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Abstract: The multi-tenant coexistence service mode makes the cloud-based scientific workflow 
encounter the risks of being intruded. For this problem, we propose a CLoud scientific wOrkflow 
SchedUling algoRithm based on attack-defensE game model (CLOSURE). In the algorithm, attacks 
based on different operating system vulnerabilities are regarded as different “attack” strategies; and 
different operating system distributions in a virtual machine cluster executing the workflows are 
regarded as different “defense” strategies. The information of the attacker and defender is not 
balanced. In other words, the defender cannot obtain the information about the attacker’s strategies, 
while the attacker can acquire information about the defender’s strategies through a network scan. 
Therefore, we propose to dynamically switch the defense strategies during the workflow execution, 
which can weaken the network scan effects and transform the workflow security problem into an 
attack-defense game problem. Then, the probability distribution of the optimal mixed defense 
strategies can be achieved by calculating the Nash Equilibrium in the attack-defense game model. 
Based on this probability, diverse VMs are provisioned for workflow execution. Furthermore, a 
task-VM mapping algorithm based on dynamic Heterogeneous Earliest Finish Time (HEFT) is 
presented to accelerate the defense strategy switching and improve workflow efficiency. The 
experiments are conducted on both simulation and actual environment, experimental results 
demonstrate that compared with other algorithms, the proposed algorithm can reduce the attacker’s 
benefits by around 15.23%, and decrease the time costs of the algorithm by around 7.86%. 
Key words: scientific workflow; workflow scheduling; attack-defense game; diverse operating 
systems; moving target defense 
 

1 Introduction 
Cloud computing uses virtualization technology to provide services. With cloud computing 

technologies, users can obtain the required computing and storage resources through the network. 
Due to the low costs and simple operation of cloud services, many scientific computing tasks have 
been moved to cloud platforms [1]-[4].  

Scientific computing is a complex process which is composed of many sub-tasks connected by 
certain dependencies [5]. For example, Swinburne Astrophysics group has used the observation data 
from Parkes Radio Telescope [6] to conduct a pulsar searching survey [7]. Pulsar searching is a 
typical scientific computing task, which contains complex and time-consuming sub-tasks such as 
recording raw data, extracting beam, compressing beam, searching pulsar candidates, making a 
decision, and so on. These large-scale scientific problems are often modeled as scientific workflows, 
which can be distributed to multiple computing resources for a faster, and more effectual execution 



[8]. 
The cloud-based scientific workflows face serious security threats. First, multi-tenant service 

mode makes many malicious tenants exist in clouds, therefore, the clouds are threatened by many 
kinds of attacks, such as co-residency attacks [9], side-channel attacks [10][11], virtual machine 
(VM) escape attacks [12]. Second, some security risks come from the characteristics of scientific 
workflows. Many scientific workflows are computation-intensive [13], which requires a lot of VMs. 
But, in clouds, VMs are easy to become attack targets [14]. Also, the scientific workflow execution 
often takes a long time [7], which provides sufficient preparation and intrusion time for attackers. 
Normally, the scientific workflow is described by a Directed Acyclic Graph (DAG), which is very 
sensitive to attacks, since any intermediate error will be inherited into the final result [15]. 
Furthermore, intermediate data of scientific workflows often contains the core secrets in some 
scientific fields. Once these data are stolen, it will cause huge losses to users [16]. Therefore, 
enhancing the security of cloud-based scientific workflows is challenging and meaningful work. 

In multi-tenant clouds, many attacks are launched based on the operating system (OS) 
vulnerabilities. Attacks based on different OS vulnerabilities can be regarded as different attack 
strategies [17]. The scientific workflow execution requires many VMs, which constitute the VM 
cluster. To avoid the error propagation in the homogeneous computing environment [18], that is, 
one attack can compromise multiple VMs, it is necessary to build a VM cluster with different OSs 
[19]. In [17], different OS distribution in a VM cluster is considered as different defense strategies. 
However, in the attack and defense scenarios for cloud-based scientific workflows, the information 
of the attacker and defender is not symmetrical. The defender cannot obtain information about the 
attacker’s strategies, while the attacker can acquire information about the defender’s strategies 
through a network scan. Moving Target Defense (MTD) is a novel way to reverse this asymmetric 
situation between attacks and defenses. It keeps moving the attack surface of the protected system 
through dynamic shifting, which can disturb the attackers’ reconnaissance [20]. 

Strategy formulation is an important technique in MTD [28]. In the network attack and defense 
scenario, the features of opposition, dependency and noncooperative are compatible with the game 
theory, thus making the strategy formulation based on game theory becoming the mainstream 
method in MTD [28]. In addition, how to switch the defense strategies is also a challenging job. In 
the cloud-based scientific workflows, the defense strategies refer to the OS distribution of VMs 
executing the scientific workflow sub-tasks, so switching the defense strategies is the process of 
VM recycling, which will influence the efficiency of the scientific workflows. 

For these problems, we propose CLoud scientific wOrkflow SchedUling algoRithm based on 
attack-defensE game model (CLOSURE), which uses workflow scheduling as a defense method to 
improve the security of cloud-based scientific workflows. The scheduling is the core content of the 
scientific workflow [5][8][29]-[31], which requires not only meeting the users’ needs but also 
improving the efficiency of the whole system [32]. However, there are few researches considering 
using the workflow scheduling as a defense method. The workflow scheduling contains two 
important parts: resource provisioning and task—VM mapping [8]. The job of resource provisioning 
is choosing the optimal configuration for the VM cluster executing the scientific workflow sub-
tasks. Many researchers study flexible resource provisioning strategies that can dynamically scale 
up or down the size of the VM cluster according to the workflow execution requirements [33]-[35], 
which can increase workflow efficiency and reduce the costs. From the perspective of the security, 
we present the resource provisioning strategy based on attack-defense game (RPADG), which 



generates a probability distribution of a set of VM cluster OS configurations, on the basis of this 
probability distribution, the clouds will continuously change the OS configuration of the VM cluster. 
The job of the task—VM mapping is placing the workflow sub-tasks into VMs according to some 
scheduling objectives. Based on traditional Heterogeneous Earliest Finish Time (HEFT) algorithm 
[36], we present dynamic HEFT task—VM mapping algorithm (DHEFT) to create opportunities for 
defense strategy switching, which can speed up the switching of defense strategies. 

The main contributions are summarized below:	  
(1) Workflow scheduling is used for optimizing the performances of scientific workflows; however, 

inspired by MTD, we propose using workflow scheduling as a dynamic defense method to 
secure the cloud-based scientific workflows. 

(2) We propose RPADG and get the optimal mixed defense strategy by calculating Nash 
Equilibrium of the model. Furthermore, we propose to dynamically switch the defense strategies 
by recycling and re-deploying VMs, which can weaken the reconnaissance effects of attackers. 

