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Abstract: A Bayesian Network-based risk analysis approach is proposed to analyse the risk factors 11 

influencing maritime transport accidents. Comparing with previous studies in the relevant literature, it 12 

reveals new features including 1) new primary data directly derived from maritime accident records by 13 

two major databanks Marine Accident Investigation Branch (MAIB) and Transportation Safety Board of 14 

Canada (TSB) from 2012 to 2017, 2) rational classification of the factors with respect to each of major 15 

types of maritime accidents for effective prevention, and 3) quantification of the extent to which different 16 

combinations of the factors influence each accident type. The network modelling the interdependency 17 

among the risk factors is constructed by using a Naïve Bayesian Network (NBN) and validated by 18 

sensitivity analysis. The results reveal that the common risk factors among different types of accidents 19 

are ship operation, voyage segment, ship type, gross tonnage, hull type, and information. Scenario 20 

analysis is conducted to predict the occurrence likelihood of different types of accidents under various 21 

situations. The findings provide transport authorities and ship owners with useful insights for maritime 22 

accident prevention. 23 
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1. Introduction 25 

Waterborne transportation accounts for approximately 90% of the world trades in volume, representing 26 

one of the essential transportation modes in ensuring the prosperity of internatioanl tarde and global 27 

economy. Maritime accidents reveals new features in the past years. According to the ‘Safety and 28 

Shipping’ Annual Report of 2017 1, published by Allianz Global Corporate & Specialty, there is more 29 

than a quarter of ship losses in 2016 occurred in the South China, Indochina, Indonesia and Philippines 30 

regions. Although the number of maritime casualties has declined over years, there is increasing 31 

complexity of navigation risk exposed in the shipping industry (e.g. high demand on human reliability 32 

in complicated operations introduced by advanced technologies). A study of the onboard duties and off-33 

board entities involving Greek-flagged ships during 1993-2006 indicated that 57.1% of all accidents were 34 

attributed to human element 2. Among them, 75.8% of accidents were detected onboard, and 80.4% of 35 

the onboard human-induced accidents were related to errors and violations of the ships’ masters. There 36 

are numerous reasons for an individual to make errors, which may include communication failure, 37 

ineffective training, memory lapse, inattention, poorly designed equipment, exhaustion or fatigue, 38 

situation ignorance, noisy working conditions, and other personal and environmental factors (e.g. Fan, 39 

Zhang 3). The questionnaire survey on maritime operations conducted by Safahani 4 emphasised the non-40 

technical skills: 75% stated that a team leader should discuss the work plan with his/her teammates; 90% 41 

thought that monitoring the task provided an essential contribution to effective team performance; almost 42 

everyone in the survey believed that communication was a significant factor, and that teams who do not 43 

communicate effectively would increase the possibility of making errors. Branch, House 5 disclosed that 44 

watchkeeper manning levels and a master’s ability to discharge his duties were significant factors 45 
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influencing collisions and groundings.  46 

Studies on maritime accident analysis rely on the discretional context and experts’ knowledge to extract 47 

the causal relations among the process of accidents, as well as data-driven methodologies. Specifically, 48 

casual relations were connected to one type of accidents through accident analysis methods, specifically 49 

for grounding or collision 6-8. Moreover, some studies focused on the probability or the frequency of 50 

maritime accidents. Fabiano, Currò 9 investigated the occupational accident frequency affected by the 51 

organisation, job experience, and productivity. Pristrom, Yang 10 estimated the likelihood of a ship being 52 

hijacked in the Western Indian or Eastern African region by using the Global Integrated Shipping 53 

Information System (GISIS) database together with expert judgement. Other studies concentrated on the 54 

severity or the consequence of maritime accidents. Zhang, Teixeira 11 predicted the accident 55 

consequences in the Tianjin port by statistical analysis of historical accident data. Wang and Yang 12 56 

analysed the key risk factors influencing waterway accident severity by using Bayesian Networks (BN). 57 

In addition, some studies investigated the combination of the above two (i.e. likelihood and consequence) 58 

13, 14. However, few studies have been carried out to investigate the issues on how risk factors affect 59 

maritime accident types, leaving a research gap to fulfil for effective accident prevention. The key factors 60 

contributing to collisions are quite different from those resulting in groundings. In addition, 61 

understanding differentiation among the key factors contributing to different types of accidents will help 62 

generate useful insights for rational risk control measures. 63 

This study aims at investigating how different risk factors generate, in an individual or combined manner, 64 

an impact on different types of maritime accidents in terms of likelihood. Manual case by base analysis 65 

of recorded maritime accidents from Marine Accident Investigation Branch (MAIB) and Transportation 66 
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Safety Board of Canada (TSB) that occurred from 2012 to 2017 is undertaken to develop a primary 67 

database to support this study, as they are among the most representative from the literature 15-17. A BN-68 

based approach is proposed to analyse accident types in maritime transport. To do so, the rest of the paper 69 

is structured as follows. The literature review on risk factors associated with maritime transport and BN-70 

based risk analysis is conducted and presented in Section 2. Section 3 describes the methodology of Risk 71 

Influence Factors (RIFs) identification and BN modelling. Section 4 analyses the results of the most 72 

important RIFs with respect to different ‘accident types’ and highlights the implications through scenario 73 

analysis. Finally, conclusions are summarised in Section 5. 74 

2. Literature review 75 

2.1 Risk factors in maritime transportation 76 

Ship accidents are caused by various types of failures, e.g. deck officer error (26%), equipment failure 77 

(9%), structural failure (9%), crew error (17%), mechanical failure (5%), among others. 18. The factor 78 

that influences the risk level of maritime transport is defined as risk influence factor (RIF). To determine 79 

the risk factors of maritime transport, the latest related literature and maritime accident reports during 80 

2012-2017 have been reviewed.  81 

To determine the RIFs in maritime transportation, risk factors that were commonly presented or 82 

frequently described in accident reports were extracted. Such factors, complemented by the RIFs 83 

identified from the related literature, compose the maritime transport RIFs in this study, which are 84 

presented in Table 1.  85 

Table 1 RIFs contributing to maritime transport accidents. 86 

RIFs Literature sources 

Ship type Weng and Yang 19, Heij and Knapp 20 

Hull type Wang and Yang 12, Balmat, Lafont 21 

Ship age (years) Balmat, Lafont 21, Zhang, Yan 22  
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Length (metres) MAIB19-2017, TSBM16P0362 

Gross tonnage (GT) Balmat, Lafont 21, Zhang, Yan 22  

Ship operation MAIB19-2017 

Voyage segment MAIB19-2017 

Weather condition MAIB19-2017, MAIB8-2013 

Sea condition MAIB22-2017, MAIB19-2017, MAIB24-2016,  

TSBM16P0362 

Fairway traffic MAIB23-2017, MAIB18-2015,  

TSBM15C0006 

Ship speed Wang and Yang 12, Balmat, Lafont 14  

MAIB20-2017, MAIB14-2013 

Vessel condition MAIB23-2017, MAIB20-2017, MAIB19-2017 

Equipment/device MAIB23-2017, MAIB22-2017, MAIB11-2017,  

TSBM15C0006, TSBM14P0014, TSBM14C0106 

Ergonomic design MAIB18-2015, MAIB26-2013, MAIB9-2013,  

TSBM16P0362, TSBM16C0005, TSBM14C0045 

Information (whether effective and 

updated information provided) 

MAIB23-2017, MAIB22-2017, MAIB19-2017,  

TSBM16P0362, TSBM16C0005, TSBM15C0006 

Previous studies relied mainly on secondary database for risk factor identification in which primary 87 

information from accident reports was absence. One of the new features of this study is to incorporate 88 

new risk factors derived from accident reports into maritime accident analysis. 89 

