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ABSTRACT 

 

Recently, technology and research in control systems have made fast progress in numerous 

fields, such as chemical process engineering. The modelling and control may face some 

challenges as the procedures applied to chemical reactors and processes are nonlinear.  

Therefore, the aim of this research is to overcome these challenges by applying a local linear 

model networks technique to identify and control temperature, pH, and dissolved oxygen. The 

reactor studied exhibits a nonlinear function, which contains heating power, flow rate of base, 

and the flow rate of air as the input parameters and temperature, pH, and dissolved oxygen 

(pO2) the output parameters. 

 

The local linear model networks technique is proposed and applied to identify and control the 

pH process. This method was selected following a comparison of radial basis function neural 

networks (RBFNN) and adaptive neuro-fuzzy inference system (ANFIS). The results revealed 

that local linear model networks yielded less mean square errors than RBFNN and ANFIS. 

Then proportional-integral (PI) and local linear model controllers are implemented using the 

direct design method for the pH process. The controllers were designed on the first order pH 

model with 4 local models and the scaling factor is 20. 

 

Moreover, local linear model networks are also used to identify and control the level of 

dissolved oxygen. To select the best method for system identification, a gradient descent 

learning algorithm is also used to update the width scaling factor in the network, with findings 

compared to the manual approach for local linear model networks. However, the results 

demonstrated that manually updating the scaling factor yielded less mean square error than 

gradient descent. Consequently, PI and local linear model controllers are designed using the 

direct design method to control and maintain the dissolved oxygen level. The controllers were 

designed on first and second order pO2 model with 3 local models and the scaling factor is 20. 
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The results for the first order revealed good control performance. However, the results for 

second order model lead to ringing poles which caused an unstable output with an oscillation 

in the input. This problem was solved by zero cancellation in the controller design and these 

results show good control performance. 

 

Finally, the temperature process was identified using local linear model networks and PI and 

local linear model controllers were designed using the direct design method. From the results, 

it can be observed that the first order model gives acceptable output responses compared to the 

higher order model. The control action for the output was behaving much better on the first 

order model when the number of local models M=4, compared with M=3 and M=5. 

Furthermore, the results revealed that the mean square error became less when the number of 

local models M=4 in the controller, compared with having number of local models M=3 and 

M=5. 
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Chapter 1| Introduction 
 

1.1 Background 

 

The technology used in most industrial systems, such as chemical processes, has been subject 

to rapid change. This is due to the fact that these processes exhibit nonlinearity and face a 

number of challenges because of their complexities. The motivation for this project arises from 

the control challenges faced by nonlinear industrial systems: for example, chemical and 

biochemical industries. This is because the non-linear and uncertain nature of many processes 

means that improved control cannot be applied simply. Typically, this applies to multivariable 

industrial systems. Because nonlinearity is a problem of process control, the challenges facing 

industrial systems, such as chemical reactors, require an enhanced and robust performance 

controller. Thus, this project aims to investigate the application of local linear model networks 

(LLMNs) in this area. The ability of local linear model networks to represent nonlinear systems 

potentially renders them a powerful tool for modelling and controlling the process. This process 

is a continuous stirred tank reactor, comprising three inputs, heating power (𝑄), flow rate of 

base (𝑓𝑏), and flow rate of air (𝑓𝑎) and three outputs, temperature (𝑇), dissolved oxygen (𝑝𝑂2) 

and 𝑝𝐻. The main component of this research will study 𝑝𝐻 control, which is crucial for 

industries presently across a range of systems, such as: chemical and biological reactions, boiler 

water treatment, municipal waste digestion, cooling tower water treatment and acid pickling 

(Williams et al., 1990). Furthermore, it is a critical element of fermentation etching and 

coagulation/precipitation. Of many applications, wastewater 𝑝𝐻 control is typically the most 

difficult due to the process sensitivity at a 𝑝𝐻 = 7 target and due to the unknown and 

nonstationary fluid composition. Given the significant nonlinearity behaviour, the control of 

𝑝𝐻 is important in many process industries to maintain the steady-state value. In 1972, McAvoy 

presented the dynamics and control for a 𝑝𝐻 in stirred tank reactor by neutralising sodium 

hydroxide with acetic acid (McAvoy et al., 1972).  
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The concentration of dissolved oxygen (𝑝𝑂2) in a continuous tank reactor, such as in an 

activated sludge system, has emerged as a significant issue for process control parameters (Du 

et al., 2018). Dissolved oxygen is a vital parameter in chemical reactors and can be easily 

affected by other variables that yield rapid change in response to the entire system: thereby 

resulting in a poor controller. Therefore, the second objective of this research is to identify and 

control the dissolved oxygen process using local linear model networks. The process contains 

air flow as input and is affected by temperature and dissolved oxygen as output.  

 

Moreover, maintaining the steady-state temperature value is another crucial parameter of the 

chemical process. For instance, the temperature of water in food products is significant in 

determining the product quality, economic value, safety and operation of chemical reactors 

(Luyben., 2007). Due to some challenges controlling the temperature in industrial systems (for 

example, in heating processes with poor controller performance) materials could be 

disqualified on the basis of their physical properties when they do not perform successfully 

(Mugisha et al., 2015). Therefore, the third objective of this study is to identify and control the 

temperature process using local linear model networks. This will enhance the temperature 

controller performance in the chemical process, the process comprises heating power as input 

and temperature as output. 

1.2 Problem Statement 

 

Modelling and controlling a chemical process, such as  𝑝𝐻, dissolved oxygen and temperature 

processes, have presented issues over the last  decade. Nonetheless, numerous studies have 

been conducted to improve performance, however, controlling and modelling are still an issue. 

The significant nonlinearities of chemical processes and complexity of the systems are the 

major obstacles affecting controller performance. The motivation for this research arises from 

these challenges to the chemical process such as nonlinearity which lead to poor control 

performance. Therefore, this research focuses on how to provide a good control for the 

chemical process. 
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1.3 Research Novelty 

 

This research is to develop and implement high performance controllers to control and maintain 

pH, dissolved oxygen and temperature processes in specific ranges. The developed controllers 

are designed by combining several local models based on a direct design method. The proposed 

control strategy in this research has the ability to solve instability of the output and the 

oscillation for nonlinear chemical processes. The main novelties in this research are: 

 

 Most of researchers have studied system identification for chemical processes using 

simulated data. However, in this research real data have been used for system 

identification of three different chemical processes and the simulated models have been 

used in the controller part. 

 Modification in the basis function was achieved in the controller design as explained in 

Section 3.7.4.    

 The proposed control method has been proven to be able to deal with instability of the 

output and the oscillation for nonlinear dissolved oxygen process as explained in 

Sections 4.4.5 and 4.4.6. 

1.4 Aim and Objectives of the Research  

 

The aim of this research is to develop and investigate local linear model network structures for 

modelling and control strategies for nonlinear chemical processes. The developed models and 

control will be evaluated using simulation and analysis software called MATLAB/SIMULINK. 

The objectives of this research are: 

 

1. Develop the methods for designing local linear model networks for a benchmark nonlinear 

pH process. 

 

2. Investigate the methods using real data and compare them with other approaches, Artificial 

Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models. 
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3. Develop and investigate control based on local linear model networks for the pH process. 

 

4. Develop and investigate system identification and control based on local linear model 

networks for a dissolved oxygen process. 

 

5. Develop and investigate system identification control based on local linear model networks 

for temperature.  

 

1.5 Scope and Organisation of the Research. 

 

In accordance with the above objectives, the thesis is structured as follows:  

 

Chapter 1 provides a brief introduction to the need for control in chemical processes. This 

chapter also outlines the research aim and objectives. 

 

Chapter 2 presents the literature review pertaining to the methodology adopted for this study: 

namely, local linear model networks. The review also includes nonlinear control of chemical 

processes, pH control and review of artificial neural networks for chemical processes. 

 

Chapter 3 presents the implementation of the Simulink model for the pH process with PI 

controller based on internal model control (IMC). It is used to familiarise with the process 

dynamics and nonlinearity. Moreover, it examines the deficiencies of conventional control 

applied to this highly nonlinear process.  This chapter includes the development of local linear 

model techniques with application to identification of a pH process. Data has been investigated, 

validated and compared with the radial basis function neural network (RBFNN) and Adaptive 

Neuro-Fuzzy Inference System (ANFIS) models. Finally, this chapter discusses the design of 

PI and local linear model controllers that are applied to control pH data, and presents the results. 

 

Chapter 4 illustrates system identification of a dissolved oxygen real data using the local linear 

model networks technique. Another algorithm called gradient descent was used to optimise the 
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network width. The results reveal that local linear model networks continue to elicit enhanced 

performance by giving less mean square error. Then PI and local linear model controllers are 

designed on first and second order models and the results are discussed.  

 

Chapter 5 describes system identification of temperature real data using the local linear model 

networks technique. Then PI and local linear model controllers are designed on first order 

model and the results are discussed. 

 

In this research MATLAB/SIMULINK software has been used to investigate and achieve the 

objectives. 

 

Chapter 6 presents the conclusion of this thesis and makes recommendations for further 

research. 
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Chapter 2 | Literature Review 
 

This chapter reviews recent approaches to nonlinear control of chemical processes. It concludes 

by reviewing the main proposed methodology in this research: namely, local linear model 

networks. 

Commonly, the investigation of automatic control system dynamics begins by explaining the 

calculation procedure for each part of the closed-loop system. The account includes linear or 

nonlinear differential equations that can be joint with the external quantities acting on the 

system to design the mathematical model of the system’s dynamic behaviour (Vukic et al., 

2003).  

 

There are two important problems facing the theory of nonlinear control systems: 

 

1. Analysis problem: comprises theoretical and experimental research to discover the property 

or appropriate mathematical model of the system.                                      

2. Synthesis problem: determines the construction, parameters and control system elements to 

achieve the desired performance of a nonlinear control system. Furthermore, a mathematical 

model should be established alongside the technical realisation of the control model. Since the 

controlled object typically is known, the synthesis consists of defining a controller in a broader 

sense.  

2.1 Control of Chemical Processes 

 

A control approach has been developed using a minimum variation controller and a linearised 

neural network model for an operating region of pH neutralisation process (Chen and Huang, 

2004). The instantaneous linearisation procedure is a possible method to design a gain-

scheduling type of the control system at each time interval. It has been demonstrated that it is 

possible to apply the linear controller scheme to the nonlinear control design with not as much 

calculation as with the nonlinear control counterpart based on the nonlinear neural network 

model. However, this is suitable only in a narrow region when the process is operating around 

a significantly nonlinear point. 
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Proportional Integral (PI) and Proportional Integral Derivative (PID) controllers have been 

used in control engineering for decades. However, the PID controllers has not been given much 

attention until K.S Astrom, T. Hagglund and other researchers have focused on this controller 

(O'Dwyer, 2006).  The most common control algorithm, most feedback loops are controlled by 

this algorithm. It is implemented in many different forms (Astrom and Hagglund, 1995). Figure 

2.1 illustrates PID controller block diagram (Janert, 2013). 

 

 
Figure 2-1 PID controller block diagram (Janert, P.K., 2013) 

 

 

PID controller has been applied to pH neutralisation process. The authors used particle swarm 

optimization method to tune the PID parameters, the results shown that this method gave 

improved performance compared with Ziegler Nichols tuning technique. (Bingi et al., 2016). 

 

Investigations have been conducted into numerous non-linear controllers in the pH 

neutralisation process. This process uses a fuzzy non-uniform grid scheduling approach and 

the method was applied to a weak acid-strong base neutralisation process (Regunath and 

Kadirkamanathan, 2001). The researchers presented that, although a fuzzy controller is non-

linear in general, a PI-type fuzzy controller that uses only error (e) and change in error (∆e) 

was unable to detect process non-linearities. Consequently, the controller action cannot be 

made based on knowledge of the process nonlinearity related to different operation regions. By 

using a fuzzy non-uniform scheduling method, it can be found that integrated absolute error 

was reduced compared with the standard PI scheduling. 
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A nonlinear model predictive control (NMPC) has been used widely by many researchers in 

chemical processes, such as multi-input multi-output reactors. Three variables were 

investigated: pH, temperature and dissolved oxygen with nonlinear dynamics (Yu and Yu, 

2005; Yu and Gomm, 2003; Yu et al., 1999). By using an adaptive optimisation method (AOM), 

a nonlinear discrete-time model (NDTM) was derived for each output and the model 

parameters were estimated from the real data. The developed model was used in a nonlinear 

MPC scheme and multistep-ahead prediction was achieved for MPC. The authors used the 

neural network model as a simulation model to select a suitable control parameter alongside 

the control optimisation for multi-step ahead prediction.   

 

According to Murray-Smith, R. (1994) some applications have been used extensively in 

nonlinear systems: for example, artificial neural networks and fuzzy systems.  However, neural 

networks cannot benefit straight from a priori knowledge. Furthermore, fuzzy systems 

sometimes require the capability to improve the structure of membership functions and rules 

in a data driven manner. 

 

According to Patil and Salunkhe (2008) examined the use of the adaptive neuro fuzzy inference 

system (ANFIS) to tune the controller for temperature in water and then compared it to a 

Ziegler-Nichols-tuned PID controller and the results reveal that the performance of  the 

(ANFIS) tuned controller is enhanced compared with the Ziegler-Nichols PID controller. 

Another study used adaptive neuro-fuzzy inference system (ANFIS) (Gaya et al., 2013). The 

researchers used ANFIS inverse controller to control and maintain dissolved oxygen in an 

activated sludge process and the results revealed that the ANFIS inverse controller gave a good 

performance. 

 

Extended Kalman Filter (EKF) has been investigated to estimate the states and feed 

parameters in the pH neutralisation process. The process model has been developed using 

reaction invariants: the concentrations of reaction invariants of the effluent stream (states) 

and the feed concentrations (parameters) were estimated online. Experiments and simulations 

were compared and presented that the states and parameters could be identified well using 
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the extended kalman filter. Moreover, the estimated information could be exploited by the 

application of state-feedback control methods (Yoo et al., 2004). 

 

Several researchers have focused on temperature control difficulties and attempted to improve 

the control of temperature by adopting various methods. According to Meng et al. (2014), the 

adaptive PID control based on RBF neural networks to control temperature has been developed. 

In 2015, Mugisha et al. (2015) proposed the temperature controller for industrial heat-treating 

furnace by using intelligent fuzzy logic and PID controllers. Their results illustrated that the 

response overshoot for fuzzy logic was smaller than that with the tuned Ziegler-Nichols 

controller.  

 

Nonlinear model predictive control strategies using neural networks model were designed in 

the activated-sludge process of wastewater treatment plants and the results compared with a 

classic PI controllers structure (Goldar et al., 2016). 

 

Liang and Wang (2014) stated that the steam temperature system with large inertia, large time 

delay and time varying cannot achieve acceptable control performance using a PID controller. 

They proposed a technique that, uses an internal model cascade control system to control the 

primary steam temperature system. 

 

Chemical processes such as pH, dissolved oxygen and temperature are important factors in 

fermentation, including food and drink processes. The research area of fermentation processes 

has been established to investigate techniques for food storage and reduce the risk of 

pathogenic microorganisms growing in food products. The products produced from the 

destruction of carbohydrates from bacteria not only contribute to flavour, smell and texture. 

Moreover, help to identify a suitable product properties. Therefore, the ability to regulator the 

specific microorganisms that control the microflora of foods is crucial. The quality of food can 

be increased by fermentation such as in the fermentation of milk to cheese (Steinkraus, 1998). 
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2.2 Review of pH Control 

 

Some difficulties have emerged in the pH process control. For example, the nonlinearity and 

the process specification make it difficult to develop an accurate mathematical model for pH 

control. Therefore, the pH process is one of the most difficult factors to control in chemical 

process. And good controller should be considered to maintain the pH value within a required 

range. The authors applied a neural network PID control to the pH process and the results 

shown an acceptable control performance (Yang and Wu, 2016). 

 

System identification and control for pH neutralisation process of a weak acid - a strong base 

has been achieved using neural network model predictive control technique (Tharakan et al., 

2013). The model predictive control approach has been used with multiple models to 

investigate the pH neutralisation process behaviour in conjunction with an integral action 

controller. This is a straightforward approach to addressing the changes in non-linearities 

(Hermansson and Syafiie, 2014). Gomm et al. (1996) presented the development of a neural 

network model of a bench scale in-line pH process and the subsequent incorporation of the 

model in a predictive control strategy. The linear model predictive control algorithm has been 

applied to control the pH neutralisation process. The controller was achieved from one set point 

to another after the operating region had been split into sub points (Gu and Gupta, 2008).  

