 
History 

646.410 8.32 0.006 

Internet Access | Alerts | Assessment Forms 693.934 8.22 0.005 

The EPR audit logs calculate a string of routines performed on the same patient as a unique 

Routine ID. The differing routines are delimited with a pipe (|). Therefore, there are 13,722 

Routine IDs in the dataset, whereas there are more accurately approximately 100 unique 

routines a user could perform. 

There are 102 routine sets with an anomaly score above 2. Therefore, LOF has indicated that 

0.74% of the routine sets are anomalous. The most notable routine set is the combination 

‘Assessment Forms | Maternity Data | Care-Area Administrative Data | Admissions 

Demographic Data’, with an anomaly score of 13.34. This specific routine combination only 

occurs twice in the audit logs of over 1,000,000 rows.  

6.4.6. Quantifying LOF 

The data is cleaned as per the process outlined in chapter 4. NAN and Inf values are 

replaced with 1 and 2 respectively, whilst missing or null values are assigned the median 

value for their feature class. 
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6.4.7. Visualisation of LOF Results 

A visualisation of the LOF results for each ID is presented in Figure 57. 

  
a) Scatter graph of LOF results for UserID b) Scatter graph of LOF results for DeviceID 

  
c) Scatter graph of LOF results for PatientID d) Scatter graph of LOF results for Routine 

Figure 57 – Scatter graph of LOF results  

6.4.8. Anomaly Score Ensemble Averaging 

A sample of EPR data with a calculated ensemble average LOF anomaly score (including 

Routine ID) is presented in Table 37. The table is ordered by the highest LOF anomaly 

scores. Within the date range, the most notable audit log occurred on 26th Sep 2016 at 

17:02. User #435 accessed Patient #71272 on Device #1284 performing the following 

Routine combination ‘Assessment Forms Maternity Data Care-Area Administrative Data 

Admissions Demographic Data’, with an anomaly score of 4.139. There are 145 audit logs 

with an anomaly score above 2. Therefore, PARISS has indicated that 0.014% of the EPR 

Audit Logs are anomalous. 
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Table 37 - EPR Audit Data with Ensemble Averaging Applied to LOF Anomaly Score (including Routine) 

Date & 
Time 

Device 
Device 

Anomaly 
Score 

User 
ID 

User 
Anomaly 

Score 
Routine ID 

Routine 
Anomaly 

Score 

Patient 
ID 

Patient 
Anomaly 

Score 

Duration 
(sec) 

Adm 
Date 

Dis 
Date 

Ensemble 
Averaging 
Anomaly 
Score (inc 
Routine) 

26/09/16 
17:02 

1284 1.050195 435 1.086618 ASF SPC CAA MPI 13.33895 71272 1.080687 853 15/03
/2016 

15/03
/2016 

4.139 

25/11/16 
03:39 

102 1.084235 1487 1.043842 ASF SPC CAA MPI 13.33895 29971 1.047444 901 02/09
/2015 

02/09
/2015 

4.129 

15/08/16 
20:56 

531 1.161338 358 1.051894 *** UK.OE MPI 
PHA.ORDS 

11.64312 23637 1.066424 1180 08/01
/2016 

08/01
/2016 

3.730 

21/11/16 
21:46 

369 1.087683 1021 1.125426 SPC SS ASF VH 11.34951 41661 1.089557 970 24/01
/1997 

24/01
/1997 

3.663 

09/08/17 
11:39 

1537 1.122767 77 1.048351 SPC SS ASF VH 11.34951 57108 1.029903 1041 30/12
/2015 

30/12
/2015 

3.638 

21/11/16 
17:38 

1052 1.094431 809 1.08748 SS ZCUS.UK.LETTER 
ZCUS.UK.SCH MPI 

9.700566 43065 1.053911 723 29/12
/1997 

29/12
/1997 

3.234 

01/04/16 
01:12 

49 1.151319 117 1.03098 SS ZCUS.UK.LETTER 
ZCUS.UK.SCH MPI 

9.700566 52200 1.028481 861 29/09
/2015 

29/09
/2015 

3.228 

19/12/16 
20:03 

293 1.066586 992 1.090164 REC REC:(DRP) 
PHA.MEDS UK.OE 

9.538052 41375 1.054439 2454 28/11
/2016 

28/11
/2016 

3.187 

07/02/17 
00:18 

566 1.164282 262 1.073656 ZCUS.UK.LETTER 1.084454 35888 9.413876 1182 18/04
/2013 

18/04
/2013 

3.184 

27/12/16 
18:50 

293 1.066586 992 1.090164 REC REC:(DRP) 
PHA.MEDS UK.OE 

9.538052 46862 1.01959 1691 07/12
/2016 

07/12
/2016 

3.179 

A sample of EPR data with a calculated ensemble average LOF anomaly score (excluding 

Routine ID) is presented in Table 38. The table is ordered by the highest LOF anomaly 

scores. Within the date range, the most notable audit log occurred on 7th Feb 2017 at 00:18. 

User #262 accessed Patient #35888 on Device #566 performing the following Routine 

combination ‘ZCUS.UK.Letter’, with an anomaly score of 3.884. There are 156 audit logs with 

an anomaly score above 2. Therefore, PARISS has indicated that 0.015% of the EPR Audit 

Logs are anomalous. 
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Table 38 - EPR Audit Data with Ensemble Averaging Applied to LOF Anomaly Score (excluding Routine) 

Date & 
Time 

Device 
Device 

Anomaly 
Score 

User 
ID 

User 
Anomaly 

Score 
Routine ID 

Routine 
Anomaly 

Score 

Patient 
ID 

Patient 
Anomaly 

Score 

Duration 
(sec) 

Adm Date Dis Date 

Ensemble 
Averaging 
Anomaly 

Score 
(exc 

Routine) 

07/02/01 
00:18 

566 1.164 262 1.074 ZCUS.UK.LETTER 1.084 35888 9.414 1182 18/04/2013 18/04/2013 3.884 

26/07/16 
23:36 

594 1.141 262 1.074 ZCUS.UK.LETTER 1.084 35888 9.414 1342 18/04/2013 18/04/2013 3.876 

08/11/16 
22:37 

566 1.164 262 1.074 ZCUS.UK.LETTER 1.084 19327 8.814 2352 06/04/1994 06/04/1994 3.684 

29/09/16 
18:44 

1050 1.153 262 1.074 ZCUS.UK.LETTER 1.084 19327 8.814 2845 06/04/1994 06/04/1994 3.680 

27/07/16 
15:46 

286 1.071 809 1.087 ZCUS.UK.LETTER 1.084 69053 8.552 4251 11/02/2003 11/02/2003 3.570 

20/06/17 
18:43 

1970 1.113 117 1.031 ZCUS.UK.LETTER 1.084 69053 8.552 2680 11/02/2003 11/02/2003 3.565 

18/01/17 
01:57 

347 1.041 1439 1.070 ZCUS.UK.LETTER 1.084 58816 8.577 844 N/A N/A 3.563 

01/03/16 
16:46 

497 1.055 181 1.028 ZCUS.UK.LETTER 1.084 58816 8.577 924 N/A N/A 3.553 

14/09/16 
02:52 

890 1.070 740 1.080 ZCUS.UK.LETTER 1.084 51280 7.608 884 31/12/2014 31/12/2014 3.253 

11/01/17 
02:40 

1967 1.085 1241 1.036 ZCUS.UK.LETTER 1.084 51280 7.608 814 31/12/2014 31/12/2014 3.243 

In comparison, the results in Table 37 and Table 38 are dissimilar. The only audit log that 

appears in both is the most anomalous audit log in Table 38 (7th Feb 2017 00:18) which is 

the ninth most anomalous audit log in Table 37. This is due to both the Patient ID and 

Routine IDs having statistically high anomaly scores within the data (with anomaly scores 

over 5). Therefore in Table 37 the audit logs that include anomalous routines are prioritised 

for the attention of the analyst, whereas in Table 38 the audit logs that include anomalous 

patient IDs are displayed instead. The audit log on the 7th Feb 2017 has a high enough 

patient anomaly score to appear in both tables. Ultimately, Table 38 is a more useful 

indicator of anomalous audit logs. 

6.4.9. Visualisation of Audit Log Results 

In Figure 58, a visualisation of LOF results of calculated ensemble averaged anomaly scores 

(including the Routine ID anomaly score) is displayed for all 1,007,727 audit logs. The x-axis 

displays the date, and the y-axis displays the calculated ensemble average anomaly score. 
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Figure 58 - Visualisation of LOF Results for Ensemble Averaged Anomaly Scores (inc Routine) 

In Figure 59, a visualisation of LOF results of calculated ensemble averaged anomaly scores 

(excluding the Routine ID anomaly score) is shown. 

 

Figure 59 - Visualisation of LOF Results for Ensemble Averaged Anomaly Scores (exc Routine) 

6.5. Discussion 

A discussion of the three datasets is presented in this section. A bar chart comparing the 

number and percentage of anomalies for each of the ID types in the one-month dataset is 

presented in Figure 60(a) and Figure 60(b). A bar chart comparing the number and 
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percentage of anomalies for each of the ID types in the six-month dataset is presented in 

Figure 60(c) and Figure 60(d). A bar chart comparing the number and percentage of 

anomalies for each of the ID types in the eighteen-month dataset is presented in Figure 

60(e) and Figure 60(f). 

  
a) Bar chart of the number of anomalies (1 month) b) Bar chart of the percentage of anomalies (1 month) 

  
c) Bar chart of the number of anomalies (6 months) d) Bar chart of the percentage of anomalies (6 months) 

  
e) Bar chart of the number of anomalies (18 months) f) Bar chart of the percentage of anomalies (18 months) 
Figure 60 – Bar chart of the number and percentage of anomalies for the 1 month, 6 month and 18 month datasets 
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Pictorial showing the anomalies in the data is presented in Figure 61. User ID is green, 

Patient ID is red, Device ID is yellow and Routine ID is blue. 

   

(a) Number of anomalies in the 
dataset for 1 month 

(b) Number of anomalies in the 
dataset for 6 months 

(c) Number of anomalies in the 
dataset for 18 months 

Figure 61 – Pictorial of the number of anomalies in the dataset for 1 month,  6 months, and 18 months 

To compare if any audit logs appear as anomalous, the top 100 anomalous audit logs are 

included with their anomaly score (including routine ID). In Table 39 the matching records 

are presented, along with their overall rank and ensemble average within the results for the 

respective dataset. The full top 100 is in the appendix. 

