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Abstract 41	

Purpose: To quantify net glycogen utilisation in the vastus lateralis (VL) and 42	

gastrocnemius (G) of male (n=11) and female (n=10) recreationally active runners 43	

during three outdoor training sessions. Methods: After 2 days standardisation of 44	

carbohydrate (CHO) intakes (6 g.kg-1 body mass per day), glycogen was assessed 45	

before and after 1) a 10-mile road run (10-mile) at lactate threshold, 2) 8 x 800 m track 46	

intervals (8 x 800 m) at velocity at V̇O2max and 3) 3 x 10 minute track intervals (3 x 10 47	

min) at lactate turnpoint. Results: Resting glycogen concentration was lower in the G 48	

of females compared with males (P<0.001) though no sex differences were apparent in 49	

the VL (P=0.40). Within the G and VL of males, net glycogen utilisation differed 50	

between training sessions where 10-mile was greater than both track sessions (all 51	

comparisons, P<0.05).   In contrast, net glycogen utilisation in females was not different 52	

between training sessions in either muscle (all comparisons, P>0.05). Net glycogen 53	

utilisation was greater in males than females in both VL (P=0.02) and G (P=0.07) 54	

during the 10-mile road run.  With the exception of males during the 3 x 10 min protocol 55	

(P=0.28), greater absolute glycogen utilisation was observed in the G versus the VL 56	

muscle in both males and females and during all training protocols (all comparisons, 57	

P<0.05). Conclusion: Data demonstrate 1) prolonged steady state running necessitates 58	

a greater glycogen requirement than shorter but higher intensity track running sessions, 59	

2) females display evidence of reduced resting muscle glycogen concentration and net 60	

muscle glycogen utilisation when compared with males and 3), net glycogen utilisation 61	

is higher in the gastrocnemius muscle compared with the vastus lateralis. 62	

Keywords: muscle glycogen, carbohydrate, training, gender 63	

 64	



Introduction  65	

Since the introduction of the muscle biopsy technique in the late 1960s (1), the 66	

importance of muscle glycogen for augmenting exercise capacity and performance in 67	

endurance events has been well documented. In addition to high endogenous 68	

carbohydrate (CHO) availability, augmenting exogenous CHO availability (typically 69	

via gels, drinks or bars) is also ergogenic to exercise performance (2), an effect likely 70	

mediated by liver (3) and muscle glycogen sparing (4), maintaining plasma glucose and 71	

CHO oxidation rates (5,6) and/or via direct effects on the central nervous system (7). 72	

When taken together, nutritional guidelines for competitive endurance events 73	

recommend sufficient CHO loading (e.g. 7-12 g/kg body mass depending on event 74	

duration) to ensure elevated muscle and liver glycogen stores, as well as to consume 75	

exogenous CHO when exercise duration is > 1 hour (8,9).  76	

In contrast to competition, contemporary guidelines for training recognize the need to 77	

adjust daily CHO intake according to the goal of enhancing training quality versus 78	

creating a metabolic stimulus that may enhance training adaptation (8).  In this regard, 79	

the emergence of the “train-low” paradigm is based on the premise that periodically 80	

completing selected training sessions with reduced CHO availability up-regulates acute 81	

skeletal muscle cell signaling pathways (10) thereby leading to enhanced oxidative 82	

adaptations of skeletal muscle (11,12,13) and potentially, improved exercise 83	

performance and capacity (14,15).  From a practical perspective, we recently 84	

communicated the concept of CHO periodization according to the principle of fuel for 85	

the work required, whereby CHO availability is manipulated day-by-day and meal-by-86	

meal in relation to the demands of the specific training session (16,17).  87	



Despite the theoretical rationale for CHO periodisation strategies, practical application 88	

is limited by the lack of data quantifying the glycogen cost associated with specific 89	

training sessions.  Indeed, despite over five decades of research examining glycogen 90	

metabolism during exercise, the majority of data are based on laboratory protocols (e.g. 91	

fasted exercise undertaken at a fixed relative intensity for a given duration, e.g. 1 h at 92	

70% VO2max) that may not always be applicable to the field-based training sessions.  93	

For example, the oxygen cost of outdoor running is greater than running on a treadmill 94	

(19) and the training intensities prescribed to athletic populations are typically anchored 95	

to lactate threshold (as opposed to maximal oxygen uptake) and completed in the fed 96	

state.  Almost a decade ago, Burke et al. (2011) (9) highlighted that CHO guidelines 97	

for athletic populations are not underpinned by direct knowledge of the glycogen cost 98	

of real-life exercise programs, sentiments that were also communicated in 2016 (8) and 99	

2018 (19).  In the former paper, the authors suggested that to estimate the substrate 100	

requirement of specific workouts, practitioners must rely on guesswork supported by 101	

information obtained from consumer based activity / heart rate monitors and global 102	

positioning systems.  In the latter paper, the fuel costs, glycogen utilization rates and 103	

associated CHO intake requirements of habitual training sessions was identified as a 104	

targeted question for future research (19).  105	

In addition to the specifics of the exercise protocol, differences in muscle group 106	

examined (12,20) and sex-specific alterations in substrate metabolism (21) may also 107	

affect the absolute glycogen utilisation associated with specific training sessions. To 108	

our knowledge, however, such comparisons of muscle group, sex, and training intensity 109	

have not yet been simultaneously examined within the same study.  The paucity of data 110	

from female participants was recognized by Devries et al. (2016) (22) though is much 111	

stronger evidenced in the recent meta-analysis of Areta and Hopkins (2018) (23).  112	