 

 In 1982, the internal model control (IMC) method was introduced by Garcia and Morari, The 

researchers found that the IMC structure provides a suitable structure of the closed-loop 

stability issue altogether and provides the opportunity to address the central issues of control 

system performance (Garcia and Morari, 1982). This has been extended to include multi input-

multi output (MIMO) discrete time systems (Garcia and Morari, 1985). In the study conducted 

by Darab et al. (2012), an internal model control application was implemented for the pH 

neutralisation process. The research results reveal the ability of this method to test for reference 

tracking and disturbances rejection. 
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 In the process industries, the application of local linear model networks was used for non-

linear system identification of the pH process and compared with the radial basis function 

neural network (Abdelhadi et al., 2014). The results demonstrate that local linear model 

networks technique is preferable as it yields less mean square error. 

 

The gradient descent algorithm for updating the weights of the neural networks was compared 

with the genetic algorithm (GA). This was achieved for cancer and diabetes dataset and their 

results revealed that the error of GA for cancer is better compared to gradient descent. However, 

for diabetes the gradient descent performed better (Ahmad et al., 2010). Based on internal 

model control for nonlinear pH control, GA was proposed by Mwembeshi et al., (2004). First 

and second order internal model control transfer function models were implemented and the 

results showed better performance compared with a conventional Ziegler Nichols-tuned PI 

controller.  

 

2.3 Review of Artificial Neural Networks and Model Identification for the Chemical 

Processes 

 

The earliest work of artificial neural networks can be traced back to the 1940’s when 

McCulloch and Pitts introduced a computer model called neural networks (McCulloch and 

Pitts, 1943). Since then the neural networks have been used extensively as powerful 

computational tools in the modelling and control of nonlinear dynamic systems (Narendra and 

Parthasarathy,1990; Bhat and  McAvoy,1990), and in the  chemical process area (Himmelblau,  

2008; Himmelblau, 2000; Gomm et al., 2000). 

 

An artificial neural network is a computational model, it is used to solve nonlinear functions. 

The artificial neural networks has class so called radial basis function networks, it have drawn 

significant attention from researchers. Figure 2.2 illustrates the structure of radial basis 

function, which comprises three layers: input layer, hidden layer and output layer. 

(Sundararajan et al., 1999).  
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Figure 2-2 The basic structure of RBF neural networks 

 

Adaptive control based on direct exploitation of the non-linear multivariable dynamic model 

of a wastewater treatment system has been presented. The model was designed from mass 

balance equations and, combined with a joint observer estimator for on-line tracking of the 

unavailable states and parameters. It was estimated that the dissolved oxygen concentration 

was the only measurable state variable of the system. An adaptive linearising regulator has been 

applied to control and maintain the pollutant substrate and the dissolved oxygen concentrations 

at required levels by acting respectively on the dilution rate and the air flow rate (Nejjari et al., 

1999; Nejjari et al., 1997). 

 

 

Multivariable data-based model has been developed for dissolved oxygen and nitrate in 

wastewater treatment (Ghavipanjeh, 2006). Then the Proportional-Integral-Plus (PIP) control 

method has been developed using the identified multivariable model to control and maintain 

dissolved oxygen and nitrate simultaneously. The robustness of the controller has been 

investigated and the response of the controller was better compared to the multi-loop controller 

response. 

Artificial neural networks have been applied to a nonlinear biochemical process (alcohol 

fermentation). Simulation results revealed the ability of artificial neural networks to model 

nonlinear systems when measurements were affected by noise. The benefit of this control 



 

13 

 

structure is that it requires very simple mathematical devices for the control movement 

calculation. Linear model predictive control (LMPC) and proportional-integral-derivative 

(PID) controllers have been achieved and the results compared with the neural network model 

based predictive control (NNMPC) strategy (Nagy et al., 2007). 

 

The population balance equations (PBE) for the cell mass distribution to the substrate mass 

balance has been used to formulate the dynamic model of the continuous yeast bioreactor. 

Moreover, the model was solved mathematically by spatially discretising the PBE using 

orthogonal collocation on finite elements (Zhu et al., 2000). The results of the nonlinear 

ordinary differential equation model was linearised to yield a linear state space model that 

accurate for MPC synthesis. The implementable control strategy has been developed for 

oscillating yeast cultures. 

 

The feedback linearisation approach, which transforms a nonlinear process into a linear 

process, has been presented for the SISO and the (non-square) MIMO case (te Braake et al., 

1998). This approach was established on both an affine and non-affine neural network model 

of the nonlinear process. This model is nearly feedback-linearised by means of a state feedback. 

The resulting nearly feedback-linearised system contains of an affine neural model and a 

nonlinear state feedback, whereby the combination of the neural model and nonlinear state 

feedback performs as same as a specified linear input-output model.  

 

A nonlinear model predictive control (NMPC) approach using recurrent neural networks 

(RNN) has been developed for a single-input (dilution rate), single-output (cell con- centration) 

process to control the uncertain nonlinear process. The modelling of the networks has been 

investigated using a recurrent Elman network using back propagation through time (BPTT). 

Then comparison between the NMPC design and the tuned IMC-PI controller was investigated 

and the results demonstrated that NMPC performed better and is good for controlling a 

bioreactor. (Sivakumaran et al., 2006). 
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 Khare and Singh (2010) proposed a conventional PID controller and internal model control 

and model based control technique to control the temperature of outlet of the heat exchange 

system. The results revealed that internal model control gives better response compared to the 

conventional PID. 

 

The water quality found in rivers, ponds and lakes is very important in human life. A single 

feedforward artificial neural network model and multiple neural networks were investigated to 

improve water quality index prediction in a river basin located in Perak, Malaysia. The 

investigation’s findings revealed that multiple neural networks improves the water quality by 

reducing the mean square error, compared with a single feedforward artificial neural network 

(Ahmad et al., 2017).  

 

Neural networks has another type of network called multilayer perceptron, it has widely used 

in chemical process. It consists of an input layer, one or more hidden layer to calculate the 

nodes and output layer. Figure 2.3 illustrates the general structure of multilayer perceptron 

(Sapuan and Mujtaba, 2009). Ay and Kisi, (2011) presented a comparison between multilayer 

perceptron, radial basis neural network and multilinear regression for estimating the daily 

dissolved oxygen of Fountain Creek  have been investigated. The results shown that the MLP 

and RBNN improves the model estimation by analysing the temperature and dissolved oxygen 

of water and mixtures at downstream and upstream stations than the MLR models. 
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Figure 2-3 Multilayer perceptron structure ( Sapuan and Mujtaba , 2009) 

 

 

Multilayer perceptron (MLP) neural networks have been used to model multivariable chemical 

process. This method was chosen after comparison with radial basis function (RBF) networks. 

Then model predictive control were applied to control the chemical process and the results 

shown the ability of this strategy to control chemical process (Yu et al., 1999). 

 

System identification and control of pH process have been investigated using real-coded 

genetic algorithm, the process was identified by genetic algorithm then the PID controller 

parameters were also tuned using this method. The results shown that the output response 

tracking the set point change with small overshoot and fast rise time (Valarmathi et al., 2009). 

 

System identification of dissolved oxygen (DO) and pH processes have been investigated using 

recursive least squares method. The results shown that the ability of this technique to estimate 

the model parameters. Then self-tuning generalized minimum variance (ST-GMV) control 

were  applied to the fermentation process to control the pH and DO levels and this  controller 

provided improved results for the   pH and dissolved oxygen at the required level (Hitit et al.,  

2017).  
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System identification of pH process have been investigated using nonlinear Hammerstein-

wiener model. Then the results have been compared with the ARX and  nonlinear auto 

regressive with exogenous input (NARX) models and shown that the performance of nonlinear 

Hammerstein-wiener model is better than the other two models by giving less mean square 

error and mean absolute error (Rattanawaorahirunkul et al., 2016). 

 

System identification for pH plant has been done using self-organizing map neural network 

technique. Then multiple-model adaptive controller was implemented to control pH level using 

the self-organizing map and its results shown results shown improved behaviour with faster 

and steady transient response compared to the self-tuning regulator controller (Bashivan et al., 

2008).  

 

The prediction of effluent concentrations of biochemical oxygen demand and suspended solid 

for wastewater treatment plant has been investigated using artificial neural networks. The 

results shown the capability of using artificial neural networks to predict wastewater treatment 

plant (Hamed et al., 2004). 

 

Comparison between response surface methodology (RSM) and artificial neural network-

genetic algorithm (ANN-GA) have been investigated in fermentation media optimisation. The 

results shown that the (ANN-GA) is performing 3 times better and improves modelling 

accuracy compared with the (RSM) (Desai et al., 2008). 

 

Neural network back propagation (BP-PID) controller and Fuzzy-PID controller were 

individually combined with PID to control the dissolved oxygen concentration in the SBR 

process of paper mill. The authors compared the results with and without noise and found that 

the fuzzy-PID controller is performing better with noise compared with the BP-PID controller 

by decreased 10% of aeration energy. However, the fuzzy-PID controller without noise is not 

doing as good as the BP-PID controller (Shen et al., 2016). 
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2.4 Review of Model Predictive Control  

 

 

A nonlinear model predictive control (NMPC) has been used widely by many researchers in 

different fields. For example, neural network model based predictive controller has been 

applied to a nonlinear multivariable chemical process (Kittisupakorn et al., 2009). It has been 

used to control the concentrations of pickling in a steel pickling process. The results shown that 

this method gave better control action against oscillation due to disturbances and robust 

compared with conventional PI controller. Figure 2.4 illustrates the basic diagram of model 

predictive control (Findeisen and Allgöwer, 2002). 

 

 
Figure 2-4 Basic diagram of model predictive control (Findeisen and Allgöwer, 2002) 

 

 

The wiener model predictive control (WMPC) has been developed to control pH process. The 

results and responses were compared with linear model predictive control and PID controller 

(Norquay et al., 1999). The performance of MPC exhibits better response than the linear MPC 

and PID control by reducing the amount of buffering and modelling error in the system.   

 

 

Model identification of a pH neutralisation process has been investigated using Wiener–

Laguerre model.  The model is used in a nonlinear model predictive control framework based 
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on the sequential quadratic programming (SQP) algorithm. Second order nonlinear polynomial 

along with two Laguerre filters has been selected after several experiments. The authors 

compared the NMPC controller based on Wiener–Laguerre model with the MPC controller 

based on a wiener model (Mahmoodi et al., 2009). The results showed that with the NMPC the 

quality of modelling with the rate of convergence of SQP improved in a reasonable time. In 

addition, Allgöwer and Zheng, (2012) presented that feedback model predictive control needs 

to cope with uncertainty and is suitable for linear system. However, the ability of feedback 

model predictive control for nonlinear systems is still an issue. 

 

Nonlinear model predictive controller based on fuzzy kalman filter and augmented state fuzzy 

kalman filter has been applied to continuous stirred tank reactor to control temperature. The 

results shown acceptable servo and regulatory behaviour (Prakash and Senthil, 2008).  

 

Nonlinear model predictive control based on self-organizing migrating algorithm have been 

developed in pH process.  The authors used this technique to control and maintain the pH value 

and  the results were compared with the adaptive PID controller, and it was observed that the 

(NMPC) performed better than adaptive PID controller by minimising response overshoot and 

computational time (Degachi et al., 2018).  

 

Model predictive control based PID controller has been used to control temperature process. 

Then the results were compared to conventional PID and fuzzy PID controller, the authors 

presented that the performance of model predictive control based PID controller exhibits better 

transient characteristics than the other two methods with  no overshoot, delay time, less rise 

time and fast settling time (Poongodi  and Sudhanan, 2015). 

 

Multi-rate nonlinear model predictive control based on neural networks have been applied to 

multivariable chemical process. The simulation results shown that this method was performing 

better than the PID controller with fast response, small overshoot and less mean square error 

(Yu and Yu, 2007).  
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Nonlinear Hammerstein model algorithmic control algorithm has been applied to control pH 

process. Then the results shown that the (NHMAC) provides good stability and robustness in 

modelling despite with large error modelling compared with the linear model algorithmic 

control (LMAC) and the nonlinear PID controller (Zhiyun et al., 2013).  

 

Neural network model predictive control has been applied to control multivariable process. The 

control results shown that the set-point tracking and disturbance rejection were acceptable and 

better than PID controllers (Yu and Yu, 2003). In Holenda et al (2008) model predictive control 

has been applied to control dissolved oxygen in activated sludge wastewater process. 

 

Nonlinear model predictive control has been used to control pH neutralisation process. The 

authors developed neural network wiener identification method to the process. The results 

demonstrated that the response of nonlinear model predictive controller was improved without 

any overshoot and with less error compared with linear model predictive control (Arefi et al., 

2006).  However, model predictive control is facing a significant issue due to nonlinearity 

behaviour. Moreover, nonlinearity does affect implementation, which is required generally at 

each time solution of an optimal control problem. The significant difference in mathematical 

programming is not between linear and nonlinear, but between convex and nonconvex 

(Allgower and Zheng, 2000). 

2.5 Adaptive Fuzzy Logic Control Review 

 

Self-tuned fuzzy logic control has been developed and applied to a laboratory scale pH 

neutralisation systems. The adaptive fuzzy controller was evaluated to control different pH 

operating regime and the results support of using this method by giving faster response time, 

better settling time and less set-point deviation (Singh et al., 2015). 

 

According to Bhandare and Kulkarni (2015) presented that the fuzzy logic controller gave 

improved  settling time and low overshoot compared to the conventional PID controller in 

controlling the liquid level. 
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Boobalan et al. (2013) applied fuzzy based PID controller to continuous stirred tank reactor to 

control temperature. Then the results have been compared to conventional PID controller and 

Ziegler Nichols method. The response of fuzzy based PID controller was performing well and 

gave better set change tracking than the ziegler-nichols conventional PID controllers. 

 

In order to control reactor concentration and temperature in continuously stirred tank reactor, 

multi model adaptive fuzzy controller has been investigated. This was achieved by linearising 

the system around various operating regimes. Their results shown a good performance of the 

controller response (Gogoria et al., 2015).  

 

Wang and Yuan (2012) used self-tuning fuzzy PID controller to control grate cooler pressure 

based on Kalman filter. The results shown that the heat energy recovery efficiency has been 

improved. 

2.6 Local Linear Networks Modelling and Control of Nonlinear Systems  

 

Local linear model networks have been used by many researchers to study the behaviour of 

nonlinear systems. Johansen and Foss (1992a, 1992b, 1993), presented that the concept and the 

idea of local model networks is to split the operating regime into sum of local models which 

are suitable for the valuation of a non-linear system.  

 

System identification for nonlinear systems has been proposed by Johansen and Foss (1995).  

The researchers divided an operating regime into several local models and each local model 

contains a validity function.  LLMNS is recognised as a generalisation of a radial basis function 

network (RBFN), in which individual neurons are replaced by local sub-models with basic 

functions. These functions define the regions of validity of individual sub-models, according 

to the expected operating regions of a plant (Murray-Smith and Johansen, 1997). The local 

linear model networks (LLMNs) is a powerful technique dealing with nonlinear systems, such 

as identifying a heat recovery steam generator system that has been achieved with least error 

(Jamali and Jazayeri-Rad, 2010).  
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Local linear model tree (LOLIMOT) is known as a class of Takagi-Sugeno-Kang neuro fuzzy 

technique, it has demonstrated its capability compared with other neuro-fuzzy networks in 

learning nonlinear systems and pattern recognition (Pedram et al., 2006). A local linear model 

tree (LOLIMOT) method which does not require the parameters of the fuel cells has been 

applied to examine dynamic modelling of a solid oxide fuel cell (SOFC) (Marzooghi et al., 

2012). Local linear model networks (LLMN) can be a very effective tool used for modelling. 

The inversion of LLMN yields real possibilities to involve the networks in the control systems 

problem (Nentwing et al., 2010). 

