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This paper addresses fundamental questions arising
in the theory of Bloch–Floquet waves in chiral elastic
lattice systems. This area has received a significant
attention in the context of ‘topologically protected’
waveforms. Although practical applications of chiral
elastic lattices are widely appreciated, especially in
problems of controlling low-frequency vibrations,
wave polarization and filtering, the fundamental
questions of the relationship of these lattices to
classical waveforms associated with longitudinal and
shear waves retain a substantial scope for further
development. The notion of chirality is introduced
into the systematic analysis of dispersive elastic waves
in a doubly-periodic lattice. Important quantitative
characteristics of the dynamic response of the lattice,
such as lattice flux and lattice circulation, are used
in the analysis along with the novel concept of
‘vortex waveforms’ that characterize the dynamic
response of the chiral system. We note that the
continuum concepts of pressure and shear waves
do not apply for waves in a lattice, especially in
the case when the wavelength is comparable with
the size of the elementary cell of the periodic
structure. Special critical regimes are highlighted
when vortex waveforms become dominant. Analytical
findings are accompanied by illustrative numerical
simulations.
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1. Introduction
Elastic lattices are relatively simple systems that exhibit many interesting dynamic properties,
such as wave dispersion, filtering and dynamic anisotropy [1–3]. Due to their discrete nature,
lattice models allow the answer to fundamental questions on dynamic fracture problems,
concerning in particular the analytical prediction of the speed of crack propagation and the
explanation of crack tip instabilities [4–9], that cannot be addressed by using continuum models.
Homogenization theories for discrete systems based on asymptotic techniques have been applied
both in the static [10–13] and in the dynamic [14–17] regimes.

Polarization of elastic waves in continuous media is well studied (see, for example, [18–20]).
Recently, comparative analysis of polarization of elastic waves in a continuum versus discrete
medium has been performed in [21]. It is well known that in a two-dimensional homogeneous
isotropic infinite continuum two types of waves can propagate at different speeds, namely shear
and pressure waves. In the former (or latter) case, the displacement vector is perpendicular
(or parallel) to the wavevector. A triangular lattice approximates an isotropic continuum in the
long wavelength limit or, equivalently, when the modulus of the wavevector tends to zero. For
large values of the modulus of the wavevector, waves generally cannot be classified as shear or
pressure waves. In [21] it was shown that there are directions corresponding to mirror symmetries
where the waves are longitudinally or transversely polarized. In [21] two new quantities have
been introduced, denoted as ‘lattice flux’ and ‘lattice circulation’, to characterize waves in the
triangular lattice for any value of the wavevector. A decomposition of the displacement field has
been proposed, whereby waves are described as a combination of flux-free and circulation-free
components.

In this paper, we study a triangular lattice connected to a system of gyroscopic spinners. In this
case, the trajectories of the lattice particles are not straight lines as in a classical triangular lattice,
but ellipses. In some limit cases, discussed in depth in this work, the ellipses become circles. This
special type of wave will be referred to as a ‘vortex waveform’.

Throughout the present paper, we will refer to the triangular lattice connected to gyroscopic
spinners as a ‘chiral lattice’. According to the original definition by Lord Kelvin [22], an object
is chiral if it cannot be superimposed onto its mirror image. The gyro-elastic lattice considered
here is an ‘active chiral’ medium, in which chirality is brought by the action of the gyroscopic
spinners on the lattice particles. This type of chirality is different from the ‘geometrical chirality’
discussed in [23–26] or from the interfacial wave guiding [27]. Chirality discussed here can be
used in unidirectional wave steering, as in [28,29], to create topological insulators.

The first model of an active chiral lattice was introduced in [30], where both a monatomic
and a biatomic triangular lattice attached to a uniform system of gyroscopic spinners were
studied. Furthermore, the homogenized equations of the discrete system were used to model a
gyroscopic continuum, that was used to design a cloaking device. The monatomic gyro-elastic
lattice proposed in [30] was investigated in depth in [31], with special emphasis on tunable
dynamic anisotropy and forced motions. Gyroscopic spinners were also employed to create
localized waveforms in [32] and in topological protection applications in [33,34]. A hexagonal
array of gyroscopes suspended by springs and magnetically coupled was built in [35], where
unidirectional edge waves were experimentally observed.

Systems embedding gyroscopic spinners have many applications, especially in aerospace
engineering [36–40]. For this reason, the theory of gyro-elastic continua has been developed in
the literature (see, for example, [41,42]). Recently, attaching gyroscopic spinners to elastic beams
in order to modify the dynamic properties of the beams has been proposed in [43,44] and creating
novel low-frequency resonators for seismic applications has been discussed in [45].

The present paper is organized as follows. In §2, the governing equations and the dispersion
relation for a triangular lattice connected to a system of gyroscopic spinners are reviewed. In
addition, the definitions of lattice flux and lattice circulation introduced in [21] are discussed. In
§3, a decomposition of the displacement field in the chiral system is introduced. Moreover, lattice
flux and lattice circulation are used to fully characterize waves propagating in the medium. The
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analysis is performed for the triangular chiral lattice studied in this paper; however, a similar
formulation can be developed for any other type of gyro-elastic lattice, once the corresponding
lattice flux and lattice circulation are derived. In §4, the motion of the lattice for characteristic
values of the wavevector is described. In particular, we show examples of vortex waveforms. In
§5, the dynamic properties of the discrete system for limit values of the parameter characterizing
the spinners are investigated using asymptotic analyses. Finally, in §6, concluding remarks are
provided.

2. Governing equations and definitions
We study an infinite, periodic triangular lattice of particles with mass m, connected by linear
springs of stiffness c, length l and negligible density. Each lattice particle is attached to a
gyroscopic spinner (figure 1a), characterized by the spinner constant α, which is a function of
the geometry of the spinner [30]. The lattice is shown in figure 1b and its elementary cell is
presented in figure 1c. We assume that the effect of gravity is negligible and the nutation angles
θ of the spinners are small, so that the particles move in the x1x2-plane. This is the model system
introduced in [30,31].

(a) Dispersion properties of the chiral lattice
In the time-harmonic regime, the displacement of a lattice particle u(x, t) = U(x)eiωt, where x =
(x1, x2)T is the position vector, t is time and ω is the radian frequency. The displacements of the
particles of the infinite periodic lattice are assumed to satisfy the Bloch–Floquet conditions:

U
(

x + n1t(1) + n2t(2)
)

= U (x) ei k·Tn. (2.1)

Here, n = (n1, n2)T is the multi-index, t(1) = (l, 0)T and t(2) = (l/2,
√

3 l/2)T are the lattice vectors
(figure 1c) and k = (k1, k2)T is the wavevector. The matrix T is given by T = (t(1), t(2)).

