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Abstract Due to the advancement in technologies and excessive usability of
smartphones in various domains (e.g., mobile banking), smartphones became more
prone to malicious attacks.Typing on the soft keyboard of a smartphone produces
different vibrations, which can be abused to recognize the keys being pressed, hence,
facilitating side-channel attacks. In this work, we develop and evaluate AlphaLog-
ger - an Android-based application that infers the alphabet keys being typed on a
soft keyboard. AlphaLogger runs in the background and collects data at a frequency
of 10Hz/sec from the smartphone hardware sensors (accelerometer, gyroscope and
magnetometer) to accurately infer the keystrokes being typed on the soft keyboard
of all other applications running in the foreground. We show a performance anal-
ysis of the different combinations of sensors. A thorough evaluation demonstrates
that keystrokes can be inferred with an accuracy of 90.2% using accelerometer,
gyroscope, and magnetometer.
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1 Introduction

Recent expansion in mobile technology has brought about the enhancement of di-
verse and more powerful sensors-based smartphones that are used for daily activi-
ties, such as communication, social interaction, business, and financial transactions
(Cook 2010; Deb et al. 2020). Smartphones are embedded with numerous sensors,
including Global Positioning System (GPS), audio sensors, motion sensors, light
sensors, position sensors, and temperature sensors (Voicu et al. 2019). The avail-
ability of readings from these sensors creates exciting new applications, such as
remote health monitoring (Hussain et al. 2016), and new concerns for security ex-
perts. Since smartphones contain potentially sensitive personal information about
the user’s activities, attackers are also investing huge amounts of time and effort
to create malicious applications to acquire the victim’s data (Lanette and Mazma-
nian 2018). According to a study (Cai and Chen 2011), the W3C DeviceOrientation
Event Specification allows applications to access smartphone hardware sensors us-
ing Javascript that is supported by both Android 3.0 and iOS 4.2. The Android
platform allows applications to read from a vast variety of smartphone sensors,
while iOS has a much stricter policy that allows few third-party applications to
read hardware sensors. In terms of human-computer interaction, the keyboard is
the key input device used to input data and commands in smartphones. Key-
boards are commonly used to enter personal data such as PINs, passwords, and
credit card information other than the usual text (such as text messages, emails,
etc.) (Kucukyilmaz et al. 2008; Tang et al. 2014). However, this utility can make
the smartphones vulnerable to attacks such as keylogger side-channel attacks (Hus-
sain et al. 2016). In these attacks, hackers can make users install malicious apps,
integrated with keyloggers, to record the keys a user types on a soft keyboard.
The leakage of such information can cause serious damage and may lead to loss of
confidential information, or financial loss.

Accelerometer and gyroscope readings can be easily accessed using Javascript (Cai
and Chen 2011) which is supported by both Android and iOS systems. In this pa-
per, we introduce AlphaLogger, which has the capability to infer the soft keys of
smartphones using motion sensors. Once the user installs AlphaLogger and grants
it the motion sensor privilege, it starts the process of sensing motions and inferring
keystrokes. We use accelerometer, gyroscope, and magnetometer readings to detect
user keystrokes to emulate side-channel attacks. We observe that by using these
sensor readings a learning model can easily be trained to accurately determine
soft keyboard inputs on an Android device. We develop an Android-based appli-
cation called AlphaLogger that is installed on a user’s smartphone. A wide variety
of smartphones are available in the market, we make this application run-able for
Android-based smartphones.

Although there exist several studies (Ping et al. 2015; Cai and Chen 2011),
which look at keystroke inference using smartphone sensors, they lack in pro-
viding promising results in regards to achieving higher accuracy when classifying
keystrokes. Moreover, they do not consider the keystroke inference across applica-
tions (Ping et al. 2015). The results gained from the experimentation of the pro-
posed approach demonstrate a superior performance with an accuracy of 90.2%
as compared to the state-of-the-art.

To this end, the main contributions of this paper are as follow:
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1. We develop AlphaLogger, a systematic and functional application that demon-
strates the feasibility of inferring soft keyboard inputs accurately from smart-
phone sensor readings.