 

The local linear model has a simple structure, can be implemented easily and is suitable for 

non-linear system identification since the output error can be used as a criterion for structure 

selection; meanwhile, the prediction error can be applied to parameter estimation (Nelles and 

Isermann, 1996). Furthermore, it is fast in nonlinear system identification for the turbocharger 

with measured signals during road driving (Nelles et al., 1996). 

 

A fuzzy online system identification for a single input single output (SISO) nonlinear system 

has been presented by (Xie and Rad 1999). It has been formed using the local linear dynamics. 

The authors used the measurements of input and output were used to identify the continuous-

time fuzzy input output model. Simulation results have been established that the fuzzy on-line 

identifier has the ability to match the time-varying nonlinear system within ±5% accuracy. 

 

A locally linear RBF network-based state-dependent autoregressive (LLRBF-AR) has been 

modelled by employing local linear RBF networks. This method incorporates advantages 

obtained from a state dependent autoregressive model in nonlinear dynamics explanation and 

approximation of new nodes. LLRBF-AR model is far preferable to existing models. The other 

distinct advantage of LLRBF-AR over the RBF type-based models is the smaller number of 

centres required for prediction accuracy (Gan et al., 2010). 
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Weighted outputs for local models have been used as a form of output of local linear model 

networks (LLMNS). Identification of the construction features of LLMNS could also be 

described using local models. Interpretability is one of the benefits of LLMNS, which allows 

the total model to be divided into smaller operating regimes (Hametner and Jakubek 2013). 

 

Gao et al. (2002) presented a non-linear model predictive controller using local model networks 

and local control networks for continuous stirred tank reactor CSTR. The researchers applied 

this method to system identification and control of a non-linear system. The simulation results 

revealed the advantage of using the combination of local controller network and model 

predictive controller for nonlinear systems, as this method allows the controller to perform well 

for all operating regions. 

 

The local linear model networks technique was used to identify the non-linear pH process and 

the identified LLMN model of the pH process was tested as an independent model, PI and local 

linear model controllers for different operation points were achieved (Abdelhadi et al., 2014).  

 

Attempts have been made to reduce the complexity of control problems in the chemical process 

by using a local linear model tree structure. According to Petchinathan et al. (2014), the ability 

of using local linear model tree structure was used for system identification of the pH 

neutralisation process. They compared this method with an adaptive neuro fuzzy system and 

the results demonstrated that local linear model networks performed better and achieved less 

mean square error. Moreover, settling time in control response was less than that in adaptive 

neuro fuzzy system. Zhang and Morris (2001) proposed nonlinear model predictive control 

strategy using a recurrent neuro-fuzzy network has been applied to a pH neutralisation process. 

This was done by dividing the operating region to several local linear models. The results 

revealed that this method improve the control performance and gave satisfactory response. 

 

Nelles and  Tomizuka (2000) investigated the local linear model networks for nonlinear system 

identification.  A comparison was also made of the nonlinear autoregressive with exogenous 
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input (NARX) model structure and new nonlinear orthonormal basis functions (NOBF) model 

structure. The researchers presented that the NOBF method is an encouraging alternative for 

identification of nonlinear system. 

 

Internal model control strategy based on local linear models has been applied to the control of 

the pH neutralisation process. The results were compared with internal  model control based 

on multi-layer perceptron neural networks and demonstrated that a local linear model controller 

performs better due to the oscillatory behaviour of the controllers based on multi-layer 

perceptron neural networks (Kharaajoo et al., 2003). 

 

The internal model control (IMC) scheme has been used extensively to the control chemical 

process. Fink and Nelles (2001) presented the nonlinear IMC based on local linear models for 

heat exchanger.  The results were compared with conventional PID controller and revealed that 

the IMC achieves a good control performance compared with the conventional PID controller.  

 

The comparison between locally linear model tree LLMT algorithm, radial basis function 

(RBF) neural network and multi-layer perceptron (MLP) neural network have been done in a 

cosmetics industry application. The results revealed that the (LLMT) performed better and 

yield lower estimation error (Vahdani et al., 2012) 

 

Local Linear model networks can be applied to the fermentation process. As described by Foss 

et al. (1995), the simulation results of nonlinear model predictive control using local linear 

model networks in the fermentation process demonstrate the ability of using this technique in 

such a complex system. 

 

2.7 Motivation for an LLMN Approach to Chemical Process Control 

 

Recently, the use of local linear model networks for nonlinear dynamic systems has become 

well known. According to Nelles et al. (2000), there are some benefits to using local linear 
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model networks. Firstly, local linear model networks can be fast in a training network, as it 

does not need a long time. Secondly, their structure is simple and the model can be formulated 

in a set of Takagi Sugeno fuzzy rules. Thirdly, they are reliable and capable of estimating the 

accuracy of the model’s prediction for the data and the same data can produce the same model. 

Local linear model trees technique has been used for system identification of nonlinear 

dynamic system by a combination of generalized orthonormal basis functions and local linear 

model trees (LOLIMOT). The main idea is to approximate an unknown function from data by 

the interpolation of numerous local linear models (Nelles, 1997). 

 

2.8 Summary  

 

This chapter has considered and discussed a review of researchers and publications pertaining 

to chemical processes.  From the literature review, it was observed that nonlinearity is the most 

significant challenge that are facing control of chemical processes. It can be demonstrated that 

there remains a need for a good controller performance to solve these issues that are facing 

nonlinear processes. There are many applications have been used in the control area, such as 

radial basis function neural networks, multi-layer perceptron neural networks, and local linear 

model networks. This thesis introduces the investigation of local linear model networks 

strategy to identify and control pH, dissolved oxygen and temperature processes. The aim is to 

design a local linear model controller around different operating points and then combine them 

together to achieve a good control performance. 

 

 

 

 

 

 



 

25 

 

Chapter 3 | Development of the Methods for Designing Local Linear 

Models for System Identification and Control of Real pH Data 
 

3.1 Introduction 

 

Overall, the difficulties of sustaining the pH value at an optimum value is a common issue in 

the chemical industry, such as waste water treatment or fermentation processes. This is due to 

the nonlinearity and dynamic behaviours of the pH process. Therefore, a good controller should 

be considered to maintain the pH value at the optimum point in order to obtain of product of 

good quality (Sung et al., 1995). 

 

 This chapter describes the benefit of using local linear model networks to identify and control 

a nonlinear pH process. The process contains input, which is flow rate of base (𝑓𝑏), and the pH 

as an output. The local linear model networks (LLMNs) technique was selected for its ability 

to reduce the mean square error by comparing the results with radial basis function neural 

networks and adaptive neuro-fuzzy inference system (ANFIS) models. The procedures and 

results of these comparisons are discussed in this chapter. Then, PI and local linear model 

controllers were designed and applied to the process of controlling 𝑝𝐻.  

3.2    pH Process Characteristics and Simulink Model Implementation 

 

The purpose of this section is to investigate and develop the best control method to maintain 

pH at a desired value in a chemical processes. PI controller was applied to the pH Simulink 

model and the results reveal the ability to use a PI controller to control and maintain the value 

of pH. This was done to understand the dynamics and nonlinearity behaviours of the pH process 

and investigate the good controller for the pH process. 

3.2.1 The Dynamic Model for CSTR 

 

The pH neutralisation process investigated in this research is derived from first principles and 

verified by experimental results by (McAvoy et al., 1972). The model contains weak acid, 

which is neutralised by a strong base and the description for the flow dynamics of 

concentrations of the influent compositions into the continuous stirred-tank reactor (CSTR) 
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followed by a static non-linearity characterising the physio-chemical equilibrium conditions 

between these concentrations. Figure 3.1 illustrates the pH neutralisation process which will 

be developed in this section using the dynamic model presented by McAvoy and this process 

has flow rate of base and acid as inputs and pH as output. 

The equation of pH is defined mathematically by the negative decimal logarithm of the  

hydrogen ion concentration [𝐻+]  as  the following: 

 

                                                                  𝑝𝐻 = −𝑙𝑜𝑔10[𝐻
+]                                                                   (3.1) 

 

Furthermore, to evaluate the unknown value of the 𝐻+ the flow rate of acid and base of pH 

neutralisation process model are applied. The dynamic model for the CSTR is as follows:  

 

                                        F1C1 − (F1 + F2)ξ =
Vdξ 

dt
𝑉                                                          (3.2) 

 

                                        F2C2 − (F1 + F2)ε =
Vdε

dt
𝑉                                                          (3.3) 

 

Where 𝜉 and 𝜀 are concentrations of acid and base, 𝐹1 is the flow rate of weak acid, 𝐶1 is 

concentration of acid and flow rate of strong base 𝐹2 with concentration of base 𝐶2 

 

This chapter considers the case of acetic acid CH3COOH (weak acid) as constant (0.081 l/min) 

neutralised by sodium hydroxide  NaOH (strong base) as varying (0.1 to 0.7 l/min). Operating 

conditions of the process are presented in Table 3.1. Figure.3.2 illustrates the Simulink model, 

which is constructed using this derivation of the dynamic model to characterise the pH 

neutralisation process between acetic acid CH3COOH (weak acid) and sodium hydroxide  

NaOH (strong base) ( Regunath and Kadirkamanathan 2001). 

 

Table 3.1 pH process parameters 

Variable       Definition                  Nominal setting   

V                  Volume of tank                         1L 

F1                Acid flow rate                      0.081 l/min 

F2                Base flow rate                      0.512 l/min 

C1               Acid concentration               0.32 moles/l 

C2               Base concentration               0.05005 moles/l 

Ka               Acid equilibrium constant    1.8 × 10−5 
Kw             Water equilibrium constant   1.0 × 10−14 
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It is noticeable from equation 3.1, that the pH value can be determined by identifying the 𝐻+. 

Depending on the chemical species used, the pH titration curve (Figure 3.3) varies. Further, the 

electro-neutrality condition states that the sum of the charges of all ions in the solution must be 

zero. Based on the titration curve and electro-neutrality condition, a non-linear algebraic 

equation can be described as stated in equation 3.4.  

 

[H+]3 + [H+]2{Ka + ε} + [H+]{Ka(ε − ξ) − Kw} − KaKw = 0                                       (3.4) 

 

By substituting the total concentrations of acid, ξ and base, ℇ from equation 3.2 and 3.3 into 

equation 3.4, the concentration of hydrogen ions,  𝐻+ can be obtained to solve equation 3.1. 

 

 

 

Valve

Flow rate 

of base

Flow rate of acid

pH

Valve

Valve

Water In

Water 

Out

 
 

Figure 3-1 pH Process 
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Figure 3-2 Simulink model of pH neutralisation process 

 
Figure 3-3 pH titration response 
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3.2.2 PI Controller Design Based on Internal Model Control (IMC) for the System 

 

The internal model control (IMC) technique was applied to identify a suitable PI control 

parameter. This is performed to investigate and get familiar with the dynamic behaviour of pH 

process under the influence of PI control. The mathematical computation and simulations 

results are discussed in more detail later in this chapter.  

 

3.2.2.1 PID control 

 

 
 PID controller has been used widely since the 1950’s and remains an effective method today. 

PID controllers are used in industrial systems such as to control and regulate variables of 

chemical processes for example, pH, temperature and dissolved oxygen. PID control contains 

the following three properties: 

 

1. Proportional control 

 

𝑢(𝑡) = 𝑘𝑒(𝑡)                                                                        𝐷(𝑠) = 𝐾 

 

 

2. Integral control 

 

𝑢(𝑡) =
𝐾

𝑇𝐼
∫ 𝑒(𝜇)𝑑(𝜇)

𝐼

0
                                                           𝐷(𝑠) =

𝐾

𝑇𝐼𝑠
 

 

3. Derivative control 

 

𝑢(𝑡) = 𝐾𝑇𝐷𝑒̇(𝑡)                          𝐷(𝑠) = 𝐾𝑇𝐷𝑠 

 

Where 𝑇𝐼 is the integral time or rest time, 𝑇𝐷 is the derivative time, and 𝐾 is the position 

feedback gain. Therefore, the transfer function can be combined as in equation (3.5). 
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            𝐷(𝑠) =
𝑢(𝑠)

𝑒(𝑠)
= 𝐾(1 +

1

𝑇𝐼𝑠
+ 𝑇𝐷𝑠)                                                                            (3.5) 

 

Proportional feedback control can reduce errors to disturbances. The Proportional, Integral and 

Derivative controllers are combined to form the classical PID controller (Franklin et al., 1998).    

 

As the process does not have time delays, consequently, a first-order model without delay is a 

more reasonable method for designing the PI controller (see equation 3.7). The first-order 

model has a very important property which is a step response for process steady-state gain (K)  

obtained from the calculation of ratios of steady-state change in the value of output (pH) to 

step change in input size 𝑓𝑏 (equation 3.6). The plotting for this reaction is named a reaction 

curve. Clearly the input is fixed to a new value and held there, thereby allowing the process to 

reach a steady-state (Seborg et al., 2004). 

 

 

                                   K =
∆𝑝𝐻

∆𝑓𝑏
=

y2−y1

u2−u1
                                                                           (3.6) 

 

 

Here, ∆𝑝𝐻 is the difference between set point change for the pH output ( y1and y2 ) and 

calculated by:  

 

∆pH = y2 − y1 = 5 − 4.5 = 0.5 

 

Where ∆𝑓𝑏 is the difference between set point change for the input (u1and u2) and calculated 

using the following: 

 

                                     ∆𝑓𝑏 = u2 − u1 = 0.336 − 0.19 = 0.146 

 

Hence the gain, 

K =
0.5

0.146
= 3.42 
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Here, sampling time is chosen to be 0.1 sec and the time constant 𝑇 = 2.9𝑠𝑒𝑐 was obtained 

from the open loop response which is presented in Figure 3.4. Note that this result is consistent 

with the 63.2% method. 

 

              𝑝𝐻 = ∆𝑝𝐻 × 0.632 + initial value for 𝑝𝐻 = 0.5 × 0.632 + 4.5 = 4.81 
                                               

 

 
Figure 3-4 Open loop step response of pH Simulink model 

 

Therefore, the resulting process model is 

 

                        Transfer function       G =
K

Ts+1
=

3.42

2.9s+1
                                                  (3.7) 

 

This transfer function is applied to the pH process as can be seen in Figure 3.5. Following the 

simulation, the results revealed an acceptable response for the model (see Figure 3.6). 
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Figure 3-5 Transfer function and pH Simulink model 

 
Figure 3-6 Open loop step response of pH with transfer function response 
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A table for PID controller tuning relations for the parallel form was derived by Chien and 

Fruehauf, (1990) for common types of process models and is presented in Appendix B. Figure 

3.7 illustrates how the PI controller based on internal model control is applied to the pH model 

and if we analyse Figures 3.8 and 3.9 response for PI with and without noise for operation point 

from 4.5 to 5 was achieved. This method demonstrates an acceptable control performance for 

chemical processes.  

Table 3.2 presents the PI gains for the four regions. After obtaining the steady state gain and 

time constant in each region then Proportional Integral (PI) controller parameters were 

calculated by the internal model control method as follows: 

 

τc =
T

2
=

2.9

2
= 1.45 sec 

 

KC =
T

τcK
=

2.9

1.45 ∗ 3.42
= 0.584 

 

Ki =
KC

τi
=

0.584

2.9
= 0.2013 

 

Where KC is proportional gain and it depends on gain, K, Ki is integral gain, and τi is integral 

time which is equivalent to time constant. 𝜏𝑐 is a key decision in IMC and can be generalised 

to the time constant as T > τc  then τc can be selected to be τc =
T

2
. It can be seen from Figures 

3.8 and 3.9 that internal model control is a suitable technique for designing PI parameters to 

control the nonlinear model for small change around an operating point. 

 

Table 3.2 PI gains for five pH regions 

pH region 𝐾𝐶 𝐾𝐼 

4.5-5 0.584 0.2013 

5-5.5 0.4 0.17 

5.5-6 0.16 0.08 

6-6.5 0.064 0.035 

6.5-7 0.024 0.0101 

7-7.5 0.0075 0.0033 
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Figure 3-7 Simulink model of pH with PI controller 
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Figure 3-8 Response of PI controller without noise for pH process 

 

 

 
Figure 3-9 Response of PI controller with noise for pH process 
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3.3 Investigation of Artificial Neural Networks for Identification of Real pH Data 
 

 

Artificial neural networks have been used extensively in numerous fields, such as in industrial 

systems. This section describes and explains the system identification of real pH data using 

radial basis function neural networks. For network training and validation and to yield 

acceptable results, different model order, different width scaling and different number of hidden 

nodes are investigated in this section. 

