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Abstract

Given their positioning and biological productivity, estuaries have long represented

key providers of ecosystem services and consequently remain under remarkable

pressure from numerous forms of anthropogenic impact. The monitoring of fish

communities in space and time is one of the most widespread and established

approaches to assess the ecological status of estuaries and other coastal habitats,

but traditional fish surveys are invasive, costly, labour intensive and highly selective.

Recently, the application of metabarcoding techniques, on either sediment or aque-

ous environmental DNA, has rapidly gained popularity. Here, we evaluate the appli-

cation of a novel, high‐throughput DNA‐based monitoring tool to assess fish

diversity, based on the analysis of the gut contents of a generalist predator/scav-

enger, the European brown shrimp, Crangon crangon. Sediment and shrimp samples

were collected from eight European estuaries, and DNA metabarcoding (using both

12S and COI markers) was carried out to infer fish assemblage composition. We

detected 32 teleost species (16 and 20, for 12S and COI, respectively). Twice as

many species were recovered using metabarcoding than by traditional net surveys.

By comparing and interweaving trophic, environmental DNA and traditional survey‐
based techniques, we show that the DNA‐assisted gut content analysis of a ubiqui-

tous, easily accessible, generalist species may serve as a powerful, rapid and cost‐ef-
fective tool for large‐scale, routine estuarine biodiversity monitoring.

K E YWORD S

biodiversity monitoring, Crangon crangon, DNA, environmental assessment, fish communities,

trophic metabarcoding

1 | INTRODUCTION

Accurate and reliable estimates of biodiversity and species distribu-

tions are essential for successful ecosystem management and envi-

ronmental policy (Hooper et al., 2005; Rees, Maddison, Middleditch,

Patmore, & Gough, 2014). Understanding biodiversity changes in

coastal systems, such as estuaries, is of special interest since these

provide essential ecosystem functions and services and are heavily

affected by anthropogenic pressures (Halpern et al., 2008; Sheaves,

Baker, Nagelkerken, & Connolly, 2015). Estuaries are highly produc-

tive systems, providing food and shelter for a large range of fish and

invertebrates (Beck et al., 2001; Heip et al., 1995). These habitats

act as important nurseries for many fish species, resulting in a
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greater density, survival rate and growth of juveniles than surround-

ing habitats (Beck et al., 2001; Kraus & Secor, 2005), which explains

the adaptations and energy required for fish larvae to migrate from

the open sea to estuaries (Huijbers et al., 2012; Norcross & Shaw,

1984). Alongside their importance as nursery areas, estuaries also

support a wide range of adult fish species including estuarine resi-

dents, marine and freshwater “stragglers” (taxa normally occurring in

marine habitats), and migratory species (Elliott & Dewailly, 1995;

Elliott et al., 2007). Many of these are important targets for fisheries

or key‐stone elements for coastal food webs and of relevance for

global economy and food security (Jovanovic, Longmore, O'Leary, &

Mariani, 2007; Pauly, Watson, & Alder, 2005; Scheffer, Carpenter, &

Young, 2005; Wilson, 2002). An understanding of the community

structure, spatial distribution, population connectivity and prey selec-

tion of bony fish is important for ecosystem characterization and

management (Genner et al., 2004; Jovanovic et al., 2007; Kraus &

Secor, 2005; Mariani, Boggan, & Balata, 2011). This is becoming cru-

cial since ichthyofaunal communities are under pressure from a

range of anthropogenic impacts such as overfishing, pollution and cli-

mate change (Courrat et al., 2009; Genner et al., 2004; Wilson,

2002). Due to these pressures, fish communities are generally con-

sidered to be suitable biological indicators for the environmental

quality of estuarine systems, as monitoring fish communities inte-

grates the direct and indirect effects of stressors on the entire aqua-

tic ecosystem (Fausch, Lyons, Karr, & Angermeier, 1990; Whitfield,

2002). Fish surveys are regularly conducted for the management of

oceanic and transitional waters, fisheries stock assessments, detec-

tion of invasive species, monitoring of environmental changes, water

quality assessments, etc. (Pyšek & Richardson, 2010), and are

required to comply with environmental policy such as the EU Water

Framework Directive for Transitional Waters (Ferreira et al., 2007).

Traditional estimates of fish diversity largely depend on fish cap-

tures, which are usually invasive, costly, labour intensive and selec-

tive (Cotter et al., 2004; Lapointe, Corkum, & Mandrak, 2011;

Thomsen et al., 2012). Recent molecular biodiversity assessment

methods, such as environmental metabarcoding, focus on detecting

animals’ presence by collecting the DNA they have left behind in the

environment (Taberlet, Coissac, Pompanon, Brochmann, & Willerslev,

2012; Thomsen et al., 2012) and applying high‐throughput sequenc-
ing (HTS) to identify multiple taxa based on bulk DNA extracted

from a community (DNA derived from many individual organisms,

representing several species) or environmental sample (i.e., water,

soil, faeces; Barnes & Turner, 2016). Metabarcoding can successfully

identify small, cryptic or decomposed specimens with reduced cost

and effort compared to traditional methods, and is independent of

the species’ developmental stage (Chariton et al., 2015; Hajibabaei,

Shokralla, Zhou, Singer, & Baird, 2011; Lejzerowicz et al., 2015;

Leray & Knowlton, 2015), though this may also represent a limita-

tion, when that type of information is required (Valentini et al.,

2016).

A recent metabarcoding development is the use of DNA

detected in the gut contents of parasitic/predatory organisms to esti-

mate the diversity and distribution of their prey items. Molecular

trophic tools have advantages over traditional taxonomic methods

since the stomachs of animals often contain a high proportion of

material that is very difficult to identify with traditional microscopic

identification, such as small, soft bodied and highly digested prey

(McClenaghan, Gibson, Shokralla, & Hajibabaei, 2015; Symondson,

2002). The application of leeches and carrion flies as biodiversity

sampling tools has been proposed for the rapid assessment of mam-

mals in several terrestrial habitats (Calvignac‐Spencer, Merkel, et al.,

2013; Schnell et al., 2015, 2012). Although the concept of examining

species distribution based on their detection as prey items in the

stomach contents of predators has been applied using traditional

morphological methods (e.g., Boucek & Rehage, 2014; Fahrig, Lilly, &

Miller, 1993; Lasley‐Rasher, Brady, Smith, & Jumars, 2015; Stevens,

Blewett, Champeau, & Stafford, 2010), trophic DNA‐based methods

for biodiversity assessment have not yet been employed in marine

systems (though suggested by Boyer, Cruickshank, & Wratten, 2015;

Deiner et al., 2017), and much still needs to be done in order to

identify the most appropriate sample types and markers to detect

specific biodiversity components, such as, for instance, teleost spe-

cies (Shaw et al., 2016).

