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14 Abstract 

15 1. With one million animal species at risk of extinction, there is an urgent need to regularly 

16 monitor threatened species. However, in practice this is challenging, especially with wide-

17 ranging, elusive and cryptic species or those that occur at low density.

18 2. Here we compare two non-invasive methods, passive acoustic monitoring (n=12) and camera 

19 trapping (n=53), to detect chimpanzees (Pan troglodytes) in a savanna-woodland mosaic habitat 

20 at the Issa Valley, Tanzania. With occupancy modelling we evaluate the efficacy of each 

21 method, using the estimated number of sampling days needed to establish chimpanzee absence 

22 with 95% probability, as our measure of efficacy.

23 3. Passive acoustic monitoring was more efficient than camera trapping in detecting wild 

24 chimpanzees. Detectability varied over seasons, likely due to social and ecological factors that 

25 influence party size and vocalisation rate. The acoustic method can infer chimpanzee absence 

26 with less than ten days of recordings in the field during the late dry season, the period of highest 

27 detectability, which was five times faster than the visual method.

28 4. Synthesis and applications: Despite some technical limitations, we demonstrate that passive 

29 acoustic monitoring is a powerful tool for species monitoring. Its applicability in evaluating 

30 presence/absence, especially but not exclusively for loud call species, such as cetaceans, 

31 elephants, gibbons or chimpanzees provides a more efficient way of monitoring populations 

32 and inform conservation plans to mediate species-loss.

33

34 Keywords: chimpanzee; occupancy modelling; passive acoustic monitoring; Tanzania; 

35 savanna-woodland mosaic habitat; seasonality; videos; vocalisations 

36
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37 Introduction 

38 With the sixth extinction crisis ongoing, triggered and exacerbated by anthropogenic 

39 disturbance (Barnosky et al., 2011; Ceballos et al., 2015; Johnson et al., 2017), there is an urgent 

40 need to prioritize conservation actions to monitor and ultimately, mediate species-loss. 

41 Typically, conservation planners focus efforts on the most diverse or vulnerable species or else 

42 those suffering from intense human activity. To provide critical data that reveal patterns of 

43 species distribution over time, systematic monitoring is necessary to assess the impacts of 

44 management decisions and evaluate wildlife recovery (Akçakaya et al., 2018; Martin et al., 

45 2018). However, in practice, wildlife monitors must overcome numerous challenges, especially 

46 when direct observations are nearly impossible, e.g. when studying nocturnal, cryptic, elusive 

47 or hunted species that have changed their activity pattern/behaviour. Consequently, innovative 

48 biomonitoring methods are revolutionising the way, the speed, and the reliability of providing 

49 the necessary data on not only the threats, but also how animals distribute themselves in ever-

50 changing landscapes.

51 Detecting species presence is the first and fundamental step for population monitoring. 

52 Occupancy is the proportion of an area used by a species (MacKenzie et al., 2006). Occupancy 

53 statistical models then use detection/non detection data from multiple visits of a given area to 

54 infer the probability of species presence. Occupancy modelling provides a useful tool to assess 

55 the population status i.e. declining, stable or increasing, of any species and can be applied to 

56 numerous species. It has been successfully used with diverse taxa, including tiger (Panthera 

57 tigris) monitoring (Karanth et al., 2011) and Antarctic sperm whale (Physeter macrocephalus) 

58 occupancy and diel behaviour (Miller & Miller, 2018). In long-term monitoring programs, 

59 occupancy modelling can further reveal the effect of disturbance on animal presence by 

60 providing data that reveal landscape-use changes and site colonization and extinction, as well 

61 as reveal multi-species interactions as disturbance levels oscillate (Mackenzie et al., 2002; 
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62 MacKenzie, Nichols, Hines, Knutson, & Franklin, 2003). Occupancy modelling allows us to 

63 refine species distribution models in conservation planning and adjust policy priorities. Whilst 

64 these models offer valuable information on species presence and the probability of occupancy, 

65 challenges remain to control for detection bias. 