The equations of motion of the chiral lattice can be written in the form [30,31][
C − ω2 (M − A)

]
U = 0, (2.2)

where M = diag{m, m} is the mass matrix,

A =
(

0 −iα
iα 0

)
(2.3)

is the spinner matrix and

C = c

⎛
⎝3 − 2 cos(ζ l + ξ l) − 1

2 [cos(ζ l) + cos (ξ l)]
√

3
2 [cos(ξ l) − cos (ζ l)]

√
3

2 [cos(ξ l) − cos (ζ l)] 3 − 3
2 [cos(ζ l) + cos (ξ l)]

⎞
⎠ (2.4)

is the stiffness matrix, where ζ = k1/2 + √
3k2/2 and ξ = k1/2 − √

3k2/2.
We introduce the following normalizations:

x̃ = x
l

, Ũ = U
l

, ũ = u
l

, T̃ = T
l

, k̃ = k l, ζ̃ = ζ l, ξ̃ = ξ l, C̃ = C
c

,

M̃ = M
m

, Ã = A
m

, α̃ = α

m
, ω̃= ω√

c/m
, t̃ = t

√
c
m

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

where the quantities with the symbol ‘∼’ are dimensionless.
The frequency ω̃ and the wavevector k̃ are related by the dispersion relation of the system, which

is given by [30,31] (
1 − α̃2

)
ω̃4 − tr(C̃) ω̃2 + det(C̃) = 0. (2.6)
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Figure 1. (a) Representation of a gyroscopic spinner, where ψ , φ and θ are the angles of spin, precession and nutation,
respectively; (b) triangular elastic lattice connected to a system of gyroscopic spinners; (c) elementary cell of the lattice.
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Figure 2. Lower and upper dispersion surfaces for the triangular lattice in figure 1, calculated for (a) α̃= 0 and (b) α̃ = 0.5.
(Online version in colour.)

When α̃ = 1, equation (2.6) degenerates and hence the dispersion diagrams include only one
dispersion surface. This effect of degeneracy is discussed in detail in [30,31]. When α̃ �= 1, the two
positive solutions of the biquadratic equation in ω̃ (2.6) are

ω̃(1)(k̃, α̃) =

√√√√ tr(C̃) −
√

tr2(C̃) − 4(1 − α̃2)det(C̃)

2(1 − α̃2)
(2.7a)

and

ω̃(2)(k̃, α̃) =

√√√√ tr(C̃) +
√

tr2(C̃) − 4(1 − α̃2)det(C̃)

2(1 − α̃2)
. (2.7b)

We note that ω̃(2) takes imaginary values for α̃ > 1. After calculating the eigenfrequencies

ω̃(j) for a certain wavevector, the corresponding eigenvectors Ũ
(j) = Ũ

(j)
(k̃, α̃) (j = 1, 2) can be

determined analytically from (2.2).
The dispersion surfaces for α̃= 0 (non-chiral case) and α̃= 0.5 are presented in figure 2. The

main effect of the gyroscopic spinners on the dispersion surfaces of the lattice is to decrease (or
increase) the values of ω̃(1) (or ω̃(2)) for a fixed wave vector k̃ [30,31]. For α̃ = 0, the two dispersion
surfaces touch at the Dirac points (k1, k2)T = (±4π/3, 0)T and (k1, k2)T = (±2π/3, ±2π/

√
3)T. For

α̃ > 0, the dispersion surfaces no longer touch so that the Dirac cones are ‘broken’.
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(b) Definitions of lattice flux and lattice circulation
As discussed in [21] for the non-chiral case (α̃ = 0), waves propagating in a lattice can be
characterized quantitatively by using the operators of lattice flux and lattice circulation. These are
defined as (see [21])

Φ̃ũ = i

√
3

2
ũ · f̃ (2.8)

and

Γ̃ũ = −i

√
3

2

(
ũ × f̃

)
· e3, (2.9)

respectively, where e3 is the unit vector parallel to the x3-axis. In (2.8) and (2.9) we have also
introduced the vector f̃ , given by

f̃ =
(

2 sin (ζ̃ + ξ̃ ) + sin (ζ̃ ) + sin (ξ̃ ),
√

3
[
sin (ζ̃ ) − sin (ξ̃ )

])T
, (2.10)

that depends on the geometry of the lattice.
In the long wavelength limit when |k̃| → 0, the lattice approximates a continuum. In this limit,

f̃ ∼ 3k̃. In a continuum, waves where the displacement ũ is perpendicular (or parallel) to the
wavevector k̃ are denoted as shear (or pressure) waves. Substituting f̃ = 3k̃ in (2.8) and (2.9),
we notice that in a continuum shear (or pressure) waves correspond to flux-free (or circulation-
free) waves. For intermediate and large values of the modulus of the wavevector, the continuum
concepts of shear and pressure waves cannot be applied to the lattice. Instead, we will employ
the definitions (2.8) and (2.9) to fully characterize waves propagating in the discrete system.

The vector ũ in (2.8) and (2.9) represents the time-harmonic displacement of a lattice particle,
calculated for a given eigenvector Ũ. For α̃ < 1, there are two eigenfrequencies and hence two
eigenvectors Ũ for any value of the wavevector k̃. Denoting the coordinates of the central
node of the lattice periodic cell shown in figure 1c as x̃0 = (0, 0)T, the coordinates of the central
node of the cell n (n ∈ Z

2) are x̃ = x̃(n,0) = x̃0 + T̃n. Using the Bloch–Floquet conditions (2.1),
the time-harmonic displacement of a lattice particle for a given eigenvector is expressed by

ũ(j)(x̃, t̃) = Re(Ũ
(j)

(x̃0)ei(ω̃(j) t̃+k̃·T̃n)) (j = 1, 2), where Ũ
(j)

(x̃0)ei(ω̃(j) t̃+k̃·T̃n) = ũ(j)(x̃0, t̃)eik̃·T̃n and ũ(j)(x̃0, t̃)
is the displacement at x̃0. We now concentrate on the displacement ũ(j)(x̃0, t̃), that can also be
written as

ũ(j)(x̃0, t̃) =
⎛
⎝Re(Ũ(j)

1 ) cos(ω̃(j) t̃) − Im(Ũ(j)
1 ) sin(ω̃(j) t̃)

Re(Ũ(j)
2 ) cos(ω̃(j) t̃) − Im(Ũ(j)

2 ) sin(ω̃(j) t̃)

⎞
⎠ , j = 1, 2. (2.11)

The trajectory of the particle is an ellipse, since the eigenvectors are complex. In the non-chiral
case (α̃ = 0) the particles trajectories are straight lines, since the eigenvectors are real. We also note
that in the chiral lattice the eigenvectors are generally non-orthogonal. They satisfy the relation

(
Ũ

(j)
)T

Ũ
(i) +

(
Ũ

(j)
)T

RŨ
(i) = 0

(
i �= j

)
, with R =

(
0 iα̃

−iα̃ 0

)
, (2.12)

which reduces to the orthogonality condition when α̃ = 0.