Here, we focus on the applicability of metabarcoding of DNA

extracted from the stomach contents of an opportunistic scavenger/

predator, the brown shrimp, Crangon crangon L., as a sampling tool

for fish diversity in European coastal waters. The brown shrimp is a

widespread and abundant decapod crustacean and vital component

of the benthic food web in European soft bottom habitats (Bamber

& Henderson, 1994; Campos & van der Veer, 2008), and represent

an important target for fisheries, with catches up to 35,000 tons in

2011 (Aviat, Diamantis, Neudecker, Berkenhagen, & Müller, 2011;

Campos & van der Veer, 2008). Showing a highly opportunistic diet,

the brown shrimp consumes a wide variety of food items, ranging

from meiofauna to fish (Evans, 1983; Oh, Richard, & Richard, 2001).

Though being a generalist, it prefers larger motile prey items, includ-

ing commercially important teleost species (Siegenthaler, Wangen-

steen, Benvenuto, Campos, & Mariani, 2018; van der Veer &

Bergman, 1987). Its opportunistic diet, in combination with its high

abundance (van der Veer, Feller, Weber, & Witte, 1998) and ease of

catch (e.g., by push‐net or bycatch; Gamito & Cabral, 2003), makes

the brown shrimp a very suitable candidate as an estuarine biodiver-

sity sampling tool. Besides the main general objective, to evaluate

the suitability of shrimp stomach content to assess fish diversity,

two secondary objectives were addressed, namely i) to compare the

efficacy of different DNA sample media to detect fish taxa and ii) to

compare fish communities identified via metabarcoding surveys with

those identified from concurrent net surveys.

2 | METHODS

This study comprised two independent and complementary efforts.

First, DNA extracts from C. crangon stomach and sediment samples

collected from six European estuaries were amplified with two dif-

ferent markers (COI and 12S) and the detected fish taxa were evalu-

ated and compared in relation to sample type, marker and location.
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Sample collection and COI amplification was conducted as part of a

larger study focusing on the use of metabarcoding to assess the

trophic ecology of C. crangon (Siegenthaler et al., 2018). No water

samples were collected, and no ichthyofaunal surveys were con-

ducted during this study. Therefore, a second complementary, but

smaller, study was conducted focussing on two British estuaries to

compare the detection of fish environmental DNA (eDNA) extracted

from shrimp stomachs, water and sediment substrates, with morpho-

logical identification of fish caught in concurrent seine net surveys.

2.1 | Sample collection and processing

To evaluate the suitability of trophic contents to assess fish diver-

sity, adult brown shrimp (20–50 mm total length) and sediment sam-

ples were collected from the intertidal zone (0–1 m depth) at 21

sites distributed over six estuaries in the Netherlands, Portugal and

the United Kingdom (Figure 1), between May and July 2016. Shrimp

were collected by push‐net at low tide (±3 hr). Sediment samples

were collected with a PVC corer (3.2 mm Ø) from the upper 2‐cm
surface layer (which represent the most recent DNA deposits; Lim-

burg & Weider, 2002; Turner, Uy, & Everhart, 2015), and three sub-

samples were pooled per site to reduce the influence of local

heterogeneity (Taberlet, Prud’Homme, et al., 2012). See Siegenthaler

et al. (2018) for more details on the sampling protocol. To compare

metabarcoding results and seine net surveys, additional shrimp, sedi-

ment and water samples (2 L) were collected, in triplicates, from two

sites in the Tweed and Tees estuaries in the UK, in May–June 2017

(Figure 1a). In these two sites, seine net surveys were carried out at

low tide (±3 hr) to assess fish catch data and for the collection of

shrimp for stomach extractions. Surface water samples (0–1 m

depth) were collected in sterile 2‐L bottles provided with a 200‐µm
nylon mesh. All samples were packed in individual plastic bags and

placed on ice for transport and stored at −20°C. Prior to transport,

sediment samples were conserved in 96% ethanol.

2.2 | DNA extraction

In total, 483 stomachs (Supporting Information Table S1) were dis-

sected using flame‐sterilized tools from shrimp that had a visually full

stomach. Single shrimp stomachs likely contain only DNA from a lim-

ited number of fish due to their small size and fast gut passage time

(Feller, 2006; Pihl & Rosenberg, 1984). Up to eight full stomachs

were, therefore, pooled prior to DNA extraction (Deagle et al., 2005;

Ray et al., 2016), resulting in three extractions per site. Three sites

(Av3, Me4 and Ke2) contained only two samples due to a low num-

ber of shrimp caught with full stomachs at these locations (see

Siegenthaler et al., 2018). Water samples (0.9 L) were filtered using

Sterivex filter units (0.22 µm pore size; Merck Millipore) upon arrival

to the laboratory (within 4 hr after collection). Pooled stomach

(0.25 g) and sediment (10 g) samples were homogenized and DNA

extracted using the PowerSoil® DNA isolation Kit (Qiagen) and the

PowerMax® DNA Soil Kit (Qiagen), respectively. For the water sam-

ples, DNA was extracted from the filters and isolated using the

DNeasy PowerWater® DNA isolation Kit (Qiagen). A Qubit fluorom-

eter (Thermo‐Fisher Scientific) was used to assess the DNA concen-

trations of the purified extracts. DNA extraction and pre‐PCR
preparations were performed in separate laboratories from post‐PCR
procedures to avoid contaminations.

2.3 | DNA amplification and high‐throughput
sequencing

For the evaluation of C. crangon stomach contents to assess fish

diversity on a European scale, stomach and sediment sample extracts

from the Dutch, Portuguese and UK (except Tweed and Tees), estu-

aries were amplified using two primer sets: one targeting the mito-

chondrial cytochrome c oxidase subunit I (COI) region (henceforth

referred to as Leray‐XT; Leray et al., 2013; Wangensteen, Palacín,

Guardiola, & Turon, 2018) and another one targeting a hypervariable

region in the mitochondrial 12S rRNA gene (henceforth referred to

as MiFish; Miya et al., 2015).