2. We develop a dataset of ten users using different Android smartphones, which
provides the diversity to the inferring model to infer the alphabets typed by
the smartphone user.

3. We evaluate AlphaLogger using state-of-the-art machine learning techniques,
including Ensemble Adaboost, Ensemble Voting, Decision Tree (J48), Sequen-
tial Minimal Optimization (SMO) and Multilayer Perceptron (MLP). Our re-
sults show that the AlphaLogger achieves better accuracy than the state-of-
the-art.

The paper is organized into five sections. Section 2 briefly covers the technical
background and recent advancements in side-channel attacks. Section 3 presents
the overview of the proposed Alphaloger application. The experimental set up and
results are articulated in Section 4. Finally, Section 5 concludes the paper and
identifies directions for future work.

2 Related Work

In research literature, side-channel attacks have been studied ranging from tra-
ditional desktops (Vuagnoux and Pasini 2009; Zhuang et al. 2009; Foo Kune and
Kim 2010) to smartphones (Cai and Chen 2011; Xu et al. 2009; Owusu et al. 2012).

Cai et al. (2009) present three studies one after another to examine the motion-
based side-channel attacks. In their study, the authors inspect the security ramifi-
cations of implicit sensors in smartphones. They talk about a general structure of
protection against sensor-sniffing attacks. The work demonstrates the more com-
mon sensors such as GPS, cameras, and mouthpieces. The same authors present
their first study in (Cai and Chen 2011) to discuss motion-based side-channel at-
tacks. The authors present an Android application called TouchLogger to show
the vulnerability of a side-channel attack. TouchLogger utilized machine learning
algorithms to infer keystrokes using the gyroscope sensor’s reading. The work was
assessed on an HTC Evo 4G smartphone in the landscape mode utilizing a numeric
keypad. TouchLogger accurately inferred over 70% of keystrokes.

Owusu et al. (2012) present an application to detect keystrokes that divide
the smartphone screen into multiple zones and keystroke were inferred using the
tapped zone. They use a single accelerometer to infer the readings of a motion sen-
sor. They reported that dividing the smartphone screen into eight zones produces
the prediction accuracy of 24%. Xu et al. (2012) perform the online training and
classification to track the motion readings. They focused on the numeric keypad
to extract pins and passwords. They focus on two types of attacks: the number is
written while pressing during a phone call and the other was the lock screen pass-
word. They use an accelerometer and gyroscope to collect data for this process.
They show that the best PIN inference can be done when a PIN consists of four
digits. In Aviv et al. (2012), the authors focus on two modes of passwords: Pin-lock
and swipe password. This study was carried out on 24 individuals for each mode.
A total of 12 individuals were considered to type the PIN and provide the swiped
password using four smartphones. They use a single accelerometer sensor for data
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collection. Their study yield an accuracy of 43% when an individual was sitting
while typing. They report an accuracy of 20% for the PINs and 40% for the swipe
patterns within 5 attempts in a random environment. Ping et al. (2015) present
a study for a longer information derivation, for example, chat and email content.
They achieve an accuracy of 36% using ensemble learning of four algorithms: Sim-
ple Logistic, Random Forest, SMO, and k-Nearest Neighbor. Song et al. (2018)
present an algorithm to extract frequency domain features from a motion sensor
raw readings to infer the keystroke on a smartphone. Their study reports that
PINs and passwords can be inferred efficiently in complex scenarios even when
the frequency rate is lower than 80Hz. They report the overall accuracy of 74.6%.
A similar study presented by Tang et al. (2018) for inferring user-independent
keystrokes to unlock a smartphone. They use a probabilistic model to classify the
keystrokes and used the angle of keystroke movements to show the trends in a
dynamic environment. They report an accuracy of 70% and 85% in 10 attempts
for both user-dependent and user-independent scenarios.

Shumailov et al. (2019) present a study to infer the typed keys on the soft
keyboard of the smartphone. They used acoustic signals to predict the typed soft
key. They show that the microphone is capable to hear low sound waves which can
be translated to recover the alphabet. In results, they show that their approach
recovers 61% of the alphabets. Another study by Wang et al. (2019) shows that
how a password can be inference using an eye pattern. They use the smartphone’s
front camera to record the pattern of the user’s eyes. They use these patterns to
infer the typed password.