66 Detection probability is the likelihood to detect a species when it is present. Imperfect 

67 detection is a common issue and a challenge for species monitoring (MacKenzie et al., 2002), 

68 as it can lead to underestimates of occupancy, e.g. type II errors. Occupancy models account 

69 for imperfect detection (MacKenzie et al., 2002), which can arise from a variety of causes, 

70 including a sensor’s placement (Cusack et al., 2015) and detection zone (i.e. closed forest or 

71 open area), habitat characteristics, use of baits (Comer et al., 2018), timing and duration of 

72 sampling, or animal density and behaviour (Neilson, Avgar, Burton, Broadley, & Boutin, 2018) 

73 among others. 

74 Autonomous methods such as passive acoustic methods (PAM) and camera trap (CT) 

75 monitoring are two ways to remotely monitor wildlife presence, distribution, and behaviour 

76 (Rowcliffe & Carbone, 2008; Burton et al., 2015; Sugai, Silva, Ribeiro Jr, & Llusia, 2019), and 

77 both provide data for occupancy models. These methods are non-invasive and for both methods, 

78 sensors can be deployed for significantly longer periods (months or years) than time typically 

79 used in e.g. traditional approaches like point count surveys (Alquezar & Machado, 2015). 

80 Furthermore, multiple locations that may be difficult to access by researchers can be monitored 

81 simultaneously by autonomous recording units. This is particularly useful for detecting species 

82 that occur at low density. 

83 CT is widely used among conservationists and researchers to study birds and medium to 

84 large mammals (Rovero, Tobler, & Sanderson, 2010). Originally, PAM was developed for use 

85 with marine mammals (Spiesberger & Fristrup, 1990) and continues to be widely employed for 

86 studies of cetacean ranging and abundance (Mellinger, Stafford, Moore, Dziak, & Matsumo, 
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87 2007; Sugai, Silva, Ribeirao Jr & Llusia, 2019). However, recent advances in bioacoustics have 

88 expanded the applications of acoustic sensors for terrestrial species (Blumstein et al., 2011; 

89 Wrege, Rowland, Keen, & Shiu, 2017). More recently applications include study of gibbons 

90 (Nomascus gabbrielae) (Vu & Tran, 2019), and wolves (Canis lupus) (Papin, Pichenot, 

91 Guérold, & Germain, 2018), among others. Both methods allow for diverse applications 

92 (Burton et al., 2015; Gibb, Browning, Glover-Kapfer, & Jones, 2019; Sugai, Silva, Ribeiro Jr 

93 & Llusia, 2019), ranging from revealing occurrence and occupancy (Rovero, Collett, Ricci, 

94 Martin, & Spitale, 2013; Campos-Cerqueira & Aide, 2016), population size and density (e.g. 

95 Marques, Munger, Thomas, Wiggins, & Hildebrand, 2011), demography (e.g. McCarthy et al., 

96 2018), activity patterns (e.g. Oberosler, Groff, Iemma, Pedrini, & Rovero, 2017) and behaviour 

97 (e.g. Tsutsumi et al., 2006).

98 With numerous studies reporting the dramatic, global decline of chimpanzees over the past 

99 decades (e.g. Campbell, Kuehl, N’Goran Kouamé, & Boesch, 2008; Junker et al., 2012; Kühl 

100 et al., 2017), we need reliable, efficient, and affordable methods to monitor their population 

101 status. Like cetaceans, chimpanzees have wide ranges, and rely on loud calls to communicate. 

102 Seasonality influences activity patterns, ranging and feeding behaviour of chimpanzees (Doran, 

103 1997), and may consequently influence chimpanzee detectability with CT and PAM. CT studies 

104 on chimpanzees have been conducted to study uncommon behaviour, e.g. stone throwing (Kühl 

105 et al., 2016) and crab-hunting (Koops et al., 2019), but also for abundance and density 

106 estimation (Després-Einspenner, Howe, Drapeau, & Kühl, 2017; Cappelle, Després-

107 Einspenner, Howe, Boesch, & Kühl, 2019) among others. Only a few studies have employed 

108 PAM with chimpanzees; those have focused on group ranging and territory use (Kalan et al., 

109 2015, 2016) and temporal patterns of vocalisations (Piel, 2018). 