3. Wave characterization in the chiral lattice
As discussed in §2b, each particle in the chiral lattice describes an elliptical trajectory, shown in
figure 3a. The lengths of the minor and major semi-axes of the ellipse are denoted by ã and b̃,
respectively. The angle between the major axis of the ellipse and the vector f̃ is denoted by β. We
note that β is identical to the angle between the straight trajectory of a particle in the non-chiral
case (α̃= 0) and the vector f̃ . As α̃ decreases, the resulting ellipses become narrower with the
major axis direction remaining fixed. In the limit when α̃→ 0 we retrieve the straight-line motion
(in the direction of the major axis) we observe in the corresponding non-chiral case (α̃ = 0).
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Figure 3. (a) Generic elliptical trajectory of a lattice particle in the chiral lattice and decomposition of the displacement field ũ
into a vortex component ũV (corresponding to circular motion) and a straight-line component ũL (corresponding to a straight-
linemotionparallel to themajor axis of the ellipse); (b) a secondary decomposition of the straight-line field ũL into a component
ũT tangential to f̃ and a component ũN normal to f̃ .

(a) Decomposition of the displacement field
As shown in figure 3a, the displacement ũ can be decomposed into a component parallel to the
major axis of the ellipse, denoted as ũL, and a component ũV whose end describes a circular
trajectory. The subscript ‘L’ in ũL stands for line, since a particle having that displacement would
move in a straight line parallel to the major axis. The subscript ‘V’ in ũV stands for vortex, since it
corresponds to a circular trajectory.

The straight-line component ũL can be further decomposed into a component ũT parallel to
f̃ , characterized by zero circulation, and a component ũN perpendicular to f̃ , having zero flux
(figure 3b). This secondary decomposition was also used in [21] to characterize waves in the non-
chiral case (α̃= 0), where the displacement ũ = ũL (ũV = 0). Therefore, the displacement field in
the chiral lattice ũ = ũL + ũV consists of a ‘non-chiral’ component ũL and a ‘chiral’ component ũV.
Both ũL and ũV are functions of the wave number k̃ and the spinner constant α̃.

It is important to note that the decomposition of the displacement field is not unique and
the decomposition introduced above emphasizes and distils the circular (or vortex) displacement
field, associated with chiral motion. One such alternative is to decompose the displacement field
into components perpendicular and parallel to the major axis of the elliptical, chiral displacement.
In this alternative decomposition, however, the two components would include the vortex
motion, and a comparison with the non-chiral case (α̃ = 0) would be less straightforward.

The degree of chirality in a lattice with gyroscopic spinners can be measured by the following
parameter:

χ (j) = ã(j)

b̃(j)
, j = 1, 2, (3.1)
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which represents the ratio of the length of the minor semi-axis to the length of the major semi-axis
of the ellipse. We note that 0 ≤ χ (j) ≤ 1, where the lower limit χ (j) = 0 is found in the non-chiral
case (α̃= 0) where the trajectory is always a straight line, while the upper limit χ (j) = 1 is reached
in the chiral lattice in some special cases when the trajectory is a circle (vortex waveforms).

The lengths of the minor and major semi-axes can be determined from the eigenvectors
calculated from the dispersive properties of the system. Using (2.11), the canonical equation for
the ellipse can be written as

1

det(B(j))

[
B(j)

11x̃2
1 − 2B(j)

12x̃1x̃2 + B(j)
22x̃2

2

]
= 1, (3.2)

where the components of the matrix B(j) = (B(j))T (j = 1, 2) are

B(j)
11 = Re

(
Ũ(j)

2

)2 + Im
(

Ũ(j)
2

)2
, (3.3a)

B(j)
12 = B(j)

21 = −
[
Re

(
Ũ(j)

1

)
Re

(
Ũ(j)

2

)
+ Im

(
Ũ(j)

1

)
Im

(
Ũ(j)

2

)]
(3.3b)

and B(j)
22 = Re

(
Ũ(j)

1

)2 + Im
(

Ũ(j)
1

)2
. (3.3c)

The eigenvalues of B(j) are given by

λ
(j)
± =

tr
(

B(j)
)

±
√

tr2
(

B(j)
)

− 4det
(

B(j)
)

2det
(

B(j)
) , (3.4)

while the eigenvectors of B(j) are expressed by

V (j)
± =

⎛
⎝B(j)

11−B(j)
22±

√
tr2

(
B(j))−4det

(
B(j))

−2B(j)
12

1

⎞
⎠ . (3.5)

The lengths of the minor and major semi-axes of the ellipse are then given by

ã(j) = 1√
λ

(j)
+

and b̃(j) = 1√
λ

(j)
−

. (3.6)

The direction of the major axis is defined by V(j)
− . The angle β(j) (j = 1, 2) is the angle between

the major axis of the ellipse and the vector f̃ . In this paper, we take β(j) as the acute angle between

V (j)
− and f̃ , such that 0 ≤ β(j) ≤ π/2:

β(j) = arccos

⎛
⎜⎝ V (j)

− · f̃∣∣∣f̃ ∣∣∣∣∣∣ ˜
V(j)

−
∣∣∣
⎞
⎟⎠ if V (j)

− · f̃ > 0 (3.7a)

and

β(j) = π − arccos

⎛
⎜⎝ V(j)

− · f̃∣∣∣f̃ ∣∣∣∣∣∣ ˜
V(j)

−
∣∣∣
⎞
⎟⎠ if V (j)

− · f̃ < 0. (3.7b)

(b) Flux and circulation in the chiral lattice
As shown in (2.8) and (2.9), the flux and circulation are pure imaginary quantities, with moduli
|Φ̃ũ| and |Γ̃ũ|, respectively. In this paper, we denote by ‖Φ̃ũ‖ = max |Φ̃ũ| and ‖Γ̃ũ‖ = max |Γ̃ũ| the
‘amplitudes’ of flux and circulation, respectively.