The Leray‐XT primer set amplifies a 313‐bp fragment of the COI

(Leray et al., 2013) in a broad range of taxa including most metazoan

and other eukaryotic groups (Wangensteen et al., 2018). It uses

mlCOIintF‐XT (5'‐GGWACWRGWTGRACWITITAYCCYCC‐3') as for-

ward primer (Leray et al., 2013; Wangensteen et al., 2018) and

jgHCO2198 (5'‐TAIACYTCIGGRTGICCRAARAAYCA‐3'; Geller,

Meyer, Parker, & Hawk, 2013) as reverse primer. The PCR amplifica-

tion and subsequent HT‐sequencing of this amplicon was conducted

as part of a larger project describing the diet of C. crangon (Siegen-

thaler et al., 2018).

The MiFish primer set (Miya et al., 2015) has been developed to

target a hypervariable region in the mitochondrial 12S rRNA gene

(163–185 bp) and specifically amplifies fish and other vertebrate

DNA. For the specific comparison of sample type efficacy, stomach,

sediment and water sample extracts from the Tweed and Tees estu-

aries were amplified using the 12S primer set only, as universal COI

primers are known to yield negligible amounts of fish reads when

used with extracts from filtered water samples (Grey et al., 2018;

Bakker et al., unpublished results).

The PCR mix recipe for the Leray‐XT primer set included 10 µl

AmpliTaq gold 360Master mix (Applied Biosystems), 3.2 µg Bovine

Serum Albumin (Thermo Scientific), 1 µl of each of the 5 µM forward

and reverse tagged primers (including 2–4 leading Ns and 8‐bp sample

tags), 5.84 µl H2O and 2 µl extracted DNA template (standardized to

5 ng/µl). Twin tagging was used to reduce tag jumping, and different

tags were used for sediment and stomach samples from the same site.

The PCR profile included an initial denaturing step of 95°C for

10 min, 35 cycles of 94°C for 1 min, 45°C for 1 min and 72°C for

1 min and a final extension step of 72°C for 5 min. PCR products (in-

cluding two negative controls) with sample tags attached were pooled

at equimolar concentration into two multiplex sample pools (sediment

sample pool and stomach sample pool) and purified using MinElute

columns (Qiagen). Library preparation was performed using the Next-

Flex PCR‐free library preparation kit (BIOO Scientific), and library

quantification was done using the NEBNext qPCR quantification kit
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(New England Biolabs). Libraries were pooled (along with 0.7% PhiX

v3, Illumina, serving as a positive sequencing quality control) in a 1:4

sediment:stomach molar concentration ratio (reflecting the sediment:

stomach sample ratio) and sequenced (final molarity of 8 p.m.) on an

Illumina MiSeq platform using v2 chemistry (2 × 250 bp paired‐ends).
Prior to the 12S PCR amplification, DNA from the three stomach

extractions per site was pooled, resulting in final pools of 16–24
stomachs per sample (with the exception of the Tweed and Tees

samples; see Supporting Information Table S1) and standardized to

5 ng/µl. Amplification of the 12S fragment (for the sediment, water

and pooled stomach samples) was achieved using a two‐step PCR

protocol by first amplifying the amplicon using untagged primers and

sequentially amplifying the product of the first PCR with tagged pri-

mers to attach a 7‐bp index to each sample (Andruszkiewicz et al.,

2017; Miya et al., 2015). Different tags were used for sediment and

stomach samples from the same site. Between the two PCR steps, a

5‐time dilution and size selection were performed using Multi-

Screen® PCRµ96 plates (Millipore) to remove any leftover primers.

The MiFish primer pair was used for both PCR steps (forward: 5’‐
GTCGGTAAAACTCGTGCCAGC‐3’; reverse: 5’‐CATAGTGGGGTATC
TAATCCCAGTTTG‐3’; Miya et al., 2015), and the PCR mix recipe

was the same as the one mentioned above for the COI amplification.

The PCR profile (for both steps) included an initial denaturing step

of 95°C for 10 min, 40 cycles of 95°C for 30 s, 60°C for 30 s and

72°C for 30 s and a final extension step of 72°C for 5 min. Two

technical PCR replicates were produced per sample, and two nega-

tive controls were included. PCR products were pooled into two

multiplex sample pools (one pool per PCR replicate), and the pools

were sequenced in equimolar concentrations (final molarity of

9 p.m.) along with 0.8% PhiX on Illumina MiSeq platform using v2

(a) (b) (d)

(e)(c)

F IGURE 1 Overview of sample locations, illustrating (a) the overall western European scale, including the location of the Tweed (Tw) and
Tees (Te) estuaries, marked by stars (where the study comparing fish detection performance of stomach, sediment, water DNA and traditional
netting took place); (b) the Dutch estuaries, Western Scheldt (WS) and Eastern Scheldt (ES); the British estuaries (c), Mersey (Me), Kent (Ke)
(Tees and Tweed only present in inset a); the Aveiro (d) and Minho (e) estuaries in Portugal. Small numbered dots within estuaries represent
individual collection points for shrimp and sediment samples. Source map: OpenStreetMap [Colour figure can be viewed at
wileyonlinelibrary.com]
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chemistry (2 × 150 bp paired‐ends) in accordance with the protocol

described above for the COI fragment.

2.4 | Bioinformatic and data analyses

Bioinformatic analyses were performed using the OBITools metabar-

coding software suite (Boyer et al., 2016). Assessment of read qual-

ity was done with FastQC, paired‐end read alignment with

illuminapairedend, and reads with alignment quality score >40 were

retained. Demultiplexing and primer removal was achieved using

ngsfilter. Aligned reads with a length of 303–323 bp (for COI) or

140–190 (for 12S) and free of ambiguous bases were selected using

obigrep and dereplicated with obiuniq. Chimeras were removed

using the uchime‐denovo algorithm (implemented in VSEARCH;

Edgar, Haas, Clemente, Quince, & Knight, 2011; Rognes, Flouri,

Nichols, Quince, & Mahe, 2016). Amplicon clustering was performed

using the SWARM 2.0 algorithm (Mahé, Rognes, Quince, Vargas, &

Dunthorn, 2014, 2015 ) with a d value of 13 for the COI pipeline,

and with a d value of 3 for the 12S pipeline. Taxonomic assignment

was achieved using the ecotag algorithm (Boyer et al., 2016) on rep-

resentative sequences for each MOTU to taxa in relation to local

reference databases (Wangensteen et al., 2018). The COI database

(db COI Sep2017) contained 191,295 filtered COI sequences of

eukaryota retrieved from the BOLD database (Ratnasingham &

Hebert, 2007) and the EMBL repository (Kulikova et al., 2004). The

12S database (db Miya Sep2017) contained 6,868 sequences from

vertebrates retrieved from GenBank. Further refinement of the data

was achieved by clustering MOTUs assigned to the same species,

the application of abundance renormalization to remove false posi-

tives arising from tag switching (Wangensteen & Turon, 2017) and

the removal of singletons. Reads not belonging to bony fish taxa

(class: Actinopterygii) were removed. To avoid false positives and

remove low‐frequency noise, a minimum copy threshold of five

reads per sample was applied to the COI data set on a sample‐by‐
sample basis (Alberdi, Aizpurua, Gilbert, Bohmann, & Mahon, 2018).

