
Routing algorithms for optimisation of

transportation systems

Yannis Ancele

A thesis submitted in partial fulfilment of the requirements of Liverpool John

Moores University for the degree of Doctor of Philosophy

December 2019

Declaration

The work presented in this thesis was carried out at the Liverpool Logistics, Offshore

and Marine Research Institute, Liverpool John Moores University. Unless otherwise

stated, it is the original work of the author.

While registered as a candidate for the degree of Doctor of Philosophy, for which sub-

mission is now made, the author has not been registered as a candidate for any other

award. This thesis has not been submitted in whole, or in part, for any other degree.

Yannis Ancele

Liverpool Logistics, Offshore and Marine Research Institute

Faculty of Engineering and Technology

Liverpool John Moores University

Byrom Street Campus

Liverpool

L3 3AF

UK

March 2020

ii

Abstract

As efficiency and sustainability become more important, researchers are working on

new concepts to improve the way logistics are handled in the current Supply Chain

Management (SCM).

One concept gaining popularity is the delivery of products in urban areas using bicycles.

More companies started using bicycles as an alternative transportation mode and face

challenges to efficiently satisfy their customers and employees needs. Large cities with

uphill roads require transportation systems to take into account the energy needed by

cyclists to move. The load carried on push-bikes has to be kept under a certain threshold

for cyclists to be able to pedal on ascending roads. Therefore, cyclists have to choose

their route differently to vehicle drivers, hence the need for optimised routing.

Another concept gaining popularity is the collaboration in logistics between several com-

panies. Collaboration is thought to be an enabler for a sustainable and efficient SCM.

One important improvement of modern logistics is the frequent exchange of containers

via multiple cross-docks which requires spatial and time synchronisation between differ-

ent types of vehicles. Since each logistics network has its specificities and requirements,

new solutions such as the Physical Internet (PI) arise with standardised PI-Containers

and protocols to face this challenge. By connecting several transportation networks

through collaboration, the PI is expected to considerably improve the way logistics are

handled in the current SCM.

Connecting several distribution networks will produce continually varying network con-

ditions arising from traffic growth. Some regions of the network would suffer from

bottlenecks that could lead to an increase in transportation costs. One reason is that

traditional routing protocols in logistics do not learn from their previous experiences of

iii

network problems such as congestion. Therefore, an intelligent network traffic control

method is essential to avoid this problem.

As routing problems are at centre stage in transportation sciences, they represent a

critical research scope to study in order to improve logistics. As a consequence, in this

thesis, three research directions involving routing problems are identified and solved to

provide more flexible and extended models to the aforementioned research gaps.

First, a new problem is introduced to tackle constraints arising for bicycle deliveries.

A novel Mixed-Integer Linear Programming (MILP) model and an Evolutionary Local

Search algorithm are developed to efficiently solve the problem. Experimental results

show the accuracy and stability of the proposed algorithm compared to the CPLEX

solver from IBM on a wide range of generated instances. A real-world scenario is also

studied to demonstrate the relevance of this method.

Second, this research focuses on the way the VRP can be solved while considering an

important number of attributes for real-life applications. A rich vehicle routing problem

with pickup and delivery including several attributes for the PI is studied. A mathe-

matical formulation is proposed and implemented in CPLEX to solve the problem. The

model is then extended to handle multi-objective, uncertainty and dynamism. Multi-

threaded meta-heuristics based on Simulated Annealing and Genetic Algorithm are de-

veloped with a set of new operators to handle the problem specificities. Computational

results on a generated data-set showed that the proposed meta-heuristics are superior

to CPLEX in terms of solvability and computational time. A classical benchmark on

pickup and delivery problems was also used to validate the proposed method against

state-of-the-art methods. The algorithms are integrated into a framework and used to

provide solutions for a local company.

Third, the paradigm between the digital and physical internet is explored to propose a

new routing approach based on packet routing. While deep learning has been demon-

strated to be a promising method for solving numerous optimisation problems efficiently,

its application on packet routing is relatively new and rare. This research provides a

proof of concept and sheds light on new opportunities to design efficient routing proto-

cols for logistics with deep learning. Simulation results demonstrate that the proposed

method is able to not only learn the shortest path for deliveries but also to take into

account the truck fulfilment rates to improve global efficiency.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors Dr. Trung Thanh

Nguyen and Dr. Dante Ben Matellini for the continuous support of my Ph.D. study and

related research, for their patience, motivation, and immense knowledge. Besides my

supervisors, I would like to thank Dr. Minh Hoàng Hà for his insightful comments and

encouragement. Last but not the least, I would like to thank my girlfriend, family and

friends for supporting me spiritually throughout writing this thesis.

This work was supported by an LJMU PhD Scholarship, a NRCP grant no. NRCP1617-

6-125 delivered by the Royal Academy of Engineering, and an RSSB project no COF-

INP-05.

Yannis Ancele March 2020

v

Declaration of Authorship

I, Yannis Ancele, declare that this thesis titled, ‘Routing algorithms for optimisation of

transportation systems’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all the main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

vi

“There have always been ideas worth fighting for.”

People’s History Museum

Contents

Declaration ii

Abstract iii

Acknowledgements v

Declaration of Authorship vi

List of Figures xi

List of Tables xii

Abbreviations xiii

1 Introduction 1

1.1 Scope of the thesis . 2

1.2 Research questions . 2

1.3 Contribution of the thesis . 3

1.4 Outline of the thesis . 3

2 Literature review 5

2.1 Delivery using bikes . 5

2.2 Physical Internet . 7

2.3 Practical attributes for the VRP . 8

2.4 Dynamic, multi-objective and uncertainty constraints for the VRP 12

2.5 Machine learning applications for routing problems 14

2.6 Conclusion . 17

3 A bike routing problem with energy constraints 19

3.1 Introduction . 19

3.2 Problem description and formulation . 20

3.2.1 Context . 20

3.2.2 Mixed-integer linear programming formulation 21

3.3 Meta-heuristic . 24

3.4 Computational results . 30

3.4.1 Data . 31

3.4.2 Parameter tuning . 32

viii

Contents ix

3.4.3 CPLEX and ELS comparison . 33

3.4.4 Real-world case . 35

3.5 Conclusion . 38

4 A rich multi-cross-docking VRP with pickup and delivery 40

4.1 Introduction . 40

4.2 Problem description and formulation . 41

4.2.1 Context . 41

4.2.2 Mixed-integer linear programming formulation 43

4.3 Meta-heuristic . 47

4.3.1 Architecture . 48

4.3.2 Algorithm functions . 50

4.3.3 Algorithm operators . 52

4.4 Computational results . 54

4.4.1 Solver configuration . 54

4.4.2 Parameter tuning . 55

4.4.3 CPLEX and meta-heuristic performances 57

4.4.4 Consolidation performances . 58

4.4.5 Benchmark performances . 59

4.5 Conclusion . 60

5 A rich multi-objective and dynamic VRP with uncertainty 62

5.1 Introduction . 62

5.2 Problem description and formulation . 63

5.2.1 Context . 63

5.2.2 Mixed-integer linear programming formulation 64

5.3 Meta-heuristics . 67

5.3.1 Architecture . 68

5.3.2 GA overall . 70

5.3.3 GA operators . 71

5.3.4 Request anticipation and dynamism 74

5.4 Computational results . 76

5.4.1 Data . 76

5.4.2 Parameter tuning . 77

5.4.3 Comparison on generated instances 77

5.4.4 Comparison on existing benchmark instances 80

5.4.5 Comparison on clustered and non-clustered instances 80

5.4.6 Comparison on dynamic instances 81

5.4.7 Comparison on dynamic multi-objective instances 81

5.4.8 Performance of the prediction feature using uncertainty 82

5.5 Conclusion . 82

6 A learning algorithm for the vehicle and container routing problem 84

6.1 Introduction . 84

6.2 Problem definition . 85

6.3 Methodology . 89

6.3.1 Reinforcement learning . 89

Contents x

6.3.2 Environment . 89

6.3.3 Asynchronous Advantage Actor-Critic 90

6.3.4 A3C implementation . 92

6.4 Computational results . 95

6.4.1 Example of 7 areas for distance optimisation 95

6.4.2 Example of 6 areas for fulfilment optimisation 97

6.4.3 Discussion . 98

6.4.4 Future work . 99

6.5 Conclusion . 100

7 Conclusion and future work 101

7.1 Summary of major contributions . 102

7.2 Future work . 102

Appendices 114

A Publications resulting from this thesis 115

B Algorithms for functions and operators of meta-heuristics 117

C Algorithms for Pareto optimisation 123

List of Figures

3.1 The cargo-based push-bike of the industry partner 20

3.2 Convergence of the algorithm with different parameter values 33

3.3 BRP solution in Liverpool . 36

3.4 BRP solution in Liverpool with tighter energy constraint 36

4.1 VRP solution with load exchanges . 42

4.2 TSAM function architecture . 48

4.3 Solution representation . 49

4.4 Stretch operator . 52

4.5 Shrink operator . 52

4.6 Parameters sensitivity analysis . 56

4.7 Dendrogram of an instance with clustered nodes 59

5.1 Examples of framework architectures to handle the problem 68

5.2 Algorithm methods . 69

5.3 Chromosome representation . 70

5.4 Crossover parents . 73

5.5 Crossover offspring 1 . 73

5.6 Crossover offspring 2 . 73

5.7 Best chromosomes over time . 75

5.8 Convergence of the proposed algorithm with different parameters values . 78

6.1 France with PI-hub facilities . 85

6.2 VRP networks . 86

6.3 A3C architecture . 91

6.4 Convergence of the algorithm with different parameter values for the traffic 96

6.5 Convergence of the algorithm learning with Dijkstra 96

6.6 VRP networks including 6 external hubs in 6 different areas 97

6.7 Convergence of the algorithm with different reward functions 97

xi

List of Tables

3.1 Generator parameters . 31

3.2 Energy formula sensitivity . 32

3.3 ELS parameters . 32

3.4 CPLEX and ELS performances on clustered instances 33

3.5 CPLEX and ELS performances on random instances 34

3.6 CPLEX and ELS performances on clustered-random instances 34

3.7 Details of the bike trips with and without a tight energy constraint 37

4.1 Generator parameters . 54

4.2 Solver parameters . 55

4.3 CPLEX and TSAM comparison . 57

4.4 Consolidation feature results . 58

4.5 Li&Lim benchmark . 59

5.1 Chromosome request paths . 74

5.2 Generator parameters . 76

5.3 GA parameters . 77

5.4 Results for GA and TSAM comparison . 79

5.5 Results on Li&Lim benchmark . 80

5.6 Results on clustered and non-clustered instances 80

5.7 Results of all the intervals on dynamic instances 81

5.8 Results of the last interval on dynamic multi-objective instances 81

5.9 GA results of last interval with and without the node prediction feature
on dynamic multi-objective instances . 82

6.1 Examples of VCRP request path . 87

6.2 Neural network configuration . 94

xii

Abbreviations

A3C Asynchronous Advantage Actor-Critic

ANN Artificial Neural Network

BRP Bike Routing Problem

CL City Logistics

DI Digital Internet

DNN Deep Neural Network

DRL Deep Reinforcement Learning

EA Evolutionary Algorithm

ELS Evolutionary Local Search

GA Genetic Algorithm

IoT Internet of Things

MILP Mixed-Integer Linear Programming

ML Machine Learning

OPL Optimisation Programming Language

OSPF Open Shortest Path First

PDP Pickup and Delivery Problem

PI Physical Internet

RL Reinforcement Learning

SA Simulated Annealing

SCM Supply Chain Management

TSAM multi-Threaded Simulated Annealing with Memory

VCRP Vehicle and Container Routing Problem

VRP Vehicle Routing Problem

xiii

To whoever will read me . . .

xiv

Chapter 1

Introduction

Routing refers to the selection of paths for traffic in one or several connected networks.

Routing can be used in a broad range of problems dealing with the transfer of objects

from sources to destinations. As companies seek efficiency and sustainability, optimising

the Supply Chain Management (SCM) becomes challenging. During the last decades,

many researchers have been developing optimisation and approximation algorithms for

routing problems. The Vehicle Routing Problem (VRP), introduced by Dantzig and

Ramser (1959), is a combinatorial optimisation problem that was proposed in the late

1950s and it is still one of the most studied problems in the field of operations research.

The great interest in the VRP is due to its practical importance, as well as the difficulty

of solving it. The objective of the classical VRP is to satisfy a set of customers with

known demands within a time horizon by providing minimum-cost routes for vehicles

to schedule deliveries originating and terminating at the same depot. The Pickup and

Delivery Problem (PDP) is a generalisation of the VRP which is about finding optimal

routes to satisfy transportation requests. Each request requires both pickup and delivery

with precedence constraints. As studies are carried out, emerging methodologies are

being proven to be more suitable for an efficient and sustainable SCM. As an example,

the VRP with cross-dock is a variant of the classical VRP which contains spatial and load

synchronisation constraints. These cross-dock facilities allow products to be transferred

and processed. A cross-dock can be considered as a consolidation facility which has

short-term storage. The principle of such a system is to unload and sort incoming

containers, then to load the outgoing ones on vehicles. This approach differs from the

direct-shipping of products in which intermediate trans-shipment points are not solicited.

The main purpose of this thesis is to investigate some operational research problems for

routing to propose new solution methods to fill the gaps created by emerging method-

ologies.

1

Introduction 2

1.1 Scope of the thesis

Because the range of routing problems for transportation is wide and diverse, it is

impossible to cover all the topics. As a consequence, this thesis will focus on routing of

vehicles for goods transportation with cross-docks. The similarities between containers

routing and packet routing protocols will be investigated. Therefore, some packet routing

protocols will be studied to be adapted to the physical world. In order to provide

solutions, a range of exact solvers was compared before CPLEX was eventually selected.

Meta-heuristic algorithms will be designed to handle large instances by providing near-

optimal solutions. As a result, in a supply chain management, this thesis covers the

logistics aspect which defines the flow of goods between the point of origin and the point

of consumption to satisfy customers.

1.2 Research questions

The approach adopted in this thesis is to ask a general question to get an overview of

the important gaps in the field of transportation systems:

• What are the current methodologies for vehicle routing in emerging transportation

problems?

This question allows a review of the state-of-the-art vehicle routing methods for the

aforementioned emerging areas, which then brings up several questions as follows:

• Are there any gaps related to emerging concepts?

• How can new models be designed to fill these gaps while also considering sustain-

ability?

• How can they be applied to the Physical Internet?

• How can these new problems’ specificities be effectively handled and solved?

• