

LJMU Research Online

Elliot, S, Whitehead, AE and Magias, T

Thought processes during set shot goalkicking in Australian Rules football: An analysis of youth and semi-professional footballers using Think Aloud

http://researchonline.ljmu.ac.uk/id/eprint/12077/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Elliot, S, Whitehead, AE and Magias, T (2020) Thought processes during set shot goalkicking in Australian Rules football: An analysis of youth and semi-professional footballers using Think Aloud. Psychology of Sport and Exercise. 48. ISSN 1469-0292

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Thought processes during set shot goalkicking in Australian Rules football: An analysis of
 youth and semi-professional footballers using Think Aloud.

3 Highlights

This is the first study to employ a Think Aloud protocol analysis in Australian Rules football
to explore the cognitive processes during set shot goal kicking performance.

- Junior and Adult performers mainly verbalise thoughts relating to planning, gathering
 information and description of outcome during the performance of a set shot goal kicking
 attempt.
- 9 Junior and Adult performers demonstrate different changes in cognition as task complexity
 10 increases (e.g. increasing distance difficulty).
- Understanding how task complexity (e.g. increasing distance difficulty) influences athlete
 cognitions appears an important point for intervention and training specific to Australian
 Rules football.

15

16 Abstract

17 Aims: At present, there has been little attention given to exploring the cognitive processes of athletes 18 in Australian Rules football during self-paced tasks such as the set shot goal kick attempt. Therefore, 19 this study used a Think Aloud (TA) protocol analysis to explore the cognitions of Junior and Adult 20 footballers undertaking the performance of a set shot goal kicking attempt in naturalistic conditions. 21 Method: This involved 64 male Australian Rules footballers, comprising 37 elite level senior (adult) 22 players (M age = 23.3 years) and 27 elite-level junior (M age = 14.6 years) players. Player's 23 verbalisations were recorded during each performance of the goal kicking task, transcribed verbatim, 24 and deductively and inductively analysed. Results: Planning, gathering information and description of 25 outcome were the main three verbalised themes overall among junior and adult footballers. Findings 26 also indicated that as task difficulty increases, athlete cognitions relating to self-doubt increases and 27 pre-performance routines decreased. In contrast to Adults, Junior footballers gather more information 28 when undertaking close range set shot goal kicking attempts and also verbalise more diagnostic 29 outcomes and comments relating to self-doubt when undertaking long range set shot goal kicking 30 attempts. Adult footballers were also found to verbalise more reactive comments across all kick 31 distances and verbalise more thoughts relating to mental readiness and pre-performance routine from 32 close range compared long range distances. **Conclusion**: These findings have implications for the 33 acquisition of skill in sport and draw on key perspectives from Dynamic Systems Theory to advance 34 understanding of the cognitive processes underpinning set shot goal kicking performance in 35 Australian Rules football.

36 Keywords

37 Think aloud; goal kicking; Australian football; expertise; performance

38 Introduction

There has been increasing interest in, and use of, Think Aloud (TA) to examine the thought processes of athletes during contextualised performances of sport-specific tasks. TA essentially involves participants continuously verbalising their thoughts during the performance of a task and is considered a reliable form of scientific data for studying associated thought processes. For example, TA has been used across a range of sport settings including cycling (Whitehead et al., 2018), golf (Arsal, Eccles, & Ericsson, 2016), trap shooting (Calmeiro, Tenenbaum, & Eccles, 2010), snooker (Welsh, Dewhurst, & Perry, 2018), distance running (Samson, Simpson, Kamphoff, & Langlier, 2017) and tennis 46 (Swettenham, Eubank, Won, & Whitehead, 2018). TA has also been used in other performance 47 settings including high-stakes poker (St. Germain & Tenenbaum, 2011) and judging education in 48 gymnastics (Lee, Knowles, & Whitehead, 2019). These studies have largely focused on understanding 49 and exploring 'real time' cognitions, represented as verbalisations, in self-paced tasks. However, 50 current understandings about the relationship between cognition and performance using TA has yet to 51 be informed by sports that are fundamentally team-based, including Australian Rules football (AF).

52 The AF setting is especially poignant given concerns about the accuracy of vitally important self-53 paced tasks such as the set shot on goal (Anderson, Breed, Spittle, & Larkin, 2018). A set shot refers 54 to self-pace goal kick attempts after marking ('catching') the ball, in which the player is given up to 55 30 seconds to perform the kick without threat of being actively defended (Robertson, Back, & 56 Bartlett, 2016). A recent study indicates that set shot attempts on goal at the professional level of AF, 57 the Australian Football League (AFL), is only 55%, and decreases by a further 13% in wet 58 environmental conditions (Anderson et al., 2018). Although a number of biomechanical advances to 59 increase field kicking accuracy and distance are recognised, including the study of ball flight 60 trajectory (Peacock & Ball, 2018), knee angle and foot velocity (Ball, 2008), ankle rigidity (Peacock, 61 Ball, & Taylor, 2017) and leg lean mass (Hart, Nimphius, Cochrane, & Newton, 2013; Hart, 62 Nimphius, Spiteri, & Newton, 2014), we argue that other approaches can help to inform coaching strategies to improve goal kicking success. In essence, studying the physical components of set shot 63 64 goal kicking needs to be complimented by studies that explore the psychological aspects of goal 65 kicking performance. To this end, a novel alternative includes an exploration of players cognitions 66 (i.e. thought processes) during the performance of a task by using TA; in this case, the set shot on goal 67 in AF. This is a feasible line of inquiry given that the acquisition of skill is dependent the ecological 68 principles of perception-action coupling (Davids, Button, & Bennett, 2008).

69 Current perspectives on using TA during self-paced tasks

70 At present, the TA literature reflects three key positions of theoretical significance. The first 71 prominent perspective has shed light on how TA has been used to understand how athletes experience 72 and attend to a range of dynamic and ever-changing cognitive processes during the performance of a 73 task. In one study involving cyclists performing a 16.1km time trial, Whitehead et al. (2017) found 74 that cyclists verbalised thoughts under four predominant themes including pain and discomfort, 75 external feedback, environment and pace and distance. Depending on the stage of the time trial, 76 athletes would negotiate varying levels of stress and exercise varying levels of attentional focus on 77 environmental information and pacing. Similarly, Samson et al. (2017) examined the thought 78 processes of distance runners and found that pace and distance, pain and discomfort, and environment 79 were the major themes that characterised thought patterns during the task. In both studies, athletes 80 experience continually changing thought processes that become more and less pronounced during 81 endurance-specific performance (Samson et al., 2017; Whitehead et al., 2017; Whitehead et al., 2018), 82 highlighting how athletes negotiate varying levels of stress, appraisals and coping.

