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Abstract

This studywas implementedo examinepile load-settlementesponseand to develop a rapidhighly efficient
predictive intelligenmodel usinga newcomputationaintelligence(Cl) algorithm To achieve tts aim, aseries
of experimental pile load testgereperformedon stee] closal-enced pile modek consising of three pileswith
aspectratios of 25, 17, and 12n an attemptto make site in-situ pileload tes$ unnecessaryAn optimised
evolutionary supervisedLevenbergMarquardt (LM) training algorithm was used forthis procesgdue to its
remarkaby robustperformanceThe model pilesverepenetréedand testedh threesand relative densitiedense
medium, and loosé\pplied load(P), pile effectivelength(lc), pile flexural rigidity (EA), pile slenderness ratio
(Ic/d) and interfacefriction angle / wereidentified based ora comprehensive statistical analysis these
parameterplay a key rolén governingpile settlementTo evaluate the efficiency and the generalisation ability
of the proposedalgorithm graphical comparisonswere madebetween the proposed algorithemd the
experimental results witturther comparisons made witbnventional prediction approach&se results revealed
outstanding agreement betweentdrgetedand predicted pildoad settlemetrwith a coefficient oftcorrelation of
0.985 andD 3 H D WwrkreiatiHNcoefficient P = 2.22 x10%2 and root mean square error (RMSE) 003
respectively This in parallel with a nonsignificant mean square error level (MSE) of @00alidatesthe

feasibility of the proposed methaahd its potentiain future applications.

Keywords: Sandysoil; steel pile; LevenbergMarquardt(LM) algorithm sensitivity analysispile load

settlement
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1. Introduction

Pile foundations are structural elemegtnstructedunderneath superstructuresequently utilised as load
carryingsystemsand soil settlement controds siteswith poorsoil bearing capacity aub-soil layers(Nazir and
Nasr, 2013; Tomlinson and Woodward, 2014; Tschuchnigg and Schweiger, P@&%jearing capacity and
settlement aréhe most significant factethat influencepile foundation design procedsi@lkroosh and Nikraz,
2011; Alizadeh et al., 2012; Das, 2015; Nejad and Jaksa,  28&King thisa corefeatureof research in the field

of geotechnical engineering.ccordingly, severalproceduresoncerning pile bearing capacigre availablan

the openliterature ranging fromthe applicationof complicated nonlinear numerical procedute empirical
relationshig (Nasr, 2014)In the absence of igitu pile load carrying capacity testiltimatepile bearing capacity
and associated settlement havaditionally been determinedseparately. However, it has been reported by
Fellenius (1989)that 3 «pile allowable load should be influenced by combined procedurdagtakto
consideration soil mobilised resistance and soil settlement performing together and influencing the value of each
other” A definition of ultimate pile bearing capacity is stiben to discussiquta number otriteria have been
suggested by schars to precisely identify pile capacifyom full pile loadsettlement distribution curves. For
instance, ultimate pile capacity can be defined according to a pile settlement equal toth8%ilefdiameter
(d), the obtaiedload then divided btwo (the general factor of safety to determine the pile working |dadithy
(2003)andShahin (2014)however suggesthat if the later criteria is introduced to certain piles under specific
soil properties (e.g., large diameter piles driven in cohesive soil), the settieatmiatedwill be excessie. The
precise assessment of pile bearing capacity can be determined by condusitog full -scale pile load
settlement test3.he fact that this iexpensive and timeonsuminghave been cited as major drawbacks associated
with performing such tesfMomeni et al., 2014; Alkroosh et al., 201BJternatively, pile capacity and settlement
can be predictedisingseveral suggested design procedures Das, (1995and Poulos (1999) Although those
approaches have been frequently used, it has been cited that the aforementioned methadsuaedarand fail

to achieveconsistensuaess due téhe many preconditionsand arbitrary assumptions involved in thetéas
affecting pile capacity and settlement (i.e., guik interaction, nonlinearity of the soil strestsain relationship,

driving system and initial boundary conditiori8)kroosh et al., 2016

Applications of CI techniques based tre concept ofrtificial neural network (ANNs), have been highly
recommend as superioralternative approach6 WU N R ZV NL .HANND& beerappliedeffectivelyin a

wide range of geotechnical studies an efficient computing tool to fully represent and capture pile- load



settlement behaviour with @tceptable degree of accurg@hang et al., 2018ANN techologyhas the capty

to deal with complexity and to map nonlineaymplexfunctions,adopting substantiadomputer capacity to
implement extremely iterated wo(Ri Santo et al., 2018; Li et al., 2018; Naderpour et al., 206&ssence, the
complex norinear patterns between the individual variables (1Vs)thednodel targedre precisely addressed,
identified and mapped with high dimensional input sg&e et al., 2014 Furthermorethe advantages dfM
modeling includes its ability to resample the complex relationsHygtween pile loadettlementand the

parameters affecting, vithout the need for any assumptiq®harma et al., 2017)

