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Abstract 

Three experiments investigated the impact of working memory load on on-line plan adjustment 

during a test of multitasking in young, non-expert, adult participants. Multitasking was assessed 

using the Edinburgh Virtual Errands Test (EVET - Logie, Trawley & Law, 2011).  Participants were 

asked to memorise either good or poor plans for performing multiple errands, and were assessed 

both on task completion and the extent to which they modified their plans during EVET 

performance. EVET was performed twice, with and without a secondary task loading a component of 

working memory. In Experiment 1 articulatory suppression was used to load the phonological loop. 

In Experiment 2, oral random generation was used to load executive functions. In Experiment 3, 

spatial working memory was loaded with an auditory spatial localisation task. EVET performance for 

both good and poor planning groups was disrupted by random generation and sound localisation, 

but not by articulatory suppression. Additionally, people given a poor plan were able to overcome 

this initial disadvantage by modifying their plans on-line. It was concluded that, in addition to 

executive functions, multiple errands performance draws heavily on spatial, but not verbal, working 

memory resources but can be successfully completed on the basis of modifying plans on-line, 

despite a secondary task load.  
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In a situation where there are several tasks to complete within a limited period of time, it is often 

necessary to interleave performance of those tasks, by switching back and forth between them. This 

type of activity is known as multitasking (Burgess, 2000), and it is a ubiquitous requirement of 

modern life in both domestic and workplace situations (e.g., Hambrick, Oswald, Darowski, Rench & 

Brou, 2010). Multitasking in non-expert individuals has thus far been studied mainly within the field 

of neuropsychology, in terms of the deficits in everyday and laboratory functioning demonstrated by 

individuals with cortical lesions (e.g., Alderman, Burgess, Knight & Henman, 2003; Burgess, Veitch, 

de Lacy Costello & Shallice, 2000). The aim of the present research was to investigate the cognitive 

demands of multitasking among healthy individuals, by studying the role of working memory 

resources in the process of plan execution and adjustment during multitasking. In contrast to 

previous correlational approaches (Logie, Trawley & Law, 2011; Trawley, Law & Logie, 2011), which 

examined the relationship between working memory capacity and multitasking performance, we 

used an experimental, dual-task methodology to examine the impact of concurrent task load on 

execution of pre-prepared plans in a virtual version of the Multiple Errands Test (Shallice & Burgess, 

1991). The present study goes beyond a previous investigation using dual-task methodology (Law, 

Logie & Pearson, 2006), by manipulating the type of plans that people were given prior to the test, 

and by using more fine grained measures of multitasking performance.  

The Multiple Errands Test is high in ecological validity, because it requires participants to complete a 

series of errands, while abiding by specified rules, for example in a shopping precinct (e.g., Alderman 

et al., 2003; Garden, Phillips, & McPherson, 2001), or hospital setting (Knight, Alderman & Burgess, 

2002; Dawson et al., 2009). Another strength of the test is its sensitivity to neurological impairment. 

However, its drawbacks are that it is cumbersome and time-consuming to administer, and the 

experimenter relinquishes control over many aspects of the situation when using real environments. 

This has led to the development of computerised versions of the test that can be performed in 

virtual 3D environments (Law et al., 2006; Logie, Law, Trawley and Nissan, 2010; Logie et al.,  2011; 

McGeorge et al., 2001; Rajendran et al., 2011; Rand, Basha-Abu Rukan, Weiss & Katz, 2009; Trawley 
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et al.,  2011). The present study used the Edinburgh Virtual Errands Test (EVET; Logie et al., 2011), in 

which participants had to complete a series of memorised errands in a virtual shopping and office 

building. 

Burgess et al. (2000) suggested that planning may be one of the cognitive constructs that supports 

the ability to multitask, along with retrospective memory and intentionality (the ability to act on 

future intentions, or prospective memory). More recently, Logie et al. (2011) proposed that for 

errand-based multitasking such as required in real or virtual versions of the Multiple Errands Test, 

‘planning’ can be fractionated into task-ordering and goal-setting processes that occur before task 

execution (pre-planning) and task re-ordering and goal adjustment processes that occur during the 

task (on-line plan adjustment). Law (2004) used an early version of a Virtual Errands Test (McGeorge 

et al., 2001), and found that participants took a more efficient route around the virtual environment 

when they had been given the chance to engage in pre-planning. However, this greater route 

efficiency did not impact on overall score, because participants had plenty of time to complete the 

task, even if they had taken an inefficient route. Moreover, performance was recorded by video of 

participant movement and actions, limiting precision and detail in the data. Therefore, in 

subsequent developments (Law et al., 2006; Logie et al., 2011; Trawley et al., 2011), the test was 

adapted to pose more of a challenge for healthy young adults. In EVET, participants have to 

memorise the list of errands rather than keeping a copy with them throughout the task, there is 

greater time pressure, and substantially more detailed information is recorded on-line about 

movements and actions of participants in the virtual environment. In the present study, the primary 

focus was the on-line aspect of planning during errand-based multitasking. Participants underwent a 

thorough process of memorising, in serial order, a list of errands presented to them in the form of a 

pre-planned sequence. One group received a plan that was in the optimally efficient order for errand 

completion (good plan), and the other group received a plan that was sub-optimal (poor plan). 

Although they had to memorise the plans in serial order, participants were permitted to re-order the 

errands while they actually performed the task. 
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It might be expected that participants who have learned a poor plan would have worse overall 

performance than those who learned a good plan. In contrast, if on-line plan adjustment during the 

test is sufficient for good performance, participants in the poor plan group should be able to 

overcome their disadvantage. For example, Phillips, Wynn, McPherson and Gilhooly (2001) showed 

that pre-planning of a complex single task (Tower of London) did not lead to better performance; on-

line planning was an equally effective approach to the task and was also preferred by the majority of 

participants. In contrast, Logie et al. (2011) showed that, although people who started with a good 

(self-generated) plan performed better than people who started with a poor plan, participants who 

used their original plan (good or bad) tended to perform better than participants who changed their 

plans on-line. The interpretation offered for this last result was that, because plans referred to an 

ordered sequence of actions, changing the order part of the way through disrupted the performance 

of actions yet to be completed, and this cancelled out any possible advantage from changing a 

flawed plan. Multiple regression revealed that EVET performance was predicted by independent 

measures of on-line planning, retrospective memory and spatial working memory, but not by verbal 

working memory. Furthermore, Structural Equation Modelling identified a latent variable associated 

with on-line planning that was driven by, but was separate from, latent variables associated 

respectively with memory and with pre-planning. However, the cognitive resources required to 

support changes and adjustments to plans remained unclear. 