Authors in different studies discussed various verification and theft anticipa-
tion schemes to counter security attacks. For example, Ali et al. (2018) propose
a three-factor based remote client confirmation convention for wireless medical
sensor networks to manage off-line password guessing attack, client impersonation
assault, session-key temporary information attack and the disclosure of secret pa-
rameters. Xu et al. (2019) present an elliptic bend cryptography (ECC) based
three-factor authentication scheme for enhancing security in multi-server environ-
ments. Kuppusamy (2019) propose two transformations of the password termed
as ”PassContext” and ”PassActions”, to counter vulnerabilities in plain-content
secret phrases by utilizing the complexities of human-computer association. Ruan
et al. (2019) proposed a security planning model for the Three-party password-
based authenticated key exchange (3PAKE) protocol conventions that is vulnera-
ble to leakage attacks.

In summary, the accuracy reported in the past papers is quite low and is
limited to recognize keystrokes within the applications. Some previous work focuses
more on dividing the screen into multiple zones, which fails when the size of a
screen varies from device to device. Our proposed framework is highly accurate
and supports cross-application keystroke recognition using fused sensors technique.

3 AlphaLogger

This section presents the steps of our proposed approach; keystroke data collection
and pre-processing, feature generation and transformation, tap event detection and
then machine learning algorithm for inferring keystrokes, as illustrated in Figure 1.
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Fig. 1: Block Diagram of the AlphaLogger

3.1 Keystroke Data Collection and Pre-processing

The data collection task is controlled by an application we created that is installed
on an Android-based smartphone. We collect data from 5 different smartphones
and ten participants: Oppo F3, Oppo F1, Samsung J7, Samsung Grand Prime
and Huawie Honor. The typing process is performed by the participants during
the standing and sitting positions. These are the most commonly used postures
with minimum noise generally caused by the body movement. Throughout the
experimentation phase, the portrait mode is used, and the participant is asked to
hold the smartphone with both hands and type with thumbs. The data collection
is performed with a focus on what data to collect and how frequently it needs
to be collected. The data is collected at a fixed sample frequency of 30 samples
per second as recommended by (Kwapisz et al. 2011; Krause et al. 2005). The
collection duration was approximately 2-3 minutes to catch all signals.

The dataset consists of sensor events generated while typing alphabets on a
smartphone keyboard. Each smartphone contains various hardware sensors. Some
smartphones of our participants were not equipped with the magnetometer sen-
sor and some smartphones were used without the gyroscope sensor. To address
this, multiple models are trained: one on the dataset containing raw accelera-
tion readings, and the others are based on readings in combination with other
sensors (magnetometer and gyroscope) (see Table 1 for more details). Each alpha-
bet is typed continuously for approximately 2-3 minutes, and all the readings are
recorded in a comma-separated file (CSV). To ensure that the recorded readings
are well-structured, we assign a timestamp to each reading. In this way, the dataset
consists of 26 alphabet files.
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3.2 Feature Extraction

We transform raw data to a sensor event window. We select a window of 500
samples from each file of each participant. The selected window is diverse enough
to capture all the required readings to apply classification methods. We assign
labels manually according to the alphabets being pressed as a ground truth. This
enables us to correctly map and record the sensor measurements along with the
corresponding alphabets being pressed. Later, a feature matrix based on 130,000
raw sensor data readings is generated where each reading contains 3-axis of all the
three sensors.

3.3 Machine Learning Model

We use the extracted features to build a machine learning model. We decided to use
the Weka (Hall et al. 2009) toolkit for training our model to infer the keystrokes.
Inference refers to the classification of the alphabets. We use machine learning
techniques: Decision Tree (J48), Sequential Minimal Optimization (SMO), and
Multilayer Perceptron (MLP) and meta-classifiers Ensemble Adaboost and Ensem-
ble Voting for supervised classification. The choice of machine learning techniques
depends on the size of data. Some techniques require a large amount of data, and
some can work well with significantly less. Some techniques are designed to work
with categorical data and some to work only with numeric data. We use these algo-
rithms to justify the keystroke inference accuracy and results as these algorithms
belong to different categories and have a different structure. All these algorithms
provide a similar inference accuracy that justifies our approach. We describe the
working of algorithms in the following subsections.

