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Abstract

A new class of elastic waveforms, referred to as “chiral flexural waves”, is in-
troduced for a multi-structure, which encompasses an elastic plate connected
to a system of elastic flexural rods with gyroscopic spinners. The junction
conditions describing the connection between the plate and the thin flexural
rod require logarithmic asymptotics. The directional preference of the system
is governed by the motion of gyroscopic spinners. For doubly-periodic chiral
multi-structures studied here, parabolic modes associated with strong dynamic
anisotropy of Bloch-Floquet waves are identified. Closed form analytical find-
ings are accompanied by numerical simulations, which identify one-way flexural
waves propagating along a straight interface in a flexural chiral system, without
requiring the presence of Dirac cones on the dispersion surfaces.

Keywords: Flexural waves, Structured plate, Active chirality, Dispersion,
Parabolic metamaterial, One-way unidirectional wave propagation

1. Introduction

Chirality, the property of an object such that it cannot be superimposed onto
its mirror image [1], is used in many fields of science. In elasticity, chirality
has been exploited both in statics, particularly in design of auxetic media [2–5],
and in dynamics, with the aim of modifying the dispersive properties of hon-
eycomb discrete structures [6–8]. It has also been used to attain low-frequency
broadband vibration suppression in flexural systems [9, 10]. A continuous chi-
ral metamaterial connected to inertial resonators by means of inclined ligaments
was proposed in [11] for filtering and focussing purposes. A chiral lattice with
tilted resonators was studied in [12, 13] to couple pressure and shear waves
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and to create localised interfacial waveforms. Homogenisation techniques for
periodic chiral cellular solids were discussed in [14].

In this paper, we study a flexural system possessing “active chirality”, pro-
duced by the mechanical action of gyroscopic spinners. The system considered
is a plate with “chiral resonators”, consisting of beams connected to gyroscopic
spinners. The analytical linearised formulation for the connection between an
Euler-Bernoulli beam and a gyroscopic spinner was developed in [15, 16], where
gyroscopic boundary conditions were derived and a physical interpretation of a
gyrobeam (used in [17–21]) was provided. Discrete systems attached to gyro-
scopic spinners were investigated in [22–24].

In the chiral flexural system examined in this paper, two phenomena can
be observed at specific frequencies: parabolic modes and one-way unidirectional
wave propagation. Parabolic modes are associated with waves propagating along
a single line. In the present paper, it will be shown that parabolic modes can
be generated in the system with either chiral resonators (beams with gyroscopic
spinners) or non-chiral resonators (beams with masses having translational and
rotational inertia); however, the structure with chiral resonators shows stronger
directional preference. Although parabolic modes have already been detected
in elastic systems, such as elastic lattices [24, 25], to the best of our knowledge
this is the first time that they are observed in a chiral structured plate.

The present flexural system with chiral resonators is also capable of sup-
porting one-way unidirectional interfacial waves, as shown in Fig. 1. This
phenomenon can be obtained by dividing the domain into two regions with gy-
roscopic spinners rotating in opposite directions, and applying a force close to
the interface between the two regions. Unidirectional propagating edge modes
immune to backscattering were initially detected in photonic crystals (see, for
example, [26–30]). These modes are analogous to the edge states associated
with the quantum Hall effect [26]. In elasticity, the possibility of creating uni-
directional edge modes has been demonstrated in platonic crystals [31–35], me-
chanical granular graphene [36], systems incorporating coupled pendula [37] and
lattices with gyroscopic spinners [38–40]. Here, it will be shown that the main
difference between the present paper and previous works on topological protec-
tion is that non-trivial topological stop-bands, associated with breakage of Dirac
cones, are not needed to generate one-way unidirectional propagating modes in
the structure.

Transmission and reflection of flexural waves in elastic plates with peri-
odic stacks of obstacles have been extensively studied in [41–46]. In particular,
transmission resonances and trapped modes were observed in several frequency
regimes for the appropriate angles of incidence. Interaction of time-harmonic
plane flexural waves with semi-infinite systems of spring-mass resonators was
studied in [45]. The effects of negative inertia and associated localised modes
for systems of spring-mass resonators were discussed in [47].

Compared to the previous work, we describe a new type of wave phenomena
referred to as a “chiral flexural wave”. In the standard scalar formulation for
a fourth-order problem associated with the out-of-plane flexural displacement,
chiral waves are not possible. However, chirality can be introduced by using
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Figure 1: One-way unidirectional wave in a plate with a finite array of chiral resonators, con-
sisting of beams attached to gyroscopic spinners. The structure is divided into two domains, 
characterised by opposite values of the gyricity Ω (see Section 2), and is excited by a time-
harmonic force, represented by the arrow, applied to the tip of a beam in the lower domain. 
The transverse displacement amplitude in the plate Wp is plotted. The inset shows a detail of 
the system in proximity of the interface. The elementary cell is represented by a rectangular 
plate, with a beam attached at its centre and a gyroscopic spinner connected to the tip of the 
beam. The gyroscopic spinners above and below the interface rotate in opposite directions. 
The values of the parameters are given in Section 4.
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a system of flexural resonators incorporating gyroscopic spinners. In order to 
account for the coupling of moments between the resonators and the plate, it is 
necessary to derive a new type of logarithmic junction condition. Such a coupling 
is neglected when the plate is connected to other types of resonators (for instance, 
masses and spring-mass oscillators analysed in [32, 45, 47]) as well as when the 
beam is represented by a one-dimensional segment with a cross-section of zero 
radius. Our novel asymptotic analysis takes the shape of the cross-section into 
account and enables us to compute asymptotic approximations of moments 
exerted on the elastic plate. This gives rise to novel dispersion properties of 
flexural waves in chiral structured plates.