110 What conservation planners most need, however, is information on the reliability of these 

111 methods for application into understanding chimpanzee presence and distribution. Thus, the 
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112 primary aim of the study was to compare the efficacy in chimpanzee detection from these two 

113 non-invasive methods, namely PAM and CT. Specifically, we had three objectives and for both 

114 PAM and CT we sought to: (1) estimate chimpanzee detection probabilities from occupancy 

115 modelling; (2) identify the parameters that influence the detectability and more specifically to 

116 what extent seasonality plays a role in detectability; and (3) estimate and compare the sampling 

117 effort needed to produce precise occupancy estimates and make recommendations for wildlife 

118 managers regarding which is the more suitable appropriate method for wildlife surveys. We 

119 hypothesized that chimpanzee detectability would be higher with PAM compared to CT, given 

120 the larger area covered by the acoustic sensors.

121  

122 Method

123 1) Study site

124 The study was conducted between March and December 2018, in the Issa Valley, western 

125 Tanzania (Fig. 1). The area is comprised of a series of valleys separated by steep mountains and 

126 flat plateaus, with an altitudinal gradient ranging from 1050 to 1650 m above sea level. 

127 Vegetation is dominated by miombo woodland and also includes grassland, swamp and riverine 

128 forest. For analyses, we collapsed these categories into just two: ‘open’ (woodland, grassland, 

129 swamp) and ‘closed’ (riparian forest). It hosts eight primate and four large carnivore species 

130 (spotted hyena, lion, leopard, wild dog), and over 260 species of birds (Moyer et al., 2006). The 

131 region is one of the driest and most open habitat inhabited by chimpanzees (Moore, 1992). At 

132 the time of data collection, the mean monthly rainfall was 118.4 ± 92mm during the wet season 

133 (mid-October to mid-May) and 0.6 ± 0.9mm during the dry season. Mean minimum and 

134 maximum temperatures per day were 16.6 ± 1.7°C and 27.7 ± 2°C, respectively for the dry 

135 season and 16.9 ± 1°C and 25.7 ± 2.2°C for the wet season. Data points were measured every 

136 five minutes by a weather station (HOBO model RX3000, Onset Corp., Bourne, MA) situated 
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137 near the research station. The study site covers the territory of at least one chimpanzee 

138 community.

139

140 2) Study design

141 a. Camera trap deployment

142 For nine months, we deployed twenty-one camera traps (Bushnell Trophy Cam) in a systematic 

143 layout (henceforth ‘systematic’ cameras), in grid cells of 1.67km x 1.67km. We deployed thirty-

144 two additional camera traps (Bushnell Trophy Cam) at targeted locations, i.e. animal paths or 

145 termite mounds (seven of them) (henceforth ‘targeted’ cameras, Fig. 1). We attached cameras 

146 to trees 90cm above the ground and were triggered by movement, which activated a 60s 

147 recording, followed by a minimum 1s break before another recording began. For technical 

148 reasons, some cameras recorded 15s videos instead of 60s and videos recorded within the same 

149 minute have been combined into one video for the analyses. Cameras monitored continuously 

150 and were checked once or twice a month to change batteries and SD cards. 

151

152 b. PAM deployment

153 We deployed twelve acoustic sensors (SM2, Wildlife Acoustics) for the same nine-month 

154 period that were secured on trees at a height of approximately 1.65m, at the top of the valleys 

155 to maximize the chance of recording calls. We recorded sounds at a 16kHz sample rate and 16 

156 bit/s in uncompressed .wav format. We scheduled the sensors to record for 30 minutes of every 

157 hour from 6:00 to 19:30 (7h/day) to maximize capturing calls when chimpanzees are the most 

158 vocally active. We set up the sensors in three clusters of four sensors/cluster, two sensors on 

159 each side of a valley (Fig. 2), with inter-sensor distance ~500m to allow for later sound 

160 localization. We drew a 500m buffer around each acoustic sensor, corresponding to the area 

161 within which a call could reliably be detected (Piel, unpublished data). We rotated the clusters 
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162 to new locations within the study area every two weeks (four arrays, Fig. 2). We replaced 

163 batteries and SD cards every two weeks. 