Table 39 – Matching records in the Top 100 Anomalous Audit Logs (inc Routine ID) for 6 month and 18 months 

Date & Time (Jul16-Dec16) Rank Ensemble Average Date & Time (Feb16-Aug17) Rank Ensemble Average 

16/12/07 20:17 2 3.535 16/12/07 20:17 85 2.327 

16/11/21 13:55 3 3.535 16/11/21 13:55 83 2.331 

16/11/08 22:37 12 3.099 16/11/08 22:37 14 3.034 

16/09/29 18:44 16 3.058 16/09/29 18:44 15 3.031 

16/12/05 19:19 17 3.043 16/12/05 19:19 44 2.646 

16/10/20 18:35 18 3.043 16/10/20 18:35 45 2.645 

16/11/26 16:42 35 2.582 16/11/26 16:42 77 2.368 

16/11/26 16:49 37 2.518 16/11/26 16:49 80 2.360 

16/10/21 15:28 62 2.129 16/10/21 15:28 42 2.670 

16/11/01 19:13 63 2.115 16/11/01 19:13 40 2.694 

16/12/27 18:50 65 2.095 16/12/27 18:50 10 3.179 

16/12/19 20:03 66 2.090 16/12/19 20:03 8 3.187 

16/09/27 02:42 68 2.040 16/09/27 02:42 82 2.346 

16/08/23 06:42 74 2.018 16/08/23 06:42 81 2.353 

There are no matching records between the one-month dataset and the other datasets in 

the top 100 audit logs, this is because data within May 2017 does not appear in the top 100 

audit logs for the other datasets. However, there are fourteen pairs of matching audit logs 

between the six month and eighteen-month datasets. For example, the audit log on the 7th 

December 2016 at 20:17 is the 2nd most anomalous data point in the 6-month dataset and 
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the 85th most anomalous data point in the eighteen-month dataset. However, there are 

some unusual observations within the dataset. For example, the datapoint of 26th 

September 2016 at 17:02 is the most anomalous for the eighteen-month dataset, and falls 

within the date range of the six-month dataset. It would therefore be expected that this 

data point would also appear as one of the notable data points in the six-month dataset but 

it does not. The anomaly score for the eighteen-month dataset has a routine ID (ASF SPC 

CAA MPI) of 13.339 whereas the anomaly score for the same routine in the six-month 

dataset is 5.789, which is the 21st most anomalous routine in the initial six month dataset. 

This indicates that when more data is provided to PARISS, the most anomalous datapoints 

can be reanalysed as more typical behaviour, and data points which are of some interest in 

the six month analysis become of high interest when more data is provided and the 

datapoint becomes more unusual. The full dataset is available for reference in the appendix. 

A limitation of this work is that HILML is not applied to these results as due to the 

tokenisation of the data they would not return meaningful results. The results determined 

audit logs that were detected as displaying unusual activity, however this could not be 

validated as the data could not be untokenised for further investigation. Therefore, applying 

a HILML score for these audit logs would not reflect a genuine analysis of the audit log, as 

this was not possible. As discussed in Chapter 7, an aim of future work would be validating 

the system framework on a real-world dataset which has not been anonymised.   

6.6. Summary 

In this chapter, the real-world dataset described in chapter 5 is used to validate the system 

framework detailed in chapter 4.  The framework is applied to three sub-sets of the dataset, 

1 month, 6 months and 18 months. The results are then compared and discussed. In chapter 

7, the thesis conclusion is presented, along with thoughts on the direction of potential 

future work.  
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7. Conclusion and Future Work 

7.1. Introduction 

Electronic Patient Record systems represent a fundamental shift for healthcare through 

increasing availability of healthcare data to providers. However, this ubiquity of data is 

causing privacy concerns among patients who feel their data is less secure electronically. 

Current procedure-based models are insufficient and most information security incidents 

are detected by the patient, or staff member, whose privacy has been violated, causing 

reputational damage to the hospital. Therefore, this thesis represents research towards a 

system to ensure confidentiality and privacy of EPR systems. Through the use of machine 

learning techniques which employ human-in-the-loop and density-based outlier detection 

techniques, proactive monitoring of EPR audit logs is achieved. Proactive monitoring allows 

for inappropriate behaviour to be detected and managed, in addition to prompting a 

cultural shift among employees to refrain from such behaviour in future. 

7.2. Thesis Summary 

Patient Privacy within healthcare infrastructures is a key concern for hospitals. Data 

breaches can have the unintended consequence of patients losing trust in hospitals and 

being selective about the information they share, which can affect care. Access to EPRs is 

typically managed through access control and reactive auditing. However, a proactive 

monitoring approach is required to maintain patient trust. Visualisation and machine 

learning techniques are leveraged to utilise audit logs and actively monitor EPR accesses for 

inappropriate usage. 
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In this section, an overview of the research presented in this thesis is discussed, with a 

summary of each chapter provided. 

7.2.1. Contribution to Knowledge 

The aim of the project was to develop a novel system framework capable of autonomously 

detecting unusual data behaviour within an EPR and presenting them to an analyst for 

review. To achieve this aim, a literature review of healthcare infrastructures was performed, 

in addition to a review of machine learning and visualisation techniques. A novel system 

framework was defined and developed and validated using a real-world dataset. 

The research presented in this thesis offers a significant contribution in patient privacy 

monitoring. Proactive monitoring of audit logs is required to achieve comprehensive 

situational awareness of activity within an EPR. The system framework uses an unsupervised 

machine learning algorithm LOF to detect unusual data patterns. The system framework  

can be utilised in any hospital to identify anomalous behaviours and over time becomes 

more adapted to each instance through HILML. By combining unsupervised machine 

learning and HILML, the system framework  provides an analyst with a holistic and tailored 

view of patient privacy violations within their Trust. This is a novel approach to patient 

privacy monitoring. The system framework  uses a unique visualisation tool (the User 

Interface) which ranks events by severity, enabling an at-a-glance view of the number of 

flags to be reviewed by the analyst, in order of priority.  

The framework presented in this thesis is novel through the unique combination of existing 

methods to the context of EPR patient privacy. The LOF density-based outlier detection 

algorithm is well-established as an outlier detection tool but has not previously been applied 

to EPRs. In doing so, the framework enables hidden patterns of data to be discerned and 

investigated, which current procedure-based solutions cannot detect. Similarly, human-in-

the-loop machine learning techniques have previously been applied in cyber security 

contexts, but are applied to EPRs here. Finally, previous research in outlier detection within 

EPRs focuses primarily on the algorithms and techniques to detect anomalies, whereas in 

the novel framework presented here, consideration is given to the visualisation of these 

results in order to aid situational awareness of the patient privacy analyst. 
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The dataset used for this research is provided by a specialist Liverpool-based hospital. 

PARISS is able to detect 144 anomalous behaviours (0.014%) in an unlabelled dataset of 

1,007,727 audit logs. This includes 0.66% of the total users on the system, 0.17% of patient 

record accesses, 0.74% of routine accesses, and 0.53% of the devices used.  

7.3. Future Work 

As PARISS is embedded into hospitals, there is scope for further work to enhance its use as a 

patient privacy monitoring framework. PARISS was developed using a Waterfall 

development model. Future work will involve iterative iterations to the design and will 

therefore incorporate an Agile development model in future work. In doing so, stakeholder 

feedback will be incorporated to continually refine the system design. In this section, 

possible further research to continue to develop PARISS is discussed. 

7.3.1. Live Data 

The datasets were provided for this work on condition of tokenisation, so that patients and 

staff could not be identified. Once a fully-fledged concept was developed, the hospital 

indicated a willingness to deploy the system within the hospital. Therefore, future work will 

involve gathering feedback and testing the system with information security analysts on un-

anonymised live data in a hospital. This will validate the concept on real world non-

anonymised data. Using non-anonymised data will allow for other factors to be taken into 

consideration to determine motivational indicators. For example, determining a user’s role 

may provide valuable insight. Admin staff and doctors may both have access to the EPR. If 

an admin staff member is accessing clinical data, this would achieve a higher anomaly score 

than a doctor, and may indicate a breach. Additionally, a patient’s characteristics, such as a 

VIP or a relation to the patient, may provide context to determine whether a patient’s 

confidentiality has been breached. Accounting for additional factors such as these will 

continuously improve the system.  

The features discussed in the thesis compare every activity performed associated with each 

ID, but without detail. For example, for each User it compares the duration of all actions 

performed for that user. This can broadly identify anomalous behaviour, but for a more 

nuanced approach, other factors can be taken into consideration. For example, how long a 

user typically spends performing a certain task, or accesses a specific device, or with a 
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particular patient. By calculating the local outlier factor for these behaviours, and assigning 

each a weighted score, these can be factored together to provide data-driven insight of 

potential EPR misuse. Additionally, currently inputting new data to calculate their LOF 

values is a manual process and not in real-time. This will be explored further with an aim to 

automate this and improve update efficiency within the big data context of EPR audit logs. 

7.3.2. Visualisation and Virtual Reality 

Future work will also build on the visualisation approach undertaken in the research case 

studies presented. The Virtual Hospital option presents the user another screen where a 3D 

virtual layout of the hospital is displayed. This enables the user to view recreations of events 

(through using the Date & Time, User and Device fields. The user is asked which time period 

they wish to view, and a simulation can be run to aid situational awareness. The Virtual 

Reality option enables the user to view the virtual hospital, enabling a more immersive 

experience. Figure 62 displays the virtual hospital and virtual reality sections of PARISS.  

 

Figure 62 - PARISS User Interface - Virtual Hospital VR 

The device height represents its anomaly score. These devices can be mapped to their 

location within a 3D virtual hospital, allowing an at a glance view of where anomalous 

activity is happening. Additionally, several anomalous data behaviours can be viewed over a 

time period, allowing a reconstruction to be created of user behaviour in order to aid the 

patient privacy officer’s investigation. 