83 There has also been much interest in examining a variety of sports that contain discrete skill 84 executions at varied time intervals (i.e. driving from the tee in golf). Although these sports have a 85 duration element in terms of time, a focus on specific task demands using TA have also made 86 significant contributions to the field. For instance, Swettenham et al. (2018) investigated stress and 87 coping during tennis practice and competition using TA. It was found that gender and context 88 influence the types stressors athletes appraise and attend to. Although both male and female athletes 89 utilised problem-focused coping across practice and competitive settings, males verbalised more 90 performance stress in competition and physical stress in practice, while females verbalised external 91 stress and utilise problem-focused responses more in competition than practice. Calmeiro et al. (2010) 92 also sought to examine the thought processes associated with the specific task of golf putting. In their 93 study, they illustrated clear differences in cognition between highly skilled golfers and low skilled 94 golfers. Specifically, experienced players spent more time assessing conditions and planning, 95 verbalised more thoughts about gathering information and attended to more planning strategies in 96 comparison to less experienced players. Moreover, experienced players established goals and 97 strategies without focusing on mechanical aspects of the task in contrast to less experienced players. 98 These studies highlight the dynamic and complex nature of thought processes that occur, in real time, 99 during tasks that demand discrete, specialised skills.

100 While these studies have largely contributed to advancing an understanding of the underlying 101 cognitive processes relating to appraisals, coping and differences in stress, they also have high 102 relevancy for the acquisition and development of skill. For instance, a number of studies have shown 103 that elite athletes tend to exhibit a superior level of visual perception and cognitive processing in 104 contrast to less experienced counterparts (Welsh et al., 2018). In general, elite athletes typically 105 verbalise more thoughts that focus on evaluating external situational cues in the environment or 106 diagnosing difficulties in skill execution in preparation for the next performance (Calmeiro et al., 107 2010; St. Germain & Tenenbaum, 2011). They also tend to verbalise more thoughts than less 108 experienced individuals in relation to the performance of a task (Arsal et al., 2016; Calmeiro et al., 109 2010; St. Germain & Tenenbaum, 2011). Furthermore, higher performing athletes process meaningful 110 situational information related to performance faster than less skilled athletes, delineating skilful 111 performance. Highly skilled athletes have also been found to effectively utilise distraction techniques, 112 positive self-talk, relaxation strategies, trigger words, visualisations and positive reinforcements in 113 performance (Cotterill, Sanders, & Collins, 2010). In contrast, novice athletes have a tendency to 114 ruminate over technical or biomechanical aspects of performance, especially in preparatory phase of 115 skill performance (Calmeiro et al., 2010; Whitehead, Taylor, & Polman, 2016). It is suggested that 116 these differences may be a reflection of greater domain-relevant knowledge among experienced 117 individuals which can be linked to heightened autonomous motor control and, thus, a more efficient 118 reallocation of cognitive resources to identifying, evaluating and adapting to external dynamic 119 constraints on performance rather than solely focusing on mechanics of skill execution (Calmeiro et 120 al., 2010). However, it is also suggested that when task demands are too complex for highly skilled 121 athletes to process, declarative knowledge and experience are drawn on in order to negotiate 122 performance (St. Germain & Tenenbaum, 2011). Taken together, these studies have helped to explore 123 the expert-novice paradigm. However, we argue that cognitive differences between expert and novice 124 performers is yet to be fully explored from the perspective of self-paced tasks that occur within 125 invasion-based, team sport such as Australian football. This oversight appears to be justifiably worthy 126 of investigation given that the successful performance of self-paced tasks like set shot goal kicking 127 remains an elusive challenge for players and coaches at the elite level.

128 It is also worth noting the current state of debate surrounding the use of TA for collecting and 129 recording thoughts during the performance of a task. Early criticisms trace back to a paper by Cotterill 130 (2011) detailing the development of pre-performance routines in cricket. One concern was that the use 131 of TA was disruptive and in turn the validity of thoughts elicited in relation to the task being performed. Similarly, Lee et al. (2019) concede that employing a TA method may comprise a 132 133 distraction in performance settings such as judging and assessment. However, others contend that 134 while TA may increase the time required to complete a task, it does not affect the accuracy of task 135 performance or the nature of the accompanying thoughts processes in self-paced tasks within golf 136 (Eccles & Arsal, 2017; Whitehead, Taylor, & Polman, 2015). This is methodologically significant in 137 attempting to understand the differences in cognition in other self-paced tasks such as the AF set shot 138 on goal.

139 How TA can extend current skill acquisition perspectives

140 Think Aloud has never been used to understand goal kicking performance in Australian football. This 141 is methodologically novel and has the potential to shift the parameters of the field in how scholars and 142 practitioners seek to optimise goal kicking performance. Specifically, Think Aloud presents utility to 143 capture data that specifically emerges from the link between perception and action in human 144 movement. Recent perspectives in skill acquisition are increasingly emphasising the importance of 145 perception in skill acquisition processes (Savelsbergh, van der Kamp, Oudejans, & Scott, 2004). 146 Specifically, the ability to perceive and process intrinsic and extrinsic information to satisfy 147 movement objectives. The process of harnessing sensory information to enable movement 148 performance is acknowledged as 'perception-action coupling' (Warren, 1990). Cognitive psychology 149 holds perception as a process of constructing meaning whereby sensory information is managed in 150 two key cognitive operations. The first is 'attending', whereby sensory information is scrutinised for 151 relevance to a movement objective – certain information may be harnessed or ignored in movement 152 production (Warren, 1990). The second involves comparing sensory information against memory to 153 interpret and stereotype it's meaning for movement production (Warren, 1990). Skill Acquisition 154 research has typically focused measuring technical and tactical outcomes of performance as

155 independent variables with fewer investigations of perception as a learnt process underpinning156 performance.

