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Abstract 

This study was implemented to examine pile load-settlement response and to develop a rapid, highly efficient 

predictive intelligent model, using a new computational intelligence (CI) algorithm. To achieve this aim, a series 

of experimental pile load tests were performed on steel, closed-ended pile models consisting of three piles with 

aspect ratios of 25, 17, and 12 in an attempt to make site in-situ pile-load tests unnecessary. An optimised, 

evolutionary, supervised Levenberg-Marquardt (LM) training algorithm was used for this process due to its 

remarkably robust performance. The model piles were penetrated and tested in three sand relative densities; dense, 

medium, and loose. Applied load (P), pile effective length (lc), pile flexural rigidity (EA), pile slenderness ratio 

(lc/d) and interface friction angle ���/�� were identified, based on a comprehensive statistical analysis, as these 

parameters play a key role in governing pile settlement. To evaluate the efficiency and the generalisation ability 

of the proposed algorithm, graphical comparisons were made between the proposed algorithm and the 

experimental results with further comparisons made with conventional prediction approaches. The results revealed 

outstanding agreement between the targeted and predicted pile-load settlement with a coefficient of correlation of 

0.985 and �D�� �3�H�D�U�V�R�Q�¶�V correlation coefficient, P = 2.22 x10-32 and root mean square error (RMSE) of 0.059 

respectively. This, in parallel with a non-significant mean square error level (MSE) of 0.002, validates the 

feasibility of the proposed method and its potential in future applications.  

 
Keywords: Sandy soil; steel pile; Levenberg-Marquardt (LM) algorithm; sensitivity analysis; pile load-

settlement. 
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1. Introduction  

Pile foundations are structural elements constructed underneath superstructures, frequently utilised as load 

carrying systems and soil settlement controls at sites with poor soil bearing capacity at sub-soil layers (Nazir and 

Nasr, 2013; Tomlinson and Woodward, 2014; Tschuchnigg and Schweiger, 2015). Pile bearing capacity and 

settlement are the most significant factors that influence pile foundation design procedures (Alkroosh and Nikraz, 

2011; Alizadeh et al., 2012; Das, 2015; Nejad and Jaksa, 2017), making this a core feature of research in the field 

of geotechnical engineering. Accordingly, several procedures concerning pile bearing capacity, are available in 

the open literature, ranging from the application of complicated nonlinear numerical procedures to empirical 

relationships (Nasr, 2014). In the absence of in-situ pile load carrying capacity tests, ultimate pile bearing capacity 

and associated settlement have traditionally been determined separately. However, it has been reported by 

Fellenius (1989) that: �³���« pile allowable load should be influenced by combined procedures taking into 

consideration soil mobilised resistance and soil settlement performing together and influencing the value of each 

other�´����A definition of ultimate pile bearing capacity is still open to discussion, but a number of criteria have been 

suggested by scholars to precisely identify pile capacity from full pile load-settlement distribution curves. For 

instance, ultimate pile capacity can be defined according to a pile settlement equal to 10% of the pile diameter 

(d), the obtained load  then divided by two (the general factor of safety to determine the pile working load). Murthy 

(2003) and Shahin (2014), however, suggest that if the latter criteria is introduced to certain piles under specific 

soil properties (e.g., large diameter piles driven in cohesive soil), the settlement calculated will be excessive. The 

precise assessment of pile bearing capacity can be determined by conducting in-situ, full -scale, pile load-

settlement tests. The fact that this is expensive and time consuming have been cited as major drawbacks associated 

with performing such tests (Momeni et al., 2014; Alkroosh et al., 2015). Alternatively, pile capacity and settlement 

can be predicted using several suggested design procedures (i.e., Das (1995) and  Poulos (1999)). Although those 

approaches have been frequently used, it has been cited that the aforementioned methods are in-accurate and fail 

to achieve consistent success due to the many pre-conditions and arbitrary assumptions involved in the factors 

affecting pile capacity and settlement (i.e., soil-pile interaction, nonlinearity of the soil stress-strain relationship, 

driving system and initial boundary conditions) (Alkroosh et al., 2015). 

 

Applications of CI techniques based on the concept of artificial neural networks (ANNs), have been highly 

recommend as a superior alternative approach ���6�W�U���N�R�Z�V�N�L���H�W���D�O����������������.  ANN has been applied effectively in a 

wide range of geotechnical studies, as an efficient computing tool to fully represent and capture pile load-



settlement behaviour with an acceptable degree of accuracy (Chang et al., 2018). ANN technology has the capacity 

to deal with complexity and to map nonlinear complex functions, adopting substantial computer capacity to 

implement extremely iterated work (Di Santo et al., 2018; Li et al., 2018; Naderpour et al., 2018). In essence, the 

complex non-linear patterns between the individual variables (IVs) and the model target are precisely addressed, 

identified and mapped with high dimensional input space (Sun et al., 2014). Furthermore, the advantages of LM 

modelling includes its ability to resample the complex relationship between pile load-settlement and the 

parameters affecting it, without the need for any assumptions (Sharma et al., 2017).  

 

With the development of machine learning technologies, the feasibility of the computational approach applied to 

pile foundation research, has been emphasised recently by many researchers. Alkroosh and Nikraz (2014) 

conducted a study to review and model pile dynamic capacity based on SPT tests. The dataset was divided into 

two subsets; a training set for model development and a validation set for evaluation of the performance of the 

model under the training process. The authors concluded that the trained model had the ability to predict pile 

capacity with remarkable agreement between the targeted and predicted values, giving a correlation coefficient 

(R) of 0.94.  

 

Shahin (2014) suggested the application of the recurrent neural network (RNN) to model load-displacement 

responce of model piles penetrated in layered soil. The RNN model was developed and trained with six model 

input parameters using cone penetration test (CPT) data. It was concluded that the RNN designed and trained 

model was an effective approach to accurately simulate pile load-settlement with substantial agreement between 

targeted and predicted results.  

 

Momeni et al. (2014) examined the feasibility of a new artificial neural network-based model to predict pile 

bearing capacity. In total, 50 pile load-displacement tests were conducted on concrete piles in order to deliver the 

essential dataset to develop and train the proposed model. The pile geometrical properties, hammer weight, pile 

set and drop height have been selected as the most significant input parameters for the pile bearing capacity. The 

results revelled that good agreement was achieved between the targeted and the predicted values, this was 

confirmed by a correlation coefficient of 0.99 and a relatively negligible mean square error of 0.002.  

 



Jebur et al. (2018a) addressed the reliability of an enhanced artificial neural network (ANN) as a global search 

system using the LM training algorithm to develop a reliable predictive model, in an effort to overcome some of 

the disadvantages associated with the traditional ANN methods, such as poor generalisation ability of the trained 

network. The developed model input parameters consist of (i) pile applied load, (ii) soil-pile angle of internal 

friction, (iii) pile length, (iv) pile axial rigidity, and pile slenderness ratio. The results revealed that the proposed 

model could successfully simulate pile settlement with high efficiency. This was confirmed by a correlation 

coefficient of about 0.99 and a relatively negligible mean square error.      