7.3.3. Bespoke Anomaly Scores for Routine IDs 

Future Work will involve normalising the data further with a case study of the routine 

‘Pharmacy Orders’. This routine accounts for approximately 21.27% of the actions 
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performed on the EPR. It is therefore possible to use this as a case study to understand user 

roles within the dataset and compare similar actions, in order to identify anomalous 

behaviours. Factors other than solely the duration of the routine (such as the date and time 

an action is performed) will be considered. Additionally, a quantitative model-based 

approach that takes into account the duration and the sequence of events during the 

interaction of the user with the EPR will be explored.  

7.3.4. Multiple Hospitals 

The incorporation of further supervised learning models into PARISS can be achieved 

through leveraging signature detection methods. If the system is deployed at more than one 

hospital, a database of known patient privacy violations can be accrued and shared. For 

example, as an analyst in one hospital interacts with PARISS, roles within the hospital (such 

as Doctor/Nurse/Admin) will be defined. This role-based profile can be applied when 

deploying the system at another hospital. This process is outlined in Figure 63. 

 

Figure 63 - PARISS in Multiple Hospitals 
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7.4. Limitations of Work 

The key limitations of this work were the use of a tokenised dataset to validate the system 

framework. Due to this limitation, the results could not be verified as anomalous by the 

partner hospital. Additionally, the audit log data itself concatenated Routine behaviour into 

a single audit log, resulting in nuanced duration details being lost within the dataset.  

Under a more formal project scope with the partner hospital, a more agile system 

development approach would have been used to develop the system framework, rather 

than the waterfall model used due to the limited contact time available. 

7.5. Concluding Remarks 

The far-reaching consequences of this work are illustrated with a prediction: This research 

project will increase the situational awareness of data flow and actively address the issue of 

data misuse. Machine learning algorithms have the capability to observe and learn patterns 

of data and profile users’ behaviour, which can then be represented visually. The work will 

result in the development of a system that can be used by healthcare practitioners to 

increase the protection of their EPR records. This will make the UK, not only one of the 

safest places to conduct business, but also one of the most secure in protecting patient 

privacy in healthcare systems.  
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Appendix 

Python Code 

Feature Scaling 

import pandas as pd 

import numpy as np 

df=pd.io.parsers.read_csv('Data\Data for Scaling.csv') 

from sklearn import preprocessing 

minmax_scale = preprocessing.MinMaxScaler().fit(df[['Frequency of User UID', 'Mean Duration of 
User ID']]) 

df_minmax = minmax_scale.transform(df[['Frequency of User UID', 'Mean Duration of User ID']]) 

print('Mean after standardization:\nFrequency of User UID={:.2f}, Mean Duration of User ID={:.2f}' 

      .format(df_std[:,0].mean(), df_std[:,1].mean())) 

print('\nStandard deviation after standardization:\nFrequency of User UID={:.2f}, Mean Duration of 
User ID={:.2f}' 

      .format(df_std[:,0].std(), df_std[:,1].std())) 

print('Min-value after min-max scaling:\nFrequency of User UID={:.2f}, Mean Duration of User 
ID={:.2f}' 

      .format(df_minmax[:,0].min(), df_minmax[:,1].min())) 

print('\nMax-value after min-max scaling:\nFrequency of User UID={:.2f}, Mean Duration of User 
ID={:.2f}' 

      .format(df_minmax[:,0].max(), df_minmax[:,1].max())) 

#Plot Data 

%matplotlib inline 

from matplotlib import pyplot as plt 

def plot(): 

    plt.figure(figsize=(10,10)) 

    x1,x2,y1,y2 = plt.axis() 

    plt.axis((0,1.2,0,1.2)) 
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    plt.scatter(df_minmax[:,0], df_minmax[:,1], 

            color='blue', label='Min-max scaled', alpha=0.3) 

    plt.xlabel('Frequency of User ID') 

    plt.ylabel('Mean Duration of User ID') 

    plt.legend(loc='upper left') 

    plt.grid() 

    #plt.tight_layout() 

plot() 

plt.show() 

#Scale data and extract 

minmax_scale = preprocessing.MinMaxScaler().fit(df[['Frequency of User UID', 'Mean Duration of 
User ID', 'Mode Duration of User ID', 'STD Duration of User ID', 'Min Duration of User ID', '5th 
Percentile of User ID', '25th Percentile  of User ID', 'Median Duration of User ID', '75th Percentile  of 
User ID', ' 95th Percentile  of User ID', 'Max Duration of User ID', 'Frequency of Patient ID', 'Mean 
Duration of Patient ID', 'Mode Duration of Patient ID', 'STD Duration of Patient ID', 'Min Duration of 
Patient ID', '5th Percentile of Patient ID', '25th Percentile of Patient ID', 'Median Duration of Patient 
ID', '75th Percentile of Patient ID', ' 95th Percentile of Patient ID', 'Max Duration of Patient ID', 
'Frequency of Device ID', 'Mean Duration of Device ID', 'Mode Duration of Device ID', 'STD Duration 
of Device ID', 'Min Duration of Device ID', '5th Percentile of Device ID', '25th Percentile of Device ID', 
'Median Duration of Device ID', '75th Percentile of Device ID', ' 95th Percentile of Device ID', 'Max 
Duration of Device ID', 'Frequency of Routine', 'Mean Duration of Routine ID', 'Mode Duration of 
Routine ID', 'STD Duration of Routine ID', 'Min Duration of Routine ID', '5th Percentile of Routine ID', 
'25th Percentile of Routine ID', 'Median Duration of Routine ID', '75th Percentile of Routine ID', ' 
95th Percentile of Routine ID', 'Max Duration of Routine ID']]) 

df_minmax = minmax_scale.transform(df[['Frequency of User UID', 'Mean Duration of User ID', 
'Mode Duration of User ID', 'STD Duration of User ID', 'Min Duration of User ID', '5th Percentile of 
User ID', '25th Percentile  of User ID', 'Median Duration of User ID', '75th Percentile  of User ID', ' 
95th Percentile  of User ID', 'Max Duration of User ID', 'Frequency of Patient ID', 'Mean Duration of 
Patient ID', 'Mode Duration of Patient ID', 'STD Duration of Patient ID', 'Min Duration of Patient ID', 
'5th Percentile of Patient ID', '25th Percentile of Patient ID', 'Median Duration of Patient ID', '75th 
Percentile of Patient ID', ' 95th Percentile of Patient ID', 'Max Duration of Patient ID', 'Frequency of 
Device ID', 'Mean Duration of Device ID', 'Mode Duration of Device ID', 'STD Duration of Device ID', 
'Min Duration of Device ID', '5th Percentile of Device ID', '25th Percentile of Device ID', 'Median 
Duration of Device ID', '75th Percentile of Device ID', ' 95th Percentile of Device ID', 'Max Duration of 
Device ID', 'Frequency of Routine', 'Mean Duration of Routine ID', 'Mode Duration of Routine ID', 
'STD Duration of Routine ID', 'Min Duration of Routine ID', '5th Percentile of Routine ID', '25th 
Percentile of Routine ID', 'Median Duration of Routine ID', '75th Percentile of Routine ID', ' 95th 
Percentile of Routine ID', 'Max Duration of Routine ID']]) 

pd.DataFrame(df_minmax).to_csv("file/save.csv") 
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Feature Testing 

#data preprocessing 

import pandas as pd 

from IPython.display import display 

 # Read data and drop redundant column. 

data = pd.read_csv('C:/Users/cmpwhurs/Desktop/SixMonthRID.csv') 

 display(data.head()) 

 from pandas.tools.plotting import scatter_matrix 

 scatter_matrix(data[['RID', 'RMID', 'RMoID', 'RSTDID', 'RMiID', 'R5thID', 'R25thID', 'RMeID', 'R75thID', 
'R95thID', 'RMaID']], figsize=(10,10)) 

 

LOF - UserID 

#Process repeated for each of the ID Types – User, Patient, Device, Routine 

import graphlab as gl 

UserID = gl.SFrame.read_csv(‘Data\Normalised Features UserID.csv', header=True) 

features = ['Frequency of User UID', 'Mean Duration of User ID', 'Mode Duration of User ID', 'STD 
Duration of User ID', 'Min Duration of User ID', '5th Percentile of User ID', '25th Percentile of User 
ID', 'Median Duration of User ID', '75th Percentile of User ID', '95th Percentile of User ID', 'Max 
Duration of User ID'] 

UserID = UserID[['User ID'] + features] 

UserID.print_rows(5) 

UIDMeanMode = gl.anomaly_detection.local_outlier_factor.create(UserID, 

                                           features=['Mean Duration of User ID', 'Mode Duration of User ID']) 

UIDMeanMode['scores'].export_csv('LOF Results\User ID\UIDMeanMode.csv', delimiter=', ', 

line_terminator='\n', header=True, quote_level=2, double_quote=True, escape_char='\\', 

quote_char='"', na_rep='', file_header='', file_footer='', line_prefix='', 

_no_prefix_on_first_value=False)  

#This section of code is repeated for all 45 combinations of features. 

# All related csv files are then merged into one using cmd commands (copy *.csv combine.csv), and 

ordered by ID. Then an AVERAGEIF Statement is used to calculate the average LOF value for each ID. 
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Turi – Local Outlier Factor code 

Below is the Class definition and utilities for the Local Outlier Factor tool taken from the Turi Code. 

""" 

Create a :class:`LocalOutlierFactorModel`. This mode contains local outlier factor (LOF) scores for the 

training data passed to this model, and can predict the LOF score for new observations. 

    The LOF method scores each data instance by computing the ratio of the average densities of the 

instance's neighbors to the density of the instance itself. The higher the score, the more likely the 

instance is to be an outlier *relative to its neighbors*. A score of 1 or less means that an instance has 

a density similar (or higher) to its neighbors and is unlikely to be an outlier. 

   The model created by this function contains an SFrame called 'scores' that contains the computed 

local outlier factors. The `scores` SFrame has four columns: 

        - *row_id*: the row index of the instance in the input dataset. If a label column is passed, the 

labels (and the label name) are passed through to this column in the output. 

        - *density*: the density of instance as estimated by the LOF procedure. 

        - *neighborhood_radius*: the distance from the instance to its furthest neighbor (defined by 

'num_neighbors', and used for predicting the LOF for new points). 

        - *anomaly_score*: the local outlier factor. 

    Parameters 

    dataset : SFrame 

        Input dataset. The 'dataset' SFrame must include the features specified in the 'features' or 

'distance' parameter (additional columns are ignored). 

    features : list[string], optional 

        Names of feature columns. 'None' (the default) indicates that all columns should be used. Each 

column can be one of the following types: 

        - *Numeric*: values of numeric type integer or float. 