False positives were removed from the 12S data set by means of a

restrictive approach in which only MOTUs that occurred in both

PCR replicates were considered (Alberdi et al., 2018). Remaining

reads of the two PCR replicates were merged per sample after filter-

ing. Both the minimum copy threshold of five copies and the restric-

tive PCR replicate approach can be considered conservative and may

have had a negative effect on the detected diversity (Alberdi et al.,

2018). Stomach reads were merged per site for the COI data set to

obtain comparable data sets between the two markers, based on the

same stomachs pools. An overview of the pipelines is reported in

Supporting Information Table S2.

Statistical analyses were performed in R version 3.1.3 (https://

www.R-project.org/) with the packages vegan (version 2.3‐5; Oksa-

nen et al., 2016) and BiodiversityR (version 2.5‐3; Kindt & Coe,

2005). Multivariate analyses were conducted based on presence–ab-
sence data using the PERMANOVA functions adonis and nested.np-

manova (Jaccard dissimilarities and 1,000 permutations). MOTU

richness was represented as MOTU/species accumulation curves,

while differences in the mean number of MOTU detected between

samples, countries and estuaries within countries were tested using

generalized linear models and Wilcoxon signed rank tests.

3 | RESULTS

3.1 | Molecular biodiversity assessment

Total numbers of 2,060,514 and 4,997,391 reads were obtained from

12S and COI amplifications, respectively, after demultiplexing, quality

and sequence‐length filtering (reads obtained by HTS: 12S:

9,139,215; COI: 8,895,448). The 12S primers only amplified chordates

(Actinopterygii, Agnatha, Aves, Mammalia), while the COI primer pair

amplified 40 phyla, including some chordates (Siegenthaler et al.,

2018). Percentage of fish (Actinopterygii) reads was high for the 12S

primers (75%–89%) and low for the COI primers (sediment: <0.01%,

stomach: 7%; Table 1). Taxonomic assignment resulted in a total of

219 Actinopterygii MOTUs identified using the 12S marker, of which

62 were identified to the species or genus level (using the ecotag

algorithm; Boyer et al., 2016). Of the 27 Actinopterygii MOTUs

detected in the samples using the COI marker, 25 were assigned to

the species or genus level. Using the COI marker, only one fish MOTU

(Dicentrarchus labrax; 15 reads) could be detected in the sediment

(and only at one site: Minho 1), and therefore, it was not considered

for further analyses. Figure 2 shows a heat map of all MOTUs identi-

fied to the species or genus level with the different markers, sample

locations and sample media. Large variation is visible in the species

detected across sample. For stomach samples, the number of fish spe-

cies detected was not correlated with the number of stomachs pooled

per sample (Spearman correlation; COI: r = 0.32, p = 0.16; 12S:

r = 0.15, p = 0.52). Notable observations are as follows: the wide

occurrence and relatively high abundances of Pleuronectes sp., Salmo

trutta, Scomber scombrus and Trachurus trachurus in the amplifications

with 12S but not with COI; the wide presence of D. labrax, which is

more effectively detected by the COI marker; and the detection, via

Reads

COI 12S Tees & Tweed (12S)

Sediment Stomach Sediment Stomach Sediment Stomach Water

Bony fish 15 306,997 407,377 799,272 199,254 205,886 119,652

Lamprey 0 0 0 63 28 0 0

Non‐fish 620,310 4,070,069 107,059 95,720 60,574 26,797 38,923

Total 620,325 4,377,066 514,436 895,055 259,828 232,683 158,575

Fish reads (%) 0.002 7.01 79.19 89.31 76.69 88.44 75.46

TABLE 1 Total number of bony fish
(class Actinopterygii), lamprey (class
Agnatha) and non‐fish reads detected in
samples sequenced using COI and 12S
markers. Fish reads are given after quality
filtering and removal of false positives
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12S, of the river lamprey Lampetra fluviatilis in the Eastern Scheldt.

The two markers can complement each other in the identification of

some taxa to the species level (e.g., the Atherina sp. detected via 12S

in Aveiro 1 is most likely A. presbyter, as inferred by COI). No clear

geographical patterns were detected (Supporting Information Figures

S1 and S2). Nested PERMANOVA analyses (1,000 permutations) did

not show any differences between countries (12S stomach: F = 2.28,

p = 0.08; 12S sediment: F = 0.34, p = 0.39; COI stomach: F = 1.35,

p = 0.22) and estuaries nested in countries (12S stomach: F = 2.50,

p = 0.54; 12S sediment: F = 0.46, p = 0.84; COI stomach: F = 1.62,

p = 0.63). COI sediment samples were not tested since fish DNA was

only detected in the sediment of one estuary.

3.2 | Comparison of molecular markers and sample
types

MOTU accumulation curves showed no differences in the total num-

ber of MOTUs identified at the species or genus level between

markers (12S/COI) and sample types (sediment/stomach; Figure 3),

except for the COI sediment samples (only one MOTU detected).

Venn diagrams showed large overlap between markers in the fish

families detected, but differences were noted in the species identi-

fied (Figure 4a). The total number of fish MOTUs per stomach sam-

ple was significantly higher in samples amplified with 12S compared

to COI when identified at the family or genus level, but did not dif-

fer significantly when only MOTUs identified at the species level

were considered (Table 2). Almost half of the fish taxa identified

with the 12S marker were observed in both sample types, and this

proportion of taxa remained fairly constant among the different tax-

onomic levels considered (Figure 4b). The total number of taxa iden-

tified per 12S‐amplified sample did not differ significantly between

sediment and stomach, independently of the taxonomic level of

interest (Table 3).

