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Background: Remote ischaemic preconditioning (rIPC) may improve cardiac/cerebrovascular 33 

outcomes of ischaemic events. Ischaemic damage caused by cardiovascular/cerebrovascular 34 

disease are primary causes of mortality in type 2 diabetes mellitus (T2DM). Due to the positive 35 

effects from a bout of rIPC within the vasculature, we explored if daily rIPC could improve 36 

endothelial and cerebrovascular function. The aim of this pilot study was to obtain estimates 37 

for the change in conduit artery and cerebrovascular function following a 7-day rIPC 38 

intervention. 39 

Methods: Twenty-one patients with T2DM were randomly allocated to either 7-day daily 40 

upper-arm rIPC (4x5 min 220 mmHg, interspaced by 5-min reperfusion) or control. We 41 

examined peripheral endothelial function using flow mediated dilation (FMD) before and after 42 

ischemia-reperfusion injury (IRI, 20 min forearm ischaemic-20 min reperfusion) and 43 

cerebrovascular function, assessed by dynamic cerebral autoregulation (dCA) at three time 44 

points; pre, post and 8 days post intervention.  45 

Results: For exploratory purposes, we performed statistical analysis on our primary 46 

comparison (pre-to-post) to provide an estimate of the change in the primary and secondary 47 

outcome variables. Using pre-intervention data as a covariate, the change from pre-post in 48 

FMD was 1.3% (95%CI: 0.69 to 3.80; P=0.09) and 0.23 %cm s-1 %.mmHg-1mm Hg/% (-0.12, 49 

0.59; P=0.18) in dCA normalised gain with rIPC versus control. Based upon this, a sample size 50 

of 20 and 50 for FMD and normalised gain, respectively, in each group would provide 90% 51 

power to detect statistically significant (P<0.05) between-group difference in a randomised 52 

controlled trial.   53 

 Conclusion: We provide estimates of sample size for a randomised control trial exploring the 54 

impact of daily rIPC for 7 days on peripheral endothelial and cerebrovascular function. The 55 



directional changes outline from our pilot study suggest peripheral endothelial function can be 56 

enhanced by daily rIPC in patients with T2DM.  57 

Trial registration: ClinicalTrials.gov NCT03598855  58 

Keywords; Remote ischaemic preconditioning, type 2 diabetes, vascular function, ischaemia 59 

reperfusion injury  60 

 61 

Introduction 62 

Cardiovascular and cerebrovascular disease are leading causes of mortality in type 2 diabetes 63 

mellitus (T2DM) 1. Importantly, the pathological consequences of T2DM predominately relate 64 

to vascular complications, encompassing both the macro- (e.g. cardio- and cerebrovascular 65 

disease) and microvasculature (e.g. retinopathy and nephropathy) 2. Clinical studies show that 66 

diabetic individuals are more susceptible to ischemia-reperfusion injuries (IRI) compared to 67 

non-diabetics 3, 4, and reduced tolerance to ischaemia has been considered responsible for the 68 

increase morbidity of ischaemic heart disease in T2DM 5. Conventionally, the main therapeutic 69 

target in T2DM has been glucose lowering but the importance of targeting cardiovascular risk 70 

is increasingly recognised 6.  Intensive glucose lowering treatment has shown limited benefits 71 

on all cause morbidity and mortality from cardiovascular causes 7.  Lifestyle changes including 72 

improved diet and physical activity are the mainstay of management with regular exercise 73 

promoted to improve metabolic health and lower cardiovascular and cerebrovascular risk in 74 

T2DM 8. Since a vast majority of T2DM patients do not engage in regular physical activity 9, 75 