(3) To speed-up the switching of defense strategies and adapt to the VM changes, based on 
traditional HEFT algorithm, we present DHEFT to map workflow sub-tasks to VMs, which can 
minimize the negative effects of switching defense strategies to the workflow efficiency. 

(4) We conduct the experiments on both simulation environment-based on WorkflowSim [37] and 
actual environment-based OpenStack [38]. A famous security scanner named Nmap [39] is used 
for evaluating CLOSURE. 
The rest of this paper is structured as follows: Section 2 introduces the related work. Section 3 

states the security problem for scientific workflows in clouds. Section 4 presents the CLOSURE 
and Section 5 presents the experiments, followed by Section 6 that concludes this work. 
 

2 Related work 
The researches on workflow scheduling can be categorized into seven classes according to the 

scheduling objectives [8]: (1) Minimizing the monetary costs of executing workflows in public 
clouds [30]. These scheduling algorithms consider the costs of renting VM, transferring the 
intermediate data and storing the intermediate data and try to minimize it. (2) Minimizing workflow 
makespan [31]. (3) Maximizing the number of workflows executed with the given money or the 
specified deadline [40]. (4) Improving VM utilization during workflow execution [41]. The idle 
time slots in the leased VMs are deemed as a waste of money since they are paid for but not used, 
therefore, these scheduling algorithms try to avoid this problem. (5) Reducing the energy consumed 
by workflow execution [42]-[43]. Individuals and organizations worldwide have developed an 
increased concern to protect the environment by reducing carbon footprints [8], which makes some 
researchers consider the energy consumption when designing their scheduling algorithms. (6) 
Enhancing the reliability of scientific workflows [44]-[46]. The purpose of these scheduling 
algorithms is to ensure successful workflow execution even if resource or task failure occurs. (7) 
enhancing the security of scientific workflows [47]-[49]. Scientific workflows often involve secret 
data and sensitive computation, so some algorithms are presented to execute scientific workflows 
in a secure manner.  

Clouds use virtualization technologies to maximize the utilization of the computing resources, 
e.g. many VMs run on a shared physical infrastructure, which causes high security risks. First, the 
virtualized environment introduces its own set of risks and vulnerabilities. The key module of 



virtualization is a virtual machine monitor (VMM), which is responsible for VM management and 
isolation. There are many reported vulnerabilities that can be used for attacking VMM [50]. Once 
an attacker compromises the VMM, all the VMs managed by this VMM will be under the control 
of the attacker [51], and the VM metadata kept by this VMM will also be exposed to this attacker 
[52]. VM escape is a situation in which a malicious user or VM escapes from the control of VMM 
[53], which can provide the attacker access to other VMs or bring the VMM down [54]. Second, co-
residency with other VMs cause high-security risks, such as side-channel attacks [55]. Cache side-
channel attacks can infer secret information of a victim by measuring its cache usage patterns [56]. 
The researchers in [57][58] have shown that the last-level cache (LLC) attacks are powerful enough 
to extract fine-grained secret information with high resolution and low noise. Wang et al. [55] 
present a novel side-channel based on shared physical memory, which exploits the vulnerabilities 
of the balloon driver. Balloon driver is a very popular mechanism used by current VMMs to balance 
physical memory among several VMs. 

For the cloud-based scientific workflow security problem, Poola et al. [46] propose an adaptive, 
just-in-time workflow scheduling algorithm, which reduces costs and enhances fault-tolerant 
capabilities of scientific workflows by dynamically selecting spot and on-demand instances. Yao et 
al. [45] believe the rescheduling of scientific workflows is similar to the biological immune system, 
so an immune system inspired failure-aware rescheduling algorithm is suggested to improve the 
reliability of scientific workflows. Ding el al. [44] present a primary-backup workflow scheduling 
algorithm to achieve fault-tolerant elastic workflow scheduling. In [34], a novel fault-tolerant 
workflow scheduling algorithm is presented, which combines the resubmission and replication 
strategy together to play their respective advantages. To secure the data of scientific workflows, in 
[47], the workflow datasets are divided into moveable and immovable datasets based on the security 
requirements. Movable datasets have no security restrictions and can be moved between data centers. 
While immovable datasets are restricted to a single data center and cannot be moved. In [48], the 
authors build a security overhead model to reasonably measure the security overheads incurred by 
the sensitive data, and propose a data placement strategy to dynamically deploy the intermediate 
data for the scientific workflows. Chen et al. [49] develop a task-scheduling framework for security 
sensitive workflows, in which the intermediate data is encrypted by effectively exploiting tasks’ 
laxity time. Li et al. [13] consider the heterogeneity of workflow sub-tasks, such as data-intensive 
sub-tasks, memory-intensive sub-tasks, and computation-intensive sub-tasks, and propose security 
and cost aware scheduling algorithm for heterogeneous sub-tasks of scientific workflow in clouds. 
Nepal et al. [16] design TruXy system, which provides trusted storage services for scientific 
workflows. Sujana et al. [59] present SPSO to find an optimized schedule that tradeoff between 
security and minimum makespan and cost for workflow execution in clouds. Wen et al. [60] propose 
a novel algorithm to deploy workflow applications on federated clouds, in which an extension of 
the Bell-LaPadula Multi-Level security model is applied to meet application security requirements. 

Although the above works have considered the scientific workflow security, these works 
generally use traditional protection methods such as encryption or hash check to improve security. 
Inspired by MTD, we achieve a dynamic defense method by workflow scheduling to secure the 
scientific workflows in clouds. 

Research on the MTD strategy formulation can be categorized into three classes: strategy 
formulation based on game theory [21]-[23], strategy formulation based on machine learning control 
theory [24][25] and strategy formulation based on evolution theory [26][27]. In the network attack 



and defense scenario, the features of opposition, dependency and noncooperative are compatible 
with the game theory, thus making the strategy formulation based on game theory becoming the 
mainstream method [28]. Manadhata et al. [61] construct a two-player stochastic dynamic game 
model and analyze the impact of attack surface transformation on both offensive and defensive 
behaviors. Zhu et al. [62] establish a game-theoretic model to provide a formal analysis of security 
strategies and guide the design of MTD. Then they develop a feedback system framework for 
strategically shifting attack surface based on observation. Carter et al. [63] research dynamic 
platform defense by using a game-theoretical approach modeling an attacker who can monitor the 
defender’s moves. Feng et al. [64] combine Stackelberg game model with Markov decision process 
and design an iterative algorithm to select optimal strategy under worst-case by abstracting strategy 
selection into the minimum-maximum problem. Ahmed et al. [65] formulate an APT defense game 
using evolutionary game theory to research the dynamic behavior of the APT attacker and defender 
with replicator dynamics.  