2.2 Risk analysis of maritime accidents 90 

Since the UK Maritime and Coastguard Agency (UK MCA) proposed the formal safety assessment (FSA) 91 

framework to International Maritime Organization, maritime accident risk models have been fast 92 

developed because of the goal-setting risk regime. It takes into account ship conditions, organisational 93 

management, human operation, and hardware 18. To assess the risks in maritime systems, quantitative 94 

risk assessments have been conduted to analyse maritime accidents. Yip, Jin 23 applied econometrics 95 

method to conclude that the number of passenger injuries is positively related to the number of crew 96 

injuries in ferry, ocean cruise and river cruise passenger vessel accidents. Talley and Ng 24 proposed a 97 

logical approach to select quality-of-service measures for port cargo, vessel and vehicle services, which 98 
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can be used as port performance indicators for evaluating the service performance of multi-service ports. 99 

Ventikos and Psaraftis 25 presented the relationship between an oil spill-assessing approach, namely the 100 

event-decision network (EDN) and the FSA to describe the spill-scenario analysis and to pinpoint its 101 

interconnections with the official instrument. Besides that, risk analysis of maritime accidents would 102 

benefit the decision making systems onboard. Balmat, Lafont 21 presented a fuzzy approach to 103 

automatically define an individual ship risk factor, which could be used in a decision-making system. 104 

Wu, Zong 26 integrated evidential reasoning and TOPSIS into group decision-making for handling ships 105 

that are not under command. A fuzzy logic based approach was proposed by Wu, Yip 27 for ship-bridge 106 

collision alert, considering ship particulars, bridge parameters and natural environment, which can be 107 

used for improvement of the ship handling in the bridge waterway area. Moreover, the causation analysis 108 

and modelling of maritime risks have been conducted 28, 29. Kum and Sahin 17 used Root Cause Analysis 109 

(RCA) to clarify the causes and applied Fuzzy Fault Tree Analysis (FFTA) for a recommendation to 110 

reduce the occurrence probabilities of maritime accidents. Also, Zhang, Yan 30 estimated the navigational 111 

risk of the Yangtze River using BN approach. Montewka, Ehlers 31 developed the risk framework using 112 

BN for the estimation of the risk model parameters.  113 

Analysis of maritime accident database is one of the most effective ways to investigate the causal chains 114 

and the correlations among causal factors in risk assessment. Pristrom, Yang 10 used the Global Integrated 115 

Shipping Information System (GISIS) database to estimate the likelihood of a ship being hijacked. Zhang, 116 

Teixeira 11 analysed historical accident data from 2008 to 2013 to predict the accident consequences in 117 

Tianjin port. However, the maritime accident database contains limited information compared to 118 

maritime accident reports. The investigation reports of maritime accidents provide the navigation 119 
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information, process of event occurrence, direct or indirect causes of the accidents, the actions taken 120 

during the accidents, and recommendations. A few studies utilised accident reports to conduct accident 121 

analysis due to the time-consuming process of extracting the data from each report. For instance, Wang 122 

and Yang 12 analysed the key risk factors influencing waterway accident severity from all accident 123 

investigation reports by China's Maritime Safety Administration (MSA). Chauvin, Lardjane 15 concerned 124 

39 vessels involved in 27 collisions to show the importance of Bridge Resource Management for 125 

situations of navigation in restricted waters. Chen, Wall 32 utilised the accident reports of the selected 126 

cases from MAIB for accidents analysis to provide a complement measure. Akhtar and Utne 33 conducted 127 

a correlation analysis of fatigue-related factors identified from 93 accident investigation reports, and 128 

identified the most influential factors related to top management: vessel certifications, manning resources, 129 

and quality control.  130 

The data acquisition through the investigation of accident reports brings new insights, which cannot be 131 

achieved from the existing databases. Integrating the primary data with the advanced quantitative BN 132 

analysis approach facilitates maritime accident analysis and prevention from an innovative perspective. 133 

Despite previous attempts of using BN to model objective data from accident reports12, the relevant 134 

investigation relied on a small scale of database constrained in a pre-defined water/region. It requires 135 

more experiments based on a wide range of maritime accident data to be conducted to generalise the 136 

finding on BN’s feasibility on RIF analysis and more importantly to reveal the most important RIF from 137 

a global perspective, particularly with respect to different accident types. 138 

2.3 Bayesian networks in maritime risk analysis 139 

The interest of using BN as a tool in scientific risk analysis is continuously increasing, primarily related 140 
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to its advantages in terms of learning and inference. According to the literature review by Weber, Medina-141 

Oliva 34, the number of academic papers on BN in risk analysis increased every year. Compared with 142 

other classical methods applied to dependability analysis, e.g. Markov Chains (MC) and Fault Trees (FT), 143 

BN sustains its advantages. Specifically, FT allows for calculating the probability by binary decision 144 

diagrams (BDD), which models the dependencies between events. However, it cannot represent the 145 

multiple state variables when multiple failures result in different consequences in a system. On the 146 

contrary, BN displays similar capabilities as the FT, but has additional ability to model a multi-state 147 

variable and several output variables. Weber, Medina-Oliva 34, Khakzad, Khan 35 presented a comparison 148 

of FT and BN approaches, while previous studies also explained how FT could be transformed into BN 149 

36-38, involving dynamic FT transformation 39. As far as MC is concerned, it analyses the exact probability 150 

of a failure event with the dependencies among variables and integrates the knowledge to represent multi-151 

state variables. However, the system modelling tends to be sophisticated with increasing variables 34. In 152 

light of this characteristic, BN has required a relatively low number of parameters and a small-size 153 

conditional probability table. BN is widely utilised in maritime risk analysis, e.g. ship navigational risk 154 

assessment, port safety assessment, Arctic water transportation, inland waterway transportation, and 155 

collision assessment 11 40 41 42 6, 43. It is proved to be powerful to model maritime accidents since it enables 156 

quantitative analysis of Human and Organisational Factors (HOFs) 33, 44, 45. It explicitly reveals 157 

probabilistic dependencies between factors and their causal relationships. Moreover, the feature that BN 158 

can take advantage of experts’ knowledge makes it suitable for maritime risk modelling, in case of that 159 

failure data in the relevant investigations are incomplete. Therefore, experts’ knowledge continues to be 160 

an essential data source for shipping accident modelling 41, 46, although it is subjectivity associated. 161 
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To avoid the subjective input in BN-model, a plain machine learning algorithm, the Naïve BN (NBN), is 162 

applied in the study. Due to its efficiency with the core idea of classification, the NBN model enables the 163 

simplified BN structures without sacrificing its accuracy. 164 

Compared with the studies on the probability and/or the frequency of maritime accidents, those 165 

addressing the relationship between risk factors and accident types are scanty in the literature. The risk 166 

factors contributing to collision may be different from the risk factors contributing to sinking. It reveals 167 

another new feature that is the analysis of accident types in maritime transportation and a new 168 

understanding of differentiation among critical factors contributing to different types of accidents.  169 

3. Methodology 170 

BN is a probabilistic directed acyclic graphical (DAG) model 47, which is composed of nodes with the 171 

links between them, representing variables and influences of one node on the other(s), respectively. The 172 

directional arc from node A to node B refers that variable A has a direct causal effect on B, representing 173 

conditional dependencies. In addition, the nodes that are not directly linked are conditionally independent 174 

of each other. A BN model usually consists of the following steps: data acquisition, BN structure learning, 175 

BN analysis, and sensitivity analysis and model validation 22. For applying the model into this study, a 176 

methodology is developed by the following steps.  177 

3.1 Data acquisition 178 

To begin with, it is necessary to conduct a systematic procedure to search the maritime accident reports 179 

and select the reviewed reports, referring to Macrae 7, Uğurlu, Köse 8, Chauvin, Lardjane 15, Wan, Yang 180 

48. The procedure consists of three stages: (1) online database searching; (2) reports screening and 181 

selecting; (3) refining and analysis. In this process, some of the reports involving accidents due to 182 
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disobeying rules of passengers or drowning in the swimming pool occurred in cruise ships, and extreme 183 

accidents occurred in small fishing vessels, tugs and etcetera were discarded, as their reduced manning 184 

requirements will easily lead to a distortion of results about the investigation on the factor impact 2. Then, 185 

the maritime accident data is obtained according to the filtered accident reports. 186 

3.2 RIF identification 187 

With respect to RIFs in maritime accidents, it is necessary to identify the key factors from accident 188 

investigation reports. According to the filtered reports (in Section 3.1), we derived the risk factors among 189 

them according to their appearance frequency in accident reports to eliminate the factors of trivial effect 190 