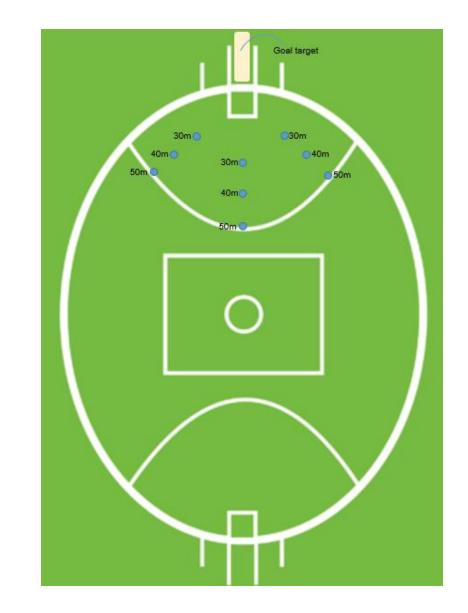
157 Dynamic Systems Theory (DST) is a relevant framework by which to shape and interpret Think 158 Aloud research focusing on perception-action coupling in skill acquisition. DST adopts a view of 159 human movement as complex and dynamic (Davids et al., 2008). Complex in the sense that humans 160 have many interacting components and these components dynamically shift in and out of coordination 161 synergies (Davids et al., 2008). The components of a movement system that exceed the minimum 162 number required to satisfy a movement objective are referred to as 'Degrees of Freedom' 163 (Savelsbergh et al., 2004; Vereijken, Emmerik, Whiting, & Newell, 1992). From a DST perspective, 164 the challenge for the human movement system is to master redundant Degrees of Freedom to enhance 165 efficiency and success of goal directed movements (Davids et al., 2008). Degrees of Freedom as a 166 concept was originally applied to the biomechanical components of the human body (Davids et al., 167 2008), though more recent investigations have acknowledged the validity of perceptual Degrees of 168 Freedom in movement performance (Savelsbergh et al., 2004). Perceptual Degrees of Freedom 169 function in the same way as their mechanical counterpart, affording the propensity for variable 170 movement to satisfy movement objectives. However, perceptual Degrees of Freedom rely on the 171 learner being attuned to their meaning and significance for goal directed behaviour. This involves the 172 application of cognitive processes including attending and memory (Savelsbergh et al., 2004). 173 Interestingly, a study involving striking and catching demonstrated that perceptual degrees of freedom 174 may better differentiate novice compared to elite athlete performance more than mechanical degrees 175 of freedom (Savelsbergh & Bootsma, 1994). For interceptive actions such as the AFL set shot on goal, 176 perceptual degrees of freedom may connect to visual, tactile, kinaesthetic, vestibular and auditory 177 receptors affording the performer with specific information about forces, position and motion of the 178 body relative to the ball (Davids, Savelsbergh, Bennett, & Van der Kamp, 2002). The athlete must 179 attempt to satisfy these temporal and spatial constraints culminating at the end of the movement; 180 dropping the ball from the hands and striking it with the foot. Variances in how these constraints are 181 perceived or processed may underpin ball drop trajectory and foot + ball contact locations, influencing

shot accuracy. As such, the complexity of the AFL set shot is tied up in keeping within smaller
margins of temporal and spatial errors at foot + ball contact as the distance requirement of the shot
increases.

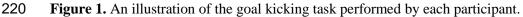
185 Think Aloud presents as a novel tool for research to examine the nexus of perception and action, 186 eliciting data that emerges from the junction of attending and memory combining to process perceptual Degrees of Freedom in movement performance. Think Aloud investigations in skill 187 188 acquisition research may provide insight into how perception-action coupling is delineated by 189 experience and task. Findings in this area this may inform curricula and pedagogical considerations 190 for movement practitioners that function to enhance perception-action coupling to improve AFL goal 191 kicking. As such, and using TA, the overall purpose of this project was to (a) explore the differences 192 in cognition while performing set shot goal attempts across varying distances and difficulties, and (b) 193 discover how thought processes differentiate between adult and junior footballers while performing a 194 set shot goal attempt.

195 Methods

196 Participants


197 Participants included 64 male Australian Rules footballers, comprising 37 elite-level senior (adult) 198 players (M age = 23.3 years) and 27 elite-level junior (M age = 14.6 years) players. The adult 199 participants had elite level experience in Australian Rules football (the Australian Football League) 200 and/or the semi-professional, state-league men's competition (the South Australian National Football 201 League). The junior participants were comparatively inexperienced, situated at the beginning of the 202 talent pathway within the state-league's junior competition. All participants were recruited through a 203 university-led, high-performance program in which the footballers were given the opportunity to 204 consider their involvement in the study across two separate training days in December 2017 and 205 September 2018.

206 Materials


A pair of professional grade iVUE action camera eyewear (1080P Horizon) were used to capture realtime thoughts that were verbalised during a series of set shot goal kicking attempts. The action camera eyewear was fitted to each player akin to wearing a pair of 'sunglasses' for the duration of the task.

210 Procedure

Each participant was asked to complete nine set shot goal kicking attempts from a range of pre-211 212 determined distances and angles (see Figure 1). The angles included shots from a 45-degree angle on 213 the left-hand side of goal, a 45-degree angle on the right-hand side of goal, and directly in front of 214 goal. Within each angle, participants attempted shots from 30m and progressed outward to 40m and 215 then 50m distances from the goal line (see Figure 1). All participants performed this task on the same 216 field, between 11:00 and 14:00, in dry conditions. The wind was approximately 5 km/hour (blowing 217 in South-West direction) and the temperature was 31 degrees (September 2018) and 34 degrees 218 (December 2017).

219

221 Prior to commencing data collection, participants were required to complete a video-based TA 222 training exercise specifically designed for this project. Similar to the methods described by Whitehead 223 et al. (2018), the video included three different TA training tasks including (1) an alphabet exercise, 224 (2) counting the number of dots on a page, and (3) verbal recall exercise. The customised training 225 video also included step-by-step examples of how to (a) wear and activate the iVUE action camera 226 eyewear (activate and deactivate recording) and (b) rotate through the set shot task. To avoid disrupting performers' normal warm-up routines, all participants completed a warm-up task 227 228 representative of routines normally undertaken before training and games. This involved a self-229 determined process of dynamic and static stretching, functional movement progressions, stride

230 lengthening, and ball-related tasks involving marking (catching), kicking and handballing. Players 231 were then organised into groups of three to perform the task. In each group, player A was behind the 232 goals to retrieve the ball, player B was undertaking the goal kicking attempt, and player C was 233 defending the mark, forcing the kicker to undertake their routine in conditions representative of set 234 shot goal kicking in Australian football. Once player B had attempted all nine kicks, players rotated 235 roles until they all completed the goal kicking task. To reinforce conditions to reflect the competitive 236 nature of Australian football and the significance of set shot goal kicking, all footballers were given 237 notice that the best performer would receive a \$100 sport store voucher.

238 Analysis

239 In keeping with most of the TA research (Arsal et al., 2016; Calmeiro et al., 2010; Whitehead et al., 240 2017; Whitehead et al., 2018) a post-positivist epistemology informed this study. All participants TA 241 data was audio recorded and transcribed verbatim by the first and third author. All 64 participant 242 transcripts (which produced 111 pages of single-spaced text) were subject to line by line content 243 analysis by the second author. Data was analyzed both deductively and inductively. An initial 244 deductive framework was used based on previous research by Whitehead et al. (2018) and Calmeiro 245 and Tenenbaum (2011) (see Table 1). However, an additional theme of self-doubt was developed 246 through an inductive analysis. A dual analysis was considered an opportunistic, yet important part of 247 the study given that each of the authors came to the research from a range of epistemological (post-248 positivist and interpretivist) and disciplinary (pedagogy, psychology and sport coaching) positions. 249 The lead author undertook an inductive content analysis involving familiarization with transcripts, 250 coding all verbalizations within the context of the task, aggregating codes into broader categories, 251 comparing and contrasting categories with the data to develop 'themes', developing accurate names 252 for each theme, and report on the findings. This analytical process produced nine themes for further 253 analysis including the same eight themes from the deductive analysis as well as the theme 'Self-254 Doubt'. During the inductive coding (using NVIVO 12 Pro) each verbalization that had been assigned 255 to a theme accounted for a value of 1. Therefore, each theme had a number of verbalization frequencies assigned to it following the coding process. The number of verbalizations for each theme 256

257 verbalized by each individual participant and also each kicking distance was then retrieved from 258 NVIVO 12 Pro and inputted in IMB SPSS Statistics to conduct a series of inferential statistics.

