
Wang, Y, Guo, Y, Guo, Z, Baker, T and Liu, W

 CLOSURE: A cloud scientific workflow scheduling algorithm based on attack-
defense game model

http://researchonline.ljmu.ac.uk/id/eprint/11746/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Wang, Y, Guo, Y, Guo, Z, Baker, T and Liu, W (2019) CLOSURE: A cloud
scientific workflow scheduling algorithm based on attack-defense game
model. Future Generation Computer Systems. ISSN 0167-739X

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

CLOSURE: A cloud scientific workflow scheduling algorithm

based on attack-defense game model
Yawen Wang1, Yunfei Guo1, Zehua Guo2*, Thar Baker3, Wenyan Liu1

1National Digital Switching System Engineering Technology Research Center, Zhengzhou 450002, China
2Beijing Institute of Technology, Beijing 100081, China
3Liverpool John Moores University, Liverpool L3 3AF, U.K.
*Corresponding author: Zehua Guo (guolizihao@hotmail.com)

Abstract: The multi-tenant coexistence service mode makes the cloud-based scientific workflow
encounter the risks of being intruded. For this problem, we propose a CLoud scientific wOrkflow
SchedUling algoRithm based on attack-defensE game model (CLOSURE). In the algorithm, attacks
based on different operating system vulnerabilities are regarded as different “attack” strategies; and
different operating system distributions in a virtual machine cluster executing the workflows are
regarded as different “defense” strategies. The information of the attacker and defender is not
balanced. In other words, the defender cannot obtain the information about the attacker’s strategies,
while the attacker can acquire information about the defender’s strategies through a network scan.
Therefore, we propose to dynamically switch the defense strategies during the workflow execution,
which can weaken the network scan effects and transform the workflow security problem into an
attack-defense game problem. Then, the probability distribution of the optimal mixed defense
strategies can be achieved by calculating the Nash Equilibrium in the attack-defense game model.
Based on this probability, diverse VMs are provisioned for workflow execution. Furthermore, a
task-VM mapping algorithm based on dynamic Heterogeneous Earliest Finish Time (HEFT) is
presented to accelerate the defense strategy switching and improve workflow efficiency. The
experiments are conducted on both simulation and actual environment, experimental results
demonstrate that compared with other algorithms, the proposed algorithm can reduce the attacker’s
benefits by around 15.23%, and decrease the time costs of the algorithm by around 7.86%.
Key words: scientific workflow; workflow scheduling; attack-defense game; diverse operating
systems; moving target defense

1 Introduction
Cloud computing uses virtualization technology to provide services. With cloud computing

technologies, users can obtain the required computing and storage resources through the network.
Due to the low costs and simple operation of cloud services, many scientific computing tasks have
been moved to cloud platforms [1]-[4].

Scientific computing is a complex process which is composed of many sub-tasks connected by
certain dependencies [5]. For example, Swinburne Astrophysics group has used the observation data
from Parkes Radio Telescope [6] to conduct a pulsar searching survey [7]. Pulsar searching is a
typical scientific computing task, which contains complex and time-consuming sub-tasks such as
recording raw data, extracting beam, compressing beam, searching pulsar candidates, making a
decision, and so on. These large-scale scientific problems are often modeled as scientific workflows,
which can be distributed to multiple computing resources for a faster, and more effectual execution

[8].
The cloud-based scientific workflows face serious security threats. First, multi-tenant service

mode makes many malicious tenants exist in clouds, therefore, the clouds are threatened by many
kinds of attacks, such as co-residency attacks [9], side-channel attacks [10][11], virtual machine
(VM) escape attacks [12]. Second, some security risks come from the characteristics of scientific
workflows. Many scientific workflows are computation-intensive [13], which requires a lot of VMs.
But, in clouds, VMs are easy to become attack targets [14]. Also, the scientific workflow execution
often takes a long time [7], which provides sufficient preparation and intrusion time for attackers.
Normally, the scientific workflow is described by a Directed Acyclic Graph (DAG), which is very
sensitive to attacks, since any intermediate error will be inherited into the final result [15].
Furthermore, intermediate data of scientific workflows often contains the core secrets in some
scientific fields. Once these data are stolen, it will cause huge losses to users [16]. Therefore,
enhancing the security of cloud-based scientific workflows is challenging and meaningful work.

In multi-tenant clouds, many attacks are launched based on the operating system (OS)
vulnerabilities. Attacks based on different OS vulnerabilities can be regarded as different attack
strategies [17]. The scientific workflow execution requires many VMs, which constitute the VM
cluster. To avoid the error propagation in the homogeneous computing environment [18], that is,
one attack can compromise multiple VMs, it is necessary to build a VM cluster with different OSs
[19]. In [17], different OS distribution in a VM cluster is considered as different defense strategies.
However, in the attack and defense scenarios for cloud-based scientific workflows, the information
of the attacker and defender is not symmetrical. The defender cannot obtain information about the
attacker’s strategies, while the attacker can acquire information about the defender’s strategies
through a network scan. Moving Target Defense (MTD) is a novel way to reverse this asymmetric
situation between attacks and defenses. It keeps moving the attack surface of the protected system
through dynamic shifting, which can disturb the attackers’ reconnaissance [20].

Strategy formulation is an important technique in MTD [28]. In the network attack and defense
scenario, the features of opposition, dependency and noncooperative are compatible with the game
theory, thus making the strategy formulation based on game theory becoming the mainstream
method in MTD [28]. In addition, how to switch the defense strategies is also a challenging job. In
the cloud-based scientific workflows, the defense strategies refer to the OS distribution of VMs
executing the scientific workflow sub-tasks, so switching the defense strategies is the process of
VM recycling, which will influence the efficiency of the scientific workflows.

For these problems, we propose CLoud scientific wOrkflow SchedUling algoRithm based on
attack-defensE game model (CLOSURE), which uses workflow scheduling as a defense method to
improve the security of cloud-based scientific workflows. The scheduling is the core content of the
scientific workflow [5][8][29]-[31], which requires not only meeting the users’ needs but also
improving the efficiency of the whole system [32]. However, there are few researches considering
using the workflow scheduling as a defense method. The workflow scheduling contains two
important parts: resource provisioning and task—VM mapping [8]. The job of resource provisioning
is choosing the optimal configuration for the VM cluster executing the scientific workflow sub-
tasks. Many researchers study flexible resource provisioning strategies that can dynamically scale
up or down the size of the VM cluster according to the workflow execution requirements [33]-[35],
which can increase workflow efficiency and reduce the costs. From the perspective of the security,
we present the resource provisioning strategy based on attack-defense game (RPADG), which

generates a probability distribution of a set of VM cluster OS configurations, on the basis of this
probability distribution, the clouds will continuously change the OS configuration of the VM cluster.
The job of the task—VM mapping is placing the workflow sub-tasks into VMs according to some
scheduling objectives. Based on traditional Heterogeneous Earliest Finish Time (HEFT) algorithm
[36], we present dynamic HEFT task—VM mapping algorithm (DHEFT) to create opportunities for
defense strategy switching, which can speed up the switching of defense strategies.

The main contributions are summarized below:	
(1) Workflow scheduling is used for optimizing the performances of scientific workflows; however,

inspired by MTD, we propose using workflow scheduling as a dynamic defense method to
secure the cloud-based scientific workflows.

(2) We propose RPADG and get the optimal mixed defense strategy by calculating Nash
Equilibrium of the model. Furthermore, we propose to dynamically switch the defense strategies
by recycling and re-deploying VMs, which can weaken the reconnaissance effects of attackers.

(3) To speed-up the switching of defense strategies and adapt to the VM changes, based on
traditional HEFT algorithm, we present DHEFT to map workflow sub-tasks to VMs, which can
minimize the negative effects of switching defense strategies to the workflow efficiency.

(4) We conduct the experiments on both simulation environment-based on WorkflowSim [37] and
actual environment-based OpenStack [38]. A famous security scanner named Nmap [39] is used
for evaluating CLOSURE.
The rest of this paper is structured as follows: Section 2 introduces the related work. Section 3

states the security problem for scientific workflows in clouds. Section 4 presents the CLOSURE
and Section 5 presents the experiments, followed by Section 6 that concludes this work.

2 Related work
The researches on workflow scheduling can be categorized into seven classes according to the

scheduling objectives [8]: (1) Minimizing the monetary costs of executing workflows in public
clouds [30]. These scheduling algorithms consider the costs of renting VM, transferring the
intermediate data and storing the intermediate data and try to minimize it. (2) Minimizing workflow
makespan [31]. (3) Maximizing the number of workflows executed with the given money or the
specified deadline [40]. (4) Improving VM utilization during workflow execution [41]. The idle
time slots in the leased VMs are deemed as a waste of money since they are paid for but not used,
therefore, these scheduling algorithms try to avoid this problem. (5) Reducing the energy consumed
by workflow execution [42]-[43]. Individuals and organizations worldwide have developed an
increased concern to protect the environment by reducing carbon footprints [8], which makes some
researchers consider the energy consumption when designing their scheduling algorithms. (6)
Enhancing the reliability of scientific workflows [44]-[46]. The purpose of these scheduling
algorithms is to ensure successful workflow execution even if resource or task failure occurs. (7)
enhancing the security of scientific workflows [47]-[49]. Scientific workflows often involve secret
data and sensitive computation, so some algorithms are presented to execute scientific workflows
in a secure manner.