More fish species were detected with metabarcoding using 12S

than by traditional seine net surveys in the Tees and Tweed estuar-

ies (Table 4). In the Tees estuary, 18 fish taxa (nine of which

1 1 2 2 3 3 1 1 2 2 3 3 4 4 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 2 3 1 2 3 4 1 2 3 1 2 3 1 2 3 4 1 2 3 4
Family Species Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St Se St St St St St St St St St St St St St St St St St St St St St St

Ammody�dae Ammodytes tobianus 0 0 ## 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ammodytes sp. 0 0 34 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anguillidae Anguilla sp. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Apogonidae Apogon sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0
Atherinidae Atherina boyeri 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Atherina presbyter 0 0 0 0 0 0 0 0 0 0 ## 0 0 0 0 0 0 0 0 0 0
Atherina sp. 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 0 0

Belonidae Belone belone 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Blenniidae Lipophrys pholis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Carangidae Trachurus trachurus 10 14 11 0 0 2 14 16 15 14 11 16 14 0 0 0 10 0 21 5 19 0 0 5 17 0 14 37 12 16 34 17 15 0 0 38 18 16 17 0 13 0

Trachurus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Clupeidae Alosa sp. 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Clupea harengus 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sardina pilchardus 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0

Co�dae Taurulus bubalis 2 3 0 0 0 0 0 1 4 0 0 0 2 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0 2 0 0 0 5 0 0 0 3 1 5 0 0 1
Cyprinidae Gobio gobio 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Squalius cephalus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Engraulidae Engraulis encrasicolus 0 0 0 0 0 0 0 1 1 0 0 3 0 0 0 0 0 0 0 0 0

Engraulis sp. 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0
Gadidae Pollachius virens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Trisopterus minutus 1 2 0 0 0 0 1 3 5 0 0 0 2 0 0 0 6 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 3 8 0 0 2 1 0 0 2 0
Trisopterus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gasterosteidae Gasterosteus aculeatus 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gobiidae Gobius paganellus 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Pomatoschistus microps 0 0 0 0 0 0 0 0 0 0 0 0 81 0 0 0 0 0 0 0 3
Pomatoschistus sp. 0 0 0 0 0 28 1 1 0 5 0 0 0 0 0 1 0 6 0 57 0 5 0 73 5 99 0 0 0 0 0 7 4 4 0 0 2 0 4 0 1 39

Labridae Labrus bergylta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Labrus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Symphodus melops 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Symphodus ocellatus 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0

Symphodus sp. 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0
Moronidae Dicentrarchus labrax 0 0 0 12 0 0 2 0 0 0 0 0 2 36 8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 9 0 0 2 0 0 0 1 1 0 0 3 0 ## ## 0 0 1 31 0 0 0 88 0 0 19 0 50 26 75 67 0 0 0

Nemacheilidae Barbatula barbatula 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Pleuronec�dae Pla�chthys flesus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89

Pleuronectes sp. 35 48 45 53 83 18 41 45 29 56 46 39 43 0 58 0 48 0 44 17 34 0 57 16 53 0 38 0 45 30 66 34 32 55 93 0 47 47 43 51 41 54
Salmonidae Salmo tru�a 25 15 17 23 0 8 21 15 15 0 23 24 15 0 12 0 0 0 28 10 26 0 0 0 13 0 38 27 14 20 0 18 20 33 0 39 16 19 27 33 18 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
Scombridae Scomber scombrus 12 13 10 0 0 7 10 11 20 12 17 14 12 18 13 0 18 0 0 3 12 0 43 0 4 0 0 0 15 19 0 17 13 0 0 23 8 7 0 0 13 0 0 0 0 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Scophthalmidae Scophthalmus maximus 0 0 0 0 0 0 0 73 61 3 0 0 0 0 0 0 0 0 0 0 0
Zeugopterus punctatus 0 0 0 0 0 0 0 29 62 0 0 0 0 0 0 0 0 0 0 0 0

Serranidae Serranus cabrilla 0 0 0 0 0 69 0 0 0 12 0 0 0 0 50 0 0 0 0 0 0
Sparidae Oblada melanura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Spondyliosoma cantharus 0 0 0 0 0 0 0 21 36 0 0 0 0 0 0 0 0 0 0 0 0
Syngnathidae Syngnathus typhle 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

Syngnathus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trachinidae Echiichthys vipera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 0 0 0 0 0

Triglidae Chelidonichthys sp. 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
Agnata: Petromyzon�dae Lampetra fluvia�lis

Total reads (species/genus):
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COI (Stomach)
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12S (Sediment and Stomach)
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F IGURE 2 Heatmap of fish species and genera detected in samples taken from Dutch (E. Sch: Eastern Scheldt & W.Sch: Western Scheldt),
UK (Mersey & Kent) and Portuguese (Minho & Aveiro) estuaries. The heatmap only shows taxa that are identified at the genus or species
level. Fish taxa detected in Crangon crangon pooled stomach samples (St) are shown after DNA amplification with two markers: 12S and COI.
Sediment samples (Se) are only shown after DNA amplification with the 12S primers since COI amplification resulted in the detection of only 1
MOTU (D. labrax) in 1 sample (Minho 1). Colours represent differences in relative read abundances, and the numbers below the columns show
the total number of fish reads per sample that could be assigned to the species or genus level [Colour figure can be viewed at
wileyonlinelibrary.com]
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assigned at the species level) were detected using molecular meth-

ods while only five taxa (all identified at the species level) during the

seine net survey. Although no MOTUs were detected by metabar-

coding that could be assigned to these species, taxa were assigned

to the same family or genus level as four of these species (with the

exception of Ammodytes tobianus). Nine species and four higher taxa

(family or genus) were exclusively detected by metabarcoding. In the

Tweed estuary, 23 fish taxa (of which 14 assigned to the species

level) were detected using molecular methods and only six taxa (all

identified at the species level) during the seine net survey. Three

species were detected by both methods. Another three species were

detected exclusively by netting, but these matched taxa that were

assigned to the same family or genus by metabarcoding. Eleven spe-

cies and six higher taxa (family or genus) were exclusively detected

by metabarcoding, including the lamprey L. fluviatilis, in the Tweed.

Water, sediment and C. crangon stomach samples collected from

the Tees and Tweed estuaries showed extensive overlap in the spe-

cies, genera and families detected (Figure 4c). Although some genera

were exclusively detected in either sediment (Gobio, Gobius and Lam-

petra) or stomach (Ammodytes) samples, no species, genera or fami-

lies were solely detected in water samples.