We show that in the elementary cell of the doubly-periodic system, the 
transverse displacement Wp of the plate with flexural stiffness D satisfies the 
equation

D∆2Wp − Nz(0)δ(x) + Mx(0)
∂

∂y
δ(x) − My(0)

∂

∂x
δ(x) = 0 , (1)

where x = (x, y), ∆2 is the biharmonic operator and δ(x) is the Dirac delta 
function. For simplicity, the mass density of the plate itself is assumed to be zero. 
The origin is placed at the junction region between the plate and the elastic 
beam. The coefficients Nz(0), Mx(0) and My(0) represent the axial force and 
bending moments transmitted by the chiral resonators to the plate at the 
junction, where z = 0. When other types of resonators (such as masses or spring-
mass oscillators) are connected to the plate, only Nz(0) is different from zero. We 
also note that logarithmic asymptotic approximations are required for Mx(0) and 
My(0), and these are discussed in the main text of the paper.

The paper is organised as follows. In Section 2, we describe the chiral flexu-
ral system, represented by a beam attached to a plate at one end and connected 
to a gyroscopic spinner at the other end. The effect of the gyroscopic spinner is 
modelled by appropriate boundary conditions [16] on the beam. We develop the 
junction conditions between the beam and the plate using the novel concept of 
“logarithmic rotational spring”. In addition, we solve analytically the eigenvalue 
problem for a circular plate which is clamped at the boundary and has a chiral 
resonator at the centre. We compare the analytical results with the outcomes 
obtained from finite element computations. In Section 3, we determine the 
dispersion diagrams for a periodic array of chiral resonators on a flexural foun-
dation, both analytically and numerically. In particular, we identify frequencies 
at which parabolic modes may occur. In Section 4, we demonstrate the possi-
bility of creating one-way unidirectional interfacial waves in the flexural system. 
In Section 5, we perform additional simulations to show how parabolic modes 
can be generated in the structure. Finally, in Section 6 we provide concluding 
remarks.

2. Eigenvalue problem for a chiral resonator on a flexural foundation

In this section, we consider a model problem for the evaluation of the eigenfre-
quencies of an elastic multi-structure, consisting of a circular thin plate in the
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Figure 2: Elastic multi-structure, made of an elastic beam connected at one end to a gyroscopic 
spinner and at the other end to the centre of a circular plate, clamped on the boundary and 
with radius R. The beam has length L and circular cross-section of radius a. The length of 
the gyroscopic spinner is denoted by l, and c l represents the distance of the centre of mass of 
the spinner relative to the base of the spinner.

xy-plane and a beam attached to the centre of the plate (see Fig. 2). The plate 
is clamped on the boundary and the beam axis is collinear with the z-axis. We 
assume that the tangent to the beam axis always remains orthogonal to the 
plate at the junction. The other end of the beam is connected to a gyroscopic 
spinner of given mass, moments of inertia and gyricity (introduced in [15, 16]).

The plate and beam are modelled using Kirchhoff and Euler-Bernoulli theory, 
respectively. These models are accurate in the low- and mid-frequency ranges. 
For higher frequencies, higher-order approximations (for example, Timoshenko 
theory for the beam and Mindlin theory for the plate) should be used to better 
describe the behaviour of the real system.

In general the gyroscopic motion is not periodic, but in the linearised case we 
can identify harmonics which constitute the representation of the fields over a 
given time interval [15, 16]. By linearisation we mean that the angle of nutation is 
small at any time during the motion of the gyroscopic system. Since the system of 
equations governing the motion of the gyroscopic spinner has been linearised (see 
[15, 16]), stability is not an issue and will not be considered in this paper.

The equation which governs the time-harmonic motion of the Kirchhoff plate 
outside the junction region with the elastic beam is

∆2Wp − β4
pWp = 0 , with βp =

(
ρphω

2

D

)1/4

. (2)
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HereWp = Wp(r, θ) is the displacement amplitude of the plate in the z-direction,
∆2 is the biharmonic operator, βp is the frequency-like parameter for the plate,
ω is the radian frequency, h is the thickness of the plate, ρp is the density, and
D = Eph

3/[12(1 − ν2p)] is the flexural stiffness of the plate, where Ep and νp
are the plate’s Young’s modulus and Poisson’s ratio, respectively. The radius of
the circular plate is denoted by R.

For the vertical beam, the displacement amplitudes Ub, Vb and Wb in the
x-, y- and z-direction, respectively, satisfy the equations

U ′′′′b − β4
bUb = 0 , V ′′′′b − β4

bVb = 0 , with βb =

(
ρbAbω

2

EbJb

)1/4

,

EbW
′′
b + ρbω

2Wb = 0 ,

(3)

where the derivatives are taken with respect to the longitudinal coordinate z. In
(3) βb is the frequency-like parameter for the beam, Ab and Jb are the area and
second moment of area of the beam cross-section respectively, and Eb and ρb
are the Young’s modulus and density of the beam. In this section, we consider
a beam with circular cross-section of radius a.

As shown in [15, 16], the effect of the gyroscopic spinner can be reproduced
by a set of boundary conditions, representing the balances of linear and angular
momenta:

EbJbVb
′′(L) = AVb

′(L) ,

EbJbVb
′′′(L) = −mω2Vb(L)−mω2c lVb

′(L) ,

EbAbW
′
b(L) = mω2Wb(L) ,

(4)

where

Vb(z) =

(
Ub(z)
Vb(z)

)
and A=

(
I0ω

2 −iωI1Ω
iωI1Ω I0ω

2

)
. (5)

Here m is the mass of the spinner, L and l are the lengths of the beam and the 
spinner respectively, c is the parameter which characterises the distance c l of the 
spinner centre of mass with respect to the beam’s upper end, and I0 and I1 are the 
moments of inertia of the spinner. In particular, we assume that the gyroscopic 
spinner is a solid of revolution, for which I1 is the moment of inertia about the 
axis of revolution, and I0 is the moment of inertia about the transverse principal 
axes passing through the base of the spinner. We note that the base of the spinner 
coincides with the upper end of the beam and is located at z = L. The quantity Ω, 
referred to as gyricity, is given by [15, 16]

Ω = φ̇ +ψ˙ = Const , (6)

where φ̇ and ψ ˙ are the precession and spin rates, respectively. The gyricity is 
maintained constant throughout the motion, as derived analytically in Section 3 
of [15].