With the development of machine learning technologies, the feasibility of the computational apymuigeshto
pile foundationresearchhas been emphasised recently by mamgearchersAlkroosh and Nikraz (2014)
conducted a study teview andmodel pile dynamic capacity based on SPT tests. The dataset was divided into
two sibsets;a training set for model development aadalidation set for evaluatioaf the performance of the
modelunder the training proceshe authorsoncluded that the trained modeldhtie ability to predict pile
capacity with remarkable agreement betwdentargetecind predicted valuegiving a correlation coefficient

(R) of 0.94.

Shahin (2014)kuggestedhe application of the recurrent neural network (RNblmodel loaddisplacement
responceof model piles penetrated in layered soil. The RNN model was developed and trained with six model
input parameters using cone penetration test (CPT) data. It was concluded that tliedtiMied andrained
modelwasan effective approacto accuratelysimulate pile loaesettlement with substantial agreement between

targeted and predicted results.

Momeni et al. (2014gxamined the feasibility of a new artificial neural netwbdsed model to predict pile

bearing capacity. In total, 50 pile lo@isplacement tests wecenducted on concrete piles in order to deliver the
essential dataset to develop and train the proposed model. The pile geometrical properties, hammer weight, pile
set and drop height have been selected as the most significant input parameters fb#wiptd capacity. The

results revelled that good agreement was achieved between the targeted and the predicted values, this was

confirmed by a correlation coefficient of 0.99 and a relatively negligible mean squarefed.002.



Jebur et al. (2018addressed the reliability of an enhaneetficial neural network (ANN) as global search
system using the LM training algorithm to develop a reliable predictive miodaheffort to overcomesome of
thedisadvantageassociated with theaditional ANN methodssuch as poageneralisatiorability of the trained
network The developed model input parameters consist of (i) pile applied load, (idileodngle of internal
friction, (iii) pile length, (iv)pile axi rigidity, and pile slenderness ratio. The results revehigtithe proposed
model could successfully sirate pile settlement with high efficiency. This was confirmed by a correlation

coefficient of about 0.99 and a relatively negligible mean square error.

Nejad and Jaksa (201developed a study aimed at exploring pile settlement of model piles based on cone
penetration test The model input parameters were (i) pile load test type; (ii) material used for the pile; (iii) pile
installation method; (iv) tip of pile; (v) pile adiaigidity; (vi) pile tip cross sectional area; (vii) pile effective
perimeter; (viii) pile length in the effective zone; (ix) length of pile; (x) the corrected and the average SPT value
blow count/300mm along the pile effective depth; (xi) the SPT caudaiow count/300mm at the pile tip and

(xii) pile applied load. Settlement of the pile was set to be the model dependent variable (DV). The results revealed

that the adopted methoddtheability to predict pile settlement witagoodlevel ofaccuracy.

Jebur et al. (2018b3oon afterdeveloped a novel artificial neural network predictive model to assess the ultimate
load-displacement response of steel opeaded pile subjected to compression load. The model piles were driven
in sandy soil of different densities, measuring of loose,jnmednd dense. Five Vs have been underlined at being
the most significant parameters influencing the steel pile beeaipgcity, these encompasgeld applied load,

pile effective length, pile slenderness ratios,-pité angle of internal frictiorard pile axial rigidity.The results
indicated that the model could be employed to predict pile ultimagcitgpvith substantial accuracht should

be stated that the common feature in the aforementioned studies is that the steepest descent method used in
traditional artificial neural networks, is extremely criticized for its slow rate of convergence towards an optimal
solution and for being trapped in a local minirwkreover the neural network (NN) internal training parameters
need to be usadjusted prameters at each application before training the developed NN (haifidis and
Kostinakis, 2017)In this paper, a new methodology has been initedutilizing a robust, seluningartificial
intelligence (Al)approach to fully correlate pile load carrying capacity and the associated displacement of rigid

and flexible piles. Guided by comprehensive statistical analyses to categorize the eiffpctivearameters,



evaluate the contribution of each model input parameters and to check the reliability of the dataset being studied

such as the absence of outliers, multicollinearity detection, and dataset size condition.

The current study is structwtas follows: the study aim and objectiaegiven in section 2. The materials and
methodsincluding the sand properties along with the testing proceduretasettiresshe stated study ainare
presented in section 3. The statistical analysis is presented and discussed in sEhdaegllts are presented
and discussed, in depth, in section 5. Graphical comparisons between the suddealgarithmandthe most
conventional desigproceluresare presented and discussed in detail in section 6. Finally, sectimesthe

concluding remarkaboutthe studyandrecommendations fduture work.