 

3.3.1 Process Description 

 

 

The experimental pH neutralisation process investigated in this chapter is illustrated in Figure 

3.1.This process was established in the laboratory to collect the real pH data. It comprises of a 

continuously stirred tank reactor (CSTR) to which the chemical solutions ammonium 

hydroxide NH4OH (base) and acetic acid CH3COOH (acid) are added. The acid flow rate is 

kept constant and the base flow rate (0 to100 ml/min) is adjustable by a servo pump to regulate 

the pH in the tank. The data was collected with the process under closed loop PID control with 

the pH set point varied to drive the pH over the operating range between pH 6-8. It was found 

difficult to tune the PID controller to cover the nonlinear operating range but the data collected 

was considered suitable for investigating nonlinear identification. The liquid level in the tank 

(and hence the liquid volume) is maintained at a constant value and the concentrations of the 

acid and base are both 0.1mol/l. The liquid in the tank is stirred continuously to make sure the 

pH is consistent throughout the tank. It has been revealed in the experiments that the coupling 

between variables is very significant. A personal computer with analogue I/O is connected to 

the process to sample the measurements and issue the control output (Yu and Gomm 2003). 

The 2000 real data samples are scaled and divided into two parts, 1200 data samples for the 

network training and the remaining 800 data samples for test.  Suitable sample time for all 

variables was selected to be 10 seconds. 
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3.3.2 Radial Basis Function Neural Network 

 

There is a three-layered feedforward network, which is an implementation of the radial basis 

function neural network (RBFNN); the layers are input layer, hidden layer and output layer 

(Shen et al., 2011). The input layer has signal source units and the hidden layer has a number 

of nonlinear units which are achieved by the requirements. The relationship from input layer 

to hidden layer is nonlinear, while from hidden layer to output layer is linear. RBFNN is an 

activation function of the units in the hidden layer, as illustrated in Figure 3.10. Here x =

[x1, x2, … , xq]
𝑇 is an input vector and w = (w1, w2, … ,wn) are the weights in the output layer. 

The activation function is Gaussian and represented as  fi(x) = [fi(‖x − Ci‖)], i = 1, 2, … , n, 

where n represents the number of neurons in hidden layer. The activation function of RBFNN 

is un-normalised and can be obtained using equation 3.8:                                   

                           


























 

2

2

exp)(
i

i
cx

i
cx

i
fk

i 


                                                              (3.8) 

Where σi is the width and Ci  is the centre of the activation function, the RBFNN output can 

then be calculated by equation 3.9: 

                                               



nh

1i

ii w)k()k(y                                                                   (3.9) 

Where wi are the connecting weights from hidden layer to output layer, the networks are 

compared in terms of the mean square error: 

                                           



M

1k

2

s )]k(y)k(y[
M

1
MSE                                     (3.10) 

 

Where M is length of data, ys(k) is the scaled output of the process and y(k) is the prediction 

output (RBFNN output), the centres c were calculated using K-means algorithm and widths σ 

in hidden layer nodes of the RBFNN were calculated by P-nearest neighbours method 

respectively. The recursive least squares (RLS) algorithm was used for RBFNN training to 

update weights to calculate RBFNN output (Nelles, 2002):    
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                            )1k(w)k(
i

)k(y)k(
T




                                                             (3.11) 

 

                           
)k(

i
)1k(P)k(

i

)k(x)1k(P
)k(L

T



                                                            (3.12) 

 

                            )()()1()( kkLkwkw 


                                                              (3.13) 

 

                              }T)]k(
i

)1k(P)[k(L)1k(P{
1

)k(P 


                                        (3.14) 

 

Where 

 ε(k) is the prediction error 

 L(k) is the gain vector 

 P(k) is the covariance matrix 

)k(
i

  is the activation function outputs 

 λ is the forgetting factor 

y(k) is the target output 

 

3.3.2.1 Recursive Least Squares (RLS) 

 

 

The idea behind using recursive least squares (RLS) is to calculate a new update for the network 

weights (𝑤̂) each time new data comes in. for each weight update a constant calculation time 

is needed for the recursive least squares (Nelles, 2002).   
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Figure 3-10 Structure of an RBFN network 
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Figure 3-11 RBFNN development steps 
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3.3.2.2 Real Data Identification Results and Discussion    

           

    

In this section RBFNN is used to predict pH output ys (k) which is scaled for system 

identification and 𝑢 𝑠(k) is the scaled flow rate of base as input. Figure 3.11 presents the 

RBFNN development steps. The 2000 real data samples need to be scaled before training. The 

data is split into two part: the first 1200 data samples were used for training and the other 800 

data samples for testing and validation. Figure 3.12 a illustrates the 2000 real pH data and 

Figure 3.12 b presents the 2000 scaling data of pH, where all the data are scaled using equations 

3.15 and 3.16: 

                                             𝑢 𝑠(k) =
u(k)−umin

umax−umin
                                                           (3.15) 

 

                                              y𝑠(k)  =
y(k)−ymin

ymax−ymin
                                                  (3.16) 

 

a) Measured real pH data for network training and validation (Sample time=10 sec) 
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b) Scaled real pH data for network training and validation (Sample time=10 sec) 

 

Figure 3-12 Measured and scaled real pH data for network training and validation. (Sample 

time=10 sec) 

 

 

Where umin and ymin are lower limits, umax  and  ymax are upper limits of the input and output 

data respectively, the RBFNN input is set as x vector (see equation 3.17). 

 

𝑥(𝑘) = [𝑦(𝑘 − 1)…𝑦(𝑘 − 𝑛)… . . 𝑢(𝑘 − 1)…𝑢(𝑘 − 𝑛)]𝑇                          (3.17) 

 

 

The RBFNN has two inputs when order n = 1 as given in equation 3.17, where y(k) in this 

equation illustrates  the scaled pH output and u(k) is the scaled flow rate of base as input. In 

this work, different numbers of hidden layer nodes as well as different order models of network 

inputs have been used in training experiments. The recursive least squares algorithm is used 

for training the networks to update weights with initial values set as, w = 1.0 × 10−6 × Unh×1 

,P(0) = 1.0 × 108 × Inh, where λ  here is chosen as 0.999, nh is the number of hidden layers, 

U is the matrix whose components are ones and I stands for identity matrix. From RBFNN 
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experiments, it was found that if λ  is greater than 0.98 and less than 1 it gives less error between 

measured output and prediction output. Hence a value of λ =0.999 was chosen for further 

experiments. The RBFNN output is calculated using equation 3.9 after the activation functions 

have been calculated using equation 3.8 and the weights are then updated using recursive least 

squares calculations. 

 

The first order model structure n=1 in equation 3.17 with 6 hidden nodes is selected after 

various experiments that achieve minimum prediction error and best choice for the widths in 

the hidden nodes by multiplying by a scaling factor (𝜎 × 20). The results indicate a first order 

model, n=1 as shown in Figure 3.13, achieves the smallest train and test errors and this was the 

order chosen. The effect of varying the widths in the hidden nodes by multiplying by a scaling 

factor (𝜎 × 𝛼) is shown in Figure 3.14 for networks with n=1 and nh= 6. It can be seen that the 

best choice giving minimum prediction error is 𝛼=20 (𝜎𝑥20  in Figure. 3.14). While 

Figure.3.15 illustrates comparison between mean square error for RBFNN training and test 

with different hidden nodes and same model order (n=1) and width scaling (𝛼=20). 

 

It is observed that the best number of hidden nodes is 6 and gives acceptable results and good 

match between model output and RBFNN output for model training and testing as it is shown 

on simulation results (see Figures.3.16 and 3.17).  Mean square error MSE for training data is 

0.000012341 and mean square error MSE for test data is 0.0000077384  . These are low 

values of MSE indicating good model accuracy. The error for train and test data is presented in 

Figures 3.18 and 3.19. 
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Figure 3-13 Comparison between MSE for RBFNN training and test with different model order 

 
Figure 3-14 Comparison between MSE for RBFNN training and test with different width 
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Figure 3-15 Comparison between MSE for RBFNN training and test with different Hidden 

Nodes 

 

Figure 3-16 RBFNN Identification results on training data for first order pH model. (Scaled 

data, sample time=10 sec) 
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Figure 3-17 RBFNN Identification results on test data for first order pH model. (Scaled data, 

sample time=10 sec) 

 
Figure 3-18 Error between RBFNN output and model output on training data.  
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Figure 3-19 Error between RBFNN output and model output on test data. 

  

3.4 Investigation of Local Linear Model Networks for Identification of Real pH Data 

 

In the past decade, significant attention has been paid to the application of another type of 

network, known as local linear model networks (LLMN), for system identification and control. 

This section explains the development of LLMN for pH system identification to predict pH 

output, and the results are also discussed in this chapter. 

 

3.4.1 Modelling of Local Linear Model Networks 

 

System identification of complex nonlinear systems has been achieved by local linear model 

networks. Figure 3.20 illustrates the structure of dynamic local model networks where the 

inputs are represented by x = [x1, x2, … , xq] 
T and the output  ŷ(k) , respectively. Here, validity 

function and local linear models are depending on input x. Each model has the validity function 

( ∅i) and its model parameters (wi) the local model for the output ŷi(k)  is gained by equation 

3.18 (Nelles, 2002; Hametner and Jakubek ,2010). 
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                                                              𝑦𝑖̂(𝑘) = 𝑥𝑇(𝑘)𝑤𝑖                                                      (3.18) 
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qi
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w...
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w   

 

 

The  x(k) contains past inputs and outputs and local affine model structure is implemented for 

dynamic models: 

 

         𝑥(𝑘) = [𝑦(𝑘 − 1)…𝑦(𝑘 − 𝑛)… . . 𝑢(𝑘 − 1)…𝑢(𝑘 − 𝑛)]𝑇                    (3.19)                                        

 

 

  

 

Input  layer

Hidden layer

Output layer

 
 

Figure 3-20 Local Linear Model Network Structure 

 

All local estimations ŷi(k) are used to form the global model output ŷ(k) by weighted 

aggregation. 

 

  

                                   𝑦̂(𝑘) = ∑ ∅𝑖(𝑘)𝑀
𝑖=1 𝑦𝑖̂(𝑘)                                                         (3.20)                                        
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Here  
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Equation (3.21) describes the calculation of the validity function ∅i(k)  , which is un-

normalised. M stands for the number of local models, 𝜎𝑖 is the width and 𝐶𝑖  is the centre of ith 

activation function. Clearly, the input vector for the membership functions x̃(k) could be 

selected differently from the input vector for the local model (Nelles, 2002). In this chapter,  

x̃(k) = y(k − 1)  was selected for the validity function calculation. Shorten and Murray-Smith 

(1994) presented that normalisation of the validity function could have some effect on their 

shape, such as change in shape potential loss of smoothness of the representation. In addition, 

these effects may cause the loss of the individuality of local models and cause changeable 

behaviour in dynamic models. Hence, un-normalised validity functions equation 3.21 are used 

in this study.      

 3.4.1.1 Real Data Identification Results and Discussion      

  

           

In this section, the LLMN structure as presented in Figure.3.20 is used to predict pH output     

ys (k) which is scaled. The 2000 real data samples were scaled using equations 3.15 and 3.16 

in section 3.3 before network training and being divided into two groups. The first 1200 data 

samples were used for training and the other 800 data samples for testing and validation. 

In this section different number of local models and different orders of network model inputs 

have been used in training experiments and equation 3.19 is selected when model order   n =

1. The centres and widths in the validity functions of the LLMN were calculated using K-

means algorithm and P-nearest neighbours method respectively. Initial model parameters are 

set as,w = 1.0 × 10−6 × UM×2n, P(0) = 1.0 × 108 × IM×2n and 𝜆 is selected as 0.999. Then 

weights are updated using recursive least square algorithm for model output validation. Figure 

3.21. Illustrates the comparison between mean square error for LLMN training and test with 

different model order and same number of local models which is 4. The results indicate a first 
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order model, n=1, achieves the smallest train and test errors and for this reason the order was 

chosen. The effect of varying the widths in the local models by multiplying by a scaling factor 

(𝜎 × 𝛼) is presented in Figure 3.22 for networks with n=1 and 4 local models. Figure 3.23 

shows comparison between MSE for LLMN training and test with different number of local 

models with n=1.  Figures 3.24 and 3.25 show the training and test results for n=1 and a 

structure with 4 local models and scaling factor 𝛼 = 20, that was selected after the experiments, 

and gives minimum prediction errors. From the results of LLMN without bias it can be clearly 

noticed that its capability to reduce the mean square errors with 4 local models is 0.000010414 

for training and for test is 0.0000075046. The errors for train and test data are shown in 

Figures 3.26 and 3.27.  Furthermore, other experiments were conducted, including a bias 

parameter bi which is added to LLMN output as,  ŷ(k) = ∑ ∅i(k)
M
i=1 ŷi(k) + bi .The 

comparison results for the error for train and test data are presented in Figures 3.28 and 3.29. 

In this case, the mean square error for training is 0.000011049 and mean square error for test 

is 0.0000081488.

 

Figure 3-21Comparison between MSE for LLMN training and test with different model 
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Figure 3-22 Comparison between MSE for LLMN training and test with different width 

scaling 

 

Figure 3-23 Comparison between MSE for LLMN training and test with different Number of 

local models 
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Figure 3-24 LLMN Identification results on training data for first order pH model. (Scaled 

data, sample time=10 sec) 

 
Figure 3-25 LLMN Identification results for test data for first order pH model. (Scaled data, 

sample time=10 sec)  
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Figure 3-26 Error between LLMN output and model output on training data. 

 

 
Figure 3-27 Error between LLMN output and model output on test data. 
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Figure 3-28 Error between LLMN with bias output and model output on training data. 

 

 
Figure 3-29 Error between LLMN with bias output and model output on test data. 
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3.4.2 Simulation of Local Linear Model Networks Independent Model 

 

The idea behind the independent model is to test further the accuracy and validation of the 

identified local linear model network in the previous section. As an independent model, once 

the local linear model network is trained to update to weight and provided with input u (k), the 

network outputs 𝑦̂(𝑘) are delayed and fed back to the network input. The network here can be 

used independently (Hunt et al., 1992; Gomm et al., 1997; Doherty et al., 1997). The network 

input vector became as 

 

          𝑥(𝑘) = [𝑦̂(𝑘 − 1)… 𝑦̂(𝑘 − 𝑛)  𝑢(𝑘 − 1)…𝑢(𝑘 − 𝑛)]𝑇                                    (3.22) 

 

The simulation of the LLMN independent model is used as a feedback network to test the 

system identification network, as detailed in section 3.4.1 and will be used for control 

simulation. The differences between independent model and one step ahead prediction is that 

greater errors are found between the outputs for independent response due to the process 

behaviour. The predicted output of the LLMN independent model for training and test data for 

network structure when n=1 with 4 local models and scaling factor 𝛼 = 20 are illustrated in 

Figures.3.30 and 3.31. 

 
 

Figure 3-30 Independent LLMN results on training data for first order pH model. (Scaled 

data, sample time=10 sec)  
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Figure 3-31 Independent LLMN results on test data first order pH model. (Scaled data, 

sample time=10 sec)  

 

3.5 Investigation of Adaptive Neuro-Fuzzy Inference System 

 

The adaptive neuro-fuzzy inference system ANFIS was first introduced by (Jang, 1993).   

ANFIS is working similarly to artificial neural networks.  It has the capability to learn from 

data training and work as the basis from which to construct a set of fuzzy if-then rules with 

suitable membership functions to generate the stipulated input-output. 

 MATLAB tool box is used for this study, by using the input-output data set; a fuzzy inference 

system (FIS) was constructed by the ANFIS toolbox function. The membership function 

parameters are tuned using a back-propagation algorithm either alone or in combination with a 

least squares type of method. This allows fuzzy systems to learn from the data they are 

modelling (MathWorks, 2013; Talpur et al., 2017). 