If a participant does engage in on-line plan adjustment while multitasking, it might be expected that 

he or she would use the resources of working memory to assist in the process of re-ordering the 

errands and keeping track of current and future goals. Therefore, we might expect on-line plan 

adjustment to be more difficult when combined with secondary tasks that load components of 

working memory. This might be particularly evident when participants start with a poor plan, 

because there would be a greater need for on-line plan adjustment to maximise performance.  In 

Experiment 1, we used the secondary task of articulatory suppression, which is widely considered to 

disrupt the operation of verbal working memory. Indeed, sub-vocal rehearsal has previously been 
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shown to support performance in task switching paradigms (Emerson & Miyake, 2003; Miyake, 

Emerson, Padilla & Ahn, 2004) and concurrent articulatory suppression was shown to impair overall 

score in an earlier incarnation of the Virtual Errands Test (Law et al., 2006). In contrast, Logie et al. 

(2011) found that individual differences in spatial working memory correlated with EVET 

performance but verbal working memory did not. So, the previous results based on individual 

differences suggested that having a high verbal working capacity was of no particular benefit in this 

form of multitasking. However, even if variance in maximum capacity of a cognitive resource across 

individuals does not correlate with task performance, the resource could still be required for that 

task at less than its maximum capacity (Logie, 2011). Therefore we cannot conclude from our 

previous results that verbal working memory resources are not required for multitasking 

performance as measured by EVET, for example  to rehearse and/or re-order an errand list. In 

Experiment 1, we explored experimentally the involvement of verbal working memory resources in 

EVET performance by preventing the use of subvocal rehearsal through use of articulatory 

suppression. Specifically, we investigated whether participants would be less successful at on-line 

plan adjustment (i.e., more likely to stick to the pre-learned plan) when they had to perform 

articulatory suppression at the same time as attempting EVET, than when they completed EVET 

under single-task conditions.   

Experiment 1 

Method 

Participants 

Forty undergraduates (29 female, 11 male) at the University of Edinburgh participated in exchange 

for course credit. Their mean age was 18.5 years (SD = 0.8 years). None of these participants had 

taken part in the previously published studies with EVET (Logie et al., 2011; Trawley et al., 2011). 

Design 
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The experiment involved a 2x2 mixed design with two levels of the between-participants factor Plan 

(good vs. poor) and two levels of the within-participants factor Demand (single vs. dual task). Plan 

type, demand and task list (set A or B) were fully counterbalanced across participants. 

Tasks 

EVET was performed on a Dell XPS PC with an Intel Core Quad 2.33Ghz processor and 1GB ATI 

Graphics Card, with 42 cm colour monitor. It was created using the Valve Hammer Editor map 

creation program supplied with the PC game Half Life 2TM. Details of the environment are given in 

Logie et al. (2011). In summary, the 3D environment was a four-storey building comprising an open 

rectangular concourse from front to back in the centre of the building, and with shops or offices 

along the left and right hand sides (from the perspective of the building entrance). Two stairwells 

connected the floors, one on the left side of the building and one on the right (see figure 1A). The 

building contained a total of 38 rooms, with eight on the ground floor and ten each on the first, 

second, and third floors. Room numbers incorporated the relevant floor, for example G10 referred 

to room 10 on the ground floor. Room numbers were displayed on notices outside the doors. The 

current task time, measured in minutes and seconds, was continuously displayed at the top of the 

screen. Any objects collected by the participant during the test were displayed on the left (see Figure 

1B). 

 

 

[Figure 1 around here please] 

 

 

Participants controlled their movement around the building with the mouse and keyboard. Forward 

and backward movement was achieved with the “w” and “s” keys, respectively. Sideways movement 

required the “a” and “d” keys, and participants could look up or down using the mouse. Objects 
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were manipulated (e.g., picked up/dropped off) using the “e” key, once centred in the cross-hairs in 

the middle of the screen. All such actions were recorded into a text file, along with a time stamp, 

and the participant’s location was recorded approximately every 100 milliseconds as a set of XYZ co-

ordinates.  

Lists A and B (table 1) were used for the single and dual-task conditions of the experiment. The lists 

were organised into optimal (A1, B1) and non-optimal (A2, B2) order for completion and these were 

given to participants in the good and poor planning groups, respectively. The optimal ordering of the 

errand lists was derived from data from 165 young adults who completed EVET during a previous 

study (Logie et al., 2011). The routes taken by the five highest scorers from that previous study were 

examined, and errands were numbered in the order that they had been completed. For each errand, 

these five scores were averaged. The average scores were placed in rank order to yield an optimum 

plan. The non-optimal plans, while feasible, were constructed so as to increase the travel time 

between errand rooms.  

Performance on the secondary task was recorded during practice and at test using a handheld digital 

voice recorder. This recording was later transcribed for subsequent analysis (see below).   

 

[Table 1 about here please] 

 

Procedure 

Participants were informed that they would have eight minutes to complete a list of errands in a 

virtual building, and that they would have to memorise this list in a specific order. It was explained 

that they could “hold” multiple objects at the same time in the environment and that, although they 

had to memorise the errands in a particular order, they were free to vary this order once they 
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started the task. They were also told that they would perform the task twice, once alone and once 

with a concurrent verbal task. They were introduced to the rules for navigating the virtual building 

and given training in using the controls to move around and perform tasks. The rules were that they 

should not enter rooms (or pick up objects) that were not on their errand list, and that each 

staircase was only to be travelled in a particular direction. The training session (approximately five 

minutes) involved performing a number of actions while guided by on-screen commands – finding a 

room, picking up an object, delivering it to another room, unlocking the door to the upper floors 

with a keycode, pressing a button located on a wall within the environment and sorting coloured 

folders into boxes. Training errands involved different rooms and objects from the main 

experimental errand lists. 

After training participants were given the errand list for the condition they were to attempt first. 

They were given two minutes to study this list before it was removed and they were asked to recall 

as much as they could, in the order that it had been presented. This serial recall performance was 

recorded and they were then given a further five minutes to study the list. After this the list was 

removed and they were asked to recall the errands again.  Participants were not allowed to start the 

test until they reached 100% recall of the errand list in the planned order (two participants failed this 

requirement and were replaced). 