        - *Array*: array of numeric (integer or float) values. Each array element is treated as a separate 

variable in the model. 
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        - *Dictionary*: key-value pairs with numeric (integer or float) values. Each key indicates a 

separate variable in the model. 

        - *String*: string values. 

        Please note: if 'distance' is specified as a composite distance, then that parameter controls 

which features are used in the model. Also note that the column of row labels is automatically 

removed from the features, if there is a conflict. 

    label : str, optional 

        Name of the input column containing row labels. The values in this column must be integers or 

strings. If not specified, row numbers are used by default. 

    distance : string or list[list], optional 

        Function to measure the distance between any two input data rows. If left unspecified, a 

distance function is automatically constructed based on the feature types. The distance may be 

specified by either a string or composite distance: 

        - *String*: the name of a standard distance function. One of 'euclidean', 'squared_euclidean', 

'manhattan', 'levenshtein',  'jaccard', 'weighted_jaccard', 'cosine', or 'dot_product'. 

        - *Composite distance*: the weighted sum of several standard distance functions applied to 

various features. This is specified as a list of distance components, each of which is itself a list 

containing three 

          items: 

          1. list or tuple of feature names (strings) 

          2. standard distance name (string) 

          3. scaling factor (int or float) 

    num_neighbors : int, optional 

        Number of neighbors to consider for each point. 

    threshold_distances : bool, optional 
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        If True (the default), the distance between two points is thresholded. This reduces noise and can 

improve the quality of results, but at the cost of slower computation.  

    verbose : bool, optional 

        If True, print progress updates and model details. 

    Returns 

    model : LocalOutlierFactorModel 

        A trained :class:`LocalOutlierFactorModel`, which contains an SFrame called 'scores' that 

includes the 'anomaly score' for each input instance. 

    -------- 

    LocalOutlierFactorModel, graphlab.toolkits.nearest_neighbors 

    ----- 

    The LOF method scores each data instance by computing the ratio of the average densities of the 

instance's neighbors to the density of the instance itself. According to the LOF method, the 

estimated density of a point :math:`p` is the number of :math:`p`'s neighbors divided by the sum of 

distances to the instance's neighbors. In the following, suppose 

      :math:`N(p)` is the set of neighbors of point 

      :math:`p`, :math:`k` is the number of points in this set (i.e. the 'num_neighbors' parameter), and 

:math:`d(p, x)` is the distance between points :math:`p` and :math:`x` (also based on a user-specified 

distance function). 

      .. math:: \hat{f}(p) = \\frac{k}{\sum_{x \in N(p)} d(p, x)} 

    - The LOF score for point :math:`p` is then the ratio of :math:`p`'s density to the average densities 

of :math:`p`'s neighbors: 

      .. math:: LOF(p) = \\frac{\\frac{1}{k} \sum_{x \in N(p)} \hat{f}(x)}{\hat{f}(p)} 

    - If the 'threshold_distances' flag is set to True, exact distances are replaced by "thresholded" 

distances. Let  Suppose :math:`r_k(x)` is the distance from :math:`x` to its :math:`k`'th nearest 

neighbor. Then the thresholded distance from point :math:`p` to point :math:`x_i` is 
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      .. math:: d^*(p, x) = \max\{r_k(x), d(p, x)\} 

      This adaptive thresholding is used in the original LOF paper to reduce noise in the computed 

distances and improve the quality of the final LOF scores. 

    - For features that all have the same type, the distance parameter may be a single standard 

distance function name (e.g. "euclidean"). In the model, however, all distances are first converted to 

composite distance functions; as a result, the 'distance' field in the model is always a composite 

distance. 

    - Standardizing features is often a good idea with distance-based methods, but this model does 

*not* standardize features. 

    - If there are several observations located at an identical position, the LOF values can be 

undefined. An LOF score of "nan" means that a point is either in or near a set of co-located points. 

    - This implementation of LOF forces the neighborhood of each data instance to contain exactly 

'num_neighbors' points, breaking ties arbitrarily. 

      This differs from the original LOF paper, which allows neighborhoods to expand if there are 

multiple neighbors at exactly the same distance from an instance. 

     ## Start the training time clock and instantiate an empty model 

    ## Validate the input dataset 

    ## Validate the number of neighbors, mostly to make the error message use the right parameter 

name. 

    ## Validate the row label against the features *using the nearest neighbors tool with only one row 

of data.  

    ## Compute the similarity graph based on k and radius, without self-edges, but keep it in the form 

of an SFrame. Do this *without* the row label, because I need to sort on the row number, and row 

labels that aren't  already in order will be screwed up. 

    ## Bias the distances by making them at least equal to the *reference* point's k'th neighbor 

radius. This is "reach-distance" in the original  paper. 

    ## Find the sum of distances from each point to its neighborhood, then compute the "local 

reachability density (LRD)". This is not remotely a  valid density estimate, but it does have the form 
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of mass / volume,  where the mass is estimated by the number of neighbors in point x's  

neighborhood, and the volume is estimated by the sum of the distances between x and its 

neighbors. 

     ## NOTE: if a vertex is co-located with all of its neighbors, the sum of  distances will be 0, in which 

case the inverse distance sum value is  'inf'. 

   ## Join the density of each point back to the nearest neighbors results,  then get the average 

density of each point's neighbors' densities. 

    ## Combine each point's density and average neighbor density into one SFrame, then compute 

the local outlier factor (LOF). 

    ## Add each point's neighborhood radius to the output SFrame. 

    ## Remove the extraneous columns from the output SFrame and format. 

    ## Substitute in the row labels. 

    ## Post-processing and formatting 

class LocalOutlierFactorModel(_CustomModel, _ProxyBasedModel): 

    """ 

    Local outlier factor model. The LocalOutlierFactorModel contains the local outlier factor scores for 

training data passed to the 'create' function, as well as a 'predict' method for scoring new data. 

Outliers are determined by comparing the probability density estimate of each point to the density    

estimates of its neighbors. 

        """ 

        Compute local outlier factors for new data. The LOF scores for new data instances are based on 

the neighborhood statistics for the data used when the model was created. Each new point is scored 

independently. 

        Parameters 

        ---------- 

        dataset : SFrame 
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            Dataset of new points to score with LOF against the training data already stored in the model. 

        verbose : bool, optional 

            If True, print progress updates and model details. 

        Returns 

        ------- 

        out : SArray 

            LOF score for each new point. The output SArray is sorted to match the order of the 'dataset' 

input to this method. 

        ## Query the knn model with the new points. 

        ## Join the reference data's neighborhood statistics to the nearest neighbors results. 

        # Compute reachability distance for each new point and its neighborhood. 

        ## Find the sum of distances from each point to its neighborhood, then  compute the "local 

reachability density" for each query point. 

        ## Find the average density for each query point's neighbors. 

        ## Join the point densities and average neighbor densities into a  single SFrame and compute 

the local outlier factor. 

        ## Remove extraneous columns and format. 
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Netstat Data 

In Table 40 a sample of analysed netstat data is shown displaying firstly, the connection 

type, secondly the IP source connecting to the DC, thirdly the target of the IP address (the 

DC server), and fourthly the state of the connection. All data presented is anonymised. The 

data is a single snapshot of the domain controller server and comprises of 590 established 

connections of 5688 total ports. In Table 41 a sample of the netstat data is shown, 

displaying the connection type, the IP source connecting to the EP, the target of the IP 

address (the EP server) and the state of the connection. The data is a single snapshot of the 

domain controller server and comprises of 18 established connections of 88 total ports. In 

Table 42 a sample of the netstat data displays, the connection type, the IP source 

connecting to the PAS, the target of the IP address (the PAS server) and  the connection 

state. The data is a single snapshot of the domain controller server and comprises of 93 

established connections of 173 total ports. 

Table 40. Active Directory Domain Controller – TCP Socket Connections Sample Data (Anonymised) 

Proto Local Address Foreign Address State  

TCP 0.0.0.0:***** 0.0.0.0:0 LISTENING 

TCP **.**.***.16:53 0.0.0.0:0 LISTENING 

TCP **.**.***.16:135 **.**.**.148:53173 ESTABLISHED 

TCP **.**.***.16:135 **.**.***.51:63068 ESTABLISHED 

Table 41. Electronic Prescribing System – TCP Socket Connections Sample Data (Anonymised) 

Proto Local Address Foreign Address State  

TCP 0.0.0.0:***** 0.0.0.0:0 LISTENING 

TCP **.**.***.197:139 0.0.0.0:0 LISTENING 

TCP **.**.***.197:8194 **.**.***.133:50176 ESTABLISHED 

TCP **.**.***.197:8194 **.**.***.133:50326 ESTABLISHED 

Table 42. Patient Administration System – TCP Socket Connections Sample Data (Anonymised) 

Proto Local Address Foreign Address State  

TCP 0.0.0.0:***** 0.0.0.0:0 LISTENING 

TCP **.**.***.16:53 0.0.0.0:0 LISTENING 

TCP **.**.***.16:135 **.**.**.148:53173 ESTABLISHED 

TCP **.**.***.16:135 **.**.***.51:63068 ESTABLISHED 
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Results sample data 