Clouds use virtualization technologies to maximize the utilization of the computing resources,
e.g. many VMs run on a shared physical infrastructure, which causes high security risks. First, the
virtualized environment introduces its own set of risks and vulnerabilities. The key module of

virtualization is a virtual machine monitor (VMM), which is responsible for VM management and
isolation. There are many reported vulnerabilities that can be used for attacking VMM [50]. Once
an attacker compromises the VMM, all the VMs managed by this VMM will be under the control
of the attacker [51], and the VM metadata kept by this VMM will also be exposed to this attacker
[52]. VM escape is a situation in which a malicious user or VM escapes from the control of VMM
[53], which can provide the attacker access to other VMs or bring the VMM down [54]. Second, co-
residency with other VMs cause high-security risks, such as side-channel attacks [55]. Cache side-
channel attacks can infer secret information of a victim by measuring its cache usage patterns [56].
The researchers in [57][58] have shown that the last-level cache (LLC) attacks are powerful enough
to extract fine-grained secret information with high resolution and low noise. Wang et al. [55]
present a novel side-channel based on shared physical memory, which exploits the vulnerabilities
of the balloon driver. Balloon driver is a very popular mechanism used by current VMMs to balance
physical memory among several VMs.

For the cloud-based scientific workflow security problem, Poola et al. [46] propose an adaptive,
just-in-time workflow scheduling algorithm, which reduces costs and enhances fault-tolerant
capabilities of scientific workflows by dynamically selecting spot and on-demand instances. Yao et
al. [45] believe the rescheduling of scientific workflows is similar to the biological immune system,
so an immune system inspired failure-aware rescheduling algorithm is suggested to improve the
reliability of scientific workflows. Ding el al. [44] present a primary-backup workflow scheduling
algorithm to achieve fault-tolerant elastic workflow scheduling. In [34], a novel fault-tolerant
workflow scheduling algorithm is presented, which combines the resubmission and replication
strategy together to play their respective advantages. To secure the data of scientific workflows, in
[47], the workflow datasets are divided into moveable and immovable datasets based on the security
requirements. Movable datasets have no security restrictions and can be moved between data centers.
While immovable datasets are restricted to a single data center and cannot be moved. In [48], the
authors build a security overhead model to reasonably measure the security overheads incurred by
the sensitive data, and propose a data placement strategy to dynamically deploy the intermediate
data for the scientific workflows. Chen et al. [49] develop a task-scheduling framework for security
sensitive workflows, in which the intermediate data is encrypted by effectively exploiting tasks’
laxity time. Li et al. [13] consider the heterogeneity of workflow sub-tasks, such as data-intensive
sub-tasks, memory-intensive sub-tasks, and computation-intensive sub-tasks, and propose security
and cost aware scheduling algorithm for heterogeneous sub-tasks of scientific workflow in clouds.
Nepal et al. [16] design TruXy system, which provides trusted storage services for scientific
workflows. Sujana et al. [59] present SPSO to find an optimized schedule that tradeoff between
security and minimum makespan and cost for workflow execution in clouds. Wen et al. [60] propose
a novel algorithm to deploy workflow applications on federated clouds, in which an extension of
the Bell-LaPadula Multi-Level security model is applied to meet application security requirements.

Although the above works have considered the scientific workflow security, these works
generally use traditional protection methods such as encryption or hash check to improve security.
Inspired by MTD, we achieve a dynamic defense method by workflow scheduling to secure the
scientific workflows in clouds.

Research on the MTD strategy formulation can be categorized into three classes: strategy
formulation based on game theory [21]-[23], strategy formulation based on machine learning control
theory [24][25] and strategy formulation based on evolution theory [26][27]. In the network attack

and defense scenario, the features of opposition, dependency and noncooperative are compatible
with the game theory, thus making the strategy formulation based on game theory becoming the
mainstream method [28]. Manadhata et al. [61] construct a two-player stochastic dynamic game
model and analyze the impact of attack surface transformation on both offensive and defensive
behaviors. Zhu et al. [62] establish a game-theoretic model to provide a formal analysis of security
strategies and guide the design of MTD. Then they develop a feedback system framework for
strategically shifting attack surface based on observation. Carter et al. [63] research dynamic
platform defense by using a game-theoretical approach modeling an attacker who can monitor the
defender’s moves. Feng et al. [64] combine Stackelberg game model with Markov decision process
and design an iterative algorithm to select optimal strategy under worst-case by abstracting strategy
selection into the minimum-maximum problem. Ahmed et al. [65] formulate an APT defense game
using evolutionary game theory to research the dynamic behavior of the APT attacker and defender
with replicator dynamics.

3 Problem statement

3.1 Cloud-based scientific workflow system
A workflow is often modeled as a Directed Acyclic Graph (DAG), which can be represented

as 𝐺 = 𝑉, 𝐸 , where V denotes the set of sub-tasks making up the workflow. 𝐸 =
𝑎', 𝑎(𝑎', 𝑎(∈ 𝑉, 𝑖 ≠ 𝑘 with no cycles 𝑎' ↝ 𝑎(↝ 𝑎' is the set of arcs between sub-tasks in

V. Each arch 𝑎', 𝑎(∈ 𝐸 represents the dependence constraint between sub-tasks 𝑎' and 𝑎(,
such that 𝑎' must be completed prior to the initiation of the execution of 𝑎([66][67].

User Interface

Workflow Engine

Resource
Provisioning

Workflow
Parser

Task
Scheduler

Cloud Provider
APIs

OpenStack

Amazon AWS

Microsoft Azure

Resource
Monitoring

Workflow
Modeling

Workflow
Management

Cloud Resources

VM VM VM VM VM VM Image
Library

Workflow
Management

Workflow
Monitor

Data
Management

1a 2a
3a

4a

!

!

1,2d 2,3d

2,4d

Workflow

	

Figure 1 The structure of a typical cloud-based scientific workflow system [8]

A typical cloud-based scientific workflow system mainly comprises 5 modules: workflow

engine, user interface, workflow management module, cloud provider APIs and cloud resources [8],
as shown in Figure 1. The users model their workflows in the user interface and submit the defined
workflow to the workflow engine. The workflow engine is the core of the cloud-based scientific
workflow system, which contains three main functions, workflow parsing, workflow scheduling
and resource provisioning. The workflow parser can analyze the required resources for the

submitted workflow; according to the resource requirement, resource provisioning module will use
cloud provider APIs to produce VMs. Furthermore, the workflow parser also can translate each
abstract workflow into an internal executable workflow representation [68]; then, the task scheduler
will dispatch the workflow sub-tasks to VMs to execute based on loaded scheduling strategies.
Different scheduling strategies can be selected based on different requirements of the users, such as
minimizing the monetary costs of executing workflows, minimizing workflow makespan, and so
on. During the workflow execution, the workflow management module will monitor the workflow
execution status and manage the generated intermediate data; then, reflects this information to the
user interface.

3.2 The threats of the scientific workflows in clouds
Many scientific workflows belong to important scientific computing tasks, such as high-energy

physics, bioinformatics, atmospheric science, and so on [69]. Therefore, workflow intermediate data
involves core secrets in some areas, it will cause huge losses if the data information is stolen [70].
However, due to the multi-tenant coexistence, data leakage is one of the serious threats in clouds
[11].

For cloud-based scientific workflow systems, the workflow is executed by VMs. After
completing each workflow sub-task, the intermediate data will be generated in the VMs, which is
used for the execution of successor sub-tasks. Since these intermediate data are only temporarily
stored in the VM, they are usually not encrypted. As long as the attacker enters these VMs, these
intermediate data can be stolen easily.

In executing a scientific workflow, VMs need to transfer data frequently, so these VMs are
usually placed in the same tenant network. Different tenant networks are separated by tunneling
protocol, if the tunneling protocol fails, all tenants’ traffic is visible [71]. Therefore, attackers can
penetrate other tenants’ networks through damaging the tunneling protocol.

If an attacker has succeeded in penetrating a tenant network in which many VMs are executing
sub-tasks of scientific workflows, he can use a scanning tool to gain information about the OSs of
these VMs. Then, the attacker can develop an attack strategy with the greatest attack benefits
(penetrating as many VMs as possible). For example, the attacker uses Nmap to scan the entire
tenant network and find 8 Windows VMs and 2 Ubuntu VMs. After that, the attacker can use the
vulnerabilities of the Windows OS to occupy 8 VMs and steal the workflow data.