– Decision Tree (J48): This classifier builds the decision tree based on their
information gain and entropy (Hall et al. 2009). Data is split on each node into
subsets based on the highest information gain. A stopping condition is made to
stop splitting the tree to control the depth of a tree when the required results
are achieved. There are two measures in decision tree: Entropy and Information
Gain. For best performance, entropy should be low and information gain should
be high. Entropy is calculated as:

Entropy = H(T ) = IE(k1, k2, ..., kJ) = −
J∑
i=1

ki log2 ki (1)

where Ki is the probability of class i in the database. H (feature) is the entropy
that measures the degree of ”impurity”. In the dataset, noisy sensor readings
that typically occur before and after keystroke, are referred to as impurity.
Impurity produces misleading information in the keystroke inference process.
The amount of impurity can be estimated by examining H. The value of H
closer to 0 means the lesser the impurity in the dataset. A good feature provides
high information gain and less entropy.

IG(Fi) = H(C)−H(C|Fi) (2)

To measure the information gain of a feature Fi, IG is calculated as per equa-
tion (2) where C represents different classification classes, and Fi represents
different features in the dataset.
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– Sequential Minimal Optimization (SMO): The Support Vector Machine
(SVM) algorithm uses the quadratic programming (QP) as an inner loop due
to which SMO breaks QP into a series of small QP problems (Platt 1998).
It solves the smallest possible optimization sub-problem analytically at each
step. The benefit of using SMO is that QP optimization can be avoided entirely
which makes it fast to solve sub-problems. The optimization function is given
by:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjK(xi, xj)αiαj ,

subject to :

0 ≤ αi ≤ C, for i = 1, 2, ..., n,
n∑
i=1

yiα1 = 0

(3)

where C is a SVM hyper-parameter and K(x− i, x− j) is the kernel function,
both supplied by the user; and the variables αi are Lagrange multipliers. In
SMO two multipliers are solved first. In the case of SVM, the constraints are
changed to the following:

0 ≤ αi, αi ≤ C
y1α1 + y2α2 = K

(4)

– Multilayer Perceptron (MLP): MLP is a network of perceptron (Hall et al.
2009). MLP trained with backpropagation algorithm is used for data mining.
It uses backpropagation to learn a multilayer perceptron to classify instances.
It consists of an activation function, an input layer, hidden layers and output
layer which are connected. Each connection consists of a weight. Each node
measures the weighted sum of all the inputs and uses threshold model data.
Below are the two activation functions: tanh and sigmoid.

y(vi) = tanh(vi) and y(vi) = (1 + e−vi)−1 (5)

The node weights are adjusted based on the corrections that minimize the error
in the entire output, given by

E(n) =
1

2

∑
j

e2j (n) (6)

where weight can be updated using gradient decent. The gradient decent func-
tion described using the equation:

∆wji(n) = −η ∂E(n)

∂vj(n)
yi(n) (7)

where yi is the output of the previous perception and η is the learning rate.
– Ensemble Voting: We use voting ensemble method (Dietterich 2000) for cog-

nitive health classification. It can be used for both supervised and unsupervised
learning. It consists of a base classifier and sub-classifiers. Each model makes a
prediction and these predictions are combined by several methods like majority
voting, average, mean, mode, etc. We picked J48 (Hall et al. 2009), K-nearest
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neighbor (kNN) (Altman 1992), SMO (Platt 1998) and MLP (Hall et al. 2009)
for voting predictions and used majority voting rule to evaluate results. We
got the best results using information gain feature selection, SMOTE data
balancing and Adaboost classifier.