 

Before participants began the dual-task condition of EVET, they were given an explanation of the 

concurrent task (articulatory suppression) to be performed throughout the whole eight minutes of 

EVET.  Following Law et al. (2006), they were asked to say out loud the word “December” at the rate 

of once per second, and were given practice at doing so. In both the practice and in the main 

experiment, the inter-utterance intervals were recorded via a voice key and computer to allow 

assessment of articulation rate. Upon completion of both single and dual-task versions of EVET, 

participants were again asked to recall the errands.  
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Results 

EVET Score 

Following Logie et al. (2011) and Burgess et al. (2000), a weighted scoring procedure that rewarded 

task completions and penalised rule breaks was adopted. Extra bonus points were awarded for the 

three errands in which performance could vary (namely the two errands with a time component and 

the open-ended folder sorting task – see Tables 1 and 2). For the eight other tasks, a point was 

awarded on completion. Participants could also incur additional penalty points for breaking any of 

the building rules, such as entering incorrect rooms or ignoring the stair rule (see Table 2).The 

numbers of bonuses and deductions was based on the frequency distributions of these task 

completions and errors in a previous sample of 165 healthy adult participants. The rationale for the 

allocation of bonuses and penalties is fully described in Logie et al. (2011).  

[Table 2 about here please] 

The average scores for the good plan and poor plan groups, in both single and dual-task conditions, 

are shown in Table 3. It is clear that these average scores are all very similar. A 2x2 mixed ANOVA, 

with two levels of the within-subjects factor Demand (single  vs. dual task) and two levels of the 

between-participants factor Plan (good vs. poor) confirmed that there were no significant main 

effects of Demand or Plan in the EVET score data, Fs < 1, and no interaction , F< 1.  

[Table 3 about here please] 

Task completions, bonuses and penalties 

As there were no effects on the overall EVET score, each component was examined independently to 

look for more subtle effects of articulatory suppression on performance. The mean number of task 

completions, bonus points awarded and penalties applied for each group in each condition is shown 
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in Table 4. These data were unsuitable for parametric analyses due to violations of normality in 

nearly all cases. Wilcoxon tests confirmed that there was no significant difference between single 

and dual task conditions for any of the 3 measures (all ps > 0.7). Collapsing across demand, Mann-

Whitney tests showed that there were no significant differences between the good plan and poor 

plan groups on the total number of tasks completed, bonus points or penalty points (all ps > 0.7). 

[Table 4 about here please] 

Plan Following 

For each participant in each condition, the rank order correlation between the memorised sequence 

(either good or poor) and the executed sequence was calculated using Kendall’s Tau, and used as an 

index of plan following. Any errands not completed were removed before this value was calculated.  

Kendall’s Tau calculates how many pairs of ranks would need to be inverted in order to change one 

sequence into another. The average Tau values for each group in each condition are shown in Table 

3. Values closer to one indicate closer adherence to the memorised sequence, while values closer to 

zero indicate greater deviations from the memorised sequence and more on-line plan adjustment.  It 

is clear from the data in Table 3 that the good plan group have higher plan following scores than the 

poor plan group. A 2x2 ANOVA confirmed that this main effect was highly significant, F(1,38) = 

65.007, p < 0.001, partial η2= 0.631, but that there was no significant main effect of demand, F < 1, 

or interaction, F < 1. Therefore, participants who were given a poor plan were more likely to deviate 

from it during EVET performance, regardless of whether or not they were suppressing articulation. 

Post-EVET recall of the errand list 

Recall of the errand list at the end of the test showed a clear ceiling effect, suggesting that task 

failures in EVET were rarely due to forgetting of the list. On average the recall in the single-task 

condition was 94.8% (SD = 8.3%), while the recall in the dual-task condition was 95.7% (SD = 7.9%). 

We also examined what percentage of the errands that were recalled in their original serial position 
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on the list.  The good group recalled 77.28% (SD = 35.01%) in the original position in the single-task 

condition, while this figure was 89.44% (SD = 23.96%) for the dual-task condition. The poor group 

were more likely to change the order in which errands were recalled, with 65.06% (SD = 36.36%) in 

the original position in the single task condition, and 64.56% (SD = 35.65%) in the dual. There was a 

marginal main effect of plan group, F(1,34) = 4.03, p = 0.053, partial η2= 0.12, but no main effect of 

demand, F < 1, and no interaction, F(1,34) = 1.09, p = 0.303, partial η2= 0.031.  

Articulatory suppression performance 

Participants maintained a rate of 1 utterance every 1.6 seconds on average across the 8 minutes of 

EVET.  This was significantly slower than the rate of 1.3 per second that they achieved during 

baseline practice, t(38) = 4.59, p< 0.001. However, there was no significant difference between the 

good (M = 1.62, SD = 0.47) and poor (M = 1.64, SD = 0.36) plan groups on this measure, t(38) = -0.11, 

p> 0.9. 

 

Discussion 

It was predicted that participants given sub-optimal plans would be unable to re-organise the 

errands using on-line plan adjustment, when their ability to sub-vocally rehearse information in 

verbal working memory was inhibited by articulatory suppression. However, participants in the poor 

plan group deviated from the learned plan to an equal extent under single and dual task conditions. 

Across both, they deviated significantly more than participants given a good plan, demonstrating 

that they were aware of the need to re-order the errands for greater efficiency. They were 

successful in doing this, despite suppression of sub-vocal articulation, and overall they performed 

just as well as the good plan group. 

Although Law et al. (2006) showed interference (in terms of overall score) from articulatory 

suppression on a previous virtual errands test, this was only when participants did the dual-task 
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condition first. Here, there was no significant effect of suppression on EVET performance, even when 

only considering participants who suppressed articulation during their first EVET trial. It is possible 

that the more difficult mouse-based controls in the older (Law et al., 2006) task created extra 

cognitive demands (that were unrelated to multitasking) when participants were still new to the task 

and attempting it for the first time. With the EVET, controls are more user-friendly and the training 

procedure is more formalised, allowing participants to be more confident with the basic operation of 

the environment. Their multitasking performance could then be measured with greater precision 

and with fewer potential artefacts than in the previous virtual errands test.  

However, it is notable that both Law et al. (2006) and the present study found that participants 

slowed their rate of articulatory suppression while performing the EVET. This finding suggests that 

there was some conflict between the tasks, and participants may have been trying to protect 

multitasking performance at the expense of articulatory suppression rate.  Accordingly, we are not 

suggesting that verbal working memory plays no role in multitasking at all, but rather that 

multitasking activity does not necessarily require verbal working memory at its full capacity (see 

Logie, 2011). This is consistent with the finding in Logie et al. (2011) that participants’ verbal working 

memory span was not a significant predictor of their multitasking performance. In any case, it was of 

interest that the rate of articulatory suppression did not differ between the good plan and the poor 

plan groups, and the presence or absence of suppression did not interact with plan group in the 

EVET data. Clearly, whatever role was played by verbal working memory in Experiment 1, it was not 

crucial for changing the order of errands from an initial poor plan. Executive resources in working 

memory might have been more involved with this aspect of the task, and this possibility was 

investigated in Experiment 2. 