(i.e. appearing less than twice across the whole searching reports). As a result, 16 RIFs are identified 191 

including Ship type, Hull type, Ship age (years), Length (metres), Gross tonnage (GT), Ship operation, 192 

Voyage segment, Weather condition, Sea condition, Time of day, Fairway traffic, Ship speed (knots), 193 

Vessel condition, Equipment/device, Ergonomic design, Information. The detailed explanation of RIFs 194 

in BN is stated in Section 4.2.  195 

3.3 BN structure learning 196 

Once RIFs are identified, a BN structure is to be generated by using the RIFs as the nodes. There are 197 

mainly two approaches for BN structure learning. One is based on the expert knowledge, which is used 198 

to conduct a qualitative analysis based on the subjective causal relationships. The other is the data-driven 199 

approach to represent the interactive dependencies between variables. This study is to develop the BN 200 

modelling by the later method. 201 

However, the complexity of a data-driven BN structure super-exponentially increases with the growing 202 

number of variables in the network 40, 49. To overcome such a disadvantage, NBNs are usually applied 203 

instead. It is a commonly used model aiming at improving the classification 50. To realize this, there is a 204 
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strong assumption in most NBN models that it has an independent node as the target node directly 205 

connected with all the other nodes which are independent to each other in the structure. Referring to the 206 

expert opinion and the previous studies12, the interdependency among RIFs are insignificant in this study, 207 

which make it applicable for such strong assumption. 208 

In the study, the only child node of BN is ‘accident type’, i.e. the class variable (S). The parent node set 209 

𝑅 = {𝑅𝑆𝑇 ,  𝑅𝐻𝑇 ,  𝑅𝑆𝐴, 𝑅𝐿 ,  𝑅𝐺𝑇 , 𝑅𝑆𝑂,  𝑅𝑉𝑆, 𝑅𝑊𝐶 ,  𝑅𝑆𝐶 , 𝑅𝑇𝐷, 𝑅𝐹𝑇 , 𝑅𝑆𝑆,  𝑅𝑣𝑐, 𝑅𝐸 , 𝑅𝐸𝐷, 𝑅𝐼}  is the 210 

set of risk variables (𝑅𝑘) including the 16 RIFs of (in a matching order) ship type, hull type, ship age, 211 

length, gross tonnage, ship operation, voyage segment, weather condition, sea condition, time of day, 212 

fairway traffic, ship speed, vessel condition, equipment, ergonomic design, and information. Then, the 213 

structure learning is simplified to demonstrate the relationship between S and 𝑅𝑘 , as presented in 214 

Fig.1.(a). 215 

Information

Accident type

Ship type Hull type Ship age

……

      
Information

Accident type

Ship type Hull type Ship age

……

    216 

Fig. 1. (a). ‘Accident type’ as a child node              Fig. 1.(b). ‘Accident type’ as a parent node. 217 

However, the size of the conditional probability table of the target node increases exponentially, resulting 218 

in the complex computation in this converging BN. To simplify the structure, a modified diverging NBN 219 

structure in which ‘Accident type’ have no parents but is the only parent of other RIFs is presented, as 220 

shown in Fig. 1(b). Compared to the structure in Fig. 1(a), this structure (i.e. Fig. 1(b)) significantly 221 

reduces the computation and number of conditional probability distributions. Hence, it is adopted to 222 

express the relationship between the RIFs in the NBN structure. Because BN has the ability to conduct 223 
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bi-directional risk analysis, the transformation from the converging to diverging connections will be well 224 

reflected by the adapted conditional probability tables (CPT) and hence has no influence to the final BN 225 

results on risk analysis (e.g. Wang and Yang 12).        226 

3.4 Mutual information and sensitivity analysis 227 

3.4.1 Mutual information 228 

In the probabilistic theory, the mutual information is a measure of the mutual dependence between two 229 

variables. It describes the amount of information obtained about one random variable, through the other 230 

random variables 40. Mutual information is also interpreted as entropy reduction, measuring the mutual 231 

dependence of different variables. Since the objective of this study is to identify the relationship between 232 

RIFs and ‘accident type’, ‘accident type’ is determined as the fixed variable in mutual information.  233 

The larger the value of mutual information is, the stronger relationship between individual RIF and 234 

‘accident type’. In this way, calculating the mutual information is able to filter out the RIFs that are 235 

relatively less important in the model. Then the remaining RIFs are selected as significant variables with 236 

regards to a pre-defined accident type. 237 

3.4.2 Sensitivity analysis - True Risk Influence (TRI) of risk variables 238 

Based on the significant RIFs screened from mutual information calculation, there is another form of 239 

sensitivity analysis, e.g. scenario simulation, to determine the effects of different variables, particularly 240 

in a combined way. The classical way is to set a scenario in which all the other nodes (apart from the 241 

investigated ones) are locked, and the target node is updated accordingly. It means, for example, 10% up 242 

and down for the node reveals the effects of the variable in the model. It is considerably applicable for 243 

variables with two states, but not suitable for variables with more than two states. For example, when the 244 
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state value of a bi-stated variable is increased from 0% to 10%, the value of the other state will decrease 245 

from 100% to 90% accordingly. However, the integration of the other states of multi-state variables 246 

makes it difficult to appropriately decrease their values when a selected state increases its value by 10%. 247 

In this case, the traditional scenario simulation is inappropriate. 248 

In order to overcome the drawback of the traditional way, a new method proposed by Alyami, Yang 51 is 249 

applied here. This method increases the probability of the state within the highest influencing on a type 250 

of accidents (e.g. collision) to 100% to obtain the High Risk Inference (HRI) of collision. Then it 251 

increases the probability of the state generating the lowest influence on the collision to 100% to obtain 252 

the Low Risk Inference (LRI) of collision. In this way, calculating the average value of HRI and LRI 253 

concludes the True Risk Influence (TRI) of each variable in the case of a particular accident type. It is 254 

described as: 255 

2

HRI LRI
TRI


                                    (1) 256 

where HRI refers to ‘High Risk Inference’ which is calculated for a variable influencing ‘collision’ , LRI 257 

is ‘Low Risk Inference’ calculated for a variable influencing ‘collision’, and TRI refers to ‘True Risk 258 

Influence’ for a variable influencing ‘collision’. To obtain the variable influence on ‘accident type’, a 259 

similar analysis procedure is applied to other accident types, ‘grounding’ and ‘flooding’, etc. Then TRIs 260 

for a variable influencing all accident types are obtained. After applying this method for each variable, 261 

the TRIs for all variables for all accident types are available. Therefore, the sensitivity analysis illustrates 262 

the ranking of variables’ influences on accident types according to the value of TRI. In addition, the 263 

average TRI values of all accident type priorities the variables’ effects on the ‘accident type’. The higher 264 

a TRI is, the higher its corresponding RIF’s effect on ‘accident type’.  265 
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4. Results and discussion 266 

4.1 Raw data 267 

The accident reports are from MAIB in UK and TSB in Canada, as they are among the most 268 

representative from the literature 15-17. The raw data derived from the MAIB and TSB contains general 269 

information of the ship and the voyage, accident evolution process, and details related to the management 270 

and organizational factors. In the screening process stage, the accident reports were screened with a focus 271 

on errors-related accidents to ensure their representativeness and relevance. Some of the reports 272 

involving accidents due to disobeying rules of passengers or drowning in the swimming pool occurred 273 

in cruise ships, and extreme accidents occurred in small fishing vessels, tugs and etcetera were discarded, 274 

as their reduced manning requirements will easily lead to a distortion of results about the investigation 275 

on the accident 2. In the final stage, these reports had been further refined and analysed, especially the 276 

‘safety issues’ and ‘common factors’ Section in the accident reports. Some details of information 277 

associated with the accident process were involved in the refinery. According to such analysis, there are 278 