10, perhaps because of disease complications (e.g. foot ulcers), alternative or adjunct 76 

interventions are required to improve cardiovascular and cerebrovascular disease risk, similar 77 

to that of exercise, in this highly vulnerable population.      78 

 79 



Remote ischaemic preconditioning (rIPC) is a technique whereby short periods of cyclical 80 

tissue ischaemia-reperfusion (of a limb) has been shown to have protective effects beyond the 81 

vascular bed directly exposed to the IPC stimulus 11, potentially mediated by neural and/or 82 

humoral signalling pathways 12, 13, yet precise mechanisms remain elusive. When applied prior 83 

to planned ischaemia (e.g. coronary artery bypass surgery) or around spontaneous ischaemic 84 

events (e.g. myocardial infarction), studies have reported the potential beneficial and protective 85 

effects of rIPC to render remote (vascular) tissues and organs (e.g. heart) resistant to ischaemic 86 

reperfusion injuries 12. More recently, studies have examined the impact of performing multiple 87 

rIPC episodes and explored the potential of rIPC as an intervention to improve vascular 88 

function 13. Repeated rIPC interventions ranging from 1 to 8 weeks have been shown to 89 

improve vascular endothelial function before and after ischemia reperfusion injuries 14-16, 90 

increase the levels of endothelial progenitor cells 17, and increase coronary flow reserve in heart 91 

failure patients 18. Some studies have also revealed a potential clinical benefit of rIPC with a 6 92 

week intervention reducing the size of diabetic foot ulcers 19 and lower stroke recurrence 93 

following one year of rIPC 20, 21. Whether an acute intensive rIPC intervention leads to 94 

improvements in cerebrovascular function assessed measuring dynamic cerebral 95 

autoregulation (dCA), a key mechanism protecting the brain from fluctuations in blood 96 

pressure, as well as peripheral endothelial function in T2DM patients is currently unknown, 97 

whilst such benefits may have important clinical benefits, especially those with functional 98 

limitations.  99 

  100 

The primary aim of this pilot study was to obtain estimates of the change in conduit artery 101 

endothelial function before and after endothelial IRI, a model that allows for the assessment of 102 

the efficacy of an intervention to reduce the damage that is induced by reperfusion following a 103 

period of ischaemia, succeeding a 7-day rIPC intervention. Acute intensive rIPC interventions 104 



have improved conduit artery endothelial function 14 and attenuated the injury induced by an 105 

IRI in young healthy individuals 16, yet it is not known whether rIPC offers similar benefits to 106 

individuals with T2DM whereby endothelial dysfunction is likely present 22.     107 

 108 

The secondary aim was to obtain estimates of the change in cerebrovascular function after 7-109 

days of daily limb rIPC. Given the evidence rIPC has systemic beneficial effects on vascular 110 

regulation and endothelial function 15, 17, improvements to blood vessel function may translate 111 

to enhanced responsive to blood pressure within cerebral vessels (dynamic cerebral 112 

autoregulation). Additionally, application of rIPC can regulate several vasoactive biomarkers 113 

including, nitric oxide, adenosine and bradykinin 12, 23 which may have the potential to enhance 114 

dCA 24-26   115 

  116 

Methods 117 

Participants 118 

Twenty-one participants (13 males, 8 females, Table 1) with clinically diagnosed T2DM who 119 

were managed with diet or metformin only were recruited for this randomised controlled pilot 120 

study (Figure 1). Participants were excluded if they had a history of stroke (including TIAs), 121 

diagnosis of chronic heart failure, were current smokers or were being treated with 122 

sulphonylureas, DPPIV, GLP-1, SGLT2 or insulin to control T2DM. Participants were 123 

informed of the study protocol verbally and in writing before providing written informed 124 

consent. The study was approved by the local NHS ethics committee and adhered to the 125 

standards set out in the Declaration of Helsinki (2000). All data collection took place at 126 

Liverpool John Moores University.  Registered clinical trial at ClinicalTrials.gov 127 

NCT03598855. Trial is reported following CONSORT recommendations 27.    128 

[Insert Figure 1 here]     129 



[Insert Table 1 here] 130 

Research Design 131 

Participants attended the laboratory on three occasions, separated by seven days, having fasted 132 

overnight (12hrs), refraining from alcohol and exercise for 24hrs and caffeine for 12hrs before 133 

each visit. Each visit consisted of assessments of brachial artery function (before and after 134 

ischemia reperfusion injury) and cerebrovascular function. Assessments were performed at the 135 

same time of day for each visit 28, 29 and occurred prior to group randomisation (computer-136 

generated-sequence) (Pre), immediately following the cessation of the intervention (Post) and 137 

8 days following cessation of the intervention (Post+8) (Figure 2).  138 

 139 

Measurements 140 

Brachial artery endothelial function. Brachial artery endothelial function was assessed using 141 

the flow mediated dilation (FMD) technique following 20 min of supine rest 30. Images of the 142 

right brachial artery were acquired using high-resolution ultrasound (T3300; Terason, 143 