Indeed, of the 180 studies that assessed glycogen utilization in human skeletal muscle 113	

during exercise, less than 5% included female participants.    114	

Accordingly, the aim of the present study was to quantify net glycogen utilization of 115	

the vastus lateralis and gastrocnemius muscles of recreationally active male and female 116	

runners during three types of training sessions considered representative of runners’ 117	

habitual workouts.  We deliberately chose recreationally active runners given that they 118	

comprise the largest running population and hence, our data may have greater practical 119	

relevance. To this end, we quantified glycogen use during a 10-mile road run conducted 120	

at lactate threshold, an 8 x 800 m track interval session (8 x 800 m) competed at velocity 121	

at V̇O2peak and finally, a 3 x 10 minute (3 x 10 min) track interval session undertaken at 122	

a velocity corresponding to lactate turnpoint.    123	

 124	

Methodology  125	

Participants: After providing informed written consent, twenty-one competitive and 126	

recreational runners (11 males and 10 females) volunteered to take part in the study. 127	

Inclusion criteria consisted of a minimum of 3 years competitive running experience, 128	

habitually training ≥ 3 times per week, and 10 km race time ≤45 min for males and ≤50 129	

min for females.  Participants’ anthropometric, training history and physiological 130	

profiles is displayed in Table 1.  All procedures confirmed to the standards set by the 131	

Declaration of Helsinki and the study was approved by the NHS Research Authority of 132	

the United Kingdom (West Midlands, Black Country Research Ethics Committee, REC 133	

reference 15/WM/0428).  134	



Design: In a randomised and repeated measures design, participants completed three 135	

sessions considered representative of those undertaken by runners competing in 10 km 136	

events (Spillsbury, personal communication, English Institute of Sport). The training 137	

sessions consisted of 1) a 10-mile road run (10-mile) undertaken at a velocity 138	

corresponding to lactate threshold, 2), an 8 x 800 m track interval session (8 x 800 m) 139	

competed at velocity at V̇O2peak and 3), a 3 x 10 minute (3 x 10 min) track interval 140	

session undertaken at velocity corresponding to lactate turnpoint.  A summary of each 141	

training session is also displayed in Table 2.  In an attempt to compare with previously 142	

published data (24,25,26,27,28) and also considering that glycogen utilisation is lower 143	

during the luteal phase (24), we deliberately studied female participants (who self-144	

reported) during the mid follicular phase (days 7 – 10).   In this way, male participants 145	

had 7-10 days between trials whereas females had 28 days between trials. Female 146	

participants were eumenorrheic with a normal cycle length, and inclusion criteria 147	

included use of oral contraception (combined pill), diaphragm or intrauterine device 148	

(IUD).  Muscle biopsies from both the vastus lateralis (VL) and gastrocnemius (G) 149	

muscles and venous blood samples were obtained immediately before and after 150	

completion of each training session. At 48 h prior to commencement of each training 151	

session, participants completed a standardised training session followed by 152	

standardised dietary intakes in an attempt to replicate pre-exercise muscle glycogen 153	

concentration between trials. All food was provided to the participants in pre-prepared 154	

packages having been prepared by a registered sports nutritionist (SENr) (Author 1).  155	

Baseline assessments: The running velocity at which each participant completed the 156	

three training sessions was determined by completion of a 2-part incremental exercise 157	

test on a motorised treadmill (HP Cosmos, Germany) to establish lactate threshold, 158	

lactate turn-point and peak oxygen uptake (V̇O2peak). Participants reported to the 159	



laboratory in a fasted state between 07:00 - 08:00 for an initial assessment of body 160	

composition via dual energy X-ray absorptiometry (DXA) (Hologic QDR Series, 161	

Discovery A, Bedford, MA, USA) according to the DXA best practice protocol (29). 162	

Participants were then provided with a standardised breakfast (2 g.kg-1 body mass CHO, 163	

25 g protein, 10 g fat) at 3 hours prior to commencing the incremental exercise test. To 164	

replicate outdoor running conditions (18), the test was commenced at 1% incline (at 8 165	

and 10 km.h-1 for females and males, respectively) and after a 10-minute self-selected 166	

warm-up. Oxygen uptake was measured continuously during exercise via breath-by-167	

breath measurement using a CPX Ultima series online gas analysis system 168	

(Medgraphics, Minnesota, USA). The treadmill speed was increased by 1 km.h-1 every 169	

3 min and during the final 30 seconds of each 3 min stage, blood lactate was assessed 170	

using capillary blood samples (Lactate Plus, Nova Biomedical USA).  Part 1 of the test 171	

terminated once both lactate threshold and turnpoint had been visually identified 172	

(defined as ≥ 0.4 mmol.L-1 and ≥ 1.0 mmol.L-1 above resting values respectively, 30).  173	