Table 43. DBSCAN Results 

User 
ID 

 User ID 
cluster_id 

User ID 
type 

Patient 
ID 

 Patient ID 
cluster_id 

Patient 
ID type 

Device ID 
row_id 

Device ID 
cluster_id 

Device 
ID type 

Routine ID row_id Routine ID 
cluster_id 

Routine 
ID type 

119  n/a  noise 803  n/a  noise 1  n/a  noise MPI ZCUS.UK.SCH 
ZCUS.UK.LETTER 

 n/a  noise 

126  n/a  noise 804  n/a  noise 2  n/a  noise ZCUS.UK.LETTER 
VH SPC OE 

 n/a  noise 

144  n/a  noise 805  n/a  noise 3  n/a  noise *** ASF 6  core 

203  n/a  noise 806  n/a  noise 4  n/a  noise *** ASF MPI 6  core 

226  n/a  noise 807  n/a  noise 5  n/a  noise *** ASF NOTE 
ZCUS.UK.LETTER 

6  core 

297  n/a  noise 4764  n/a  noise 6  n/a  noise *** ASF NPC 6  core 

359  n/a  noise 4765  n/a  noise 7  n/a  noise *** ASF SPC VH 
ZCUS.UK.SCH 

SPCUS 

6  core 

404  n/a  noise 4766  n/a  noise 8  n/a  noise *** ASF SS 
ZCUS.UK.SCH 

6  core 

432  n/a  noise 4767  n/a  noise 9  n/a  noise *** ASF 
ZCUS.UK.LETTER 

6  core 

442  n/a  noise 4768  n/a  noise 10  n/a  noise *** ASF 
ZCUS.UK.LETTER 

ZCUS.UK.SCH 

6  core 

526  n/a  noise 6674  n/a  noise 11  n/a  noise *** ASF 
ZCUS.UK.SCH BD 

6  core 

770  n/a  noise 8763  n/a  noise 12  n/a  noise *** BD 6  core 

775  n/a  noise 8764  n/a  noise 13  n/a  noise *** BD CM NOTE 6  core 

793  n/a  noise 6 19  core 299  n/a  noise *** BD UK.OE VH 
OE 

6  core 

795  n/a  noise 7 19  core 300  n/a  noise *** CM 6  core 

1 3  core 8 19  core 301  n/a  noise *** CM PHA.ORDS 6  core 

6 6  core 10 19  core 302  n/a  noise *** LAB.DRP 6  core 

14 6  core 11 19  core 303  n/a  noise *** LAB.DRP UK.OE 
REC 

6  core 

18 7  core 12 19  core 304  n/a  noise *** MED 6  core 

28 0  core 13 19  core 305  n/a  noise *** MED ASF 6  core 

31 0  core 14 19  core 306 n/a  noise *** MED CM NOTE 6  core 

37 1  core 15 19  core 307 n/a  noise *** MPI 6  core 

38 1  core 17 19  core 308 n/a  noise *** MPI SPC 6  core 

47 6  core 18 19  core 309 n/a  noise *** MPI 
ZCUS.UK.LETTER 

0  core 

48 6  core 19 19  core 310 n/a  noise *** MPI 
ZCUS.UK.SCH 

6  core 

52 6  core 20 19  core 311 n/a  noise *** NOTE 6  core 

55 6  core 22 19  core 312 n/a  noise *** NOTE 
PHA.ORDS 

6  core 

58 6  core 24 19  core 313 n/a  noise *** NOTE SS 6  core 

60 6  core 25 19  core 314 n/a  noise *** NOTE 
ZCUS.UK.LETTER 

6  core 

64 6  core 27 19  core 315 n/a  noise *** OE 6  core 

68 4  core 29 19  core 409 n/a  noise *** OE MPI 6  core 

72 7  core 30 19  core 410 n/a  noise *** OE REC 
REC:(DRP) UK.OE 

6  core 
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77 7  core 32 19  core 411 n/a  noise *** OE 
ZCUS.UK.LETTER 

6  core 

80 7  core 34 19  core 412 n/a  noise *** PHA.ORDS 0  core 

82 7  core 36 19  core 413 n/a  noise *** PHA.ORDS CM 6  core 

85 7  core 39 19  core 414 n/a  noise *** PHA.ORDS 
LAB.DRP 

6  core 

97 5  core 41 19  core 415 n/a  noise *** PHA.ORDS REC 
REC:(DRP) 

6  core 

98 5  core 43 19  core 416 n/a  noise *** PHA.ORDS REC 
REC:(DRP) OE 

UK.OE 

6  core 

100 5  core 44 19  core 417 n/a  noise *** PHA.ORDS REC 
REC:(DRP) UK.OE 

6  core 

101 5  core 45 19  core 418 n/a  noise *** RAD.DRP 6  core 

102 5  core 46 19  core 419 n/a  noise *** RAD.DRP 
LAB.DRP 

6  core 

107 0  core 48 19  core 420 n/a  noise *** REC ASF BD 6  core 

109 0  core 51 19  core 421 n/a  noise *** REC OE 6  core 

111 0  core 53 19  core 422 n/a  noise *** REC OE UK.OE 6  core 

115 0  core 56 19  core 423 n/a  noise *** REC PHA.ORDS 6  core 

118 9  core 57 19  core 424 n/a  noise *** REC REC:(DRP) 6  core 

120 1  core 58 19  core 425 n/a  noise *** REC REC:(DRP) 
OE UK.OE 

6  core 

122 1  core 61 19  core 426 n/a  noise *** REC REC:(DRP) 
OE UK.OE LAB.DRP 

6  core 

124 3  core 63 19  core 445 n/a  noise *** REC REC:(DRP) 
PHA.ORDS 

LAB.DRP OE UK.OE 

6  core 

129 6  core 64 19  core 446 n/a  noise *** REC REC:(DRP) 
UK.OE 

6  core 

133 4  core 66 19  core 447 n/a  noise *** REC REC:(DRP) 
UK.OE OE 

6  core 

135 7  core 68 19  core 448 n/a  noise *** REC UK.OE 6  core 

136 7  core 69 19  core 449 n/a  noise *** REC VH 
LAB.DRP 

6  core 

138 7  core 71 19  core 450 n/a  noise *** SPC 6  core 

141 7  core 73 19  core 451 n/a  noise *** SPCUS ASF 6  core 

149 5  core 74 19  core 452 n/a  noise *** SS 6  core 

152 5  core 75 19  core 474 n/a  noise *** SS ASF 
ZCUS.UK.LETTER 

6  core 

154 5  core 76 19  core 808 n/a  noise *** SS 
ZCUS.UK.SCH 

2  core 

158 0  core 77 19  core 809 n/a  noise *** UK.OE 6  core 

163 3  core 78 19  core 810 n/a  noise *** UK.OE OE 6  core 

168 6  core 79 19  core 811 n/a  noise *** UK.OE 
PHA.ORDS 

6  core 

169 6  core 80 19  core 812 n/a  noise *** UK.OE REC 6  core 

170 6  core 81 19  core 813 n/a  noise *** UK.OE REC 
REC:(DRP) 

6  core 

171 6  core 83 19  core 814 n/a  noise *** UK.OE 
ZCUS.UK.LETTER 

6  core 

172 6  core 84 19  core 815 n/a  noise *** UK.OE 
ZCUS.UK.SCH 

1  core 

173 6  core 85 19  core 816 n/a  noise *** VH MPI 
ZCUS.UK.SCH OE 

0  core 

175 6  core 88 19  core 817 n/a  noise *** VH UK.OE 6  core 
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177 6  core 89 19  core 818 n/a  noise *** VH 
ZCUS.UK.LETTER 

6  core 

178 6  core 90 19  core 819 n/a  noise *** 
ZCUS.UK.LETTER 

ASF 

6  core 

180 4  core 93 19  core 820 n/a  noise *** 
ZCUS.UK.LETTER 

ASF VH 

6  core 

181 7  core 94 19  core 821 n/a  noise *** 
ZCUS.UK.LETTER 

NOTE ASF 
ZCUS.UK.SCH MPI 

6  core 

186 7  core 95 19  core 822 n/a  noise *** 
ZCUS.UK.LETTER SS 

6  core 

187 7  core 97 19  core 823 n/a  noise *** 
ZCUS.UK.LETTER 

UK.OE 

1  core 

188 10  core 98 19  core 824 n/a  noise *** 
ZCUS.UK.LETTER 

ZCUS.UK.SCH 

6  core 

190 5  core 99 19  core 825 n/a  noise *** 
ZCUS.UK.LETTER 

ZCUS.UK.SCH MPI 

6  core 

192 5  core 100 19  core 826 n/a  noise *** 
ZCUS.UK.LETTER 

ZCUS.UK.SCH SPC 

6  core 

196 0  core 101 19  core 827 n/a  noise *** 
ZCUS.UK.LETTER 
ZCUS.UK.SCH SS 

WL 

6  core 

197 0  core 103 19  core 947 n/a  noise *** ZCUS.UK.SCH 6  core 

199 9  core 105 19  core 948 n/a  noise *** ZCUS.UK.SCH 
ASF SS 

ZCUS.UK.LETTER 

6  core 

200 3  core 106 19  core 949 n/a  noise *** ZCUS.UK.SCH 
ASF 

ZCUS.UK.LETTER 

6  core 

204 8  core 108 19  core 950 n/a  noise *** ZCUS.UK.SCH 
SS 

6  core 

206 6  core 110 19  core 951 n/a  noise *** ZCUS.UK.SCH 
UK.OE VH OE 

ZCUS.UK.LETTER 

6  core 

209 6  core 111 19  core 952 n/a  noise *** ZCUS.UK.SCH 
ZCUS.UK.LETTER SS 

6  core 

211 4  core 113 19  core 953 n/a  noise ALLERGIES BD MPI 2  core 

215 7  core 115 19  core 954 n/a  noise ALLERGIES BD 
PHA.ORDS 

0  core 

218 5  core 116 19  core 955 n/a  noise ALLERGIES CM 6  core 

219 5  core 117 19  core 1054 n/a  noise ALLERGIES MPI 6  core 

222 0  core 118 19  core 1123 n/a  noise ASF BD 1  core 

225 3  core 119 19  core 458 0  core ASF BD CM 6  core 
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Table 44. Ensemble LOF Audit Logs 

Date & Time Device 
Device 

Anomaly 
Score 

User 
ID 

User Anomaly 
Score 

Routine ID 
Routine Anomaly 

Score 
Patient ID 

Patient 
Anomaly Score 

Duration 
(sec) 