Burlington, MA). Diameter, flow and shear stress were measured prior to and following 5 144 

minutes of forearm cuff inflation (D.E. Hokanson, Bellevue, WA). All FMD measurements 145 

were performed by the same sonographer with a day-to-day coefficient of variation in FMD% 146 

of 11% and a coefficient of variation of 3% for baseline artery diameter which is deemed good-147 

excellent based on previous analysis 31.     148 

 149 

Analysis was performed using custom designed edge-detection and wall-tracking software, 150 

which is largely independent of investigator bias. Previous articles contain detailed descriptions 151 

of our analytical approach 32, 33. Reproducibility of diameter measurements using this semi-152 

automated software is significantly better than manual methods, significantly reduces observer 153 

error, and possesses within-day coefficient of variation of 6.7% 33. Allometric scaling for 154 



baseline diameter was performed 34. FMD analysis was performed by a researcher blinded to 155 

the group allocation using a single blinded coding-randomised procedure.     156 

 157 

Ischaemia Reperfusion. Immediately following the baseline FMD, a temporary, endothelial IRI 158 

was induced by inflating a cuff around the upper arm to 220 mmHg for 20 min using a rapid 159 

inflation pneumatic device. This was followed by a 20 min reperfusion period before the FMD 160 

protocol was repeated. A calculation of the relative % reduction in endothelial function 161 

following endothelial IRI was performed. The immediate decrease in FMD following 162 

temporary endothelial dysfunction induced by the 20 min cuff inflation is believed to reflect a 163 

reperfusion injury and reduced nitric oxide (NO) bioavailability 35-37.  The relative % decrease 164 

in FMD following IRI was calculated by dividing the absolute change between the two FMD’s 165 

by the baseline FMD *100.  166 

 167 

Cerebrovascular function (baseline velocity & dynamic cerebral autoregulation). Following 168 

20 min rest in the supine position, bilateral middle cerebral artery velocity (MCAv) was 169 

continuously measured through the temporal window using transcranial Doppler 170 

ultrasonography (TCD). A 2-MHz Doppler probe (Spencer Technologies, Seattle WA, USA) 171 

was adjusted until an optimal signal was identified, as described in detail previously 38, and 172 

held in place using a Marc 600 head frame (Spencer Technologies, Seattle, USA) to prevent 173 

subtle movement of the Doppler probe and maintain insonation angle accuracy. Once the 174 

optimal signals were attained in the temporal window, the probe location and machine settings 175 

(depth, gain and power) were recorded to identify the same imaging site for all visits.  176 

Participants were instrumented with a two-way valve-breathing (MLA1028, ADInstruments, 177 

Colorado Springs, Colorado, USA) mouthpiece (MLA1026, ADInstruments) from which 178 

partial pressure of end tidal CO2 (PetCO2) was measured using a calibrated gas analyser 179 



(ML206, ADInstruments). Continuous beat-by-beat blood pressure (BP) was obtained from a 180 

digit (Finapres, Amsterdam, Netherlands) and heart rate acquired from a three lead 181 

electrocardiogram (Powerlab, AD Instruments, Oxford, UK). An index of cerebrovascular 182 

resistance (CBVC) was calculated using the ratio of MCAv to BP. All data was sampled at 50 183 

Hz with a data acquisition system (PowerLab, ADInstruments, Oxford UK) and displayed on 184 

LabChart (ADInstruments, Colorado Springs, Colorado, USA).  185 

 186 

The relationship between BP and MCAv, referred to as dynamic cerebral autoregulation (dCA), 187 

was assessed using a squat to stand procedure in order to induce transient changes in BP 39. 188 

Participants replicated the experimenter whilst performing these manoeuvres in order to 189 

achieve consistent movements. These manoeuvers were performed at 0.10 Hz (5 seconds squat 190 

followed by 5 seconds stand) for 5 min to create physiologically relevant changes in BP via 191 

adjustments in posture that present challenges to the autoregulatory system that are typically 192 

experienced in daily life 40. The BP-MCAv relationship during these manoeuvres were 193 

analysed in accordance with most recent guidelines 41 using Transfer Function Analysis.  194 