We also require junction conditions, which describe the coupling between 
the elastic beam and the thin elastic plate. These conditions are

Vb(0) = 0 , (7)
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EbJbVb
′′(0) = − 4πD(1 + ε2)

1− ε2 + (1 + ε2) log(ε)
Vb
′(0) , (8)

EbAbW
′
b(0) =

16πD(1− ε2)

R2
[
(1− ε2)2 − 4ε2 log2(ε)

]Wb(0) , (9)

where ε = a/R. The derivation of (8) and (9) will be given in Section 2.1. 
The junction conditions (8) correspond to a “logarithmic rotational spring”, as 
discussed below, and represent the relations between bending moments and ro-
tations in the beam at the junction with the plate. The junction condition (9) 
shows how the axial force in the beam depends on the displacement at the junc-
tion with the plate. In the model of Kirchhoff plate, the in-plane displacements of 
the middle plane are zero, as reflected in (7).

2.1. Logarithmic rotational spring
The scope of this section is to derive the junction conditions (8) and (9). 

To this aim, we consider the model problem of a thin elastic plate of radius R, 
clamped on the boundary and containing a circular rigid inclusion of radius a 
centred at the origin. The rigid inclusion mimics well the dynamic behaviour of 
the Euler-Bernoulli beam at the junction with the plate, since the displacement 
and rotations of the beam are uniform across its cross-section, analogously to 
what occurs for a rigid inclusion.

On the boundary of the plate, we impose

Wp|r=R =
∂Wp

∂r

∣∣∣∣
r=R

= 0 . (10)

We start by assuming that the inclusion is subjected to a time-harmonic
rotation of amplitude Ψ around the y-axis. Accordingly, the conditions on the
boundary of the inclusion take the form

Wp|r=a = −Ψa cos(θ) ,
∂Wp

∂r

∣∣∣∣
r=a

= −Ψ cos(θ) , (11)

where r and θ are polar coordinates (see Fig. 2). The displacement in the plate 
is given by

Wp(r, θ) = [A1J1(βpr) + B1Y1(βpr) + C1I1(βpr) + D1K1(βpr)] cos(θ) . (12)

Here, Jn(·) and Yn(·) are the Bessel functions of the first and second kind, re-
spectively, In(·) and Kn(·) are the modified Bessel functions of the first and 
second kind, respectively. The coefficients A1 through D1 are obtained by sub-
stituting (12) into (10) and (11) and by solving the resulting linear system of 
equations.

The bending moment My, exerted by the plate on the inclusion and acting 
on a surface whose normal is in the positive y-direction, is given by [48]

My =

∫ 2π

0

[Mr cos(θ)− Vra cos(θ)]|r=a adθ , (13)
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where

Mr = −D
[
νp∇2Wp + (1− νp)

∂2Wp

∂r2

]
,

Vr = −D
[
∂

∂r

(
∇2Wp

)
+ (1− νp)

1

r

∂2

∂r∂θ

(
1

r

∂Wp

∂θ

)]
.

(14)

In the static limit, when βp → 0, the bending moment takes the form

M static
y = lim

βp→0
My =

4πD(1 + a2/R2)

1− a2/R2 + (1 + a2/R2) log(a/R)
Ψ . (15)

A similar relation can be found for the bending moment Mx and the rotation 
about the x-axis. This completes the derivation of (8). We note that the bending 
moment My generates a negative curvature in the beam, here represented by the 
rigid inclusion. Accordingly, we have introduced a minus sign on the right-hand 
side of (8).

Now we assume that the rigid inclusion is subjected to a time-harmonic 
displacement of constant amplitude Z. In this case, the displacement field in 
the plate has to satisfy the following boundary conditions:

Wp|r=a = Z ,
∂Wp

∂r

∣∣∣∣
r=a

= 0 . (16)

Hence, the displacement field is axisymmetric and has the form

Wp(r) = A0J0(βpr) +B0Y0(βpr) + C0I0(βpr) +D0K0(βpr) . (17)

The coefficients A0 through D0 are determined from the boundary conditions
(10) and (16).

The shear force Vz, exerted by the plate on the inclusion and acting in the 
positive z-direction, is given by [48]

Vz =

∫ 2π

0

Vr|r=a adθ . (18)

In the static limit, when βp → 0, it takes the form

V static
z = lim

βp→0
Vz =

16πD(a2 −R2)

(a2 −R2)2 − 4a2R2 log2(a/R)
Z , (19)

which completes the derivation of (9). We point out that the force Vz acts as 
a compressive force for the beam, represented here by the inclusion. This has 
been taken into account by changing the sign of the the right-hand side of (9).

2.2. Eigenfrequencies as functions of gyricity
Here, we determine the eigenfrequencies of the chiral system in Fig. 2 by 

solving the eigenvalue problem (3)-(9). For simplicity, we assume that the in-
ertia of the plate and beam is negligibly small compared with the mass of the
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Figure 3: Eigenfrequencies corresponding to the flexural motion of the chiral multi-structure
in Fig. 2 versus the gyricity Ω. The frequencies ωa, ωb, ωc and ωd are computed for Ω = 200 
rad/s.

gyroscopic spinner (ρp, ρb → 0). As a consequence, the number of eigenfrequen-
cies of the system is finite.

For the numerical calculations, we set the parameters as follows: for the 
plate Ep = 70 GPa, νp = 0.3, h = 0.01 m, R = 1 m; for the beam Eb = 70 GPa, 
L = 1 m, a = 0.05 m; for the gyroscopic spinner m = 1 kg, I0 = 4 kg m2, I1 = 2 
kg m2, c = 0, l = 0.1 m. The eigenfrequencies ω of the system associated with 
its flexural motion depend on the gyricity Ω, as shown in Fig. 3. When Ω = 0, 
which corresponds to the case when the spinner behaves like a rigid body with 
translational and rotational inertia, two double eigenfrequencies are identified; 
when Ω > 0, the gyricity leads to a splitting of the double eigenfrequencies.