After a 5-min resting period, Part 2 of the test commenced at a velocity of 2 km.h-1 174	

below lactate turnpoint and the treadmill speed was increased by 1 km.h-1 every minute 175	

until volitional fatigue or until completion of the 16 km.h1 stage, after which point the 176	

treadmill inclined by 1% every minute until volitional fatigue. V̇O2peak was taken as the 177	

highest V̇O2 value obtained in any 10-sec period matching two of the following criteria: 178	

heart rate within 10 beats per min of age-predicted maximum, respiratory exchange 179	

ratio (RER) > 1.1 and plateau of oxygen consumption despite increased workload. To 180	

calculate vV̇O2peak, the final treadmill speed was used if the velocity was ≤16 km.h-1and 181	

where participants terminated the test during the inclined component at 16 km.h-1, the 182	

following equation was used (30):  183	

Velocity at V̇O2peak= (V̇O2max x 60) / Running economy 184	



Kph = (ml.kg-1.min-1 x 60) / ml.kg-1.km-1 185	

 186	

Running economy = V̇O2 / (16 / 60) 187	

ml.kg-1.km-1 = ml.kg-1.min-1 / (16 / 60) 188	

 189	

Experimental Protocol:  190	

Day 1: Participants arrived at the laboratory on the evening (17.00) of Day 1 having 191	

avoided alcohol and vigorous physical activity for the previous 24 h. Body mass was 192	

recorded and a heart rate (HR) monitor (Polar FT1, Finland) fitted. Participants then 193	

performed an intermittent running protocol on a motorised treadmill (HP, Cosmos) 194	

lasting ~90-120 min in an attempt to deplete muscle glycogen and thus allow for 195	

exercise-dietary standardisation prior to the outdoor training sessions.  This exercise 196	

protocol has been used previously in our laboratory (31) and was chosen in an attempt 197	

to deplete muscle glycogen in both type I and type II muscle fibres. The activity pattern 198	

and total time to exhaustion were recorded, and water was consumed ad libitum 199	

throughout exercise. These parameters were repeated exactly during the second and 200	

third experimental trials.  Within 30 minutes of completion of the depletion protocol, 201	

participants consumed 1.2 g.kg-1 CHO in the form of sports drinks and bars (Lucozade, 202	

UK) and a 25 g whey protein solution (Upbeat Whey, UK).  At 2 h after completion of 203	

the depletion protocol, participants also consumed a standardised meal containing 2 204	

g.kg-1 CHO, 40 g protein and 15 g fat.  205	

Day 2: Subjects did not perform any structured training on Day 2 and also adhered to a 206	

standardised dietary intake of 6 g.kg-1 CHO, 2 g.kg-1 protein and 1 g.kg-1 fat. 207	

Day 3: After adhering to a further standardised dietary intake of 6 g.kg-1 CHO, 2 g.kg-208	

1 protein and 1 g.kg-1 fat on Day 3 (consumed during the period between 0700 h and 209	



1500 h), subjects commenced one of the three training sessions at approximately 1600 210	

h.  Both the 8 x 800 m and 3 x 10 min track interval sessions were completed at an 211	

outdoor athletics track (Wavertree Athletics track, Liverpool, UK).  The 10-mile road 212	

run was commenced on an outdoor course (designed by the first author) that 213	

commenced and finished at the Research Institute for Sport and Exercise Sciences at 214	

Liverpool John Moores University.  Upon arrival at each respective trial location, a 215	

resting venous blood sample and muscle biopsy were obtained from the VL and lateral 216	

head of the G muscle. Biopsies taken from each muscle group were from opposite legs 217	

(i.e. right vastus lateralis and left gastrocnemius) and subsequent trials sampled the 218	

opposite leg to the previous trial. Muscle samples were immediately snap frozen in 219	

liquid nitrogen. Participants wore a GPS watch (Garmin Fore Runner 620) and heart 220	

rate (HR) monitor (Garmin) during exercise in all trials to verify the correct exercise 221	

intensity. During the 10-mile road run, the first author accompanied the participant (via 222	

cycling alongside) and the participant reported their rating of perceived exertion (RPE, 223	

26) at the end of every mile. During the 8 x 800 m track run, participants reported RPE 224	

upon completion of each interval and capillary blood lactate was also sampled in the 225	

30 seconds after completion of interval 2, 4, 6 and 8 (Lactate Plus, Nova Biomedical 226	

USA).  During the 3 x 10 min track interval run, capillary blood lactate and RPE were 227	

also recorded at the end of each 10-minute interval. Upon completion of all three 228	

exercise trials, post-exercise venous blood sample and VL and G muscle biopsies (at 2 229	

cm distal to the pre-exercise biopsy from the same leg) were also obtained. 230	

Muscle biopsies: Muscle biopsies were obtained from the VL and lateral head of the G 231	

muscle within 5 minutes of commencing and completing each training session (Bard 232	

Monopty Disposable Core Biopsy Instrument 12 guage x 10 cm length, Bard Biopsy 233	

Systems, Tempe, AZ, USA). Samples were obtained under local anaesthesia (0.5% 234	



marcaine) and immediately frozen in liquid nitrogen and stored at – 80oC for later 235	

analysis.  236	

Muscle glycogen concentration: Muscle glycogen concentration was determined 237	

according to the acid hydrolysis method described by Van Loon et al. (32) with glucose 238	

concentration quantified using a commercially available kit (GLUC-HK, Randox 239	

Laboratories, Antrim, UK). 240	

Blood analysis: Venous blood samples were collected in vacutainers containing K2 241	