Ensemble Averaging 
Anomaly Score 

26/09/16 17:02 1284 1.05 435 1.087 ASF SPC CAA MPI 13.339 71272 1.081 853 4.139 

26/09/16 17:02 1284 1.050 435 1.087 ASF SPC CAA MPI 13.339 71272 1.081 853 4.139 

25/11/16 03:39 102 1.084 1487 1.044 ASF SPC CAA MPI 13.339 29971 1.047 901 4.129 

15/08/16 20:56 531 1.161 358 1.052 *** UK.OE MPI PHA.ORDS 11.643 23637 1.066 1180 3.731 

21/11/16 21:46 369 1.088 1021 1.125 SPC SS ASF VH 11.350 41661 1.090 970 3.663 

09/08/17 11:39 1537 1.123 77 1.048 SPC SS ASF VH 11.350 57108 1.030 1041 3.638 

21/11/16 17:38 1052 1.094 809 1.087 SS ZCUS.UK.LETTER ZCUS.UK.SCH MPI 9.701 43065 1.054 723 3.234 

01/04/16 01:12 49 1.151 117 1.031 SS ZCUS.UK.LETTER ZCUS.UK.SCH MPI 9.701 52200 1.028 861 3.228 

19/12/16 20:03 293 1.067 992 1.090 REC REC:(DRP) PHA.MEDS UK.OE 9.538 41375 1.054 2454 3.187 

07/02/17 00:18 566 1.164 262 1.074 ZCUS.UK.LETTER 1.084 35888 9.414 1182 3.184 

27/12/16 18:50 293 1.067 992 1.090 REC REC:(DRP) PHA.MEDS UK.OE 9.538 46862 1.020 1691 3.179 

26/07/16 23:36 594 1.141 262 1.074 ZCUS.UK.LETTER 1.084 35888 9.414 1342 3.178 

04/04/17 23:56 161 1.123 639 1.122 ASF MPI VH BD 9.287 31633 1.033 890 3.141 

11/08/16 15:49 1064 1.084 36 1.051 ASF MPI VH BD 9.287 8178 1.060 964 3.121 

08/11/16 22:37 566 1.164 262 1.074 ZCUS.UK.LETTER 1.084 19327 8.814 2352 3.034 

29/09/16 18:44 1050 1.153 262 1.074 ZCUS.UK.LETTER 1.084 19327 8.814 2845 3.031 

13/07/16 01:56 49 1.151 117 1.031 ZCUS.UK.LETTER PHA.ORDS MPI 8.812 22427 1.030 792 3.006 

05/05/17 23:32 2138 1.020 472 1.042 ZCUS.UK.LETTER PHA.ORDS MPI 8.812 39506 1.044 944 2.979 

27/07/17 15:46 286 1.071 809 1.087 ZCUS.UK.LETTER 1.084 69053 8.552 4251 2.949 
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Table 45. User ID 

UserID 
UserID 
Mean 

Density 

UserID 
Mean 

Anomaly 
Score 

UserID Mean 
Neighbourhood 

Radius 

1 1043.798 1.027673 0.002242 

2 410.4643 1.149913 0.005742 

3 1107.154 1.02388 0.002242 

4 411.4143 1.097459 0.004856 

5 1404.795 1.027075 0.000934 

6 1992.614 1.298183 0.001338 

7 1059.464 1.024369 0.00188 

8 966.7279 1.061966 0.00278 

9 1836.34 1.058019 0.001218 

10 20.60531 1.335073 0.115581 

11 829.4562 1.036223 0.002875 

12 280.8375 1.117352 0.009614 

13 1045.505 1.095059 0.002041 

14 505.6614 1.097874 0.003836 

15 1048.693 1.122646 0.002028 

16 503.9542 1.148246 0.008533 

17 1132.574 1.095685 0.00174 

18 324.0562 1.093005 0.006633 

19 1281.272 1.030559 0.001436 

20 574.2201 1.105305 0.005684 

21 341.9207 1.196402 0.004584 

22 358.5714 1.040309 0.007083 

23 830.0152 1.285939 0.001662 

24 680.3369 1.127738 0.007377 

25 199.4606 1.40477 0.009852 

26 1604.986 1.093321 0.000747 

27 927.0253 1.053835 0.001627 

28 729.0049 1.11716 0.013151 

29 959.3541 1.05737 0.002119 

30 515.686 1.242591 0.030363 

31 265.017 1.1775 0.033147 

32 884.469 1.072201 0.002139 

33 1252.326 1.054169 0.001652 

34 293.599 1.05082 0.00701 

35 886.6879 1.10547 0.005313 

36 583.6535 1.05124 0.003058 

37 995.0664 1.030046 0.002155 

38 451.1214 1.093259 0.006491 

39 2110.942 1.152689 0.001599 

40 347.9017 1.139919 0.008658 

41 578.6834 1.117277 0.016201 

42 1313.021 1.046276 0.001184 

43 1654.547 1.113666 0.002374 

44 1361.999 1.039389 0.001183 

45 975.0377 1.057005 0.001299 

46 840.3081 1.086663 0.002689 

47 770.5982 1.07576 0.011974 

48 1775.245 1.19275 0.000724 

49 770.1085 1.068873 0.003674 

50 1233.655 1.089465 0.002676 

51 40.51377 1.894182 0.043856 

52 1485.645 1.03328 0.001091 

53 263.6294 1.136582 0.00846 

54 220.6689 1.06799 0.016424 

55 534.9696 1.221609 0.023388 

56 1197.878 1.070044 0.00122 

57 125.9688 1.712649 0.014847 

58 2537.062 1.057756 0.000941 

59 422.9958 1.04958 0.004849 

60 493.3177 1.078579 0.0024 

61 247.2395 1.146779 0.006096 

62 163.9963 1.163406 0.011082 

63 661.6243 1.036495 0.002593 

64 1237.226 1.070512 0.001099 

65 1055.389 1.053929 0.003331 

66 783.5505 1.066146 0.002603 

67 546.5981 1.108777 0.005848 

68 1349.482 1.069858 0.001467 

69 733.4366 1.277643 0.012178 

70 1069.543 1.103969 0.001752 

71 606.9516 1.088872 0.006271 

72 982.9848 1.139018 0.001601 

73 864.7124 1.04592 0.00513 

74 1241.164 1.049223 0.001905 

75 961.1611 1.061536 0.002025 

76 943.9458 1.074482 0.002206 

77 591.93 1.048351 0.004095 

78 1141.941 1.068552 0.001406 

79 276.7341 1.143636 0.005377 

80 1928.322 1.1276 0.001246 

81 165.3009 1.163549 0.027191 

82 1389.1 1.041385 0.002741 

83 139.0991 1.312776 0.023174 

84 967.3163 1.048901 0.006339 

85 1115.1 1.027863 0.00225 
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Table 46. Device ID 

DeviceID 
DeviceID 

Mean 
Density 

DeviceID 
Mean 

Anomaly 
Score 

DeviceID Mean 
Neighbourhood 

Radius 

1 2858.934 1.033719 0.000386 

2 2656.22 1.092214 0.000775 

3 2150.651 1.032036 0.000921 

4 2955.04 1.123626 0.003081 

5 1397.68 1.13256 0.001655 

6 1319.408 1.093516 0.00808 

7 1991.14 1.060952 0.000812 

8 1624.906 1.102338 0.00127 

9 1249.741 1.180543 0.001222 

10 188.7924 1.278305 0.008672 

11 3044.181 1.095267 0.001619 

12 2287.773 1.089656 0.001209 

13 3584.672 1.092371 0.001078 

14 2804.52 1.077334 0.000932 

15 1078.192 1.089531 0.004487 

16 1666.605 1.097122 0.003032 

17 2052.178 1.08645 0.002593 

18 950.1689 0.960641 0.001285 

19 2161.774 1.079007 0.001348 

20 1855.666 1.136736 0.003641 

21 1102.481 1.051255 0.002067 

22 1003.194 1.152335 0.002774 

23 2565.335 1.064898 0.001183 

24 3523.11 1.226143 0.003727 

25 391.3256 1.127998 0.003428 

26 2184.298 1.090676 0.004121 

27 868.1916 1.172174 0.001668 

28 1134.046 1.094787 0.002864 

29 686.7189 1.144315 0.004906 

30 1864.846 1.072197 0.003751 

31 9981.286 1.034232 0.000824 

32 2300.671 1.044591 0.00086 

33 2457.688 1.119069 0.000925 

34 2304.553 1.10126 0.000865 

35 1762.515 1.060756 0.001135 

36 2334.817 1.064558 0.003101 

37 1716.771 1.08667 0.001499 

38 1541.66 1.100596 0.001948 

39 1598.653 1.134652 0.002227 

40 2054.984 1.149397 0.00096 

41 2021.987 1.051669 0.00204 

42 2071.922 1.046377 0.001919 

43 3995.073 1.092616 0.002453 

44 2676.568 1.06876 0.00146 

45 2754.871 1.026911 0.000711 

46 2893.927 1.09326 0.000888 

47 228.7059 1.025623 0.005027 

48 1064.573 1.054493 0.003412 

49 873.4354 1.151319 0.005191 

50 5115.861 1.0533 0.000812 

51 2625.263 1.078016 0.000806 

52 997.9633 1.037486 0.003188 

53 1523.635 1.037883 0.001758 

54 1629.545 1.176478 0.001324 

55 1072.677 1.289804 0.001482 

56 1753.89 1.05992 0.002427 

57 977.9016 1.154851 0.006188 

58 1771.538 1.03749 0.001974 

59 1816.97 1.021814 0.002063 

60 1332.155 1.126619 0.002195 

61 2317.439 1.068483 0.000771 

62 2000.792 1.152663 0.00182 

63 1639.034 1.149167 0.001633 

64 1850.995 1.142319 0.001103 

65 5158.694 1.049373 0.000844 

66 431.7613 1.188906 0.003057 

67 1026.989 1.089064 0.001604 

68 1306.299 1.095637 0.00148 

69 497.6144 1.065403 0.003154 

70 1156.222 1.068798 0.001504 

71 2157.89 1.092324 0.001202 

72 2553.632 1.117734 0.001032 

73 655.1366 1.232578 0.007781 

74 638.1413 1.250553 0.007538 

75 198.5485 1.197098 0.006633 

76 261.9671 1.254643 0.009892 

77 1725.735 1.09643 0.00083 

78 2233.137 1.073705 0.000911 

79 2769.067 1.077599 0.001118 

80 1962.593 1.068115 0.002264 

81 2300.771 1.065968 0.00193 

82 2406.798 1.412366 0.000881 

83 2145.968 1.116279 0.001223 

84 3261.986 1.056026 0.001349 

85 1440.747 1.098618 0.001336 
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Table 47. Patient ID 