 195 

Resting measurements of MCAv, BP and PetCO2 were extracted from LabChart averaged over 196 

a 5-minute recording. Data from 5 min recording of squat to stand manoeuvres for dCA were 197 

extracted from LabChart beat-to-beat using ECG tracing. Cerebrovascular conductance 198 

(CbVC) was calculated using; MCAv/MAP. Transfer function analysis was applied using 199 

MATLAB (2010a; MathWorks-Inc., Natick, MA) in order to calculate associated power (gain) 200 

and timing (phases) and linearity of MAP and MCAv (coherence) using a Cerebral 201 

Autoregulation Network (CARNet) provided script 41.  202 

 203 

Interventions 204 



rIPC. The participants randomised into the rIPC intervention group (n=11) each received a 205 

hand held BP device (Welch Allyn DuraShockTM  DS45, New York, USA ) to self-administer 206 

rIPC. The cuff was placed around the upper arm and inflated to 220 mmHg for five min, 207 

followed by five min deflation, and this cycle was repeated a further three times. This process 208 

was performed daily for seven days. The arm to which the participants applied the rIPC was 209 

randomised between the same arm the FMD’s were performed (IPC arm, n=5) and the contra 210 

lateral arm (n=6). Participants were supervised for their first rIPC bout to ensure it was 211 

correctly performed and were then free to perform the rIPC at any time of day and noted this 212 

in a diary to monitor compliance.  Participants were instructed to follow their normal routine 213 

and to abstain from any new physical activity or changes in dietary habits 214 

 215 

Control. Each participant (n=10) was instructed to follow their normal routine and to abstain 216 

from any new physical activity or change in dietary habits.   217 

 218 

Statistical analysis 219 

Given that this is a pilot study to obtain estimates of primary and secondary outcome variables, 220 

no a priori sample size was calculated. The primary outcome in the study is FMD and the 221 

primary comparison is between pre to post intervention. Using the data collected (rIPC group 222 

n=11, control group n=10) in the study we calculated post hoc power of the present study, but 223 

also calculated the sample size for a future, fully powered randomised control trial for both 224 

primary and secondary outcome variables  (G*Power 3.1.5).  225 

For exploratory purposes, we performed statistical analysis on our primary comparison (i.e. 226 

pre-to-post) to provide an estimate of the change in the primary and secondary outcome 227 

variables. Delta changes (∆) from pre to post were calculated for each group and entered as the 228 

dependent variable in a linear mixed model (Statistical Package for the Social Sciences, 229 



Version 20: SPSS Inc., Chicago, IL) with pre-intervention data used as a covariate. Data are 230 

presented in the text as mean and 95% confidence intervals (95%CI). P-values are presented, 231 

but not interpreted. The changes in the data are described in relation to a minimally clinical 232 

important difference (MCID) of 1% for FMD, calculated based upon previous intervention 233 

studies 14, 15, 42 and from a meta-analysis indicating that 1% improvement in brachial FMD 234 

decreases the risk of future cardiovascular events by 13% 43. The MCID for LF gain was 235 

between 0.07 and 0.26%cm s-1 %.mmHg-1mm Hg/%. This was based on studies showing 236 

differences between healthy and diseased populations 44, 45 due to the limited intervention 237 

studies to date.  238 

Results 239 

Participants allocated to each intervention were similar in terms of age, BMI and BP status 240 

(Table 1). Participants randomised into the rIPC intervention group (N=11) demonstrated 96% 241 

compliance to the rIPC intervention.  242 

Brachial artery endothelial function 243 

Baseline FMD: Brachial artery FMD improved by 1.3% (95%CI: 0.69 to 3.80; P=0.09) with 244 

rIPC compared to control from pre to post, which was greater than our MCID of 1%. Our data 245 

provided 65% power to detect a between-group difference in FMD from pre-post.  Using this 246 

data, a sample size of 20 in each group would provide 90% power to detect a statistically 247 

significant (P<0.05) between groups in FMD in a future randomised control trial.  248 

In the current study, FMD was 0.9 (-3.9, 2.0 %) lower in the rIPC group compared to control 249 

at pre, but 0.9 (-2.3, 4.0 %) higher than control at post, which remained higher at post+8 (0.8 250 