EDTA, lithium heparin or serum separation tubes, and stored on ice until centrifugation 242	

at 1500 g for 15 min at 4 ̊C. Plasma samples were aliquoted and stored at -80 ̊C until 243	

analysis. Plasma glucose, lactate, non-esterified fatty acids (NEFA) and glycerol were 244	

analysed using the Randox Daytona spectrophotometer with commercially available 245	

kits (Randox, Ireland), as per the manufacturer’s instructions.  246	

Statistical analysis: Randomisation of training sessions was balanced for both males 247	

and females by stratifying the randomisation by gender. The randomisation schedule 248	

was generated according to a Williams square for a 3 by 3 cross-over study. The 249	

planned sample size of 20 participants completing the study had 90% power to detect a 250	

glycogen utilisation of 85 mmol/kg dry muscle (standard error = 34) for each of the 251	

exercise protocol sessions (as based on similar running training sessions studied in our 252	

laboratory (11, 13), at the two-sided 1.7% significance level (the effects of sex were 253	

studied as an exploratory analysis). The study outcomes were analysed using a linear 254	

mixed model for parameters that were considered Normally distributed, and non-255	

parametric methods (Wilcoxon signed ranks test), otherwise. In the linear model, the 256	

dependent variable was the outcome of interest, and the independent variables included 257	

main effects for participant, exercise protocol, study period, gender, muscle type and 258	



baseline (where applicable). Interactions between gender and muscle type with exercise 259	

protocol were evaluated and were retained in the model if comparisons were to be made 260	

within subgroups, otherwise and if non-significant (P>0.05) these interaction terms 261	

were dropped from the model. Parameters associated with the anthropometric profile, 262	

training profile and physiological profile were compared between males and females 263	

using a t-test.  P-values were not adjusted for multiplicity.  264	

 265	

Results  266	

Overview of training workloads 267	

A comparison of workloads (i.e. exercise duration and distance ran) between each 268	

training session in males and females is displayed in Table 2.  The time taken to 269	

complete the exercise protocols with set distances (i.e. the 10-mile and 8 x 800 m 270	

sessions) was significantly different between sexes such that males completed both 271	

training sessions faster than females (P<0.001).   In males, the total exercise duration 272	

was different between training protocols such that 10 mile > 3 x 10 min > 8 x 800 273	

(P<0.01 for all comparisons).  Similarly, in female participants, the time required to 274	

complete the 10-mile road run was slower than both the 8 x 800 and 3 x 10 min session 275	

(P<0.001) though no difference was apparent between the track training sessions.  In 276	

relation to the training protocol with set duration (i.e. the 3 x 10 min track training 277	

session), males completed more distance compared with females (P<0.001).  278	

Physiological and metabolic responses to training  279	

Changes in plasma metabolites during exercise are displayed in Figure 1.  Plasma 280	

glucose did not significantly change during any of the exercise protocols (P=0.6, 0.9 281	



and 0.8 for 10-mile, 8 x 800 m and 3x10 min, respectively).  In contrast, exercise 282	

increased both NEFA (P<0.01 for all exercise protocols) and glycerol (P<0.01 for all 283	

exercise protocols) in all training protocols whereas exercise only increased plasma 284	

lactate (P=0.002) in the 8 x 800 m protocol.  In relation to plasma NEFA, exercise-285	

induced changes in NEFA were greater in the 10-mile session compared with both 8 x 286	

800 m (P=0.004) and 3 x 10 min protocols (P=0.003) whilst the 3 x 10 min protocol 287	

was also significantly greater than the 8 x 800 m protocol (P=0.006).  Finally, plasma 288	

glycerol responses were also significantly greater in both the 10-mile (P=0.02) and 8 x 289	

800 m (P=0.02) when compared with the 3 x 10 min protocol.  Whilst females displayed 290	

significantly greater increases in plasma glycerol than males in the 10-mile run 291	

(P=0.01), there was no difference in plasma metabolite responses between males and 292	

females in the remaining training protocols (P>0.05 for all comparisons). 293	

 294	

Resting muscle glycogen concentration and glycogen utilisation during training 295	

Muscle glycogen concentration before and after each training protocol is displayed in 296	

Figure 2, where statistical comparisons of training protocol, sex and muscle group on 297	

resting glycogen concentration are visually annotated.  When comparing resting muscle 298	

glycogen concentration between exercise protocols, no significant differences were 299	

evident within each sex and muscle (P>0.05) with the exception of the G muscle in the 300	

female participants where pre-training glycogen concentration was lower in the 8 x 800 301	

m protocol compared with both the 10-mile road run (P=0.02) and 3 x 10 min track run 302	

(P=0.01).    303	

In relation to sex-specific differences in resting muscle glycogen concentration, females 304	

displayed reduced muscle glycogen concentration in the G muscle when compared with 305	



males (P<0.001) though no such differences between sexes were apparent in the VL 306	

muscle (P=0.40). In relation to differences in resting glycogen concentration between 307	

muscles, the G muscle displayed higher glycogen concentration than the VL in males 308	

(P<0.01) though no such differences were evident in females (P=0.78) (Figure 1). 309	

Total muscle glycogen utilisation during exercise (as calculated from pre-training 310	

minus post-training values) is presented in Table 3.  Within the G muscle of male 311	

participants, there was a significant difference between training protocols such that 10-312	

mile > 8 x 800 m > 3 x 10-min (P<0.05 for all comparisons).  Similarly, glycogen 313	

utilisation within the VL muscle of male participants was greater in the 10-mile 314	

compared with both the 8 x 800 m and 3 x 10-min (P<0.01 for both comparisons) 315	

though no differences were apparent between the track running sessions (P=0.64).   In 316	

contrast, total glycogen utilisation in the female participants was not statistically 317	

different between training protocols in both the G and VL muscles (P>0.05 for all 318	

comparisons).   When comparing sex-specific responses, total glycogen utilisation was 319	

greater in males than females in both the VL (P=0.02) and G (P=0.07) muscle during 320	

the 10-mile road run only.  With the exception of males during the 3 x 10 min protocol 321	