2. Aim and objectives
The currenstudyaimsto developand verifya reliable costeffectivepredictive modeto fully capturethe load

carrying capacity of steglilesin cohesioress soil.The specific objectives ate:

X Conduct a series of experimental dibad tests teevaluateload bearing capacity anthe associated
settlement of stegklosedended piles having three aspect ratids25, 17, and 120 explore the
behaviour of flexibleandrigid piles inthree relative sand densitifd;): dense medium and loose

x Examine the feasibility of an evolutionary supervitedenbergMarquardt (LM)training algorithimto
developa rapid, cost effective and reliable predictmedel tofully mapnontlinear, pile loadsettlement
behaviour subject to a wide range of axial loads.

X Assess the generalisation ability of the LM algorithm usirtataset clustefnot used inthe training
proces} by comparing the predicted results with tigperimental resultalongwith the resultfrom
conventional pildoad settlement design approaches

x Carry outa statistical analysis tbighlight the most appropriate model input parametershenmodel
output figy Y D O Xtblidebtiy e contribution of each individual variable (1V) on the model output

Betal Y D GXEBEPSS23 software

3. Material and methods

3.1 Sandproperties
Fine sand was used as a test mediuhe Sandwasconsistof subrounded particles, as confirmed by scanning

electronic micrscopy (SEM) observatienFig. 1). Based on the Unified Soil Classification System (USC$, th



sandwasclassified as poorly graded (SPheuniformity coefficient(Cu) and thecurvaturecoefficient(Cc) were
1.786 and 1.142espectively.The sandwas prepared in threeelative densities(D,) of 18, 51 and3%. The
minimum and thenaximum sand unit weightvere15.3%kN/m® and 17.%KN/m?®. To overcome scale effect issues
and b maintain thénfluenceof grain size distribution on the combingitk-soil interaction, the ratio between the
pile diameter(d) to medium diametgdso) of the sangbarticlesshould be 45Nunez et al., 1988)Remaud (1999)
claimedthat 2 «the ratio must be 60 timélsediameterof thepile ". Taylor (1995)howeverreportecthat 3 «the

ratio should be at least 100In the currenstudy, the rati@f the diameterof pile to medium diametgd/ds) was

133 asindicatedin Fig. 2, satisfyingthe scaling criteriaThe relative sand densities were prepared in different
stagesFor preparinghe loose sand bed, the sand particles were poured into the pile testing chamber using a tube
delivery systemfollowing the procedure documented Bghawmb (2009)The end of the tub&asrepeatedly

held at a maximum set distanceagiproximatelyd0mm between the sand delivery tube and the surface test bed.
The medium sand has been prepared utdisian air pluviation techniquéas suggestely Ueno (2001)Sand
density was controlled by the falling ratgpproximate\800mm above the sandréace with an accuracy of +
25mm until thedesiredtest &epthwasachievedThe dense samndaspreparedn agreement withhe technique

suggestedby Akdag and Ozden (201.3)
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Fig. 1. Scanning electronic microscopy (SEM) view of the sand specimen.
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Fig. 2. Particle size gradation in the sand sample.

3.2 Testingprocedure
This sectiordetaik the procedure adoptefdr pile-load tesing. Experimental pile loadests vereperformed on
steel closd-ended pile with aspect ratios of 12, 17, 2md40mm diameterdriven irto a calibratiorpile-testing
chamberas depicteth Fig. 3.During loading applicationshe pile point of loading was 50mm above sheface
of thesand the key objectivdbeingto minimisesandcontact with the pile cap. This to ascertaithatthe pile
capacity is only as a resultspife-soil interaction A maintained load test has been adoptiedoading rateequal
to Imm/min agecommendedthy Bowles(1992)and within the limits stated b§SI (BS EN 8004:1986A new
hydraulic jack systentype DBBSM connected at the tapf theload cell having a maximum capacity of K@
has been adopted to drive the pile in the samdiswas fixedbetween the pile head loading system and the
hydraulic rammodel (ZE3408ET). A Polytetrafluoroethylene (PTFEheethas been useih the pile testing
chamberin an effortto minimizethe friction betweerthe sandand the chambefhe PTFE sheet hasfiéction
coefficient of less than 0.0dompared withsteel sheewith coefficientof friction of about 0.605Young and
Freedman, 2000R0mmthick, sufficiently rigid glass platewasplacedat the frontfaceof the testing chamber
and subdivided into equal segments, stsownin Fig. 3, to provide aclear view of the sand control volunighe
loads were applied directly tman aluminium pile cap witla diameter oL.50mm andhicknessof 25mm. A

spherical steel ball bearing was used on the top of the pileocagd andbr minimizeeccentricity during the



loading applicationPile load tests wereonductedat 1 G-stresscorditions the low effective stressesulting in
some differencesomparedwith full-scaletests. The pile head displacement was monitored using a data
acquisition system instrument with two linear variable differential transformers (LVDTSs) of very high resolution
0.01mm with 150mm traveldistanceto record the correspondimle settlementusing magnetic stand3he

LVDTs were placed on the top of the pile cap in pairs sottiestffect of bending could be accuratehgasured.