4 | DISCUSSION

Estuaries are under substantial anthropogenic pressures, including

fisheries, pollution, shipping and the spread of invasive species, and

thus, the monitoring of their ecological status and variation is essen-

tial to safeguard ecosystem functioning and the services provided

(Martínez et al., 2007; Sheaves et al., 2015). To improve fish diver-

sity assessment, recent studies have employed molecular tools such

as eDNA metabarcoding (Evans & Lamberti, 2017; Thomsen et al.,

2012). The present study introduces a novel approach, which bene-

fits from the “natural sampling” properties of a generalist predator/

scavenger and the power and speed provided by metabarcoding.

Results show that metabarcoding of environmental and trophic

samples was much more effective in determining the local fish com-

munity structure than traditional seine net surveys, in line with a

growing body of work on the use of eDNA in fish surveys (e.g.,

Boussarie et al., 2018; Thomsen et al., 2012; Valentini et al., 2016).

Twice the number of species and more than three times the number

of taxa (assigned to the genus of family level) were detected using

12S‐metabarcoding on a combination of sediment, shrimp stomach

and water samples compared to concordant seine net surveys. Fur-

thermore, fish taxa detected by metabarcoding, but not by traditional

netting, included some important taxa for conservation such as

Anguilla and Lampetra. Although it was not possible to identify all

species caught during the seine net surveys at the species level using

molecular assignment only, the family/genus‐level identification indi-

cates that the DNA of these species was indeed amplified, hence

allowing in most cases indirect inference on species presence.

Improvements of the reference database or marker's taxonomic reso-

lution will be required to attain unambiguous, direct molecular iden-

tification of these taxa at the species level (Alberdi et al., 2018;

Shaw et al., 2016).

The fish diversity detected during this study, by using a combina-

tion of sediment and C. crangon stomach samples, reflects a typical

European estuarine community, including estuarine residents (e.g.,

A. tobianus and Pomatoschistus microps) and species that use estuar-

ies as a nurseries and/or feeding grounds (e.g., D. labrax and Pleu-

ronectes platessa), migrate through them (e.g., Anguilla sp. and Salmo

trutta) or behave as marine or freshwater stragglers (e.g., Scomber

scombrus, Trachurus trachurus and Gobio gobio; Elliott & Dewailly,

1995; Elliott et al., 2007; Maes, Stevens, & Ollevier, 2005). Several

species detected, such as eel (Anguilla sp.), European plaice (P. pla-

tessa), sea bass (D. labrax) and Atlantic mackerel (S. scombrus), are

important commercial targets. Considering the small size of C. cran-

gon caught (20–50 mm total length; Siegenthaler et al., 2018), it is

surprising to see that such a small shrimp feed on a large range of

fish species including several known and potential own predators

(e.g., P. microps and D. labrax; Cattrijsse, Dankwa, & Mees, 1997).

Consumption of fish tissue is, therefore, likely a combination of scav-

enging on adults and direct predation on juveniles/larvae (Ansell,

Comely, & Robb, 1999; Siegenthaler et al., 2018; van der Veer &

Bergman, 1987). Although soft bottom habitats were sampled, sev-

eral hard‐bottom‐associated species were detected (e.g., Lipophrys

pholis and Labrus bergylta) which could have been occasional visitors

from nearby rocky shores (e.g., rocky outcrops located near the

mouth of the Minho estuary) or were captured/scavenged by shrimp

migrating in and out the estuaries (Al‐Adhub & Naylor, 1975). In

addition to DNA originated from the biota present in the estuaries,

DNA detected in the sediment and water samples might also have

F IGURE 3 MOTU accumulation curves (±SE; 100 permutations)
representing the number of bony fish MOTUs identified at the
species or genus level detected in sediment and Crangon crangon
pooled stomach samples analysed with two different markers.
Green: Sediment—12S; pink: Stomach—12S; black: Sediment—COI;
blue: Stomach—COI. Sediment—COI values are estimated since only
1 MOTU was detected [Colour figure can be viewed at
wileyonlinelibrary.com]
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(a)

(b)

(c)

F IGURE 4 Venn diagrams of fish families, genera and species detected in the (a) DNA of Crangon crangon stomach pooled samples
amplified with two different markers: 12S and COI; (b) DNA of C. crangon pooled stomach and sediment samples amplified with 12S primers;
(c) DNA of C. crangon pooled stomach, sediment and water samples collected in the Tees and Tweed estuaries in the UK amplified with 12S
primers. *Species for which the family was detected with both markers are indicated in white; 1: Class Agnatha [Colour figure can be viewed
at wileyonlinelibrary.com]
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been transported post‐mortem from other adjacent areas by river

run‐off or during tidal movements (Barnes & Turner, 2016).

Besides site‐specific variation, no geographical patterns were

detected during this study. The focus of the present study is the

assessment of a trophic metabarcoding approach to evaluate fish

diversity and does not aim to provide a detailed geographical compar-

ison, for which a higher sample density would be required. Also, Euro-

pean estuaries show high similarities in fish assemblages, especially

for common/abundant species (Elliott & Dewailly, 1995). Differences

in rare species may also have been masked by pooling of the samples,

though pooling is still considered suitable for among‐site comparison

of representative fish communities (Sato, Sogo, Doi, & Yamanaka,

2017). Taking these considerations into account, further studies with

expanded geographical range and seasonal samplings are likely to

yield the full breadth of European estuarine ichthyofaunal complexity.

4.1 | Marker and DNA medium choice

The results of this study add to the growing body of evidence

underpinning the efficacy of molecular tools to effectively detect

biodiversity (Andruszkiewicz et al., 2017; Evans & Lamberti, 2017;

Taberlet, Coissac, et al., 2012), but also show that a combination of

multiple markers and different sample types are required to gain a

comprehensive understanding of the study system (Alberdi et al.,

2018; Deagle, Jarman, Coissac, Pompanon, & Taberlet, 2014; Shaw

et al., 2016). Environmental DNA is generally only present in trace

amounts in the environment and the concentration of DNA can dif-

fer between media, influencing the detectability of taxa (Shaw et al.,

2016; Taberlet, Prud’Homme, et al., 2012; Turner et al., 2015). No

major differences were detected in the number of fish species iden-

tified with the 12S primer pair between the sediment samples and

C. crangon stomach contents. In the samples from the Tees and

Tweed estuaries, more fish species were detected in the eDNA

extracted from the sediment than from the water and no species,

genera or families were exclusively detected in the water samples.

Differences in fish detectability between these sample types could

be due to the generally higher concentration and temporal persis-

tence of DNA in sediment samples compared to the water column

(Turner et al., 2015) or caused by differences in the volumes of sub-

strates used (Shaw et al., 2016). It should be noted, however, that

only a limited number of water samples was taken due to the reli-

ance of this study on previously collected samples (Siegenthaler

et al., 2018). Since water sampling has been the main technique for

eDNA‐based fish surveys (e.g., Shaw et al., 2016; Valentini et al.,

2016), further research comparing eDNA extracted from trophic and

water samples might be required for a more in‐depth comparison.