259 Prior to conducting any interferential statistics, the data was tested for normality, all p values were 260 less than .05 therefore we proceeded with a non-parametric analysis. Initially successful kicks were 261 recorded and an independent t-test was conducted to identify whether there was a significant 262 difference between junior and adult performance. A Friedman test was conducted to investigate the 263 overall differences between the frequency of themes verbalized and follow up Wilcoxon tests were 264 conducted to identity where these differences occurred. Following this, data was split into distances 265 and further Friedman tests and follow up Wilcoxon test were conducted to identify significant 266 differences across kicking distance. Data was then split into Junior and Adults and a series of Man 267 Whitney U tests were conducted to identify differences between Adults and Juniors and their themes 268 and distances within these themes. Furthermore, separate Freidman tests were conducted within 269 Junior and Adult groups to identify differences within each group across the kick distance. Follow up 270 Wilcoxon tests were conducted with any significant results to identify where these differences were.

271

Theme	Description	Example of raw data quote		
Gathering Information	Searching for relevant characteristics of the environment.	"Little bit of wind coming from the left side"		
Planning	Referring to a plan of action for a kick.	"Hanging this one out to th right"		
Technical Instruction	Specified technical aspects of the motor performance.	"Straight leg", "Try and point my toe"		
Description of Outcome	Refers to what had happened in terms of process or evaluation of the action.			
Diagnosis out Outcome	Refers to the reasons for the observed outcome.	"I leant back too much on that one", "Didn't hook back enough"		
Pre-Performance Routine	Any sequence of task relevant thoughts or actions engaged in systematically prior to a kick.			

Reactive Comments	Refers to verbalizations referring to reactive comments to performance.	"That was bleep", "F-Sake"
Mental Readiness	Refers to psychological preparation for the task.	"Positive thoughts in the head before I kick", "go to a happy place"
Self-Doubt	Any reference to doubting ability to succeed with the present kick.	"I'm not going to be able make the distance"

273

274 Rigour

275 Consistent with a post-positivist approach, interrater reliability was practiced as a strategy to promote 276 rigour. Overall, this technique yielded 87.5% theme agreement, reflecting congruence with eight out 277 of nine themes. One theme, self-doubt (representing the other 12.5% disagreement), was then 278 discussed via two skype meetings and emails to clarify the development of the theme and its 279 appropriateness to the overall purpose of the project. We additionally employed strategies akin to 280 what Smith and McGannon (2018) describe as the 'critical friend' to advance the analysis as a way of 281 promoting reflexivity. Although using a 'critical friend' does not traditionally align with post-282 positivist research, qualitative methods involving transcription and coding can be strengthened by 283 employing means and methods to provide transparency and attempt to deepen our analyses (Smith & 284 McGannon, 2018). The second author acted as a critical friend and sounding board to promote 285 reflexivity and exploration about the data. One outcome was that the theme in question, self-doubt, 286 would remain included in the analysis and write up given its frequency in the data verbalised through 287 coded examples of scepticism and hesitation about the self-paced task.

288 Results

An independent t-test was conducted to examine the performance of successful kicks between juniors and adults. A significant difference was evidence, (t(62(, 2.45, p = .01)). The adult group had a significantly higher success rate (M = 2.62, SD = 1.34) compared to juniors (M = 1.81, SD 1.24).

Overall differences between themes for all players and all distances.

A Friedman test was conducted to identify within group differences across all 9 verbalized by all the 64 football players during all of their kicking performance. A significant main effect was found between these themes: X^2 (7) = 198.67, p = .00. Further follow up Wilcoxon tests were conducted to identify where these differences in verbalized themes were, table 1 provides this data.

Table 2: Means, standard deviation, Wilcoxon signed rank and significance statistics of comparisons between all 9 themes.

		of outcome	of outcome	information	Readiness		Comments	Instruction	Performance Routine	
Description of	3.56 (2.67)		Z = -3.35	Z = -3.31	Z = -5.08	Z = -6.53	Z = -3.30	Z = -4.77	Z = -2.83	Z = -5.93
outcome			P = .001	P = .002	P = .000	P = .001	P = .000	P = .000	P = .005	P = .000
Diagnosis of	2.20 (2.26)			Z = -4.93	Z = -2.32	Z = -6.78	Z =735	Z = -3.95	Z = -2.78	Z =69
outcome				P = .000	P = .020	P = .000	<i>P</i> = .463	P = .000	<i>P</i> = .69	<i>P</i> = .489
Gathering	5.18 (4.02)				Z = -5.81	Z = -5.89	Z = -4.54	Z = -5.61	Z = -4.42	Z = 5.61
information					P = .000	P = .000	P = .000	P = .000	P = .000	P = .000
Mental	1.34 (2.03)					Z = -6.71	Z = -1.90	Z =586	Z = -1.15	Z = -2.07
Readiness						P = .000	P = .057	<i>P</i> = .558	P = .246	<i>P</i> = .038
Planning	10.64 (6.01)						Z = -6.52	Z = -6.76	Z = -6.61	Z = -6.81
							P = .000	P = .000	P = .000	P = .000
Reactive	1.89 (2.05)							Z = -2.17	Z =44	Z = 3.34
Comments								P = .020	<i>P</i> = .661	P = .001
Technical	2.20 (1.97)								Z = -1.76	Z = -1.05
Instruction									P = .078	<i>P</i> = .291
Pre-	2.20 (3.40)									Z = -2.90
Performance Routine										<i>P</i> = .004
Self-Doubt	.73 (.96)									

Differences between distances of kick.

 Table 3. Descriptive statistics (mean and standard deviation) and Wilcoxon signed rank test for

 all 9 themes verbalized by all 64 players.