 

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Samples

IL
L

M
N

 O
u

tp
u

t 
a

n
d

 p
H

 P
ro

c
e

s
s

 O
u

tp
u

t

Original Data

Identification Results



 

56 

 

3.5.1 ANFIS Training Procedure 

 

This section presents system identification for single input and output using ANFIS modelling 

which can be found in the MATLAB toolbox. The model here is first order model for training 

and validation data and the results are presented in section 3.5.2. The system identification 

steps for training and test data are illustrated as follows: 

1. Generate the training data which is called in MATLAB (trnData) 

2. Select the number of membership functions which are (5) 

3. Select the mfType to be 'gbellmf' 

4. Use genfis1 to generate initial membership functions 

in_fis=genfis1(trnData,numMFs,mfType) 

5. generate the anfis output using yan=evalfis(x,out_fis) 

Where out_fis is calculated by anfis(trnData,in_fis,20) and x is the first order model. 

These steps are achieved using MATLAB (see Appendix C) and the comparisons of MSE 

between RBFNN, LLMNs and ANFIS are presented in Table.3.3.  

3.5.2 Real Data Identification Results 
 

Figure 3.32 illustrates the ANFIS system identification results for the training data of first order 

pH model, while identification results for the test data is illustrated in figure 3.33. It can be 

seen from the figures that acceptable results are achieved using ANFIS method. The mean 

square error for training is 0.000049957and for test is 0.000068840. 
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Figure 3-32 ANFIS identification results on training data for first order pH model. (Scaled 

data, sample time=10 sec)  

 
Figure 3-33 ANFIS identification results on test data for first order pH   model. (Scaled data, 

sample time=10 sec) 
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3.6 Comparison of the LLMN, RBFNN and ANFIS 
  

Applications of local linear model networks (LLMN), radial basis function networks (RBFNN) 

and Adaptive Neuro-Fuzzy Inference System (ANFIS) for system identification of real pH data 

have been investigated. The results reveal the ability of these networks to accurately represent 

the process when suitable choices and optimisations are made for various network parameters. 

However, local linear models networks (LLMN) have possibility and are powerful for 

approximating nonlinear dynamic systems. Their behaviour gave improved results with 

reduced MSE values compared with those of RBFNN and ANFIS for the identified pH system. 

The results of local linear model networks have been achieved with less number of parameters 

which is 16 compared with 24 parameters used in RBFNN.  In other words, the LLMN structure 

is smaller than the RBFNN in this application. Table 3.3 lists the Comparison of MSE between 

RBFNN, LLMNs and ANFIS. 

 

Table 3.3 Comparison of MSE between RBFNN, LLMNs and ANFIS 

 

Method MSE on train data MSE on test data 

RBFNN 0.000012341 0.0000077384 

LLMNs unnormalised 0.000010414 0.0000075046 

ANFIS 0.000049957 0.000068840 

ILLMNs 0.0106 0.0022 

LLMNs Normalised  0.000010344 0.00000746255 

 

3.7 Development and Investigation of Control Based on Local Linear Model Networks 

for pH Process 

 

3.7.1 Overview and Purpose 

 

As section 3.4 explained, the system identification of the pH process using local linear model 

networks for the real pH data is achieved. This section describes the controller design for the 

pH chemical process. PI controller using the direct design method and local linear model 

controllers are applied to the identified process and are described in the following section. 
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3.7.2 Direct Design Control Procedure 

 

The important of control nonlinear systems has become well known in most modern 

engineering systems, where controllers are required to have a good steady-state performance 

and satisfactory transient. In this section a direct control design will be presented to control a 

nonlinear pH process. The controller transfer function 𝐺𝑐(𝑧) for the process can be calculated 

using MATLAB from the desired closed loop transfer function 𝐺𝑇(𝑧) and this closed loop 

control system should be stable. The closed-loop transfer function 𝐺𝑇(𝑧) must have the same 

pole-zero deficit as the process 𝐺𝑆(𝑧), while the delay in 𝐺𝑇(𝑧) must be at least as long as that 

in 𝐺𝑆(𝑧). The direct design  equation is presented in equation (3.23). 

  

 

                                              𝐺𝑐(𝑧) =
1

𝐺𝑆(𝑍)
×

𝐺𝑇(𝑍)

1−𝐺𝑇(𝑍)
                                                 (3.23) 

 

 

 The block diagram of direct design feedback controller is illustrated in Figure.3.34 (Fadali and 

Visioli, 2012). In terms of when unstable pole-zero cancellation occurs, the system is input-

output stable but not asymptotically stable. The reason for this is that the response is due to the 

initial conditions that are not affected by the zeros and are affected by the unstable poles, even 

if they cancel with a zero. Therefore, the closed loop control systems should be designed 

carefully to avoid unstable pole-zero cancellations. This indicates that the set of zeros of 𝐺𝑇(𝑧) 

must include all the zeros of 𝐺𝑆(𝑧)  that are outside the unit circle.  There is a common challenge 

that is facing the direct design method is the selection of a suitable closed-loop transfer 

function. 
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Figure 3-34 Direct Design Control Diagram for Nonlinear Process 

 

3.7.3 PI Controller Design For First Order pH Model 

 

Direct design controller procedure is used in this section to design PI controller for first order 

pH model. From a LLMN property of the transfer function  𝐺𝑆(𝑧) can be computed by the sum 

of multiplying the basis function for each local model with its weights to find out the transfer 

function parameters (𝑎1) and (𝑏1). The basis functions are evaluated at a parameter operating 

point to obtain the transfer function at that point. The identified first order LLMN of the pH 

process in section 3.4 has the form: 

             𝑦(𝑘) = [𝑦(𝑘 − 1)…𝑢(𝑘 − 1)]                                                                 (3.24) 

 

Where 𝑦(𝑘) = 𝑝𝐻(𝑘)  and (𝑘) = 𝑓𝑏(𝑘) . This corresponds to a local first order difference 

equation, 

 

             𝑦(𝑘) + 𝑎1𝑦(𝑘 − 1) = 𝑏1𝑢(𝑘 − 1)                                                            (3.25) 

 

The first order transfer function can then be obtained from 

 

                          𝑌(𝑧) + 𝑎1𝑧
−1𝑌(𝑧) = 𝑏1𝑧

−1𝑈(𝑧)                                               (3.26) 
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Giving 

                        
𝑌(𝑧)

𝑈(𝑧)
=

𝑏1𝑧−1

1+𝑎1𝑧−1
= 𝐺𝑆(𝑧)                                                                    (3.27) 

 

The transfer function parameters of the first order equation are calculated from the LLMN by 

multiplying the Gaussian functions with the weights for each operating point. 

                                 

                                𝑎1 = ∑∅𝑖 × 𝑤𝑖                                                                    (3.28) 

 

 

                                𝑏1 = ∑∅𝑖 × 𝑤𝑖                                                                                (3.29) 

 

 

Here 𝑤𝑖 are the LLMN weights which are calculated using recursive least squares (RLS) 

algorithm, and ϕi  is the basis function for each local model. 

 

To design the target of the desired closed loop transfer function   𝐺𝑇(𝑧) requires time constant  

to be determined for 5𝜏 = 100  samples time then the transfer function can be designed when 

𝐴 = 𝑒−∆𝑡/𝜆 = 0.95. 𝜆 here is the desired closed loop time constant. See equation (3.30). 

(Seborg et al., 2004 ). 

 

Since the identified pH model is first order, a first order desired closed loop transfer function 

  𝐺𝑇(𝑧) was also chosen: 

 

                                𝐺𝑇(𝑧) =
(1−𝐴)𝑧−1

1−𝐴𝑧−1
                                                                         (3.30) 

 

 

The above  𝐺𝑇(𝑧) has unity steady state gain to achieve zero steady state offset in the control. 

The pole A was chosen to give a desired closed loop time constant 𝜏 = 20 𝑆𝑒𝑐. 

 

By substituting equations (3.27) and (3.30) into equation, (3.23) then the controller transfer 

function became as: 
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𝑈(𝑧)

𝐸(𝑧)
=

𝑔0𝑧−𝑔1

𝑧−1
= 𝐺𝑐(𝑧)                                                                 (3.31) 

 

 

Where 𝐸(𝑧) is the error between reference set point and the output   𝑒(𝑘) = 𝑟(𝑘) − 𝑦(𝑘) . 

𝐺𝑐(𝑧) in equation (3.31) is a PI controller transfer function, then the PI controller applied to 

the process is calculated from the following difference  equation: 

 

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝑔0𝑒(𝑘) + 𝑔1𝑒(𝑘 − 1)                                                                        (3.32) 

 

3.7.3.1 Simulation Results  

 

This section describes the possibility of designing a PI controller for the first order pH model. 

The controller was implemented for centre number 4, which is the scaled pH value of 0.4950 

in the process. The first order model transfer function 𝐺𝑆(𝑧) was solved using equation (3.27) 

and the desired closed loop transfer function  𝐺𝑇(𝑧) was solved using equation (3.30) and 

became as: 

 

 

𝐺𝑆(𝑧) =
0.02046

z − 0.9829
     (3.33)                                               𝐺𝑇(𝑧) =

  0.05

z − 0.95
                (3.34) 

 

 

These equations are substituted into equation (3.23) to obtain the controller transfer function 

became as:   

                                                 𝐺𝑐(𝑧) =
  2.444 z −2.402

z − 1
                                                  (3.35) 
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                    Figure 3-35 Step response of closed loop transfer function 

 

 
 

Figure 3-36 Process input and output of pH for single PI controller. (Scaled data, sample 

time=10 sec)  
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Figure 3.35 illustrates the step response of closed loop transfer function, while figure 3.36 

presents the process input and output of pH for a single PI controller. 

 

 

3.7.4 Local Linear Model Controllers Based on The First Order pH Model 

 

The direct design procedure is used to design a controller for each local model identified at the 

network centres (4 in this case). These controllers are combined as below to form local linear 

model controllers. The Gaussian functions for the four local linear models on first order are 

combined to form a matrix ϕ  as: 

 

                        





















44342414

43332313

42322212

41312111











                                                      

(3.36) 

 

 

The coefficients of the controller transfer functions for each local model are also combined to 

form the matrix 𝐺 as: 

 

                           





















1

1

1

1

2414

2313

2212

2111

gg

gg

gg

gg

G                                                                (3.37) 

 

 

 

Then, by multiplying matrix (G) and (ϕ ) for the 4 local models, then the controller weights 

(𝑊)  for the LLMN controller can be obtained from: 

 

 

 

                              

                   𝑊 = 𝐼𝑛𝑣(∅) × G                                                  (3.38) 
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The LLMN controller structure for the first order pH model is then as follows: 

 

 

                                  𝑢(𝑘) = [∅ ]𝑇 × [𝑊 × [

𝑒(𝑘)
𝑒(𝑘 − 1)
𝑢(𝑘 − 1)

]]                                                 (3.39) 

                                                              

Where ∅  are the activation functions for the local linear model controller. 

 

3.7.4.1 Simulation Results  

 

The local model controller is designed after obtaining the local linear model controller 

weights(𝑊). Subsequently, it is substituted into equation (3.39) to design the local model 

controller that is applied to the pH process.  The matrix 𝐺  and ∅ for the first order model 

became as follows: 

 

                    G = [

7.960 −7.714 1
3.649  −3.627 1
3.288   −3.208 1

2.444       −2.402 1

]                                                                      (3.40) 

 

 

                ∅ = [

1 0.9902 0.9975 0.9917
0.9508 1 0.9699 0.9915
0.9975 0.9940 1 0.9975
0.9876 0.9975 0.9962 1

 ]                                                     (3.41) 

 

 
 

 

       𝑊 = 1𝑒5 ∗ [

1.2784 −1.2302 0.000032
−1.0103 0.9721 −0.000006
−2.6670 2.5665 −0.00006
2.4021 −2.3115 0.00004

 ]                                                (3.42) 
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Figure 3-37 Process input and local linear model controller output of first pH model. (Scaled 

data, sample time=10 sec) 

 

 

 

 
Figure 3-38 Local linear model controller output of pH for different points. (Scaled data, 

sample time=10 sec)  
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3.7.5 Discussion 

 

In this section, local linear controllers were implemented using the direct design method, and 

the weights of the local linear controller were calculated by multiplying the inverse of basis 

function (3.40) for all local models with the control coefficients (3.41). Then, the error between 

the set point and the output is fed back to the process and the final controllers for all models 

are determined using equation (3.39) before being applied to the process input.  The step 

response of closed loop direct design for first order model at centre number 4 is given in Figure. 

3.35. Figure 3.36 illustrates the PI controller output of first order pH model and the input 

response. The controller output is tracking the reference set points and it can observed that it 

takes about 200 seconds to get the steady state for each  set point, with a mean square error 

0.00929. While Figure.3.37 illustrates the local linear model controller result, whereby the 

good match between the controller output (red) and set points (Blue) with mean square error 

0.00838 is observed. Additionally, another simulation was also performed for different set 

points and also given a good result, as presented in Figure.3.38, with a mean square error of 

0.01254. Table 3.4 illustrates the comparison of MSE between single PI and local linear 

controllers. Meanwhile, Table.3.5 details the comparison of MSE between a single PI controller 

and local linear controller for normalised Gaussian function. 

 

Table 3.4 Comparison of MSE between single PI controller and local linear controller with 

un-normalised Gaussian function 

 

Controller  MSE 

Single PI controller 0.00929 

Local linear controller for the 4 centres 0.00838 

Local linear controller for different points 0.01254 
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Table 3.5 Comparison of MSE between single PI controller and local linear controller with 

normalised Gaussian function 

 

Controller  MSE 

Single PI controller 0.00954 

Local linear controller for the 4 centres 0.00909 

Local linear controller for different points 0.01260 

 

 

3.8 Summary 

 

This chapter has investigated system identification for a nonlinear pH process by using local 

linear model networks. This technique was compared with radial basis function networks and 

adaptive neuro-fuzzy inference system and from the results it is found that the application of 

local linear model networks gave smaller mean square error than radial basis function and 

ANFIS. After achieving system identification, a PI controller and a local linear model network 

controller were designed and implemented using direct design method to the process to control 

and maintain the pH output. The results support the use of local linear model networks to 

control pH.   
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Chapter 4 | Development of the Methods for Designing Local Linear 

Models for System Identification and Control of Real pO2 Data  

 
4.1 Introduction 

 

Dissolved oxygen concentration (pO2 ) is a complete indicator to measure water quality and an 

significant indicator of water pollution. pO2 concentration was considered as the most 

important water quality variable such as in fish culture (Liu et al., 2009). 

 

The concentration of dissolved oxygen pO2 plays an important role in chemical industries such 

as water treatment. The amount of gaseous oxygen dissolved in the water is called dissolved 

oxygen and can get in the water from the atmosphere.  There are some factors that could affect 

dissolved oxygen levels, such as water temperature. For example, in cold water oxygen could 

be dissolved more easily than in warmer water.  

 

As dissolved oxygen in water is a critical issue, consequently, a good controller should be 

considered. This chapter describes the ability to use the local linear model networks technique 

(LLMNs) for system identification and control of the dissolved oxygen process and the use of 

direct design control. In this chapter the dissolved oxygen process contains input which is the 

flow rate of air (𝑓𝑎) and the output is dissolved oxygen pO2 and the temperature will be selected 

to be as input in activation function and its procedure and results will be discussed later in this 

chapter.   

 

There are many types of controller that could be used to control nonlinear process systems such 

as PI, PD and PID. In this chapter the direct design method is designed to control and maintain 

the pO2 in the process at a certain operation regime.  The system identification and controller 

design are performed using MATLAB software. 
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4.2 Investigation of Local Linear Model Networks for System Identification of Real pO2 

Data 

 

The comparisons between RBFNN, ANFIS and local linear model networks are discussed in 

chapter 3. This chapter describes system identification and control of the pO2 process using 

local linear model networks. Its training network is used to optimise the hidden layer centres 

and the widths in Gaussian functions and update weights, to minimise the model prediction 

error. The results are compared with a gradient descent algorithm which is used for system 

identification to update the width in the network. Then PI and local model controllers are 

designed and applied to the process and the results are discussed in this chapter. 