PatientID 
PatientID 

Mean 
Density 

PatientID 
Mean 

Anomaly 
Score 

PatientID Mean 
Neighbourhood 

Radius 

1 25146.61 1.008021 9.27E-05 

2 21847.27 1.099227 9.31E-05 

3 11924.72 1.0324 6.28E-05 

4 12157.76 1.06249 9.50E-05 

5 6467.031 1.042467 0.000184 

6 1562.59 1.060335 0.001455 

7 4119.074 1.046545 0.000569 

8 13032.63 1.042264 0.000191 

9 8288.565 1.071476 0.000225 

10 6273.409 1.000661 0.000186 

11 2 1 0 

12 6672.44 1.081824 0.000505 

13 17177.09 1.025434 5.47E-05 

14 1479.414 1.040299 0.000842 

15 24071.95 1.277255 4.46E-05 

16 564.8539 1.108071 0.004238 

17 27537.06 1.035388 1.63E-05 

18 2101.907 1.243641 0.000871 

19 25286.69 1.074709 0.000136 

20 2 1 0 

21 8825.066 1.058902 0.000604 

22 2 1 0 

23 7461.91 1.017446 0.000171 

24 11821.52 1.034918 6.56E-05 

25 49811.44 1.102173 2.22E-05 

26 2 1 0 

27 10548.69 1.06291 0.000183 

28 9172.058 1.032271 0.000148 

29 28969.53 1.115197 2.29E-05 

30 9239.153 1.067164 0.000117 

31 2 1 0 

32 33095.88 1.16714 2.42E-05 

33 2 1 0 

34 2 1 0 

35 10231.15 1.101179 0.000263 

36 11676.7 1.061805 0.00028 

37 26464.88 1.04918 2.52E-05 

38 2 1 0 

39 16190.96 1.091126 9.84E-05 

40 19094.33 1.053864 9.41E-05 

41 9034.347 1.060244 0.00071 

42 2 1 0 

43 16629.93 1.087424 0.000339 

44 2 1 0 

45 2 1 0 

46 15820.67 1.024007 0.000184 

47 27131.21 1.030738 7.12E-05 

48 2093.142 1.129269 0.001105 

49 2 1 0 

50 20083.65 1.025113 4.45E-05 

51 19823.76 1.067118 0.000188 

52 2 1 0 

53 2 1 0 

54 2 1 0 

55 44288.79 1.151934 1.76E-05 

56 13189.62 1.071704 0.000123 

57 16081.07 1.092298 6.68E-05 

58 17222.06 1.067191 7.27E-05 

59 10909.62 1.041247 0.000615 

60 9586.836 1.020053 0.000191 

61 9378.382 1.032494 0.000228 

62 2 1 0 

63 2 1 0 

64 5456.331 1.049474 0.000316 

65 17417 1.057319 9.95E-05 

66 1083.232 1.048929 0.001406 

67 2 1 0 

68 2 1 0 

69 2 1 0 

70 19847.73 1.06386 7.74E-05 

71 15548.4 1.027631 9.92E-05 

72 18222.32 1.007681 8.38E-05 

73 2 1 0 

74 6762.828 1.006501 0.000152 

75 7700.662 1.048497 0.000131 

76 4224.482 1.05453 0.00024 

77 2 1 0 

78 15024.2 1.089634 6.82E-05 

79 15558.53 1.140467 3.62E-05 

80 22075.27 1.048835 3.53E-05 

81 19533.65 1.040046 6.69E-05 

82 2 1 0 

83 6830.069 1.041488 0.000866 

84 5768.007 0.999322 0.00013 

85 14497.44 1.020985 4.89E-05 
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Table 48. Routine ID 

RoutineID 
RoutineID 

Mean 
Density 

RoutineID 
Mean 

Anomaly 
Score 

RoutineID 
Mean 

Neighbourhood 
Radius 

*** 2039.149 1.34573 0.001508 

*** ALLERGIES MPI 
ZCUS.UK.LETTER 

1912.238 0.909873 0.000601 

*** ALLERGIES PHA.ORDS 7166.723 1.019241 0.000342 

*** ASF 2009.382 1.117673 0.00137 

*** ASF BD 2158.983 1.048254 0.000939 

*** ASF CAA MPI 2973.4 1.021882 0.000735 

*** ASF CM 540.1888 1.022932 0.000223 

*** ASF CM PHA.ORDS 596.8578 1.005121 0.000197 

*** ASF MED NOTE 
ZCUS.UK.LETTER 

1774.526 1.036549 0.000595 

*** ASF MPI 1728.243 1.062767 0.001111 

*** ASF MPI 
ZCUS.UK.LETTER 

585.1347 1.007937 0.000555 

*** ASF NOTE 650.1179 1.006881 0.000219 

*** ASF NOTE MED 
ZCUS.UK.LETTER 

2 1 0 

*** ASF NOTE SS 
PHA.ORDS 

2 1 0 

*** ASF NOTE 
ZCUS.UK.LETTER 

1981.007 1.0287 0.001768 

*** ASF NPC 3235.509 1.059358 0.000623 

*** ASF NPC MED SS 2 1 0 

*** ASF NPC SPC 2297.035 1.062682 0.000672 

*** ASF OBSDIRC.DRP 
SPCUS ZCUS.UK.SCH 

2 1 0 

*** ASF OE 3214.874 1.054969 0.000528 

*** ASF OE NPC NOTE SPC 
ZCUS.UK.SCH 

2 1 0 

*** ASF OE SPC 732.3954 1.031354 0.000802 

*** ASF OE VH SPC NPC 2 1 0 

*** ASF PHA.ORDS 2104.9 1.051077 0.004452 

*** ASF PHY.QRY 
ZCUS.UK.SCH 

ZCUS.UK.LETTER 

2 1 0 

*** ASF RAD 
ZCUS.UK.LETTER 

512.5214 1.013389 0.000658 

*** ASF RAD.DRP 1059.255 1.214022 0.017684 

*** ASF SPC 1816.373 1.053864 0.000689 

*** ASF SPC MED 
PHA.MEDS PHA.ORDS 

1747.807 1.195802 0.000604 

*** ASF SPC PHA.ORDS 4769.808 1.024346 0.000472 

*** ASF SPC VH 
ZCUS.UK.SCH SPCUS 

2 1 0 

*** ASF SPCUS 1029.991 1.011576 0.000181 

*** ASF SPCUS 
ZCUS.UK.SCH 

6344.499 1.004587 0.001992 

*** ASF SS 2584.86 1.198148 0.000813 

*** ASF SS NOTE 460.9117 1.033476 0.000407 

*** ASF SS SPC PHA.ORDS 708.8701 1.011379 0.000184 

*** ASF SS SPCUS 
ZCUS.UK.SCH RAD.DRP 

MPI OE 

2 1 0 

*** ASF SS WL 677.3306 1.006596 0.000223 

*** ASF SS 
ZCUS.UK.LETTER 

347.9728 1.030623 0.000349 

*** ASF SS ZCUS.UK.SCH 1441.508 1.00779 0.000428 

*** ASF SS ZCUS.UK.SCH 
MPI UK.OE 

1767.674 1.007101 0.00059 

*** ASF UK.OE PHA.ORDS 115.7811 1.071519 0.000656 

*** ASF UK.OE 
ZCUS.UK.SCH SPC 

2 1 0 

*** ASF VH 3291.566 1.085844 0.000455 

*** ASF VH OE 3067.544 0.99938 0.000221 

*** ASF VH SPC NPC 2 1 0 

*** ASF VH SS 516.0939 1.019133 0.001241 

*** ASF VH UK.OE 4678.902 1.174131 0.006304 

*** ASF VH 
ZCUS.UK.LETTER 

594.8677 0.996964 0.000168 

*** ASF VH ZCUS.UK.SCH 1918.062 1.063186 0.000912 

*** ASF WL 7655.482 1.046246 0.000371 

*** ASF WL SS 716.3716 1.009277 0.000191 

*** ASF ZCUS.UK.LETTER 2698.567 1.025048 0.001191 

*** ASF ZCUS.UK.LETTER 
OE 

93.79351 1.024572 0.000437 

*** ASF ZCUS.UK.LETTER 
PHA.ORDS 

242.2059 1.006914 0.000147 

*** ASF ZCUS.UK.LETTER 
SPCUS SPC VH 

2 1 0 

*** ASF ZCUS.UK.LETTER 
SS 

1927.678 5.746574 0.126766 

*** ASF ZCUS.UK.LETTER 
ZCUS.UK.SCH 

1561.53 1.052312 0.001623 

*** ASF ZCUS.UK.SCH 2531.265 1.047235 0.001129 

*** ASF ZCUS.UK.SCH BD 1501.992 1.005335 0.000266 

*** ASF ZCUS.UK.SCH MPI 
ZCUS.UK.LETTER 

2 1 0 

*** ASF ZCUS.UK.SCH OE 552.4111 0.998563 0.000199 

*** ASF ZCUS.UK.SCH 
RAD.DRP OE SS WL 

2 1 0 

*** ASF ZCUS.UK.SCH 
ZCUS.UK.LETTER 

2236.572 1.046826 0.001414 

*** ASF ZCUS.UK.SCH 
ZCUS.UK.LETTER MPI 

2 1 0 

*** BD 1431.465 1.095381 0.001595 

*** BD ASF 2063.547 1.14231 0.000824 

 



 

xix | P a g e  

 

 

Table 49. Top 100 Anomalous Audit Logs 

 

Date & 
Time 
(May 
2017) 

Ensemble 
Average 

Date & 
Time 

(Jul16-
Dec16) 

Ensemble 
Average 

Date & 
Time 

(Feb16-
Aug17) 