4 Cloud scientific workflow scheduling algorithm based on

attack-defense game model

4.1 Overview of CLOSURE
A network attacker is an intelligent and rational individual, which pursues the maximization of

attack benefits while considering the costs of attacks [72]. In the attack scenario for scientific
workflows described in Section 3.2, to steal as much workflow intermediate data as possible, the
attacker will try to use few attacks to invade as many VMs as possible (the number of attacks is
regarded as the attack costs in this paper). To defend these intelligent and rational attackers, we
propose CLOSURE, which contains three main contents: diverse VMs, resource provision
algorithm based on attack-defense game model (RPADG) and task—VM mapping algorithm based

on DHEFT, the relationships of these three contents are shown in Figure 2, and the basic ideas are:
(1) Generating diverse VMs with different OS images to increase attack costs. If all VMs

executing the scientific workflow are Ubuntu based, the attacker only needs one attack based on
Ubuntu OS vulnerabilities to invade all VMs (it is assumed that the attacker can attack multiple
VMs at a time). However, if the VMs use different OSs, it is difficult for the attacker to invade all
VMs by only one attack. We introduce this content in Section 4.2.

(2) We regard the different OS distribution in the VM cluster as different defense strategies,
and build the attack-defense game model for the scientific workflows. Then, we can get the
probability distribution of the optimal mixed defense strategies by solving the model. Based on the
mixed defense strategies, we propose RPADG to switch the defense strategy by recycling and re-
deploying VMs, which can make it difficult for attackers to obtain defense information through the
reconnaissance. Because the defense strategy obtained by the reconnaissance at the previous
moment will change at the next moment. We introduce this content in Section 4.3.

(3) In RPADG, the defense strategy switching is achieved by recycling idle VMs. However,
when the number of available VMs is small, the frequency of the idle state of VMs is very low,
which will greatly reduce the switching period of the defense strategy. So, based on traditional HEFT
(heterogeneous earliest finish time) algorithm, we propose DHEFT, which can corporate with the
RPADG to speed up the switching period of defense strategies, and dynamically adjust the
scheduling strategy according to the VM changes, reducing the adverse effect of VM changes on
workflow efficiency.

Defense Strategy 1 Defense Strategy 2
Time

VM VM VM VM VM VM

VM VM VM

VM VM VM

VM VM VM

VM VM VM

Scientific workflow

!

RPADG: defense strategy generation and switching

VM VM

VM VM

Diverse VMs

Re-deploying

Current moment Next moment

DHEFT: task-VM mapping

	

Figure 2 Overview of the defense scheme in CLOSURE

4.2 Diverse VMs

4.2.1 Workflow software deployment method
One of the difficulties in executing scientific workflows in diverse VMs is the workflow

software deployment since users need to develop multiple versions of workflow software to be
compatible with different OSs. However, the emerging container technology in recent years has
solved this problem. Hence, we propose a workflow software deployment method based on

container technology, the principle is shown in Figure 3. There is a workflow consisting of 4 sub-
tasks, 𝑎., 𝑎/, 𝑎0, 𝑎1. Users, firstly, need to deploy the software corresponding to each workflow sub-
task in the containers. Then, these containers will be placed in the diverse VMs. The mapping
between the container port and the VM port should be established. During the workflow execution,
the software will be activated by transmitting the data to the corresponding port. In Figure 3, if the
data is transferred to port 1, the 𝑎. software will be activated to execute sub-task 𝑎.. VM snapshot
will be created and uploaded to the image library.

VM

Container

Container

Container

Container

Mapping

Mapping

Mapping

Mapping

Port

Port

Port

Port

1a

2a 3a

4a

1 softwarea

2 softwarea

3 softwarea

4 softwarea

	
Figure 3 Workflow software deployment method based on container technology

4.2.2 The vulnerability information about diverse OSs
In [19], the authors summarize the vulnerability information about 11 OSs (OpenBSD, NetBSD,

FreeBSD, Windows Server 2000, Windows Server 2003, Windows Server 2008, Ubuntu, Debian,
Red Hat, Solaris and OpenSolaris) and the common vulnerability information between them, which
are shown in Table 1 and Table 2, respectively. These vulnerabilities can be divided into four
categories: the vulnerabilities of kernel, system software, driver and application, as shown in Figure
4. Driver vulnerabilities are distributed in the network cards, audio cards, and play devices. These
vulnerabilities do not affect the execution of scientific workflows, so, we define the threat level of
this kind of vulnerabilities as Level 1. Application vulnerabilities are distributed in databases, text
editors, FTP clients and servers, and so on. We define the threat level of application vulnerabilities
as Level 2. Kernel vulnerabilities are distributed in TCP/IP stack, file system, task management and
core libraries, which can affect the workflow sub-task execution, intermediate data transmission, so
we define the threat level of kernel vulnerabilities as Level 3. System software vulnerabilities are
distributed in software providing common OS functionalities such as login, shells and basic
daemons. In this paper, the main threat we face is the attackers’ illegal login to the VM, so we define
the threat level of vulnerabilities as Level 4.

	
Figure 4 Vulnerability classification and threat level

	

Table 1 Vulnerabilities per OS from 1994 to 2011 [19]
OS Sys. Soft. Kernel Application Driver

OpenBSD 37 76 38 2
NetBSD 39 64 31 9
FreeBSD 61 153 61 4

OpenSolaris 9 15 7 0
Solaris 120 155 149 2
Debian 39 25 148 1
Ubuntu 8 22 58 2
Red Hat 108 94 237 5
Win2000 135 146 211 3
Win2003 96 171 291 2
Win2008 36 123 175 0

	
Table 2 Vulnerabilities between OSs from 1994 to 2011 [19]

A pair of OSs Sys. Soft. Kernel Application Driver
OpenBSD-NetBSD 8 8 11 1
OpenBSD-FreeBSD 18 14 8 1

OpenBSD-OpenSolaris 0 0 0 0
OpenBSD-Solaris 1 5 3 0
OpenBSD-Debian 0 0 0 0
OpenBSD-Ubuntu 0 0 2 0
OpenBSD-Red Hat 3 1 5 0
OpenBSD-Win2000 0 3 0 0
OpenBSD-Win2003 0 2 0 0
OpenBSD-Win2008 0 1 0 0
NetBSD-FreeBSD 10 13 13 2

NetBSD-OpenSolaris 0 0 0 0
NetBSD-Solaris 6 4 4 0
NetBSD-Debian 4 0 1 0
NetBSD-Ubuntu 0 0 0 0
NetBSD-Red Hat 6 0 3 0
NetBSD-Win2000 0 2 0 1
NetBSD-Win2003 0 1 0 0
NetBSD-Win2008 0 1 0 0

FreeBSD-OpenSolaris 0 0 0 0
FreeBSD-Solaris 3 5 8 0
FreeBSD-Debian 1 0 3 0
FreeBSD-Ubuntu 0 0 0 0
FreeBSD-Red Hat 4 1 7 0
FreeBSD-Win2000 0 3 0 1
FreeBSD-Win2003 0 2 0 0
FreeBSD-Win2008 0 1 0 0
OpenSolaris-Solaris 3 3 5 0
OpenSolaris-Debian 0 0 0 0
OpenSolaris-Ubuntu 0 0 0 0
OpenSolaris-Red Hat 0 0 0 0
OpenSolaris-Win2000 0 0 0 0
OpenSolaris-Win2003 0 0 0 0
OpenSolaris-Win2008 0 0 0 0

Solaris-Debian 1 1 0 0
Solaris-Ubuntu 0 0 0 0
Solaris-Red Hat 3 3 7 0
Solaris-Win2000 0 3 7 0
Solaris-Win2003 0 1 7 0
Solaris-Win2008 0 0 1 0
Debian-Ubuntu 2 0 9 0
Debian-Red Hat 8 5 38 0
Debian-Win2000 1 0 0 0
Debian-Win2003 1 0 0 0
Debian-Win2008 0 0 0 0
Ubuntu-Red Hat 1 0 20 0
Ubuntu-Win2000 1 0 0 0
Ubuntu-Win2003 1 0 0 0

Ubuntu-Win2008 0 0 0 0
Red Hat-Win2000 1 0 1 0
Red Hat-Win2003 1 0 1 0
Red Hat-Win2008 0 0 0 0
Win2000-Win2003 43 42 145 0
Win2000-Win2008 8 8 51 0
Win2003-Win2008 22 18 157 0

	

4.3 Resource provisioning based on attack-defense game model
In the attack-defense environment for cloud-based scientific workflows, the relationship

between the attacker and defender is non-cooperative. In the process of attack and defense, the
attacker and defender will not inform the opponent of the decision information in advance. The
purpose of the attackers is trying to intrude as many VMs as possible to get the most benefits, while
defenders try to minimize the affected VMs, which can be modeled as the attack-defense game
model for scientific workflows (ADGSW).

4.3.1 Related definition of ADGSW

The definition of ADGSW: In this paper, we only consider that there is only one attacker and
one defender in the game. Therefore, ADGSW can be represented as 𝐺 =
𝑁3, 𝑁4 , 𝑆3, 𝑆4 , 𝑈3, 𝑈4 , where 𝑁3 represents the attacker and 𝑁4 represents the defender

(scientific workflow users). 𝑆3 = 𝑠.3, 𝑠/3,⋯ , 𝑠93 denotes the attack strategy set of the attacker and
𝑆4 = 𝑠.4, 𝑠/4,⋯ , 𝑠:4 denotes the defense strategy set of the defender. 𝑈3 and 𝑈4 are utility
functions of the attacker and defender, 𝑈3 𝑠'3, 𝑠;4 and 𝑈4 𝑠'3, 𝑠;4 respectively represent the
utility of the attacker and defender when the attacker adopts the attack strategy 𝑠'3 and the defender
adopts the defend strategy 𝑠;4 . In ADGSW, the defender’s loss is the attacker’s gain, so
𝑈3 𝑠'3, 𝑠;4 + 𝑈4 𝑠'3, 𝑠;4 = 0, that is, ADGSW is a zero-sum game. The most commonly used
solution concept in game theory is that of Nash Equilibrium.