As discussed in [21], in the non-chiral case (α̃ = 0) the flux amplitude for the lower dispersion
surface ‖Φ̃(1)

ũ ‖ is equal to the circulation amplitude for the upper dispersion surface ‖Γ̃ (2)
ũ ‖, if

the eigenvectors corresponding to the two dispersion surfaces are normalized to have the same
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Figure 4. The amplitudes (a) ‖Φ̃ (1)
ũ ‖, (b) ‖Φ̃ (2)

ũ ‖, (c) ‖Γ̃ (1)
ũ ‖, (d) ‖Γ̃ (2)

ũ ‖, and the ratios (e) ‖Φ̃ (1)
ũ ‖/‖Γ̃ (1)

ũ ‖, (f )
‖Φ̃ (2)

ũ ‖/‖Γ̃ (2)
ũ ‖ in the first Brillouin zone, calculated for the chiral lattice with α̃ = 0.5. (Online version in colour.)

modulus; furthermore, ‖Φ̃(2)
ũ ‖ = ‖Γ̃ (1)

ũ ‖. This is due to the orthogonality of the eigenvectors in
the non-chiral case (see (2.12) for α̃ = 0), as discussed in [21]. In the chiral lattice generally these
relations do not hold, since the eigenvectors are not orthogonal.

The three-dimensional representations in the k̃-plane of the amplitudes of flux and circulation
for both dispersion surfaces are plotted in figure 4a–d for a representative value of the spinner
constant α̃= 0.5. The plots are limited to the first Brillouin zone, defined as the hexagon
connecting the points D in figure 8. The qualitative features shown in figure 4a–d persist for all
values of α̃ for the lower dispersion surface and for 0< α̃ < 1 for the upper dispersion surface.
The angles β(1) and β(2) are the same as those found in the non-chiral case (see figs 5c and
5d in [21]).
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in colour.)

We point out that the maps of flux and circulation in the k̃-plane depend on the chosen
normalization of the eigenvectors. In the computations presented in this paper, the eigenvectors
in (2.11) are normalized such that b̃ = 1. This is in agreement with the normalization adopted
in [21] for the non-chiral case (α̃= 0), whereby the maximum straight-line displacement of each
lattice particle is 1. However, it is important to note that the ratio of flux to circulation for each
dispersion surface is independent of the normalization of the eigenvectors. The ratio gives a
measure, independent of the normalization of the eigenvectors, of the relative contributions of
flux and circulation for a given wave. In figure 4e,f we show the three-dimensional representations
of the ratios ‖Φ̃(1)

ũ ‖/‖Γ̃ (1)
ũ ‖ and ‖Φ̃(2)

ũ ‖/‖Γ̃ (2)
ũ ‖, respectively. In particular, we observe that in the

long wavelength limit circulation (or flux) is dominant on the lower (or upper) surface.
From figure 4a–d it can be noted that the amplitudes of flux and circulation are continuous

functions of k̃. From the figures, it is also apparent that there are no lines where either the flux or
the circulation are zero, while in the non-chiral case (α̃= 0), as observed in [21], there are special
lines in the k̃-plane where waves are either flux-free or circulation-free, even for large values
of |k̃|.

In figure 5a,b, we show χ (1) and χ (2) as functions of the wavevector. Interestingly, χ (2) ≥ χ (1)

for any value of the wavevector. In addition, from figure 5a,b, we observe that χ (2) = χ (1) = 1 at all
the points D in figure 8. At these points, every particle in the chiral lattice moves in a circle. In the
non-chiral case (α̃ = 0), points D are vertices of Dirac cones.

Figure 6a,b shows χ (1) and χ (2) in the k̃-plane for different values of α̃. We notice that both χ (1)

and χ (2) increase with the spinner constant for any value of the wavevector. We have checked
this analytically by verifying that ∂χ (j)/∂α̃ > 0 (j = 1, 2) for any k̃ and for any α̃ (the results are not
included here for brevity).

The flux and circulation of the total displacement field ũ can be decomposed into two
components, one associated with the vortex field ũV and the other with the straight-line field
ũL. The straight-line displacement can be further decomposed into a circulation-free and a flux-
free component. Referring to figure 3a, the total displacement can be written in the rotated frame
aligned with the principal axes (ξ̃1, ξ̃2) of the ellipse as

ũ = ũV + ũL =
(

ã cos (ω̃t̃)
ã sin (ω̃t̃)

)
+
(

0
(b̃ − ã) sin (ω̃t̃)

)
. (3.8)

Using (2.8) and (2.9), we find that the flux and circulation associated with the vortex field are
given by

Φ̃ũV = i

√
3

2
ã
∣∣∣f̃ ∣∣∣ sin (ω̃t̃ + β) and Γ̃ũV = i

√
3

2
ã
∣∣∣f̃ ∣∣∣ cos (ω̃t̃ + β), (3.9)
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respectively. Accordingly, the flux and circulation of the vortex field differ in phase by π/2 and
have the same amplitude, namely

‖Φ̃ũV‖ = ‖Γ̃ũV‖ =
√

3
2

ã
∣∣∣f̃ ∣∣∣ . (3.10)

Such a vortex field possesses the following properties:

— the trajectories of nodal points within the lattice are circular, with a phase shift present
between different elementary cells;

— the maximum amplitudes of lattice flux and lattice circulation are equal.

This is a third fundamental field present in characterizing waves in chiral lattices, in addition to
the flux-free and circulation-free fields observed in non-chiral case (α̃= 0), as discussed in [21].

The straight-line displacement field can be decomposed into a component tangential to f̃ and
a component normal to f̃ , such that ũL = ũT + ũN (figure 3b). The tangential component ũT has
zero circulation, while its flux is equal to

Φ̃ũT = i

√
3

2

(
b̃ − ã

) ∣∣∣f̃ ∣∣∣ cos (β) sin (ω̃t̃), (3.11)

with amplitude

‖Φ̃ũT‖ =
√

3
2

(
b̃ − ã

) ∣∣∣f̃ ∣∣∣ cos (β). (3.12)

On the other hand, the normal component ũN is characterized by zero flux and non-zero
circulation, given by

Γ̃ũN = −i

√
3

2

(
b̃ − ã

) ∣∣∣f̃ ∣∣∣ sin (β) sin (ω̃t̃), (3.13)

having amplitude

‖Γ̃ũN‖ =
√

3
2

(
b̃ − ã

) ∣∣∣f̃ ∣∣∣ sin (β). (3.14)
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The amplitudes of flux and circulation for the displacement components ũV, ũT and ũN
as functions of the wavevector k̃ are presented in figure 7. The same normalization of the
eigenvectors as for the diagrams in figure 4 has been used, namely b̃(j) = 1 (j = 1, 2).