(-2.3, 3.9 %), Figure 3). The associated changes in baseline diameter, peak diameter, shear rate 251 



or time-to-peak diameter between interventions or over time were negligible from pre to post 252 

and post 8 (Table 2).  253 

Endothelial IRI: When examining the FMD after the endothelial IRI (Table 2). FMD was 2.3 254 

(-5.4, 0.8%) lower in the rIPC group compared to control at pre, but only 0.1 (-2.8, 2.6%) lower 255 

at post and 0.5 (-2.9, 2.0%;) at post+8. FMD increased over the intervention period by 0.7% (-256 

0.1, 1.6). These directional changes were similar when the FMD data was expressed as a 257 

relative change. Prior to the intervention, the relative % decrease in FMD in response to IRI 258 

was 24.7% (-10.4, 49.7%) greater in the rIPC group compared to control (Table 2). This 259 

difference was attenuated to 4.5% (-23.9, 14.9%) at post and 1.4% (-22.5, 19.6%) at post+8.  260 

 261 

Cerebrovascular function 262 

Low frequency normalised gain changed by 0.23 %cm s-1 %.mmHg-1mm Hg/%  (-0.12, 0.59; 263 

P=0.18) following rIPC compared to control from pre to post, which was greater than our lower 264 

level of the MCID of 0.07 and 0.26. Our data provided 29% power to detect a between-group 265 

difference in LF normalised gain from pre-post.  Using this data a sample size of 50 in each 266 

group would provide 90% power to detect a statistically significant (P<0.05) between group 267 

difference in LF normalised gain in a future randomised control trial.  268 

In the current study, the directional changes in any of the dCA variables were negligible 269 

between conditions (Table 4). The associated changes in MCAv, PetCO2 or CbVC were 270 

negligible between both conditions and over time from pre to post and post 8 (Table 3). MAP 271 

decreased by 4 mmHg (2, 6 mmHg) across both interventions. Similarly, SBP decreased by 5 272 

mmHg (-9, -1 mmHg) and DBP by 3 mmHg (-5, -1 mmHg).   273 

 274 



Discussion 275 

The aim of this study was to obtain estimates of changes in peripheral conduit artery endothelial 276 

and cerebrovascular function and the response to endothelial IRI to 7-days of daily limb rIPC 277 

in T2DM. We provide preliminary evidence that 7-days of daily rIPC in a representative sample 278 

of patients can enhance conduit artery endothelial function measured using FMD, and provide 279 

protection against a temporary decline in endothelial function following ischaemia reperfusion. 280 

Although our observations suggest that rIPC had little impact on cerebrovascular function, our 281 

preliminary directional findings and sample size estimations suggest the ability of a rIPC 282 

intervention to improve peripheral vasculature in T2DM. These effects should be explored 283 

further in a larger, fully powered trial.  284 

 285 

We provide preliminary evidence that daily rIPC can increase conduit artery endothelial 286 

function. This is clinically important given that individuals with T2DM exhibit endothelial 287 

dysfunction 46, 47 and are also at high risk of microvascular disease of the small vessels. Chronic 288 

hyperglycaemia limits the ability of the endothelial cells to produce nitric oxide (NO) which 289 

has important anti-atherogenic properties, contributing to the maintenance of vascular 290 

homeostasis 48. This is relevant as vascular dysfunction plays a major role in the development 291 

of cardiovascular complications 49. Given that a meta-analysis confirmed that a 1% 292 

improvement in brachial FMD decreases the risk of future cardiovascular events by 13% 43, 293 

strategies to improve vascular endothelial function are crucial. Numerous clinical outcome 294 

studies have demonstrated that brachial artery FMD is a good predictor of cardiovascular risk 295 