164 We manually processed acoustic recordings by visualizing spectrograms and aurally 

165 confirming any detection, with the aid of the acoustic software Raven (Bioacoustics Research 

166 Program, 2014). Duplicate detections were controlled for by pooling detections from the four 

167 sensors belonging to the same cluster into one detection. 

168

169 3) Occupancy modelling

170 a. Modelling framework

171 Occupancy modelling estimates two parameters: Ψ, the probability that a species is present 

172 within a site, i.e. probability of occupancy, and p, the probability that a species present is 

173 detected within a site, i.e., probability of detection (MacKenzie et al., 2006). For a discussion 

174 of assumptions, see (MacKenzie et al., 2006; Kalan et al., 2015). 

175 For both datasets, we divided the sampling period into sampling occasions (SO) of eight days 

176 each, resulting in 34 and 35 occasions per site, for PAM and CT respectively. Detection 

177 histories were compiled into a matrix containing two different values: (0) non detection and (1) 

178 detection. When no survey was conducted during a SO (e.g. due to camera or audio recorder 

179 malfunctioning or not deployed), a value of NA was assigned. To estimate the occupancy and 

180 detection probabilities, we used a single-season model. We applied the “occu” function from 

181 the “unmarked” package in R (Fiske & Chandler, 2011). 

182

183 b. Covariates 

184 To account for imperfect detection and heterogeneity in occupancy as well as detection 

185 probabilities across sampling sites and occasions, we incorporated covariates into the model. 

186 To explain the variability in chimpanzee occupancy, we created six vegetation/topography 
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187 combination categories: A- closed/slope, B- closed/valley, C- closed/plateau, D- open/plateau, 

188 E- open/slope and F- open/valley. We did not include site covariates for PAM, as acoustic 

189 sensors were only deployed in one type of location.

190 For the CT dataset, variables that could influence the detectability were the number of camera-

191 trap days a camera was functioning during a SO (henceforth ‘days’), and whether the camera 

192 was set-up on a systematic or targeted deployment (henceforth ‘method’). For the PAM dataset, 

193 variable that could influence the detectability was the number of 30-min occasions the sensors 

194 were recording (henceforth ‘hours’). For both datasets, we included the seasons (early and late 

195 wet, early and late dry) as a covariate. We defined the beginning of the dry season as the first 

196 week with no rain (i.e. from 16th of May) and the beginning of the wet season the first week 

197 with rain (i.e. from 14th October).

198 Camera trap days and acoustic sensor hours covariates were z-transformed to a mean of 0 and 

199 standard deviation of 1 before running the models.

200

201 c. Model selection

202 To determine the factors that best explained chimpanzee detection, we compared all possible 

203 combinations of covariates that can influence the detection probability, p. Akaike weights were 

204 used to evaluate the weight of evidence for each model and were summed for all models 

205 containing each predictor variable. Variables resulting in high summed model weights were 

206 considered more important in explaining heterogeneity in detection. For CT we first considered 

207 covariates for chimpanzee detectability (p) while keeping occupancy (Ψ) constant and 

208 evaluated the best model. We included season, camera placement and days as covariates. Then 

209 we evaluated the effect of the vegetation and topography on chimpanzee occupancy. For PAM, 

210 we evaluated the effect of seasonality on chimpanzee detectability (p), by evaluating the best 

211 model based on the AIC values.
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212 ‘occu’ models produce estimates with lower and upper bounds for both occupancy and 

213 detection probability on the logit scale. Hence, values were transformed to the original scale 

214 using the functions ‘predict’ of the package “Unmarked” (Fiske & Chandler, 2011). 

215 To assess goodness-of-fit of the models, we used the parametric bootstrap procedure 

216 (MacKenzie & Bailey, 2004) with the function ‘parboot’ from “unmarked” package (Fiske & 

217 Chandler, 2011), using 1000 simulations. We found no indication of lack of fit for our best 

218 models (P > 0.05).

219 With the estimation of the detection probability (p), it is possible to estimate the necessary 

220 number of sampling visits (N) to infer chimpanzee absence (Kéry, 2002). The probability α to 

221 not detect a chimpanzee after N visits is: α = (1-p) N (McArdle, 1990; Kéry, 2002).