– Ensemble AdaBoost: AdaBoost is an ensemble method (Dietterich 2000;
Graczyk et al. 2010) that works on nominal class attributes for classification.
It boosts the performance of weak learner algorithms. It tries to overcome the
prediction error made by the classification model. AdaBoost greedily minimizes
exponential loss which is defined as:

FT (x) =
T∑
t=1

ft(x) (8)

where each ft represents the weak learner that takes an object x. The error is
given by:

Et =
∑
i

E[Ft−1(xi) + αth(xi)] (9)

where h(xi) is the hypothesis that is created by each weak leaner. αt is the
coefficient assigned to each weak learner such that the sum of training error is
minimized.

4 Evaluation

The experimentation first requires the labeled raw data from all the sensors dis-
cussed in Section 3.1, and then transform this data into examples. We collect
labeled data from smartphone sensors and then preprocess this data to remove
the noise present at the start and end of the dataset. The noise is created at the
time when the sensors start acquiring readings exactly when the application comes
to play in the foreground. The experimentation is performed using the WEKA data
mining tool (Hall et al. 2009) using Ten-fold cross-validation.

We show the results when an accelerometer is used alone, when it is used in
combination with the magnetometer, when it is used in combination with mag-
netometer and gyroscope, when it is used in combination with the gyroscope and
when only the accelerometer readings are used, to show the effectiveness of this
additional step. We collect keystrokes data on an alphabet-only soft keyboard. The
dataset consists of multiple sessions containing 100 to 200 consecutive keystrokes
which are about 2-4 minutes continuously. The datasets contain all the 26 keys
of the smartphone keyboard. We use these keystrokes dataset to train and evalu-
ate AlphaLogger. To explore a distinct typing environment, the participants were
asked to type in two environments, first, writing text messages in the default mes-
saging application and other is posting emails via Gmail. Both types of messages
are sensitive and private.

4.1 Simple Pattern Analysis

Pattern analysis is an efficient way to understand the behavior of a particular
feature. A feature is good if it is consistent among signals produced by the same
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keystroke while being distinctive between signals caused by different keystrokes in
the case of each hardware sensor: accelerometer, gyroscope, and magnetometer.
Figure 2, 3 and 4 describes the analysis of each signal produced by each sensor.
We analyze different cases, their strengths, weaknesses and why there is a low
performance of our model when it uses with the only accelerometer and when it
is used in combination with other sensors.

Figures 2a, 2b, 2c respectively show the pattern of three-axis of accelerometer
Ax, Ay, Az. It does not show a unique pattern against each character which is the
reason for the lower performance of this model and Az does not contribute in im-
proving the performance of the classifier as it shows the z-axis of an accelerometer
which is usable in the case when there is rotation while pressing keys. Further-
more, when we use the accelerometer in combination with magnetometer it starts
showing a unique pattern for each character, which results in an improvement in
the performance of our model.

(a) Unique Accelerometer Ax Dimension Pattern

(b) Unique Accelerometer Ay Dimension
Pattern

(c) Unique Accelerometer Az Dimension Pat-
tern

Fig. 2: Unique pattern illustration Accelerometer showing the variation of readings
on each keystroke.
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In the case of the gyroscope all combination scenarios, it has a negative impact.
The gyroscope returns three-axis reading according to the gravitational pull along
the x-axis, y-axis, and z-axis. In our particular case, there are no chances of rotation
that is why it does not shows promising results as shown in Figures 3a, 3b, 3c.

(a) Gyroscope Gx Dimension Pattern

(b) Gyroscope Gy Dimension Pattern (c) Gyroscope Gz Dimension Pattern

Fig. 3: Pattern illustration of Gyroscope showing the variation of readings on each
keystroke.

The magnetometer sensors show unique behavior along the three axes in figure
4a, 4b, 4c. Magnetometer contributes to enhancing the inference rate when it is
used with the accelerometer.
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(a) Unique Magnetometer Mx Dimension Pattern

(b) Unique Magnetometer My Dimension Pat-
tern

(c) Unique Magnetometer Mz Dimension Pat-
tern

Fig. 4: Pattern illustration of Magnetometer showing the variation of readings on
each keystroke.