Comparing figure 7a and b, we note that the contribution of the vortex component to the total
displacement is larger for the upper surface. This in agreement with the diagrams in figure 5a,b,
whereby χ (2) ≥ χ (1) and hence the radius of the circular trajectory for the upper surface is larger
than that for the lower surface (ã(2) ≥ ã(1)) keeping the length of the major semi-axis the same
(b̃(2) = b̃(1) = 1). Concerning the straight-line component of the displacement, figure 7c–f reveals
that the flux and circulation in the chiral lattice have features similar to those identified in the
non-chiral case (α̃= 0) [21]. In particular, ‖Φ̃(1)

ũT
‖ = ‖Γ̃ (2)

ũN
‖ = 0 in the lines given by arctan (k̃2/k̃1) =
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(n − 1)π/6 with n = 1, . . . , 12, while ‖Γ̃ (1)
ũN

‖ = ‖Φ̃(2)
ũT

‖ = 0 in the hexagon connecting the points D in
figure 8. Additionally, we note that the ratio of the flux to the circulation for the lower surface
(‖Φ̃(1)

ũT
‖/‖Γ̃ (1)

ũN
‖) is generally smaller than that for the upper surface ((‖Φ̃(2)

ũT
‖/‖Γ̃ (2)

ũN
‖)). This means

that for α̃= 0.5 the straight-line component of the displacement is of flux-free type for the lower
surface and of circulation-free type for the upper surface. However, differently from the non-chiral
case (α̃= 0), here the contribution of the vortex component (characterized by equal amplitudes of
flux and circulation) is significant in that it changes the overall motion of the lattice.

The amplitudes of flux and circulation of the total displacement ũ, shown in figure 4, can be
obtained in terms of the amplitudes of flux and circulation of the displacement components ũV,
ũT and ũN, presented in figure 7, as follows:

‖Φ̃ũ‖ =
√

‖Φ̃ũV‖2 + ‖Φ̃ũT‖2 + 2‖Φ̃ũV‖‖Φ̃ũT‖ cos (β) (3.15a)

and

‖Γ̃ũ‖ =
√

‖Γ̃ũV‖2 + ‖Γ̃ũN‖2 + 2‖Γ̃ũV‖‖Γ̃ũN‖ sin (β). (3.15b)

The ratio of the length of the minor semi-axis to the length of the major semi-axis of the ellipse
can also be expressed as a function of the flux and circulation of the displacement components:

χ = ‖Φ̃ũV‖
‖Φ̃ũV‖ +

√
‖Φ̃ũT‖2 + ‖Γ̃ũN‖2

. (3.16)

(c) Wave propagation at the stationary points of the dispersion surfaces
The stationary points of the two dispersion surfaces of the chiral lattice are shown in figure 8. The
properties of the stationary points of the lower dispersion surface are detailed in table 1 for any
value of the spinner constant α̃, while those of the upper dispersion surface are given in tables 2,
3 and 4 for different ranges of α̃. The coordinates of only one instance of each type of stationary
point are detailed in tables 1–4; the coordinates of the other corresponding stationary points
can be obtained by rotating the given coordinates by nπ/3 (n = 1, 2, . . . , 5) with respect to the
origin O.
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Table 1. Stationary points of the lower dispersion surface for 0< α̃ <∞.

point (k̃1, k̃2) ω̃1 type

A
(
π ,

π√
3

) √
6

2 + √
1 + 3α̃2

saddle point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
(
4π
3
, 0
) √

9
2(1 + α̃)

maximum
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Stationary points of the upper dispersion surface for 0< α̃ < 1/3.

point (k̃1, k̃2) ω̃2 type

A
(
π ,

π√
3

) √
6

2 − √
1 + 3α̃2

maximum

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
(
4π
3
, 0
) √

9
2(1 − α̃)

minimum
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F

(
4 arccos

[√
7 − 27α̃2

4

]
, 0

)
9
√
1 + 3α̃2

4
saddle point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Stationary points of the upper dispersion surface for 1/3< α̃ <
√
7/27.

point (k̃1, k̃2) ω̃2 type

A
(
π ,

π√
3

) √
6

2 − √
1 + 3α̃2

maximum

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
(
4π
3
, 0
) √

9
2(1 − α̃)

maximum
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F
(
2π − arccos

[−1 − 27α̃2

8

]
,
√
3 arccos

[−1 − 27α̃2

8

]
− 2π√

3

)
9
√
1 + 3α̃2

4
saddle point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Stationary points of the upper dispersion surface for
√
7/27< α̃ < 1.

point (k̃1, k̃2) ω̃2 type

A
(
π ,

π√
3

) √
6

2 − √
1 + 3α̃2

saddle point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
(
4π
3
, 0
) √

9
2(1 − α̃)

maximum
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F
(
π ,

π√
3

)
9
√
1 + 3α̃2

4
saddle point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is interesting to note that points A and D do not change their positions in the k̃-plane as α̃ is
changed, while positions of points F (which are stationary points only for the upper surface) are α̃
dependent. In particular, for α̃ = 0, points F occupy the positions shown in figure 8. When α̃= 1/3,
they coincide with points D; hence, for the upper dispersion surface, points D are minima for
α̃ < 1/3, saddle points for α̃ = 1/3 and maxima for 1/3< α̃ < 1. When α̃ ≥ √

7/27, points F coincide
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with points A; accordingly, for the upper dispersion surface, points A are maxima for α̃ <
√

7/27
and become saddle points for

√
7/27 ≤ α̃ < 1. Therefore, α̃ = 1/3 and α̃= √

7/27 are special values
of the spinner constant, for which the response of the lattice changes significantly in terms of
dynamic anisotropy.

The frequency of each stationary point varies with the spinner constant α̃. The type of
stationary point on the upper dispersion surface is also dependent on the spinner constant.