Experiment 2 

The earlier study by Law et al. (2006) showed evidence (in secondary-task data) of increased task 

interference when the secondary task involved oral random generation. This is a task that is typically 
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associated with executive functions, and in particular thought to be demanding of attention 

(Baddeley, 1966; Evans, 1978). To investigate the consistency of task requirements in EVET 

compared with the earlier task, we conducted a further study using the same executive secondary 

task as was used by Law et al. (2006), using the present good and poor plan manipulation to examine 

its effect on on-line plan adjustment. Given that the errand lists had been learned in advance, EVET 

performance might rely heavily on long-term memory for the original plan, rather than rely on 

rehearsal of the errand list in verbal working memory. This might explain why articulatory 

suppression did not disrupt performance in Experiment 1, or consistently throughout the Law et al., 

(2006) study. Therefore, according to the widely held assumption that working memory is 

constrained by a limited capacity attentional system (e.g. Cowan, 2005), the demands of oral 

random generation should be disruptive of the executive/attentional resources in working memory 

that would be required to re-arrange the order of the learned errand list during EVET performance. 

Therefore, participants in the poor plan group should be more likely to fall back on the strategy of 

adhering to the plan that they had learned rather than undertaking the more difficult task of re-

arranging the errands on-line. (Or participants might continue to protect EVET performance, but 

have great difficulty in performing the concurrent random generation task.) In this case we would 

expect to see an interaction whereby the plan-following scores of the poor plan group only increase 

under dual-task conditions. 

However, we might assume instead that working memory draws on a range of executive resources 

(Logie, 2011; Miyake, Friedman, Emerson, Witzki, Howerter & Wager, 2000) such as inhibition of 

learned or automatic responses, updating, or retrieval from long-term memory (e.g., Unsworth & 

Engle, 2007). If we consider the detailed task requirements of oral random generation, it seems to 

require rapid retrieval of items from a well learned item set (e.g. the alphabet, numbers, months of 

the year) in long-term memory, coupled with inhibition of retrieval from long-term memory for 

learned response sequences within that set (see Baddeley, 1996).  In this case, oral random 

generation might disrupt retrieval of the learned EVET errands list, but have less impact on the 
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updating function required for on-line re-ordering of the learned list during task performance, so 

would have little impact on on-line plan adjustment by the poor plan group, but might affect 

retrieval of the learned plan by both groups. The expected data pattern in this case would be an 

effect of secondary task on overall performance, but not on plan following. These alternative 

predictions were addressed in Experiment 2, in which participants performed EVET on its own, and 

concurrently with oral random generation of months of the year. 

Method 

Participants 

Participants were 32 undergraduates (21 female, 11 male) at the University of Edinburgh, with a 

mean age of 20.7 years (SD = 2.6 years). They had not previously taken part in Experiment 1, or in 

previously published experiments using EVET, and they received course credit in exchange for 

participation. 

Design, tasks and procedure 

Experiment 2 followed the same design and procedure as Experiment 1, but in this case participants 

were asked to randomly generate months of the year as a secondary task, at the rate of one per 

second. Random generation was also performed on its own for 120 seconds to provide a single task 

baseline measure of randomization performance. The oral random responses were recorded to 

allow analysis both of inter-utterance intervals and degree of randomness in the sequences 

generated. 

Results  

EVET Score 

Table 3 shows a clear drop in performance for both good plan and poor plan groups in the dual-task 

condition. Data were analysed using a 2x2 mixed ANOVA, which confirmed a significant main effect 
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of demand, F(1,30) = 24.22, p< 0.001, partial η2= .45, but no significant main effects of plan, F< 1. 

There was no significant interaction between these factors, F< 1. Therefore, the concurrent demand 

of random generation had a detrimental effect on EVET score, regardless of the type of plan that 

participants had memorised. 

Task completions, bonuses and penalties 

The detailed breakdown on task completions, bonuses and penalties for each group in each 

condition is shown in Table 4. There appears to be little difference between the good and poor plan 

groups, but the scores do tend to be lower in the dual-task condition than the single-task condition. 

Again, normality was violated in almost all cases so non-parametric tests were utilised. Wilcoxon 

tests showed that single task performance was significantly better than dual task performance for 

the number of task completions, Z = -2.342, p = 0.019, and the number of bonuses awarded, Z = -

2.205, p = 0.027. There was no significant difference in terms of the number of penalties awarded, Z 

= -0.948, p = 0.343. When collapsed across demand, there was no significant difference between the 

good and poor plan groups on any of the three measures as assessed by Mann-Whitney tests (all ps 

> 0.3). 

Plan Following 

Plan following scores were calculated in the same way as for Experiment 1, and are displayed in 

Table 3. A 2x2 ANOVA confirmed a significant main effect of plan group, F (1,30) = 17.471, p < 0.001, 

partial η2 = 0.037, but there was no significant main effect of demand, F < 1, and no interaction, F < 

1. As in Experiment 1, participants in the poor plan group tended to engage in more on-line plan 

adjustment of the errand list than participants in the good plan group, who tended to follow the 

memorised sequence more closely. This was the case in both the single and dual task conditions. 

Post-EVET recall of the errands 
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Overall recall of the errands after the EVET was again very high (single task condition: Mean = 

93.94%, SD = 7.57% and dual task condition: Mean = 92.26%, SD = 10.33%). For the good plan group, 

the percentage of errands recalled in the original serial position was 65.57% (SD = 34.88%) in the 

single task condition, which was almost identical to the dual-task condition at 65.57% (SD = 34.34%). 

For the poor plan group these percentages were lower, at 45.94% (SD = 37.23%) in the single-task 

condition and 47.19% (SD = 39.26%) in the dual-task condition. This trend did not reach significance, 

F(1,27) = 2.273, p = 0.143, partial η2 = 0.075, and there was also no significant main effect of demand 

and no interaction, Fs < 1. 

Randomness of secondary task responses 

Redundancy, Random Number Generation (RNG) score and Ascending Adjacency were calculated 

using the computer programme RGCalc (Towse & Neil, 1998), and mean values are shown in Table 5. 

Redundancy expresses the extent to which participants sample equally from all the possible 

response alternatives, with lower scores indicating more equal sampling. RNG is based on the 

frequency with which particular response pairings occur in the data and varies between 0 and 1, 

with lower scores indicating greater equality of possible response pairings.  Ascending adjacency 

examines the frequency with which participants followed a response with the next month in 

calendar order – i.e., the over-learned, stereotyped response that they should be trying to suppress.  