109 accident reports extracted from 152 reports in MAIB and 52 accident reports obtained from 61 279 

reports in TSB, as shown in Appendix I. 280 

In total, the 161 maritime accidents involving 208 vessels reported in MAIB and TSB between Jan. 2012 281 

and Dec. 2017 were carefully reviewed and analysed manually. The search was conducted in Jan. 2018 282 

and the general statistical analysis and findings are presented in Fig. 2 and Fig. 3(a) (b), which provide 283 

the raw data for our next in-depth analysis using NBN.  284 
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 285 

Fig. 2. Accident distribution by accident types   286 

  287 

(a) Accident distribution by ship operations 288 

  289 

(b) Accident distribution by voyage segments 290 

Fig. 3. Accident distribution from MAIB 291 

As is indicated in Fig. 2, grounding, collision and contact/crush accounted for larger percentages than 292 
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other kinds of accidents while sinking and flooding accounted for lower percentages. Specifically, there 293 

were 23 grounding accidents from MAIB and 14 from TSB, while 3 sinking accidents from MAIB and 294 

4 from TSB. And Fig. 3 shows accident distributions by ship operation and voyage segment from MAIB. 295 

The number of accidents happened on passage was much higher than that others, followed by ‘fishing’ 296 

and ‘at anchor’. However, the number of accidents happened in mid-water was much higher than others 297 

like ‘departure’ and ‘in port’. 298 

These reports had been further refined and analysed. And special attention are paid to the ‘safety issues’ 299 

and ‘common factors’ in the accident reports. Some details of information associated with the accident 300 

process were involved in the refinery. According to such analysis, the common factors contributing to 301 

the accidents are generated.  302 

4.2 RIF identification 303 

With respect to the accident type, a maritime accident can be classified into collision (S1), grounding 304 

(S2), flooding (S3), fire/explosion (S4), capsize (S5), contact/crush (S6), sinking (S7), overboard (S8), 305 

and others (S9), which refers to the combined description and definition in MAIB and TSB. These 9 306 

types of accidents consists of 9 states (S1~ S9) of the variable ‘accident type’ in the study. 307 

Furthermore, the accident-related RIFs are retrieved in Table 2. In the quantitative analysis of BN 308 

modelling, the accident type is defined as a dependent variable, variables in Table 2 are defined as 309 

independent variables, as explained in Section 3.3.  310 

Table 2 The accident-related RIFs  311 

RIFs Notation Description 
Values of state 

in BN 

Ship type 𝑅𝑆𝑇 Passenger vessel, tug, barge, fishing vessel, container ship, bulk carrier, 

RORO, tanker or chemical ship, cargo ship, others. 

1, 2, 3, 4, 5, 6, 7, 

8, 9, 10 

Hull type 𝑅𝐻𝑇 Steel, wood, aluminium, others 1, 2, 4, 5 

Ship age (years) 𝑅𝑆𝐴 (0 5], [6 10], [11 15], [16 20], >20, NA 1, 2, 3, 4, 5, 6 
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Length (metres) 𝑅𝐿 ≤100, >100, NA 1, 2, 3 

Gross tonnage (GT) 𝑅𝐺𝑇 ≤300, 300 to 10000, >10000, NA 1, 2, 3, 4 

Ship operation 𝑅𝑆𝑂 Towing, Loading/unloading, Pilotage, Manoeuvring, Fishing, At anchor, On 

passage, others 

1, 2, 3, 4, 5, 6, 7, 

8 

Voyage segment 𝑅𝑉𝑆 In port, Departure, Arrival, Mid-water, Transit, others 1, 2, 3, 4, 5, 6 

Weather condition 𝑅𝑊𝐶 Good or poor considering rain, wind, fog, visibility 1, 2 

Sea condition 𝑅𝑆𝐶 Good or poor considering falling/rising tide, current, waves 1, 2 

Time of day 𝑅𝑇𝐷 07:00 to 19:00, other 1, 2 

Fairway traffic 𝑅𝐹𝑇 Good or poor considering complex geographic environment, dense traffic, 

or receptive nature of the route contributing to ignorance 
1, 2 

Ship speed*  𝑅𝑆𝑆 Normal, Fast  1, 2 

Vessel condition 𝑅𝑣𝑐 Good condition of vessels, or the condition of vessel has nothing to do with 

the accidents; 

Poor condition of vessels, or increasing complexity of propulsion 

arrangements, or modification made to vessels and size contributes to the 

accidents 

1, 2 

Equipment/device 𝑅𝐸 Devices and equipment on board operate correctly; 

Devices and equipment not fully utilised or operated correctly (e.g., BNWAS 

switched off, alarm system not in the recommended position or not noticed) 

1, 2 

Ergonomic design 𝑅𝐸𝐷 Ergonomic friendly or ergonomic aspects has nothing to do with accidents; 

ergonomic impact of innovative bridge design (e.g., visual blind sector 

ahead, motion illusion) 

1, 2 

Information  𝑅𝐼 Effective and updated information provided; 

Insufficient or lack of updated information (e.g., poor quality of equipment 

data, falsified records of information, relies on a single piece of navigational 

equipment, without working indicators or light for necessary observing) 

1, 2 

RIFs: risk influence factors; BN: Bayesian network; RORO: roll on/roll off; NA: not applicable; BNWAS: bridge 312 

navigational watch alarm system; MAIB: Marine Accident Investigation Branch. 313 

*The ship speed is group into normal and fast states based on the description in the MAIB accident reports. 314 

A majority of definitions of variables’ states are derived from accident reports. To quantify such states, 315 

majority of variables are defined and quantified based on the literature in Table 1. However, variables, 316 

e.g. accident type, ship type, hull type, ship operation, and voyage segment, are divided into different 317 

states according to the classification of MAIB or TSB investigation. The ‘vessel condition’ is quantified 318 

into two states based on whether it is blamed for the faults in accidents, as described in the reports. The 319 

grading of ‘ship speed’ is based on the description in the MAIB accident reports, rather than the grading 320 

method by Wang and Yang 12. The main reason is that accurate speeds of vessels involved in accidents 321 
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are not clearly indicated in the source database. 322 

4.3 NBN modelling 323 

Although the assumption that the variables are completely independent is not always true in reality, 324 

modified diverging NBN simplifies the structure by reducing the number of conditional probability 325 

distributions. Moreover, such an assumption does not significantly affect the posterior probabilities 326 

calculated, which does not affect the scenario analysis in the study 12, given the fact that the statistical 327 

analysis of all the accidents did not indicate strong correlation among the RIFs. Therefore, assuming that 328 

all the variables, i.e. the child nodes, are independent with each other, the NBN is constructed. 329 

Based on the NBN model, the parameter learning of CPTs from the cases is conducted by the software 330 

‘Netica’ using the counting-learning algorithm. Once the CPTs are constructed and obtained (Appendix 331 

II), the posterior probabilities of each variable can be calculated. The statistical analysis of the probability 332 

of variables reveals interesting initial findings in terms of safety caution and accident prevention as 333 

follows. 334 
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 335 

Fig. 4. Results of NBN 336 

Fig. 4 presents the results of NBN involving all the retained 16 RIFs. Among the accidents, grounding 337 

and collision are two most frequently occurred types of accidents: accounting for 20.3% and 21.2%, 338 

respectively. A majority of vessel lengths (i.e., 65%) are less than 100m. Vessels with gross tonnages less 339 

than 300 account for 37.5% of shipments involved in accidents. In addition, 67.5% of vessels are made 340 

of steel. 341 

In light of environmental factors, 40% of vessels in the accidents are involved in the ship operation of 342 

‘on passage’, 41.3% are involved in the voyage segment of ‘mid-water’. In addition, only 19.1% of ships 343 

involved in accidents are in poor fairway traffic in the process of accidents, 45.7% are at night time. 344 

Severe weather condition accounts for 40.2% of accidents, while tough sea condition accounts for 53.2%. 345 

With regard to ship factors, fishing vessels constitute the largest proportion (i.e. 18.4%) of shipments in 346 