Theme	Kick	Mean (SD)	Friedman test
	Distance		
Description of outcome	30m	1.23 (1.30)	$X^{2}(2) = 8.00, p = .018$
-	40m	1.23 (1.09)	_
	50m	.82 (.91)	
Diagnosis of outcome	30m	.73 (.96)	$X^{2}(2) = .62, p = .732$
	40m	.97 (1.10)	
	50m	.68 (.92)	
Gathering information	30m	1.78 (1.74)	$X^{2}(2) = 1.47, p = .48$
	40m	1.57 (1.78)	
	50m	1.82 (1.73)	
Mental Readiness	30m	.56 (1.02)	$X^{2}(2) = 2.43, p = .297$
	40m	.45 (.81)	
	50m	.32 (.77)	
Planning	30m	3.60 (2.49)	$X^{2}(2) = .13, p = .29$
-	40m	3.46 (2.09)	_
	50m	3.71 (2.53)	
Reactive Comments	30m	.50 (.77)	$X^{2}(2) = 2.74, p = .25$
	40m	.67 (.85)	
	50m	.67 (1.02)	
Technical Instruction	30m	.49 (.80)	$X^2(2) = 3.71, p = .15$
	40m	.41 (.81)	_
	50m	.33 (.74)	
Pre-Performance Routine	30m	.84 (1.48)	$X^2(2) = 7.08, p = .02$
	40m	.87 (1.31)	
	50m	.46 (1.14)	
Self-Doubt	30m	.09 (.29)	$X^{2}(2) = 17.87, p = .00$
	40m	.15 (.47)	
	50m	.46 (.73)	

An initial Friedman test was conducted to identify any significant differences in the overall verbalizations of all themes across 30m, 40m and 50m differences. No significant differences were found between total number of verbalizations across each theme ($X^2(2) = 2.54$, p = 2.80). Following this a Friedman test was conducted to identify if there was a significant difference between the

distances kicked within the nine themes verbalized by all the 64 football players during all of their kicking performance. Table 3. shows that significant differences were found between distances for the themes, Description of outcome, Self-Doubt, and Pre-Performance Routine. Further follow up Wilcoxon signed ranks test were conducted. For the theme Description of Outcome a significant difference was found between 30m and 50m (Z = 2.75, p = .006) and 40m and 50m (Z = -2.77, p =.006), it is evident from the means that significantly more verbalizations relating to the description of outcome were found in distances 30m and 40m in comparison to 50m. For the theme Pre Performance routine, follow up Wilcoxon signed rank test revealed that there were significantly more Preperformance routine verbalizations during the 30m kick in comparison to the 50m kick (Z = -2.33, p =.020) and the same was also evident with the 40m kick in comparison to the 50m kick (Z = -2.59, p =.009). Finally follow up Wilcoxon signed rank revealed that for the theme Self Doubt more verbalizations were evident at 50m in comparison to 30m (Z = -3.62, p = .000) and verbalizations were also significantly higher at 50m than 40m (Z = -2.76, p = .006).

1 <u>Differences between adult and junior</u>

2 <u>Table 4. Descriptive statistics (mean and standard deviation), Man Whitney test for all themes,</u>

3 distances, and comparisons between adult and junior, and Friedman test if differences across

4 <u>distance</u>

Theme		Kick	Adult	Junior	Man Whitney
		Distance	Mean (SD)	Mean (SD)	
Description outcome	of		3.43 (2.25)	3.74 (3.20)	U = 492.00 P = .91
		30m	1.02 (1.14)	1.51 (1.47)	U = 408.50
					<i>P</i> = 1.96
		40m	1.27 (.99)	1.18 (1.24)	U = 457.00
					P = .55
		50m	.78 (.78)	.88 (1.08)	U = 497.50
					P = .97
Friedman			$X^2(2) = 4.88, p = .08$	$X^2(2) = 8.89, p = .02$	
Diagnosis	of		2.45 (2.52)	1.85 (1.83)	<i>U</i> = 450.50
outcome					P = .49
		30m	.67 (.91)	.81 (1.03)	U = 463.500
					P = .59
		40m	.89 (1.26)	.66 (.83)	U = 481.50
					P = .78
		50m	.91 (1.06)	.37 (.56)	U = 355.00
					P = .02
Friedman			$X^{2}(2), 1.48, p = .47$	$X^{2}(2), 6.18, p = .04$	
Gathering			3.72 (2.53)	7.18 (4.80)	<i>U</i> = 285.00
information			5.12 (2.55)	7.10 (4.00)	P = .00
mormation		30m	1.16 (1.23)	2.62 (1.98)	U = 276.50
		5011	1.10 (1.23)	2.02 (1.90)	P = .00
		40m	.86 (1.08)	2.55 (2.08)	U = 251.00
		40111	.00 (1.00)	2.33 (2.08)	P = .00
		50m	1.64(1.70)	2.07 (1.77)	U = 425.50
		30111	1.64 (1.70)	2.07 (1.77)	
Enicdance			$V^{2}(2)$ 4.91 - 00	$V^{2}(2) = 2.071 = -21$	<i>P</i> = .303
Friedman			$X^{2}(2), 4.81, p = .09$	$X^{2}(2), 3.071, p = .21$	
Monto ¹			1 51 (1 02)	1 11 (2 10)	U = 417.00
Mental			1.51 (1.92)	1.11 (2.18)	U = 417.00 R = 210
Readiness		20	(7 (1 12))	41 (0.4)	P = .219
		30m	.67 (1.13)	.41 (.84)	U = 436.50
		40	5 0 (00)		P = .28
		40m	.59 (.89)	.25 (.65)	U = 406.50
					P = .11
		50m	.24 (.59)	.44 (.97)	U = 452.50
					<i>P</i> = .36
Friedman			$X^{2}(2), 6.19, p = .04$	$X^{2}(2), 1.40, p = .49$	
Planning			10.75 (6.17)	10.48 (5.90)	<i>U</i> = 480.00
- imming			10110 (0117)	10.10 (0.90)	P = .79
		30m	3.78 (2.43)	3.33 (2.55)	U = 438.00
		5011	5.76 (2.75)	5.55 (2.55)	0 - +30.00

	40m	3.58 (2.43)	3.29 (2.12)	P = .39 U = 440.50 P = .52
	50m	3.59 (2.53)	3.85 (2.53)	U = 486.50 P = .85
Friedman		$X^{2}(2), .05, p = .97$	$X^{2}(2), .62, p = .73$	
Reactive Comments		2.48 (2.30)	1.07 (1.29)	U = 324.00 P = .01
Connients	30m	.70 (.87)	.22 (.50)	U = 350.50 P = .01
	40m	.83 (.89)	.44 (.75)	U = 369.50 P = .05
	50m	.94 (1.22)	.29 (.46)	U = 355.00 P = .02
Friedman		$X^2(2), 1.39, p = .49$	$X^2(2), 2.39, p = .30$	
Technical Instruction		1.24 (1.90)	1.18 (2.09)	U = 485.00 P = .83
	30m	.43 (.80)	.55 (.80)	U = 442.50 P = .350
	40m	.48 (.86)	.29 (.72)	U = 432.50 P = .23
	50m	.32 (.66)	.34 (.64)	U = 480.00 P = .98
Friedman		$X^{2}(2), 2.08, p = .35$	$X^{2}(2), 4.73, p = .09$	
Pre- Performance Routine		2.40 (3.74)	1.92 (3.09)	U = 499.50 P = 1.00
	30m	1.00 (1.64)	.62 (1.21)	U = 447.00 P = .41
	40m	1.02 (1.51)	.66 (.96)	U = 466.50 P = .61
	50m	.35 (.97)	.62 (1.33)	U = 439.50 P = .23
Friedman		$X^{2}(2), 12.66, p = .00$	$X^{2}(2), .12, p = .94$	
Self-Doubt		.51 (.93)	1.03 (.93)	U = 315.00 P = .00
	30m	.08 (.27)	.11 (.32)	U = 484.50 P = .68
	40m	.10 (.31)	.22 (.64)	U = 477.50 P = .60
	50m	.32 (.71)	.66 (.73)	U = 355.50 P = .02
Friedman		$X^2(2), 4.66, p = .09$	$X^{2}(2), 13.34, p = .001$	
Total verbalisati	ons 30m	9.54 (4.53)	10.22 (5.47)	U = 475 P = .73
Total verbalisati	ons 40m	9.56 (3.66)	9.59 (5.04)	U = 494.00 P = .94
Total verbalisati	ons 50m	9.10 (3.68)	9.55 (4.78)	U = 486.00 P = .85