Fig. 3. Schematic view and dimensions of the experimental test setup.



4. Statistical analysis

4.1 Model inputs and output

Identifying the parametergontrolling pile load-settlemenbehaviouris essentialn orderto developan accurate
predictve model (Yadav et al., 2014; Ahadi et al., 2016; Nejad and Jaksa, 20Mpst of the traditional
approaches comprigé (i) pile materiaj (ii) pile geometry; (iii) applied loadnd(iv) properties othe soil. Nejad
et al. (2009)reported thatttere are other additional parametthrat have substantially loweffectson pile
settlementsuch aspile installationmethal, pile load testtype and water table levelThesemakea minimal
contribution to pile settlement anid not therefore need to be taken into considerafibat said, theedection of
the model input variableis one of the vital steps to develop a relialpleedictive modelln this researchan
innovative statistical significancenalysis(Sg.) was developed using SP2S software toidentify the model
individual inputvariables (l1Vs) This techniquehas beerusedbecause it has many attractive ite(Pathak,
2011)the mainone being thait hasthe ability to explore the relationship between one individual variéliMg
with a set ofotherindividual variables (IVs(Hashim et al., 2017cBased on thefatistical study five factors
with differentlevels ofcontribution were identifiedasthe mostinfluential input parameters affectingle-load
settlementvith a (Sig) valueof < 0.05 matching thestatisticalcriteriastatedby Field (2008) These parameters
are(i) applied loadP), (ii) pile slenderness ratigk/d), (iii) pile axial rigidity (EA), (iv) pile embeddedength
(Ic) and(v) the sandpile friction angle(/). The model outputvas pilesettlementThe optimal structure of the
ANN model hal been selected attopology of 5:10:lasshownin Fig. 4. The LM algorithm was trained using
the parameteslisted in Table 1The 3TANSIG' transfer functiorhas been utilisedetweerthe input parameter
slayersone” andthe hidden layerr O D\ H U, WHile Bhe 3PURELIN” transfer function was adopted liak

3layers two” and three abstedin Egs.1 and2 respectively

Table 1: TheLM internaltraining parameters.

Parameters Value
Epochs maximum number 1000.0
Efficiency goal 0.0
Learning rate 0.01
Increase learning rate ratio 1.05
Decrease learning rate ratio 0.7
Validation failure limit 6.0
Minimum performance increase 1.04
Constant of momentum 0.9
Minimum performance gradient le5

Epochs between displays 25.0




Hidden layer (processing elements)

Input laver Output layer

Fig. 4. Structure of ANN model inputs and output parameters.
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The factorsvij @ andb; ® are the weights and biases from the inputs and output (hidden)bafeandb; @ the

bias for layers one and two.

4.2 Dataset size condition
The reliability of the experimental datasatist be assessed as it gaysubstantial roléor model efficiency

(Hashim et al., 2017a)n an attemptd optimisethe relationship between the targeted and predicted naukl



to develop efficient model performandke minimum data size required to produce a geseddptimum model
must becalculatedusinga given formulafq. 3). Based orthe humber of individual variables (I\/$he minimum
data points required to perform modelling is (@allant, 2011; Hashim et al., 2017k this study, there were

277 experimental dataset poimieaning thathe condition of dataset size has besatisfied

0 RwrEz U+ 3)

where N and | are the size of the sample and individual varnpaseneters.

4.3Outliers
Tabachnick and Fidell (2013)) H S R U W HAB outlieDcsw Fecdefined as a case with an extreme value on one
variable (a univariate outlier) or a strange combination of scores on two or more variables (multivariate outlier)
WKDW VWDWLVW L F (véh th& hedcomdusiadsrawhrdmGibaiioamaybe influenced by the
existenceof outliers(Hashim et al., 2017¢)all independent variables (IVs) and dependent varigbl®3 must
be statistically tested identify such extreme values logtermininghe Mahalanobis distangarametes (MDs).
In the current investigationt was found thathe maximum MDs fothe five input parameters wak/.01 To
check whether this exed any influence on the results of the LM training algorithm as a whalbachnick and
Fidell (2013)recommend calculatg & RR NV 'LV W D Qasahyphidtaveh COO_1 greater than 1.0 is a
potential problem. The resuits Table 2showW KDW &RRNTV "'LVWDQFH &22B IR, WKH GHVI
this confirming that the output resultnd the efficiency of the modedill not be subject tanfluenceas tlere are

no outliersin the data.