222 Thus, for α=0.05, corresponding to a confidence level of 95%, the minimum number of 

223 sampling visits Nmin is:  (Kéry, 2002).Nmin =  log(0.05)/log(1 ― p)

224 We estimated the number of trap days corresponding, by multiplying Nmin by eight for CT and 

225 PAM given that one visit corresponds to eight CT days.

226 All analyses were conducted in R studio version 1.2.1335; R Core Team, 2018; available online 

227 at: https://www.r-project.org) and maps were created in QGIS version 3.6.2 Noosa; QGIS 

228 Development team, 2018; available online at: http://www.qgis.org).

229

230 Results

231 1) Visual vs acoustic detections

232 For the total duration of the study, the cameras were functional for 11,342 camera days across 21 

233 systematic CT and 32 targeted CT. It resulted in 3349 chimpanzee videos. 125 videos were recorded on 

234 12 systematic cameras and 3224 on 32 targeted cameras (table 1). The acoustic sensors recorded for 5316 

235 cluster hours (15344 sensors hours). Of the 10632 30-min occasions analysed, at least one detection has 

236 been detected in 1024 occasions (9.6%) and detections have been made on all sites surveyed. Calls have 
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237 been made at each hour of the day with a higher proportion early morning (6am and 7am). Both methods 

238 reveal a similar strict pattern of seasonal detection with a peak in detections during the late dry and early 

239 wet seasons (Fig. 3).

240

241 2) Factors influencing detectability

242 The best model to predict chimpanzee detectability for PAM comprised season as a covariate 

243 (Table 2). The best model to predict chimpanzee detectability for CT comprised all covariates: 

244 days, season and camera placement (Table 2) and was strongly supported (Σw > 0.95; ΔAIC < 

245 2) (Burnham & Anderson, 2002) and ranked higher than the constant model (ΔAIC = 148.64). 

246 Vegetation/topography had no significant effect on chimpanzee occupancy.

247 Detection probabilities were lower during the late wet and early dry seasons and higher during 

248 the late dry and early wet seasons (Fig. 4). Detection probabilities were higher for the targeted 

249 placement compared to the systematic placement.

250 To infer chimpanzee absence with a confidence level of 95%, the number of trap days required 

251 was lower for PAM during the late dry and early wet seasons (Fig. 5). 

252

253 Discussion

254 CT and PAM methods revealed similar patterns of chimpanzee spatiotemporal 

255 distribution, with peaks of detections by both methods occurring in the same valleys in function 

256 of the seasons. However, when we compared the deployment duration required of each method 

257 to infer chimpanzee absence at a confidence level of 95%, PAM was superior, with only ten 

258 and fifteen days needed during the late dry and early wet seasons, respectively. Alternatively, 

259 CT required up to five times longer (e.g. 51 and 33 days for the late dry and early wet seasons, 

260 respectively, in an area of known for chimpanzee presence – ‘targeted placement’) at the same 

261 times of year. Detection probabilities varied as a function of season, with higher vocal and 
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262 visual detections during the late dry and early wet seasons. We first discuss the efficiency of 

263 both methods, explore the ecological and social factors that can explain seasonal variability of 

264 detection, and then evaluate the advantages and limitations of these methods.

265

266 3) Efficacy of PAM and CT in chimpanzee detection

267 If we define efficacy as the shortest amount of time needed to detect a chimpanzee, PAM was 

268 more efficacious and acoustic detection rates were higher. The finding is similar to other studies 

269 comparing acoustic and visual methods in detecting southern right whales (Eubalaena 

270 australis), sika deer (Cervus nippon) and Japanese macaques (Macaca fuscata) (Rayment, 

271 Webster, Brough, Jowett, & Dawson, 2018; Enari, Enari, Okuda, Maruyama, & Okuda, 2019). 

272 This is likely due to the detection area with PAM being far larger than with CT, estimated to be 

273 up to 7000 times greater than those for CT in the study from Enari, Enari, Okuda, Maruyama 

274 & Okuda (2019). 

275 Detection probabilities were higher on a targeted camera trap placement compared to a random 

276 placement, as expected. This suggests that when using the CT method, a pre-survey to find any 

277 feeding trees or animal paths will maximise the chance to capture an animal.