 

Nejad and Jaksa (2017) developed a study aimed at exploring pile settlement of model piles based on cone 

penetration tests. The model input parameters were  (i) pile load test type; (ii) material used for the pile; (iii) pile 

installation method; (iv) tip of pile; (v) pile axial rigidity; (vi) pile tip cross sectional area; (vii) pile effective 

perimeter; (viii) pile length in the effective zone; (ix) length of pile; (x) the corrected and the average SPT value 

blow count/300mm along the pile effective depth; (xi) the SPT corrected blow count/300mm at the pile tip and 

(xii) pile applied load. Settlement of the pile was set to be the model dependent variable (DV). The results revealed 

that the adopted method had the ability to predict pile settlement with a good level of accuracy. 

 

Jebur et al. (2018b), soon after, developed a novel artificial neural network predictive model to assess the ultimate 

load-displacement response of steel open-ended pile subjected to compression load. The model piles were driven 

in sandy soil of different densities, measuring of loose, medium and dense. Five IVs have been underlined at being 

the most significant parameters influencing the steel pile bearing capacity, these encompassed pile applied load, 

pile effective length, pile slenderness ratios, pile-soil angle of internal friction, and pile axial rigidity. The results 

indicated that the model could be employed to predict pile ultimate capacity with substantial accuracy. It should 

be stated that the common feature in the aforementioned studies is that the steepest descent method used in 

traditional artificial neural networks, is extremely criticized for its slow rate of convergence towards an optimal 

solution and for being trapped in a local minima. Moreover, the neural network (NN) internal training parameters 

need to be user-adjusted parameters at each application before training the developed NN model (Morfidis and 

Kostinakis, 2017). In this paper, a new methodology has been introduced utilizing a robust, self-tuning artificial 

intelligence (AI) approach to fully correlate pile load carrying capacity and the associated displacement of rigid 

and flexible piles. Guided by comprehensive statistical analyses to categorize the effective input parameters, 



evaluate the contribution of each model input parameters and to check the reliability of the dataset being studied 

such as the absence of outliers, multicollinearity detection, and dataset size condition.   

 

The current study is structured as follows: the study aim and objectives are given in section 2. The materials and 

methods, including the sand properties along with the testing procedure used to address the stated study aim, are 

presented in section 3.  The statistical analysis is presented and discussed in section 4. The results are presented 

and discussed, in depth, in section 5. Graphical comparisons between the suggested LM algorithm and the most 

conventional design procedures are presented and discussed in detail in section 6. Finally, section 7 gives the 

concluding remarks about the study and recommendations for future work. 

 

2. Aim and objectives 

The current study aims to develop and verify a reliable, cost-effective predictive model to fully capture the load-

carrying capacity of steel piles in cohesion-less soil. The specific objectives are to: 

�x Conduct a series of experimental pile-load tests to evaluate load bearing capacity and the associated 

settlement of steel, closed-ended piles having three aspect ratios of 25, 17, and 12 to explore the 

behaviour of flexible and rigid piles in three relative sand densities (Dr): dense, medium and loose. 

�x Examine the feasibility of an evolutionary supervised Levenberg-Marquardt (LM) training algorithm to 

develop a rapid, cost effective and reliable predictive model to fully map non-linear, pile load-settlement 

behaviour, subject to a wide range of axial loads. 

�x Assess the generalisation ability of the LM algorithm using a dataset cluster (not used in the training 

process), by comparing the predicted results with the experimental results along with the results from 

conventional pile-load settlement design approaches. 

�x Carry out a statistical analysis to highlight the most appropriate model input parameters on the model 

output ���µSig�¶���Y�D�O�X�H�����D�Q�G��to identify the contribution of each individual variable (IV) on the model output 

���µBeta�¶���Y�D�O�X�H�� using SPSS-23 software.  

 

3. Material  and methods 

3.1 Sand properties 

Fine sand was used as a test medium. The sand was consist of sub-rounded particles, as confirmed by scanning 

electronic microscopy (SEM) observations (Fig. 1). Based on the Unified Soil Classification System (USCS), this 



sand was classified as poorly graded (SP). The uniformity coefficient (Cu) and the curvature coefficient (Cc) were 

1.786 and 1.142, respectively. The sand was prepared in three relative densities (Dr) of 18, 51 and 83%. The 

minimum and the maximum sand unit weights were 15.33kN/m3 and 17.5kN/m3. To overcome scale effect issues 

and to maintain the influence of grain size distribution on the combined pile-soil interaction, the ratio between the 

pile diameter (d) to medium diameter (d50) of the sand particles should be 45 (Nunez et al., 1988).  Remaud (1999) 

claimed that �³�«the ratio must be 60 times the diameter of the pile�´.  Taylor (1995) however, reported that �³�«the 

ratio should be at least 100�´. In the current study, the ratio of the diameter of pile to medium diameter (d/d50) was 

133 as indicated in Fig. 2, satisfying the scaling criteria. The relative sand densities were prepared in different 

stages. For preparing the loose sand bed, the sand particles were poured into the pile testing chamber using a tube 

delivery system, following the procedure documented by Schawmb (2009). The end of the tube was repeatedly 

held at a maximum set distance of approximately 40mm between the sand delivery tube and the surface test bed. 

The medium sand has been prepared utilising �³an air pluviation technique�´ as suggested by Ueno (2001). Sand 

density was controlled by the falling rate, approximately 800mm above the sand surface, with an accuracy of ± 

25mm until the desired test depth was achieved. The dense sand was prepared in agreement with the technique 

suggested by Akdag and Özden (2013). 

 

 

Fig. 1. Scanning electronic microscopy (SEM) view of the sand specimen. 

 



 
Fig. 2. Particle size gradation in the sand sample. 