3 Problem statement 

3.1 Cloud-based scientific workflow system 
A workflow is often modeled as a Directed Acyclic Graph (DAG), which can be represented 

as 𝐺 = 𝑉, 𝐸 , where V denotes the set of sub-tasks making up the workflow. 𝐸 =
𝑎', 𝑎( 𝑎', 𝑎( ∈ 𝑉, 𝑖 ≠ 𝑘  with no cycles 𝑎' ↝ 𝑎( ↝ 𝑎' is the set of arcs between sub-tasks in 

V. Each arch 𝑎', 𝑎( ∈ 𝐸  represents the dependence constraint between sub-tasks 𝑎'  and 𝑎( , 
such that 𝑎' must be completed prior to the initiation of the execution of 𝑎( [66][67]. 
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Figure 1 The structure of a typical cloud-based scientific workflow system [8] 
 
A typical cloud-based scientific workflow system mainly comprises 5 modules: workflow 

engine, user interface, workflow management module, cloud provider APIs and cloud resources [8], 
as shown in Figure 1. The users model their workflows in the user interface and submit the defined 
workflow to the workflow engine. The workflow engine is the core of the cloud-based scientific 
workflow system, which contains three main functions, workflow parsing, workflow scheduling 
and resource provisioning. The workflow parser can analyze the required resources for the 



submitted workflow; according to the resource requirement, resource provisioning module will use 
cloud provider APIs to produce VMs. Furthermore, the workflow parser also can translate each 
abstract workflow into an internal executable workflow representation [68]; then, the task scheduler 
will dispatch the workflow sub-tasks to VMs to execute based on loaded scheduling strategies. 
Different scheduling strategies can be selected based on different requirements of the users, such as 
minimizing the monetary costs of executing workflows, minimizing workflow makespan, and so 
on. During the workflow execution, the workflow management module will monitor the workflow 
execution status and manage the generated intermediate data; then, reflects this information to the 
user interface. 

3.2 The threats of the scientific workflows in clouds 
Many scientific workflows belong to important scientific computing tasks, such as high-energy 

physics, bioinformatics, atmospheric science, and so on [69]. Therefore, workflow intermediate data 
involves core secrets in some areas, it will cause huge losses if the data information is stolen [70]. 
However, due to the multi-tenant coexistence, data leakage is one of the serious threats in clouds 
[11]. 

For cloud-based scientific workflow systems, the workflow is executed by VMs. After 
completing each workflow sub-task, the intermediate data will be generated in the VMs, which is 
used for the execution of successor sub-tasks. Since these intermediate data are only temporarily 
stored in the VM, they are usually not encrypted. As long as the attacker enters these VMs, these 
intermediate data can be stolen easily. 

In executing a scientific workflow, VMs need to transfer data frequently, so these VMs are 
usually placed in the same tenant network. Different tenant networks are separated by tunneling 
protocol, if the tunneling protocol fails, all tenants’ traffic is visible [71]. Therefore, attackers can 
penetrate other tenants’ networks through damaging the tunneling protocol. 

If an attacker has succeeded in penetrating a tenant network in which many VMs are executing 
sub-tasks of scientific workflows, he can use a scanning tool to gain information about the OSs of 
these VMs. Then, the attacker can develop an attack strategy with the greatest attack benefits 
(penetrating as many VMs as possible). For example, the attacker uses Nmap to scan the entire 
tenant network and find 8 Windows VMs and 2 Ubuntu VMs. After that, the attacker can use the 
vulnerabilities of the Windows OS to occupy 8 VMs and steal the workflow data. 

4 Cloud scientific workflow scheduling algorithm based on 

attack-defense game model 

4.1 Overview of CLOSURE 
A network attacker is an intelligent and rational individual, which pursues the maximization of 

attack benefits while considering the costs of attacks [72]. In the attack scenario for scientific 
workflows described in Section 3.2, to steal as much workflow intermediate data as possible, the 
attacker will try to use few attacks to invade as many VMs as possible (the number of attacks is 
regarded as the attack costs in this paper). To defend these intelligent and rational attackers, we 
propose CLOSURE, which contains three main contents: diverse VMs, resource provision 
algorithm based on attack-defense game model (RPADG) and task—VM mapping algorithm based 



on DHEFT, the relationships of these three contents are shown in Figure 2, and the basic ideas are: 
(1) Generating diverse VMs with different OS images to increase attack costs. If all VMs 

executing the scientific workflow are Ubuntu based, the attacker only needs one attack based on 
Ubuntu OS vulnerabilities to invade all VMs (it is assumed that the attacker can attack multiple 
VMs at a time). However, if the VMs use different OSs, it is difficult for the attacker to invade all 
VMs by only one attack. We introduce this content in Section 4.2. 

(2) We regard the different OS distribution in the VM cluster as different defense strategies, 
and build the attack-defense game model for the scientific workflows. Then, we can get the 
probability distribution of the optimal mixed defense strategies by solving the model. Based on the 
mixed defense strategies, we propose RPADG to switch the defense strategy by recycling and re-
deploying VMs, which can make it difficult for attackers to obtain defense information through the 
reconnaissance. Because the defense strategy obtained by the reconnaissance at the previous 
moment will change at the next moment. We introduce this content in Section 4.3. 

(3) In RPADG, the defense strategy switching is achieved by recycling idle VMs. However, 
when the number of available VMs is small, the frequency of the idle state of VMs is very low, 
which will greatly reduce the switching period of the defense strategy. So, based on traditional HEFT 
(heterogeneous earliest finish time) algorithm, we propose DHEFT, which can corporate with the 
RPADG to speed up the switching period of defense strategies, and dynamically adjust the 
scheduling strategy according to the VM changes, reducing the adverse effect of VM changes on 
workflow efficiency. 
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Figure 2 Overview of the defense scheme in CLOSURE 

4.2 Diverse VMs 

4.2.1 Workflow software deployment method 
One of the difficulties in executing scientific workflows in diverse VMs is the workflow 

software deployment since users need to develop multiple versions of workflow software to be 
compatible with different OSs. However, the emerging container technology in recent years has 
solved this problem. Hence, we propose a workflow software deployment method based on 



container technology, the principle is shown in Figure 3. There is a workflow consisting of 4 sub-
tasks, 𝑎., 𝑎/, 𝑎0, 𝑎1. Users, firstly, need to deploy the software corresponding to each workflow sub-
task in the containers. Then, these containers will be placed in the diverse VMs. The mapping 
between the container port and the VM port should be established. During the workflow execution, 
the software will be activated by transmitting the data to the corresponding port. In Figure 3, if the 
data is transferred to port 1, the 𝑎. software will be activated to execute sub-task 𝑎.. VM snapshot 
will be created and uploaded to the image library. 
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Figure 3 Workflow software deployment method based on container technology 

4.2.2 The vulnerability information about diverse OSs 
In [19], the authors summarize the vulnerability information about 11 OSs (OpenBSD, NetBSD, 