As evidenced within table 4, juniors verbalised more diagnosis of outcome related thoughts during
50m kicks than adults. Overall and at 30m and 40m juniors verbalised more thoughts linked to
gathering information. However, adults verbalised significantly more reactive comments overall
and across all kicking distances than juniors. Finally, juniors verbalised significantly more thoughts
relating to self-doubt overall and during the 50m kicks than adults.

11 Table 4 also shows that there is a significant difference across kick distances for adults in the themes 12 Mental Readiness and Pre-performance routine. Follow up Wilcoxon test reveal that for Mental Readiness there is a difference between 30m and 50m kicks (Z = -3.09, p = .00) where more 13 14 verbalisations referring to mental readiness occurred at 30m (M = .67) than 50m (M = .24). In 15 addition, a significant difference was found between 40m and 50 (Z = -2.09, p = .03), where more 16 verbalisations were evident at 40m (M = .59) than 50m (M = .24). For adults there was also a 17 significant difference across distances for the theme Pre-Performance routine, where more verbalisations occurred at distance 30m in comparison to 50m (Z = -2.64, p = .00). In addition, 18 19 significantly more verbalisations of Pre-Performance routine were evident at 40m in comparison to 20 50m (Z = -3.00, p = .00).

21 For Juniors, there was a significant difference across kick distances for the theme Description of 22 Outcome, further Wilcoxon tests revealed that there were more verbalisations of this theme at 30m in 23 comparison to 50m (Z = -3.09, p = .00). Furthermore, within Juniors there were significant differences 24 across distances for Diagnosis of outcome. Follow up Wilcoxon test revealed that significantly verbalisations relating to this theme were present at 30m in comparison to 50m (Z = -2.32, p = .00), in 25 26 addition more verbalisations relating to this theme were present at 40m in comparison to 50 (Z = -27 1.90, p = .05). Finally, within Juniors there was a significant difference across distances for the theme 28 Self Doubt. Follow up Wilcoxon tests revealed that there was more Self-Doubt Verbalisations at 50m 29 in comparison to 30m (Z = -309, p = .00). Significantly more Self-Doubt themes were verbalised at 30 50m in comparison to 40m (Z = -2.10, p = .03).

33 Discussion

The overall purpose of this project was to (a) explore the differences in cognition while performing 34 35 set shot goal attempts across varying distances and difficulties, and (b) discover how thought 36 processes differentiate between adult and junior footballers while performing a set shot goal attempt. 37 The findings indicate that as task difficulty increases, athletes describe the outcome less frequently. 38 The findings also demonstrate that as task difficulty increases, cognitions relating to self-doubt 39 increases too. Furthermore, Pre-performance routines appear to be particularly prominent during tasks 40 of low to moderate difficulty (e.g. 30 and 40 m distances) and less prominent in tasks of high 41 difficulty and challenge (e.g. the 50m distance). The findings also reveal how cognitions between 42 Junior and Adult performers differentiates during the task of set-shot goal kicking. Specifically, Junior 43 footballers tend to more information gathering at 30 and 40m distances and also verbalised more 44 diagnostic outcomes and comments relating to self-doubt at 50m distances compared to Adult 45 footballers. In contrast, Adult footballers verbalise more reactive comments across all kick distances. 46 Adults also verbalised more thoughts relating to mental readiness and Pre-performance routine at 30m 47 than compared to 50m distances. Finally, planning, gathering information and description of outcome 48 were the main three verbalised themes overall among junior and adult footballers. This is consistent 49 with previous TA research which has also reported planning-, gathering information- and description 50 of outcome-oriented verbalisations during the performance of self-paced tasks in sport (Calmeiro & 51 Tenenbaum, 2011; Whitehead et al., 2015, 2016).

52

From a motor control perspective, planning, gathering information and description of outcome may reflect involvement of memory and attending as central cognitive operations for movement production. By planning for movement production, athletes are relying on 'memory representations' of the task and extrapolating meaning for the specific task demands in front of them (Warren, 1990). Gathering information and describing performance outcomes requires the use of 'attending', whereby sensory information is scrutinised for relevance to the immediate performance (Warren, 1990). From a Dynamic Systems theory perspective, memory and attending may be employed at different stages of learning as the athlete attempts to grapple with the vast mechanical and perceptual degrees of freedom relevant to the kicking action during the set shot on goal. Memory and attending will now be considered in offering possible explanations for differences in TA themes between junior and adult footballers, mediated by task complexity in kicking distance.

64

65 Previous research has found that experienced athletes verbalise performance outcomes more frequently than novice athletes (Calmeiro & Tenenbaum, 2011). In the present study, junior 66 67 footballers verbalised the description of the outcome more than adults. One possible factor for this 68 difference is that although the present study compared juniors with adults, both groups were elite 69 footballers for their age groups. Higher verbal descriptions among juniors compared with adults in the 70 present study may reflect an earlier stage of learning, characterised by greater involvement of 71 'cognitive chunking'; a process that seeks to consolidate movement-related information for transfer 72 into long-term memory. Anderson (1982) theorised that as motor learning progresses, perception-73 action associations are aggregated into larger cognitive chunks. At an earlier stage of learning, juniors 74 more than adults may be grappling with aggregating the vast array of perceptual information and how 75 it influences action. Specifically, attempting to identify how visual, tactile, kinaesthetic, vestibular and 76 auditory feedback impact on forces, position and motion of the body relative to the ball. Verbal 77 description of the shot outcome may assist or manifest because of 'cognitive chunking' as an act of 78 aggregating various perception-action associations for memory storage. For example, a junior 79 footballer in the present study demonstrated cognitive chunking: "Started out too wide. Need to allow 80 for the wind a bit more. Put it off to the left. Going to aim for the point post this time". In this 81 example, the footballer is aggregating the influence of the wind on the ball trajectory and associating 82 its impact on a possible mechanical solution for the next attempt by aiming further for the left goal post. Cognitive chunking is suggested to alleviate cognitive burden on the short-term memory, 83 84 allowing for more advanced performance to occur (Anderson, 1982).