 

3.2 Testing procedure 

This section details the procedure adopted for pile-load testing. Experimental pile load-tests were performed on 

steel closed-ended piles with aspect ratios of 12, 17, 25 and 40mm diameter, driven into a calibration pile-testing 

chamber, as depicted in Fig. 3. During loading applications, the pile point of loading was 50mm above the surface 

of the sand, the key objective being to minimise sand contact with the pile cap. This is to ascertain that the pile 

capacity is only as a results of pile-soil interaction. A maintained load test has been adopted at a loading rate equal 

to 1mm/min as recommended by Bowles (1992) and within the limits stated by BSI (BS EN 8004:1986). A new 

hydraulic jack system type DBBSM, connected at the top of the load cell, having a maximum capacity of 10Kn 

has been adopted to drive the pile in the sand.  This was fixed between the pile head loading system and the 

hydraulic ram model (ZE3408E-T).  A Polytetrafluoroethylene (PTFE) sheet has been used in the pile testing 

chamber in an effort to minimize the friction between the sand and the chamber. The PTFE sheet has a friction 

coefficient of less than 0.04 compared with steel sheet with coefficient of friction of about 0.605 (Young and 

Freedman, 2000). 20mm thick, sufficiently rigid glass plate, was placed at the front face of the testing chamber 

and sub-divided into equal segments, as shown in Fig. 3, to provide a clear view of the sand control volume. The 

loads were applied directly onto an aluminium pile cap with a diameter of 150mm and thickness of 25mm. A 

spherical steel ball bearing was used on the top of the pile cap to avoid and/or minimize eccentricity during the 



loading application. Pile load tests were conducted at 1 G-stress conditions, the low effective stress resulting in 

some differences compared with full -scale tests. The pile head displacement was monitored using a data 

acquisition system instrument with two linear variable differential transformers (LVDTs) of very high resolution, 

0.01mm, with 150mm travel distance to record the corresponding pile settlement, using magnetic stands. The 

LVDTs were placed on the top of the pile cap in pairs so that the effect of bending could be accurately measured.  

 

 

Fig. 3. Schematic view and dimensions of the experimental test setup.  
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Loading frame (1.2mx3m) 
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4. Statistical analysis 

 
4.1 Model inputs and output 

Identifying the parameters controlling pile load-settlement behaviour is essential in order to develop an accurate 

predictive model (Yadav et al., 2014; Ahmadi et al., 2016; Nejad and Jaksa, 2017). Most of the traditional 

approaches comprise of (i) pile material; (ii) pile geometry; (iii) applied load and (iv) properties of the soil. Nejad 

et al. (2009) reported that there are other additional parameters that have substantially lower effects on pile 

settlement such as pile installation method, pile load test type and water table level. These make a minimal 

contribution to pile settlement and do not therefore need to be taken into consideration. That said, the selection of 

the model input variables is one of the vital steps to develop a reliable, predictive model. In this research, an 

innovative statistical significance analysis (Sig.) was developed using SPSS-23 software to identify the model 

individual input variables (IIVs). This technique has been used because it has many attractive merits (Pathak, 

2011) the main one being that it has the ability to explore the relationship between one individual variable (IV)  

with a set of other individual variables (IVs) (Hashim et al., 2017c). Based on the statistical study, five factors 

with different levels of contribution, were identified as the most influential input parameters affecting pile-load 

settlement with a (Sig.) value of < 0.05, matching the statistical criteria stated by Field (2008). These parameters 

are (i) applied load (P), (ii) pile slenderness ratios (lc/d), (iii) pile axial rigidity (EA), (iv) pile embedded length 

(lc) and (v) the sand-pile friction angle (�/). The model output was pile settlement. The optimal structure of the 

ANN model had been selected at a topology of 5:10:1 as shown in Fig. 4. The LM algorithm was trained using 

the parameters listed in Table 1. The �³TANSIG�´ transfer function has been utilised between the input parameter 

�³layers one�´ and the hidden layer �³�O�D�\�H�U�� �W�Z�R�´, while the �³PURELIN�´ transfer function was adopted to link 

�³layers two�´ and three as listed in Eqs. 1 and 2 respectively.  

 

Table 1: The LM internal training parameters. 

Parameters Value 
Epochs maximum number 1000.0 
Efficiency goal 0.0 
Learning rate 0.01 
Increase learning rate ratio 1.05 
Decrease learning rate ratio 0.7 
Validation failure limit 6.0 
Minimum performance increase 1.04 
Constant of momentum  0.9 
Minimum performance gradient 1e-5 
Epochs between displays  25.0 



 

Fig. 4. Structure of ANN model inputs and output parameters. 
 

 

�<�ÝL��
�s

�sE�‡�š�’���:�Ã G�S�Ü�Ý
�:�5�;���T�ÜG���>�Ý

�:�5�;�;�á
�Ü�@�5

 

 
 

 
(1) 

�UL Í �S�Ý
�:�6�;

�á

�Ü�@�5

�����V�Ý��G���>�:�6�; 

  
(2) 

 
The factors w i j 

(1) and b j 
(1) are the weights and biases from the inputs and output (hidden) layer; bi (1) and bi (2) the 

bias for layers one and two.  

 

4.2 Dataset size condition  

The reliability of the experimental dataset must be assessed as it plays a substantial role for model efficiency 

(Hashim et al., 2017a). In an attempt to optimise the relationship between the targeted and predicted model and 



to develop efficient model performance, the minimum data size required to produce a generalised optimum model 

must be calculated using a given formula (Eq. 3). Based on the number of individual variables (IVs), the minimum 

data points required to perform modelling is 90 (Pallant, 2011; Hashim et al., 2017b). In this study, there were 

277 experimental dataset points meaning that the condition of dataset size has been satisfied. 

 

�0 R�w�rE�z�Û�+ 
 

(3) 
 

where N and I are the size of the sample and individual variable parameters. 

 

4.3 Outliers 

Tabachnick and Fidell (2013) �U�H�S�R�U�W�H�G���W�K�D�W���³�«An outlier can be defined as a case with an extreme value on one 

variable (a univariate outlier) or a strange combination of scores on two or more variables (multivariate outlier) 

�W�K�D�W���V�W�D�W�L�V�W�L�F�D�O�O�\���G�L�V�W�R�U�W�V���W�K�H���G�D�W�D�´. Given that the conclusions drawn from simulations may be  influenced  by the 

existence of outliers (Hashim et al., 2017c),  all independent variables (IVs) and dependent variables (DV) must 

be statistically tested to identify such extreme values by determining the Mahalanobis distance parameters (MDs). 

In the current investigation, it was found that the maximum MDs for the five input parameters was 17.01. To 

check whether this exerted any influence on the results of the LM training algorithm as a whole, Tabachnick and 

Fidell (2013) recommend calculating �&�R�R�N�¶�V���'�L�V�W�D�Q�F�H�����&�2�2�B��������as any point with COO_1 greater than 1.0 is a 

potential problem. The results in Table 2 show �W�K�D�W���&�R�R�N�¶�V���'�L�V�W�D�Q�F�H�����&�2�2�B�������I�R�U���W�K�H���G�H�V�F�U�L�E�H�G���S�R�L�Q�W���Z�D�V����������91, 

this confirming that the output results and the efficiency of the model will not be subject to influence as there are 

no outliers in the data.  

 

4.4 Multi-collinearity 

To describe the data screening process, the variance inflation factor (VIF) for each IV was determined in an 

attempt to investigate for the presence of multi-collinearity in the total dataset. Reddy and Ayothiraman (2015) 

reported that any IV with a VIF higher than 10 may affect the performance of the proposed model. According to 

the results in Table 2, it was found that the maximum VIF factor for each IV was less than 10, which confirms the 

validity of the dataset used to develop and train the LM algorithm. 