The definition of pure strategy Nash Equilibrium: Nash Equilibrium captures a steady state
of the play of a strategic game in which each player holds the correct expectation about the other
players’ behavior and acts rationally [73]. In ADGSW, the pair of attack-defense strategy 𝑠∗3 and
	𝑠∗4 is a Nash Equilibrium if it meets the requirement that for ∀𝑠3:A3 ∈ 𝑆3 , 𝑈3 𝑠∗3, 𝑠∗4 ≥
𝑈3 𝑠3:A3 , 𝑠∗4 , and for ∀𝑠3:A4 ∈ 𝑆4 , 𝑈4 𝑠∗3, 𝑠∗4 ≥ 𝑈4 𝑠∗3, 𝑠3:A4 , which means that 𝑠∗3 ,	𝑠∗4 is the
optimal strategy that can maximize the utility of both the attacker and defender. But there may not
be a pure strategy Nash Equilibrium in ADGSW [73]. At this time, both the attacker and defender
must consider the mixed attack-defense strategies, since every finite strategic game has a mixed
strategy Nash Equilibrium [73].

The definition of mixed attack-defense strategies: In ADGSW, the probability distribution
of 𝑆3 = 𝑠.3, 𝑠/3,⋯ , 𝑠93 and 𝑆4 = 𝑠.4, 𝑠/4,⋯ , 𝑠:4 are respectively defined as 𝑃3 =
𝑝.3, 𝑝/3,⋯ , 𝑝93 and 𝑃4 = 𝑝.4, 𝑝/4,⋯ , 𝑝:4 , 0 ≤ 𝑝'3 ≤ 1 , 	0 ≤ 𝑝'4 ≤ 1 , 	 𝑝'3 = 19

'G. , 𝑝'4 =:
'G.

1.
The definition of mixed strategy Nash Equilibrium: In ADGSW, the probability distribution

of the attacker and defender’s mixed strategies is 𝑃3 = 𝑝.3, 𝑝/3,⋯ , 𝑝93 and 𝑃4 = 𝑝.4, 𝑝/4,⋯ , 𝑝:4 ,
respectively, so, the utility expectation of the attacker and defender can be calculated by (1) and (2),

𝐸3 𝑃3, 𝑃4 = 𝑝'3 𝑝;4𝑈3 𝑠'3, 𝑠;4
:

;G.

9

'G.
= 𝑝'3𝑝;4𝑈3 𝑠'3, 𝑠;4

:

;G.

9

'G.
															(1)

𝐸4 𝑃3, 𝑃4 = 𝑝;4 𝑝'3𝑈4 𝑠'3, 𝑠;4
9

'G.

:

;G.
= 𝑝'3𝑝;4𝑈4 𝑠'3, 𝑠;4

9

'G.

:

;G.
															(2)

The condition that the mixed strategies having the probability distribution 𝑃3∗, 𝑃4∗ is Nash
Equilibrium is that for ∀𝑃3, 𝐸3 𝑃3∗, 𝑃4∗ ≥ 𝐸3 𝑃3, 𝑃4∗ , and for ∀𝑃4, 𝐸4 𝑃3∗, 𝑃4∗ ≥ 𝐸4 𝑃3∗, 𝑃4 .

4.3.2 The attack and defense strategies

Firstly, we use 𝑜', 𝑖 = 1,2,⋯ ,11 to respectively represent the OS of OpenBSD, NetBSD,
FreeBSD, Windows Server 2000, Windows Server 2003, Windows Server 2008, Ubuntu, Debian,
Red Hat, Solaris and OpenSolaris.

In ADGSW, we define a defense strategy as 𝑠(4 = 𝑛𝑣., 𝑛𝑣/,⋯ , 𝑛𝑣.. , 	𝑛𝑣' denotes the
number of VMs with the OS of 𝑜'. For example, 𝑠(4 = 10,0,0,0,0,0,0,0,10,0,0 represents the
defense strategy having 10 OpenBSD VMs and 10 Red Hat VMs.

Then, we define an attack strategy as 𝑠(3 = 𝑜;, which represents to use a vulnerability from 𝑜;
as the attack strategy. The attack strategy set is defined as 𝑆3 = 𝑠.3, 𝑠/3,⋯ , 𝑠..3 = 𝑜., 𝑜/,⋯ , 𝑜.. .

4.3.3 The quantification of utility functions
In section 4.3.1, we have discussed that ADGSW is a zero-sum game, so as long as the

attacker’s utility function 𝑈3 is known, the defender’s utility function 𝑈4 can be obtained easily.
In this section, we propose to use the common vulnerabilities between OSs to quantify the

utility functions. We use 𝑣𝑠', 𝑣𝑘', 𝑣𝑎', 𝑣𝑑', 𝑖 = 1,2,⋯ ,11 to respectively represent the number of
system software, kernel, application and driver vulnerabilities of 𝑜' . Using
𝑣𝑠',;, 𝑣𝑘',;, 𝑣𝑎',;, 𝑣𝑑',;, 𝑖, 𝑗 = 1,2,⋯ ,11 to represent the number of system software, kernel,
application and driver common vulnerabilities between 𝑜' and 𝑜; , and 𝑣𝑠',' = 𝑣𝑠', 𝑣𝑘',' =
𝑣𝑘', 𝑣𝑎',' = 𝑣𝑎', 𝑣𝑑',' = 𝑣𝑑', 𝑖 = 1,2,⋯ ,11. Furthermore, we use 𝑤𝑠, 𝑤𝑘, 𝑤𝑎, 𝑤𝑑 to respectively
represent the weight of the system software, kernel, application and driver vulnerabilities, in this
paper, 𝑤𝑠 = 4, 𝑤𝑘 = 3, 𝑤𝑎 = 2, 𝑤𝑑 = 1. If the attacker adopts the 𝑜(, 𝑘 ∈ 𝑁, 1 ≤ 𝑘 ≤ 11 as the
attack strategy, the 𝑈3 is defined as (3),

𝑈3 = 𝑛𝑣' ∙ 𝑤𝑠 ∙ 𝑣𝑠',(+ 𝑤𝑘 ∙ 𝑣𝑘',(+ 𝑤𝑎 ∙ 𝑣𝑎',(+ 𝑤𝑑 ∙ 𝑣𝑑',(
..

'G.
											(3)

𝑛𝑣' denotes the number of VMs with the OS of 𝑜'. (3) denotes that the attack is more effective if
the target has more vulnerabilities with high threat level. Because if a VM has many vulnerabilities
with high threat level, the security of the VM is low, so the probability of successfully intruding the
VM will be high. Furthermore, (3) also considers the common vulnerabilities between OSs. For
example, if the attacker uses the vulnerability from 𝑜. to attack the VM whose OS is 𝑜/ , the
success probability is related to the number and type of common vulnerabilities between 𝑜. and
𝑜/.
4.3.4 The optimal mixed defense strategy

In ADGSW, there are many defense strategies, we cannot consider all the defense strategies.
Therefore, a certain number of defense strategies should be randomly generated firstly. The number
of generated defense strategies we set is 100.

Equations (1) and (2) are used for explaining the definition of the mixed strategy Nash
Equilibrium. When actually solving the Nash Equilibrium, we do not use (1) and (2), but use
minimax method [74]. In ADGSW, the pair of attack-defense strategy 𝑠∗3 and 	𝑠∗4 is a mixed
strategy Nash Equilibrium if and only if every player’s every pure strategy supports that 𝑠∗3 and

	𝑠∗4 are the best strategies [73]. Therefore, the defender just needs to consider the situation where
the attacker adopts pure strategies. In the special case of two-player zero-sum games, computing an
optimal mixed strategy is equivalent to computing a minimax strategy, which minimizes the
maximum expected utility that the opponent can obtain [74]. Therefore, the object of the defender
is selecting the mixed attack strategy 𝑃4 = 𝑝.4, 𝑝/4,⋯ , 𝑝:44 to minimize od,

𝑜𝑑 = max
.X'X..

𝑝;4 ∙ 𝑈3 𝑠'3, 𝑠;4
:4

;G.
																																																(4)

The problem of selecting the mixed attack strategy can be transformed into linear programming
problem:

Minimize	𝑒

s. t.		𝑒 ≥ 𝑝;4 ∙ 𝑈3 𝑠'3, 𝑠;4 , 𝑖 = 1,2,⋯ ,11
:4

;G.

𝑝;4 = 1
:4

;G.