4.4 Multi-collinearity
To descrile the data screening processe variance inflation factofVIF) for each IVwasdetermined in an
attempt to investigatéor the presence of multiollinearityin thetotal datasetReddy and Ayothiraman (2015)
reported that any IV witl VIF higher than 10 may affect the performance of the proposed model. According to
theresultsin Table 2, it was found that the maximum VIF fadmreach IVwasless than 10, whicbonfirms the

validity of the datasetised to develop and train the Lalgorithm



4.5 Statistical significancand the relative importanaaf each independent variable (1V)
Selection of the most effective model input parameterstambhtributionlevel, or strengthof each independent
variable (IV) to the model output has been ascertainemigh the statistical analysi$ parameterstiie relative
importance parameteBeta valué, anG WKH VW D W LV W3id-\2l0e) WsidgQIPSI3D IQ &kl béen
documentedy many scholars that any IV atp value> 0.05 @nbe omitted fom the input layer as it has no
significant impact on the model targétield, 2008; Hashim et al., 2017@&tatistically, the clogehe absolute
Beta value iso one the more significanthe inpact of that IV on the modé@Pallant, 2011; Hashim et al., 2017b;
Hashim et al.2017a) According tothe resultsin Table 3 the applied load and the sapile angle of interface
friction, had asubstantialinfluence on pile settlement, at Beta values of 0.84 and 0.718, respechHilely.
slenderness ratio, pile length and flexural rigidity have comparatively less inflweiticaifferent strengthon
pile settlement, at Beta values®235, 0.@6 and 0.15, respectivelyhe maximunsSig value was 0.015, which

confirmsthat all IVshavea significant influence on theainedmodel output

Table 2: Summery of the statistical analysis results.

Parameters Beta. value MDs VIF COO0_1
Applied load,(P) 0.840 21.84 4.01 0.0091
Slenderness ratio, (Ic/d) 0.238 1.23
Flexural rigidity, (EA) 0.015 3.21
Pile length, (1) 0.026 6.12

SandSLOH DQJOH RI LQW 0.718 3.76




Table 3: Statistical parameters for model input and output parameters.

Input Variables Output
Data Set  Statistical Load Slenderness Pile Pile axial Sandpile  Settleme
Parameters (kN) ratio, Lc/d length, rigidity, EA friction nt, (mm)
(m) (MN) DQJOH
Max. 4.426 25 1 251.18 19 14.461
Training Min. 0.001 12 0.48 251.18 17 0.0015
Set Mean 1.454 17.01 0.711 251.18 17.91 6.097
S.D.* 1.363 1.345 0.211 0.00 1.05 4.591
Range 4.425 2.08 0.52 0.00 2 14.49
Testing Max. 4.350 25 1 251.18 19 14.215
Set Min. 0.193 12 0.48 251.18 17 0.022
Mean 0.683 18.323 0.767 251.18 17.783 5.860
S.D.* 1.260 1.369 0.226 0.00 1.044 4.586
Range 4.349 13 0.52 0.00 2 14.192
Validatio Max. 3.660 25 1 251.18 19 13.861
n Set Min. 0.084 12 0.48 251.18 17 0.002
Mean 1.275 17.35 0.724 251.18 17.827 5.727
S.D.* 1.098 1.347 0.213 0.00 1.049 4,521
Range 3.576 13 0.52 0.00 1.117 13.814

5. Results and discussion

5.1The LM model development

The LevenbergMarquardt (LM)training algorithmcan be defined as data drivertomputing methodbased on

artificial intelligence (Al) concest which more specificallyjs able to correlate inversely and numericathe

nonlinear relationships betweerm set of individual variableqIVs) and outputs via their characteristic
mathematal topology(NguyenTruong and Le, 2015; Ahmadi et al., 2016; Jaeel et al., 20h6)basic concept

behindthe LM methodis to correlatethe connectiogbetween 1Vsand modeloutput without assuming a prior

formula defining thizorrelation(Sharma et al., 2017n this study, supervised trainimgvolving feedforward,

multi-layer perceptions(MLPs) using a backpropagation learning process basedaoMATLAB (R2017a)
environmentwas built and used tdully capturepile loadsettlementindividual predictor paramete(gput

variables) in the datavectorare multiplied by associated scaleeightsanrd DFW LY D W L R Qia¥éXgddt VKRO GV 3
to theirsummation anthenprocesedvia nonlinear transfer functions in hidden layer processing neurons (PNs).

The stated themes were followed by multiptythe output resuihg from thehidden layer vidheir optimised/;;



thensummed before processiby the next layertbie output layer This methodologywasrepeated during the
iterationprocessthe error propagated backwamlith each single epoch, the connection weights (Wij) adjusted
during the training procesantil a minimum erroris achieved '"HR DQG UuDKLTD summarisea
mathematical illustratiof the individual input variables (l1Vs) ancelatedoutputis presentedn Eq. 4. The

training flow chart for the proposed algorithm is described in Fig. 5.