4.2.1 Process Description 

 

Figure 4.1 illustrates the dissolved oxygen process which contains airflow rate 𝑓𝑎 (0 −

100𝑙/𝑚𝑖𝑛) adjusted by a mass flow-meter connected to a compressing air network to regulate 

the percentage of the dissolved oxygen (pO2 ) in the liquid. Moreover, the tank is equipped 

with an electric heating system to adjust the liquid temperature between  (35 − 50℃) (Yu and 

Gomm, 2003). The data was collected with the process under closed loop PID control to drive 

the pO2 over the operating range between (10–80%). It was found difficult to tune the PID 

controller to cover the nonlinear operating range but the data collected was considered suitable 

for examining nonlinear identification. The liquid level in the tank (and hence the liquid 

volume) is maintained at a constant value. It was noted from the experiment that since the 

dissolved oxygen responds quickly to changes in the airflow rate, especially at high 

temperature, therefore consideration should be given to the rise times for different variables. 

The liquid in the tank is stirred continuously to make sure the dissolved oxygen is consistent 

throughout the tank. A personal computer with analogue I/O is connected to the process to 

sample the measurements and issue the control output. The 2000 data points collected are 

presented in Figure 4.2. The process was affected by some problems such as the rise time for 

the temperature is very long due to the limitation of the heating power, whereas that of the 

dissolved oxygen is quite short. All these effects cause the process to be non-linear in both 

dynamic and static behaviour and this non-linearity of the process is demonstrated in the fixed 
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parameter PID controller responses. Suitable sample time for all variables was selected to be 

10 seconds.  Figure 4.3 illustrates the scaled pO2 and temperature data. The temperature is used 

as input in the Gaussian function network. The process input 𝑢 and output 𝑦 are described in 

equation 4.1: 

 

 

 

                                                 𝑢 = [𝑓𝑎], 𝑦 = [𝑝𝑂2]                                                             (4.1) 

 

 

 

Where  𝑓𝑎  denotes air flow rate and pO2 is the percentage of dissolved oxygen. 

 

 

 
Figure 4-1 pO2 process  
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Figure 4-2 Measured real pO2 and temperature data for network training and validation 

(sample time=10 sec) 

 

 
Figure 4-3 Scaled real pO2 and temperature data for network training and validation (sample 

time=10 sec) 
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4.2.2 Local Linear Model Network Training and Evaluation for pO2 Data 

 

System identification of complex nonlinear systems has been achieved using local linear model 

networks. The structure of dynamic local model networks, as illustrated in Figure. 3.20 in 

Chapter 3, will be used in this chapter to identify the dissolved oxygen process. 

By using equation 3.19, where the input denotes the flow rate of air and the output is the 

dissolved oxygen, hence the model inputs becomes as: 

 

              
T

aa nkfkfnkpOkpOkx ])()...1()()...1([)( 22                                                 (4.2) 

             

As the side effects of the normalisation of the validity function (equation 3.21) were discussed 

in Chapter 3, section (3.4.1), in this chapter un-normalised validity function ϕi  will be used in 

the local linear model networks (equation 4.3). In chemical processes, the concentration of 

dissolved oxygen is dependent on the temperature behaviour to maintain the required oxygen 

level (Ogata, 2003). In this chapter x̃(k) = T(k − 1) was selected for validity function 

calculation. 
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4.2.2.1 Real Data Identification Results and Discussion 

           

In Chapter 3 equations, (3.15) and (3.16) were used to scale pH data. The same equations will 

be used in this chapter to scale the pO2 data. Then LLMNs are used to predict pO2 output which 

is scaled  𝑦𝑠(𝑘) for system identification. The 2000 real data samples were divided into two 

parts, the first 1200 data samples were used for training and the other 800 data samples for 

testing and validation.  

The centres and widths in the validity functions of the LLMN were calculated using K-means 

algorithm and P-nearest neighbours method respectively. Initial model parameters are set as  

𝑤 = 1.0 × 10−6 × 𝑈𝑚×2𝑛, 𝑃(0) = 1.0 × 108 × 𝐼𝑚×2𝑛, and λ is chosen to be 0.999. Then, 
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recursive least square algorithm is used to update the weights for model output validation. The 

results presented in Figure. 4.4 indicate first order model, n = 1, M=3 and scaling factor α =

10 achieves small  mean square errors in one step ahead prediction on train is 0.000047930 

and for test is 0.000026697. However, after the LLMN output is fed back to the input as an 

independent model, the results became better on first order independent model, M=3 and 

scaling factor α = 20 the mean square errors for train and test data are 0.0155 and 0.0296 

compared to the first order independent model, M=3 and scaling factor α = 10. The mean 

square errors for training and test data are 0.0154 and 0.0308. Figures (4.5) and (4.6) illustrate 

the results for LLMN independent model results  on  training and test data first order pO2 

model, M=3, α=20 respectively. Figures (4.7) and (4.8) illustrate the LLMN independent model 

results on training and test data first order pO2 model, M=3,α = 10 respectively. Because of 

these results a single PI and local linear model controllers are designed on first pO2 model, 

M=3 and α = 20.  

Another experiment was done when n = 2, M=3 and scaling factor α = 20 to investigate the 

behaviour of second order pO2 model and mean square errors for training and test data are   

0.0003610 and  0.00015026 respectively. Meanwhile, the mean square errors in training and 

test data for second order independent LLMNs were 0.0941 and 0.0181 respectively. It can be 

observed that increasing the number of model order will increase the mean square error. While 

Figure.4.9 illustrates comparison between mean square error for LLMN training and test with 

a different number of local models and the same model order n=1 and width scaling α = 10. 

The effect of varying the widths in the hidden nodes by multiplying by a scaling factor (σ×α) 

is presented in Figure.4.10 for networks with n=1 and M= 3. But as discussed before the best 

choice giving minimum prediction error when the widths in the local models by multiplying 

by a scaling factor is α = 20  (σ × 20)  for networks with n=1 and M=3. And  more details and 

to clarify the  selection of the model order, width scaling factor and number of local models for 

the local linear model network training for system identification, comparison for the mean 

square error can be found in table (4.1). The performance of the final trained network  (𝑛 =

1, α = 20,M = 3)  on the training and test data are shown in Figures.4.11 and 4.13.  Figures 

(4.12 and 4.14) show the errors for LLMN on training and test data.  
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Further experiments were conducted to investigate the behaviour of the first order model with 

M=3, , α = 10  and when the activation function input depends on dissolved oxygen and the 

results reveal that the mean square errors for the training data and test data are 0.000052255 

and 0.000023562 respectively. 

 
Figure 4-4 Comparison between MSE for LLMN on training and test data with different 

model order, M3, α=10 

 

 
Figure 4-5 LLMN Independent model results for LLMN on training data first order pO2 

model, M=3, α=20. (Scaled data, sample time=10 sec) 
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Figure 4-6 LLMN Independent model results for LLMN on test data first order pO2 model, 

M=3. α=20. (Scaled data, sample time=10 sec) 

 

 
Figure 4-7 LLMN Independent model results for LLMN on training data first order pO2 

 model, M=3,α=10. (Scaled data, sample time=10 sec) 
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Figure 4-8 LLMN Independent model results for LLMN on testing data first order pO2 

 model, M=3, α=10. (Scaled data, sample time=10 sec) 

 
Figure 4-9 Comparison between MSE for LLMN on training and test data with different 

number of local models, n=1, α=10 
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Table 4.1 comparison for the mean square error for pO2  with different model order, scaling 

factor and number of local models 

 

Model order MSE on train network 𝜎 × 20 MSE on test network 𝜎 × 20  

First order M3 0.000056886 0.000026837 

First order M4 0.00004992 0.00002677 

 

Independent model MSE on train network 𝜎 × 20  MSE on test network 𝜎 × 20  

First order M3 0.0155 0.0296 

First order M4 0.0136 0.0481 

First order M5 0.0139 0.0436 

First order M6 0.0132 0.0502 

 

 

Model order MSE on train network 𝜎 × 20  MSE on test network 𝜎 × 20  

Second order M3 0.00036100 0.00015026 

Second order M4 0.00036026 0.00013369 

 

 

Independent model MSE on train network 𝜎 × 20 MSE on test network 𝜎 × 20 

Second order M3 0.0941 0.0181 

Second order M4 0.0559 0.0419 

 

 

Model order MSE on train network 𝜎 × 10 

 

MSE on test network 𝜎 × 10 

 

First order M3 0.000047930 0.000026697 

First order M4 0.000050550 0.000026182 

 

Independent model MSE on train network 𝜎 × 10 MSE on test network 𝜎 × 10 

First order M3 0.0154 0.0308 

First order M4 0.0132 0.0507 

First order M5 0.0134 0.0502 

First order M6 0.0118 0.1119 

 

 

Model order MSE on train network 𝜎 × 10 MSE on test network 𝜎 × 10  

Second order M3 0.00035860 0.00014836 

Second order M4 0.00036094 0.00013318 

 

 

Independent model MSE on train network 𝜎 × 10 MSE on test network 𝜎 × 10 

Second order M3 0.0902 0.0196 

Second order M4 0.0521 0.0454 
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Figure 4-10 Comparison between MSE for LLMN on training and test data with different 

width scaling factor, n=1,M=3 

 
Figure 4-11 One step ahead prediction output for LLMN on training data for pO2, n=1, M=3, 

α=20. (Scaled data, sample time=10 sec) 
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Figure 4-12 Error for LLMN on training data 

 
Figure 4-13 One step ahead prediction   output for LLMN on test data for pO2, n=1, M=3, 

α=20. (Scaled data, sample time=10 sec) 

0 200 400 600 800 1000 1200
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02
E

rr
o

r

Samples

0 100 200 300 400 500 600 700 800
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

L
L

M
N

 O
u

tp
u

t 
a
n

d
 p

O
2
 P

ro
c
e
s
s
 O

u
tp

u
t

Original Data

Identification Result



 

81 

 

 

  

 
Figure 4-14 Error for LLMN on test data 

 

 

4.3 Learning Algorithm Based on Gradient Descent 
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investigates several experiments as possible structures for testing the behaviour between basis 
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incremental updates of the weights of the network (Karayiannis, 1997; Karayiannis, 1999). It 

is suggested in this section a procedure for computing the Gaussian function widths. The 

purpose is to demonstrate the importance of optimising of Gaussian widths. Here, the weights 

are optimised via recursive least square algorithm, while the receptive field widths are updated 

using gradient descent algorithm. The width adjustment is explained by the following 
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𝑑𝑦̃(𝑘)

𝑑𝛼(𝑘)
= ∑ (

𝑑𝜑𝑖(𝑘)

𝑑𝛼(𝑘)
× 𝑦̃𝑖(𝑘))𝑀

𝑖=1                                                                 (4.4) 

 
 

                                      𝛼(𝑘) = 𝛼(𝑘 − 1) − 𝜂 ×
𝑑𝑦̃(𝑘)

𝑑𝛼(𝑘)
× 𝐸                                               (4.5a) 

 

Where E is the error between the actual and prediction outputs: 

 

 

                                       𝐸 = 𝑦𝑠(𝑘) − 𝑦̂(𝑘)                                                                       (4.5b) 

 
 
 

Now activation function can be calculated as follows: 

 
 

                                             𝜑𝑖(𝑘) = 𝑒𝑥𝑝 (−𝛼(𝑘) ∗
‖𝑥̃(𝑘)−𝐶𝑖‖

2

𝜎𝑖
2 )                              (4.6) 

 
 
 
 

4.3.1 Real Data Identification Results and Discussion with Gradient Descent 

 
 

This section aims to demonstrate the importance of the optimisation of Gaussian widths. Model 

order is selected following the conducting of various experiments to be n = 1 in equation (4.2). 

Initial model parameters are set as  𝑤 = 1.0 × 10−6 × 𝑈𝑚×2𝑛, 𝑃(0) = 1.0 × 108 × 𝐼𝑚×2𝑛, and 

λ is chosen to be 0.999. The initial value for alpha is chosen after some initial experiments to 

be 𝛼 (0) =  0.05 and 𝜂  is the learning rate and is set to be 0:05 in equation (4.5a) which gives 

acceptable results. Then the updated scaling factor 𝛼(𝑘) is used in an activation function in 

equation (4.6). the mean square error when (n= 1; 𝛼 =  0.05; M=3 )  on training data is  

0.000076027 and mean square error MSE for test data is 0.00026517. This is achieved  by 

controlling the weight update during the learning process. The performance of the trained 

network (n= 1; 𝛼 =  0.05; M=3 ) on the training and test data are presented in Figures.4.15  

and 4.16. Another experiment was also done when n= 2; 𝛼 =  0.05; M=3, the mean square 

error on training data is  0.00039774 and mean square error MSE for test data is 0.00027620  
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and are updated using equations (4.4) and (4.5). Figures.4.17 and 4.18 illustrate the variation 

of width activation during training with gradient on first and second order respectively. The 

results of the gradient descent method reveal it can provide the equivalent performance. 

However, the results presented in section (4.2.3) that manual selection in the LLMN gives 

smaller error compared with an automatic width updating, as it can be observed from the results 

in section 4.2.2.1 when  n = 1, M=3 and scaling factor α = 10 achieves small  mean square 

errors  on train data  is 0.000047930 and for test is 0.000026697. And mean square error for 

training and test data when n = 2, M=3 and scaling factor α = 20 data in manual selection are 

0.00036100 and  0.00015026 respectively.  

 
Figure 4-15 LLMN identification results on training data of pO2 train data with gradient decent. 

(Scaled data, sample time=10 sec) 
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Figure 4-16 LLMN identification results on test data of pO2 test with gradient decent. (Scaled 

data, sample time=10 sec) 

 
Figure 4-17 Variation of width activation during training with gradient decent for first order 

pO2 model 
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Figure 4-18 Variation of width activation during training with gradient decent for second 

order pO2 model 
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in this case. The first order model transfer function 𝐺𝑆(𝑧)was solved using equation (3.27) and 

𝐺𝑇(𝑧) using equation (3.30) and became as: 

 

𝐺𝑆(𝑧) =
0.0215

z − 0.9903
                (4.7)                        𝐺𝑇(𝑧) =

0.05

z − 0.95
                                        (4.8) 

 

4.4.2.1 Simulation Results  

 

In this section, the single PI controller for first order with M=3 was designed at second centre 

which is 0.5010, while parameters 𝑎1 and 𝑏1 are calculated using equations (3.28)and (3.29) 

and they are  0.9903, 0.0215  then these parameters were used to calculate 𝑔0  and 𝑔1 for the 

controller transfer function and they are 2.318  and  −2.296 respectively. The controller 

transfer function for first order model became as  

 

            𝐺𝑐(𝑧) =
2.318𝑧−2.296

𝑧−1
                                                                                  (4.9) 

  

 

 

 
Figure 4-19 Single PI controller for first order pO2 model around second centre. M=3, scaling 

factor=20. (Scaled data, sample time=10 sec) 
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4.4.3 Local Linear Model Controllers Based On First Order pO2 model   

 

The direct design procedure is repeated to design controllers for each of the local models 

identified at the network centres (three in this case). These controllers are combined to form 

the LLMN controller structure. Where the activation function for the local linear model 

networks were combined using equation (4.10) and the control coefficients were combined 

using equation (4.11) then the LLMN controller weights can be calculated using equation 

(3.38). The final controller equation was calculated using equation (3.39). 

 

    ∅ = [

∅11 ∅21 ∅31

∅12 ∅22 ∅32

∅13 ∅23 ∅33

]             (4.10)    ∅ = [
1 0.9975 0.9901

0.9974 1 0.9975
0.9899 0.9975 1

] 

 

 

 

  𝐺 = [

𝑔11 𝑔21 1
𝑔12 𝑔22 1
𝑔13 𝑔23 1

]                         (4.11)        𝐺 = [
2.559 −2.533 1
2.317 −2.94 1
2.08 −2.59 1

] 

                            

 

 
Figure 4-20 LLMN controller for first order pO2 model. M=3, scaling factor=20. (Scaled 

data, sample time=10 sec) 
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4.4.4 Discussion 

 

Figure 4.19 illustrates the PI controller output response at the second centre, which is 0.5010. 

The output tracks smoothly with the reference set point changes at (0.5) and remains stable for 

approximately 50 seconds before dropping to reach the second set point around 0.11. However, 

it takes time to reach steady state before beginning to rise smoothly to reach the third operation 

point, which is first centre. These results prove that the first order model can lead to system 

stability.  