[Table 5 about here please] 

Baseline performance was compared to dual-task performance using mixed ANOVA (the between-

participants factor being plan group). For Redundancy, there was no main effect of demand, no 

effect of group and no interaction (all Fs < 1). For RNG however, there was a highly significant main 

effect of demand, F(1,30) = 180.95, p<0.001, partial η2= .86, indicating that participants were 

significantly less random in terms of the ordering of their responses during the dual-task condition 

than during baseline random generation performance. There was no main effect of plan group, 
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F(1,30) = 1.16, p>0.2, partial η2= 0.04, and no interaction, F< 1, in the RNG scores. The ascending 

adjacency measure indicates that randomness suffered because participants often failed to inhibit 

the calendar order. They were also significantly less random on this measure during the dual-task 

condition, F(1,30) = 34.44, p< 0.001, partial η2= 0.53, but plan group had no effect, F(1,30) = 1.21, p> 

0.2, partial η2,= 0.04 , and there was no interaction, F< 1.  

Participants were slower at generating months of the year under dual-task conditions (one word 

every 2.01 seconds) than during practice (one word every 1.36 seconds), a difference that was 

significant, t(30) = -5.671, p< 0.001. The poor plan and good plan groups did not differ in their mean 

rate of random generation while performing the EVET, t(30) = 0.711, p > 0.4. 

 

Discussion 

As in Experiment 1, participants in the good plan group were more likely to perform the errands in 

the well-learned order, than participants in the poor plan group, who were more likely to change the 

learned order of the errands on-line. However, there was no effect of demand, suggesting that the 

cognitive processes involved in oral random generation of months of the year did not overlap with 

those used for on-line plan adjustment of the order in which they completed the task list. 

The random generation task did have a clear effect on overall performance in terms of EVET score. 

Participants also generated sequences of months that were less random than those they were 

capable of producing at baseline, demonstrating that they were not protecting performance on the 

generation task at the expense of EVET. This drop in randomness occurred despite a rate of 

utterance that was significantly slower at test than at practice. Therefore, the drop in randomness 

cannot be attributed to a trade-off with response time. There was clear resource-competition 

between the tasks, a finding that is consistent with Law et al. (2006). In the prior study, the greater 

interference of random generation (relative to articulatory suppression) was seen in the secondary 
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but not primary task data. However, the method of scoring the prior version of the virtual errands 

test (task completions minus errors) was cruder than the weighted scoring procedure adopted for 

the EVET, and may have been less sensitive to the effects of the secondary task. In the present study 

a more detailed analysis of how the individual components making up the overall score were 

affected by the secondary task, showed that random generation caused people to complete fewer 

tasks, and apply a less efficient strategy (resulting in fewer bonus points), but it did not cause them 

to make more errors such as entering an incorrect room or picking up a lure object.  

These results are consistent with our expectations that the task requirements of oral random 

generation for retrieval of well learned items from long-term memory, coupled with inhibition of 

learned sequences, may be interfering with access to the learned sequence of errands while 

performing EVET, leading to poorer scores overall. The fact that the poor plan group undertook 

planning adjustment on-line, but was no more affected by random generation than the good plan 

group, suggests that random generation does not affect the updating and re-ordering process in 

working memory. It also suggests that random generation is not having a general effect on a limited 

capacity attentional system, but is having specific effects on selected and specific resources that are 

part of working memory function. This is consistent with the suggestion that on-line plan adjustment 

involves a different set of working memory functions than does oral random generation.  It is also 

consistent with the conclusions from Experiment 1 that multitasking as studied here may involve 

selection of task-relevant, specific cognitive functions from a range of cognitive functions available 

for deployment within working memory.  

If multitasking involves multiple cognitive functions acting in a co-ordinated way (Burgess et al., 

2000, Logie, 2011; Logie et al., 2011), this may give participants the flexibility to adapt their 

approach to the task depending on the circumstances. When verbal rehearsal, retrieval from long-

term memory and inhibition of prepotent responses are engaged with a secondary task like oral 

random generation, participants may be able to rely to a greater extent on visuo-spatial working 
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memory (Logie, 1995) to assist with performance of EVET. Indeed, Logie et al. (2011) found that an 

independent measure of visuo-spatial working memory ability correlated with EVET performance, 

whereas a measure of verbal working memory did not, suggesting that the former is being used at 

the limits of its capacity, whereas the latter may be have a much less key role, perhaps contributing 

at well within its capacity. Phillips, Wynn, Gilhooly, Della Sala & Logie (1999) found that articulatory 

suppression actually enhanced performance on the Tower of London planning task, and concluded 

that it prevented participants from applying unhelpful verbal strategies to a task that is essentially 

visuo-spatial in nature.  When participants in our poor plan group re-arranged their plan on-line they 

may have been able to use visuo-spatial resources to assist with this process despite the load on 

verbal and other resources within working memory. Therefore, Experiment 3 used a dual task 

paradigm to investigate the impact of visuo-spatial working memory load in on-line plan adjustment 

and EVET performance.  

Experiment 3 

Successful EVET performance involves navigating in a 3D virtual world displayed in perspective on a 

2-D computer screen. It is therefore likely to draw on the resources of visuo-spatial working 

memory, as do other navigation tasks (e.g., Baumann, Skilleter & Mattingley, 2011; Deyzac, Logie & 

Denis, 2006; Garden, Cornoldi & Logie, 2002; Meilinger, Knauff & Bültoff, 2008). Baumann et al. 

(2011) and Meilinger et al. (2008) both showed that a spatial localisation secondary task disrupted 

performance on a primary navigation task more than a visual secondary task (with little spatial 

demand). Furthermore, individual differences in spatial working memory predicted EVET 

performance in Logie et al. (2011). In EVET, a secondary task with a spatial demand might therefore 

be expected to have a stronger disruptive effect for on-line plan adjustment than did the verbal 

secondary task of articulatory suppression. The secondary task in Experiment 3 required participants 

to localise the source of auditory tones emitted at a constant rate as they performed EVET.  

Method 
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Participants 

The participants were 33 undergraduates (17 male, 16 female) from the University of Edinburgh, 

with a mean age of 20.36 years (SD = 3.26), who had not taken part in the previous experiments. 

They received course credit for participation. One participant was found to have performed at 

below-chance levels on the sound localisation task, and was therefore excluded from all analyses. 

Design, Tasks and Procedure 

This experiment differed from the previous two only in respect of the secondary task. Participants 

were asked to localise the source of auditory tones emitted at the rate of approximately one every 

three seconds. Six speakers were located respectively in front, behind, above and below the 

participant, and on their left and right, and these emitted a tone in a pseudo-random order. Each 

tone was presented for 500 milliseconds at 70dB with an inter trial interval of 2.5 seconds. 

Participants gave an immediate verbal report indicating which speaker had emitted the tone. 