When Ω = 200 rad/s (dashed line in Fig. 3), the eigenfrequencies determined 
analytically from the eigenvalue problem (3)-(9) are given by ωa = 54.2 rad/s, 
ωb = 135.5 rad/s, ωc = 1162.5 rad/s, ωd = 1181.2 rad/s. These values are very 
close to the eigenfrequencies obtained from a finite element model developed in 
Comsol Multiphysics [49], which consists of a one-dimensional Euler-Bernoulli 
beam attached to a circular clamped plate at one end and with the effective 
gyroscopic boundary conditions (4) at the other end. The plate is modelled as a 
(two-dimensional) Kirchhoff plate. The mesh is extremely fine and con-sists of 
82440 triangular elements with quadratic interpolation for the plate and 628 
linear elements with cubic interpolation for the beam. The numerical

eigenfrequencies are ωnum
a = 53.5 rad/s, ωnum

b = 134.8 rad/s, ωnum
c = 1161.1

rad/s, ωnum
d = 1179.8 rad/s. The eigenmodes of the system corresponding to

the four eigenfrequencies above are illustrated in Videos 1a-1d, included in the 
Supplementary Material accompanying this paper.

The diagram in Fig. 3, showing how the natural frequency ω varies with the 
gyricity Ω, is similar to the dependence of the natural frequencies of a rotating 
shaft on its spin speed [50]. This behaviour has also been observed in
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rods connected to spinning tip rotors [51] and in the dynamics of gyroelastic 
continua [17]. We point out that the first eigenfrequency of the system tends to 
zero in the limit when Ω → ∞. Hence, in the system under consideration there is 
no zero natural frequency for a finite value of gyricity, associated with 
instabilities observed in other types of rotating systems. In this paper, our main 
focus is on the preferential directionality associated with each branch of the 
diagram in Fig. 3 (see Videos 1a-1d), which makes the flexural waves chiral and 
will be used to generate one-way wave propagation in Section 4.

The eigenfrequency associated with the axisymmetric motion of the multi-
structure, which does not depend on the gyricity Ω, is equal to ωe = 595.7 rad/s. 
This value is in good agreement with the numerical outcomes from the same 
simulation in Comsol Multiphysics, which provides ωnum = 594.3 rad/s. The
corresponding eigenmode is shown in Video 1e of the Supplementary Material.

In order to show the effect of non-zero density in the plate and beam, we have 
performed numerical simulations in Comsol Multiphysics where the density of the 
plate and the beam is taken as ρp = ρb = 2700 kg/m3. Fig. SM1 in the 
Supplementary Material shows how in this case the eigenfrequencies ω vary with 
the gyricity Ω. We note that the effect of the gyroscopic spinner is similar to that 
observed in Fig. 3, namely, adding the gyricity Ω splits the double 
eigenfrequencies determined for Ω = 0 into two branches. The presence of non-
zero density in the plate and beam moves the curves to lower values of the 
frequency in comparison with the branches shown in Fig. 3.

2.3. Junction conditions using the Green’s function
When the cross-section of the beam is small (a/R � 1), the junction con-

ditions between the plate and the beam can also be derived using the two-
dimensional Green’s function.

For a massless circular plate with clamped boundary, the Green’s function 
takes the form [52]

G(x, y,ξ, η) =
1

8πD

{
1

2R2

[
R2 − (x2 + y2)

] [
R2 − (ξ2 + η2)

]
−
[
(x− ξ)2 + (y − η)2

]
log

[√
(R2 − xξ − yη)2 + (yξ − xη)2

R
√

(x− ξ)2 + (y − η)2

]}
,

(20)

where (ξ, η) is the point of application of the unit force.
Consider a pair of force couples, separated by small distances 2εy and 2εx

along the y- and x-axes, respectively. The corresponding displacement fields
have the form

µx =
1

2εy
[G(x, εy, ξ, η)−G(x,−εy, ξ, η)] (21)

and

µy =
1

2εx
[G(εx, y, ξ, η)−G(−εx, y, ξ, η)] , (22)
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respectively. We note that

µx →
∂G

∂y
when εy → 0 , µy →

∂G

∂x
when εx → 0 . (23)

Consequently, the rotations corresponding to the moments around the x- and
y-axes are

φx =
∂2G

∂y2
, φy =

∂2G

∂x2
. (24)

When the a/R is small, we obtain

lim
(x,y)→(0,0)

G(x, y, 0, 0) =
R2

16πD
,

lim
(x,y)→(0,0)

φx(x, y, 0, 0) = lim
(x,y)→(0,0)

φy(x, y, 0, 0) =
log(a/R)

4πD
.

(25)

Using (25) and taking into account the sign convention adopted for the
bending moments and axial force in the beam, the junction conditions between
the beam and the plate in the limit when a/R→ 0 can be written as

EbJbVb
′′(0) = − 4πD

log(a/R)
Vb
′(0) , (26)

and

EbAbW
′
b(0) =

16πD

R2
Wb(0) . (27)

Eqs. (26) and (27) coincide with (8) and (9) in the limit when a/R→ 0.
The Green’s function (20) and the procedure described in this section are

very useful, since they can be applied to the case when the beam is attached to
any point in the interior of the plate.

The effect of the boundary of the plate decreases as a/R→ 0. Accordingly,
the Green’s function approach can be employed for the case when the plate has
different boundary conditions or a different shape or when the cross-section of
the beam is not circular.

3. Periodic system of chiral resonators on a flexural foundation

Here, we study propagation of Bloch-Floquet elastic waves of radian frequency
ω in the periodic structure (shown in Fig. 4), composed of a two-dimensional 
periodic array of beams attached to an infinite Kirchhoff plate. At the top end of 
each beam, a gyroscopic spinner is connected in the same way as described in 
Section 2. The cross-section of each beam is circular and has radius a. The 
elementary cell of the periodic structure, highligh√ted in grey in Fig. 4, is a 
rectangle with side lengths dx and dy, where dy = 3dx. The position vectors of the 
resonators in the xy-plane are defined by rnm = (ndx, mdy), where n and m are 
integers. We also assume that a � dx. The singular perturbation for a 
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Figure 4: Two-dimensional array of chiral resonators on an infinite thin plate. The resonators 
consist of Euler-Bernoulli beams connected to gyroscopic spinners at their tips. The elemen-
tary cell of the periodic system is highlighted.

circular plate developed in Section 2.1, leading to the junction conditions (8) 
and (9), cannot be employed here, since the elementary cell has a rectangular
shape. Instead, since a � dx, the approach based on the Green’s function 
outlined in Section 2.3 will be used (see system (A.2) in the Appendix). As 
in Section 2, we assume that the inertia of the system is concentrated at the 
gyroscopic spinners.