FreeBSD, Windows Server 2000, Windows Server 2003, Windows Server 2008, Ubuntu, Debian, 
Red Hat, Solaris and OpenSolaris) and the common vulnerability information between them, which 
are shown in Table 1 and Table 2, respectively. These vulnerabilities can be divided into four 
categories: the vulnerabilities of kernel, system software, driver and application, as shown in Figure 
4. Driver vulnerabilities are distributed in the network cards, audio cards, and play devices. These 
vulnerabilities do not affect the execution of scientific workflows, so, we define the threat level of 
this kind of vulnerabilities as Level 1. Application vulnerabilities are distributed in databases, text 
editors, FTP clients and servers, and so on. We define the threat level of application vulnerabilities 
as Level 2. Kernel vulnerabilities are distributed in TCP/IP stack, file system, task management and 
core libraries, which can affect the workflow sub-task execution, intermediate data transmission, so 
we define the threat level of kernel vulnerabilities as Level 3. System software vulnerabilities are 
distributed in software providing common OS functionalities such as login, shells and basic 
daemons. In this paper, the main threat we face is the attackers’ illegal login to the VM, so we define 
the threat level of vulnerabilities as Level 4. 

	
Figure 4 Vulnerability classification and threat level 

	



Table 1 Vulnerabilities per OS from 1994 to 2011 [19] 
OS Sys. Soft. Kernel Application Driver 

OpenBSD 37 76 38 2 
NetBSD 39 64 31 9 
FreeBSD 61 153 61 4 

OpenSolaris 9 15 7 0 
Solaris 120 155 149 2 
Debian 39 25 148 1 
Ubuntu 8 22 58 2 
Red Hat 108 94 237 5 
Win2000 135 146 211 3 
Win2003 96 171 291 2 
Win2008 36 123 175 0 

	
Table 2 Vulnerabilities between OSs from 1994 to 2011 [19] 

A pair of OSs Sys. Soft. Kernel Application Driver 
OpenBSD-NetBSD 8 8 11 1 
OpenBSD-FreeBSD 18 14 8 1 

OpenBSD-OpenSolaris 0 0 0 0 
OpenBSD-Solaris 1 5 3 0 
OpenBSD-Debian 0 0 0 0 
OpenBSD-Ubuntu 0 0 2 0 
OpenBSD-Red Hat 3 1 5 0 
OpenBSD-Win2000 0 3 0 0 
OpenBSD-Win2003 0 2 0 0 
OpenBSD-Win2008 0 1 0 0 
NetBSD-FreeBSD 10 13 13 2 

NetBSD-OpenSolaris 0 0 0 0 
NetBSD-Solaris 6 4 4 0 
NetBSD-Debian 4 0 1 0 
NetBSD-Ubuntu 0 0 0 0 
NetBSD-Red Hat 6 0 3 0 
NetBSD-Win2000 0 2 0 1 
NetBSD-Win2003 0 1 0 0 
NetBSD-Win2008 0 1 0 0 

FreeBSD-OpenSolaris 0 0 0 0 
FreeBSD-Solaris 3 5 8 0 
FreeBSD-Debian 1 0 3 0 
FreeBSD-Ubuntu 0 0 0 0 
FreeBSD-Red Hat 4 1 7 0 
FreeBSD-Win2000 0 3 0 1 
FreeBSD-Win2003 0 2 0 0 
FreeBSD-Win2008 0 1 0 0 
OpenSolaris-Solaris 3 3 5 0 
OpenSolaris-Debian 0 0 0 0 
OpenSolaris-Ubuntu 0 0 0 0 
OpenSolaris-Red Hat 0 0 0 0 
OpenSolaris-Win2000 0 0 0 0 
OpenSolaris-Win2003 0 0 0 0 
OpenSolaris-Win2008 0 0 0 0 

Solaris-Debian 1 1 0 0 
Solaris-Ubuntu 0 0 0 0 
Solaris-Red Hat 3 3 7 0 
Solaris-Win2000 0 3 7 0 
Solaris-Win2003 0 1 7 0 
Solaris-Win2008 0 0 1 0 
Debian-Ubuntu 2 0 9 0 
Debian-Red Hat 8 5 38 0 
Debian-Win2000 1 0 0 0 
Debian-Win2003 1 0 0 0 
Debian-Win2008 0 0 0 0 
Ubuntu-Red Hat 1 0 20 0 
Ubuntu-Win2000 1 0 0 0 
Ubuntu-Win2003 1 0 0 0 



Ubuntu-Win2008 0 0 0 0 
Red Hat-Win2000 1 0 1 0 
Red Hat-Win2003 1 0 1 0 
Red Hat-Win2008 0 0 0 0 
Win2000-Win2003 43 42 145 0 
Win2000-Win2008 8 8 51 0 
Win2003-Win2008 22 18 157 0 

	

4.3 Resource provisioning based on attack-defense game model 
In the attack-defense environment for cloud-based scientific workflows, the relationship 

between the attacker and defender is non-cooperative. In the process of attack and defense, the 
attacker and defender will not inform the opponent of the decision information in advance. The 
purpose of the attackers is trying to intrude as many VMs as possible to get the most benefits, while 
defenders try to minimize the affected VMs, which can be modeled as the attack-defense game 
model for scientific workflows (ADGSW). 
 
4.3.1 Related definition of ADGSW 

The definition of ADGSW: In this paper, we only consider that there is only one attacker and 
one defender in the game. Therefore, ADGSW can be represented as 𝐺 =
𝑁3, 𝑁4 , 𝑆3, 𝑆4 , 𝑈3, 𝑈4 , where 𝑁3 represents the attacker and 𝑁4 represents the defender 

(scientific workflow users). 𝑆3 = 𝑠.3, 𝑠/3,⋯ , 𝑠93  denotes the attack strategy set of the attacker and 
𝑆4 = 𝑠.4, 𝑠/4,⋯ , 𝑠:4  denotes the defense strategy set of the defender. 𝑈3  and 𝑈4  are utility 
functions of the attacker and defender, 𝑈3 𝑠'3, 𝑠;4  and 𝑈4 𝑠'3, 𝑠;4  respectively represent the 
utility of the attacker and defender when the attacker adopts the attack strategy 𝑠'3 and the defender 
adopts the defend strategy 𝑠;4 . In ADGSW, the defender’s loss is the attacker’s gain, so 
𝑈3 𝑠'3, 𝑠;4 + 𝑈4 𝑠'3, 𝑠;4 = 0, that is, ADGSW is a zero-sum game. The most commonly used 
solution concept in game theory is that of Nash Equilibrium. 