While in the non-chiral case (α̃= 0) points F were on special lines characterized by either zero
flux or zero circulation (see fig. 7b in [21]), in the chiral case both the flux and circulation at points
F are generally different from zero. Conversely, points A and D are characterized by zero flux
and zero circulation, since f̃ = 0 at these points. Additionally, ‖Φ̃(1)

ũ ‖/‖Γ̃ (1)
ũ ‖< 1< ‖Φ̃(2)

ũ ‖/‖Γ̃ (2)
ũ ‖ at

points A, while ‖Φ̃(1)
ũ ‖/‖Γ̃ (1)

ũ ‖, ‖Φ̃(2)
ũ ‖/‖Γ̃ (2)

ũ ‖ → 1 at points D. Therefore, χ (j) = 1 (j = 1, 2) at points
D (see also figure 5a,b) and hence the corresponding motion of each lattice particle is circular.

4. Illustrative examples and physical interpretation of wave characterization
In this section, we investigate how waves propagate in the chiral medium for different values of
the wavevector. In particular, we show the total displacement field of the lattice in time, as well
as the motion of the lattice particles when a single component of the displacement field (vortex,
straight-line, straight-line tangential or straight-line normal) is considered. In the calculations, the
spinner constant is taken as α̃= 0.5. We emphasize that increasing α̃ augments the contribution of
the vortex component to the total field and makes the elliptical trajectories of the lattice particles
less eccentric.

Firstly, we consider a relatively large value of |k̃|, namely k̃1 = 2 and k̃2 = 2. The vector f̃ ,
defined in (2.10), is given by f̃ = (1.548, 1.847)T. The corresponding frequencies for the lower
and upper dispersion surface are ω̃(1) = 1.360 and ω̃(2) = 2.779, respectively. The angles between
the vector f̃ and the major axes of the elliptical trajectories of the lattice particles for the two
dispersion surfaces are β(1) = 1.370 and β(2) = 0.200. We remark that, because of the choice of
decomposition of the displacement, the angles β(j) (j = 1, 2) do not vary with α̃; changing the value
of α̃ changes only the vortex component. The amplitudes of flux and circulation corresponding
to the lower surface are given by ‖Φ̃(1)

ũ ‖ = 0.720 and ‖Γ̃ (1)
ũ ‖ = 2.049, while those obtained for

the upper surface are ‖Φ̃(2)
ũ ‖ = 2.066 and ‖Γ̃ (2)

ũ ‖ = 1.468. The ratios of flux to circulation are

respectively ‖Φ̃(1)
ũ ‖/‖Γ̃ (1)

ũ ‖ = 0.351 and ‖Φ̃(2)
ũ ‖/‖Γ̃ (2)

ũ ‖ = 1.407. The values above show that waves
in this chiral system are a mixture of flux-free, circulation-free and vortex contributions. The
ratios between the lengths of the minor semi-axes to the lengths of the major semi-axes of the
ellipse for the lower and upper surface are χ (1) = 0.287 and χ (2) = 0.688, respectively. These values
of χ (j) are associated with the amplitudes of flux and circulation of the vortex motion, which
are ‖Φ̃(1)

ũV
‖ = ‖Γ̃ (1)

ũV
‖ = 0.600 for the lower dispersion surface and ‖Φ̃(2)

ũV
‖ = ‖Γ̃ (2)

ũV
‖ = 1.437 for the

upper dispersion surface. The flux and circulation corresponding to the straight-line component
are ‖Φ̃(1)

ũT
‖ = 0.296, ‖Γ̃ (1)

ũN
‖ = 1.458 for the lower surface and ‖Φ̃(2)

ũT
‖ = 0.637, ‖Γ̃ (2)

ũN
‖ = 0.129 for the

upper surface. The elliptical trajectory of each lattice particle is illustrated in figure 9a and figure 9b
for the lower and upper dispersion surface, respectively. The circles in figure 9 correspond to the
vortex components of the displacement (compare with figure 3).

Video 1a and 1f in the electronic supplementary material show the total time-dependent
displacement fields corresponding to the two dispersion surfaces, determined for the wavevector
with components k̃1 = 2 and k̃2 = 2. The contributions due to the vortex components are illustrated
in video 1b and 1g in the electronic supplementary material, while those due to the straight-
line components are displayed in video 1c and 1h in the electronic supplementary material.
The straight-line field is further decomposed into a flux-free (normal) motion (see video 1d
and 1i in the electronic supplementary material) and a circulation-free (tangential) motion
(see video 1e and 1j in the electronic supplementary material). In the videos, the amplitude
of each displacement component is proportional to its contribution to the total displacement.
Accordingly, it can be observed that for the upper surface the vortex component plays a significant
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Figure 9. Trajectory of a generic particle in the chiral lattice with spinner constant α̃= 0.5 corresponding to the (a) lower and
(b) upper dispersion surface, calculated for k̃1 = 2 and k̃2 = 2. The dotted circles correspond to the vortex components of the
displacements. (Online version in colour.)

role for this choice of parameters. In the videos, the vectors k̃ and f̃ are indicated in magenta and
green, respectively, and the trajectories of the particles are plotted in red.

Figure 10a and 10b show instantaneous snapshots of the displacement fields for k̃1 = 2, k̃2 = 2
calculated for the lower and upper dispersion surface, respectively. The corresponding vortex
components are presented in figure 10c,d, the straight-line tangential components in figure 10e,f
and the straight-line normal components in figure 10g,h.

Video 2a–2j in the electronic supplementary material illustrate how waves propagate in the
chiral lattice when the wavevector is (k̃1, k̃2)T = (0.200, 0.297)T. This wavevector has a modulus
that is significantly smaller than that considered in video 1a–1f in the electronic supplementary
material. The displacement fields in the lattice are also shown in figure 11a and 11b for the
lower and upper dispersion surface, respectively. From video 2d (or video 2j) in the electronic
supplementary material, we observe that the tangential (or normal) component of the straight-
line motion is negligibly small for the lower (or upper) dispersion surface. Consequently, when
|k̃| → 0, only two displacement components are significant: the vortex motion and the straight-
line normal (or straight-line tangential) motion for the lower (or upper) dispersion surface. This
is consistent with the long wavelength limit behaviour in the non-chiral case (α̃= 0), except that
here (α̃= 0.5) there is an additional vortex waveform component.