Within the elementary cell, x ∈ (−dx/2, dx/2) × (−dy/2, dy/2), the flexural 
displacement of the plate satisfies

D∆2Wp −Nz(0)δ(x) +Mx(0)
∂

∂y
δ(x)−My(0)

∂

∂x
δ(x) = 0 , (28)

where Nz(z), Mx(z) and My(z) are the axial force and bending moments trans-
mitted by the beam. Appropriate quasi-periodicity conditions are imposed on 
the transverse displacement, namely

(29)Wp (x + ndx, y + mdy) = Wp (x, y) ei(kxndx+kymdy) ,

and on its derivatives. Here, k = (kx, ky)T is the Bloch vector.
The axial force and bending moments transmitted by the beam to the plate 

can be written as Nz(0) = Nδz, Mx(0) = M1αx +M2αy and My(0) = −M2αx + 
M1αy, respectively, where δz is the displacement and αx, αy are the rotations at 
the base of the beam. The displacement and rotations are uniform on the beam 
cross-section. The expressions for the quantities N, M1 and M2 are derived in 
Section 3.1 (see Eqs. (33) and (31)).

The dispersion diagram of the periodic system is discussed in Section 3.2.
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3.1. The axial force and bending moments at the base of the beam
In this section, we derive the axial force and bending moments at the base of 

each beam. In this way, the beams can be removed from the formulation and their 
effect can be reproduced by effective axial force and bending moments in the 
plate. To this aim, we consider the model problem of a massless Euler-Bernoulli 
beam of length L, flexural stiffness EbJb and axial stiffness EbAb. The reference 
system is shown in Fig. 4, where z is the longitudinal coordinate and x and y are 
the transverse coordinates with respect to the beam axis. At z = L a gyroscopic 
spinner is attached to the beam, while at z = 0 the beam has prescribed 
displacements and rotations.

From (3) with ρb = 0, we find that the transverse displacement amplitudes 
Ub and Vb are cubic functions of z, while the longitudinal displacement ampli-
tude Wb is a linear function of z. The ten coefficients defining the functions Ub, 
Vb and Wb are determined by solving the system consisting of the five bound-
ary conditions (4) at z = L (where we take c = 0 as in Section 2) and the five

boundary conditions at z = 0, given by (7) and by Ub
′ (0) = αy, Vb′(0) = αx and 

Wb(0) = δz. We find that the amplitudes of the displacement components are 
then given by

Ub(z) =

(
N1

D
αx +

N2

D
αy

)
z3 +

(
−N3

D
αx +

N4

D
αy

)
z2 + αyz ,

Vb(z) =

(
N2

D
αx −

N1

D
αy

)
z3 +

(
N4

D
αx +

N3

D
αy

)
z2 + αxz ,

Wb(z) =

(
mω2

EbAb −mlω2
z + 1

)
δz ,

(30)

where

N1 = 2iEbJbmI1l
2Ωω3

(
6EbJb +ml3ω2

)
,

N2 = mlω2
(
I0lω

2 − 2EbJb
) [

12(EbJb)2 − 4EbJbl
(
3I0 +ml2

)
ω2 +mI0l

4ω4
]

+ml3I21Ω2ω4
(
12EbJb −ml3ω2

)
,

N3 = 2iEbJbI1Ωω
(
6EbJb +ml3ω2

)2
,

N4 = 2ω2
{

36(EbJb)3
(
ml2 + I0

)
+ EbJbml

4ω2
[
I0
(
15I0 + 7ml2

)
ω2 − 15I21Ω2

]
+m2l7ω4

(
I21Ω2 − I20ω2

)
+ 12(EbJb)2l

[
3I21Ω2 −

(
3I20 + 5mI0l

2 +m2l4
)
ω2
]}

,

D =
[
12(EbJb)2 − 4EbJbl

(
3I0 +ml2

)
ω2 +mI0l

4ω4
]2

− I21 l2Ω2ω2
(
12EbJb −ml3ω2

)2
.

(31)

The bending moments and axial force at the base of the beam have the form

Mx(0) =− EbJbV
′′
b (0) = M1αx + M2αy ,

My(0) =− EbJbU
′′
b (0) = −M2αx + M1αy ,

Nz(0) =EbAbW
′
b(0) = Nδz ,

(32)
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where

M1 =− 2EbJbN4

D
,

M2 =− 2EbJbN3

D
,

N=
EbAbmω

2

EbAb −mlω2
.

(33)

3.2. Dispersion of chiral Bloch-Floquet waves
Since the inertia distribution is discrete, we expect the system to exhibit a 

finite number of dispersion surfaces. The solid grey lines in Fig. 5a represent the 
complete band diagram of the system with chiral resonators, obtained by 
employing the regularisation procedure described in the Appendix. The diagram 
is calculated in the reciprocal lattice space along the path Γ X M Y Γ, presented 
in Fig. 5b.

The results of Fig. 5 are obtained for a plate with elastic modulus Ep = 70 
GPa, Poisson’s√ ratio νp = 0.3, thickness h = 0.01 m, and side lengths dx = 2 m 
and dy = 2 3 m. The beam has Young’s modulus Eb = 70 GPa, length L = 1 
m and circular cross-section with radius a = 0.02 m. The gyroscopic spinner 
is characterised by the mass m = 1 kg, moments of inertia I0 = 4 kg m2 and 
I1 = 2 kg m2, length l = 0.1 m and gyricity Ω = 200 rad/s.