(P=0.28), greater absolute glycogen utilisation was observed in the G versus the VL 322	

muscle in both males and females and during all training protocols (P<0.05 for all 323	

comparisons) (Table 3).  324	

Rates of muscle glycogen utilisation (as calculated by total glycogen utilisation divided 325	

by training duration) are presented in Table 4.   In male participants within the G muscle, 326	

there was a significant difference between training protocols such that 8 x 800 m > 3 x 327	

10-min > 10-mile road run (P<0.05 for all comparisons).  Similarly, rates of glycogen 328	

utilisation within the VL muscle of male participants was greater in the 8 x 800 m 329	

compared with the 10-mile road run (P=0.003) though no differences were apparent 330	



between the track running sessions.  In female participants, rates of glycogen utilisation 331	

were greater in both the 8 x 800 m and 3 x 10-min within the G muscle compared with 332	

the 10-mile road run (P<0.01 for both comparisons) though no differences were 333	

apparent between the track running sessions.  In contrast, there was no difference in 334	

rates of glycogen utilisation with the VL muscle of female participants between training 335	

sessions (P>0.05 for all comparisons).  When comparing sex-specific responses, rate of 336	

glycogen utilisation was greater in males than females (P<0.01) in the G muscle during 337	

the 8 x 800 m track run only. Finally, there was a significant main effect of muscle 338	

group in that higher rates of utilisation was typically observed in the G versus the VL 339	

muscle in both males and females and during all training protocols (P<0.01). 340	

 341	

Discussion  342	

The aim of the present study was to quantify glycogen utilization of the vastus lateralis 343	

and gastrocnemius muscles of recreationally active male and female runners during 344	

three types of outdoor training sessions that are considered representative of runners’ 345	

habitual workouts.  Importantly, this is the first time that the effect of training protocol, 346	

sex and muscle sampled on net muscle glycogen utilisation has been simultaneously 347	

investigated within the same study.  Our data demonstrate that 1) prolonged steady state 348	

running necessitates a higher absolute glycogen requirement than shorter but higher 349	

intensity track running sessions, 2) females display evidence of reduced resting muscle 350	

glycogen concentration and net muscle glycogen utilisation when compared with males 351	

and 3), net glycogen utilisation is higher in the gastrocnemius muscle compared with 352	

the vastus lateralis. Whilst the pattern of glycogen utilisation observed here is, of course, 353	

specific to the training status of the participants and the characteristics of the chosen 354	



exercise protocols, our data may help to inform practical guidelines in relation to 355	

fuelling strategies to promote both training intensity and metabolic adaptations.   356	

In an attempt to standardise resting muscle glycogen concentration between trials, all 357	

runners completed an initial bout of glycogen depleting exercise followed by 48 h of 358	

standardised dietary CHO intake equating to 6 g.kg-1 per day. In this way, our 359	

experimental design allowed us to more accurately assess the effects of exercise 360	

protocol, sex and muscle group on net exercise-induced muscle glycogen utilisation. 361	

Although we observed resting glycogen concentrations in the vastus lateralis muscle of 362	

males (i.e. 400-500 mmol.kg-1 dw) that is consistent with the fitness level (i.e. 50 ml.kg-363	

1 min-1) and dietary CHO intake (i.e. 2 days of 6 g.kg-1) reported in a recent meta-364	

analysis (23), comparison of resting glycogen concentrations between muscles and sex 365	

also revealed a number of interesting findings.   Firstly, we observed that resting 366	

glycogen concentration in the gastrocnemius muscle of males was higher than that of 367	

the vastus lateralis.  Secondly, we also observed that females displayed reduced resting 368	

glycogen concentration in the gastrocnemius muscle compared with males.  Whilst it 369	

is currently difficult to offer definitive mechanisms underpinning such findings, it is 370	

possible that the combination of glycogen depleting exercise coupled with the lower 371	

absolute CHO intake in females (6 g/kg body mass equating to 360 g CHO) compared 372	

with males (6 g/kg body mass equating to 460 g CHO) may have contributed, in part, 373	

to these results.  Indeed, given that the magnitude of post-exercise muscle glycogen re-374	

synthesis is well known to be dependent on the extent of prior glycogen depletion (33) 375	

and that the gastrocnemius muscle was likely depleted to a greater extent than the vastus 376	

lateralis (as reported by Areta and Hopkins, 23, and later verified in Table 2), it is 377	

suggested that the elevated resting glycogen concentration in the gastrocnemius muscle 378	

in male participants may possibly be a reflection of greater absolute utilisation during 379	



the depletion and subsequent re-synthesis in response to a given exercise stimulus and 380	

dietary CHO intake.   381	

In relation to sex-specific differences, a reduced capacity of females to store glycogen 382	

in the vastus lateralis muscle (as also assessed in the follicular phase) compared with 383	

males has also been reported previously by Tarnopolsky et al. (21), as evidenced in 384	