0 ≤ 𝑝;4 ≤ 1, 𝑗 = 1,2,⋯ , 𝑛𝑑

																																					(5)

4.3.5 Resource provisioning strategy
Based on ADGSW, we can get the probability distribution of the optimal mixed defense

strategies, then, RPADG uses the probability to select a series of defense strategies. To prevent the
attacker from obtaining the information about defense strategies, RPADG switches the defense
strategies by recycling and re-deploying a part of VMs. To preserve the data in the VMs which are
going to be recycled, block storage service such as OpenStack Cinder is needed. The newly
deployed VMs can get the data as long as the volume containing the data is mounted. But, the
process of recycling VMs will cause a decrease in the number of available VMs in a short period,
which can delay the workflow makespan, especially when multiple VMs are recycled at the same
time. In [77], the authors conclude that deploying an Amazon EC2 instance requires around 50
seconds. For this problem, RPADG recycles only one VM at one time, the pseudo-code of RPADG
is shown in Algorithm 1.

Algorithm 1 RPADG
1

2

3

4

5

6

7

8

9

10

11

12

sd[nd] = randomly generating nd defense strategies; //sd represents the defense strategies
pd[nd] = calculating the probability of mixed defense strategies by (5); //pd represents the
probability of mixed defense strategies
s = selecting a defense strategy according to pd[nd]; //s denotes the selected defense
strategy
d = deploying VMs according to the defense strategy s; //d denotes the actual distribution
of VMs
while (the workflow does not end)
 s = selecting a defense strategy according to pd[nd];
 while (d does not match with s)
 if (the VM needing to be recycled is idle && no VM is being recycled)
 d = recycling the VM and re-deploying new VMs with specific OS;
 end
 end
end

First, RPADG need to randomly generate nd defense strategies (step 1), then solve the linear
programming problem (5) to obtain the mixed defense strategies (step 2). After that, RPADG selects
a defense strategy based on the probability distribution obtained by step 2 (step 3). Afterwards,
RPADG deploys the VMs according to the selected defense strategy, and these VMs will execute
the workflow. During the workflow execution, RPADG will select new defense strategies and
transform the current VM distribution into the new defense strategy. The process of this
transformation is realized by recycling the idle VMs and re-deploying new VMs with specific OS
(step 9). For example, it is assumed that the new defense strategy is the distribution of 2 Ubuntu
VMs and 2 FreeBSD VMs and the current VM distribution is 2 Ubuntu VMs, 1 Window Server
2008 VM and 1 FreeBSD VM, when the Windows Server 2008 VM is idle this VM will be recycled
and the recycled resource will be used for deploying a new FreeBSD VM.

4.4 Task—VM mapping based on DHEFT
Besides the resource provisioning strategy, the task—VM mapping is also essential to the

efficiency and security of the workflows. HEFT is a traditional task—VM mapping algorithm,
which has been extensively used in scientific workflow scheduling in clouds [79]. However,
traditional HEFT cannot be applied to CLOSURE, since traditional HEFT is a static scheduling
algorithm, which calculates the scheduling strategy before workflow execution, the calculated
scheduling strategy does not change during the workflow execution. RPADG will randomly recycle
some VMs during the workflow execution, so the task—VM mapping algorithm is necessary to be
self-adjusting in time. Therefore, we propose DHEFT, it is a dynamic HEFT algorithm, which will
adjust the task scheduling strategy when resources changing. The principle of DHEFT is shown in
Algorithm 2.

VM 1 VM 2 VM 3 VM 4

1a

2a 3a 4a 5a

6a 7a 8a 9a

10a

1d
2d 3d

4d

5d 6d 7d 8d

9d
10d 11d

12d

1a

5a4a 2a
3a

5s 3s 2s 5s 3s 3s 3s 2s 2s 5s

6a
7a 9a

8a

10a

0 s

5 s

10 s

15 s

20 s

1t

2t

1t

2t

VM 1
VM 2
VM 3
VM 4

Data transmission

VM re-deployment

100Mb 100Mb 100Mb 200Mb 100Mb 100Mb

200Mb 200Mb 200Mb 100Mb 100Mb 200Mb

(a)

(b)

VM 1
VM 2
VM 3
VM 4

3a

VM 1 VM 2 VM 3 VM 4

1a

5a
4a 2a

6a
7a

9a8a

10a

Data transmission

VM re-deployment

(c)

VM 1
VM 2
VM 3
VM 4

Scientific workflow

The runtime of each workflow sub-task
The amount of each workflow intermediate data

Scheduling strategy at

Scheduling strategy at

Scheduling strategy

0 s

5 s

10 s

15 s

20 s

1t

	
Figure 5 (a) A workflow used for illustrating DHEFT (b) The illustration of the task scheduling process

of DHEFT (c) The illustration of the task scheduling process of traditional HEFT

We use a workflow that is shown in Figure 5 (a) to illustrate DHEFT. It is assumed that the
bandwidth between VMs is 100 Mbps, the number of available VMs is 4, the time of re-deploying
a VM is one second. According to HEFT, the workflow sub-task scheduling order is (6)

𝑎. → 𝑎1 → 𝑎c → 𝑎/ → 𝑎0 → 𝑎d → 𝑎e → 𝑎f → 𝑎g → 𝑎.h																													(6)
At 𝑡., the system receives the command of switching the defense strategy, and VM1 needs to be
recycled. In order to make VM1 idle, DHEFT will calculate the scheduling strategy without
considering VM1. The scheduling strategy calculated at 𝑡. is that 𝑎1, 𝑎f and 𝑎.h are assigned
to VM2, 𝑎c , 𝑎d and 𝑎g are assigned to VM3, 𝑎/ , 𝑎0 and 𝑎e are assigned to VM4. At 5
seconds, 𝑎. is finished and VM1 will transmit the intermediate data to other VMs to execute
successor sub-tasks. After data transmission, VM1 is idle and will be recycled by RPADG. At 𝑡/,
the VM re-deployment is finished and DHEFT will re-calculate a new scheduling strategy. The
process of task scheduling of DHEFT is shown in Figure 5 (b), and it takes 7 seconds from receiving
the defense strategy switching command to competing the strategy switching. However, if HEFT is
used for task scheduling, it will take 13 seconds to finish the strategy switching, as shown in Figure
5 (c). Therefore, DHEFT can speed up the switching period of defense strategies.

Algorithm 2 DHEFT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Input: na (the number of available VMs), vm[na] (VM ID), nc (the number of VMs that
need to be converted), cvm[nc] (ID of VMs that need to be converted)
while (the workflow does not end)

if (receiving the defense strategy switching command || a new VM has been deployed)
 order[] = ordering the unscheduled sub-tasks by HEFT;

for i = 1:size(order[])
 for j = 1:na
 if (nc >= 1)
 if (vm[j] == cvm[nc-1])
 continue; //Do not schedule sub-tasks on VMs that need to be
converted
 end
 end
 if (order[i] has the earliest start time on vm[j])
 order[i] will be assigned to vm[j];
 nc = nc-1;
 end
 end

end
end

end

5 Experiments

5.1 Experimental setup
The experiments are conducted based on simulation environment based on WorkflowSim and

actual environment based on OpenStack.

5.1.1 Simulation experiment environment
WorkflowSim is an open source software devised for workflow scheduling simulation in clouds.

In WorkflowSim, the workflows are described by a XML file, which includes the information about
the number of sub-tasks, the dependent relationship between sub-tasks, the number of intermediate
data, the size of each intermediate data and each sub-task runtime.

The workflows used for simulation are CyberShake, Epigenomics, Montage, and Inspiral,
which are published by Pegasus project [75]. The structures of these workflows are shown in Figure
6, and the parameters are shown in Table 3.

(a) Epigenomics (d) Montage(b) Inspiral (c) CyberShake

Figure 6 The structures of workflow Epigenomics, Inspiral, CyberShake and Montage	
	

Table 3 The parameters of workflows used for tests

Workflow
Number of
sub-tasks

Number of
intermediate data

Average data size
Average sub-task

runtime

Epigenomics (997) 997 1234 388.59 MB 3858.67 s

Inspiral (1000) 1000 1233 8.90 MB 227.25 s

CyberShake (1000) 1000 1988 102.29 MB 22.71 s

Montage (1000) 1000 2485 3.21 MB 11.36 s

5.1.2 Actual experiment environment
To evaluate CLOSURE in an actual environment, we use two physical servers (24 core

processor, 32 G memory, 2 T storage space) to build a small scientific workflow system based on
OpenStack, as shown in Figure 7. The system contains one control node and one computing node.
In the control node, OpenStack Keystone (authentication module), OpenStack Glance (image
module), OpenStack Neutron (network module), OpenStack Cinder (block storage module) and
OpenStack Nova (computing module). Besides these OpenStack necessary components, we build
workflow parser, workflow scheduler, and resource provisioning module to implement CLOSURE.
An actual workflow, object detection in images, is used for evaluating CLOSURE, the structure of
the workflow is illustrated in Figure 8. In the actual test, we describe the actual workflow by a XML
file. The workflow parser reads the XML file and activates resource provisioning module to deploy
VMs. Resource provisioning module executes RPADG through Nova API and image library, which
can dynamically switch the defense strategies. We assume that there are 3 existing VMs to execute

the workflow, and we build a VM to simulate an attacker, which is not controlled by the resource
provisioning module. The workflow scheduler uses DHEFT to dispatch the workflow sub-tasks to
the VMs.