4.2 Typical Pattern Analysis

Keystrokes can be inferred using device orientation while typing on the smart-
phone screen. Typing a specific word produces a particular vibration in a specific
direction which causes the change in the axis of smartphone orientation which can
be analyzed using the accelerometer sensor. We extract typical patterns for each
alphabet on a soft keyboard as shown in Figure 5b. For each event accelerom-
eter data consists of three-axis (αj , βj , γj) , j = 1,..., n, where αjrepresents the
azimath, βj represents the pitch, γj represents the roll angles.

– β : represents the rotation along x-axis. β (pitch angle) produces variations in
between the range of [−180, 180].

– γ : represents the rotation along the y-axis. γ (roll angle) produces variations
in between the range of [−90, 90].
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Device orientation depends only on two measures: β and γ therefore we drop
the α also known as azimuth feature. We estimate each tap event using peak to
average as typing on smartphone causes vibration which produces a peak and then
it goes down to the average.
Figure 5b shows that each alphabet represents a unique pattern. We observe that
the angle between lobes can be used to distinguish the typed alphabet from others.
AU is the angle between an upper vertex and AL is the angle between the lower
vertex. AUB illustrates the angle of the upper bisector and ALB represents the
angle of the lower bisector. This analysis helps to understand the flow of vibration
when a particular keyboard is pressed along all axis of each sensor. It is seen that
the z-axis of the accelerometer sensor does not contribute to understanding the
flow of vibration. Each alphabet, when pressed continuously, produces repetitive
behavior.

(a) Pitch angle of alphabet A
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(b) Pitch angle of all other alphabets

Fig. 5: Pattern analysis of different angles when alphabets are pressed.

4.3 Results and Discussion

To evaluate the performance of AlphaLogger, we use Accuracy, Precision, Re-
call, F-Value, and Area Under Curve (AUC) as evaluation metrics (Hall et al.
2009). Accuracy represents the overall correctly predicted instances, and is given
as TP+TN

TP+TN+FP+FN , where TP represents the true positive which in our case are
the number of examples predicted true that are actually true, TN number of
examples predicted negative that are actually negative, FP represents number
of examples predicted positive that are actually negative and FN represents the
false negatives. Since our dataset contains imbalanced class representation, we also
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considered Precision, Recall, and F-Value to determine the performance of our pro-
posed methodology. Where Precision and Recall are calculated using TP

TP+FP and
TP

TP+FN respectively, While F-Value is the weighted average of the Precision and

Recall and is given as 2× Precision×Recall
Precision+Recall . Moreover, AUC represents the degree

or measure of separability. The AUC shows how sensitivity and specificity vary at
every possible threshold.

The result of our proposed keystroke inferring techniques is presented in Table
1 illustrating shows the predicted F-Value. AlphaLogger achieves an accuracy of
over 90% on a dataset containing magnetometer and accelerometer readings, 86.5%
when accelerometer, gyroscope, and magnetometer sensor readings are used, 59%
when the accelerometer is used in combination with gyroscope and 60.3% when
only the accelerometer readings are used. The keys with the highest inference
accuracy are alphabets a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t,
w and the lowest inference accuracy are alphabets v, x, y, z . Lowest inference
alphabet x, z are located on a corner of the soft keyboard while u and y get
confused with each other. The reason behind this confusion is that participants
typed alphabets while holding mobile with both hands and pressing keys with the
thumb. The location of u and y is difficult to press with thumb as it can be seen
in Figure 5b that they are confused with each other. It is common for the user to
mistakenly press u while pressing y . Highest inference alphabets are consistent as
shown in Figures 2, 3 and 4. We observe that physical location of the alphabets
decreases inference accuracy.

Table 1 describes the accelerometer results when a model is build using read-
ings of accelerometer alone. We observe that using the only accelerometer does
not perform well. A major drawback of using an accelerometer alone is that the
accelerometer sensor gets the reading against each hit on a character. The z-axis of
the accelerometer does not contribute to inferring keystrokes. It might help when
the device rotates along the z-axis. We chose to use it in combination with other
sensors as explained in Table 1 which resulted in increasing the overall performance
of the model.