response to a 3 day CHO loading protocol consisting of cycling based exercise and 385	

elevated dietary CHO intake (increased CHO intake from 55 to 75% of habitual energy 386	

intake).  Using this approach, the authors observed an approximate 150 mmol.kg-1 dw 387	

difference in glycogen storage between males and females. The authors suggested that 388	

such differences may be due to the combination of greater prior glycogen depletion in 389	

males compared with females in addition to a higher absolute CHO intake in males (8 390	

g/kg body mass equating to 610 g CHO) compared with females (6 g/kg body mass 391	

equating to 370 g CHO).  The same group later demonstrated that when females 392	

complete a 4 day CHO loading protocol where a higher relative (9 g/kg body mass) and 393	

absolute CHO intake is consumed (540 g CHO), no differences in glycogen 394	

concentration is apparent when compared with males who consume a comparable 395	

absolute dose (600 g CHO equating to 8 g/kg body mass) (25,26).  When considered 396	

this way, it is possible that the shorter duration of dietary standardisation (i.e. 2 days) 397	

utilised here coupled with the lower absolute CHO intake consumed by females may 398	

have contributed to the present findings.  Whilst the pre-exercise glycogen availability 399	

achieved here was sufficient to fuel the workloads of the present training protocols, our 400	

data perhaps add further evidence to the suggestion that females require greater relative 401	

CHO intakes than males in order to achieve comparable absolute CHO intakes and 402	

subsequent CHO loading responses (likely to be especially relevant when the training 403	

session is more prolonged in nature).    404	



In relation to the glycogen requirement of specific training sessions, we observed that 405	

the net glycogen utilisation in males was greatest in the 10-mile road run (≈ 70% 406	

V̇O2peak) when compared with both the 8 x 800 m (100% V̇O2peak) and 3 x 10-min track 407	

runs (≈ 80% V̇O2peak), a pattern of utilisation that was evident in both the gastrocnemius 408	

and vastus lateralis muscles. Additionally, net glycogen utilisation in gastrocnemius 409	

muscle was also greater in the 8 x 800 m training session when compared with the 3 x 410	

10-min session, though such a difference between the track sessions was not evident in 411	

the vastus lateralis muscle.   When considering such data in combination with the 412	

greater net (and rates of) glycogen utilisation observed in the gastrocnemius muscle 413	

compared with the vastus lateralis (see Table 3 and 4), our data extend the classical 414	

findings of Costill et al. (20) highlighting that the gastrocnemius muscle is a more 415	

suitable muscle (i.e. as reflective of greater muscle fibre recruitment) for which to study 416	

glycogen metabolism during running given its sensitivity to detect changes of 417	

physiological significance.  418	

The absolute net glycogen utilisation induced by a specific training session is, of course, 419	

a product of exercise duration and exercise intensity.  In accordance with post-exercise 420	

circulating lactate concentrations (see Figure 1), it is noteworthy that the highest rates 421	

of glycogen utilisation was also observed in the gastrocnemius muscle during the 8 x 422	

800 m training session.  Similarly, the highest rate of glycogen utilisation in the vastus 423	

lateralis was also observed during the 8 x 800 m session. In contrast to the male 424	

participants, however, no differences in net glycogen use between training protocols 425	

were evident in the female participants, despite differences in rates of glycogen 426	

utilisation between certain training sessions.  Whilst such data may be related, in part, 427	

to the fact that relative training intensity in the females did not differ between training 428	

protocols (i.e. 80-100% VO2max) to the same extent for male participants (i.e. 70-100% 429	



VO2max), our data clearly highlight how the interplay between muscle fibre recruitment, 430	

relative exercise intensity and training duration can all modulate the absolute muscle 431	

glycogen requirement associated with a specific exercise protocol.   432	

The methodological difficulties of isolating the effects of sex on substrate utilisation 433	

during exercise have been well documented (22), arising from factors relating to 434	

matching of participant characteristics, relative exercise intensity, exercise duration and 435	

of course, overall absolute work done.  To this end, we deliberately chose to study the 436	

effects of sex on glycogen utilisation during three real world training sessions 437	

comprising training at identical relative exercise intensities and distance ran (i.e. both 438	

the 10-mile road run and 8 x 800 m track session) as well as a session that was matched 439	

for relative training intensity but also in training duration (i.e. 3 x 10 minute track 440	

session).  We observed no statistical differences between absolute or rates of glycogen 441	

utilisation between males and females in either the gastrocnemius or vastus lateralis 442	

muscles during the track based training sessions (see Table 3 and 4).  Such a finding 443	

may be related to the fact that these sessions were completed at relative exercise 444	

intensities that are already sufficient to activate regulatory enzymes of glycogenolysis 445	

and glycolysis whilst also suppressing NEFA uptake and oxidation by the mitochondria.    446	

In contrast, we observed sex specific responses in absolute muscle glycogen utilisation 447	

in both the vastus lateralis (P=0.02) and gastrocnemius muscle (P=0.07) during the 10-448	

mile road run. Importantly, this run was completed at a running velocity corresponding 449	

to lactate threshold (as opposed to a % of VO2peak) given that matching relative exercise 450	

intensity according to threshold is considered a more accurate method to assess CHO 451	

metabolism within (34,35) and between sexes (36,37).  It is, of course, possible that the 452	

differences in net glycogen utilisation between sexes may be due to the fact that females 453	

presented with lower resting glycogen concentration as well actual differences in time 454	



taken to complete the 10-mile distance, especially when considering that rates of 455	

glycogen utilisation in both muscles were not statistically different between males and 456	

females (though approximate differences of 1 mmol.kg-1 min-1 could be considered of 457	

physiological relevance during prolonged exercise).  Nonetheless, data do appear 458	

consistent with previous observations that females exhibit a lower respiratory exchange 459	

ratio during exercise, thus indicative of less reliance on whole body CHO metabolism 460	

to support substrate metabolism during sub-maximal steady-state exercise (27,28).  461	