Accident_type

1
2
3
4
5
6
7
8
9

20.3
21.2
3.69
5.53
11.1
10.6
4.15
9.22
14.3

4.46 ± 2.9

Hull_type

1
2
4
5

67.5
9.80
6.93
15.8

1.94 ± 1.5

Vessel_condition

1
2

69.6
30.4

1.3 ± 0.46

Fairway_traffic

1
2

80.9
19.1

1.19 ± 0.39

Ship_age

1
2
3
4
5
6

15.4
13.9
11.0
11.2
33.2
15.2

3.79 ± 1.7

Gross_tonnage

1
2
3
4

37.5
30.3
23.9
8.19

2.03 ± 0.97

Length

1
2
3

65.0
29.6
5.46

1.4 ± 0.59

Ship_operation

1
2
3
4
5
6
7
8

13.3
6.64
9.02
10.8
11.0
5.48
40.0
3.73

4.95 ± 2.3

Voyage_segment

1
2
3
4
5
6

7.53
10.9
17.6
41.3
17.5
5.13

3.66 ± 1.2

Weather_condition

1
2

59.8
40.3

1.4 ± 0.49

Sea_condition

1
2

46.8
53.2

1.53 ± 0.5

Time_of_day

1
2

54.3
45.7

1.46 ± 0.5

Ship_speed

1
2

87.1
12.9

1.13 ± 0.33

Equipment_device

1
2

61.1
38.9

1.39 ± 0.49

Ergonomic_design

1
2

85.8
14.2

1.14 ± 0.35

Information

1
2

54.0
46.0

1.46 ± 0.5

Ship_type

1
2
3
4
5
6
7
8
9
10

12.0
10.1
6.56
18.4
5.78
8.87
5.44
6.67
14.2
12.0

5.46 ± 3



 

20 

 

accidents. Ships older than 20 years is presented in 33.2% of accidents. In addition, 46% of vessels 347 

convey insufficient information, 14.2% have ergonomic design problems, 38.9% are faced with invalid 348 

equipment or devices onboard, and 30.4% experience the condition of modification or increasing size.  349 

4.4 Sensitivity analysis and model verification 350 

4.4.1 Mutual information analysis 351 

Table 3 demonstrates the mutual information shared between “accident type” and RIFs. When “accident 352 

type” is the parent node, “ship operation” with the corresponding mutual information value of 0.28294, 353 

has the strongest effect on the accident type. To select important variables, a threshold of the mutual 354 

information value is set as 0.09, which is the average mutual information value. The variables with I(S,Rk) 355 

larger than 0.09, i.e. “ship operation”, ”voyage segment”, “ship type”, “gross tonnage”, “hull type”, and 356 

“information”, illustrate essential impacts on “accident type”. Thus, these variables are to be computed 357 

for the factor analysis in the next step. In addition, variables that have less impact on “accident type” 358 

mainly include “ship age”, “vessel condition”, “ergonomic design”, “length”, “fairway traffic”, “sea 359 

condition”, “equipment or device”, “ship speed”, “time of day”, and “weather condition”. 360 

Table 3 Mutual information shared with ‘accident type’ 361 

Node Mutual Info. Percentage Variance of Beliefs 

Accident_type 2.95073 100 0.7352824 

Ship_operation     0.28294 9.59 0.0156048 

Voyage_segment   0.21515 7.29 0.0076025 

Ship_type 0.13632 4.62 0.0048136 

Gross_tonnage    0.12415 4.21 0.0037518 

Hull_type 0.10076 3.41 0.0024178 

Information   0.09665 3.28 0.0032523 

Ship_age  0.07052 2.39 0.0019386 

Vessel_condition    0.06771 2.29 0.0010538 

Ergonomic_design 0.05944 2.01 0.0030873 

Length   0.05745 1.95 0.0009204 

Fairway_traffic      0.05660 1.92 0.0022666 
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Sea_condition 0.05270 1.79 0.001587 

Equipment_device 0.03650 1.24 0.0008695 

Ship_speed 0.03372 1.14 0.0012873 

Time_of_day    0.01941 0.658 0.000732 

Weather_condition 0.01907 0.646 0.0009535 

4.4.2 Sensitivity analysis 362 

In terms of sensitivity analysis, Table 4 demonstrates the TRI value of ‘ship operation’ against collision, 363 

where S1 refers collision. Table 5 indicates the values of all RIFs for all accidents, where S1~ S9 are 364 

defined in Section 4.2. 365 

Table 4 TRI of a risk variable (ship operation) for collision 366 

Ship_operation 

1 2 3 4 5 6 7 8 S1* HRI LRI TRI 

/ / / / / / / / 20.30 19.50 17.31 18.41 

100% 0 0 0 0 0 0 0 2.99    

0 100% 0 0 0 0 0 0 5.99    

0 0 100% 0 0 0 0 0 4.41    

0 0 0 100% 0 0 0 0 11.00    

0 0 0 0 100% 0 0 0 10.80    

0 0 0 0 0 100% 0 0 7.26    

0 0 0 0 0 0 100% 0 39.80    

0 0 0 0 0 0 0 100% 10.70       

*S1 - Collison 367 

Table 5 TRI of risk variables for all accident types 368 

Node 
TRI 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

Ship_operation     18.41  20.33  2.37  4.21  10.07  6.24  3.56  12.94  19.36  10.83  

Voyage_segment   16.44  14.94  1.96  2.06  9.07  13.38  2.03  9.06  14.82  9.30  

Ship_type 11.70  11.82  3.09  3.35  8.72  9.63  4.44  8.61  8.23  7.73  

Gross_tonnage    5.35  11.90  1.70  1.19  7.59  6.01  3.58  3.89  4.10  5.03  

Hull_type 7.00  7.30  3.91  8.23  4.67  3.47  4.02  9.41  8.51  6.28  

Information   4.25  9.40  1.53  1.70  3.11  6.20  0.51  3.24  4.25  3.80  

Specifically, in Table 4, the first row denotes the base-case scenario where the value of S1 is ‘20.3’, and 369 

the following rows represent the different scenarios with each state of the variable reaches 100%, for 370 

example, the second row increases the probability of the state 1 of ship operation to 100% to obtain the 371 

value of S1 (2.99). The same process is applied to all states of ship operation. According to column ‘S1’, 372 
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‘39.8’ is the largest, which means the state 7 of ship operation is the state within the highest influencing 373 

on S1 (collision), and the difference between ‘39.8’ and ‘20.3’ (base-case scenario) is the HRI, i.e. ‘19.5’. 374 

However, ‘2.99’ is the smallest value, which means the state1 of ship operation is the state within the 375 

lowest influencing on S1 (collision), so the LRI is obtained as ‘17.31’. Then the TRI is calculated by 376 

averaging them. In this way, TRIs of each RIF of each accident type are obtained in Table 5. 377 

To obtain the impact levels of such RIFs in accident types, TRIs are compared and ranked. Generally, 378 

the most important variables lists for ‘accident types’ are as follows: 379 

Ship operation > Voyage segment > Ship type > Hull type > Gross tonnage > Information 380 

In detail, the most important variables lists for different accident types are demonstrated in Table 6. 381 

Table 6 The most important variables  382 

Accident type 
Ship 

operation     

Voyage 

segment   
Ship type Hull type 

Gross 

tonnage    
Information   

S1 Collision 1 2 3 4 5 6 

S2 Grounding 1 2 4 6 3 5 

S3 Flooding 3 4 2 1 5 6 

S4 Fire/explosion 2 4 3 1 6 5 

S5 Capsize 1 2 3 5 4 6 

S6 Contact/crush 3 1 2 6 5 4 

S7 Sinking 4 5 1 2 3 6 

S8 Overboard 1 3 4 2 6 5 

S9 Others 1 2 4 3 6 5 

4.4.3 Model validation 383 

To validate the model, another sensitive analysis is conducted by investigating the results of the model 384 

given RIFs. It is also used to test the combined effect of multiple RIFs to the accident types. There are 385 

two axioms that have at least to be satisfied for the inference process 22, 52: 386 

Axiom 1: A slight increase/decrease in the prior probabilities of each test node should contribute to the 387 

correspondence increase/decrease in the posterior probability of the target node. 388 
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Axiom 2: The total influence of the combination of the probability variations of x parameters (evidence) 389 

should be no smaller than the one from the set of y (y∈x) risk factors. 390 

Accounting for different states of the parent nodes, this study calculates the changed value of each state. 391 