In Section 4.2.1, we discussed that the workflow software deployment requires the container
technology, but some OSs listed in Table 1 do not support container technology, such as OpenSolaris,
Windows Server 2000, 2003, 2008, and so on. Therefore, we construct the image library contains
the VM images of Windows 10, Windows 7, Solaris 10, FreeBSD 9.0, Debian 9.5, Ubuntu 16.04
and CentOS 7.3, and the OSs of Windows 10, Windows 7, Solaris 10, FreeBSD 9.0, Debian 9.5,
Ubuntu 16.04 and CentOS 7.3 respectively use the vulnerability data of Win2008, Win2003, Solaris,
FreeBSD, Debian, Ubuntu and Red Hat in Table 1 and Table 2.

eth0
Control
Node

OVS

eth1

eth0
Computing

Node

eth1

Nova API

Workflow
Scheduler

VM VM VM VM

 Tenant N
etw

ork
10.10.10.0/24

Attacker

Nova Compute

Scheduling information interaction

Recycling and re-deploying VMs

W
indow

s 7

U
buntu 16.04

FreeB
SD

 9.0

Solaris 10

C
entO

S 7.3

D
ebian 9.5

W
indow

s 10

Im
age Library

Resource
Provisioning

Workflow
Parser

W
orkflow

D
H

EFT
R

PA
D

G

	

Figure 7 A small scientific workflow system based on OpenStack
	

Region
Proposal

Image
Preprocessing

Feature
Extraction

Feature
Extraction

Feature
Extraction

Feature
Extraction

Feature
Extraction

Classification
by Classifier

Classification
by Classifier

Classification
by Classifier

Classification
by Classifier

Classification
by Classifier

Bounding-box
Regression

Input
Image

	

Figure 8 An actual workflow used for tests
	
	

5.2 The comparison algorithm
We compare CLOSURE with the following 2 algorithms:
WSH (workflow scheduling based on VM heterogeneity) [76]: In this algorithm, each VM

finishing sub-task execution will be recycled, and a new VM will be re-deployed to execute the next
sub-task. The OSs of the VMs before and after scheduling have maximum heterogeneity. The
available OSs are listed in Table 1.

WSR (workflow scheduling based on random defense strategy): This algorithm is designed by
us to compare the performance with CLOSURE. WSR is similar to CLOSURE, the only difference
is that in CLOSURE, the probability distribution of the mixed defense strategies is obtained by
solving the attack-defense game model, while in WSR, the probability distribution of the mixed
defense strategies is uniform.

5.3 Experiment results

5.3.1 Switching period of defense strategies
The switching period of defense strategies is an important factor to measure the security gains

brought by CLOSURE, since if the switching period of defense strategies is long, CLOSURE cannot
effectively avoid the attacker’s reconnaissance.

	

Figure 9 Defense strategy switching period with different number of available VMs

So, in this section, we evaluate the switching period of defense strategies, each experiment is

repeated 100 times for different workflow instances, the average evaluation result is shown in Figure
9. In order to ignore the impact of the differences in workflow sub-task runtimes, the switching
period is represented by the proportion of the average sub-task runtime. For example, if the
switching period is 4, it means that the switching of defense strategies takes four times the average
sub-task runtime. From the figure, we can find that with the increase of the number of available
VMs, the switching period will show an upward trend first, then stabilize. Because the more VMs
are available, the more VMs that need to be converted when switching defense strategies. But when
the number of VMs is saturated, the redundant VMs are idle. These idle VMs can be converted
without waiting for the sub-task completion, so these redundant VMs will not have effects on the

switching period of defense strategies.
Then, we record the times of switching defense strategies during the workflow execution, the

results are shown in Figure 10. Before reaching the saturation point, the increase of the available
VMs can accelerate the workflow completion, therefore the times of switching defense strategies
shows a downward trend. But, considering the costs, users normally do not choose to rent too many
VMs. If there are 20 available VMs, at least 10 times defense strategy switching will be launched,
which is enough for avoiding the attacker’s reconnaissance.

Th
e

tim
es

 o
f s

w
itc

hi
ng

de
fe

ns
e

st
ra

te
gi

es

Th
e

tim
es

 o
f s

w
itc

hi
ng

de
fe

ns
e

st
ra

te
gi

es

Th
e

tim
es

 o
f s

w
itc

hi
ng

de
fe

ns
e

st
ra

te
gi

es

Th
e

tim
es

 o
f s

w
itc

hi
ng

de
fe

ns
e

st
ra

te
gi

es

The number of available VMs The number of available VMs

The number of available VMsThe number of available VMs

(a) Epigenomics (b) Inspiral

(c) CyberShake (d) Montage 	

Figure 10 The times of switching defense strategies with different number of available VMs

5.3.2 Benefits of attackers
In this section, we use (3) to quantify the benefits of attackers. We define that the starting point

of the attack period is that the attacker starts network reconnaissance and the end point is that the
attacker successfully penetrates into the target VM. When one attack cycle ends, a new attack cycle
will begin immediately. It is assumed that a scientific workflow makespan is T. If the attack period
is T/2, the attacker can launch two complete attacks during the scientific workflow execution. So
the longer the attack period, the less the number of attacks launched in a limited time. It is assumed
that there are 20 available VMs to execute the workflow, and the attacker is a rational individual
who uses the mixed attack strategy to attack the scientific workflows, the probability distribution of
the mixed attack strategy can be obtained by solving (5). Workflows Epigenomics, Inspiral,
CyberShake and Montage are used for this test, and the attack period is a variable which is from
100 to 500 seconds, each experiment is repeated 100 times for different workflow instances, the
average results of the attacker’s benefits are shown in Figure 11. The longer the attack period, the

less the number of attacks launched, and the fewer the benefits are. Compared with the WSR and
WSH, CLOSURE can reduce the benefits of attackers more effectively. Because in this test, the
attacker is a rational individual, he will consider the attack benefits and tend to launch high-benefit
attacks. CLOSURE will make defense strategies according to this characteristic. According to the
results in Figure 11, we use the results of CLOSURE to subtract the results of WSH and average
them, the calculation result is 15.23%, so compared with WSH, CLOSURE can reduce the attacker’s
benefits by around 15.23%.

(a) Epigenomics (b) Inspiral

(c) CyberShake (d) Montage
	

Figure 11 The comparison of the benefits of attackers in WSR, WSH and CLOSURE

5.3.3 Time costs of scheduling algorithm
In this section, we use workflow Epigenomics to compare the time costs of WSH, WSR, and

CLOSURE and the experiment is repeated 100 times. It is assumed that re-deploying a VM requires
50 seconds. The timeframe is similar to the time required when deploying an Amazon EC2 instance
which is around 50 seconds [77]. We use the ratio of the increased workflow makespan to represent
the time costs, and record the time costs of WSH, WSR, and CLOSURE in Table 4. From the table,
we can find that the difference of the time cost of WSR and CLOSURE is small because the time
costs are mainly from the VM re-deployment during the defense strategy switching. The principles
of switching the defense strategy of WSR and CLOSURE are exactly the same, so, the time costs
of WSR and CLOSURE are similar. The time cost of WSH is higher than WSR and CLOSURE,
since each VM completing the sub-task execution has to be re-deployed, which will generate a lot
of time costs. We also can find that the time cost shows an upward trend with the increase of the
number of available VMs. Since increasing the number of VMs can shorten the workflow makespan,
the shorter the workflow makespan, the larger effects of VM deployment time to the entire workflow.
Many scientific workflows take a long time for execution [7], which will make the time cost of

CLOSURE very small. According to the results in Table 4, we use the results of CLOSURE to
subtract the results of WSH and average them, the calculation result is 7.86%, so compared with
WSH, CLOSURE can reduce the time costs by around 7.86%.

Table 4 The comparison of time costs of WSH, WSR and CLOSURE, time costs are represented by the

ratio of the increased workflow makespan
The number of

VMs

Workflow

makespan
WSH WSR CLOSURE

10 426125 s 3.40% 0.92% 1.04%

20 262192 s 5.65% 1.42% 1.25%

30 194785 s 7.53% 1.39% 1.28%

40 165382 s 7.76% 1.57% 1.50%

50 139040 s 9.06% 1.65% 1.84%

60 127718 s 10.82% 1.63% 1.73%

70 113413 s 10.62% 1.47% 1.55%

80 132062 s 12.52% 1.59% 1.55%

90 109890 s 13.17% 1.81% 1.60%

100 107424 s 13.28% 2.04% 1.88%

5.3.4 Nmap scan test
In this section, we build a small scientific workflow system as shown in Figure 7 and an actual

workflow shown in Figure 8 is used for the test. Nmap is used to simulate the attacker’s
reconnaissance. Nmap is a free and open source software for network discovery and security
auditing, which uses raw IP packets in novel way to determine what hosts are available on the
network, what services those hosts are offering and what OSs they are running [39].