The definition of pure strategy Nash Equilibrium: Nash Equilibrium captures a steady state 
of the play of a strategic game in which each player holds the correct expectation about the other 
players’ behavior and acts rationally [73]. In ADGSW, the pair of attack-defense strategy 𝑠∗3 and 
	𝑠∗4  is a Nash Equilibrium if it meets the requirement that for ∀𝑠3:A3 ∈ 𝑆3 , 𝑈3 𝑠∗3, 𝑠∗4 ≥
𝑈3 𝑠3:A3 , 𝑠∗4 , and for ∀𝑠3:A4 ∈ 𝑆4 , 𝑈4 𝑠∗3, 𝑠∗4 ≥ 𝑈4 𝑠∗3, 𝑠3:A4 , which means that 𝑠∗3 ,	𝑠∗4  is the 
optimal strategy that can maximize the utility of both the attacker and defender. But there may not 
be a pure strategy Nash Equilibrium in ADGSW [73]. At this time, both the attacker and defender 
must consider the mixed attack-defense strategies, since every finite strategic game has a mixed 
strategy Nash Equilibrium [73]. 

The definition of mixed attack-defense strategies: In ADGSW, the probability distribution 
of 𝑆3 = 𝑠.3, 𝑠/3,⋯ , 𝑠93  and 𝑆4 = 𝑠.4, 𝑠/4,⋯ , 𝑠:4  are respectively defined as 𝑃3 =
𝑝.3, 𝑝/3,⋯ , 𝑝93  and 𝑃4 = 𝑝.4, 𝑝/4,⋯ , 𝑝:4 , 0 ≤ 𝑝'3 ≤ 1 , 	0 ≤ 𝑝'4 ≤ 1 , 	 𝑝'3 = 19

'G. , 𝑝'4 =:
'G.

1. 
The definition of mixed strategy Nash Equilibrium: In ADGSW, the probability distribution 

of the attacker and defender’s mixed strategies is 𝑃3 = 𝑝.3, 𝑝/3,⋯ , 𝑝93  and 𝑃4 = 𝑝.4, 𝑝/4,⋯ , 𝑝:4 , 
respectively, so, the utility expectation of the attacker and defender can be calculated by (1) and (2), 
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:

;G.

9

'G.
= 𝑝'3𝑝;4𝑈3 𝑠'3, 𝑠;4

:

;G.

9

'G.
															(1) 



𝐸4 𝑃3, 𝑃4 = 𝑝;4 𝑝'3𝑈4 𝑠'3, 𝑠;4
9

'G.

:
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= 𝑝'3𝑝;4𝑈4 𝑠'3, 𝑠;4

9
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:
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The condition that the mixed strategies having the probability distribution 𝑃3∗, 𝑃4∗  is Nash 
Equilibrium is that for ∀𝑃3, 𝐸3 𝑃3∗, 𝑃4∗ ≥ 𝐸3 𝑃3, 𝑃4∗ , and for ∀𝑃4, 𝐸4 𝑃3∗, 𝑃4∗ ≥ 𝐸4 𝑃3∗, 𝑃4 . 

 
4.3.2 The attack and defense strategies 

Firstly, we use 𝑜', 𝑖 = 1,2,⋯ ,11 to respectively represent the OS of OpenBSD, NetBSD, 
FreeBSD, Windows Server 2000, Windows Server 2003, Windows Server 2008, Ubuntu, Debian, 
Red Hat, Solaris and OpenSolaris.  

In ADGSW, we define a defense strategy as 𝑠(4 = 𝑛𝑣., 𝑛𝑣/,⋯ , 𝑛𝑣.. , 	𝑛𝑣'  denotes the 
number of VMs with the OS of 𝑜'. For example, 𝑠(4 = 10,0,0,0,0,0,0,0,10,0,0  represents the 
defense strategy having 10 OpenBSD VMs and 10 Red Hat VMs. 

Then, we define an attack strategy as 𝑠(3 = 𝑜;, which represents to use a vulnerability from 𝑜; 
as the attack strategy. The attack strategy set is defined as 𝑆3 = 𝑠.3, 𝑠/3,⋯ , 𝑠..3 = 𝑜., 𝑜/,⋯ , 𝑜.. . 

 

4.3.3 The quantification of utility functions 
In section 4.3.1, we have discussed that ADGSW is a zero-sum game, so as long as the 

attacker’s utility function 𝑈3 is known, the defender’s utility function 𝑈4 can be obtained easily. 
In this section, we propose to use the common vulnerabilities between OSs to quantify the 

utility functions. We use 𝑣𝑠', 𝑣𝑘', 𝑣𝑎', 𝑣𝑑', 𝑖 = 1,2,⋯ ,11 to respectively represent the number of 
system software, kernel, application and driver vulnerabilities of 𝑜' . Using 
𝑣𝑠',;, 𝑣𝑘',;, 𝑣𝑎',;, 𝑣𝑑',;, 𝑖, 𝑗 = 1,2,⋯ ,11  to represent the number of system software, kernel, 
application and driver common vulnerabilities between 𝑜'  and 𝑜; , and 𝑣𝑠',' = 𝑣𝑠', 𝑣𝑘',' =
𝑣𝑘', 𝑣𝑎',' = 𝑣𝑎', 𝑣𝑑',' = 𝑣𝑑', 𝑖 = 1,2,⋯ ,11. Furthermore, we use 𝑤𝑠, 𝑤𝑘, 𝑤𝑎, 𝑤𝑑 to respectively 
represent the weight of the system software, kernel, application and driver vulnerabilities, in this 
paper, 𝑤𝑠 = 4, 𝑤𝑘 = 3, 𝑤𝑎 = 2, 𝑤𝑑 = 1. If the attacker adopts the 𝑜(, 𝑘 ∈ 𝑁, 1 ≤ 𝑘 ≤ 11 as the 
attack strategy, the 𝑈3 is defined as (3), 

𝑈3 = 𝑛𝑣' ∙ 𝑤𝑠 ∙ 𝑣𝑠',( + 𝑤𝑘 ∙ 𝑣𝑘',( + 𝑤𝑎 ∙ 𝑣𝑎',( + 𝑤𝑑 ∙ 𝑣𝑑',(
..

'G.
											(3) 

𝑛𝑣' denotes the number of VMs with the OS of 𝑜'. (3) denotes that the attack is more effective if 
the target has more vulnerabilities with high threat level. Because if a VM has many vulnerabilities 
with high threat level, the security of the VM is low, so the probability of successfully intruding the 
VM will be high. Furthermore, (3) also considers the common vulnerabilities between OSs. For 
example, if the attacker uses the vulnerability from 𝑜.  to attack the VM whose OS is 𝑜/ , the 
success probability is related to the number and type of common vulnerabilities between 𝑜. and 
𝑜/. 
4.3.4 The optimal mixed defense strategy 

In ADGSW, there are many defense strategies, we cannot consider all the defense strategies. 
Therefore, a certain number of defense strategies should be randomly generated firstly. The number 
of generated defense strategies we set is 100. 