 

 



4.5 Statistical significance and the relative importance of each independent variable (IV) 

Selection of the most effective model input parameters and the contribution level, or strength, of each independent 

variable (IV) to the model output has been ascertained through the statistical analysis of parameters (the relative 

importance parameter �³Beta value� ,́ an�G�� �W�K�H�� �V�W�D�W�L�V�W�L�F�D�O�� �V�L�J�Q�L�I�L�F�D�Q�F�H�� �³Sig value� )́ using SPSS-23. It has been 

documented by many scholars that any IV at a p value > 0.05 can be omitted from the input layer as it has no 

significant impact on the model target (Field, 2008; Hashim et al., 2017c). Statistically, the closer the absolute 

Beta value is to one, the more significant the impact of that IV on the model (Pallant, 2011; Hashim et al., 2017b; 

Hashim et al., 2017a). According to the results in Table 3, the applied load and the sand-pile angle of interface 

friction, had a substantial influence on pile settlement, at Beta values of 0.84 and 0.718, respectively. Pile 

slenderness ratio, pile length and flexural rigidity have comparatively less influence, with different strengths on 

pile settlement, at Beta values of 0.235, 0.026 and 0.15, respectively. The maximum Sig value was 0.015, which 

confirms that all IVs have a significant influence on the trained model output. 

 

 Table 2: Summery of the statistical analysis results.  

Parameters Beta. value MDs VIF COO_1 

Applied load, (P) 0.840 21.84 4.01 0.0091 

Slenderness ratio, (lc/d) 0.238  1.23  

Flexural rigidity, (EA) 0.015  3.21  

Pile length, (l) 0.026  6.12  

Sand-�S�L�O�H���D�Q�J�O�H���R�I���L�Q�W�H�U�I�D�F�H���I�U�L�F�W�L�R�Q�������/�� 0.718  3.76  

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Statistical parameters for model input and output parameters. 

 

Data Set 

 

Statistical 

Parameters 

Input   Variables Output  

Load 

(kN) 

Slenderness 

ratio, Lc/d 

Pile 

length, 

(m) 

Pile axial 

rigidity, EA 

(MN) 

Sand-pile 

friction 

�D�Q�J�O�H�����/�ƒ 

Settleme

nt, (mm) 

 

Training 

Set 

Max. 4.426 25 1 251.18 19 14.461 

Min. 0.001 12 0.48 251.18 17 0.0015 

Mean 1.454 17.01 0.711 251.18 17.91 6.097 

S.D.* 1.363 1.345 0.211 0.00 1.05 4.591 

Range 4.425 2.08 0.52 0.00 2 14.49 

Testing 

Set 

Max. 4.350 25 1 251.18 19 14.215 

Min. 0.193 12 0.48 251.18 17 0.022 

Mean 0.683 18.323 0.767 251.18 17.783 5.860 

S.D.* 1.260 1.369 0.226 0.00 1.044 4.586 

Range 4.349 13 0.52 0.00 2 14.192 

Validatio

n Set 

Max. 3.660 25 1 251.18 19 13.861 

Min. 0.084 12 0.48 251.18 17 0.002 

Mean 1.275 17.35 0.724 251.18 17.827 5.727 

S.D.* 1.098 1.347 0.213 0.00 1.049 4.521 

Range 3.576 13 0.52 0.00 1.117 13.814 

 

 

5. Results and discussion  

5.1 The LM model development 

The Levenberg-Marquardt (LM) training algorithm can be defined as a data driven computing method based on 

artificial intelligence (AI) concepts, which, more specifically, is able to correlate inversely and numerically, the 

nonlinear relationships between a set of individual variables (IVs) and outputs via their characteristic 

mathematical topology (Nguyen-Truong and Le, 2015; Ahmadi et al., 2016; Jaeel et al., 2016). The basic concept 

behind the LM method is to correlate the connections between IVs and model output, without assuming a prior 

formula defining this correlation (Sharma et al., 2017). In this study, supervised training involving feed-forward, 

multi-layer perceptions (MLPs) using a back-propagation learning process based on a MATLAB (R2017a) 

environment, was built, and used to fully capture pile load-settlement. Individual predictor parameters (input 

variables) in the data vector are multiplied by associated scalar weights and �D�F�W�L�Y�D�W�L�R�Q���W�K�U�H�V�K�R�O�G�V���³biases�  ́prior 

to their summation and then processed via non-linear transfer functions in hidden layer processing neurons (PNs). 

The stated themes were followed by multiplying the output resulting from the hidden layer via their optimised Wij 



then summed before processing by the next layer (the output layer). This methodology was repeated during the 

iteration process, the error propagated backwards with each single epoch, the connection weights (Wij) adjusted 

during the training process, until a minimum error is achieved ���'�H�R�� �D�Q�G�� �ù�D�K�L�Q���� ����������.  To summarise, a 

mathematical illustration of the individual input variables (IIVs) and related output is presented in Eq. 4. The 

training flow chart for the proposed algorithm is described in Fig. 5.  

 

In total, 277 points were divided into three clusters, two of which called training (70%) and cross- validation 

(15%). The goal of the training dataset is to create the most appropriate ANN network and fit the model by 

updating the network connections weights (Wij) and biases (bij) at each iteration during the process of learning. 

The cross-validation set is piloted to deliver an independent check of network performance, to avoid the model 

overfitting and to terminate the training process at a minimum MSE error (Nguyen-Truong and Le, 2015). The 

third cluster testing dataset was used to evaluate the �P�R�G�H�O�V�¶���D�E�L�O�L�W�\���W�R��generalise and the validity of the optimum 

ANN model via using the last 15%  of unseen data, after selecting the appropriate network weights and biases 

(Ahmadi et al., 2016; Shahin, 2016).  This dataset is not involved in the learning algorithm process (Millie et al., 

2012; Sun et al., 2014). Running the optimisation of interconnected biases and weights was continued until 

specific measuring performance indicators were met as described in the following sections. Finally, a principal 

ANN trained network with 5 individual neurons in the input layer, 10 neurons in the hidden layer and 1 neuron in 

the output layer, was identified as the optimum model. 
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where �1�ñ is an output layer, Xi to Xn individual input variables, Wij and ±bi are network connection weights and 

biases either added or subtracted.  

 

Database values were scaled to fall between 0.0 and 1.0 using a formula (Eq. 5) given by Sharma et al. (2017) 

before being processed in the training stage. This allows each (IV) to receive equal attention during the training 

process as well as avoiding network ill-conditioning (Masters, 1993; Cho, 2009; Majeed et al., 2013; Shahin, 

2013). 
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Fig. 5. Block diagram shows the process of training utilising the Levenberg Marquardt (LM) algorithm. 
 