Results 

EVET Score 

Table 3 shows the mean EVET scores in single and dual-task conditions for both the good plan and 

poor plan groups. Performance was lower in the dual-task condition for both groups, a main effect 

that was confirmed by a 2x2 mixed ANOVA, F(1,30) = 25.922, p< 0.001, partial η2= 0.46. However, 

there was no significant difference between the groups, F< 1, and no interaction, F(1,30) = 1.433, 

p>0.2. 

Task completions, bonuses and penalties 

These data are shown in Table 4. Again the scores of the good and poor plan groups are similar, with 

performance tending to be worse in the dual-task condition than in the single-task condition. In this 

experiment, Wilcoxon tests showed a significant effect of the secondary task not only on task 
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completions, Z = -3.110, p = 0.002 and bonus points awarded, Z = -2.975, p = 0.003, but also on 

number of penalty points, Z = -2.815, p = 0.005. In contrast, there was no effect of group on any of 

these three measures, all ps > 0.3, as determined by Mann-Whitney tests. 

Plan Following 

As in the previous two experiments, participants in the good planning group adhered more closely to 

the plan they memorised at the start of the session than did the poor planning group (see table 3).  A 

2 x2 ANOVA confirmed a significant main effect of plan group, F(1,30) = 34.082, p< 0.001, partial η2 = 

.532, and no significant main effect of demand, F < 1, or interaction, F < 1.   

 

Post-EVET recall performance 

There was again a clear ceiling effect in the overall recall of the errands after EVET performance in 

the single task condition (M = 97.00%, SD = 3.21%) and dual task condition (M = 97.38%, SD = 

4.26%). In terms of whether errands were recalled in their original serial position, there was a very 

clear difference between the good and poor plan groups in this experiment. For the good plan 

group, 77.54% (SD = 25.33%) were recalled in their original position in the single-task condition, and 

72.19% (SD = 31.24%) in the dual. For the poor plan group, these figures were 24.68% (SD = 27.48%) 

and 27.27% (SD = 34.01%) for the single and dual task conditions respectively. The main effect of 

plan group was highly significant, F(1,29) = 27.73, p < 0.001, partial η2= 0.489, but there was no main 

effect of demand or interaction, Fs < 1. 

Spatial localisation performance 

Performance on the spatial localisation task was calculated as the percentage of correct responses 

to sounds presented during baseline and dual-task test periods. Baseline performance (M=61.01, 

SD= 9.57) was significantly better than dual-task performance (M=52.17, SD=14.22), t(31) = -4.062, 
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p< 0.001. The good plan and poor plan groups did not differ significantly under dual-task conditions, 

t(30) = -0.889, p > 0.3.  

Discussion 

The hypothesis that concurrent performance of the spatial localisation task would lead to greater 

plan following, especially for the poor plan group, was not supported, as plan following behaviour 

was similar across single and dual-task conditions.  Good plan and poor plan participants also 

achieved a similar level of performance on the spatial localisation task. 

However, this secondary task clearly had an overall disruptive impact on EVET score. It is notable 

that single-task performance in this experiment was higher than in Experiments 1 and 2. This can be 

explained by the fact that participants in this study were particularly highly motivated and organised 

undergraduates who were available for research participation during the exam period. Nevertheless 

their performance was clearly impaired by concurrent spatial localisation. An additional finding was 

that participants scored more penalties under dual-task conditions in Experiment 3. Penalties are 

mainly awarded for navigational failures such as entering an incorrect room or travelling the 

stairways in the wrong direction. While the rate of these was increased by the spatial concurrent 

task, this pattern was not seen when verbal rehearsal, long-term memory retrieval and inhibitory 

functions were loaded in Experiment 2. As in Experiment 2, the secondary task load also decreased 

the number of tasks completed and bonuses awarded. 

General Discussion 

The present study was aimed at determining which working memory resources are critical for on-

line plan use, re-ordering, and manipulation during multitasking as measured by a virtual multiple 

errands test (EVET). An important finding was that participants were able to use flexible, on-line plan 

adjustment processes to re-organise pre-learned sequences of errands into a different order. 

Participants who memorised the errands in a sub-optimal (poor) order were more likely to change 
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the order of errand execution, as demonstrated by their lower plan following scores. They also 

achieved EVET scores that were just as good as participants who memorised an optimal errand 

sequence from the outset.  This was the case regardless of whether or not a secondary task was 

being performed at the same time, and regardless of which secondary task was involved.  High levels 

of recall for the errands after EVET was completed suggest that task failures and errors were 

generally not due to forgetting of the list. Across the three experiments there was a general 

tendency for the poor plan group to change the order in which they recalled the errands (relative to 

the original) more than did the good plan group. This is consistent with the fact that the poor plan 

group were also more likely to change the order in which they executed the tasks. Taken together, 

the plan following and recall order data show that participants’ internal representation of the task 

list underwent a transformation from what was initially learned – a re-ordering and adjustment of 

the sequence of task goals. We have referred to this process as on-line plan adjustment.  

Overall performance in terms of score was impaired by a secondary task that involved generating a 

stream of randomised responses (Experiment 2) and making a judgement about the spatial location 

of sounds (Experiment 3). In contrast, the results of Experiment 1 showed that participants were 

able to maintain EVET performance under conditions of articulatory suppression, with no difference 

between single and dual task performance in terms of EVET score. Taken together, the results of 

three experiments suggest that successful completion of EVET draws heavily on visuo-spatial 

working memory, long-term memory retrieval and inhibition of prepotent responses, but does not 

depend on unhindered access to verbal working memory for the purposes of sub-vocal rehearsal.  

The process of on-line plan adjustment in multitasking appears to rely on additional resources within 

working memory, which might involve maintaining and updating current goals. As none of the 

secondary tasks affected plan-following, it might be concluded that on-line plan adjustment does not 

involve the resources of working memory. However, we think it is more likely that the cognitive 

system is able to deploy flexibly the resources of working memory according to the demands of the 
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situation (Logie, 2011). When people had a verbal load in Experiments 1 and 2, they may have used 

spatial working memory to assist with the re-ordering of the errands according to an internal map. 

When people had a spatial load in Experiment 3, they may have relied more on verbal resources or 

executive functions in working memory to assist with on-line plan adjustment. This hypothesis is 

consistent with the data pattern observed, but would merit investigation in future studies. For 

example, it would predict that verbal working memory capacity might predict EVET performance 

only when EVET is performed concurrently with a spatial load.  