50. Improvements in FMD are associated with enhanced NO production 51 and NO pathways 296 

are impaired with diabetes 22, 52. Our data suggest that vascular endothelial function can be 297 

improved in 7 days and remain elevated 8 days following the end of the intervention. Given 298 

that rIPC was administered in the arm that received the preconditioning stimulus as well as in 299 



the contralateral arm our data supports the notion that rIPC has local and systemic effects on 300 

the vascular system 14. As this present study was not designed as a mechanistic study, we can 301 

only speculate on potential mechanisms involved in the change in FMD we observed.  Episodic 302 

increases in shear stress is likely to represent a major physiological stimulus for the local 303 

improvements in FMD 13 however is unlikely to have effected contralateral arm FMD. The 304 

mechanisms mediating the systemic effects of rIPC remains elusive.  Systemic stimuli or 305 

circulating markers activated by rIPC more likely explain the remote improvement in conduit 306 

artery FMD. For example, rIPC leads to an increase in vascular endothelial growth factor and 307 

endothelial progenitor cells 17, which may improve endothelial function in remote areas 53. 308 

However, more research studies are required to gain insight into exact mediating mechanisms.    309 

 310 

The present study provides evidence that daily rIPC can provide protection against endothelial 311 

IRI in T2DM. The endothelial IRI model performed in this study has been used by previous 312 

studies 16, 54 and is acknowledged as a surrogate model for myocardial reperfusion injuries. A 313 

similar model using forearm IRI identified that the decrease in FMD occurs as a result of a 314 

decrease in plasma nitrite and plasma nitrate concentrations, indicating a reduction in NO 315 

bioavailability which is still decreased up to 50 min post reperfusion 37.  Our findings agree 316 

with previous rIPC studies showing (partial) prevention of endothelial dysfunction after IRI 317 

when preceded by a bout of rIPC 16. Reduced endothelial dysfunction against IRI is of clinical 318 

significance given that patients with T2DM demonstrate more extensive injury in response to 319 

ischaemia reperfusion 55. Interestingly, a previous six-week rIPC intervention performed on 320 

patients with T2DM with foot ulcers identified an augmentation in the wound size of the foot 321 

ulcers in the patients who received the rIPC compared to a control 19, further demonstrating the 322 

capability of a rIPC intervention to treat ischaemic induced complications in a  diabetic patient 323 

group.  324 



 325 

We identified that a 7 day repeated rIPC intervention had little impact on resting MCAv or 326 

dCA. Despite the considerable literature on the effects of rIPC on cardiac and peripheral 327 

vascular function in humans, there are few studies on cerebrovascular function, even with 328 

stroke and cerebrovascular disease being a leading cause of death worldwide 56. We performed 329 

a post-hoc analysis of power in this study which revealed that more participants would have 330 

been required for adequate statistical power; therefore the data should be interpreted with 331 

caution. It is likely that control of cerebral autoregulation is multifactorial encompassing 332 

neurogenic, metabolic, myogenic and endothelial factors 57. The exact contribution of each, 333 

including the endothelium is debated. Evidence suggests that the endothelium carries 334 

mechanoreceptor properties that allows it to actively contribute to cerebral autoregulation 335 

following changes in arterial shear stress and transmural pressure 58. Therefore, a healthier and 336 

more active endothelium may have translated to improved dCA, yet this was not evident in the 337 

present study. Given that dCA is controlled by highly sensitive and tight regulatory factors, it 338 

is possible that 7 days of rIPC was not a sufficient enough stimulus to result in any 339 

change/adaption. This potential explanation is supported by the fact that the only previous 340 

studies examining repeated rIPC on human cerebrovascular markers employed daily rIPC for 341 

300 days 20, 180 days 21 and 365 days 59 identifying increases in cerebral perfusion and 342 

reductions in stroke reoccurrence but did not assess functional markers of the cerebral 343 

circulation. Whilst there is also a strong association between T2DM and cerebrovascular 344 

dysfunction 60, none of our participants had any previous documented cerebrovascular 345 

complications unlike the aforementioned studies and were of shorter duration of T2DM.  346 

Given our data was collected for the purposed of generating estimates for a larger trial we 347 

acknowledge we have a small sample and limited statistical power. We also acknowledge a 348 

number of other study limitations. Pre-intervention characteristics, primarily MAP, metformin 349 



and statin use were different between the intervention and control group and some evidence 350 

now suggests that certain medication used to treat risk factors of cardiovascular disease can 351 

alter the response to cardio protective interventions 61. Additionally, HbA1c data was not 352 

collected to examine clinical relevance to glucose control nor biomarkers of NO bioavailability. 353 