Accelerometer and gyroscope combination in Table 1 describes the result when
a model is build using readings of accelerometer and gyroscope. We observe that
using an accelerometer reading with a gyroscope does not perform well. It harms
the overall performance of the model as it produces constant readings which con-
fuse the machine learning model in keystroke inference. A major drawback of using
gyroscope with the accelerometer is that the gyroscope sensor provides orientation
information of the device in three axes. In this case, the device is not rotating that
is why it is useless in this particular scenario.

Accelerometer and magnetometer combination in Table 1 describes the result
when a model is build using readings of accelerometer and magnetometer. We ob-
serve that using an accelerometer reading with a magnetometer performs well. A
major benefit of using a magnetometer with the accelerometer is that the magne-
tometer sensor lets you measure the magnetic field around the participant.

Accelerometer, gyroscope and magnetometer combination in Table 1 describes
the result when a model is build using readings of accelerometer, gyroscope, and
magnetometer. We observe that using an accelerometer and magnetometer reading
with a gyroscope does not perform well. It harms the overall performance of the
model. A major drawback of using gyroscope with the accelerometer is that the
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gyroscope sensor provides information about the rotation of the device in three
axes. In this case, the device is not rotating that is why it is not helpful in this
particular scenario.

Table 1: F-Value of Inference Performance of Different Combination of Sensors.

Character Accelerometer
Accelerometer+

Gyroscope

Accelerometer+Gyroscope

+Magnetometer

Accelerometer+

Magnetometer

a 0.206 0.223 1.000 1.000

b 0.227 0.183 1.000 1.000

c 0.798 0.849 0.999 0.999

d 0.967 0.987 0.992 0.990

e 0.961 0.982 0.992 0.990

f 0.738 0.750 0.999 0.999

g 0.531 0.457 1.000 0.999

h 0.966 0.971 0.976 0.986

i 0.918 0.934 0.976 0.934

j 0.999 0.998 1.000 1.000

k 0.766 0.782 1.000 1.000

l 0.942 0.948 0.997 1.000

m 0.966 0.955 0.998 0.999

n 0.887 0.864 0.997 0.999

o 0.586 0.593 0.998 1.000

p 0.466 0.445 1.000 1.000

q 0.158 0.120 0.616 0.821

r 0.528 0.477 0.968 0.978

s 0.977 0.953 0.969 0.979

t 0.821 0.775 0.999 0.999

u 0.302 0.279 0.714 0.865

v 0.253 0.199 0.445 0.600

w 0.184 0.160 0.926 0.977

x 0.191 0.169 0.31 0.414

y 0.127 0.148 0.315 0.464

z 0.2 0.136 0.291 0.391

Average 0.603 0.590 0.865 0.902

Figure 6 shows average results of all the combination of sensors. We found that
results using the reading of accelerometer and magnetometer are better than all
other combination. Gyroscope has negative impact on the inference process.
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Fig. 6: Result Comparison of Different Combination of Sensors.

Figure 7 illustrates the confusion matrix of our machine learning model. We
see that keystrokes in the smartphone keyboard’s last row of alphabet especially
alphabets in the left corner of the keyboard produce confused vibrations while
typing as shown in Figure 7 as well as in Figure 5b showing typical patterns of
each alphabet. This is due to the location of the alphabets on a soft keyboard.
Only 4 keystrokes (x,y,z, and v) are the alphabets inferred with low accuracy while
all other alphabets are inferred with high accuracy.

Fig. 7: 90.2% keystrokes were correctly inferred using Accelerometer in combina-
tion with Magnetometer
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4.4 Comparative analysis of classification algorithms

Multiple machine learning classifiers are trained: J48, kNN, SMO, MLP, Adaboost
and Ensemble voting method for supervised classification to infer keystroke. We
investigate if model could learn the boundary between twenty six alphabet classes
provided using motion data. For parameter tuning, such as K in Equation 3, by
using Radial Basis Function (RBF) kernel AlphaLogger got the result of 88.5% on
the training data of accelereomter and magnetometer. We also train this model
on different kernel functions: puk kernel, normalized puk, poly kernel and different
combination of alpha and omega. When we tune this kernel function to the puk
kernel, alpha and omega to 1.0, 1.0 respectively, we observe an improvement in
accuracy. For kNN, two most important parameters are distance function and
number of nearest neighbor. We chose Euclidean distance as distance function and
K = n nearest neighbors. We tune the value of k and determine that the kNN
is providing best performance when it is used with k=3 neighbors. For decision
tree (J48), we use the confidence factor of 0.1 along with pruning parameter set
to the ”false”. This model is then used to infer the keystrokes. In voting meta
classifier, we use the above setting of the algorithms and chose kNN as the base
classifier, given the highest priority among all other classifiers. Table 2 presents the
comparative results of all algorithms and ensemble voting of five machine learning
algorithms combined with averaging or voting. The result in Table 2 shows the
best accuracy of 90.2% using voting algorithm.