Equations (1) and (2) are used for explaining the definition of the mixed strategy Nash 
Equilibrium. When actually solving the Nash Equilibrium, we do not use (1) and (2), but use 
minimax method [74]. In ADGSW, the pair of attack-defense strategy 𝑠∗3  and 	𝑠∗4  is a mixed 
strategy Nash Equilibrium if and only if every player’s every pure strategy supports that 𝑠∗3 and 



	𝑠∗4 are the best strategies [73]. Therefore, the defender just needs to consider the situation where 
the attacker adopts pure strategies. In the special case of two-player zero-sum games, computing an 
optimal mixed strategy is equivalent to computing a minimax strategy, which minimizes the 
maximum expected utility that the opponent can obtain [74]. Therefore, the object of the defender 
is selecting the mixed attack strategy 𝑃4 = 𝑝.4, 𝑝/4,⋯ , 𝑝:44  to minimize od, 

𝑜𝑑 = max
.X'X..

𝑝;4 ∙ 𝑈3 𝑠'3, 𝑠;4
:4

;G.
																																																(4) 

The problem of selecting the mixed attack strategy can be transformed into linear programming 
problem: 

Minimize	𝑒

s. t.		𝑒 ≥ 𝑝;4 ∙ 𝑈3 𝑠'3, 𝑠;4 , 𝑖 = 1,2,⋯ ,11
:4

;G.

𝑝;4 = 1
:4

;G.

0 ≤ 𝑝;4 ≤ 1, 𝑗 = 1,2,⋯ , 𝑛𝑑

																																					(5) 

4.3.5 Resource provisioning strategy 
Based on ADGSW, we can get the probability distribution of the optimal mixed defense 

strategies, then, RPADG uses the probability to select a series of defense strategies. To prevent the 
attacker from obtaining the information about defense strategies, RPADG switches the defense 
strategies by recycling and re-deploying a part of VMs. To preserve the data in the VMs which are 
going to be recycled, block storage service such as OpenStack Cinder is needed. The newly 
deployed VMs can get the data as long as the volume containing the data is mounted. But, the 
process of recycling VMs will cause a decrease in the number of available VMs in a short period, 
which can delay the workflow makespan, especially when multiple VMs are recycled at the same 
time. In [77], the authors conclude that deploying an Amazon EC2 instance requires around 50 
seconds. For this problem, RPADG recycles only one VM at one time, the pseudo-code of RPADG 
is shown in Algorithm 1. 

 
Algorithm 1 RPADG 
1 

2 

 

3 

 

4 

 

5 
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sd[nd] = randomly generating nd defense strategies; //sd represents the defense strategies 
pd[nd] = calculating the probability of mixed defense strategies by (5); //pd represents the 
probability of mixed defense strategies 
s = selecting a defense strategy according to pd[nd]; //s denotes the selected defense 
strategy 
d = deploying VMs according to the defense strategy s; //d denotes the actual distribution 
of VMs 
while (the workflow does not end) 
   s = selecting a defense strategy according to pd[nd]; 
   while (d does not match with s) 
      if (the VM needing to be recycled is idle && no VM is being recycled) 
         d = recycling the VM and re-deploying new VMs with specific OS; 
      end 
   end 
end 



First, RPADG need to randomly generate nd defense strategies (step 1), then solve the linear 
programming problem (5) to obtain the mixed defense strategies (step 2). After that, RPADG selects 
a defense strategy based on the probability distribution obtained by step 2 (step 3). Afterwards, 
RPADG deploys the VMs according to the selected defense strategy, and these VMs will execute 
the workflow. During the workflow execution, RPADG will select new defense strategies and 
transform the current VM distribution into the new defense strategy. The process of this 
transformation is realized by recycling the idle VMs and re-deploying new VMs with specific OS 
(step 9). For example, it is assumed that the new defense strategy is the distribution of 2 Ubuntu 
VMs and 2 FreeBSD VMs and the current VM distribution is 2 Ubuntu VMs, 1 Window Server 
2008 VM and 1 FreeBSD VM, when the Windows Server 2008 VM is idle this VM will be recycled 
and the recycled resource will be used for deploying a new FreeBSD VM. 

 

4.4 Task—VM mapping based on DHEFT 
Besides the resource provisioning strategy, the task—VM mapping is also essential to the 

efficiency and security of the workflows. HEFT is a traditional task—VM mapping algorithm, 
which has been extensively used in scientific workflow scheduling in clouds [79]. However, 
traditional HEFT cannot be applied to CLOSURE, since traditional HEFT is a static scheduling 
algorithm, which calculates the scheduling strategy before workflow execution, the calculated 
scheduling strategy does not change during the workflow execution. RPADG will randomly recycle 
some VMs during the workflow execution, so the task—VM mapping algorithm is necessary to be 
self-adjusting in time. Therefore, we propose DHEFT, it is a dynamic HEFT algorithm, which will 
adjust the task scheduling strategy when resources changing. The principle of DHEFT is shown in 
Algorithm 2. 
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Figure 5 (a) A workflow used for illustrating DHEFT (b) The illustration of the task scheduling process 

of DHEFT (c) The illustration of the task scheduling process of traditional HEFT 
 



We use a workflow that is shown in Figure 5 (a) to illustrate DHEFT. It is assumed that the 
bandwidth between VMs is 100 Mbps, the number of available VMs is 4, the time of re-deploying 
a VM is one second. According to HEFT, the workflow sub-task scheduling order is (6) 

𝑎. → 𝑎1 → 𝑎c → 𝑎/ → 𝑎0 → 𝑎d → 𝑎e → 𝑎f → 𝑎g → 𝑎.h																													(6) 
At 𝑡., the system receives the command of switching the defense strategy, and VM1 needs to be 
recycled. In order to make VM1 idle, DHEFT will calculate the scheduling strategy without 
considering VM1. The scheduling strategy calculated at 𝑡. is that 𝑎1, 𝑎f and 𝑎.h are assigned 
to VM2, 𝑎c , 𝑎d  and 𝑎g  are assigned to VM3, 𝑎/ , 𝑎0  and 𝑎e  are assigned to VM4. At 5 
seconds, 𝑎.  is finished and VM1 will transmit the intermediate data to other VMs to execute 
successor sub-tasks. After data transmission, VM1 is idle and will be recycled by RPADG. At 𝑡/, 
the VM re-deployment is finished and DHEFT will re-calculate a new scheduling strategy. The 
process of task scheduling of DHEFT is shown in Figure 5 (b), and it takes 7 seconds from receiving 
the defense strategy switching command to competing the strategy switching. However, if HEFT is 
used for task scheduling, it will take 13 seconds to finish the strategy switching, as shown in Figure 
5 (c). Therefore, DHEFT can speed up the switching period of defense strategies. 