In order to validate the analytical procedure developed in the Appendix, we 
have compared the analytical results with the numerical outcomes obtained from 
an independent finite element model built in Comsol Multiphysics [49]. The ge-
ometry used in the computations consists of a rectangular plate with sides dx√
and dy = 3dx and a beam element, with one end attached to the centre of the 
plate. As in Section 2.2, the plate is modelled as a (two-dimensional) Kirchhoff 
plate and the rod as a (one-dimensional) Euler-Bernoulli beam. In the finite ele-
ment model the singular perturbation approach is not used, and the connection 
between the plate and the beam incorporates continuity of displacements and 
rotations. The gyroscopic boundary conditions (4) are imposed on the other end 
of the beam. The extremely fine mesh is made of 40422 triangular elements with 
quadratic interpolation for the plate and 548 linear elements with cubic 
interpolation for the beam. In addition, Bloch-Floquet conditions are applied

14



Figure 5: (a) Band diagram of the periodic system in Fig. 4 with Ω = 200 rad/s, evaluated
along the path Γ X M Y Γ shown in (b). Analytical (solid grey lines) and numerical (black
dots) results are compared. The dashed horizontal lines indicate the frequencies that will
be used in the numerical simulations of Section 4. (c) Dispersion surfaces of the system,
determined numerically. (d) Slowness contours calculated for ω = 245.7 rad/s.
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on the boundaries of the elementary cell:

Wp|x=dx/2 = Wp|x=−dx/2 e
ikxdx ,

∂Wp

∂y

∣∣∣∣
x=dx/2

=
∂Wp

∂y

∣∣∣∣
x=−dx/2

eikxdx ,

Mxx|
x=dx/2 = Mxx|x=−dx/2 e

ikxdx , Mxy| x=−d /2x=dx/2 = Mxy| 
x 

eikxdx ,

Vx|x=dx/2 = Vx|x=−dx/2 e
ikxdx , 

Wp|y=dy/2 = Wp|y=−dy/2 e
ikydy ,

∂Wp

∂x

∣∣∣∣
y=dy/2

=
∂Wp

∂x

∣∣∣∣
y=−dy/2

eikydy ,

Myy| = Myy|
y=dy/2 y=−dy/2 e

ikydy , Myx| y=−d /2y=dy/2 = Myx| 
y 

eikydy ,

Vy|y=dy/2 = Vy|y=−dy/2 e
ikydy ,

pla

(34)

where Mxx = −D(Wp,xx +νWp,yy ), Myy = −D(Wp,yy +νWp,xx ), Mxy = Myx = 
−D(1 − ν)Wp,xy represent the moments and Vx = Mxx,x +Mxy,y, Vy = Myy,y 
+Myx,x denote the shear forces.

The dispersion diagram is computed by solving the eigenvalue problem for 
the system for different values of the wave vector. We remark that the mesh for 
the plate needs to be extremely fine, especially in the surrounding vicinity of 
the connection with the beam. The numerical findings are indicated by black 
dots in Fig. 5a. It can be seen that the agreement with the analytical results is 
excellent.

The dispersion surfaces of the system, determined using the finite element 
model in Comsol Multiphysics, are plotted in Fig. 5c. Parabolic modes are 
identified at specific frequencies. For example, the slowness contours at ω = 
245.7 rad/s are presented in Fig. 5d. Since the contour lines are approximately 
parallel to the ky-axis in the reciprocal space, waves at that frequency are forced 
to propagate in the x-direction in the physical space. Examples of this type of 
parabolic modes will be discussed in Section 4.

The limits of the stop-bands in Figs. 5a and 5c can be determined ana-
lytically. In particular, the frequencies of standing waves for k = 0 are very 
close to the flexural eigenfrequencies of the finite system examined in Section 
2, consisting of a clamped circular plate and an elastic beam, connected to the 
centre of the plate at its lower end and to a gyroscopic spinner at its upper 
end (see Fig. 2). Taking the radius of the circular te equal to the semi-

diagonal of the rectangular elementary cell (i.e. R =
√
d2x + d2y/2), we obtain

the following eigenfrequencies of the finite system associated with flexural mo-
tion: ω = 13.71, 102.49, 247.79, 259.01 rad/s. These values are very close to the
limits of the stop-bands for k = 0, given by ω = 13.53, 101.96, 244.11, 257.39
rad/s.

We point out that in the limit when the radius of the circular plate tends to
infinity, the flexural eigenfrequencies of the multi-structure in Fig. 2 coincide
with those of a beam with a hinge at the lower end and a gyroscopic spinner
at the upper end, analysed in [53]. This can be explained on physical grounds
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considering that when R → ∞ the junction condition degenerates to a hinge, 
with zero moments. Any rotation of the beam at the junction point is admissible 
when ε = a/R → 0 in (8). Using the analytical formulation in [53] or solving the 
eigenvalue problem described in Section 2 of the present paper, we find that the 
flexural eigenfrequencies when R → ∞ are given by ω = 0, 75.78, 174.89, 199.11 
rad/s.

When Ω = 0, the gyroscopic spinners behave as rigid bodies with trans-
lational mass m and moment of inertia I0 about the x- and y-axes. For this 
case, the band diagram along the edges of the Brillouin zone and the dispersion 
surfaces of the system are shown in Figs. 6a and 6c, respectively. Comparing 
Figs. 5 and 6, we note that the main effect of increasing gyricity is to lower 
the first stop-band and to move the second one upwards. Furthermore, it is 
observed that with increasing gyricity the widths of the two lowest stop-bands 
increase. At higher frequencies, the effect of gyricity on the dispersion surfaces is 
less pronounced. In particular, we notice that the upper pass-bands are slightly 
lifted up. As in the case Ω 6= 0, it is possible to identify frequencies at which 
parabolic modes are generated, such as ω = 247.1 rad/s (see Fig. 6d).

For completeness, in Figs. SM2 and SM3 of the Supplementary Material we 
show how the dispersion diagrams change as different values of the gyricity Ω are 
considered.