Wk denotes the existing weight, �S�Þ�>�5 is the subsequent weight,  �' �Þ�>�5�=�J�@���' �Þ are the current and last total error 

respectively.  

 

5.1.1 The LM model performance 

In this study,  a LM training algorithm has been applied as it is the most efficient and reliable method in 

comparison to all other CT approaches, as noted by Jeong and Kim (2005); and Mohammadi et al. (2016).  To 

clarify the effectiveness of the algorithm, various performance indicators as suggested in the research literature 



can be utilised. In the current study, statistical performance indicators, i.e., the mean square error (MSE), 

correlation coefficients (R and P) and root mean square error (RMSE) functions were used, as listed in Eqs. 6, 7 

and 8, to characterise model performance, with an error goal set at 0.   
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where N is the number of the dataset used to develop the model, Oi and Pi the targeted and predicted values. �2$ 

and �¿ are the mean of the predicted and observed values and R is the coefficient of correlation.  

 

After training the LM algorithm, the results indicated that the optimum ANN model comprised of three layers; 

the input layer, one hidden layer with 10 neurons or processing elements (PEs) and an output layer. It is worth 

noting that 2N+1 is the maximum limit of neurons required to map any ANN network �Z�L�W�K���³N�´��being the number 

of model input parameters. The network performance under the process of training is shown in Fig. 6, the results 

revealing that the plot of validation depicts a substantial fall in minimum square error (MSE) with increasing 

iterations. The optimum network performance is identified with a relatively negligible MSE of 0.0025 at an epoch 

of 215. It could be inferred that the learning process stopped thus  avoiding overfitting, once the cross-validation 

error started to increase; this can also be defined as early stopping criteria to avoid data overfitting (Shahin, 2014). 

 

The variation in error-gradient, the Marquardt adjustment parameter (mu) and validation checks are exhibited in 

Fig. 7, where it can be seen that the gradient error between the targeted and predicted values is a negligible value 

(0.0003), the mu factor and validation check numbers being 1 x 10-05 and 6 respectively, at an epoch of 221. An 

error histogram graph (EHG) is revealed in Fig. 8 to provide additional confirmation of the proposed model 

performance. An EHG gives an indication of outliers �³an observation of data features that seems to be inconsistent 



with other observations in the dataset�  ́(Jebur et al., 2018a) . As the conclusions drawn from the training process 

could be strongly affected by outliers (Tabachnick and Fidell, 2013; Hashim et al., 2017c), the training process 

was stopped once the minimum error started to increase. In Fig. 8, the red, blue, and green bars signify testing, 

training and validation dataset. It should be stated that the majority of dataset coincides with the zero-error line, 

which was the original aim. 

 

 

Fig. 6. Graph showing the optimum mean square error (MSE) selected during the training process with 
configuration of 5-10-1. 

 



 

Fig. 7. Performance profiles for the trained ANN network. 

 

 

Fig. 8. Error histogram during training, testing and validation. 



5.1.2 Assessment of the LM model robustness  

In this section of the paper, the results of the experimental load-settlement (Q-S) behaviour tests were compared 

with the predicted values generated by the LM trained optimum network. A series of experimental pile load tests 

were conducted on steel, closed-ended pile models. The experimental testing program used three piles with 

slenderness ratios (Lc/d) of 25, 17, and 12 where Lc is the effective pile depth with a diameter (d) of 40mm, to 

examine the behaviour of flexible and rigid piles. 277 points in total were recorded from the experimental pile 

load test data, which used a P3 strain indicator as illustrated in the experimental setup (Fig. 3). The pile head 

settlement was closely monitored using two linear variable differential transformers (LVDTs), with a 50mm travel 

distance.  Figs. 9, 10 and 11 show the extent of the fit between the experimental and predicted normalised load-

carrying capacity of steel piles, subject to axial loads at different stages of mechanical loading. The experimental 

axial load variations are typical for canonical pile foundations subject to axial mechanical loading systems, i.e., 

reducing from pile head to pile toe due to the increase in developed shaft resistance in the effective soil zone 

adjacent to the pile. The results demonstrated that a soil yielding effect for axial applied loads greater than 200N 

was identified in the upper part of the foundation, where local nonlinearity is marked. It can also be observed that 

the mobilised pile bearing capacity (end bearing and mobilised skin friction resistance) increases as sand stiffness 

and pile effective depth increase. Plastic mechanisms in the soil surrounding the pile are the leading cause for the 

non-linearity of the load-settlement response; as the applied load increases, the pile response shows nonlinearity 

until reaching a maximum capacity at about 10% of pile diameter (BSI, BS EN 8004:1986). Based on the graphical 

comparisons, there was an excellent consistency between the predicted and targeted values, with a correlation 

coefficient of 0.988 for all data, which demonstrates that the developed approach is a superior method to use to 

predict pile load settlement curves for the range investigated.  

 

The results drawn, using an evolutionary LM trained approach, were also exhibited graphically with the 

corresponding experimental settlement in the form of a regression calibration curve (Fig 12). The results revealed 

that, the introduced training algorithm satisfies the robustness test. All the predicted and measured points are 

matched well and close to the best-fit line with coefficients of correlation of 0.99088, 0.98436, 0.9854 and 0.98861 

for training, validation, testing and all data, validating that the application of the LM algorithm as an efficent 

predictive tool that acts in a fashion that would be expected. 

 



 
Fig. 9. Profiles of measured versus predicted pile load tests for model piles embedded in loose sand. 

 

 
Fig. 10. Profiles of measured versus predicted pile load tests for model piles embedded in medium sand. 



 

Fig. 11. Profiles of measured versus predicted pile load tests for model piles embedded in dense sand. 



 
Fig. 12. Regression graphics of the experimental set against predicted pile settlement for the training, validation, 

testing and all data.   

 

Comparing the experimental and the predicted values, the performance of the adopted algorithm was further 

examined graphically using the testing dataset. It should be pointed out that this dataset was not used during the 

training process and it is normally used to assess the generalisability  of the algorithm (Millie et al., 2012; Sun et 

al., 2014). As such, the testing dataset was used to plot a regression calibration curve between the measured versus 

predicted results, with a 95% confidence interval (CI). A new MATLAB algorithm was used for this comparison.  

As shown in Fig. 13, there were high levels of consistency between the targeted and predicted values, with a root 

mean square error (RMSE) and correlation coefficients (R and P) of 0.095, 0.985 and 2.22 *10-32, respectively. 



This is a clear indication of the ability of the LM approach to successfully reproduce the results of the experimental 

values accurately. 

 
Fig. 13. Profiles of fitted versus observed settlement for the validation dataset at a 95% confidence interval. 