While Figure 4.20 illustrates that the output response for the local model controllers and the 

input, the output response tracking the reference set point around 0.88 for about 200 seconds 

then dropped down to get steady state at second point which is second centre after 

approximately 300 seconds. Finally the output response get steady state at the third set point 

after about 500 seconds.  

 

4.4.5 PI Controller Design For Second Order pO2 Model 

 

In this section the possibility of designing a PI controller using a second order model is 

described (Seborg et al., 2004). The identification order LLMN of the pO2 process in section 

4.2 has the form: 

 

𝑥(𝑘) = [𝑦(𝑘 − 1)… . 𝑦(𝑘 − 𝑛)… . . 𝑢(𝑘 − 1)…𝑢(𝑘 − 𝑛)]𝑇                                          (4.12) 

 

Where 𝑦(𝑘)=𝑝𝑂2 , 𝑢(𝑘)=𝑓𝑎 and  𝑛 is the number of order model which is here second order. 

Consider general second order difference equation, 

 

𝑎0𝑦(𝑘) + 𝑎1(𝑘 − 1) + ⋯+ 𝑎𝑚𝑦(𝑘 − 𝑚) = 𝑏0𝑢(𝑘) + 𝑏1𝑢(𝑘 − 1)…𝑏𝑛𝑢(𝑘 − 𝑛)          (4.13) 

 

Taking the z transform of both sides of equation (4.13) gives 

 

𝑎0𝑌(𝑧) + 𝑎1𝑧
−1𝑌(𝑧) + ⋯+ 𝑎𝑚𝑧−𝑚𝑌(𝑧) = 𝑏0𝑈(𝑧) + 𝑏1𝑧

−1𝑈(𝑧) + ⋯+𝑏𝑛𝑧−𝑛𝑈(𝑧)    (4.14) 
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By rearranging equation (4.14) gives the transfer function form: 

 

𝑌(𝑧)

𝑈(𝑧)
=

𝑏0+𝑏1𝑧−1+⋯+𝑏𝑛𝑧−𝑛

𝑎0+𝑎1𝑧−1+⋯+𝑎𝑛𝑧−𝑛
= 𝐺𝑆(𝑧)                                                                                  (4.15) 

 

 

Then controller input for second order difference equation for the controller became as: 

 

 

𝑢(𝑘) = −𝑓1 × 𝑢(𝑘 − 1) − 𝑓2 × 𝑢(𝑘 − 2) + 𝑔0 × 𝑒(𝑘) + 𝑔1 × 𝑒(𝑘 − 1) + 𝑔2 × 𝑒(𝑘 − 2)        (4.16) 

 

The controller was implemented for first centre, which is 0.8871 in the process. The second 

order model transfer function 𝐺𝑆(𝑧)was solved using equation (4.17) and 𝐺𝑇(𝑧)  using equation 

(4.18) and became as: 

 

𝐺𝑆(𝑧) =
𝑏1−𝑏2𝑧−1

1−𝑎1−𝑎2𝑧−1
=

0.002959 𝑧+0.002306

𝑧2−1.855 𝑧+0.8573
                                                              (4.17)      

 

      𝐺𝑇(𝑧) =
(1−𝐴)𝑧−1

1−𝐴𝑧−1
                                                                                                    (4.18) 

 

Where 𝐴 in equation (4.18) is set to be 0.95 and then the controller transfer function for the 

first centre became as  

 

                                       𝐺𝐶(𝑧) =
16.88𝑧2−31.31𝑧+14.47

𝑧2−0.2217𝑧−0.7783
                                        (4.19) 

 
 

                

It was noted that from the controller transfer function in equation (4.19) that it has pole out the 

unite circle at  𝑧 = −0.7783. This leads to an oscillation in the input and leads to unstable 

control. This problem was solved by zero cancellation using equation (4.20) and then the final 

controller transfer function became as equation (4.21).   

 

 𝐺𝑇(𝑧) =
(𝑧+0.7783)×𝐺𝑇(𝑧)

1.7783𝑧
 (4.20)  𝐺𝐶(𝑧) =

9.514𝑧2−17.65𝑧+8.158

𝑧2−0.9781𝑧−0.02188
                    (4.21) 
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4.4.5.1 Simulation Results  

 

 
Figure 4-21 Single PI controller on second order pO2 model. M=3, scaling factor=20 with 

ringing. (Scaled data, sample time=10 sec) 

 
Figure 4-22 Single PI controller for second order pO2 model. M=3, scaling factor=20 after 

zero cancellation. (Scaled data, sample time=10 sec) 
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4.4.6 Local Linear Models Controller On Second Order pO2 Model 

 

In this section local linear controllers are designed and implemented on second order pO2 

model, M=3. These controllers are combined together and applied to the process to control and 

maintain pO2 level.  Where the control coefficients were combined using equation (4.22) and 

the activation function for the local linear model networks were combined using equation 

(4.23)  then the LLMN controller weights can be calculated using equation (3.38) and the final 

controller equation was calculated using equation (3.39). 

 

 

𝐺 =

[
 
 
 
 
𝑔11 𝑔21 𝑔31

𝑔12 𝑔22 𝑔32

𝑔13 𝑔23 𝑔33

−𝑓11 −𝑓21 −𝑓31

−𝑓12 −𝑓22 −𝑓32]
 
 
 
 

, (4.22)   and       ∅ = [

∅11 ∅21 ∅31

∅12 ∅22 ∅32

∅13 ∅23 ∅33

]                           (4.23) 

 

 

 

And giving, 

 

𝐺 =

[
 
 
 
 

16.92 23.91 24.07 
−31.37  −41.34  −38.50  
14.51   17.53  14.55  
0.22       −1.88   −3.16   

0.77 2.88 4.16 ]
 
 
 
 

   (4.24)    ϕ = [
1  0.99   0.98

0.99   1   0.99
0.99   0.99   1

]               (4.25) 

 

 

4.4.6.1 Simulation Results  

 

The results local linear controllers for second order pO2 model with M=3 have an oscillation 

in the input. This leads to unstable and unacceptable output, as illustrated in the Figures (4.23) 

and (4.24). 
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Figure 4-23 LLMN controller for second order pO2 model. M=3, scaling factor=20 with 

ringing. (Scaled data, sample time=10 sec) 

 
Figure 4-24 LLMN controller for second order pO2 model. M=3, scaling factor=20 with 

ringing. (Scaled data, sample time=10 sec) 
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The matrix G and ϕ of the local linear model controller after zero cancellation became as: 

 

 

𝐺 =

[
 
 
 
 

9.49 6.16  4.66   
−17.60     −10.66     −7.45     
8.13      4.51     2.81     

0.97          0.96     0.95      
0.021 0.03 0.04 ]

 
 
 
 

     (4.26)  ϕ = [
1      0.99      0.98

0.99         1      0.99
   0.99      0.99      1

] (4.27) 

 

 

 

 
Figure 4-25 LLMN controller for second order pO2 model. M=3, scaling factor=20 after zero 

cancellation. (Scaled data, sample time=10 sec) 

 

4.4.7 Discussion  

 

Figure 4.21 demonstrates the performance of PI controller for one operating point, which is 

first centre on second order pO2  model. The output response started from 0.8871 and takes 

more than 200 seconds to match the reference set point at 0.11 before rising smoothly and 

taking approximately 200 seconds to reach steady state at 0.5. At the second 800, the response 

rises again smoothly like the first order curve to get steady state at 0.8871 after 200 seconds. 
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However, this result is not very encouraging as there is an oscillation on the input response. It 

can be seen from the figure that this is caused by ringing poles when the transfer function has 

(𝑧 = −0.7783) in equation (4.19), strong oscillation is often considered as unsatisfactory, 

despite the process being controlled as intended. For this reason, the controller for the second 

order should be investigated. This problem is solved   by zero cancellation using equation (4.20) 

and the result is improved as can be seen in Figure 4.22. Figures 4.23 and 4.24 show the local 

linear model controller performance for second order pO2  model. Input at the bottom and 

output at the top of the figure. The particular interest in this figure is that there is an oscillation 

in the input response and the controller output does not track the reference set point. This is 

because of ringing poles and this is solved by zero cancellation. The results presented in   Figure 

4.25 highlight significant improvement in the response of the controller as it can be seen the 

local linear controller is able to react and track to the three reference set points properly and it 

takes about 350 seconds to get steady state for each set point. Comparison of MSE between PI 

and local linear controllers for second order pO2 model with ringing poles and after zero 

cancelation for second order pO2  model are presented in Tables. 4.2 and 4.3.  

 

Table 4.2 Comparison of MSE between single PI controller and local linear controller with 

ringing  

 

Controller  MSE 

Single PI controller 0.03162 

Local linear controller for the 3centres 0.3604 

 

 

Table 4.3 Comparison of MSE between single PI controller and local linear controller after 

zero cancellation 

 

Controller  MSE 

Single PI controller 0.06147 

Local linear controller for the 3centres 0.01819 
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4.5 Summary 

 

This chapter has investigated, system identification for a nonlinear pO2 process by using local 

linear model networks. The results were also compared with a gradient descent algorithm and 

observed that the application of local linear model networks gave smaller mean square error. 

Following this achievement, PI and local linear model controllers were designed and 

implemented to the process to control and maintain the dissolved oxygen pO2 output. It can be 

concluded from the results that a local linear model controller can maintain and control pO2   

process with the first order model. However, increasing the order of the assumed process model 

has a major influence on the occurrence of ringing. As can be shown from the results, a 

controller designed using the second order model can lead to ringing behaviour. Therefore, 

care must be taken when a higher-order model is chosen to represent the process. This problem 

was solved by zero cancellation and the results improved.  
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Chapter 5 | Development of the Methods for Designing Local Linear 

Models for System Identification and Control of Real a Temperature Data 

 

5.1 Introduction 

 

The control of temperature is a very important element in chemical industries such as in water 

utilities. Nowadays the demand for temperature control has become more popular for industry 

evolution, as temperature has some characteristics, such as big inertia and difficulty developing 

accurate mathematical models, this can result in the poor performance of the control system 

(Yu and Hu, 2016). 

 

Water treatment processes involve heat treatment and demand the stability of the water 

temperature, which must be maintained at a certain level. There are some factors that affect the 

temperature in water such as the weather. Therefore, a good controller should be considered to 

keep the temperature in the water at the required level. 

 

A good controller should be considered to achieve desirable behaviour for the dynamic 

systems. This chapter explains the ability to use the local linear model networks technique 

(LLMNs) for system identification and control of a temperature process and the use of direct 

design control. In this chapter the temperature process contains input which is heating power 

(Q), while the output is temperature that keeps changes affected by the input. A good controller 

of water temperature is needed for domestic consumers.  

 

There are many types of controller that could be used to control nonlinear process systems such 

as PI, PD and PID. In this chapter, the direct design method is designed to control and maintain 

the temperature in the process at certain operation regimes. The system identification and 

controller designed were done using MATLAB software. 
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5.2 Investigation of Local Linear Model Networks for Identification of Real 

Temperature Data. 

 

This section begins by providing a brief description of the temperature process. It will then 

present an explanation of system identification of the temperature process by using local linear 

model networks technique (LLMNs). Finally, the results will be discussed. 

5.2.1 Process Description 

 

The temperature process is presented in Figure.5.1, where 𝑄 denotes the heating power as input 

which is between (0-100 W) and the data was collected with the process was under closed loop 

PID control to drive the temperature over the operating range between (38 − 50℃). It was 

found difficult to tune the PID controller to cover the nonlinear operating range but the data 

collected was considered suitable for investigating nonlinear identification. The liquid level in 

the tank (and hence the liquid volume) is maintained at a constant value. The liquid in the tank 

is stirred continuously to make sure the temperature is consistent throughout the tank. The 

process was affected by some problems, such as the long rise time for the temperature due to 

the limitation of the heating power. These issues cause the process to be non-linear in both 

dynamic and static behaviour and this non-linearity of the process is demonstrated in the fixed 

parameter PID controller responses (Yu and Gomm, 2003). Suitable sample time for all 

variables was selected to be 10 seconds. The 2000 data points collected are presented in 

Figure.5.2.  The process input 𝑢 and output  𝑦 are described as follows: 

 

 

                                                 𝑢 = [𝑄], 𝑦 = [𝑇]                                                           (5.1) 
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Figure 5-1Temperature process 

 

 

 
 

Figure 5-2 Measured real Temperature data for network training and validation (Sample 

time=10 sec) 
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Figure 5-3 Scaled real Temperature data for network training and validation (Sample time=10 

sec) 

 

5.2.2 Local Linear Model Network Training and Evaluation for Temperature Data 

 

This section describes the development of LLMN applied to the temperature data for system 

identification and results will be presented to predict the output. As explained in Chapter 3 the 

local linear model networks were used for system identification after making a comparison 

with the radial basis function neural networks (RBFNN) and ANFIS model, this method will 

be used again in this chapter to identify and control the temperature model. 

By using the equation (3.19) in which in this case the input denotes the heating power 𝑄 and 

the output is the temperature 𝑇, hence the model become as: 

 

TnkQkQnkTkTkx ])()...1()()...1([)(                                                                   (5.2) 

 

Equation (3.21) in Chapter 3 illustrated the activation function (∅i) for the network which is 

un-normalised. This equation is also used in this chapter, with x̃(k) = T(k − 1)  chosen in the 

activation function. 
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In this research, the collected data are 2000 samples which are scaled for network training and 

test, and are presented in Figure 5.3. The data are split into two parts: 1200 samples for training 

and 800 samples for test. When data is large will be most straightforward method which is there 

is no difficulty. On the other hand, small training data samples can lead to a poor quality model. 

When the training missed data from some regimes, this could lead to the model not performing 

perfect in these regimes. Moreover, if significant data is lost in the test data, the evaluation of 

the model performance becomes unreliable (Nelles., 2002). A different number of model order 

is investigated to select the best model order on the training and validation data. It was noticed 

that the higher model order leads to increased mean square error. 

 

5.2.3 Real Data Identification Results and Discussion 

 

In this section LLMN structure as presented in Chapter 3 Figure 3.20, is used to predict the 

temperature output ys(k), which is scaled here using equation (3.16) and between  [0 to 1]. The 

2000 real data samples were scaled using equations (3.15 and 3.16) in section 3.2.2 before 

network training and split into two groups. The first 1200 data samples were used for training 

and the other 800 data samples for testing and validation. 

In this section, different numbers of local models and different orders of network model inputs 

have been used in training experiments and equation (5.2) is selected when model order   n =

1. The centres and widths in the validity functions of the LLMN were calculated using K-

means algorithm and P-nearest neighbours method respectively. Initial model parameters are 

set as,w = 1.0 × 10−6 × UM×2n, P(0) = 1.0 × 108 × IM×2n and 𝜆 is selected as 0.999. Then 

weights are updated using recursive least square algorithm for model output validation. 

 

In this section, after various experiments varying the widths scaling in the hidden nodes, a 

scaling factor of  α = 10  (σ × 10)  achieves small train and test errors in one step ahead 

prediction. The mean square error for LLMN training and test with different model order (n=1, 

2, 3, 4), different local model numbers and different width scaling are shown in Figures 5.4, 

5.5, and 5.6. The LLMN here trained as on one step ahead prediction, and the mean square 
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errors for first order model with 3 local linear models were 0.00000366 and 0.000001098 for 

trained and validation networks, while the mean square errors for first order with 4 local linear 

models were 0.0000033662 and 0.0000014197 for trained and validation networks 

respectively. On the other hand, to train the local linear model network independently, the 

model output is fed back to the network and used as input. The dependent model is called one 

step ahead prediction and the independent model is called multi step ahead prediction. The 

LLMN independent model was done for first order model with M=3 and M=4 and the mean 

square error became less when M=4 and the prediction results are illustrated in Figures 5.7, 

5.8, 5.9 and 5.10. The mean square errors for the first order model with M=3 for test and train 

are 0.0028 and 0.0032 respectively. While the mean square errors for the first order model with 

M=4 are 0.0023 and 0.00038097. This means the first order temperature model with 4 local 

models is still the better choice by reducing the mean square error.  Figures 5.11 and 5.12 

demonstrate the final trained and testing one step ahead prediction results for the first order 

temperature model with scaling factor α = 10  and number of local models M=4.  However, 

in the controller section, the implementation of local linear models controller on the first order 

model has been achieved and the results reveal that when the network has 4 local models on 

the first order model the controller output response does not take as long time as that with an 

increased number of local linear models to get steady state.  
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Figure 5-4 Comparison between MSE for LLMN training and test with different model 

orders for 3 local models 

 

 

Figure 5-5 Comparison between MSE for LLMN training and test with different number of 

local models on first order 
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Figure 5-6 Comparison between MSE for LLMN training and test with different width 

scaling on first order, M=3 

 

 
 

 

Figure 5-7 LLMN Independent model results for training data first order temperature model. 