Whilst such differences have been demonstrated to be reflective of differences in liver 462	

glycogenolysis (27, 36), it is noteworthy that our data also appear consistent with the 463	

observation that females utilise less muscle glycogen during running (21) but not 464	

cycling (28).  Indeed, the former authors observed that absolute glycogen utilisation in 465	

the vastus lateralis was reduced by approximately 25% in females compared with males 466	

when both groups completed a set running distance of 15.5 km at a relative exercise 467	

intensity corresponding to 65% VO2max, a similar magnitude of difference and running 468	

distance as to that studied here.  Such observations suggest that running may be a more 469	

suitable exercise modality for which to study sex differences in substrate metabolism 470	

during exercise, especially when exercise intensity is sub-maximal and matched 471	

according to lactate threshold (37). Nonetheless, we also acknowledge the requirement 472	

to study both fibre type specific differences in glycogen and intramuscular triglyceride 473	

metabolism as well as the kinetics of lipid metabolism, as opposed to the limitations of 474	

whole muscle homegenate and static measures of post-exercise NEFA and glycerol 475	

concentrations utilised here.   Additionally, a comparison of males and females at 476	

varying stages throughout the menstrual cycle (completing the types of exercise 477	

protocols studied here) is also a future research recommendation. 478	



When taken together, our data illustrate how the complex interplay between muscle 479	

group, specifics of training protocol and sex can all modulate the net glycogen 480	

requirement associated with a given exercise stress.  In addition to informing future 481	

research design methodology, our data may be of practical significance in helping to 482	

formulate CHO requirements in relation to specific types of training sessions.  Indeed, 483	

the resting glycogen concentrations achieved by the 2-day dietary CHO intake of 6 g/kg 484	

body mass were sufficient to fuel the workloads of the training protocols studied here. 485	

Additionally, whilst we observed small differences in substrate storage and metabolism 486	

between sexes, it is unlikely that such differences would manifest as sex-specific 487	

practical recommendations for the types of training intensities and duration studied here.  488	

Finally, it is noteworthy that all subjects were able to sustain the required training 489	

intensity during the 10-mile road run in the absence of CHO feeding during exercise.  490	

Such data may also be of practical relevance when considering that CHO feeding during 491	

exercise may actually attenuate training-induced oxidative adaptations of human 492	

skeletal muscle (13), though it is acknowledged that such studies have not yet been 493	

performed in females. 494	

In summary, we conclude that 1) prolonged steady state running necessitates a higher 495	

absolute glycogen requirement than shorter but higher intensity track running sessions, 496	

2) females display evidence of reduced resting muscle glycogen concentration and 497	

absolute muscle glycogen utilisation when compared with males and 3), both absolute 498	

and rates of glycogen utilisation are higher in the gastrocnemius muscle compared with 499	

the vastus lateralis.  Whilst such observations are specific to the training status of the 500	

participants studied here, our data may provide a platform to help better inform CHO 501	

periodization strategies for runners and will hopefully stimulate further research.   502	
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Table 1: Anthropometric profile, training history and physiological profile of male and 675	
female participants. * denotes significant difference between males and females, 676	
P<0.05. Values presented are means ± SD.   677	
 678	
Table 2: Summary of training protocols.  * denotes significant difference between 679	
males and females; Groups with different letters (males) and numbers (females) denotes 680	
significant difference, P<0.05. Values presented are adjusted means (SE) from mixed 681	
model with terms for training protocol, gender, training protocol by gender interaction, 682	
period and subject. 683	
For total distance, comparisons between males and females are made for the 3 x 10 min 684	
protocol only (t-test).   685	
 686	
Table 3: Total muscle glycogen utilisation in gastrocnemius and vastus lateralis 687	
muscles groups during each training protocol. * denotes significant difference between 688	
males and females, P<0.05. ** denotes higher utilisation in the gastrocnemius muscle, 689	
P<0.05. Groups with different letters (males) and numbers (females) denotes significant 690	
difference, P<0.05. 691	
Values presented are adjusted means (SE) from mixed model with terms for training 692	
protocol, gender, muscle, training protocol by gender by muscle interaction, period, 693	
subject and baseline glycogen. 694	
 695	