 

 

6. Comparison between the LM optimum model with the various traditional methods 

In this section, comparisons have been made between the experimental and the predicted pile settlement results 

obtained from the most traditional methods proposed by Poulos and Davis (1980), Vesic (1977) and Das (1995). 

As stated previously, the testing data subset was allocated to investigate the predictive ability of the LM approach. 

The testing data subset was also used to evaluate the superiority and the generalisation ability of the LM training 

algorithm when compared with the aforementioned traditional methods. 

 

6.1 Polous and Davis�¶ (1980) methodology 

Poulos and Davis (1980) suggested that the following imperial equations (Eqs. 9 and 10) can be used to predict 

pile settlement for model piles subjected to axial load: 
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�2�á�' �æ���ƒ�•�†���& are pile applied load, soil modulus of elasticity and diameter of pile. I is the influence factor of pile 

settlement, which involves the layer effect of soil depth, pile compressibility and Poisson�¶���U�D�W�L�R�����4�Û is the influence 

factor for finite-depth and �4�é is the �3�R�L�V�V�R�Q�¶�V ratio correction factor. Such factors can be determined from design 

charts recommended by Poulos and Davis (1980). Using this approach, regarding a rigid pile driven into a semi-

infinite soil with a 0.5 Poisson�¶���U�D�W�L�R�� �+�4 is the only influencing parameter requiring consideration (Baziar et al., 

2015). 

 

6.2 Vesic�¶�V (1977) approach 

Vesic (1977) suggested that pile settlement can be determined from the summation of three components, S1, S2, 

and S3, using the following simplified formulas (Eqs. 11, 12 and 13): 
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�2�ê�ã is the working load applied at the pile head, �2�ê�æ is the load supported by the skin resistance and 
Æ is the skin 

friction distribution influence factor. �%�ã is an empirical factor. The coefficients �M�ã and �%�æ can be determined via 

Eqs. 14 and 15: 
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The factor 
Æ can be assumed to equal 0.5 and the parameter �%�ã is equal to 0.09, as recommended for cohesion-

less soil. 



6.3  Das�¶�V (1995) procedure 

The method proposed by Das (1995) is similar to that proposed by Vesic (1977) with some modifications when 

calculating S2 and S3. These modifications can be summarised by Eqs. 16, 17 and 18: 

 

�5�6 L
�2�ê�ã�&

�#�ç�Ü�ã�' �æ
�:�sF�í�6�;�+�ã 

  

(16) 

�5�7 L �F
�2�ê�æ

�1�H�ã�Ø�á�Ø�ç�Ô�å�ç�Ø�×
�G��l

�@

�' �æ
p���:�sF �í�6�;�+�ã�æ 

  

(17) 

�+�ã�æL �t E�r�ä�u�w¨
�H�ã�Ø�á�Ø�ç�å�Ô�ç�Ø�×

�@
 

  

(18) 

Where �+�ã is equal to 0.88 as recommended by Nejad et al. (2009). 

 

With the aim of further verifying the validity of the proposed model, Figs. 14 and 15 characterise comparisons 

between simulated and predicted pile settlement with respect to applied load and those estimated by the most 

traditional methods used in the absence of the pile load-test. It can be observed that the conventional design 

procedures are not as reliable when modelling load-distribution curves. As cited by many researchers; they tend 

to either underestimate or overestimate the predicted pile-load settlement. The comparative results indicate that 

the LM training algorithm performed well, and is in substantial agreement with the fitted line, suggesting that this 

new methodology is an expeditious approach, which offers obvious advantages. 



 
Fig. 14. Profiles of observed versus predicted pile settlement compared with traditional methods. 

 

 



Fig. 15. Profiles of measured versus predicted pile load-settlement for the proposed LM compared with other 

conventional methods. 

 
 

7. Concluding remarks and future research  

This study examined pile-bearing capacity, and explored the feasibility of an expeditious artificial intelligence 

tool to develop and apply highly efficient, predictive models of pile-load settlement for steel model piles 

embedded in cohesion-less soil with three sand densities of 83%, 51%, and 18% using the supervised 

backpropagation Levenberg-Marquardt (BPLM) algorithm.  The results demonstrated that pile-bearing capacity 

in dense sand is substantially higher than for those embedded in loose and medium sand. This can be assigned to 

an increase in the end bearing point and integrated shaft resistance developed in the radial effective soil-pile 

penetration depth. The statistical analysis outcomes indicate that the most influential parameters on pile load-

settlement curves are the applied load (P) and the sand-�S�L�O�H���I�U�L�F�W�L�R�Q���D�Q�J�O�H�������/�������&�R�Q�Y�H�U�V�H�O�\�����S�L�O�H���V�O�H�Q�G�H�U�Q�H�V�V���U�D�W�L�R��

(lc/d), pile axial rigidity, (EA), pile effective length, (lc) have been identified as having the least impact on load 

distribution behaviour. It is demonstrated that the proposed LM training algorithm has favourable features; it is 

simple, easy to use, less vulnerable to overfitting issues and highly efficient. It established that the MSE becomes 

a negligible value with increases in the learning process, with comparable characteristics between the validation 

and testing set errors. In essence, the results of the graphical comparisons between measured and predicted pile 

settlement confirmed that the proposed algorithm could be used as an efficient data-driven approach to capture 

full pile load-settlement responses with a RMSE and R, of 0.0591 and 0.9854, with non-significant mean square 

error (MSE).  Graphical comparisons were made to authenticate the reliability of the deterministic proposed 

method. These results revealed that the LM algorithm outperformed traditional approaches, confirming the 

successful application of the proposed technique. Conventional methods currently in use to predict pile settlement 

need to be updated, if employed, in future applications. Future study is recommended to focus on concrete piles 

penetrated in clay soil to examine pile load carrying capacity and to develop a further predictive model using the 

LM training algorithm. 

 

 

 

 

 



Acknowledgements 

The first author wishes to show his appreciation to Dr. William Atherton and Prof. Rafid Al Khaddar for their 

support and to the technical staff from Liverpool John Moores University, UK, who provided expertise and insight, 

which was of great assistance for this project. This study was supported by the Iraqi Ministry of Higher Education 

and Scientific Research under the grant agreement number 162575 dated 28/05/2013. 

References 

Ahmadi M.A., Zendehboudi S., Dusseault M.B. & Chatzis I. (2016) "Evolving Simple-To-Use Method To 
Determine Water-Oil Relative Permeability In Petroleum Reservoirs". Petroleum, 2(1), 67-78. 

Akdag C.T. & Özden G. (2013) "Nonlinear Behavior Of Reinforced Concrete (RC) And Steel Fiber Added RC 
(WS-SFRC) Model Piles In Medium Dense Sand". Construction and Building Materials, 48, 464-472. 