Similar observations can be made in the scenario where k̃ has a large modulus, but is taken
on one of the lines where either flux or circulation of the straight-line field is null. For example,
video 3a–3j in the electronic supplementary material are obtained when k̃ = (2.150, 1.241)T, which
lies on the line inclined by 30◦ to the k̃1-axis. In this case, the straight-line motion for the lower (or
upper) dispersion surface is flux-free (or circulation-free) because the straight-line displacement
is perpendicular (or parallel) to f̃ . This shows consistency with the behaviour observed in [21],
where for α̃= 0 there are radial lines from the origin in the k̃-plane along which there are pure
flux-free or circulation-free waves. Again, here we have similar behaviour with an additional
vortex waveform component. The total displacement fields for the lower and upper dispersion
surface are also illustrated in figure 11c and 11d, respectively.

Video 4a–4j in the electronic supplementary material are produced for k̃ = (3.665, 0.907)T,
which belongs to the perimeter of the hexagon connecting points D in figure 8 (see also
figure 11e,f ). Since for the straight-line motion the points on the sides of this hexagon are
circulation-free (or flux-free) for the lower (or upper) surface, this motion consists of only the
component parallel (or perpendicular) to f̃ . Similar behaviour was found in [21] in the non-chiral
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Figure 10. Displacement field in the chiral lattice for the (a,c,e,g) lower and (b,d,f,h) upper dispersion surface, calculated for
k̃1 = 2, k̃2 = 2 and α̃= 0.5. (a,b) Total displacements, (c,d) vortex components, (e,f ) straight-line tangential components,
(g,h) straight-line normal components. The vectors k̃ and f̃ are also plotted. The trajectories of the lattice particles are shown
in red. (Online version in colour.)

case (α̃= 0), except that here (α̃= 0.5) there is an additional contribution to the displacement field
due to the vortex waveform.

Finally, video 5a–5j in the electronic supplementary material show the lattice motion

corresponding to one of the stationary points D in figure 8, namely (k̃1, k̃2)T =
(

2π/3, 2π/
√

3
)T

(see
also figures 11g,h). In this case, each particle of the lattice describes a circular trajectory, for both
dispersion surfaces. This is in agreement with the results in figure 5a,b, where χ (j) = 1 (j = 1, 2).
This is a special case where pure vortex waveforms occur in the chiral lattice. The points D are
located at the values of the k̃ vector which in the non-chiral case (α̃ = 0) would correspond to the
Dirac points.
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Figure 11. Displacements fields in the chiral lattice with spinner constant α̃ = 0.5 relative to the (a,c,e,g) lower and
(b,d,f,h) upper dispersion surface, calculated for different values of the wavevector: (a,b) k̃1 = 0.200, k̃2 = 0.297;
(c,d) k̃1 = 2.150, k̃2 = 1.241; (e,f ) k̃1 = 3.665, k̃2 = 0.907; (g,h) k̃1 = 2π/3, k̃2 = 2π/

√
3. (Online version in

colour.)

We note that the rotations of the lattice particles corresponding to the two dispersion surfaces
are always in opposite directions.

5. Dynamic degeneracy in chiral elastic systems
In this section, we study the factor χ (j) for the lower (j = 1) and upper (j = 2) dispersion surface
for some limit cases of the spinner constant α̃. In addition, we discuss the possibility of creating
vortex waveforms for any value of the wavevector when α̃ tends to unity.
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Figure 12. For the longwavelength limit, graph ofχ (1) versus α̃ (solid line) togetherwith its approximation (5.2) (dashed line).

(a) Lower dispersion surface
Consider the long wavelength limit, when |k̃| → 0. In this limit, expression (3.16) leads to

χ (1) ∼

√√√√√√√√
2 + (1 +

√
1 + 3α̃2)/(α̃2) −

√
(α̃4 + 2

(
1 +

√
1 + 3α̃2

)
+ α̃2

(
5 + 2

√
1 + 3α̃2

)
)/(α̃4)

2 + (1 +
√

1 + 3α̃2)/(α̃2) +
√

(α̃4 + 2
(

1 +
√

1 + 3α̃2
)

+ α̃2
(

5 + 2
√

1 + 3α̃2
)

)/(α̃4)

when
∣∣∣k̃∣∣∣→ 0. (5.1)

The function above is shown in figure 12 by a solid line.
Since χ (1) ∼ α̃/2 when α̃→ 0 and χ (1) → 1/

√
3 when α̃→ ∞, the expression (5.1) can be

approximated by the simpler function

χ (1) ≈ 2√
3π

arctan

(√
3π
4
α̃

)
, (5.2)

which is represented by a dashed line in figure 12.
The limit χ (1) → 1/

√
3 when α̃→ ∞ can be proved as follows. For simplicity and without

loss of generality, we take again Re(Ũ(1)
2 ) = 1 and Im(Ũ(1)

2 ) = 0 in (2.11). The frequency ω̃(1),
corresponding to the lower dispersion surface and given by (2.7a), has the following asymptotic
expansion for large values of the spinner constant and in the long wavelength limit:

ω̃(1) ∼
4
√

27

2
√

2

(
k̃2

1

2k̃2
+ k̃2

)
√
ε when

∣∣∣k̃∣∣∣→ 0 and ε = 1
α̃

→ 0. (5.3)

Substituting the above expression into equation (2.2) to determine the eigenvectors, we find
that Re(Ũ(1)

1 ) and Im(Ũ(1)
1 ) in (2.11) are

Re(Ũ(1)
1 ) ∼ − 2k̃1k̃2

3k̃2
1 + k̃2

2

, Im(Ũ(1)
1 ) ∼

√
3
(

k̃2
1 + k̃2

2

)
3k̃2

1 + k̃2
2

when
∣∣∣k̃∣∣∣→ 0 and ε = 1

α̃
→ 0. (5.4)

The eigenvalues (3.4) are found to be

λ
(1)
− ∼ 3k̃2

1 + k̃2
2

3
(

k̃2
1 + k̃2

2

) , λ(1)
+ ∼ 3k̃2

1 + k̃2
2

k̃2
1 + k̃2

2

when
∣∣∣k̃∣∣∣→ 0 and ε = 1

α̃
→ 0. (5.5)
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Hence, equation (3.1) leads to

χ (1) =
√√√√λ

(1)
−
λ

(1)
+

∼ 1√
3

when
∣∣∣k̃∣∣∣→ 0 and ε = 1

α̃
→ 0. (5.6)

The same limit for α̃→ ∞ is attained by the approximation (5.2).
For large values of the wavevector, in the limit when α̃→ ∞, χ (1) is given by