278

279 4) Ecological and social factors influencing detectability

280 We can assume that acoustic and visual detectability are influenced by party size. Indeed, 

281 parties with more chimpanzees call more often (Fedurek, Schel, & Slocombe, 2013). Likewise, 

282 there is a greater likelihood of chimpanzees being visually recorded on the cameras as party 

283 size increases. The variation in detection probabilities across seasons is likely due to seasonal 

284 differences in social grouping and ranging patterns. 

285 At Issa, for example, mean dry season party size is nearly twice that of the wet season 

286 (unpublished data). In our study, we found higher detectability during the late dry and early wet 
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287 seasons. Fruit availability itself might not explain party size fluctuation but rather the interaction 

288 of food availability and food distribution. 

289 The presence of females showing full swellings is another important factor that 

290 influences party size, with parties larger when a swollen female is present (Sakura, 1994; 

291 Wallis, 1995; Mitani, Watts, & Lwanga, 2002). Furthermore, male chimpanzees become more 

292 aggressive when they are in a party with oestrous females (Sobolewski, Brown, & Mitani, 2013) 

293 and are therefore more vocal (i.e. more vocalisations because fighting) (Fedurek, Donnellan, & 

294 Slocombe, 2014). At both Issa and Gombe National Park, females show full swellings more 

295 often during the late dry season (Gombe: Wallis, 1995; Issa, unpublished data). Consequently, 

296 these extrinsic factors may explain the higher detection probability during the late dry season, 

297 both by PAM because of the increased calling behaviour and CT, because parties are larger 

298 overall. 

299

300 5) Potential applicability to other studies, advantages and limitations

301 This study confirms the applicability and potential of PAM compared to CT to detect 

302 chimpanzees. The methods used here are highly applicable to other loud-calling species, such 

303 as elephants (Wrege, Rowland, Keen & Shiu, 2017), gibbons (Kidney et al., 2016), howler 

304 monkeys (Aide et al., 2013), and could also be applied to insects or frogs (Aide et al., 2013). 

305 Species behaviour plays an important role in detection and should be taken into consideration 

306 during study design. For instance, deer detectability will be higher during the rutting season 

307 (Enari, Enari, Okuda, Maruyama & Okuda, 2019), just as we might be seeing for chimpanzees 

308 as well.

309 Despite PAM requiring less deployment time to confirm chimpanzee absence in this study, the 

310 limitations of the method are significant. In contrast to camera traps that record only when a 

311 detection is made, acoustic sensors record all sounds, continuously or on a pre-determined 
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312 schedule. This generates enormous datasets and sophisticated, big data processing and analyses 

313 are required to post-process (e.g. filter) sounds of interest (See below; Knight et al., 2017). Data 

314 storage can be problematic as well for both methods. Another challenge is power, with regular 

315 visits needed to maintain the system. However, with only a few days required to detect a 

316 chimpanzee combined with the development of new low cost sensors that can be recharged with 

317 solar panels (e.g. Beason, Riesch, & Koricheva, 2018; Hill et al., 2018; Nazir et al., 2017; Sethi, 

318 Ewers, Jones, Orme, & Picinali, 2018), current challenges are already being overcome. Lastly, 

319 without automated detection, analyses of PAM and CT data are extremely time-consuming and 

320 so not advisable when conducting regular surveys. For instance, in this study with 10 days 

321 required for PAM to infer chimpanzee absence, this correspond to 1120min of manual 

322 processing (10 (days)*14 (audio files per day) *2 (minutes to process one audio file) *4 

323 (sensors)). In the past few years, major improvements in automated species detection algorithms 

324 have transformed the way big data are analysed (e.g. Clink, Crofoot, & Marshall, 2019; Knight 

325 et al., 2017; Wrege, Rowland, Keen, & Shiu, 2017). Different methods of machine learning 

326 (e.g. neural networks) are available, see the review from Bianco and colleagues (2019) for more 

327 details. A manual validation to clean false positives is, however, necessary (e.g. Campos-

328 Cerqueira, Aide, & Jones 2016; Crunchant et al., 2017; Enari, Enari, Okuda, Maruyama & 

329 Okuda 2019; Kalan et al., 2015) to control for false positives. With species with high call 

330 variabilities, like chimpanzees, developing an algorithm is more challenging but as technology 

331 improves rapidly, we can expect the development of a detection algorithm in the near future. 