The ‘information’ is selected as the first node, the state generating the highest changed value of state 1 392 

in ‘accident type’ is increased by 10%, while the state generating the lowest changed value of state 1 in 393 

‘accident type’ is decreased by 10%. This procedure is written as ‘~10%’ in Table 7. Then, the same 394 

approach is applied to the next RIF, and the cumulative changed value is obtained and updated. The 395 

updating procedure would continue until all the RIF nodes are involved. Similarly, the same updating 396 

procedure is applied into the state 2, 3… 9 in ‘accident type’ respectively, until all states of accident type 397 

are included, as seen in Table 7. 398 

Table 7 Accident rate of minor change in variables 399 

Node Accident rate of minor change 

Information / ~10% ~10% ~10% ~10% ~10% ~10% 

Hull type / / ~10% ~10% ~10% ~10% ~10% 

Gross tonnage / / / ~10% ~10% ~10% ~10% 

Ship type / / / / ~10% ~10% ~10% 

Voyage segment / / / / / ~10% ~10% 

Ship operation / / / / / / ~10% 

S1 20.30 20.70 21.00 21.20 21.40 22.00 23.40 

S2 21.20 22.20 22.60 23.40 23.60 24.20 24.60 

S3 3.69 3.85 4.04 4.14 4.18 4.23 4.27 

S4 5.53 5.71 5.90 5.96 6.01 6.08 6.17 

S5 11.10 11.40 11.50 11.90 12.10 12.30 12.50 

S6 10.60 11.30 11.40 11.70 11.80 12.20 12.30 

S7 4.15 4.20 4.51 4.77 4.85 4.91 4.99 

S8 9.22 9.57 9.84 10.10 10.40 10.50 11.00 

S9 14.30 14.7 15.00 15.10 15.20 15.40 15.80 

The first column of the data in Table 7 shows the original values of 9 states of accident types in NBN, 400 

and the rest columns state the updated changed values of results. However, each state of ‘accident type’ 401 

is calculated separately, i.e. each row is computed through the change of states of RIFs in each accident 402 
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type. Specifically, for the first row, ’20.30’ is the original value of accident type S1 (grounding). Moreover, 403 

‘20.70’ is calculated by the way that the state of ‘Information’ generating the highest changed value of 404 

S1 is increased by 10% while the state generating the lowest changed value of S1 is decreased by 10%. 405 

A further step is conducted based on ‘20.70’ to obtain ’21.00’ in the table, which means the state of ‘Hull 406 

type’ generating the highest changed value of S1 is increased by 10% while the state generating the lowest 407 

changed value of S1 is decreased by 10%. Then ‘Gross tonnage’, ‘Ship type’, ‘Voyage segment’, ‘Ship 408 

operation’ apply this method sequentially. Furthermore, the same updating procedure is applied into the 409 

S3, S4, …, S9 respectively, until accident types are included. Besides that, the updated values of the target 410 

node demonstrate this model is in line with Axiom 1. Moreover, Axiom 2 is examined by comparing the 411 

initial target value with the updated one under all states. From Table 7, the updated values of the target 412 

node are gradually increasing or decreasing along with the continuous updating of RIFs.  413 

4.5 Implications: scenario analysis 414 

The study enables the understanding of differentiation among critical factors contributing to different 415 

types of accidents. BN modelling is applicable to analyse the occurrence likelihood of each accident type 416 

in different scenarios involving vessel condition and environmental factors. To do this, two scenarios are 417 

proposed for useful research implications and managerial contributes. 418 

4.5.1 Scenario 1: environmental factor 419 

In the first scenario, maritime accidents under specific shipping environmental factors are estimated. 420 

Shipping environmental factors contain ship operation, voyage segment, weather condition, sea condition, 421 

time of day, fairway traffic in this scenario. For different assigned states of these factors, maritime 422 

accidents reveal in different types.  423 
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When the nodes are assigned with the specific states in Fig. 5(a), the effects of the shipping environment 424 

are revealed. The probability of collision is the highest among the ‘accident type’, accounting for 85.1%, 425 

followed by grounding only accounting for 4.52%. Such probability indicates the considerable increase 426 

in the risk of collision compared to the other types of accidents.  427 

  428 

Fig. 5. (a). Posterior probability analysis in Scenario 1 - collision   429 
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              430 

Fig. 5. (b). Posterior probability analysis in Scenario 1 - grounding 431 

With regard to the following states in Fig. 5(b), the effects of the environment are revealed. The 432 

probability of grounding is the highest among the ‘accident type’, accounting for 79.9% of the accident 433 

types. Therefore, transport authorities and ship owners should pay more attention to risk-reduction 434 

measures for collision or grounding under specific navigational environment, especially the strong-435 

related variables, i.e. ship operation, voyage segment, fairway traffic, and sea condition. 436 

4.5.2 Scenario 2: vessel factor 437 

In the second scenario, attention has been paid to vessel factors associated with maritime accident types. 438 

The variables include ship age, ship type, information, ergonomic design, equipment/device, vessel 439 

condition, and ship speed. For different assigned states of these vessel factors, maritime accident types 440 

have shown different likelihoods. 441 
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Assuming that variables are assigned with the certain states in Fig. 6(a), the effects of vessel factors on 442 

accident types are illustrated. The probability of collision is the highest among ‘accident type’, 443 

accounting for 82.1%. This probability indicates the considerable increase in the risk of collision 444 

compared to the initial states in Fig. 4 due to the combined effect of the involved RIFs.  445 

  446 

Fig. 6. (a). Posterior probability analysis in scenario 2 – collision       447 
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            448 

Fig. 6. (b). Posterior probability analysis in scenario 2 – grounding 449 

Assuming that the variables are assigned with the specific states in Fig. 6(b), the effects of vessel factors 450 

are indicated. The probability of grounding is the highest among ‘accident type’, accounting for 62.6%, 451 

followed by sinking (i.e., 12.7%). This probability indicates the significant increase in the risk of 452 

grounding and sinking compared to the initial states in Fig. 4. 453 

According to the above analysis, transport authorities and ship owners can use this findings to put forward 454 

the most effective risk control measures for different types of accidents derived from various vessel 455 

factors, especially the strong-related variables, i.e. ship type, information, ship age, vessel condition, and 456 

ergonomic design. 457 

5. Conclusions 458 

Compared to previous studies focusing on causal factors related to the severity and the probability of 459 
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1
2

   0
 100

2

Ergonomic_design

1
2

 100
   0

1

Information

1
2

   0
 100

2

Ship_type

1
2
3
4
5
6
7
8
9
10

   0
   0
   0
   0

 100
   0
   0
   0
   0
   0

5

Accident_type

1
2
3
4
5
6
7
8
9

2.91
62.6
2.78
2.95
8.92
1.89
12.7
1.22
4.03

3.39 ± 2.2

Gross_tonnage

1
2
3
4

32.6
37.6
23.8
6.02

2.03 ± 0.9
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maritime accidents, this study uses a NBN approach to investigate how different risk factors pose an 460 

impact on different types of maritime accidents. To identify RIFs, maritime accident reports from MAIB 461 

and TSB within a five-year period are extracted and reviewed to develop a primary database on maritime 462 

accidents. Then the risk-based NBN model is constructed to analyse RIFs in maritime accidents. At last, 463 

the sensitivity analysis is conducted, as well as scenario analysis to implicate research contributes. In 464 

general, the results from the NBN model present the distinctions among the key factors contributing to 465 

different types of accidents, which helps generate insights for accident prevention. 466 

In summary, the findings of this study can be summarised as follows: 467 

(1) According to the calculations of the mutual information, crucial RIFs are ranked under different 468 

accident types. The results reveal that critical RIFs for maritime accident types are ‘Ship operation’, 469 

‘Voyage segment’, ‘Ship type’, ‘Gross tonnage’, ‘Hull type’, ‘Information’. 470 

(2) There is the highest probability of overboard occurred on fishing vessels. When the ship operation is 471 

‘towing’, the accident type has high likelihood of being ‘capsize’; ‘manoeuvring’ and ‘on passage’ 472 

operation contribute to the higher probability of grounding; ‘pilotage’ is closely related to ‘contact/crush’. 473 