Alizadeh B., Najjari S. & Kadkhodaie-Ilkhchi A. (2012) "Artificial Neural Network Modeling And Cluster 
Analysis For Organic Facies And Burial History Estimation Using Well Log Data: A Case Study Of The 
South Pars Gas Field, Persian Gulf, Iran". Computers and Geosciences, 45, 261-269. 

Alkroosh I. & Nikraz H. (2011) "Simulating pile load�±settlement behavior from CPT data using intelligent 
computing". Cent.Eur.J.Eng, pp. 295-305. 

Alkroosh I. & Nikraz H. (2014) "Predicting Pile Dynamic Capacity Via Application Of An Evolutionary 
Algorithm". Soils and Foundations, 54(2), 233-242. 

Alkroosh I.S., Bahadori M., Nikraz H. & Bahadori A. (2015) "Regressive Approach For Predicting Bearing 
Capacity Of Bored Piles From Cone Penetration Test Data". Journal of Rock Mechanics and Geotechnical 
Engineering, 7(5), 584-592. 

Baziar M.H., Azizkandi A.S. & Kashkooli A. (2015) "Prediction Of Pile Settlement Based On Cone Penetration 
Test Results: An ANN Approach". KSCE Journal of Civil Engineering, 19(1), 98-106. 

Bowles J.E. (1992) "Engineering Properties Of Soils And Their Measurement". McGraw-Hill International Book 
Company, New York. 

BSI (BS EN 8004:1986) "Code Of Practice For Foundations". British Standards Institution, London. 

Chang C.-M., Lin T.-K. & Chang C.-W. (2018) "Applications of neural network models for structural health 
monitoring based on derived modal properties". Measurement, 129, 457-470. 

Cho S.E. (2009) "Probabilistic Stability Analyses Of Slopes Using The ANN-Based Response Surface". 
Computers and Geotechnics, 36(5), 787-797. 

Das B.M. (1995) "Principles Of Foundation Engineering". PWS Publishing Company, USA. 

Das B.M. (2015) "Principles Of Foundation Engineering". Cengage Learning, USA. 

�'�H�R���5���&�����	���ù�D�K�L�Q���0���������������������$�S�S�O�L�F�D�W�L�R�Q���2�I���7�K�H���(�[�W�U�H�P�H���/�H�D�U�Q�L�Q�J���0�D�F�K�L�Q�H���$�O�J�R�U�L�W�K�P���)�R�U���7�K�H���3�U�H�G�L�F�W�L�R�Q���2�I��
Monthly Effective Drought Index In Eastern Australia". Atmospheric Research, 153, 512�±525. 

Di Santo K.G., Di Santo S.G., Monaro R.M. & Saidel M.A. (2018) "Active demand side management for 
households in smart grids using optimization and artificial intelligence". Measurement, 115, 152-161. 

Fellenius B.H. (1989) "Unified Design Of Piles And Pile Groups". Transportation Research Record, 1169, 75-
82. 



Field A. (2008) "Multiple Regression Using SPSS". Research Methods in Psychology. C8057, University of 
Sussex, UK, 1-11. 

Hashim K.S., Shaw A., Al Khaddar R., Pedrola M.O. & Phipps D. (2017a) "Defluoridation Of Drinking Water 
Using A New Flow Column Electrocoagulation Reactor (FCER) - Experimental, Statistical, And Economic 
Approach". Journal of Environmental Management, 197, 80-88. 

Hashim K.S., Shaw A., Al Khaddar R., Pedrola M.O. & Phipps D. (2017b) "Energy Efficient Electrocoagulation 
Using A New Flow Column Reactorto To Remove Nitrate From Drinking Water - Experimental, 
Statistical, And Economic Approach". Journal of Environmental Management, 196, 224-233. 

Hashim K.S., Shaw A., Al Khaddar R., Pedrola M.O. & Phipps D. (2017c) "Iron Removal, Energy Consumption 
And Operating Cost Of Electrocoagulation Of Drinking Water Using A New Flow Column Reactor". 
Journal of Environmental Management, 189, 98-108. 

Jaeel A.J., Al-wared A.I. & Ismail Z.Z. (2016) "Prediction Of Sustainable Electricity Generation In Microbial 
Fuel Cell By Neural Network: Effect Of Anode Angle With Respect To Flow Direction". Journal of 
Electroanalytical Chemistry, 767, 56-62. 

Jebur A.A., Atherton W. & Al Khaddar R.M. (2018a) "Feasibility Of An Evolutionary Artificial Intelligence (AI) 
Scheme For Modelling Of Load Settlement Response Of Concrete Piles Embedded In Cohesionless Soil". 
Ships and Offshore Structures, 13(7), 705-718. 

Jebur A.A., Atherton W., Al Khaddar R.M. & Loffill E. (2018b) "Artificial neural network (ANN) approach for 
modelling of pile settlement of open-ended steel piles subjected to compression load". European Journal 
of Environmental and Civil Engineering, 1-23. 

Jeong D.-I. & Kim Y. -O. (2005) "Rainfall-runoff models using artificial neural networks for ensemble stream 
flow prediction". Hydrol Process 19(19), 3819�±3835. 

Li B., Li Y., Wang H., Ma Y., Hu Q. & Ge F. (2018) "Compensation of automatic weighing error of belt weigher 
based on BP neural network". Measurement, 129, 625-632. 

Majeed A.H., Mahmood K.R. & Jebur A.A. (2013) "Simulation Of Hyperbolic Stress-Strain Parameters Of Soils 
Using Artificial Neural Networks". In: Proceedings of the 23rd International Conference on Geotechnical 
Engineering, Hammamet, Tunisia, 105-115. 

Masters T. (1993) "PracticalNeuralNetworkRecipesinC++. Academic". San Diego. 

Millie D.F., Weckman G.R., Young II W.A., Ivey J.E., Carrick H.J. & Fahnenstiel G.L. (2012) "Modeling 
Microalgal �$�E�X�Q�G�D�Q�F�H���:�L�W�K�� �$�U�W�L�I�L�F�L�D�O���1�H�X�U�D�O���1�H�W�Z�R�U�N�V���� �'�H�P�R�Q�V�W�U�D�W�L�R�Q���2�I�� �$�� �+�H�X�U�L�V�W�L�F�� �µ�*�U�H�\-�%�R�[�¶�� �7�R��
Deconvolve And Quantify Environmental Influences". Environmental Modelling and Software, 38, 27-39. 

Mohammadi K., Shamshirband S., Kamsin A., Lai P.C. & Mansor Z. (2016) "Identifying The Most Significant 
Input Parameters For Predicting Global Solar Radiation Using An ANFIS Selection Procedure". 
Renewable and Sustainable Energy Reviews, 63, 423-434. 

Momeni E., Nazir A., Armaghani D.J. & Maizir H. (2014) "Prediction Of Pile Bearing Capacity Using A Hybrid 
Genetic Algorithm-Based ANN". Measurement, 57, 122-131. 