 
Algorithm 2 DHEFT 
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Input: na (the number of available VMs), vm[na] (VM ID), nc (the number of VMs that 
need to be converted), cvm[nc] (ID of VMs that need to be converted) 
while (the workflow does not end) 

if (receiving the defense strategy switching command || a new VM has been deployed) 
      order[] = ordering the unscheduled sub-tasks by HEFT; 

for i = 1:size(order[]) 
         for j = 1:na 
            if (nc >= 1) 
               if (vm[j] == cvm[nc-1])  
                  continue; //Do not schedule sub-tasks on VMs that need to be 
converted 
               end 
            end 
            if (order[i] has the earliest start time on vm[j]) 
               order[i] will be assigned to vm[j]; 
               nc = nc-1; 
            end 
         end 

end 
end 

end 
 

5 Experiments 

5.1 Experimental setup 
The experiments are conducted based on simulation environment based on WorkflowSim and 



actual environment based on OpenStack.  

5.1.1 Simulation experiment environment 
WorkflowSim is an open source software devised for workflow scheduling simulation in clouds. 

In WorkflowSim, the workflows are described by a XML file, which includes the information about 
the number of sub-tasks, the dependent relationship between sub-tasks, the number of intermediate 
data, the size of each intermediate data and each sub-task runtime.  

The workflows used for simulation are CyberShake, Epigenomics, Montage, and Inspiral, 
which are published by Pegasus project [75]. The structures of these workflows are shown in Figure 
6, and the parameters are shown in Table 3. 

(a) Epigenomics (d) Montage(b) Inspiral (c) CyberShake

Figure 6 The structures of workflow Epigenomics, Inspiral, CyberShake and Montage	
	

Table 3 The parameters of workflows used for tests 

Workflow 
Number of  
sub-tasks 

Number of  
intermediate data 

Average data size 
Average sub-task 

runtime 

Epigenomics (997) 997 1234 388.59 MB 3858.67 s 

Inspiral (1000) 1000 1233 8.90 MB 227.25 s 

CyberShake (1000) 1000 1988 102.29 MB 22.71 s 

Montage (1000) 1000 2485 3.21 MB 11.36 s 

 

5.1.2 Actual experiment environment 
To evaluate CLOSURE in an actual environment, we use two physical servers (24 core 

processor, 32 G memory, 2 T storage space) to build a small scientific workflow system based on 
OpenStack, as shown in Figure 7. The system contains one control node and one computing node. 
In the control node, OpenStack Keystone (authentication module), OpenStack Glance (image 
module), OpenStack Neutron (network module), OpenStack Cinder (block storage module) and 
OpenStack Nova (computing module). Besides these OpenStack necessary components, we build 
workflow parser, workflow scheduler, and resource provisioning module to implement CLOSURE. 
An actual workflow, object detection in images, is used for evaluating CLOSURE, the structure of 
the workflow is illustrated in Figure 8. In the actual test, we describe the actual workflow by a XML 
file. The workflow parser reads the XML file and activates resource provisioning module to deploy 
VMs. Resource provisioning module executes RPADG through Nova API and image library, which 
can dynamically switch the defense strategies. We assume that there are 3 existing VMs to execute 



the workflow, and we build a VM to simulate an attacker, which is not controlled by the resource 
provisioning module. The workflow scheduler uses DHEFT to dispatch the workflow sub-tasks to 
the VMs.  

In Section 4.2.1, we discussed that the workflow software deployment requires the container 
technology, but some OSs listed in Table 1 do not support container technology, such as OpenSolaris, 
Windows Server 2000, 2003, 2008, and so on. Therefore, we construct the image library contains 
the VM images of Windows 10, Windows 7, Solaris 10, FreeBSD 9.0, Debian 9.5, Ubuntu 16.04 
and CentOS 7.3, and the OSs of Windows 10, Windows 7, Solaris 10, FreeBSD 9.0, Debian 9.5, 
Ubuntu 16.04 and CentOS 7.3 respectively use the vulnerability data of Win2008, Win2003, Solaris, 
FreeBSD, Debian, Ubuntu and Red Hat in Table 1 and Table 2. 
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Figure 7 A small scientific workflow system based on OpenStack 
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Figure 8 An actual workflow used for tests 
	
	



5.2 The comparison algorithm 
We compare CLOSURE with the following 2 algorithms: 
WSH (workflow scheduling based on VM heterogeneity) [76]: In this algorithm, each VM 

finishing sub-task execution will be recycled, and a new VM will be re-deployed to execute the next 
sub-task. The OSs of the VMs before and after scheduling have maximum heterogeneity. The 
available OSs are listed in Table 1. 

WSR (workflow scheduling based on random defense strategy): This algorithm is designed by 
us to compare the performance with CLOSURE. WSR is similar to CLOSURE, the only difference 
is that in CLOSURE, the probability distribution of the mixed defense strategies is obtained by 
solving the attack-defense game model, while in WSR, the probability distribution of the mixed 
defense strategies is uniform. 

5.3 Experiment results 

5.3.1 Switching period of defense strategies 
The switching period of defense strategies is an important factor to measure the security gains 

brought by CLOSURE, since if the switching period of defense strategies is long, CLOSURE cannot 
effectively avoid the attacker’s reconnaissance.  

	

Figure 9 Defense strategy switching period with different number of available VMs 
 
So, in this section, we evaluate the switching period of defense strategies, each experiment is 

repeated 100 times for different workflow instances, the average evaluation result is shown in Figure 
9. In order to ignore the impact of the differences in workflow sub-task runtimes, the switching 
period is represented by the proportion of the average sub-task runtime. For example, if the 
switching period is 4, it means that the switching of defense strategies takes four times the average 
sub-task runtime. From the figure, we can find that with the increase of the number of available 
VMs, the switching period will show an upward trend first, then stabilize. Because the more VMs 
are available, the more VMs that need to be converted when switching defense strategies. But when 
the number of VMs is saturated, the redundant VMs are idle. These idle VMs can be converted 
without waiting for the sub-task completion, so these redundant VMs will not have effects on the 



switching period of defense strategies. 
Then, we record the times of switching defense strategies during the workflow execution, the 

results are shown in Figure 10. Before reaching the saturation point, the increase of the available 
VMs can accelerate the workflow completion, therefore the times of switching defense strategies 
shows a downward trend. But, considering the costs, users normally do not choose to rent too many 
VMs. If there are 20 available VMs, at least 10 times defense strategy switching will be launched, 
which is enough for avoiding the attacker’s reconnaissance. 
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Figure 10 The times of switching defense strategies with different number of available VMs 
 