Table 4: Rates of muscle glycogen utilisation in gastrocnemius and vastus lateralis 696	
muscles groups during each training protocol. * denotes significant difference between 697	
males and females, P<0.05. ** denotes higher utilisation in the gastrocnemius muscle, 698	
P<0.05. Groups with different letters (males) and numbers (females) denotes significant 699	
difference, P<0.05.Values presented are adjusted means (SE) from mixed model with 700	
terms for training protocol, gender, muscle, training protocol by gender by muscle 701	
interaction, period, subject and baseline glycogen.  702	
 703	
 704	
Figure 1: Plasma (A) lactate, (B) glucose, (C) NEFA and  (D) glycerol pre- and post-705	
exercise in the 10 mile road run, 8 x 800 m and 3 x 10 min track runs (panels left to 706	
right respectively). * denotes significant difference effect of exercise, P<0.05. a denotes 707	
significant difference from 10 mile and 3 x 10 min training sessions, P<0.05. b denotes 708	
significant difference from the 3 x 10 min training session, P<0.05. 709	
 710	
Figure 2: Muscle glycogen in the G and VL muscles pre- and post- the 10 mile road 711	
run (A and B), the 8 x 800 m track run (C and D) and the 3 x 10 min track run (E and 712	
F). * denotes significantly lower resting concentration in the G muscle of females 713	
compared with males, P<0.05. a denotes significantly lower resting concentration 714	
within the G muscle of females when compared with the 10 mile and 3 x 10 min trials, 715	
P<0.05. b denotes significantly higher resting concentration in the G muscle of males 716	
compared with the VL muscle, P<0.05.  For statistical comparisons of training protocol, 717	
sex and muscles on glycogen utilisation, please see Table 2. 718	
 719	



 720	
TABLE 1 721	

 722	

 723	

 724	

 725	

 726	

 727	

 728	

 729	

 730	

 731	

 732	

 733	

 734	

 735	

 736	

 737	

 738	

 739	

 740	

 741	

 742	

 743	

 
 
Males (n=11)  Females (n=10)  

Anthropometric Profile   
Age (years) 25.3 ± 3.4 24.3 ± 3.4 
Body Mass (kg) 76.2 ± 7.6 61.5 ± 7.1 * 
Height (cm) 178.5 ± 5.4 167.1 ± 8.0 * 
Fat Free Mass (kg) 59.0 ± 6.1 40.0 ± 5.5 * 
% Body Fat 14.4 ± 3.7 27.5 ± 2.8 * 
   
Training Profile   
Weekly distance (km) 34.9 ± 21.2 21.1 ± 11.4 
Weekly duration (hours) 4.6 ± 2.0 2.9 ± 0.8 * 
   
Physiological Profile   
VO2peak (L/min) 4.2 ± 0.4  2.6 ± 0.4 *  
VO2peak (mL.kg-1.min-1) 53.9 ± 4.7  42.6 ± 4.0 *  
VO2peak (mL.kg-1 FFM.min-1) 69.7 ± 6.1  65.6 ± 5.8  
vVO2peak (km.h-1) 16.5 ± 0.7  13.9 ± 1.2 *  
Lactate Threshold (% VO2peak) 68.6 ± 6.3  77.3 ± 5.5 *  
Lactate Threshold (km.h-1) 12.5 ± 0.7  10.2 ± 0.9 *  
Lactate Turnpoint (% VO2peak) 76.4 ± 6.1  81.7 ± 7.7  
Lactate Turnpoint (km.h-1) 13.6 ± 0.7  11.2 ± 0.9 *  



TABLE 2 744	

 745	

 746	

 747	

 

 
10-mile 

           8 x 800 m  3 x 10 min  

Protocol 
Description  

10-mile (16.1 km) 
road run at velocity 
at lactate threshold                

8 x 800 m on running 
track at vVO2 peak with 
2-min recovery period 

between each 
repetition 

 
3 x 10-min intervals 
on running track at 
velocity at lactate 

turn-point with 2-min 
recovery period 
between each 

repetition 
Total Duration 

(min) 
Males 

Females 
  

77.3 (1.5) *a 
96.4 (1.7)1 

23.4 (1.4) *b 
28.3 (1.8)2 

30c 
302 

Total Distance 
(km) 

Males 
Females 

  

             16.1  
16.1  

6.4 
6.4  

6.8 (0.4) * 
5.6 (0.6) 
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TABLE 3 759	

 760	

 761	

 762	

 763	

 764	

 765	

 766	

 767	

 768	

 769	

 770	

 771	

 772	

 773	

 774	

 775	

 776	

 777	

 778	

 779	

 780	

 781	

 782	

 783	

 784	

 785	

 10-mile    8 x 800 m  
3 x 10 min  

Gastrocnemius  ** 
(mmol.kg-1 dw)    

Male 354 (24.7)a 288 (24.0)b 190 (26.1)c 

Female 285 (27.2)1 230 (30.2)1 254 (24.7)1 

    

Vastus Lateralis 
(mmol.kg-1 dw)    

Male  265 (24.1) *a 166 (22.8)b 151 (24.1)b 

Female 179 (27.2)1 142 (28.9)1 139 (24.3)1 



TABLE 4 786	

 787	

 788	

 789	

 790	

 791	

 792	
 793	

 794	

 795	

 796	

 797	

 798	

 799	

 800	

 801	

 802	

 803	

 804	

 805	

 806	

 807	

 808	

 10-mile 8 x 800 m  
3 x 10 min  

Gastrocnemius** 
(mmol.kg-1.min-1)    

Male 4.2 (0.9)a 12.7 (0.9) *b 7.4 (0.9)c 

Female 2.8 (1.0)1 7.5 (1.1)2 8.6 (0.9)2 

Vastus Lateralis 
(mmol.kg-1.min-1)    

Male  3.2 (0.9)a 7.0 (0.9)b 4.9 (0.9)a,b 

Female 2.5 (1.0)1 5.1 (1.1)1 4.5 (0.9)1 
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