(3) When ships are in ‘mid-water’ and ‘transit’ voyage segments, there is a higher probability of being in 474 

collision. Grounding is more easily to happen in ‘departure’ and ‘arrival’ segments. 475 

(4) The situation of poor information onboard exposes a higher risk of grounding, whereas the condition 476 

of good information associates with the collision.  477 

Among them, the scenario analysis reveals that environmental factors and vessel factors of maritime 478 

accidents generate significant impact on accident types.  479 

With respect to the environmental factors, the probability of collision is the highest among the ‘accident 480 
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type’ when a ship is in the below states: ‘voyage segment – transit’; ‘ship operation - on passage’; ‘before 481 

7:00 am or after 19:00 pm’; ‘good weather and sea condition’; ‘not considering the fairway traffic 482 

appropriately’. The probability of grounding is the highest when a ship is in the below states: ‘voyage 483 

segment – departure’; ‘ship operation – pilotage’; ‘between 7:00 am and 19:00 pm’; ‘severe weather and 484 

sea condition’; ‘not considering the fairway traffic appropriately’.  485 

With regard to the vessel factors, the probability of collision is the highest among ‘accident type’ if a 486 

ship is in the following states: ‘older than 20 years’, ‘effective and updated information provided’, 487 

‘ergonomic problem’, ‘equipment operates correctly’, ‘good condition of vessel’, ‘fast ship speed’. The 488 

probability of grounding is the highest among ‘accident type’ if a fishing ship is in the following states: 489 

‘older than 20 years’, ‘lack if updated information’, ‘ergonomic design friendly’, ‘equipment not fully 490 

utilised’, ‘modification made to vessels and size’, ‘normal ship speed’. Therefore, such conclusions can 491 

effectively assist maritime authorities in developing countermeasures for accident prevention.  492 

There are also limitations in this study. The small number of flooding data makes the results not 493 

significant and robust. Although BN has the ability to conduct bi-directional risk analysis, the 494 

transformation from the converging to diverging connections does not intuitively represent the accident 495 

development. Further research can be performed by using expert judgement to help model learning to 496 

overcome the problems brought by data scarcity. Moreover, more human factors resources, underlining 497 

communication, situation awareness, fatigue, and etcetera, will be processed to conduct further research 498 

to illustrate the influence of human errors on maritime accidents. 499 
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Appendix I 511 

Accident reports from MAIB and TSB 512 

No Code Source No Code Source 

1 26-2017 MAIB 83 2-2014 MAIB 

2 25-2017 MAIB 84 1-2014 MAIB 

3 24-2017 MAIB 85 SB3/2014 MAIB 

4 23-2017 MAIB 86 26-2013 MAIB 

5 22-2017 MAIB 87 24-2013 MAIB 

6 21-2017 MAIB 88 23-2013 MAIB 

7 20-2017 MAIB 89 22-2013 MAIB 

8 19-2017 MAIB 90 20-2013 MAIB 

9 17-2017 MAIB 91 18-2013 MAIB 

10 16-2017 MAIB 92 17-2013 MAIB 

11 14-2017 MAIB 93 14-2013 MAIB 

12 11-2017 MAIB 94 11-2013 MAIB 

13 10-2017 MAIB 95 10-2013 MAIB 

14 8-2017 MAIB 96 9-2013 MAIB 

15 7-2017 MAIB 97 8-2013 MAIB 

16 5-2017 MAIB 98 7-2013 MAIB 

17 4-2017 MAIB 99 6-2013 MAIB 

18 3-2017 MAIB 100 5-2013 MAIB 

19 1-2017 MAIB 101 4-2013 MAIB 
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20 27-2016 MAIB 102 3-2013 MAIB 

21 26-2016 MAIB 103 1-2013 MAIB 

22 25-2016 MAIB 104 SB3/2013 MAIB 

23 24-2016 MAIB 105 27-2012 MAIB 

24 20-2016 MAIB 106 26-2012 MAIB 

25 19-2016 MAIB 107 25-2012 MAIB 

26 18-2016 MAIB 108 24-2012 MAIB 

27 17-2016 MAIB 109 11-2012 MAIB 

28 16-2016 MAIB 1 m16p0362 TSB 

29 15-2016 MAIB 2 M16P0241 TSB 

30 14-2016 MAIB 3 M16P0162 TSB 

31 13-2016 MAIB 4 M16P0062 TSB 

32 12-2016 MAIB 5 M16C0036 TSB 

33 10-2016 MAIB 6 M16C0014 TSB 

34 8-2016 MAIB 7 M16C0005 TSB 

35 6-2016 MAIB 8 M16A0327 TSB 

36 4-2016 MAIB 9 M16A0141 TSB 

37 3-2016 MAIB 10 M16A0140 TSB 

38 2-2016 MAIB 11 M16A0115 TSB 

39 1-2016 MAIB 12 M15P0347 TSB 

40 28-2015 MAIB 13 M15P0286 TSB 

41 27-2015 MAIB 14 M15P0037 TSB 

42 26-2015 MAIB 15 M15P0035 TSB 

43 25-2015 MAIB 16 M15C0094 TSB 

44 24-2015 MAIB 17 M15C0045 TSB 

45 20-2015 MAIB 18 M15C0006 TSB 

46 18-2015 MAIB 19 M15A0189 TSB 

47 17-2015 MAIB 20 M15A0045 TSB 

48 16-2015 MAIB 21 M15A0009 TSB 

49 15-2015 MAIB 22 M14P0150 TSB 

50 14-2015 MAIB 23 M14P0121 TSB 

51 13-2015 MAIB 24 M14P0110 TSB 

52 12-2015 MAIB 25 M14P0023 TSB 

53 11-2015 MAIB 26 M14P0014 TSB 

54 10-2015 MAIB 27 M14C0219 TSB 

55 9-2015 MAIB 28 M14C0193 TSB 

56 7-2015 MAIB 29 M14C0156 TSB 

57 6-2015 MAIB 30 M14C0106 TSB 

58 5-2015 MAIB 31 M14C0045 TSB 

59 3-2015 MAIB 32 M14A0348 TSB 

60 1-2015 MAIB 33 M14A0289 TSB 
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61 32-2014 MAIB 34 M14A0051 TSB 

62 31-2014 MAIB 35 M13W0057 TSB 

63 30-2014 MAIB 36 M13N0014 TSB 

64 29-2014 MAIB 37 M13N0001 TSB 

65 28-2014 MAIB 38 M13M0287 TSB 

66 25-2014 MAIB 39 M13M0102 TSB 

67 24-2014 MAIB 40 M13L0185 TSB 

68 21-2014 MAIB 41 M13L0123 TSB 

69 19-2014 MAIB 42 M13L0067 TSB 

70 18-2014 MAIB 43 M13C0071 TSB 

71 17-2014 MAIB 44 M12W0207 TSB 

72 16-2014 MAIB 45 M12W0070 TSB 

73 15-2014 MAIB 46 M12N0017 TSB 

74 13-2014 MAIB 47 M12L0147 TSB 

75 12-2014 MAIB 48 M12L0098 TSB 

76 11-2014 MAIB 49 M12L0095 TSB 

77 10-2014 MAIB 50 M12H0012 TSB 

78 9-2014 MAIB 51 M12F0011 TSB 

79 8-2014 MAIB 52 M12C0058 TSB 

80 7-2014 MAIB    

81 6-2014 MAIB    

82 4-2014 MAIB    

Appendix II 513 

Conditional probability tables (CPT) for RIFs 514 

Ship type 

Accident 

type 
1 2 3 4 5 6 7 8 9 10 

1 7.5472  11.3207  3.7736  13.2076  5.6604  9.4340  5.6604  7.5472  15.0943  20.7547  

2 18.1818  7.2727  7.2727  10.9091  9.0909  9.0909  3.6364  7.2727  21.8182  5.4546  

3 5.8824  5.8824  5.8824  23.5294  5.8824  11.7647  11.7647  11.7647  11.7647  5.8824  

4 9.5238  9.5238  4.7619  23.8095  4.7619  4.7619  9.5238  4.7619  19.0476  9.5238  