In total, 277 poirg weredivided into three clusters, two of whicballedtraining (70%) andtross validation
(15%). The goal of the training dataset is to create the most appropriate ANN network and fit the model by
updating the network connections weig{\éj) and biasegb;) at each iteration during the procesdezrning

The crossvalidationsetis piloted to deliver an independent check of network performatacavoid the model
overfitting andto terminate the training process at a minimum MSE giilguyenTruong and Le, 2015 he

third clustertesting datasetasusedto evaluate thde RGHO V  GeBdrdlig adthéw&idity of theoptimum

ANN model via using the last5% of unseen datafter selecting the appropriate network weights and biases
(Ahmadi et al., 2016; Shahin, 2016hhis dataseis not involved in the learning algorithprocesgMillie et al.,

2012; Sun et al., 2014Running the optimisation of interconnected biases and weights was continued until
specificmeasuring performance indicatosgre met as described in tHellowing sections. Finally, a principal
ANN trainednetwork with 5 individuaneurons in the input layetO neurons in the hiddéayer and 1 neuron in

the output layerwasidentified as the optimum model.

) ’é ’é (4)
1"L9,EIl 9yym«EIl 9uvg Gy
Y@ Uas

where 17is an output layer, Xo X,individual input variables, Wij and t+hre network connection weights and

biases either added or subtracted.

Databasevalueswere scaledto fall between 0.0 and 1isinga formula(Eq. 5) given bySharma et al. (2017)
beforebeingprocessedn the trainingstage This allows each (1V)to receiveequalattention during the training
processas well asavoidng network ill-conditioning(Masters, 1993; Cho, 2009; Majeed et al., 2013; Shahin,

2013)
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Fig. 5.Block diagram shows the process of training utiligimgLevenberg Marquardt (LM) algorithm.

Wi denotes the existing weigh§p. 5 is the subsequent weight, ..5=J @, are the current and last total error

respectively.

5.1.1 The LMmodelperformance

In this study, a LM training algorithm has beemapplied as it isthe most efficient and reliable method in
comparison tall otherCT approachesas noted byleong and Kim (2005and Mohammadi et al. (2016)To

clarify the effectiveness of thalgorithm, various performance indicat@ssuggested in theesearcHiterature



can beutilised In the current study,tatistical performance indicators, i.e., theean square error (MSE)
correlationcoefficiens (R and B androot mearsquareerror (RMSE)functiors wereused as listed inEgs. 6, 7

and8, to charactee model performancgewith an error goasetatO.

- Abg 1oF 24
4/5' L M (6)
0
Al A 19F Z;:25F &, @
§ Aigs: LoF Z;8 A 2y F 5,6
a ®

whereN is the number of the tiset used to develop the modeland P thetargeted and predicted vakie$

and ¢ are themean of the predictegihd observedaluesandR is the coefficient of correlation

After training theLM algorithm, the resultdndicatedthatthe optimum ANN modetomprisedof three layers
theinput layer,one hidden layer with 10 neurons processing elementsEp) andan output layer It is worth
notingthat 2N+1 is the maximum limit of neurons required to map any ANN netwbtk\VWKbéing thenumber

of model input parameter¥he networkperformancainderthe process dfaining isshownin Fig. 6, the results
revealing that the plot of validation depictsabstantial fall in minimum square error (MSE) with increasing
iteratiors. The optimum network performance is identified véttelatively negligible MSE of 0.0025 at an epoch
of 215. Itcould beinferredthat thelearningprocess stoppetthus avoidng overfitting, once the crosgalidation

error started to increashis can also be defined as early stopping criteria to alagmbverfitting (Shahin, 2014)

The variation in erregradient, theMarquardt adjustment parameter,rand validation checks apxhibitedin
Fig. 7, where itcan be seen that the gradient elretween the targeted and predicted valsi@snegligible value
(0.0003, the m factor and validation check numbédrysing1 x 10% and 6respectivelyat anepoch of 221An
error histogram graph {G) is revealedin Fig. 8 to provide additional confirmationof the proposed model

performanceAn EHG givesan indication of outliersan observation of data features that seems iadznsistent



with other observations in thiateset” (Jebur et al., 2018a)As the conclusiongrawnfrom the traning process
could be stronglyaffected by outliergTabachnick and Fidell, 2013; Hashim et al., 201#® training process
was stopped once the minimum erstaredto increaseln Fig. 8, the redblue, and greebars signify testing,
training and validatiomataset It should be statethat the majority of datetcoincides withthe zercerror ling

which was theoriginal aim.