M=3.scaling factor=10. (Scaled data, sample time=10 sec) 
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Figure 5-8 LLMN Independent model results for testing data first order Temperature model. 

M=3.scaling factor=10. (Scaled data, sample time=10 sec) 

 

 

 
 

Figure 5-9 LLMN Independent model results for training data first order Temperature model. 

M=4.scaling factor=10. (Scaled data, sample time=10 sec) 
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Figure 5-10 LLMN Independent model results for testing data first order Temperature model. 

M=4.scaling factor=10. (Scaled data, sample time=10 sec) 

 

 

 
 

Figure 5-11 LLMN trained network for first order Temperature model. M=4, scaling 

factor=10. (Scaled data, sample time=10 sec) 
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Figure 5-12 LLMN testing network for first order Temperature model. M=4, scaling 

factor=10. (Scaled data, sample time=10 sec) 

 

5.3 Development and Investigation of Control Based on Local Linear Model Networks 

for Temperature Process 

 

As discussed in the previous section, system identification of temperature process was achieved 

using local linear model networks (LLMNs). The first order model with scaling factor α = 10  

was selected after performing a variety of experiments that gave acceptable results with less 

mean square error. Because of these results PI and local linear model controllers are applied to 

the identified temperature process to control temperature and the results are compared in the 

following section. 

 

5.3.1 Direct Design Control Procedure 

 

As demonstrated in Chapter 3, the equation (3.23) was used to design the transfer function 

controller  𝐺𝐶(𝑧). The same equation will be used in this chapter to design PI and local linear 

controllers for the temperature process: 
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        𝐺𝐶(𝑧) =
1

𝐺𝑆(𝑧)
×

𝐺𝑇(𝑧)

1−𝐺𝑇(𝑧)
                                                                                              (5.3) 

 

5.3.2 PI Controller for First Order Temperature Model 

 

5.3.2.1 PI Controller for First Order Temperature Model, M=3, scaling factor=10  

 

The local linear model network (LLMNs) was trained for the first order temperature model 

with three local models M=3 and scaling factor α = 10  and the mean square error is 

0.00000366, Next, consideration is given to calculating the first order transfer function to 

enable us to implement the controller transfer function around an operating point which is 

around centre two 0.501 in this case. The first order model transfer function 𝐺𝑆(𝑧)was solved 

using equation (3.27) and 𝐺𝑇(𝑧) using equation (3.30) and became as: 

 

 

 

 

𝐺𝑆(𝑧) =
0.00518

𝑧−0.9968
       (5.4)                                      𝐺𝑇(𝑧) =

0.05

𝑧−0.9968
                          (5.5)    

 

      

 These equations were substituted into equation (5.3), then the controller transfer function 

became as: 

 

 

                  𝐺𝑐(𝑧) =
9.653𝑧−9.622

𝑧−1
                                                                        (5.6) 

  

Where 0g = 653.9  and 1g = - 622.9   
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Figure 5-13 Step response of closed loop transfer function 

        

 
Figure 5-14 PI controller for first order Temperature model around centre two. M=3, scaling 

factor=10. (Scaled data, sample time=10 sec) 
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5.3.2.2 PI Controller for First Order Temperature Model, M=4, scaling factor=10 

 

The local linear model network was trained for the first order temperature model with four 

local models and M=4 and scaling factor α = 10 , the mean square error is 0.0000033662. 

Next, consideration is given to calculating the first order transfer function to enable us to 

implement the controller transfer function around the operation point which is around centre 

three 0.5477 in this case. The first order model transfer function 𝐺𝑆(𝑧)was solved using 

equation (3.27) and 𝐺𝑇(𝑧) using equation (3.30) and became as: 

 

𝐺𝑆(𝑧) =
0.005143

z − 0.9973
     (5.7)                                                              𝐺𝑇(𝑧) =

  0.05
z − 0.95

     (5.8) 

   

                         𝐺𝑐(𝑧) =
  9.721 z − 9.695

z − 1
                                                                      (5.9) 

 

 
 

Figure 5-15 PI controller for first order Temperature model. M=4, scaling factor=10. (Scaled 

data, sample time=10 sec) 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

T
( 

C
)

Samples

Output

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.4

0.6

0.8

1

Q
(W

)

Samples

 Input

Input

Ref

Input



 

110 

 

5.3.2.3 PI Controller for First Order Temperature Model, M=5, scaling factor=10 

 

After system identification for temperature process on the first order model with five local 

models and scaling factor α = 10,  we found that the mean square error in this case for training 

data is 0.00000344, which is still good. Then the PI controller is designed around the network 

centre 1 which is 0.488 to investigate the behaviour of the process under the controller. 

 

𝐺𝑆(𝑧) =
0.005054

z − 0.9971
   (5.10)                                                       𝐺𝑇(𝑧) =

  0.05

z − 0.95
          (5.11) 

 

Firstly, we must calculate the controller transfer function around centre 1 which is 0.4886 by 

using equation (3.23). This is becoming as  

 

                                      𝐺𝑐(𝑧) =
  9.893 z − 9.864

z − 1
                                                             (5.12) 

 

 

Figure 5-16 PI single controller for first order temperature model around centre one. M=5, 

scaling factor=10. (Scaled data, sample time=10 sec) 
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5.3.2.4 Discussion 

 

Figure 5.13 represents a step response of the closed loop first order transfer function, while 

Figure.5.14 illustrates the simulation response of the PI controller for the first order temperature 

model, M=3 in the (upper part).  As can be observed, it started from first set point at 0.11 and 

remains for about 350 seconds before rose to reach the second set point around 0.5 after about 

1250 seconds then rose again to get steady state at the third set point after about 1250 seconds. 

While the (bottom part) shows the input response. Figure 5.15 illustrates the PI controller 

response for first order temperature model, M=4 at around centre 3. , it started from first set 

point at 0.11 and remains for about 350 seconds before rose to get the second set point around 

0.5 after about 1200 seconds then rose again to get steady state at the third set point after about 

1150 seconds. Figure. 5.16 illustrates the simulation response of the PI controller for the first 

order temperature model, M=5. , it started from first set point at 0.11 and remains for about 350 

seconds before rose to get the second set point around 0.5 after about 1150 seconds then rose 

again to get steady state at the third set point after approximately 1200 seconds. 

 

5.3.3 Local Linear Model Controllers for First Order Temperature model 

 

As discussed Chapter 3, section (3.8.3), the local linear model controllers have been designed. 

The same procedure is applied in this section to design local linear controllers on the first order 

temperature model for the three operating regions (3 centres in this case). The activation 

function for the local linear model networks were combined using matrix (5.13) and the control 

coefficients were combined using matrix (5.14). Then the LLMN controller weights can be 

calculated using equation (3.38) and became as matrix (5.15) and the final controller equation 

was calculated using equation (3.39). 

 

   ∅ = [

∅11 ∅21 ∅31

∅12 ∅22 ∅32

∅13 ∅23 ∅331
]                         ∅ = [

1 0.98 0.96
0.99 1 0.99
0.96 0.99 1

]                              (5.13)        
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    𝐺 = [

𝑔11 𝑔21 1
𝑔12 𝑔22 1
𝑔13 𝑔23 1

]                                           𝐺 = [
10.94 −10.92 1
9.65 −9.62 1
15.42 −15.33 1

]                (5.14) 

 

 

𝑊 = 1𝑒4 ∗ [
0.6237 −0.6198 0.0017

−1.2397 1.2318 −0.0033
0.6294 −0.6253 0.0017

]                                                                 (5.15) 

 

5.3.3.1 Simulation Results for First Order Temperature Model with different number of 

local models, M=3, M=4 and M=5, scaling factor=10 

               

 

                           

 

            

 
Figure 5-17 LLMN controller for first order temperature model. M=3, scaling factor=10. 

(Scaled data, sample time=10 sec) 
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Figure 5-18 LLMN controller for first order temperature model. M=4, scaling factor=10. 

(Scaled data, sample time=10 sec) 

 

 

 
Figure 5-19 LLMN controller for first order temperature model. M=5, scaling factor=10. 

(Scaled data, sample time=10 sec) 
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5.3.3.2 Discussion 

 

Figure.5.17 illustrates the LLMN controller response for the first order temperature model, 

M=3. It can be seen from the figure that temperature output (red line) is tracking the three set 

points changes (blue line). It began from around 0.11 for approximately 350 seconds before 

rising up to reach the second set point after about 1050 seconds, finally reaching the third point 

after about 1800 seconds. From the results, it is observed that the controller response needs 

more time to reach the steady state at the third set point compared with the other two points. 

While Figure 5.18 shows the LLMN controllers for first order temperature model, M4. It started 

from around 0.11 for approximately 350 seconds before rising up to reach the second set point 

after about 950 seconds, finally reaching the third point after about 1000 seconds. Figure.5.19 

illustrates that the local linear model controllers output response (upper part) for first order 

model with 5 local models. It started from around 0.11 for about 350 seconds before rose to 

reach the second set point after about 1000 seconds, finally reaching the third point after about 

2000 seconds. The results show the behaviour of five local linear models when combined 

together and the temperature output is tracking the three set points. However, from the results 

of the local linear model controllers, it can be observed that more time is required to reach the 

third set point when the number of local models M3 and M5 compared with M4. In addition, 

the local linear model controller for the first order temperature model, M=4 giving improved 

result with less mean square error, Table 5.1 shows the comparison of MSE of local linear 

controllers for first order temperature model with different number of local models.  

 

Table 5.1 Comparison of MSE of local linear controllers for first order temperature model 

with different number of local models 

 

Controller  MSE 

Local linear controller for the 3 centres 0.00926454605409 

Local linear controller for the 4 centres 0.00727019031171 

Local linear controller for the 5 centres 0.00931683226467 
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5.4 Summary 

 

This chapter has investigated system identification for a nonlinear temperature process (𝑇 ) 

using local linear model networks (LLMNs). The model order, number of local models and 

width scaling factor were selected after the conducting of various experiments. The results 

presented that the first order with M=3 and scaling factor=10 gave less mean square error in 

one step ahead prediction. Moreover, the mean square error became less for first order model 

with M=4 and scaling factor=10 when the local linear model networks trained independently. 

In the controller section, the PI controller was designed using direct design method and 

implemented to the process to control and maintain the temperature. Moreover, local linear 

model controllers on first order temperature model with M=3, M=4 and M=5 were designed to 

control the temperature output. From the results, it can be observed that the first order model 

gives an acceptable output response. We also observe that when the LLM network has 4 local 

models the output response has less time  to reach a steady state and achieved less mean square 

error compared with M=3 and M=5 local models. 
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Chapter 6 Conclusion and Future Work 

 

6.1 Conclusion 

 

The first objective of this research was to identify and control real pH data using the local linear 

model network (LLMN) strategy, as described in Chapter 3. First of all, the Simulink model of 

the pH reactor was established. The reactor contains acid, which is set as a constant and 

neutralised by varying the base. The PI controller for the simulation has been designed using 

internal model control (IMC). That was used to become familiar with the process dynamics 

behaviour and nonlinearity. Moreover, we examined the deficiencies of conventional control 

applied to this highly nonlinear process. The results for the PI controller are achieved for 

different pH values. Second, different algorithms for system identification were used in this 

research, such as radial basis function neural network (RBFNN), which is used for real pH data 

system identification. The hidden layer nodes of the RBFNN were selected following a range 

of experiments. The network centre was computed using the K-means clustering algorithm and 

the width  (𝜎 ) was chosen using the p-nearest neighbours algorithm. The first order model was 

chosen after various experiments which gave less mean square error. The other two techniques 

called local linear model networks (LLMN) and adaptive neuro-fuzzy inference system were 

also investigated for system identification of real pH data. The results for these networks have 

been compared and show that the ability of these networks to accurately represent the process 

when suitable choices and optimisations are made for various network parameters. However, 

local linear model networks (LLMNs) have potential and are powerful for approximation of 

nonlinear dynamic systems. Their behaviour gave improved results with reduced mean square 

error values with those of radial basis function networks and adaptive neuro-fuzzy inference 

system for the identified pH system. The results of local linear model networks have been 

achieved with less number of parameters which is 16 compared with 24 parameters used in 

RBFNN. In other words, the LLMN structure is smaller than the RBFNN in this application. 

The simulation results for performance have been investigated and implemented in 

MATLAB/SIMULINK. These results give support to the application of the local linear model 

networks method for control of chemical processes.   
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Because of these results PI and local linear model controllers are designed on the first order pH 

model using the direct design method and applied to the process to control and maintain the 

pH output and the results show the capability of the LLMN method to control the nonlinear 

process.  

 

In Chapter 4, the second objective investigated is system identification for a nonlinear 𝑝𝑂2 

process by using local linear model networks. A width scaling factor is a significant issue in 

the network. A gradient descent algorithm was used to optimise the width scaling factor in the 

network automatically and the results were compared. It is observed that the application of 

local linear model networks gave smaller mean square error than that with gradient descent. 

After this achievement PI and local linear model controllers for first and second order 𝑝𝑂2 

models were designed and implemented to the process to control and maintain the dissolved 

oxygen 𝑝𝑂2 output. The controllers on the first order model for 3 local models were achieved 

and gave acceptable results which gave support to using local linear model networks. On the 

other hand, the main finding in this chapter is that by increasing the number of model orders to 

be second order, the controller is faced with a challenge to obtain a stable output. To address 

this problem, the second order model had to be investigated, the problem that was causing an 

unstable response  by ringing poles when the transfer function has (𝑧 = −0.77) and that was 

solved by zero cancellation; moreover, the results improved and became better. 

 

In Chapter 5, the third goal of this research was achieved in system identification for a nonlinear 

temperature process (𝑇 ) using local linear model networks. The model order, number of local 

models and width scaling factor were chosen after various experiments and the results 

presented that the first order with M=3 and scaling factor=10 gave less mean square error which 

can be choice for the local linear model networks. However, when local linear model network 

was trained independently the mean square error became less for the first order model with 

M=4 and scaling factor=10. Because of these results PI and local linear model controllers were 

designed using the direct design method and implemented to the process to control and 

maintain the temperature output. Moreover, the control action for the output was behaving 
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much better when M=4, compared with M=3 and M=5. From the results, it can be observed 

that first order model gives an acceptable output response compared with higher order models. 

Furthermore, the results revealed that the mean square error became less when the number of 

local models M=4 in the controller, compared with having number of local models M=3 and 

M=5. 

6.2 Future Work 

 

The developed local linear model networks application needs to be tested in a real chemical 

process laboratory to assess its power and effectiveness. For future work the following 

suggestions should be given due consideration: 

 

1. The proposed local linear model networks application for system identification and control 

need to be tested in the chemical industry. This is because, in the industry, the conditions will 

be more complicated than in the simulation. 

2. From this research, it is believed that width scaling presents a significant issue in local linear 

model network training by reducing the mean square error. Therefore, it would be interesting 

to discover a way to optimise the width scaling in the local linear model network training. 

 

3. The pH, dissolved oxygen and temperature are important factors in the chemical reactor and 

fermentation process. As the fermentation process is complicated it would be more beneficial 

to consider using local linear model network structure to control the fermentation process. 

 

4. As most industrial systems are multivariable, a local linear model controller should be 

investigated and applied to control multi-input and multi-output processes. 
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Appendix B 

 

This table illustrates the PID controller sitting using internal model control which were used 

for controller design in chapter 3. 
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Appendix C 

 

The steps below are used to design and evaluate ANFIS model for system identification of 

pH process as discussed in chapter3. 

 
trnData = [x Tar]; 
numMFs = 5;%number of membership functions 
mfType = 'gbellmf'; 
epoch_n = 20; 
in_fis = genfis1(trnData,numMFs,mfType);%use genfis1 to generate initial 

membership functions. 
out_fis = anfis(trnData,in_fis,20); 
yan=evalfis(x,out_fis); 
plot([Tar yan]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