5 6.0606  18.1818  9.0909  30.3030  6.0606  6.0606  3.0303  6.0606  3.0303  12.1212  

6 12.5000  6.2500  3.1250  12.5000  3.1250  12.5000  12.5000  12.5000  12.5000  12.5000  

7 11.1111  11.1111  16.6667  22.2222  5.5556  5.5556  5.5556  5.5556  5.5556  11.1111  

8 10.3448  6.8966  3.4483  41.3793  6.8966  3.4483  3.4483  3.4483  10.3448  10.3448  

9 17.5000  12.5000  10.0000  12.5000  2.5000  12.5000  2.5000  2.5000  15.0000  12.5000  

 515 

Equipment_ device 
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Accident type 1 2 

1 64.4445  35.5556  

2 48.9362  51.0638  

3 66.6667  33.3333  

4 69.2308  30.7692  

5 60.0000  40.0000  

6 62.5000  37.5000  

7 30.0000  70.0000  

8 80.9524  19.0476  

9 65.6250  34.3750  

 516 

Ergonomic design 

Accident type 1 2 

1 71.1111  28.8889  

2 85.1064  14.8936  

3 88.8889  11.1111  

4 92.3077  7.6923  

5 96.0000  4.0000  

6 75.0000  25.0000  

7 90.0000  10.0000  

8 95.2381  4.7619  

9 96.8750  3.1250  

 517 

Fairway traffic 

Accident type 1 2 

1 66.6667  33.3333  

2 74.4681  25.5319  

3 66.6667  33.3333  

4 92.3077  7.6923  

5 92.0000  8.0000  

6 79.1667  20.8333  

7 90.0000  10.0000  

8 95.2381  4.7619  

9 90.6250  9.3750  

 518 

Gross tonnage 

Accident type 1 2 3 4 

1 36.1702  23.4043  29.7872  10.6383  
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2 18.3674  48.9796  28.5714  4.0816  

3 36.3636  18.1818  36.3636  9.0909  

4 46.6667  26.6667  20.0000  6.6667  

5 62.9630  18.5185  7.4074  11.1111  

6 19.2308  38.4615  38.4615  3.8462  

7 75.0000  8.3333  8.3333  8.3333  

8 52.1739  26.0870  13.0435  8.6957  

9 38.2353  29.4118  20.5882  11.7647  

 519 

Hull type 

Accident type 1 2 4 5 

1 72.3404  10.6383  8.5106  8.5106  

2 81.6327  6.1225  4.0816  8.1633  

3 45.4545  27.2727  9.0909  18.1818  

4 53.3333  33.3333  6.6667  6.6667  

5 59.2593  7.4074  11.1111  22.2222  

6 76.9231  7.6923  7.6923  7.6923  

7 41.6667  25.0000  8.3333  25.0000  

8 52.1739  4.3478  4.3478  39.1304  

9 67.6471  2.9412  5.8824  23.5294  

 520 

Information 

Accident type 1 2 

1 64.4445  35.5556  

2 31.9149  68.0851  

3 33.3333  66.6667  

4 69.2308  30.7692  

5 68.0000  32.0000  

6 25.0000  75.0000  

7 60.0000  40.0000  

8 71.4286  28.5714  

9 68.7500  31.2500  

 521 

Length 

Accident type 1 2 3 

1 58.6957  34.7826  6.5217  

2 60.4167  37.5000  2.0833  

3 50.0000  40.0000  10.0000  
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4 71.4286  21.4286  7.1429  

5 84.6154  7.6923  7.6923  

6 52.0000  44.0000  4.0000  

7 81.8182  9.0909  9.0909  

8 77.2727  18.1818  4.5455  

9 63.6364  30.3030  6.0606  

 522 

Sea condition 

Accident type 1 2 

1 55.5556  44.4444  

2 31.9149  68.0851  

3 66.6667  33.3333  

4 61.5385  38.4615  

5 24.0000  76.0000  

6 54.1667  45.8333  

7 40.0000  60.0000  

8 47.6191  52.3810  

9 59.3750  40.6250  

 523 

Ship age 

Accident type 1 2 3 4 5 6 

1 18.3674  16.3265  8.1633  8.1633  26.5306  22.4490  

2 13.7255  13.7255  11.7647  11.7647  45.0980  3.9216  

3 15.3846  7.6923  23.0769  7.6923  38.4615  7.6923  

4 11.7647  11.7647  17.6471  5.8824  35.2941  17.6471  

5 17.2414  10.3448  10.3448  13.7931  34.4828  13.7931  

6 21.4286  10.7143  10.7143  14.2857  21.4286  21.4286  

7 7.1429  14.2857  21.4286  7.1429  35.7143  14.2857  

8 12.0000  12.0000  12.0000  16.0000  24.0000  24.0000  

9 13.8889  19.4444  5.5556  11.1111  36.1111  13.8889  

 524 

Ship operation 

Accident type 1 2 3 4 5 6 7 8 

1 1.9608  1.9608  1.9608  5.8824  5.8824  1.9608  78.4314  1.9608  

2 18.8679  1.8868  18.8679  11.3207  1.8868  5.6604  39.6226  1.8868  

3 6.6667  6.6667  13.3333  6.6667  20.0000  6.6667  33.3333  6.6667  

4 5.2632  10.5263  5.2632  5.2632  5.2632  10.5263  52.6316  5.2632  

5 29.0323  3.2258  3.2258  16.1290  22.5806  3.2258  16.1290  6.4516  
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6 10.0000  6.6667  13.3333  16.6667  6.6667  6.6667  33.3333  6.6667  

7 18.7500  6.2500  6.2500  6.2500  6.2500  12.5000  37.5000  6.2500  

8 7.4074  7.4074  7.4074  11.1111  37.0370  3.7037  22.2222  3.7037  

9 18.4210  21.0526  7.8947  13.1579  10.5263  7.8947  18.4210  2.6316  

 525 

Ship speed 

Accident type 1 2 

1 80.0000  20.0000  

2 89.3617  10.6383  

3 88.8889  11.1111  

4 92.3077  7.6923  

5 92.0000  8.0000  

6 70.8333  29.1667  

7 90.0000  10.0000  

8 95.2381  4.7619  

9 93.7500  6.2500  

 526 

Time of day 

Accident type 1 2 

1 42.2222  57.7778  

2 51.0638  48.9362  

3 55.5556  44.4444  

4 53.8462  46.1538  

5 60.0000  40.0000  

6 58.3333  41.6667  

7 70.0000  30.0000  

8 52.3810  47.6191  

9 65.6250  34.3750  

 527 

Vessel condition 

Accident type 1 2 

1 84.4445  15.5556  

2 68.0851  31.9149  

3 77.7778  22.2222  

4 53.8462  46.1538  

5 60.0000  40.0000  

6 79.1667  20.8333  

7 20.0000  80.0000  
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8 80.9524  19.0476  

9 62.5000  37.5000  

 528 

Voyage segment 

Accident type 1 2 3 4 5 6 

1 2.0408  12.2449  2.0408  51.0204  30.6123  2.0408  

2 1.9608  15.6863  29.4118  39.2157  11.7647  1.9608  

3 7.6923  7.6923  7.6923  46.1538  23.0769  7.6923  

4 5.8824  5.8824  17.6471  52.9412  11.7647  5.8824  

5 13.7931  17.2414  3.4483  44.8276  17.2414  3.4483  

6 7.1429  10.7143  42.8571  10.7143  14.2857  14.2857  

7 7.1429  7.1429  21.4286  28.5714  28.5714  7.1429  

8 8.0000  4.0000  8.0000  60.0000  8.0000  12.0000  

9 19.4444  5.5556  22.2222  36.1111  13.8889  2.7778  

 529 

Weather condition 

Accident type 1 2 

1 66.6667  33.3333  

2 46.8085  53.1915  

3 44.4444  55.5556  

4 61.5385  38.4615  

5 60.0000  40.0000  

6 62.5000  37.5000  

7 60.0000  40.0000  

8 66.6667  33.3333  

9 65.6250  34.3750  

 530 

 531 
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