4. Forced problem: one-way unidirectional waves in the chiral flexural
system

In this section, we study the motion of a finite system under time-harmonic
loading. The system, shown in Fig. 7, consists of a thin plate with a 50 × 30
array of chiral resonators. The elementary cell of this system is identical to that
illustrated in Fig. 4 and the parameters are the same as considered in Section 3.
The domain is divided into two regions: in the lower region the gyricity Ω = 200
rad/s, while in the upper one Ω = −200 rad/s. The dispersion diagrams of the
corresponding periodic structure are the same for both values of Ω and they are
shown in Fig. 5. The system is subjected to a time-harmonic force, applied to
the tip of a beam in a cell close to the interface and located in the lower region
where the gyricity is positive (see Fig. 7). The force induces a gyroscopic force
on the beam, which transmits bending moments to the plate with respect to both
the x- and y-axes. In order to reduce the effect of the reflected waves from the
boundaries, Perfectly Matched Layers (PML) are introduced into the model.
The extent of PML is indicated by the grey dashed lines in Fig. 7. In the
numerical computations, PML are modelled as plate elements with damping.
The parameters of the PML have been optimised in order to minimise the
amplitudes of the waves reflected by the boundaries. We remark that PML
are frequency dependent.

The interface between the two domains, with equal and opposite values of
gyricity, is a line parallel to the x-axis (see dot-dashed line in Fig. 7). The
reason for this choice of the interface is due to the fact that waves tend to
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Figure 6: (a) Band diagram of the periodic system in Fig. 4 with Ω = 0, calculated along the
path Γ X M Y Γ illustrated in (b). (c) Dispersion surfaces of the system, computed numerically.
(d) Slowness contours for ω = 247.1 rad/s.
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Figure 7: A two-dimensional finite array of cells, one of which is highlighted in grey in Fig. 
4. The gyricity Ω = 200 rad/s below the dot-dashed line, while Ω = −200 rad/s above the 
dot-dashed line. A time-harmonic force is applied at the top of a beam, in the position and 
direction indicated by the arrow. PML are inserted near the edges of the domain to absorb 
impinging waves.

propagate in the x-direction at certain frequencies, as shown by the slowness 
contours in Fig. 5d.

One-way unidirectional waves are connected to the chiral response of the 
elastic system. Chirality also influences the eigenmodes of the periodic structure, 
where flexural vibrations are coupled with rotational motion. The direction of 
rotation changes with the frequency and the wave vector. For the same values 
of the frequency and wave vector, the direction of rotation is changed if the sign 
of gyricity is changed. Accordingly, in the model of Fig. 7 we expect that at 
some special frequencies waves propagate only in one direction.

In Fig. 8a we show the displacement amplitude Wp in the plate calculated for 
an angular frequency of the time-harmonic forcing of 13.0 rad/s. This frequency 
is inside the first stop-band of the infinite system (see lowest dashed line in Fig. 
5a). In the numerical computations, the amplitude of the force is equal to 1 N. 
As is apparent from the figure, waves propagate along the interface to the left 
of the force, before being dissipated inside the PML. To the right of the force, 
the displacements are negligibly small.

Another example of a one-way unidirectional wave was presented in the 
Introduction (see Fig. 1). There, the radian frequency is 101.5 rad/s. This 
frequency lies in the second stop-band of the infinite system (refer to Fig. 5a). In 
this situation, the wave propagates in the opposite direction to that considered 
in Fig. 8a.

The examples in Figs. 1 and 8a show that the direction of wave propagation 
depends on the stop-band in which we choose the frequency of excitation. The
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Figure 8: Displacement amplitude field in the chiral flexural structure of Fig. 7, generated
by a time-harmonic force of amplitude 1 N and radian frequency (a) ω = 13.0 rad/s and (b)
ω = 244.7 rad/s.

direction of wave propagation can be predicted by looking at the eigenfunctions 
of the elementary cell, evaluated for a given wave vector at an eigenfrequency 
below and above the band-gap where the frequency of excitation is chosen. In 
particular, considering the configuration in Figure 7 and for this particular set of 
parameter values, if below the chosen band-gap the beam in the elementary cell 
rotates clockwise and above the band-gap the beam rotates counter-clockwise, 
the wave generated by the excitation travels to the left of the point of application 
of the force, as in Fig. 8a. Conversely, if at an eigenfrequency below (above) the 
band-gap the beam rotates in the counter-clockwise (clockwise) direction, the 
wave propagates to the right of the force, as in Fig. 1.

In Figs. 1 and 8a the frequencies of excitation are inside the stop-bands of 
the corresponding infinite system. Conversely, Fig. 8b shows the displacement 
amplitude field when the force has a radian frequency of 244.7 rad/s, falling 
inside a high-frequency pass-band (see highest dashed line in Fig. 5a). In this 
case, the system response shows a preferential directionality to the right of the 
force, where most of the energy is transmitted. However, there is also a wave of 
small amplitude propagating in the y-direction, both upwards and downwards, 
since the frequency lies in a partial stop-band.

In all these numerical computations, the direction of the force is at 45◦ with 
respect to the x-axis. However, the direction of the force does not affect the 
results significantly, because the chiral terms in the boundary conditions (4) 
couple the transverse displacement components of the beam. Consequently, a 
force in one direction would generate displacements in both the parallel and 
perpendicular directions.
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Figure 9: Time-harmonic response of the uniform chiral flexural structure to a force of am-
plitude 1 N and radian frequency (a) ω = 245.7 rad/s and (b) ω = 247.1 rad/s. The value of
the gyricity Ω in each case is indicated in the figures.

5. Forced problem: localised waveforms in a structure with uniform
gyricity

In this section, we study the dynamic response of the flexural chiral system to
an external excitation, where the gyricity of the spinners is uniform throughout
the structure. The value of the gyricity is assumed to be either Ω = 200 rad/s
or Ω = 0; the other parameters are the same as those considered in Section 3.

Fig. 9a shows the flexural displacement amplitude field in the plate when
Ω = 200 rad/s and the radian frequency is ω = 245.7 rad/s. It is apparent
that waves propagate along the x-axis, both to the left and to the right of the
point of application of the force. The waveform generated by the force is highly
localised. This is consistent with the slowness contours of the corresponding
infinite system, presented in Fig. 5d and calculated for the same value of the
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radian frequency ω. The slowness contours are parallel straight lines in the
reciprocal plane, hence waves can propagate only in the perpendicular direction
in the physical plane. Further, this is independent of the orientation of the
applied force.