Ensemble 
Average 

17/05/16 
02:46 

3.180 16/07/15 
22:10 

5.136 16/09/26 
17:02 

4.139 

17/05/16 
01:40 

3.161 16/12/07 
20:17 

3.535 16/11/25 
03:39 

4.129 

17/05/26 
03:20 

2.894 16/11/21 
13:55 

3.535 16/08/15 
20:56 

3.731 

17/05/26 
15:48 

2.894 16/09/09 
17:35 

3.300 16/11/21 
21:46 

3.663 

17/05/01 
13:33 

2.875 16/10/07 
15:45 

3.201 17/08/09 
11:39 

3.638 

17/05/08 
20:48 

2.870 16/07/08 
22:01 

3.180 16/11/21 
17:38 

3.234 

17/05/19 
23:50 

2.817 16/07/13 
06:01 

3.159 16/04/01 
01:12 

3.228 

17/05/30 
17:20 

2.777 16/12/29 
17:27 

3.157 16/12/19 
20:03 

3.187 

17/05/17 
15:59 

2.660 16/10/11 
20:00 

3.128 17/02/07 
00:18 

3.184 

17/05/25 
20:34 

2.659 16/10/11 
01:17 

3.118 16/12/27 
18:50 

3.179 

17/05/11 
20:22 

2.652 16/11/17 
19:05 

3.100 16/07/26 
23:36 

3.178 

17/05/11 
21:49 

2.651 16/11/08 
22:37 

3.099 17/04/04 
23:56 

3.141 

17/05/15 
21:44 

2.650 16/10/06 
09:49 

3.099 16/08/11 
15:49 

3.121 

17/05/24 
15:55 

2.650 16/09/28 
01:24 

3.090 16/11/08 
22:37 

3.034 

17/05/09 
01:35 

2.646 16/10/25 
02:46 

3.077 16/09/29 
18:44 

3.031 

17/05/03 
14:14 

2.641 16/09/29 
18:44 

3.058 16/07/13 
01:56 

3.006 

17/05/10 
17:30 

2.638 16/12/05 
19:19 

3.043 17/05/05 
23:32 

2.979 

17/05/24 
03:04 

2.636 16/10/20 
18:35 

3.043 17/07/27 
15:46 

2.949 

17/05/24 
04:22 

2.636 16/10/04 
18:32 

2.899 17/06/20 
18:43 

2.945 

17/05/03 
15:34 

2.636 16/10/03 
19:06 

2.892 17/01/18 
01:57 

2.943 

17/05/22 
18:50 

2.634 16/08/24 
17:34 

2.866 16/03/01 
16:46 

2.936 

17/05/10 
17:01 

2.625 16/12/20 
18:49 

2.859 17/08/11 
17:06 

2.876 

17/05/23 
15:57 

2.624 16/12/22 
14:00 

2.842 17/07/31 
20:58 

2.870 

17/05/11 
00:08 

2.622 16/10/24 
23:58 

2.837 17/01/16 
23:28 

2.870 

17/05/23 
12:39 

2.581 16/08/24 
13:41 

2.772 17/04/25 
21:47 

2.842 

17/05/10 
20:06 

2.542 16/07/19 
19:06 

2.756 16/06/21 
10:38 

2.838 

17/05/08 
02:59 

2.524 16/09/24 
05:08 

2.753 16/06/03 
01:16 

2.824 

17/05/02 
23:48 

2.516 16/12/30 
15:17 

2.753 16/04/14 
19:18 

2.811 

17/05/09 
02:53 

2.478 16/09/04 
23:52 

2.753 16/04/29 
15:14 

2.773 

Date & 
Time 
(May 
2017) 

Ensemble 
Average 

Date & 
Time 

(Jul16-
Dec16) 

Ensemble 
Average 

Date & 
Time 

(Feb16-
Aug17) 

Ensemble 
Average 

17/05/17 
04:34 

2.475 16/08/24 
23:40 

2.707 17/01/17 
01:42 

2.772 

17/05/15 
16:41 

2.467 16/10/17 
19:02 

2.702 17/01/04 
22:29 

2.760 

17/05/04 
18:20 

2.466 16/10/31 
01:03 

2.691 16/05/27 
18:40 

2.721 

17/05/03 
16:43 

2.461 16/12/19 
20:11 

2.691 16/07/13 
01:37 

2.720 

17/05/04 
15:45 

2.455 16/08/24 
01:01 

2.676 17/05/09 
21:49 

2.715 

17/05/08 
17:28 

2.446 16/11/26 
16:42 

2.582 16/09/14 
02:52 

2.711 

17/05/22 
20:55 

2.445 16/10/31 
11:54 

2.566 16/08/25 
18:54 

2.710 

17/05/05 
06:29 

2.441 16/11/26 
16:49 

2.518 16/06/17 
15:47 

2.707 

17/05/25 
01:57 

2.439 16/09/27 
18:31 

2.512 17/01/11 
02:40 

2.703 

17/05/15 
23:38 

2.434 16/10/18 
20:39 

2.498 17/07/15 
03:25 

2.696 

17/05/15 
18:29 

2.433 16/08/17 
13:10 

2.452 16/11/01 
19:13 

2.694 

17/05/10 
15:36 

2.432 16/08/05 
17:04 

2.451 17/02/28 
18:36 

2.689 

17/05/17 
19:14 

2.412 16/08/16 
21:56 

2.432 16/10/21 
15:28 

2.670 

17/05/25 
01:02 

2.394 16/12/21 
01:35 

2.426 17/07/15 
07:54 

2.666 

17/05/05 
01:45 

2.388 16/09/01 
21:44 

2.417 16/12/05 
19:19 

2.646 

17/05/18 
03:17 

2.379 16/11/30 
23:58 

2.369 16/10/20 
18:35 

2.645 

17/05/11 
03:22 

2.358 16/07/11 
17:14 

2.363 17/06/22 
00:00 

2.620 

17/05/02 
17:15 

2.347 16/11/09 
16:51 

2.352 17/06/23 
14:11 

2.620 

17/05/02 
00:54 

2.316 16/11/04 
18:43 

2.343 16/10/03 
00:06 

2.620 

17/05/22 
19:17 

2.305 16/07/01 
18:30 

2.343 16/10/06 
19:04 

2.610 

17/05/09 
07:42 

2.295 16/11/08 
01:25 

2.329 17/03/02 
15:33 

2.600 

17/05/25 
17:13 

2.293 16/10/31 
17:17 

2.293 17/06/15 
16:55 

2.596 

17/05/17 
23:59 

2.292 16/09/05 
17:19 

2.268 16/04/21 
06:56 

2.576 

17/05/02 
03:34 

2.291 16/10/21 
17:38 

2.218 17/07/18 
22:04 

2.571 

17/05/17 
03:28 

2.288 16/11/08 
15:07 

2.210 16/04/19 
01:47 

2.569 

17/05/31 
19:06 

2.274 16/11/08 
15:17 

2.210 17/06/08 
15:36 

2.569 

17/05/02 
16:53 

2.268 16/08/26 
21:55 

2.173 16/09/01 
22:36 

2.567 

17/05/24 
22:24 

2.253 16/09/26 
22:31 

2.161 16/08/11 
01:24 

2.565 

17/05/18 
23:25 

2.247 16/09/21 
03:03 

2.151 16/10/13 
06:56 

2.565 
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Date & 
Time 
(May 
2017) 

Ensemble 
Average 

Date & 
Time 

(Jul16-
Dec16) 

Ensemble 
Average 

Date & 
Time 

(Feb16-
Aug17) 

Ensemble 
Average 

17/05/18 
23:33 

2.247 16/10/05 
15:49 

2.149 16/10/13 
08:24 

2.565 

17/05/23 
14:09 

2.246 16/09/29 
01:42 

2.142 17/02/16 
06:50 

2.565 

17/05/25 
20:46 

2.243 16/12/15 
01:33 

2.141 17/01/25 
07:59 

2.561 

17/05/17 
14:14 

2.243 16/10/21 
15:28 

2.129 17/06/29 
15:59 

2.560 

17/05/22 
18:55 

2.228 16/11/01 
19:13 

2.115 16/04/21 
06:55 

2.557 

17/05/22 
19:04 

2.228 16/11/08 
04:51 

2.097 16/08/11 
01:20 

2.557 

17/05/22 
19:06 

2.223 16/12/27 
18:50 

2.095 16/08/11 
01:35 

2.557 

17/05/04 
23:24 

2.218 16/12/19 
20:03 

2.090 16/10/14 
00:03 

2.557 

17/05/09 
22:36 

2.197 16/11/08 
17:38 

2.087 17/08/21 
22:19 

2.527 

17/05/18 
02:51 

2.194 16/09/27 
02:42 

2.040 16/04/04 
01:01 

2.514 

17/05/15 
23:25 

2.192 16/10/27 
00:10 

2.030 17/07/24 
21:54 

2.489 

17/05/15 
01:34 

2.190 16/10/07 
15:53 

2.027 16/09/13 
01:31 

2.432 

17/05/09 
04:56 

2.187 16/09/12 
22:00 

2.024 16/03/29 
13:31 

2.426 

17/05/24 
23:38 

2.187 16/09/12 
22:16 

2.022 16/03/07 
09:39 

2.416 

17/05/05 
14:08 

2.186 16/07/08 
22:26 

2.020 16/03/08 
12:20 

2.413 

Date & 
Time 
(May 
2017) 

Ensemble 
Average 

Date & 
Time 

(Jul16-
Dec16) 

Ensemble 
Average 

Date & 
Time 

(Feb16-
Aug17) 

Ensemble 
Average 

17/05/18 
03:43 

2.183 16/08/23 
06:42 

2.018 17/03/14 
01:54 

2.410 

17/05/25 
22:35 

2.175 16/07/21 
22:21 

2.017 16/09/28 
20:49 

2.380 

17/05/09 
10:07 

2.175 16/09/12 
14:19 

2.014 17/07/25 
01:37 

2.378 

17/05/18 
04:53 

2.174 16/07/28 
01:43 

2.011 16/11/26 
16:42 

2.368 

17/05/16 
02:55 

2.163 16/07/04 
15:53 

2.009 17/04/19 
15:33 

2.363 

17/05/17 
01:38 

2.161 16/07/20 
04:30 

2.009 17/04/19 
20:21 

2.363 

17/05/16 
20:55 

2.160 16/08/05 
21:43 

2.000 16/11/26 
16:49 

2.360 

17/05/11 
18:39 

2.155 16/07/08 
16:46 

1.998 16/08/23 
06:42 

2.353 

17/05/09 
17:34 

2.151 16/09/13 
14:06 

1.995 16/09/27 
02:42 

2.346 

17/05/25 
02:59 

2.150 16/09/13 
14:07 

1.995 16/11/21 
13:55 

2.331 

17/05/23 
02:36 

2.149 16/08/10 
00:13 

1.988 17/06/19 
01:52 

2.327 

17/05/26 
18:25 

2.148 16/08/01 
20:55 

1.983 16/12/07 
20:17 

2.327 

17/05/21 
14:34 

2.147 16/09/07 
01:39 

1.982 17/05/26 
17:34 

2.315 

17/05/08 
03:04 

2.146 16/08/22 
15:04 

1.982 16/11/22 
16:45 

2.306 

 

 