86 Decreased verbal description of outcome and increased diagnoses from 30m to 50m for adults may 87 signal that performance description could be an important step in transitioning short-term resources to 88 diagnosing shot outcome. More specifically, adults have acquired enough memory representations of 89 successful and unsuccessful shot attempts and their associated perception-action states, and, therefore 90 able to harness and contrast against performance as part of the diagnosis. This is similar to an 91 explanation provided by (St. Germain & Tenenbaum, 2011) who suggested that declarative 92 knowledge around performance may underpin negotiating future skill execution. The finding that 93 adults verbalised more diagnosis of outcome related thoughts during 50m kicks than juniors further 94 supports this possible explanation. This is consistent with other research studies that have found 95 outcome diagnosis to be more frequent among more experienced or highly skilled athletes (Calmeiro 96 & Tenenbaum, 2011; St. Germain & Tenenbaum, 2011). In the context of the present study, adults are 97 more likely to possess the required kicking strength to make the 50m distance (regardless of scoring) 98 compared to juniors and there may have greater experience to draw upon to diagnose performance. 99 This would make sense given that juniors verbalisation of more thoughts linked to gathering 100 information at all kicking distances reflecting a more focused need to build memory representations of 101 the task aided by cognitive chunking.

102

103 Across kick distances description of the outcome and pre-performance routine was verbalised 104 significantly less at 50m. Additionally, self-doubt was verbalised significantly more at 50m and 105 juniors verbalised more self-doubt than adults at this distance. Consequently, self-doubt in capability 106 appears to overshadow description of the outcome and pre-performance routine. Pre-performance 107 routines (PPR's) are a self-regulatory strategy used to improve attention and emotion control (Moran, 108 2016). Research has provided evidence for the effectiveness of PPR's, with novices benefitting the 109 most (Beauchamp, Halliwell, Fournier, & Koestner, 1996; Crews & Boutcher, 1986; Mccann, 110 Lavallee, & Lavallee, 2001). Hill, Hanton, Matthews, and Fleming (2011) found that within elite 111 golfers, PPR's could alleviate choking under pressure by increasing perceived control, lowering 112 anxiety levels and improving focus. Therefore, our findings may be showing that, specifically within 113 juniors, this lack of PPR being used at 50m could have a relationship with the level of self-doubt 114 cognitions being verbalised. A practical implication for this study could be that regardless of kicking 115 distance, PPR's should be employed, this in turn may reduce the number of self-doubt thoughts and 116 improve kicking accuracy. Though, individual thought processes as part of PPR's should be expected 117 to transition as skill ability increases. Movement practitioners should tailor PPR's to the specific types 118 of perceptual and performance related degrees of freedom at different stages of learning. For example, 119 the findings of this study support PPR's routines of junior athletes focusing on cognitively chunking a 120 broader array of informational variables relevant to performance than more experienced athletes. 121 Movement practitioners may facilitate cognitive chunking in PPR's through learning activities that 122 exaggerate the impact of certain degrees of freedom on kicking performance. PPR's of more 123 experienced athletes may benefit from less attentional processing of degrees of freedom, focusing 124 only on those that may require significant adaptions to skill performance (e.g. adjusting angle for extreme wind conditions or kicking technique for angle). Independent of skill ability, coping 125 126 strategies addressing self-doubt may assist athletes to maintain or continue developing PPR's for tasks 127 of high perceived difficulty. For example, PPR's routines appeared to be disrupted at 50-meter range 128 in the present study. This study reinforces the significance of Dynamic Systems Theory as a 129 framework for creating explicit perception-action learning activities which facilitate a cyclical 130 relationship between performer and environment.

131

132 Overall, the collective research findings and their possible explanations from a skill acquisition 133 perspective provided above are consistent with Bernstein's degrees of freedom proposal. At an earlier 134 stage of learning, the athlete attempts to identify relevant mechanical degrees of freedom that may 135 underpin kicking performance. The identification process may be facilitated by cognitive chunking. 136 As task complexity is increased (reflected by greater kicking distances), athletes begin to diagnose 137 performance to master a greater array of degrees of freedom to satisfy task demands. Previously 138 established memory representations may be used as a key component to transition from task 139 description to task diagnosis, possibly reflecting a more advanced stage of grappling with greater or 140 complicated degrees of freedom in task performance. There is evidence that consciously grappling 141 with degrees freedom through attentional monitoring and thinking-aloud may facilitate novice

142 learners (Beilock, Wierenga, & Carr, 2002) but disrupt automaticity of skilled performers (Masters & 143 Maxwell, 2008). Consistent with Fitts and Posner's (1967) model of skilled performance, automaticity 144 as a hallmark of skilled performance may be undone through attentional monitoring and thinking-145 aloud. This phenomenon, acknowledged as reinvestment, may have adversely impacted on elite 146 performers in this study, disrupting automaticity in their performance built through cognitive 147 chunking. Arguably reinvestment may be more pronounced among players in this study who 148 specialised in set shot goal kicking through their field position. A subsequent limitation of this study 149 was the sample consisting of players from all field positions, not just those who specialised in goal 150 kicking. Identification of thought processes that reflect reinvestment behaviours may have been 151 observable and possibly accounted for if the sample consisted purely of specialised goal kickers. 152 Another limitation of this study was the use a financial reward to create competitive conditions in goal 153 kicking. The nature of the performance environment for a competitive game may impact on thought processes differently to conditions created for this study. A final limitation was the short time allotted 154 155 for training the athletes using TA. This may have impacted their ability to verbalize implicit 156 cognitions during set shot goal kicking, especially when comparing junior and adult performers. 157

- 158 **References**
- Anderson, D., Breed, R., Spittle, M., & Larkin, P. (2018). Factors affecting set shot goal kicking performance in the Australian Football League. *Perceptual and Motor Skills*,
 125(4), 817-833.
- 162 Anderson, J. (1982). Acquisition of cognitive skill. *Psychological review*, *89*(4), 369.
- Arsal, G., Eccles, D. W., & Ericsson, K. A. (2016). Cognitive mediation of putting: Use of a think-aloud measure and implications for studies of golf-putting in the laboratory.
 Psychology of sport and exercise, 27, 18-27.
- Ball, K. (2008). Biomechanical considerations of distance kicking in Australian Rules football.
 Sports Biomechanics, 7(1), 10-23.
- Beauchamp, P. H., Halliwell, W. R., Fournier, J. F., & Koestner, R. (1996). Effects of
 cognitive-behavioral psychological skills training on the motivation, preparation, and
 putting performance of novice golfers. *The Sport Psychologist, 10*(2), 157-170.
- Beilock, S. L., Wierenga, S. A., & Carr, T. H. J. T. Q. J. o. E. P. S. A. (2002). Expertise,
 attention, and memory in sensorimotor skill execution: Impact of novel task
 constraints on dual-task performance and episodic memory. 55(4), 1211-1240.
- Calmeiro, L., & Tenenbaum, G. (2011). Concurrent verbal protocol analysis in sport:
 Illustration of thought processes during a golf-putting task. *Journal of Clinical Sport Psychology, 5*(3), 223-236.