�0�R�U�I�L�G�L�V���.�����	���.�R�V�W�L�Q�D�N�L�V���.���������������������6�H�L�V�P�L�F���3�D�U�D�P�H�W�H�U�V�¶�� �&�R�P�E�L�Q�D�W�L�R�Q�V���)�R�U���7�K�H���2�S�W�L�P�X�P���3�U�H�G�L�F�W�L�R�Q���2�I���7�K�H��
Damage State Of R/C Buildings Using Neural Networks". Advances in Engineering Software, 106, 1-16. 

Murthy V.N.S. (2003) "GeotechnicalEngineering: Principles and Practicesof Soil Mechanics and Foundation 
Engineering". Marcel Dekker, Inc.,New York. 

Naderpour H., Poursaeidi O. & Ahmadi M. (2018) "Shear Resistance Prediction of Concrete Beams Reinforced 
by FRP Bars Using Artificial Neural Networks". Measurement, 126, 299-308. 



Nasr A.M.A. (2014) "Experimental and theoretical studies of laterally loaded finned piles in sand". Canadian 
Geotechnical Journal, 51, 381-393. 

Nazir A. & Nasr A. (2013) "Pullout Capacity Of Batter Pile In Sand". Journal of Advanced Research, 4(2), 147-
154. 

Nejad F.P. & Jaksa M.B. (2017) "Load-Settlement Behavior Modeling Of Single Piles Using Artificial Neural 
Networks And CPT Data". Computers and Geotechnics, 89, 9-21. 

Nejad F.P., Jaksa M.B., Kakhi M. & McCabe B.A. (2009) "Prediction o fpile settlement using artificial 
neuralnetworks based on standard penetration test data". journal of Computers and Geotechnics, 36(7), 
1125-1133. 

Nguyen-Truong H.T. & Le H.M. (2015) "An Implementation Of The Levenberg�±Marquardt Algorithm 
Forsimultaneous-Energy-Gradient Fitting Using Two-Layer Feed Forwardneural Networks". Chemical 
Physics Letters, 629, 40-45. 

Nunez I.L., Hoadley P.J., Randolph M.F. & Hulett J.M. (1988) "Driving And Tension Loading Of Piles In Sand 
On A Centrifuge". In: Proceedings of the International Conference Centrifuge. Paris, France, 88, 353�±
362. 

Pallant J. (2011) "SPSS Survival Manual: A Step By Step Guide To Data Analysis Using SPSS". Maidenhead, 
Berkshire. Open University Press, UK. 

Pathak B. 2011. "Analysis Of Static Lateral Load Test Of Battered Pile Group At I-10 Twin Span Bridge". Mater 
Of Science In Civil Engineering. 

Poulos H.G. (1999) "Common procedures for foundation settlement analysis-Are they adequate? In:". Proc 8th 
Australia New Zealand conf on geomechanics, Hobart;, 3-25. 

Poulos H.G. & Davis E.H. (1980) "Pile Foundation Analysis And Design". John Wiley & Sons, New York. 

Reddy K.M. & Ayothiraman R. (2015) "Experimental Studies On Behavior Of Single Pile Under Combined Uplift 
And Lateral Loading". Journal of Geotechnical and Geoenvironmental Engineering, 141(7), 1-10. 

Remaud D. (1999) "Pieux Sous Charges Latérales: Etude Ex�S�p�U�L�P�H�Q�W�D�O�H���'�H���/�¶�H�I�I�H�W���'�H���*�U�R�X�S�H���>�/�D�W�H�U�D�O���/�R�D�G�V��
Piles: Experimental Study Of The Group Effect]". PhD thesis. University of Nantes. France. 

Schawmb T. (2009) "The Continuous Helical Displacement Pile In Comparison To Conventional Piling 
Techniques". Masters thesis. University of Dundee, UK. 

Shahin M.A. (2013) "Artificial Intelligence For Modeling Load-Settlement Response Of Axially Loaded (Steel) 
Driven Piles". In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical 
Engineering, Paris, 797-800. 

Shahin M.A. (2014) "Load�±Settlement Modeling Of Axially Loaded Steel Driven Piles Using CPT-Based 
Recurrent Neural Networks". Soils and Foundations, 54(3), 515-522. 

Shahin M.A. (2016) "State-Of-The-Art Review Of Some Artificial Intelligence Applications In Pile Foundations". 
Geoscience Frontiers, 7(1), 33-44. 

Sharma L.K., Singh R., Umrao R.K., Sharma K.M. & Singh T.N. (2017) "Evaluating The Modulus Of Elasticity 
Of Soil Using Soft Computing System". Engineering with Computers, 33(3), 497-507. 

�6�W�U���N�R�Z�V�N�L���5�������3�D�F�K�R�O�V�N�L���.�������:�L�
�F�H�N���%�������2�O�E�U�\�F�K�W���5�������:�L�W�W�F�K�H�Q���:�����	���%�R�U�H�F�N�L���0���-���0���������������������(�V�W�L�P�D�W�L�R�Q���R�I���)�H�2��
content in the steel slag using infrared imaging and artificial neural network". 117, 380-389. 



Sun S., Yan H. & Kouyi G.L. (2014) "Artificial Neural Network Modelling In Simulation Of Complex Flow At 
Open Channel Junctions Based On Large Data Sets". Environmental Modelling and Software, 62, 178-
187. 

Tabachnick B.G. & Fidell L.S. (2013) "Using Multivariate Statistics". Allyn and Bacon, USA. 

Taylor R.N. (1995) "Centrifuges In Modeling: Principles And Scale Effects". Geotechnical Centrifuge 
Technology, Blackie Academic & Professional, London, 19�±33. 

Tomlinson M. & Woodward J. (2014) "Pile Design And Construction Practice". CRC Press, London. 

Tschuchnigg F. & Schweiger H.F. (2015) "The Embedded Pile Concept �± Verification Of An Efficient Tool For 
Modelling Complex Deep Foundations". Computers and Geotechnics, 63, 244-254. 

Ueno K. (2001) "Methods For Preparation Of Sand Samples". In: Proceedings of the International Conference 
Centrifuge 98, ISSMFE, Tokyo, 2, 1047-1055. 

Vesic A.S. (1977) "Design Of Pile Foundations". NCHRP Synthesis of Highway Practice, Rep. No. 42, 
Transportation Research Board, Washington. 

Yadav A.K., Malik H. & Chandel S.S. (2014) "Selection Of Most Relevant Input Parameters Using WEKA For 
Artificial Neural Network Based Solar Radiation Prediction Models". Renewable and Sustainable Energy 
Reviews, 31, 509-519. 

Young H.D. & Freedman R.A. (2000) "Sears And Zemansky's University Physics". Addison-Wesley, San 
Francisco. 

 