χ (1) = χ (1)
(

k̃1, k̃2

)
∼
√

1 + N1/D2 − N2/D
1 + N1/D2 + N2/D

when α̃→ ∞, (5.7)

where

N1 = 12
(

5 − 4c2
1 − 6c1c2 + c2

1c2
2 + 4c3

1c2

)
, (5.8a)

N2 = 4
√

4 − 7c2
1 + 4c4

1 + 2c1c2 − 3c2
2 + 4c2

1c2
2 − 4c3

1c2 (5.8b)

and D = 10 − 8c2
1 − 2c1c2, (5.8c)

with c1 = cos(k̃1/2) and c2 = cos(
√

3k̃2/2). We note that, in the unit cell, D = 0 for (k̃1, k̃2)T = (0, 0)T

and (k̃1, k̃2)T = (±2π , ±2π/
√

3)T. Nonetheless, N1/D2 → 1 and N2/D → 1 for (k̃1, k̃2)T → (0, 0)T

and (k̃1, k̃2)T → (±2π , ±2π/
√

3)T.
The function χ (1)(k̃1, k̃2) given in (5.7) is shown in figure 13. We observe that the global

minimum of the function is 1/
√

3, that is the value obtained for |k̃| → 0 (see equation (5.6)).
Furthermore, χ (1) = 1/

√
3 along the radials given by arctan (k̃2/k̃1) = (2n − 1)π/6 with n = 1, . . . , 6.

The global maxima are found at the points D in figure 8, where χ (1) = 1.

(b) Upper dispersion surface
As in §5a, we first analyse the case when |k̃| → 0. Using (3.16), we find that

χ (1) ∼

√√√√√√√√
6 +

(
1 +

√
1 + 3α̃2

)
/(α̃2) −

√(
9α̃4 + 2

(
1 +

√
1 + 3α̃2

)
− 3α̃2

(
1 + 2

√
1 + 3α̃2

))
/(α̃4)

6 +
(

1 +
√

1 + 3α̃2
)
/(α̃2) +

√(
9α̃4 + 2

(
1 +

√
1 + 3α̃2

)
− 3α̃2

(
1 + 2

√
1 + 3α̃2

))
/(α̃4)

when
∣∣∣k̃∣∣∣→ 0. (5.9)



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190313

...........................................................

1.00.80.60.40.2

1.0

c(2)

0.8

0.6

0.4

0.2

0
a~

Figure 14. For |k̃| → 0,χ (2) versus α̃ (solid line), compared with the analytical approximation (5.10) (dashed line).

The function above is shown in figure 14 by a solid line. In this case 0 ≤ α̃ < 1, since ω̃(2) takes
imaginary values for α̃ > 1 (see equation (2.7b)).

In figure 14, the dashed line represents the following analytical approximation of χ (2):

χ (2) ≈ C arctan
(

3
2C α̃

)
, (5.10)

where C is the root of the equation

C arctan
(

3
2C

)
= 1, (5.11)

which gives C ≈ 1.0337. The approximation (5.10) has the same limits as the function (5.9) for
small and large values of α̃, namely 3α̃/2 when α̃→ 0 and 1 when α̃→ 1.

We note that, as discussed below, for any k̃ (not only in the long wavelength limit) we have

lim
α̃→1

χ (2) = 1. (5.12)

The frequency on the upper dispersion surface has the following asymptotic approximation
when α̃→ 1:

ω̃(2) ∼

√
3 − cos (k̃1) − 2 cos (k̃1/2) cos

(√
3k̃2/2

)
√
ε

for α̃= 1 − ε with ε→ 0+. (5.13)

Substituting the expression above into equation (2.2) and normalizing the eigenvector in (2.11)
by setting Re(Ũ(2)

2 ) = 1 and Im(Ũ(2)
2 ) = 0, we obtain

Re(Ũ(2)
1 ) → 0, Im(Ũ(2)

1 ) → 1 for α̃ = 1 − ε with ε→ 0+. (5.14)

Consequently, from (3.4) λ(2)
− and λ(2)

+ are found to be equal, and hence from (3.1) we have

χ (2) =
√√√√λ

(2)
−
λ

(2)
+

→ 1 for α̃ = 1 − ε with ε→ 0+. (5.15)

The results of this section demonstrate that pure vortex waveforms can be realized for any
value of the wavevector at higher frequencies, when the spinner constant tends to its critical
value (α̃→ 1).
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6. Conclusion
In this paper, we have demonstrated that the analytical concepts of lattice flux and lattice
circulation represent canonical characteristics to describe polarization of waves in a chiral elastic
lattice. This is especially important when the wavelength is comparable with the size of the
elementary cell of the periodic system, where the continuum notions of pressure and shear waves
cannot be used.

The procedure discussed in this paper allows for a canonical decomposition of a general
waveform in a chiral lattice. Besides flux-free and circulation-free straight-line displacement
patterns, typical of the non-chiral case (α̃ = 0) discussed in [21], in a chiral lattice the concept
of vortex waveforms has been introduced and investigated here.

As demonstrated in [21], the notion of pressure and shear waves in isotropic homogeneous
continuous media allows for a generalization to elastic lattice systems in the context of lattice
flux-free and lattice circulation-free waveforms. In the present paper, we advance further and use
a new class of vortex waveforms, specifically for chiral elastic systems. In this context, there is an
advantage in the representation including decomposition of waveforms into chiral and non-chiral
components.

Typical time-harmonic patterns of motion of nodal points in the chiral elastic lattice are
elliptical trajectories. Asymptotic analysis and animations have shown limit situations when
vortex waveforms become dominant. In these cases, the trajectories of the lattice particles are
circular and the amplitudes of lattice flux and lattice circulation are equal.

The analytical findings presented in this paper provide a new insight in the design and
construction of numerical algorithms for the analysis of chiral elastic lattices. In particular,
illustrative examples shown in figures 10 and 11 represent the displacement fields in the
triangular lattice for different values of the wavevector k̃, and show a decomposition of
waveforms into vortex, lattice flux-free and lattice circulation-free components. The effect of the
spinner constant α̃ and the wavevector k̃ on eccentricity of elliptical trajectories of lattice particles
is shown in figure 6, which includes three-dimensional surface diagrams representing parameters
χ (1) and χ (2).

This work allows for many extensions to heterogeneous lattices and lattices of other
geometries. The vortex waveforms are expected to persist in other types of chiral elastic lattices.
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