In any case, it seems that having a good plan in advance of the task is not a necessary requirement 

for successful multitasking, as assessed by the virtual multiple errands methodology. This aptitude 

for on-line plan adjustment is a finding that is consistent with research using the Tower of London 

task (Phillips, et al., 2001), where pre-planning was not found to result in faster or more accurate 

performance of the task than planning on-line with no pre-planning. Those authors also point out 

that while pre-plans in Tower of London and Tower of Hanoi tasks may rely on verbal rehearsal, 

visuo-spatial codes may be more important during task execution. This fits with their earlier finding 

(Phillips et al., 1999) that while articulatory suppression reduced time spent pre-planning on the 

Tower of London task, it actually led to quicker execution times (with no significant change in 

accuracy). During errand-based multitasking, in EVET but more importantly in everyday 

environments such as shopping centres or office buildings, a list of tasks is learned and rehearsed 

verbally, but when sufficiently well learned, retrieval from long-term memory and visuo-spatial 

working memory resources are crucial when putting the plan into action.  

The finding from the performance data that EVET taps executive resources is in line with previous 

research from the neuropsychology literature, which shows that patients with executive dysfunction 

have multitasking difficulties both in everyday life and during laboratory tests (Alderman et al., 2003; 

Burgess et al., 2000; Crépeau, Belleville, Duchesne, 1996; Fortin, Godbout & Braun, 2003; Goldstein, 

Bernard, Fenwick, Burgess, & McNeil, 1993; Knight et al., 2002; Law et al., 2004; Levine, Stuss, 
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Milberg, Alexander, Schwartz & MacDonald, 1998; Levine, Dawson, Boutet, Schwartz & Stuss, 2000; 

McGeorge et al., 2001; Rand et al., 2009; Shallice & Burgess, 1991). The present results are also 

broadly compatible with the findings of Law et al. (2006), who also demonstrated some conflict 

between random generation and virtual errands performance. However, in the present study the 

conflict is evident in both the primary and secondary task data, rather than in the secondary task 

data alone, as was found in the earlier study. We have also suggested which specific executive 

resources might be involved. 

We did not observe a decrement in EVET performance under conditions of articulatory suppression, 

therefore it appears that the task may be achievable with only limited sub-vocal rehearsal.  Emerson 

and Miyake (2003) showed that articulatory suppression was less disruptive (in a task-switching 

paradigm) when participants were provided with explicit cues to guide switches, and more 

disruptive when participants had to rely on what they termed “internal self-cueing”. In EVET, there 

are some partial cues on screen that may help to support performance.  For example, once an object 

has been collected a word label for the object appears on the side of the screen and remains there 

until it is delivered (see figure 1B). However, the participant has to retrieve from long-term memory, 

the correct destination for the object and the remaining errands to be completed. Future research 

using EVET could manipulate the availability of on-screen retrieval cues to further examine the role 

of internal self-cueing compared with external cueing, while investigations of the effects of 

unexpected interruptions could yield additional insight into on-line plan adjustment.  

A possible caveat to our interpretation of these findings is that the secondary tasks used may have 

differed in overall levels of difficulty, in particular the articulatory suppression task may have been 

too easy. However, participants were asked to repeat a three syllable word at a demanding rate of 

once per second, and a range of previous studies have shown that articulatory suppression is highly 

disruptive of verbal immediate memory task performance (e.g. Baddeley, Lewis & Vallar, 1984; 

Murray, 1965), but not of non-verbal tasks (e.g. Saito, Logie, Morita & Law, 2008). So, its difficulty 
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depends on the task with which it is combined, not on any overall demand on the cognitive system. 

Another possible limitation is that the findings might not generalise to real-world multitasking 

situations. However, EVET retains essential features of real errand-based multitasking situations 

such as, for example, a shopping trip (particularly one where time is limited) or a series of tasks 

being executed by an office worker during a sojourn from their desk. In these cases a list of tasks has 

to be mentally assembled, rehearsed and then executed. During execution, adjustments and task-

ordering may be required, necessitating the use of on-line cognition as well as pre-planning 

processes. There is clearly much work yet to be done to understand the full complexity of how 

cognitive functions act in concert to support multitasking activities in everyday life, but we would 

argue that the research presented here yields important insights into the flexibility of on-line plan 

adjustment processes during errand-based multitasking, and suggests that multitasking performance 

is not wholly constrained by general attentional demands. We would argue that the use of a virtual 

environment strikes a balance, retaining a good degree of experimental control while achieving 

reasonable ecological validity. We also think that in terms of multitasking, there is an important 

distinction to be made between errand-based multitasking such as in the Multiple Errands Test and 

variants (including the research presented here), and ‘table-top’ multitasking where movement 

around an environment is not required, such as in the Six Elements Test and variants (both tests 

originally developed by Shallice & Burgess, 1991). Real-world corollaries of the latter type of 

laboratory test might include cooking (e.g. Craik & Bialystok, 2006), or a series of tasks being 

executed by an office worker at their desk. An important priority for future research will be to 

establish the extent to which both types of multitasking situation draw on the same cognitive 

resources. 

In conclusion, our results point to the importance of retrieval from long-term memory and visuo-

spatial working memory for errand-type multitasking, but suggest that the task is achievable without 

heavy reliance on sub-vocal rehearsal. Even under conditions of high concurrent demand, 

participants were able to implement flexible on-line plan adjustment and re-ordering processes. For 
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participants given a poor plan at the outset, these processes may have allowed them to achieve 

comparable scores to participants given a good plan at the outset. These experimental results are 

consistent with our previous findings from a multivariate individual differences approach (Logie et 

al., 2011) suggesting that on-line plan adjustment and implementation of intentions can be 

identified as a separate latent variable from working memory and from forming an initial plan. The 

relative lack of disruption of on-line plan adjustment by demanding secondary tasks could therefore 

suggest that human adults spontaneously develop specific skills in on-line plan adjustment and re-

ordering of everyday activities, and that these skills offer specific resources that can be recruited 

flexibly within a multiple resource working memory system (Baddeley & Logie, 1999; Logie, 2011; 

Logie & Niven, 2012). Our findings certainly indicate that on-line plan adjustment cannot easily be 

attributed to the operation of spatial or verbal working memory, but might draw on either, or on 

acquired everyday skills, depending on which resources are currently available and most effective 

for performing the current task (Logie, 2011). EVET and similar controlled and systematic research 

tools offer a promising means to yield additional insight into this ubiquitous but complex feature of 

everyday on-line cognition. 
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Figure 1. Upper screenshot (A) of EVET building taken from the back wall looking towards the 

building entrance. Lower screenshot (B) taken during EVET test shows current time and inventory 

displays. 
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Table 1: EVET errand lists for good plan group (A1, B1) and poor plan group (A2, B2) 

SET A1 - 8 MINUTES 

START GROUND FLOOR 

(1) Get stair code in G8 from noticeboard 

(2) Turn off lift on G-Floor 

(3) Pickup newspaper in G3  

(4) Drop newspaper off on desk in S4 

(5) Meet person in S10 before 3:00minutes 

(6) Get keycard in F9 

(7) Pickup brown package in T4 

(8) Use keycard to unlock G6 (via G5) 

(9) Drop brown package in G6 

(10)       Turn on cinema in S7 at 5:30minutes 

(11)       Sort red and blue binders in room S2. 