The differences in species detection between the 12S and COI

markers are likely due to a combination of primer bias, differences in

reference database completeness and the taxonomic resolution of

the markers (Alberdi et al., 2018; Taberlet, Coissac, et al., 2012). The

COI data were collected as part of a larger study on the diet of the

brown shrimp (Siegenthaler et al., 2018), while the 12S data were

specifically collected for the detection of fish DNA in shrimp stom-

ach samples. Furthermore, due to slight variations in laboratory pro-

cedures (e.g., the requirement of two‐step PCR protocol for the 12S

primer), two different strategies were used to compensate for PCR‐
sequencing errors, contaminants and false positives: a high copy

number threshold (>5 reads on a sample‐by‐sample basis) for the

COI marker and a restrictive PCR replicate strategy for the 12S mar-

ker (Alberdi et al., 2018). These differences could have had an influ-

ence on the differences in species richness, due to chimaeras, PCR

stochasticity and contaminations, detected between the two differ-

ent markers. Comparisons between the two markers should, there-

fore, be considered with caution. Yet, taking this into consideration,

it can be argued that of the markers used during this study, COI was

more accurate for species‐level detection than 12S, due to its better

taxonomic resolution, which ensures high discrimination power at

the species level, and the availability of an exhaustive and well‐cu-
rated reference database (BOLD; Ratnasingham & Hebert, 2007). Its

use was, however, severely limited in samples where the relative

amount of fish DNA was low (e.g., sediment samples) due to the

nearly universal taxonomic breadth of the COI primers used (Wan-

gensteen et al., 2018). Interestingly, more teleost DNA was amplified

using COI primers from the stomachs samples than from the sedi-

ment samples, even though no blocking primers were used to block

C. crangon DNA (Ray et al., 2016). The sediment samples were, how-

ever, dominated by reads of a wide range of protist and invertebrate

meiofaunal taxa (Siegenthaler et al., 2018). While the Leray‐XT

TABLE 2 Differences in mean number of bony fish MOTUs per
sample identified at different taxonomic levels in Crangon crangon
pooled stomach samples amplified with 12S and COI primer pairs.
Higher taxonomic ranks include MOTUs identified at the lower
levels

Mean ± SE number of
MOTU per sample

Wilcoxon signed
rank test

COI stomach 12S stomach N V p

All MOTUs 2.2 ± 0.6 6.6 ± 0.6 21 8.0 <0.001*

Family level 2.2 ± 0.6 5.8 ± 0.6 21 13.5 0.001*

Genus level 2.2 ± 0.6 4.9 ± 0.5 21 22.5 0.004*

Species level 2.0 ± 0.5 3.0 ± 0.4 21 76.5 0.177

Asterisks refer to significant comparisons.

TABLE 3 Differences in mean number of bony fish MOTUs per
sample amplified with a 12S primer pair and identified at different
taxonomic levels between Crangon crangon pooled stomach and
sediment samples. Higher taxonomic ranks include MOTUs identified
at the lower levels. See Supporting Information Table S3 for rarefied
data

Mean ± SE number of MOTU
per sample

Wilcoxon signed
rank test

12S stomach 12S sediment N V p

All MOTUs 6.6 ± 0.6 7.0 ± 0.7 21 82.0 0.61

Family level 5.8 ± 0.6 6.9 ± 0.8 21 68.0 0.17

Genus level 4.9 ± 0.5 5.9 ± 0.7 21 66.0 0.15

Species level 3.0 ± 0.4 4.0 ± 0.5 21 51.5 0.14
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primer pair (COI) has been developed for universality (Wangensteen

et al., 2018), the MiFish primer pair (12S) has been developed to

specifically detect eDNA from fishes (Miya et al., 2015). The main

limitations of 12S‐based markers are, however, that 12S rDNA tele-

ost coverage is relatively poor in the NCBI nucleotide database

(Andruszkiewicz et al., 2017) and the fact that 12S‐based markers

have lower taxonomic resolution for fish species than other markers

(Pesole, Gissi, Chirico, & Saccone, 1999; Shaw et al., 2016). An

appropriate choice of marker and sample medium are, therefore,

intertwined and depend on the research question (e.g., rarity of the

taxa of interest), the taxonomic resolution required and the availabil-

ity of resources to improve reference databases.

4.2 | Applications in fisheries and environmental
sciences

Fisheries science requires tools that provide reproducible data on

species diversity, stock size and demographic information of the area

under study, preferably for minimal cost and labour. Traditional

methods are not always able to provide this, as results vary highly

with the sampling technique used, including type of gear and depth

of fishing. They are, furthermore, often expensive and labour inten-

sive (Cotter et al., 2004; Courrat et al., 2009; Lapointe et al., 2011;

Thomsen et al., 2012). Presently, eDNA metabarcoding techniques

also show limitations for several of these requirements since they

are not able to assess population structure and fish condition, quan-

titative data on biomass or number of individuals, nor they provide

real‐time and fine‐scale information (Evans & Lamberti, 2017; Shaw

et al., 2016). Standardization of the molecular and analytical methods

used for metabarcoding is also required for reproducibility and to

allow for combination of data from different studies (Gilbert, Jans-

son, & Knight, 2014; Lear et al., 2018; Leese et al., 2016). On the

positive side, eDNA samples are easier to collect, require lower sam-

pling effort and are less labour intensive than traditional fishing

methods (Boyer et al., 2015; Evans, Shirey, Wieringa, Mahon, & Lam-

berti, 2017; Smart et al., 2016). In addition, molecular monitoring of

fish populations (either from environmental or stomach samples)

does not require taxonomic expertise, is more objective than

TABLE 4 Fish species detected by 12S
metabarcoding and concurrent seine net
surveys. Metabarcoding results are based
on combined data from sediment, water
and C. crangon stomach samples amplified
with the 12S primer pair (see Figure 4c).
Percentage detected shows the
percentage of species identified per
estuary and, in brackets, the probable
percentage of species detected if MOTUs
identified to the family or genus level are
included