Waveforms localised on a line were also observed in elastic lattices [24, 25].
Here, we have demonstrated that waves propagating along a single line can also
be realised in a plate connected to chiral resonators. We emphasise that these
parabolic modes do not require an interface separating two sub-domains with
different properties. Indeed, the same waveform would be generated along a
different horizontal line by moving the force to a different position.

In the case when the gyricity Ω = 0 throughout the structure, we could not
detect any frequency at which the slowness contours are parallel straight lines.
Nonetheless, quasi-parabolic modes can be generated at specific frequencies,
for instance at ω = 247.1 rad/s (see Fig. 6d). In Fig. 9b we illustrate the
flexural displacement amplitude field in the structure when the gyricity Ω = 0
and the radian frequency ω = 247.1 rad/s. As expected from the results of the
dispersion analysis in the corresponding infinite system, the waveform produced
by the force is not as localised as in Fig. 9a, where Ω 6= 0.

6. Conclusions

The present paper has introduced a new class of elastic waveforms, referred
to as “chiral flexural waves”, for a multi-structure consisting of an elastic plate
connected to a system of beams with gyroscopic spinners. The model is based
on the novel concept of a “logarithmic junction”, which enables us to take into
account the coupling between the flexural modes alongside the gyricity of the
spinners embedded in the chiral resonators.

The model solutions are written explicitly in the closed analytical form,
used in modelling Bloch-Floquet waves in doubly-periodic chiral flexural sys-
tems, which have never been analysed in the past. New types of chiral flexural
waveforms have been identified. These are not connected with the inertia of the
flexural plate, but are entirely produced via the dynamic interaction between
chiral elastic resonators.

This novel approach presented here paves the way for the analysis of inter-
facial waves in a plate along the boundaries of regions of different gyricities,
but otherwise uniform elastic and inertial properties. One-way flexural edge
waves on straight chiral interfaces have been identified here. To the best of our
knowledge, this has never been achieved in the past.
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Appendix. Regularisation procedure for the determination of the 
dispersion diagrams

In this section, we describe the semi-analytical approach that has been used 
to determine the dispersion diagrams of the infinite plate connected to a doubly-
periodic array of chiral resonators. In particular, we derive analytically the 
system of equations and then we find numerically the roots of the determinant of 
the system, which yield the dispersion diagrams of the periodic structure.

We consider an elementary rectangular cell, with x ∈ (−dx/2, dx/2) × 
(−dy/2, dy/2), connected to a chiral resonator at the origin. The transverse 
displacement and rotations at x = (0, 0) are indicated by

Wp|x=y=0 = δz, ∇Wp|x=y=0 =

(
αx
αy

)
. (A.1)

The displacement and rotations at the origin can be obtained by summing all 
the contributions due to the axial forces and bending moments transmitted by
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the beams to the plate. These contributions can be evaluated by employing the 
Green’s function.

The static Green’s function in the infinite plate cannot be used for the eval-
uation of the lattice sums because it does not decay at infinity. Hence, for the 
purpose of the analysis of Bloch-Floquet waves, we use the following regulari-
sation procedure.

First, we truncate the lattice sums to order N (in the illustrative calculations 
of Section 3.2, N = 200). Then, we use the Green’s function (20) for a circular 
massless plate of radius R = 2N max(dx, dy), which contains all the N × N chiral 
resonators. We denote by G(x, y, ξ, η), µx(x, y, ξ, η) and µy(x, y, ξ, η) the 
displacements evaluated at the point (x, y) produced by a unit force, a unit 
moment around the x-axis and a unit moment around the y-axis, respectively, 
applied at the point (ξ, η). Accordingly, the displacement and rotations at the 
origin of the elementary cell can be determined as follows:

Wp|x=0,y=0 =

N∑
n=−N

N∑
m=−N

eiγmn {NδzG(0, 0, ndx,mdy) + [M1αx + M2αy]

×µx(0, 0, ndx,mdy) + [−M2αx + M1αy]µy(0, 0, ndx,mdy)} ,

∂Wp

∂y

∣∣∣∣
x=0,y=0

=
N∑

n=−N

N∑
m=−N

eiγmn

{
Nδz

∂G

∂y
(0, 0, ndx,mdy) + [M1αx + M2αy]

×∂µx
∂y

(0, 0, ndx,mdy) + [−M2αx + M1αy]
∂µy
∂y

(0, 0, ndx,mdy)

}
,

∂Wp

∂x

∣∣∣∣
x=0,y=0

=

N∑
n=−N

N∑
m=−N

eiγmn

{
Nδz

∂G

∂x
(0, 0, ndx,mdy) + [M1αx + M2αy]

×∂µx
∂x

(0, 0, ndx,mdy) + [−M2αx + M1αy]
∂µy
∂x

(0, 0, ndx,mdy)

}
.

(A.2)

Here γmn = kxndx+kymdy, where k = (kx, ky)T is the wave vector. In addition, 
as in Section 3.2, Nz(0) = Nδz, Mx(0) = M1αx +M2αy and My(0) = −M2αx + 
M1αy are the axial force and bending moments transmitted to the plate by the 
beam attached at the origin of the elementary cell. The quantities N, M1 and M2 
are given in (33). In order to account for the contributions of all the beams, 
Bloch-Floquet conditions for the axial forces and bending moments have been 
used in (A.2).

Combining (A.1) and (A.2), we obtain a homogeneous system of three equa-
tions in the three unknowns δz, αx and αy. Non-trivial solutions of this system are 
obtained by setting the determinant of the matrix containing the coefficients of 
δz, αx and αy equal to zero. This leads to the dispersion relation of the sys-tem, 
which shows how the radian frequency ω (appearing in N, M1 and M2) depends 
on the wave vector k. The dispersion relation is solved numerically and the 
dispersion diagrams represented by the solid grey lines in Fig. 5 are obtained.
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