Best Validation Performance is 0.0029941 at epoch 215
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Fig. 6. Graph showing the optimum mean square error (MSE) selected during the training piticess
configuration of 510-1.
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5.1.2 Assessment of thevl modelrobustness
In this sectionof the paper, theesults of the experimental loagttlement (€6) behaviourtestswere compared
with the predictedialuesgenerated byhe LM trained optimum networkA series of experimental pile lddests
were conductedon steel closal-endedpile modek. Theexperimentaltesting programusedthree pils with
slenderness ratios €ld) of 25 17, and 12vhereLc is the effective pile depth with diameter(d) of 40mm to
examine the behaviour dexible and rigidpiles. 277 pointsin total wererecordedirom the experimental pile
load testdata which used aP3 strain indicatoms illustrated in the experimental sef{ifig. 3). The pile head
settlement was closely monitored using two linear variable differential transformers (LVDT<s 5@ithm travel
distance Figs. 9, 10 and 18howthe extent ofhe fit between the experimental and predicted normalised load
carrying capacityf steelpiles, subject to axial loaglat different shgesof mechanical loading. Thexperimental
axial load variatios aretypical for canonical pile foundations subject to axial mechanical loading system
reducing from pile head to pile toe dtethe increasin developedshaft resistance in the effective soil zone
adjacent to the pilél'he results demonstrated thadod yielding effect for axial applied loadyreater thar2OON
was identified in the upper part of the foundation, where loaalimearity is markedlt can also be observed that
the mobilised pile bering capacity (end bearing and mobilised skin friction resistance) increases as sand stiffness
andpile effective deptlincreasePlastic mechanisms in the soil surrounding the @iéethe leading cause for the
nornlinearity of the loaesettlement response; as the applied load increases, the pile response shows nonlinearity
until reaching a maximum capacity at about 10% of pile dianiB&, BS EN 8004:1986Based on the graphical
comparisonsthere was an excellegbnsistencybetween theredicted and targeted valyegth a correlation
coefficient of 0.988 for all data, which demonstsdteat thedevelopedapproachs a superior method tase to

predict pile loadsettlement curvefor the range investigated

The results drawnusing anevolutionary LM trained approachwere alsoexhibited graphically with the
corresponding experimental settlementhie formof aregression calibration curve (Fi@)1 The results revealed
that the introduced training algorithsatisfies the robustness test. All fiedictedand measureg@oints are
matched well andlose to the bedit line with coefficientsof correlation of 0.9688 0.98436, 0.9854 and 0.98861
for training, validation, testing and all datalidatingthatthe application of the LM algorithm as aifficent

predictive tool thatctsin a fashion that would be expected.
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Fig. 9. Profilesof measured versus predicted pile load tests for model piles embedded in loose sand.
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Fig. 12.Regression graphics of the experimental set against predicted pile settlement for the training, validation,
testing and all data.

Comparing the experimental and the predicted valdes performance of thadoptedalgorithm was further
examined graphically usirtpe testing datasett should be pointed out thatis dataset was natsedduring the
training procesand it is normally used to assess the genehilitsaof the algorithm(Millie et al., 2012; Sun et
al., 2014) As suchthe testing datasetas usedo plot a regression calibration curve betwd@measured versus
predicted results, with a 95% confidence interval (&lnew MATLAB algorithmwas used for thisomparison
As shownin Fig. 13, there weréigh levels ofconsistencyetween the targetethdpredicted values, with a root

mean square error (RMSE) and correlatimefficiens (R and P)of 0.095 0.9% and2.22*1032, respectively.



This is a clear indication of trability of theLM approacho successfully reproduce the results ofeélkperimental

valuesaccurately.

RMSE = 0.059281, R = 0.9854, p = 2.2233e-32

1.2
O  Observed data .
Fitted value = Target value P 7
1 7|— — —95% Cl of fit -0 o
0.8 r .
()
= 06 i
©
>
[
— 04 - .
S
0.2 r i
0 = -
0.2 1 1 1 | 1 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Fitted value

Fig. 13.Profiles of fitted versus observed settlement for the validation dataset at a 95% confidence interval.

6. Comparison betweerthe LM optimum model with the various traditional methods

In this sectionconparisonshave been made between theerimentabndthe predicted pile settlemeresults
obtained fronthe most traditional methods proposedHmulos and Davis (1980 esic (1977)andDas (1995)
As statedpreviously, the testing data subset whgcatedo investigatehe predictive ability of theM approach
The testing data subset walso usedo evaluate theuperiorityand the generalisation abiliof the LM training

algorithmwhen comparewith theaforementioned traditional methods.