Table 2: Comparison of Different Machine Learning Algorithm Using Combination
of Accelerometer and Magnetometer

Algorithm Precision Recall(%) F-Value Accuracy AUC

J48 0.888 0.888 0.888 0.888 0.967

MLP 0.891 0.891 0.891 0.890 0.964

SMO 0.889 0.880 0.871 0.880 0.991

Adaboost 0.889 0.880 0.871 0.884 0.991

Voting 0.902 0.902 0.902 0.902 0.95

Figure 8 depicts the result comparison of the AlphaLogger using the selected
evaluation metrics: Precision, Recall, F-Value, Accuracy, and AUC. The voting
algorithm outperforms all other machine learning algorithms in all evaluation met-
rics. All other algorithms perform equally in terms of all evaluation metrics. The
only Voting algorithm performs better than all classifiers because it makes the
decision of keystroke inference based on the votes provided by sub classifier: J48,
kNN, SMO and MLP. A decision is made on the majority basis. If a keystroke
is predicted same by majority classifiers then the voting algorithm returns that
decision. The Voting achieves the overall best accuracy of 90.2%.
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Fig. 8: 90.2% keystrokes were correctly inferred using Accelerometer in combina-
tion with Magnetometer

Table 3 depicts the result comparison with state of the art paper (Ping et al.
2015), in which authors report the highest accuracy of 36.2% using ensemble of 4
algorithms: Simple logistic, random forest (RF), SMO and kNN. There are some
similarities in the results of both (Ping et al. 2015) and AlphaLogger, such as the
keys on the smartphone screen located at the corner of the screen are difficult to
classify as shown in Table 3 (like x, y, z, and v). In both studies the accuracy of
these keys are quite low . By using sensor fusion technique AlphaLogger achieves
the highest accuracy of 90.2%.
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Table 3: Accuracy Comparison of AlphaLogger with TextLogger (Ping et al. 2015)

Character AlphaLogger TextLogger

a 100.0 67.9

b 100.0 8.77

c 99.0 31.25

d 99.0 20.31

e 99.0 76.03

f 99.9 10.71

g 99.9 3.64

h 98.6 15.38

i 93.4 51.24

j 100.0 16

k 100.0 24.07

l 100.0 33.8

m 99.9 29.55

n 99.9 36.51

o 100.0 30.68

p 100.0 43.55

q 82.1 57.63

r 97.8 18.42

s 97.9 35.53

t 99.9 43.94

u 86.5 38.27

v 60.0 34.92

w 97.7 24.53

x 41.4 22.03

y 46.4 43.75

z 39.1 16.33

5 Conclusion and Future Work

In this paper, we investigate the use of hardware sensors (such as accelerometer,
gyroscope, and magnetometer) to infer the typed characters on the smartphone
soft keyboard. Although side-channel attacks have been discussed widely in re-
cent studies, the problem of inferring cross-application keystrokes has, so far, been
overlooked. We developed an Android-based application AlphaLogger that is ca-
pable of inferring character while instant writing in any application. An extensive
evaluation showed that the AlphaLogger, we have used works better when sensors
are used in combination with the magnetometer sensor resulting in an accuracy
of 90.2%. We got the promising results as compared to the proceeding work and
show that data leakage from other applications can also be sniffed. We believe that
Alphalogger is significant for inferring important information on a smartphone. In
the future, we plan to use natural language processing (NLP) and text mining
techniques to extract more sensitive information from the inferred text.
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