Family

Tees estuary Tweed estuary

Species Metabarcoding Netting Metabarcoding Netting

Ammodytidae Ammodytes tobianus √ 1

Anguillidae Anguilla sp. 1 1

Carangidae Trachurus trachurus √ √

Clupeidae Clupea harengus 2 √ 2 √

Sprattus sprattus 2 √

Cottidae Taurulus bubalis √ √

Cyprinidae Gobio gobio √

Squalius cephalus √

Gadidae Unassigned 2

Trisopterus minutus √ √

Gasterosteidae Gasterosteus aculeatus √ √ √

Gobiidae Gobius paganellus √

Pomatoschistus minutus 1 1 √

Labridae Labrus sp. 1

Moronidae Dicentrarchus labrax √ √

Mugilidae Unassigned 2 2

Nemacheilidae Barbatula barbatula √ √

Petromyzontidae* Lampetra fluviatilis* √

Pleuronectidae Platichthys flesus 2 √ 2 √

Pleuronectes platessa 1 √

Salmonidae Salmo salar √ √

Salmo trutta √ √ √

Scombridae Scomber scombrus √ √

Syngnathidae Syngnathus typhle √ √

Triglidae Chelidonichthys sp. 1 1

% Detected 50 (94) 28 61 (100) 26

1Assigned to genus level. 2Assigned to family level. *Class: Agnatha.
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traditional methods and, in general, results in more species detected

than conventional methods (Boussarie et al., 2018; Thomsen et al.,

2012; Valentini et al., 2016; this study). Besides species distribution

assessments, the use of eDNA is especially useful for the detection

and monitoring of rare (e.g., Anguilla and Agnatha) and invasive spe-

cies (Evans & Lamberti, 2017), as required for compliance with envi-

ronmental policy, such as the EU Habitat Directive. Since the costs

of molecular consumables continue to decline and the speed of

sequencing analyses and bioinformatic pipelines increases, molecular

techniques (either based on environmental or stomach samples) have

the potential to become a valuable complement to traditional sam-

pling methods (Evans et al., 2017; Smart et al., 2016).

One of the appealing aspects of using a variety of media for

environmental and community DNA collection is that, while these

can easily be collected simultaneously, they can reveal different

levels of information about the community under investigation. Envi-

ronmental DNA extracted from water samples usually integrates

information over large spatial scales but has a low temporal resolu-

tion due to the high dispersion and low persistence of DNA in sea

water (Barnes & Turner, 2016; Thomsen et al., 2012). Sediment sam-

ples, on the other hand, can store and conserve DNA for months to

years and their high spatial heterogeneity, as often detected

between samples, might provide information on small spatial scales

(Taberlet, Prud’Homme, et al., 2012; Turner et al., 2015). Neverthe-

less, estuaries act as river catchment areas and sediments store

organic matter from upstream freshwater habitats. Resuspension and

horizontal transport of eDNA could thus influence interferences

made from both sediment and aqueous eDNA (Barnes & Turner,

2016; Turner et al., 2015), especially in dynamic systems such as

estuaries.

This study is the first to bring into the scene another promising

medium: the gut contents of generalist predators or scavengers. In

the case of C. crangon, DNA extracted from its stomach contents will

likely provide recent information since shrimp have a relatively fast

gut passage time (4–20 hr; Feller, 2006; Pihl & Rosenberg, 1984; van

der Veer & Bergman, 1987) and digested DNA degrades rapidly

(Deagle, Eveson, & Jarman, 2006; Moran, Orth, Schmitt, Hallerman,

& Aguilar, 2016). The area “sampled” by a pool of C. crangon will

likely provide information on a larger spatial scale than acquired by a

sediment sample since the shrimp actively moves around during

night‐time and shows tidal and seasonal migrations (Al‐Adhub &

Naylor, 1975; Donk & Wilde, 1981; Henderson & Holmes, 1987).

Furthermore, the effect of resuspension and horizontal transport of

upstream eDNA is less influential than in other DNA media since, as

a scavenger, C. crangon mainly consumes solid tissues which should

show a lower dispersion than extracellular eDNA. Compared to DNA

extracted from other environmental sources, community DNA

extracted from guts will mainly represent the live community present

in the system (or recently deceased in the case of scavenging)

instead of the mix of cellular and extracellular DNA from different

origins, which generally constitute eDNA (Barnes & Turner, 2016).

Finally, the fact that the “sampled biodiversity” is naturally encapsu-

lated in the guts of a shrimp, from field sampling all the way to DNA

extraction in the laboratory, represents a significant way to stream-

line and by‐pass many of the fastidious steps required to reduce

degradation and contamination when sampling water; a fact that is

often underemphasized in eDNA research.

The application of gut metabarcoding has the potential of becom-

ing a powerful tool in biodiversity assessment applications, such as in

the case of bioindicators and commercially important taxa (e.g., tele-

osts). Shrimp can be collected in large numbers without extra effort or

costs as bycatch during existing fish surveys (Gamito & Cabral, 2003).

Also, the application of fish‐specific markers (e.g., MiFish; Miya et al.,

2015) or blocking primers (Vestheim & Jarman, 2008) can greatly

reduce the labour required (stomachs do not need to be dissected with

precision since shrimp DNA will not be amplified), making the costs of

trophic eDNA comparable to other eDNA media. Pooling individual

stomachs prior to DNA extraction might also reduce the cost and

effort required. Nevertheless, this approach should be most advisable

when using primers that are more specific to the taxon of interest

(such as the 12S primers used here), in order to avoid the risk of miss-

ing the detection of rare prey species (Sato et al., 2017).

The initial results of this and other studies, using molecular or

traditional techniques (Boucek & Rehage, 2014; Lasley‐Rasher et al.,
2015; Schnell et al., 2012), show that diet‐based fish diversity tech-

niques are very promising. Certainly, their application remains depen-

dent on the availability of a suitable, ubiquitous and accessible,

“sampling species,” which requires expanded knowledge of ecological

interactions, such as predator–prey dynamics, secondary predation,

and the ecology and physiology of both the predator and prey spe-

cies to assess predator/prey‐related biases (Calvignac‐Spencer, Leen-
dertz, Gilbert, & Schubert, 2013; Schnell et al., 2015; Siegenthaler

et al., 2018). Nevertheless, it is clear that eDNA can be used as a

bio‐assessment tool for fisheries sciences to complement traditional

sampling schemes, to improve species distribution assessment and to

monitor invasive and rare species, at competitive costs. The imple-

mentation of an approach that interweaves high‐throughput
metabarcoding with the “natural sampling capacity” derived from

feeding activities of opportunistic/scavenging species may in the near

future offer the right blend of power, speed and cost‐effectiveness
for large‐scale, routine applications.
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