In this test, the first defense strategy generated by CLOSURE is one Windows 7 VM, one
Solaris 10 VM and one FreeBSD 9.0 VM. Then the attacker used Nmap to scan the whole tenant
network (10.10.10.0/24) at 2019-05-09 00:25 and found 3 VMs with the OSs of Windows 7, Solaris
10 and FreeBSD 9.0, as shown in Figure 12 (a). Then, the second defense strategy generated by
CLOSURE is one Ubuntu 16.04 VM, one Solaris 10 VM and one Windows 10 VM. So, when the
Windows 7 VM and FreeBSD 9.0 VM had finished the sub-task, it would be replaced by an Ubuntu
16.04 VM and a Windows 10 VM. So, 10 minutes later, the attacker used Nmap to scan the whole
tenant network again and found that the OS distribution had been changed, as shown in Figure 12
(b). Therefore, CLOSURE can effectively avoid the attacker’s reconnaissance, making it difficult
for the attackers to obtain information about the defense strategies.

	
	

Solaris 10

Windows 7

FreeBSD 9.0

Solaris 10

Ubuntu 16.04

Windows 10

(a)

(b) 	
Figure 12 (a) Nmap scan test results at 2019-05-09 00:25 (b) Nmap scan test results at 2019-05-09

00:35
	

6 Conclusions and future work
In order to secure the scientific workflows in clouds, we propose CLOSURE to increase the

difficulties for the attackers to infiltrate into VMs executing workflow sub-tasks. Most of the
network attacks are launched based on OS vulnerabilities, we regard the attacks based on different
OS vulnerabilities as different attack strategies. A homogeneous VM cluster environment can easily
cause error propagation, one attack can compromise multiple VMs. So, diverse VMs are used for
workflow execution and different OS distributions are regarded as different defense strategies.
However, in the attack and defense scenarios for scientific workflows in clouds, the information of
the attacker and defender is not balanced. The defender cannot obtain information about the
attacker’s strategies, while the attacker can acquire information about the defender’s strategies
through a network scan. For this problem, we propose to dynamically recycle and re-deploy VMs
to switch the defense strategies during the workflow execution, which can weaken the attacker’s

reconnaissance effects and transform the scientific workflow security problem into the attack-
defense game problem. Then, the probability distribution of the optimal mixed defense strategy is
acquired by calculating the Nash Equilibrium in the attack-defense game model. Furthermore, task
scheduling algorithm based on dynamic HEFT is presented to accelerate the defense strategy
switching and improve workflow efficiency. The experiments are conducted on both simulation and
actual environment, experimental results demonstrate that compared with the other algorithm,
CLOSURE can reduce the attacker’s benefits by around 15.23% and the time costs of the algorithm
by around 7.86%.

However, only one attacker is considered in CLOSURE. If there are multiple attackers, a multi-
player game model needs to be established. We will attempt to solve this problem in the future.

7 Acknowledgements
This work was supported in part by the National Key Research and Development Program of

China under Grant 2018YFB0804004 and Grant 2018YFB1003700, in part by the Foundation for
Innovative Research Groups of National Natural Science Foundation of China under Grant
61521003, in part by the Beijing Natural Science Foundation under Grant Z170003, and in part by
the Beijing Institute of Technology Research Fund Program for Young Scholars.

Reference
[1] Y. Zhao, Y. Li, I. Raicu, et al. Migrating Scientific Workflow Management Systems from the

Grid to the Cloud. Cloud Computing for Data-Intensive Applications. Springer, New York, NY,
2014: 231-256.

[2] J. J. Rehr, F. D. Vila, J.P. Gardner, et al. Scientific computing in the cloud. Computing in science
& Engineering, 2010, 12(3): 34.

[3] A. Iosup, S. Ostermann, M. N. Yigitbasi, et al. Performance analysis of cloud computing
services for many-tasks scientific computing. IEEE Transactions on Parallel and Distributed
systems, 2011, 22(6): 931-945.

[4] E. Deelman, K. Vahi, M. Rynge, et al. Pegasus in the cloud: Science automation through
workflow technologies. IEEE Internet Computing, 2016, 20(1): 70-76.

[5] H. Chen, X. Zhu, D. Qiu, et al. Scheduling for workflows with security-sensitive intermediate
data by selective tasks duplication in clouds. IEEE Transactions on Parallel and distributed
systems, 2017, 28(9): 2674-2688.

[6] http://astronomy.swin.edu.au/pulsar/
[7] D. Yuan, Y. Yang, X. Liu, et al. A data dependency based strategy for intermediate data storage

in scientific cloud workflow systems. Concurrency and Computation: Practice and Experience,
2012, 24(9): 956-976.

[8] M. A. Rodriguez, R. Buyya. A taxonomy and survey on scheduling algorithms for scientific
workflows in IaaS cloud computing environments. Concurrency and Computation: Practice
and Experience, 2017, 29(8): 1-23.

[9] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, et al. Malicious co-residency on the cloud: Attacks
and defense. IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE,
2017: 1-9.

[10] Y. Zhang, A. Juels, M. K. Reiter, et al. Cross-tenant side-channel attacks in PaaS clouds.

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014: 990-1003.

[11] Z. Wang, J. Wu, Z. Guo, et al. Secure virtual network embedding to mitigate the risk of covert
channel attacks. 2016 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2016: 144-145.

[12] J. Wu, Z. Lei, S. Chen, et al. An access control model for preventing virtual machine escape
attack. Future Internet, 2017, 9(2): 20.

[13] Z. Li, J. Ge, H. Yang, et al. A security and cost aware scheduling algorithm for heterogeneous
tasks of scientific workflow in clouds. Future Generation Computer Systems, 2016, 65: 140-
152.

[14] K. S. Narayana, S. K. Pasupuleti. Trusted Model for Virtual Machine Security in Cloud
Computing. Progress in Computing, Analytics and Networking. Springer, Singapore, 2018:
655-665.

[15] Y. Wang, J. Wu, Y. Guo, et al. Scientific workflow execution system based on mimic defense
in the cloud environment. Frontiers of Information Technology & Electronic Engineering, 2018,
19(12): 1522-1536.

[16] S. Nepal, R. O. Sinnott, C. Friedrich, et al. TruXy: Trusted storage cloud for scientific
workflows. IEEE transactions on cloud computing, 2015, 5(3): 428-442.

[17] M. Guo, P. Bhattacharya. Diverse virtual replicas for improving intrusion tolerance in cloud.
Proceedings of the 9th Annual Cyber and Information Security Research Conference. ACM,
2014: 41-44.

[18] J. Ai, H. Chen, Z. Guo, et al. Mitigating malicious packets attack via vulnerability-aware
heterogeneous network devices assignment. Future Generation Computer Systems,
https://doi.org/10.1016/j.future.2019.04.034, 2019.

[19] M. Garcia, A. Bessani, I. Gashi, et al. Analysis of operating system diversity for intrusion
tolerance. Software: Practice and Experience, 2014, 44(6): 735-770.

[20] G. Cai, B. Wang, W. Hu, et al. Moving target defense: state of the art and characteristics.
Frontiers of Information Technology & Electronic Engineering, 2016, 17(11): 1122-1153.

[21] X. Feng, Z. Zheng, P. Mohapatra, et al. A stackelberg game and markov modeling of moving
target defense. International Conference on Decision and Game Theory for Security. Springer,
Cham, 2017: 315-335.

[22] S. Sengupta, S. G. Vadlamudi, S. Kambhampati, et al. A game theoretic approach to strategy
generation for moving target defense in web applications. Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2017: 178-186.

[23] X. Feng, Z. Zheng, D. Cansever, et al. A signaling game model for moving target defense.
IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 2017: 1-9.

[24] J. Rowe, K. N. Levitt, T. Demir, et al. Artificial diversity as maneuvers in a control theoretic
moving target defense. National Symposium on Moving Target Research. 2012.

[25] M. D. Adams, S. D. Hitefield, B. Hoy, et al. Application of cybernetics and control theory for
a new paradigm in cybersecurity. arXiv preprint arXiv:1311.0257, 2013.

[26] M. Crouse, E. W. Fulp, D. Canas. Improving the diversity defense of genetic algorithm-based
moving target approaches. Proceedings of the National Symposium on Moving Target
Research. 2012.

[27] D. J. John, R. W. Smith, W. H. Turkett, et al. Evolutionary based moving target cyber defense.
Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and
Evolutionary Computation. ACM, 2014: 1261-1268.

[28] C. Lei, H. Q. Zhang, J. L. Tan, et al. Moving target defense techniques: A survey. Security and
Communication Networks, 2018.

[29] F. Wu, Q. Wu, Y. Tan. Workflow scheduling in cloud: a survey. The Journal of Supercomputing,
2015, 71(9): 3373-3418.

[30] A. C. Zhou, B. He, C. Liu. Monetary cost optimizations for hosting workflow-as-a-service in
IaaS clouds. IEEE Transactions on Cloud Computing, 2016, 4(1): 34-48.

[31] H. Jiang, M. Song. Dynamic scheduling of workflow for makespan and robustness
improvement in the iaas cloud. IEICE TRANSACTIONS on Information and Systems, 2017,
100(4): 813-821.

[32] L. Zuo, L. Shu, S. Dong, et al. A multi-objective optimization scheduling method based on the ant
colony algorithm in cloud computing[J]. Ieee Access, 2015, 3: 2687-2699.

[33] M. A. Rodriguez, R. Buyya. A responsive knapsack-based algorithm for resource provisioning
and scheduling of scientific workflows in clouds. 2015 44th International Conference on
Parallel Processing. IEEE, 2015: 839-848.

[34] G. Yao, Y. Ding, K. Hao. Using imbalance characteristic for fault-tolerant workflow scheduling
in cloud systems. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(12): 3671-
3683.

[35] E. K. Byun, Y. S. Kee, J. S. Kim, et al. BTS: Resource capacity estimate for time-targeted
science workflows. Journal of Parallel and Distributed Computing, 2011, 71(6): 848-862.

[36] H. Topcuoglu, S. Hariri, M. Y. Wu. Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel & Distributed
Systems, 2002, 13(3):260-274.

[37] W. Chen, E. Deelman. Workflowsim: A toolkit for simulating scientific workflows in
distributed environments. 2012 IEEE 8th International Conference on E-Science. IEEE, 2012:
1-8.

[38] O. Sefraoui, M. Aissaoui, M. Eleuldj. OpenStack: toward an open-source solution for cloud
computing. International Journal of Computer Applications, 2012, 55(3): 38-42.

[39] https://nmap.org/
[40] I. Pietri, M. Malawski, G. Juve, et al. Energy-constrained provisioning for scientific workflow

ensembles. 2013 International Conference on Cloud and Green Computing. IEEE, 2013: 34-
41.

[41] Y. C. Lee, H. Han, A. Y. Zomaya, et al. Resource-efficient workflow scheduling in clouds.
Knowledge-Based Systems, 2015, 80: 153-162.

[42] X. Xu, W. Dou, X. Zhang, et al. EnReal: An energy-aware resource allocation method for
scientific workflow executions in cloud environment. IEEE Transactions on Cloud Computing,
2016, 4(2): 166-179.

[43] Z. Guo, S. Hui, Y. Xu, et al. Dynamic flow scheduling for power efficient data center networks.
IEEE/ACM International Symposium on Quality of Service, Beijing, China, 2016, pp. 1-10.

[44] Y. Ding, G. Yao, K. Hao. Fault-tolerant elastic scheduling algorithm for workflow in cloud
systems. Information Sciences, 2017, 393: 47-65.

[45] G. Yao, Y. Ding, L. Ren, et al. An immune system-inspired rescheduling algorithm for

workflow in Cloud systems. Knowledge-Based Systems, 2016, 99: 39-50.
[46] D. Poola, K. Ramamohanarao, R. Buyya. Enhancing reliability of workflow execution using

task replication and spot instances. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 2016, 10(4): 30.

[47] L. Zeng, B. Veeravalli, X. Li. SABA: A security-aware and budget-aware workflow scheduling
strategy in clouds. Journal of parallel and Distributed computing, 2015, 75: 141-151.

[48] W. Liu, S. Peng, W. Du, et al. Security-aware intermediate data placement strategy in scientific
cloud workflows. Knowledge and information systems, 2014, 41(2): 423-447.

[49] H. Chen, X. Zhu, D. Qiu, et al. Scheduling for workflows with security-sensitive intermediate
data by selective tasks duplication in clouds. IEEE Transactions on Parallel and distributed
systems, 2017, 28(9): 2674-2688.

[50] M. Ali, S. U. Khan, A. V. Vasilakos. Security in cloud computing: opportunities and challenges.
Information sciences, 2015, 305: 357-383.

[51] J. Szefer, E. Keller, R. B. Lee, et al. Eliminating the hypervisor attack surface for a more secure
cloud. Proceedings of the 18th ACM conference on Computer and communications security.
ACM, 2011: 401-412.

[52] F. Zhang, H. Chen. Security-preserving live migration of virtual machines in the cloud. Journal
of network and systems management, 2013, 21(4): 562-587.

[53] M. H. Song. Analysis of risks for virtualization technology. Applied Mechanics and Materials.
Trans Tech Publications, 2014, 539: 374-377.

[54] J. Sen. Security and privacy issues in cloud computing. Cloud Technology: Concepts,
Methodologies, Tools, and Applications. IGI Global, 2015: 1585-1630.

[55] Z. Wang, R. Yang, X. Fu, et al. A shared memory based cross-VM side channel attacks in IaaS
cloud. 2016 IEEE conference on computer communications workshops (INFOCOM
WKSHPS). IEEE, 2016: 181-186.

[56] F. Liu, Q. Ge, Y. Yarom, et al. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. 2016 IEEE international symposium on high performance computer architecture
(HPCA). IEEE, 2016: 406-418.

[57] F. Liu, Y. Yarom, Q. Ge, et al. Last-level cache side-channel attacks are practical. IEEE
Symposium on Security and Privacy. IEEE, 2015: 605-622.

[58] G. Irazoqui, T. Eisenbarth, B. Sunar. S $ A: A shared cache attack that works across cores and
defies VM sandboxing--and its application to AES. IEEE Symposium on Security and Privacy.
IEEE, 2015: 591-604.

[59] J. A. J. Sujana, T. Revathi, T. S. S. Priya, et al. Smart PSO-based secured scheduling approaches
for scientific workflows in cloud computing. Soft Computing, 2019, 23(5): 1745-1765.

[60] Z. Wen, J. Cała, P. Watson, et al. Cost effective, reliable and secure workflow deployment over
federated clouds. IEEE Transactions on Services Computing, 2016, 10(6): 929-941.

[61] P. K. Manadhata. Game theoretic approaches to attack surface shifting. Moving Target Defense
II. Springer, New York, NY, 2013: 1-13.

[62] Q. Zhu, T. Basar. Game-theoretic approach to feedback-driven multi-stage moving target
defense. International Conference on Decision and Game Theory for Security. Springer, Cham,
2013: 246-263.

[63] K. M. Carter, J. F. Riordan, H. Okhravi. A game theoretic approach to strategy determination
for dynamic platform defenses. Proceedings of the First ACM Workshop on Moving Target

Defense. ACM, 2014: 21-30.
[64] X. Feng, Z. Zheng, P. Mohapatra, et al. A stackelberg game and markov modeling of moving

target defense. International Conference on Decision and Game Theory for Security. Springer,
Cham, 2017: 315-335.

[65] A. A. A. Abass, L. Xiao, N. B. Mandayam, et al. Evolutionary game theoretic analysis of
advanced persistent threats against cloud storage. IEEE Access, 2017, 5: 8482-8491.

[66] J. Musial, M. Guzek, P. Bouvry, et al. A note on the complexity of scheduling of
communication-aware directed acyclic graph. Bulletin of the Polish Academy of Sciences:
Technical Sciences, 2018.

[67] D. Kliazovich, J. E. Pecero, A. Tchernykh, et al. CA-DAG: Modeling communication-aware
applications for scheduling in cloud computing. Journal of Grid Computing, 2016, 14(1): 23-
39.

[68] C. Lin, S. Lu, X. Fei, et al. Architecture for Scientific Workflow Management Systems and the
VIEW SOA Solution, IEEE Transactions on Services Computing, 2009, 2(1): 79-92.

[69] S. Bharathi, A. Chervenak, E. Deelman, et al. Characterization of scientific workflows. In IEEE
Workshop on Workflows in Support of Large-Scale Science, Austin, USA, 2008: 1-10.

[70] Y. Wang, Y. Guo, Z. Guo, et al. Securing the intermediate data of scientific workflows in clouds
with ACISO. IEEE Access, 2019, 7(1): 126603-126617.

[71] V. Del Piccolo, A. Amamou, K. Haddadou, et al. A survey of network isolation solutions for
multi-tenant data centers. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2787-2821.

[72] M. Campanelli, R. Gennaro. Sequentially composable rational proofs. International
Conference on Decision and Game Theory for Security. Springer, Cham, 2015: 270-288.

[73] M. J. Osborne, A. Rubinstein. A course in game theory. MIT press, 1994.
[74] V. Conitzer, T. Sandholm. Computing the optimal strategy to commit to. Proceedings of the

7th ACM conference on Electronic commerce. ACM, 2006: 82-90.
[75] E. Deelman, K. Vahi, G. Juve, et al. Pegasus, a workflow management system for science

automation. Future Generation Computer Systems, 2015, 46: 17-35.
[76] Y. Wang, Y. Guo, W. Liu, et al. A Task Scheduling Method for Cloud Workflow Security.

Journal of Computer Research & Development, 2018, 55(6): 66-75.
[77] S. Ostermann, A. Iosup, N. Yigitbasi, et al. A performance analysis of EC2 cloud computing

services for scientific computing. International Conference on Cloud Computing. Springer,
Berlin, Heidelberg, 2009: 115-131.

[78] R. Zhuang, S. A. DeLoach, X. Qu. Towards a theory of moving target defense. Proceedings of
the First ACM Workshop on Moving Target Defense. ACM, 2014: 31-40.

[79] A. Verma, S. Kaushal. A hybrid multi-objective Particle Swarm Optimization for scientific
workflow scheduling. Parallel Computing, 2017, 62:1-19.