Stratification for medication and markers of glucose control and NO bioavailability should be 354 

incorporated into a larger fully powered future trial. Lastly, Middle cerebral artery blood 355 

velocity was measured using transcranial Doppler, a technique that provides a reliable 356 

surrogate for absolute cerebral blood flow providing the insonated artery diameter remains 357 

constant across and between the study conditions 62. Although we believe it is unlikely, we 358 

cannot discount the possibility that rIPC induced a change in middle cerebral artery diameter 359 

that impacted our measures of cerebral blood flow. A future trial may consider assessment of 360 

extra cranial vessels (e.g. internal carotid artery) with ultrasound to assess changes in artery 361 

diameter as an indicator of changes in diameter.   362 

 363 

Clinical Perspectives 364 

 365 

Endothelial dysfunction represents a significant event in the atherosclerotic cascade and 366 

predicts cardiovascular and cerebrovascular events 43. Our findings suggest that rIPC 367 

interventions have the potential to represent a low-cost, simple and importantly, non-invasive 368 

strategy to improve endothelial function in a patient group with likely endothelial dysfunction 369 

and at higher risk of vascular complications and it may be especially useful in those with 370 

functional limitations. Nevertheless, future trials with adequate statistical power are required 371 

to identify if rIPC has the ability to improve vascular outcomes in this population.     372 

 373 

Conclusion 374 



The present study has provided estimates of sample size for a randomised control trial 375 

exploring the impact of daily rIPC for 7 days on peripheral endothelial and cerebrovascular 376 

function. The directional changes outlined from our pilot study suggest peripheral endothelial 377 

function and responses to endothelial IRI can be enhanced by daily rIPC in patients with T2DM 378 

and should be investigated in a fully powered randomised control trial. No such changes were 379 

evident in MCAv or in dCA. Nevertheless, the impact of rIPC on cerebrovascular function 380 

warrants further research. 381 
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Figure 1: Screening, recruitment and completion of participants in the study.   580 
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Figure 2: Schematic of the study design. Each rIPC consisted of 4 cycles of 5 minute ischaemia 597 
(220 mmHg) followed by 5 min reperfusion applied unilaterally. At each testing visit brachial 598 

artery flow mediated dilation, ischaemic reperfusion injury and cerebrovascular function were 599 
assessed  Abbreviations: rIPC, remote ischemic preconditioning. 600 

 601 

Table 1. Descriptive characteristics of participants in rIPC and control groups (p values 602 

reported from independent samples t-test). 603 

 rIPC (n=11, 5 

females) 

Control (n=10, 3 

females) 

P Value 

Age (years) 58.8±7.4 59.7±9.6 0.72 

Weight (kg) 92.7±18.6 101.5±32.5 0.62 

BMI (kg/m2) 32.3±6.6 33.9±9.7 0.89 

MAP (mmHg) 101±14 107±11 0.37 

SBP (mmHg) 145±16 151±19 0.57 

DBP (mmHg) 79±9 84±10 0.31 

Metformin  9/11 4/10  

Anti-hypertensive medication 4/11 0/10  

Lipid lowering medication  7/11 3/11  

 604 

Values are means ± SD. Abbreviations; BMI, Body Mass Index; MAP, mean arterial pressure; 605 
SBP, systolic blood pressure; DBP, diastolic blood pressure.   606 



Table 2.  Brachial artery flow mediated dilation before (Pre), immediately following (Post) and 8 days (Post+8) after the end of the intervention 607 

in both the intervention (rIPC) groups and control. Data in tables shows FMD characteristics in both before and after ischemia-reperfusion injury.  608 

Values are means ± SD; n=11 rIPC group and n=9 control group. Abbreviations: FMD, Flow mediated dilation; IRI, ischemia-reperfusion 609 
injury; AUC, area under the curve; rIPC, remote ischemic preconditioning 610 

 611 

 rIPC Group (n=11) Control Group (n=10) 