G = Ground Floor, F = First Floor,  

S = Second Floor, T = Third Floor 

SET A2 - 8 MINUTES 

START GROUND FLOOR 

(1) Get stair code in G8 from noticeboard 

(2) Pickup brown package in T4 

(3) Get keycard in F9  

(4) Use keycard to unlock G6 (via G5) 

(5) Turn on Cinema in S7 at 5:30minutes 

(6) Drop brown package in G6 

(7) Sort red and blue binders in room S2 

(8) Meet person in S10 before 3:00minutes 

(9) Pickup newspaper in G3  

(10)       Drop newspaper off on desk in S4 

(11)       Turn off lift on G-Floor. 

G = Ground Floor, F = First Floor 

S = Second Floor, T = Third Floor 

SET B1 - 8 MINUTES 

START THIRD FLOOR 

(1) Get stair code T10 from noticeboard 

(2) Turn off lift on T-Floor 

(3) Pickup milk carton in T3 

(4) Take milk carton to desk in F4 

(5) Meet person F10 before 3:00minutes 

(6) Get keycard in S9 

(7) Pickup computer in G4 

SET B2 - 8 MINUTES 

START THIRD FLOOR 

(1) Get stair code in T10 from noticeboard 

(2) Pickup computer in G4 

(3) Get keycard in S9  

(4) Use keycard to unlock T7 (via T6) 

(5) Turn on Cinema in F7 at 5:30minutes 

(6) Drop computer in T7 

(7) Sort red and blue folders in F2 
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(8) Use keycard to unlock T7 (via T6) 

 (9) Drop computer in T7 

(10)       Turn on Cinema in F7 at 5:30minutes 

(11)       Sort red and blue folders in F2. 

G = Ground Floor, F = First Floor 

S = Second Floor, T = Third Floor 

(8) Meet person F10 before 3:00minutes 

(9) Pickup milk carton in T3  

(10)       Drop milk cartoon off on desk in F4 

(11)       Turn off lift on T-Floor. 

G = Ground Floor, F = First Floor 

S = Second Floor, T = Third Floor 
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Table 2. EVET point allocation (20 point maximum) 

Bonus Weightings 4 +points 3 +points 2 +points 1 +points 0 points 

Folder sorting 30+ 23-29 15-22 8-14 1-7 

Cinema (time discrepancy from 

5:30min) 

0-2sec 3-5sec 6-7sec 8-10sec 11+ 

Meeting (time discrepancy over 

3:00min) 

<3mins 1-12sec 13-25sec 26-37sec 38+sec 

Penalty Weightings 4 -points 3 -points 2 -points 1 -points 0 points 

Picking up objects not on list 4+ 3 2 1 0 

Entering rooms not on list 4+ 3 2 1 0 

Breaking stair rule 5+ 4 3 2 1 
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Table 3: Mean EVET and plan following scores in Experiments1, 2 and 3 (standard deviation in 

parentheses) 

 

 Good Plan Poor Plan 

EVET Score Plan 

Following 

EVET Score Plan 

Following 

Experiment 1 Single Task 

Performance 

10.60 (5.35) 0.91 (0.11) 10.05 (4.97) 0.35 (0.32) 

Dual Task 

Performance 

10.55 (4.27) 0.91 (0.11) 10.50 (4.27) 0.40 (0.34) 

Experiment 2 Single Task 

Performance 

11.44 (5.48) 0.73 (0.28) 12.06 (3.71) 0.28 (0.25) 

Dual Task 

Performance 

6.38 (4.69) 0.68 (0.30) 7.00 (5.44) 0.30 (0.38) 

Experiment 3 Single Task 

Performance 

14.53 (4.90) 0.79 (0.31) 13.53 (3.64) 0.10 (0.44) 

 Dual Task 

Performance 

8.82 (5.37) 0.81 (0.25) 10.00 (5.16) 0.11 (0.38) 
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Table 4: Mean number of Task Completions, Bonus and Penalty points awarded in Experiments 1, 2 

& 3 (standard deviation in parentheses) 

 Good Plan Poor Plan 

Tasks 

(max=8) 

Bonus 

Points 

(max=12) 

 

Penalty 

Points 

(max=12) 

Tasks 

(max=8) 

Bonus 

Points 

(max=12) 

Penalty 

Points 

(max=12) 

Experiment 1 Single 

Task  

7.15 

(1.42) 

5.75 

(2.65) 

1.80 

(2.76) 

7.30 

(1.03) 

 

4.40 

(3.36) 

1.35 

(1.87) 

Dual 

Task  

7.50 

(1.00) 

4.85 

(2.28) 

1.20 

(1.54) 

7.20 

(1.44) 

5.35 

(3.01) 

1.45 

(1.57) 

Experiment 2 Single 

Task  

7.31 

(1.45) 

4.56 

(3.40) 

1.75 

(1.77) 

7.06 

(1.34) 

5.63 

(2.91) 

1.44 

(1.93) 

Dual 

Task  

5.81 

(1.76) 

3.50 

(3.11) 

1.81 

(2.34) 

6.50 

(2.37) 

3.94 

(2.81) 

2.44 

(2.45) 

Experiment 3 Single 

Task  

7.76 

(0.56) 

7.41 

(3.50) 

0.88 

(1.45) 

7.33 

(0.98) 

6.60 

(2.64) 

0.93 

(1.16) 

Dual 

Task  

6.71 

(1.65) 

4.88 

(2.39) 

2.06 

(2.38) 

6.40 

(1.45) 

6.13 

(2.88) 

2.27 

(2.12) 
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Table 5: Randomness measures from secondary task data in Experiment 2 – Mean with standard 

deviation in parentheses 

 

 

 

 Redundancy Random Number 

Generation 

Ascending Adjacency 

 Baseline Test Baseline Test Baseline Test 

Good Plan 2.94 

(2.61) 

3.03 

(1.77) 

0.26 

(0.07) 

0.41 

(0.09) 

14.34 

(4.53) 

23.49  

(8.81) 

Poor Plan 2.63 

(2.19) 

2.82 

(1.52) 

0.28 

(0.06) 

0.45 

(0.10) 

15.95 

(6.52) 

27.15 

(11.83) 