6.1 Polous and Davig[1980) methodology

Poulos and Davis (198@uggested thahe followingimperial equatiors (Egs. 9 and 103an be usetb predict

pile settlemenfor model piles subjected to axial laad



2+ ©)
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+L 44pdode (10)

24 . f * T&arepile appliedload, soil modulus otlasticityand diameter of pile. | is the influence factdipile
settlementwhichinvolvesthe layer effect of soil depth, pile compressibility &aissorf] U DAdIdtReinfluence
factorfor finite-depthand 4¢is the 3 R L V Y@&i@Qchivection factorSuchfactors can be determined from design
chartsrecommendetby Poulos and Davis (1980)singthis approachiegardinga rigid pile driven io a semi
infinite soil with a 0.5 Poissorf] U DLtk only influening parameterequiringconsideratior(Baziar et al.,

2015)

6.2 Vesicf {4977) approach
Vesic (1977)suggestedhat pile settlement can be determirien the summation of three componers S,

and S, usingthe followingsimplified formulas (Egs. 11, 12 and B):

LkAa E a& »0.

#coua (11)

5 L % gy (12)

o L%y (13)

x 5 IS the working load applied at the pile hed,ds the load supported lilie skin resistance andis the skin
friction distribution influence factor? is anempiricalfactor. Thecoefficients M and %can be determineda

Egs. 14 and 15

0 .
M L vr%ngrrOQU;iGz,: (14)
. H
% L Lré{uEré’sx—d\/l% (15)

The factor A£an be assumed to equal 0.5 and the parandgtier equal to 0.09, agcommendedor cohesion

less soil.



6.3 Das{ {995)procedure
The method proposed l¥as (1995)s similarto that proposed byesic (1977)with somemodificationswhen

calculating S2 and S¥hese modifications can semmarisedy Eqgs. 16, 17 and 18

5 &
5 L Qea, SFi%; 4
#gUéae
(16)
5, L F—2éae GI,—@p SFi% 4,
1E|®é®géé(;(3xae (17)
wal t Ermwﬁzazgéf)g@x
® @ (18)

Where 4 is equal to 0.88 as recommendBd\ejad et al. (2009)

With the aim of furthewerifying the validity of theproposed modeFigs. 14 and 15characteriseomparisos
betweensimulatedand predictegile settlementwvith respect to applietbad andthoseestimated bythe most
traditional methodsisel in the absence of the pile loget It can be observed that the conventional design
procedures are nefsreliablewhenmodeling load-distribution curve. As cited by many researchgtisey tend
to either uderestimate or overestimate tmedicted pile-load settlementThe comparativeresultsindicatethat
theLM trainingalgorithmperformed wellandis in substantiahgreaenent withthe fitted line, suggeistg thatthis

newmethodologyis anexpeditiousapproach, whicloffersobviousadvantages
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Fig. 14.Profiles of observed versus predicted pile settlement compared with traditional methods.
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Fig. 15.Profiles of measured versus predicted pile {satdlement for the proposed LM compared with other

conventional methods.

7. Concluding remarks and future research

This studyexamined pilebearingcapacity and explored the feasibility o&n expeditious artificial intelligence

tool to develop andapply highly efficient, predictive moded of pile-load settlement for steel model piles
embeddedin cohesiodess soil with three sandensitiesof 83% 51% and 18% using the supervised
backpropagatiohevenbergMarquardt BPLM) algorithm The results demonstrated thuiie-bearingcapacity

in dense sand is substantially higher than for those embedded in loose and medium sand. This can be assigned to
an increase in the end bearing point ameégratedshaft resistance developed in the radial eféecoilpile
penetration depthThe statistical analysis outcoméwdicatethat the most influential parameters on pile load
settlement curves are the applied load (P) and the Sabd H IULFWLRQ DQJOH /' &RQYHUVHO\
(Ic/d), pile axial rigidity, (EA), pile effecte length, (Ic) have been identified having théeast impact otoad

distribution behaviourlt is demonstrated that throposed_M training algorithm hagavourablefeaturesit is

simple, easy to uséess vulnerabléo overfittingissuesand highlyefficiert. It established that the MSE becomes
anegligiblevaluewith increagsin the learning proceswith comparable characteristics between the validation

and testing set errarin essence heresults of thegraphicalcomparisons betweaneasured and predicted pile
settlementonfirmedthat theproposedalgorithmcould be used as an efficiedatadriven approacho capture

full pile load-settlementesponsswith aRMSEandR, of 0.0691and0.984, with non-significantmeansquare

error (MSE). Graphical comparisons were madeauthenticatehe reliability of thedeterministicproposed

method These results revealed thahe LM algorithm outperforned traditional approachesconfirming the
successfuapplicationof theproposedechnique Conventional methodsurrently in useo predict pile settlement

need to be updated, if employed fithure applicationsFuture study is recommended to foamsconcrete piles
penetrated in clay sdib examinepile loadcarrying capacityand to develo furtherpredictive model usinthe

LM training algorithm
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