 Pre Post Post+8 Pre Post Post+8 

Baseline 

Resting diameter (mm) 4.4±0.6 4.3±0.7 4.3±0.6 4.5±0.7 4.6±0.7 4.6±0.7 

FMD% 5.5±1.7 7.2±2.4 7.2±2.6 6.8±2.9 7.0±3.0 6.9±2.5 

Time to peak (sec) 70±30 65±24 71±25 68±23 63±22 69±20 

Shear AUC (103) 16.9±12.5 19.3±12.2 17.1±11.9 18.3±11.4 19.6±15.4 18.2±8.1 

Post-ischaemia reperfusion 

Resting diameter (mm) 4.5±0.8 4.5±0.8 4.5±0.8 4.7±0.7 4.8±0.7 4.9±0.7 

FMD% 2.4±3.7 4.5±3.0 4.0±2.8 4.7±1.9 4.6±2.5 4.5±1.9 

Time to peak (sec) 72±23 71±27 74±23 53±24 53±17 64±21 

Shear AUC (103) 14.9±12.9 14.5±11.6 12.4±8.1 15.6±12.0 15.7±6.5 13.6±6.6 

Ischaemia-reperfusion injury 

Relative % change following 

IRI 

62.2±44.3 38.0±20.4 39.4±25.0 37.6±13.2 42.5±15.4 40.8±12.0 



 612 

 613 

Values are means ± SD; n = 11  rIPC group and n = 10 control group. Abbreviations; MAP, mean arterial pressure;, MCAv, middle cerebral 614 

artery velocity; PetCO2, partial pressure of end tidal carbon dioxide; CbVC, cerebral vascular conductance; SBP, systolic blood pressure; DBP, 615 

diastolic blood pressure;  rIPC, remote ischemic preconditioning.  616 

 617 

 618 

Table 3. Baseline hemodynamics from five minute recordings before (Pre), immediately following (Post) and 8 days (Post+8) after the end of 

the intervention. 

 rIPC Group (n=11) Control Group (n=10) 

 Pre Post Post+8 Pre Post Post+8 

Resting data 

MAP (mmHg) 101±14 100±10 96±12 107±12 104±12 104±9 

MCAv (cm.s-1) 56.2±8.0 55.5±7.8 55.7±10.9 53.6±11.0 53.2±10.1 53.5±9.8 

PetCO2 (mmHg) 38.4±6.0 38.1±5.8 37.7±4.7 38.8±6.4 41.5±6.0 42.2±6.2 

CbVC (cm.s-

1.mmHg-1) 

0.56±0.10 0.55±0.10 0.58±0.14 0.52±0.12 0.53±0.12 0.52±0.12 

SBP (mmHg) 145±16 144±13 139±16 151±19 151±17 148±17 

DBP (mmHg) 78±9 77±9 75±10 84±10 81±9 83±10 



Table 4. Transfer function parameters from dynamic cerebral autoregulation before (Pre), immediately following (Post) and 8 days (Post+8) 619 

after the end of the intervention using squat-stand manoeuvres (0.10Hz).  620 

Values are means ± SD; n = 10 rIPC group and n = 9 control group. Abbreviations; rIPC, remote ischemic preconditioning; PetCO2, partial 621 

pressure of end tidal carbon dioxide 622 

 623 

 rIPC Group (n=10) Control Group (n=9) 

 Pre Post Post+8 Pre Post Post+8 

PetCO2 (mmHg) 

 40.3±3.7 39.2±48 38.3±3.4 38.8±7.5 38.3±6.6 39.3±5.6 

Coherence 

 0.65±0.10 0.60±0.12 0.60±0.21 0.61±0.17 0.59±0.18 0.60±0.22 

Phase (radians) 

 0.44±0.12 0.48±0.28 0.48±020 0.61±0.32 0.52±0.25 0.52±0.22 

Gain (cm.s-1. mmHg-1) 

 0.66±0.16 0.69±0.20 0.72±0.27 0.71±0.18 0.69±0.26 0.71±0.24 

Normalised Gain (%.mmHg-1) 

 1.12±0.21 1.23±0.20 1.36±0.56 1.40±0.27 1.27±0.50 1.37±0.32 
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 647 

Figure 3: Baseline Brachial artery FMD% (A), Post IR FMD% (B) and the relative % decrease 648 
(C) before (Pre), immediately after (Post) and eight days following the intervention (Post+8) 649 

in the rIPC group (closed circles) and control group (open circles).* Denotes significant main 650 

effect from time (P<0.05). Abbreviations; FMD, flow mediated dilation; rIPC, remote 651 
ischaemic preconditioning; IR, ischaemia-reperfusion. 652 
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