5.3.2 Benefits of attackers 
In this section, we use (3) to quantify the benefits of attackers. We define that the starting point 

of the attack period is that the attacker starts network reconnaissance and the end point is that the 
attacker successfully penetrates into the target VM. When one attack cycle ends, a new attack cycle 
will begin immediately. It is assumed that a scientific workflow makespan is T. If the attack period 
is T/2, the attacker can launch two complete attacks during the scientific workflow execution. So 
the longer the attack period, the less the number of attacks launched in a limited time. It is assumed 
that there are 20 available VMs to execute the workflow, and the attacker is a rational individual 
who uses the mixed attack strategy to attack the scientific workflows, the probability distribution of 
the mixed attack strategy can be obtained by solving (5). Workflows Epigenomics, Inspiral, 
CyberShake and Montage are used for this test, and the attack period is a variable which is from 
100 to 500 seconds, each experiment is repeated 100 times for different workflow instances, the 
average results of the attacker’s benefits are shown in Figure 11. The longer the attack period, the 



less the number of attacks launched, and the fewer the benefits are. Compared with the WSR and 
WSH, CLOSURE can reduce the benefits of attackers more effectively. Because in this test, the 
attacker is a rational individual, he will consider the attack benefits and tend to launch high-benefit 
attacks. CLOSURE will make defense strategies according to this characteristic. According to the 
results in Figure 11, we use the results of CLOSURE to subtract the results of WSH and average 
them, the calculation result is 15.23%, so compared with WSH, CLOSURE can reduce the attacker’s 
benefits by around 15.23%. 

(a) Epigenomics (b) Inspiral

(c) CyberShake (d) Montage
	

Figure 11 The comparison of the benefits of attackers in WSR, WSH and CLOSURE 

5.3.3 Time costs of scheduling algorithm 
In this section, we use workflow Epigenomics to compare the time costs of WSH, WSR, and 

CLOSURE and the experiment is repeated 100 times. It is assumed that re-deploying a VM requires 
50 seconds. The timeframe is similar to the time required when deploying an Amazon EC2 instance 
which is around 50 seconds [77]. We use the ratio of the increased workflow makespan to represent 
the time costs, and record the time costs of WSH, WSR, and CLOSURE in Table 4. From the table, 
we can find that the difference of the time cost of WSR and CLOSURE is small because the time 
costs are mainly from the VM re-deployment during the defense strategy switching. The principles 
of switching the defense strategy of WSR and CLOSURE are exactly the same, so, the time costs 
of WSR and CLOSURE are similar. The time cost of WSH is higher than WSR and CLOSURE, 
since each VM completing the sub-task execution has to be re-deployed, which will generate a lot 
of time costs. We also can find that the time cost shows an upward trend with the increase of the 
number of available VMs. Since increasing the number of VMs can shorten the workflow makespan, 
the shorter the workflow makespan, the larger effects of VM deployment time to the entire workflow. 
Many scientific workflows take a long time for execution [7], which will make the time cost of 



CLOSURE very small. According to the results in Table 4, we use the results of CLOSURE to 
subtract the results of WSH and average them, the calculation result is 7.86%, so compared with 
WSH, CLOSURE can reduce the time costs by around 7.86%. 

 
Table 4 The comparison of time costs of WSH, WSR and CLOSURE, time costs are represented by the 

ratio of the increased workflow makespan 
The number of 

VMs 

Workflow 

makespan 
WSH WSR CLOSURE 

10 426125 s 3.40% 0.92% 1.04% 

20 262192 s 5.65% 1.42% 1.25% 

30 194785 s 7.53% 1.39% 1.28% 

40 165382 s 7.76% 1.57% 1.50% 

50 139040 s 9.06% 1.65% 1.84% 

60 127718 s 10.82% 1.63% 1.73% 

70 113413 s 10.62% 1.47% 1.55% 

80 132062 s 12.52% 1.59% 1.55% 

90 109890 s 13.17% 1.81% 1.60% 

100 107424 s 13.28% 2.04% 1.88% 

 

5.3.4 Nmap scan test 
In this section, we build a small scientific workflow system as shown in Figure 7 and an actual 

workflow shown in Figure 8 is used for the test. Nmap is used to simulate the attacker’s 
reconnaissance. Nmap is a free and open source software for network discovery and security 
auditing, which uses raw IP packets in novel way to determine what hosts are available on the 
network, what services those hosts are offering and what OSs they are running [39]. 

In this test, the first defense strategy generated by CLOSURE is one Windows 7 VM, one 
Solaris 10 VM and one FreeBSD 9.0 VM. Then the attacker used Nmap to scan the whole tenant 
network (10.10.10.0/24) at 2019-05-09 00:25 and found 3 VMs with the OSs of Windows 7, Solaris 
10 and FreeBSD 9.0, as shown in Figure 12 (a). Then, the second defense strategy generated by 
CLOSURE is one Ubuntu 16.04 VM, one Solaris 10 VM and one Windows 10 VM. So, when the 
Windows 7 VM and FreeBSD 9.0 VM had finished the sub-task, it would be replaced by an Ubuntu 
16.04 VM and a Windows 10 VM. So, 10 minutes later, the attacker used Nmap to scan the whole 
tenant network again and found that the OS distribution had been changed, as shown in Figure 12 
(b). Therefore, CLOSURE can effectively avoid the attacker’s reconnaissance, making it difficult 
for the attackers to obtain information about the defense strategies. 
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Figure 12 (a) Nmap scan test results at 2019-05-09 00:25 (b) Nmap scan test results at 2019-05-09 
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6 Conclusions and future work 
In order to secure the scientific workflows in clouds, we propose CLOSURE to increase the 

difficulties for the attackers to infiltrate into VMs executing workflow sub-tasks. Most of the 
network attacks are launched based on OS vulnerabilities, we regard the attacks based on different 
OS vulnerabilities as different attack strategies. A homogeneous VM cluster environment can easily 
cause error propagation, one attack can compromise multiple VMs. So, diverse VMs are used for 
workflow execution and different OS distributions are regarded as different defense strategies. 
However, in the attack and defense scenarios for scientific workflows in clouds, the information of 
the attacker and defender is not balanced. The defender cannot obtain information about the 
attacker’s strategies, while the attacker can acquire information about the defender’s strategies 
through a network scan. For this problem, we propose to dynamically recycle and re-deploy VMs 
to switch the defense strategies during the workflow execution, which can weaken the attacker’s 



reconnaissance effects and transform the scientific workflow security problem into the attack-
defense game problem. Then, the probability distribution of the optimal mixed defense strategy is 
acquired by calculating the Nash Equilibrium in the attack-defense game model. Furthermore, task 
scheduling algorithm based on dynamic HEFT is presented to accelerate the defense strategy 
switching and improve workflow efficiency. The experiments are conducted on both simulation and 
actual environment, experimental results demonstrate that compared with the other algorithm, 
CLOSURE can reduce the attacker’s benefits by around 15.23% and the time costs of the algorithm 
by around 7.86%. 

However, only one attacker is considered in CLOSURE. If there are multiple attackers, a multi-
player game model needs to be established. We will attempt to solve this problem in the future. 
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