- Calmeiro, L., Tenenbaum, G., & Eccles, D. (2010). Event-sequence analysis of appraisals
 and coping during trapshooting performance. *Journal of Applied Sport Psychology*,
 22(4), 392-407.
- Cotterill, S. T. (2011). Experiences of developing pre-performance routines with elite cricket
 players. *Journal of Sport Psychology in Action, 2*(2), 81-91.
- Cotterill, S. T., Sanders, R., & Collins, D. (2010). Developing effective pre-performance
 routines in golf: Why don't we ask the golfer? *Journal of Applied Sport Psychology*,
 22(1), 51-64.
- Crews, D. J., & Boutcher, S. H. (1986). Effects of structured preshot behaviors on beginning
 golf performance. *Perceptual and Motor Skills, 62*(1), 291-294.
- 187 Davids, K., Button, C., & Bennett, S. (2008). *Dynamics of Skill Acquisition: A Constraints-led* 188 *Approach*: Human Kinetics.
- 189 Davids, K., Savelsbergh, G. J., Bennett, S., & Van der Kamp, J. (2002). *Interceptive actions* 190 *in sport: Information and movement*. Psychology Press.
- 191 Davids, K. W., Button, C., & Bennett, S. J. (2008). Dynamics of skill acquisition: A
 192 constraints-led approach: Human Kinetics.
- Eccles, D. W., & Arsal, G. (2017). The think aloud method: what is it and how do I use it?
 Qualitative Research in Sport, Exercise and Health, 9(4), 514-531.
- 195 Fitts, P. M., & Posner, M. I. (1967). Human performance.
- Hart, N. H., Nimphius, S., Cochrane, J. L., & Newton, R. U. (2013). Leg mass characteristics
 of Accurate and Inaccurate kickers–an Australian Football perspective. *Journal of Sports Sciences*, *31*(15), 1647-1655.
- Hart, N. H., Nimphius, S., Spiteri, T., & Newton, R. U. (2014). Leg strength and lean mass
 symmetry influences kicking performance in Australian Football. *Journal of sports* science & medicine, 13(1), 157.
- Hill, D. M., Hanton, S., Matthews, N., & Fleming, S. (2011). Alleviation of choking under
 pressure in elite golf: An action research study. *The Sport Psychologist, 25*(4), 465 488.
- Lee, J., Knowles, Z., & Whitehead, A. E. (2019). Exploring the use of think aloud within
 Women's artistic gymnastics judging education. *Psychology of Sport and Exercise*,
 40, 135-142.
- Masters, R., & Maxwell, J. (2008). The theory of reinvestment. *International Review of Sport & Exercise Psychology*, 1(2), 160-183.
- Mccann, P., Lavallee, D., & Lavallee, R. (2001). The effect of pre-shot routines on golf
 wedge shot performance. *European Journal of Sport Science*, 1(5), 1-10.
- 212 Moran, A. P. (2016). The psychology of concentration in sport performers: A cognitive 213 analysis: Psychology Press.
- Peacock, J., & Ball, K. (2018). Kick impact characteristics of accurate Australian football
 drop punt kicking. *Human movement science, 61*, 99-108.
- Peacock, J., Ball, K., & Taylor, S. (2017). The impact phase of drop punt kicking for maximal distance and accuracy. *Journal of sports sciences*, *35*(23), 2289-2296.
- Robertson, S., Back, N., & Bartlett, J. D. (2016). Explaining match outcome in elite
 Australian Rules football using team performance indicators. *Journal of sports sciences, 34*(7), 637-644.
- Samson, A., Simpson, D., Kamphoff, C., & Langlier, A. (2017). Think aloud: An examination
 of distance runners' thought processes. *International Journal of Sport and Exercise Psychology, 15*(2), 176-189.
- 224 Savelsbergh, G. J., & Bootsma, R. J. J. I. j. o. s. p. (1994). Perception-action coupling in 225 hitting and catching.
- Savelsbergh, G. J., van der Kamp, J., Oudejans, R. R., & Scott, M. A. (2004). Perceptual
 learning is mastering perceptual degrees of freedom. In *Skill acquisition in sport* (pp. 398-413): Routledge.
- Smith, B., & McGannon, K. (2018). Developing rigor in qualitative research: Problems and
 opportunities within sport and exercise psychology. *International review of sport and exercise psychology, 11*(1), 101-121.

- 232 St. Germain, J., & Tenenbaum, G. (2011). Decision-making and thought processes among 233 poker players. *High Ability Studies, 22*(1), 3-17.
- Swettenham, L., Eubank, M., Won, D., & Whitehead, A. E. (2018). Investigating stress and
 coping during practice and competition in tennis using think aloud. *International Journal of Sport and Exercise Psychology*, 1-21.
- Vereijken, B., Emmerik, R. E. v., Whiting, H., & Newell, K. M. J. J. o. m. b. (1992). Free (z)
 ing degrees of freedom in skill acquisition. 24(1), 133-142.
- Warren, W. H. (1990). The perception-action coupling. In Sensory-motor organizations and
 development in infancy and early childhood (pp. 23-37): Springer.
- 241 Welsh, J. C., Dewhurst, S. A., & Perry, J. L. (2018). Thinking Aloud: An exploration of 242 cognitions in professional snooker. *Psychology of Sport and Exercise, 36*, 197-208.
- Whitehead, A. E., Jones, H. S., Williams, E. L., Dowling, C., Morley, D., Taylor, J. A., &
 Polman, R. C. (2017). Changes in cognition over a 16.1 km cycling time trial using
 Think Aloud protocol: Preliminary evidence. *International Journal of Sport and Exercise Psychology*, 1-9.
- Whitehead, A. E., Jones, H. S., Williams, E. L., Rowley, C., Quayle, L., Marchant, D., &
 Polman, R. C. (2018). Investigating the relationship between cognitions, pacing
 strategies and performance in 16.1 km cycling time trials using a think aloud protocol. *Psychology of Sport and Exercise, 34*, 95-109.
- Whitehead, A. E., Taylor, J. A., & Polman, R. C. (2015). Examination of the suitability of
 collecting in event cognitive processes using Think Aloud protocol in golf. *Frontiers in psychology*, 6, 1083.
- Whitehead, A. E., Taylor, J. A., & Polman, R. C. (2016). Evidence for skill level differences in the thought processes of golfers during high and low pressure situations. *Frontiers in Psychology, 6*, 1974.