332 Lastly, these two approaches offer complementary information, and methods should be used in 

333 accordance with particular objectives. For instance, CT allows for individual identification, 

334 necessary to extract information on population abundance (e.g. Després-Einspenner et al., 

335 2017).
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336 Similar to PAM, new technologies such as drones can offer an aerial perspective and provide 

337 real-time feedback for rapid surveys (Wich & Koh, 2018). By combining these two promising 

338 technologies, otherwise labour and time intensive species monitoring is on the cusp of being 

339 revolutionised by remotely recorded sounds with drone-mounted microphones. If the major 

340 drawback for using UAV in acoustic biomonitoring is the excessive UAV noise that can mask 

341 the targeted sound, new methods are already in progress, such as the development of signal 

342 processing algorithms that reduce noise in recording (Hioka, Kingan, Schmid, McKay, & Stol, 

343 2019).

344

345 Conservation applications

346 Regular surveys and monitoring are crucial for evaluating conservation efforts aimed at 

347 impeding the global decline of great apes and overall biodiversity. Developing an accurate and 

348 time-effective method of surveying animals especially in remote areas is critical. Here we 

349 demonstrated the usefulness of PAM compared to CT to evaluate the absence of an endangered 

350 species. The continuing development of new technologies and the increasing inter-disciplinary 

351 collaboration between engineers, field ecologists and bioinformaticians are driving new 

352 affordable and effective biomonitoring methods. The dramatic improvements in biomonitoring 

353 techniques over the last decade are altering the way we remotely study wildlife distribution by 

354 helping to plan surveys (e.g. Hodgson et al., 2018), identify hotspots and prioritize patrols (e.g. 

355 Hambrecht, Brown, Piel, & Wich, 2019), and how we monitor the wildlife response to ever-

356 increasing anthropogenic disturbance to their environments (e.g. Buxton, Lendrum, Crooks, & 

357 Wittemyer, 2018). 

358
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605 Tables

606

607 Table 1: Summary of the visual and acoustic deployments

CT
systematic targeted

PAM

Number of sensors 21 32 12
Detection distance/sensor (m) Max. 29 Max. 29 500
Trap days (per CT or acoustic 
cluster)

217.1 [147-260] 211.9 [66-280] 68.2 [55-75]

Number of sites with detections (CT 
or acoustic cluster)

12 32 12

Total detections (videos or 30min 
audio files)

125 3224 1024

Average trap days with a detection 
(% per CT or acoustic cluster)

1.94 [0-13.8] 8.33 [0.4-22.1] 38.9 [24.6-52.8]

608

609

610 Table 2: Summary of occupancy modelling for the best models

Models # Parameters AIC Δ AIC weight
PAM
p(season+hours) Ψ(.) 6 135.17 0.00 1
p(season) Ψ(.) 5 161.64 26.47 1.8*10-6

p(hours) Ψ(.) 3 173.15 37.98 5.7*10-9

p(.) Ψ(.) 2 188.68 53.51 2.4*10-12

CT
p(season+method+days) 
Ψ(vegetation/topography) 12 1507.38 0.00 0.95

p(season+method+days) Ψ(.) 7 1513.33 5.95 0.049
611

612
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Figure 1: Study site and camera trap locations (targeted and systematic placements) in Issa Valley, Western 
Tanzania. 
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Figure 2: Location of acoustic sensors: each set-up (A, B, C, D) remained two weeks before being rotated to 
another one. Detectability is the area where a call can reach a sensor, defined as a 500m buffer around a 

sensor. 
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Figure 3: Heatmap of chimpanzee detections (proportion of recording days with at least one detection, call 
or video) for the CT (A) and PAM (B) datasets, in function of the four seasons, early/late wet and early/late 

dry. 
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Figure 4: Detection probabilities for each method (PAM, systematic and targeted CT) depending on the 
season. Error bars represent upper and lower bounds. 
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Figure 5: Number of trap days necessary to infer chimpanzee absence at a confidence level of 95% in 
function of seasons and methods. Error bars represent upper and lower bounds. 
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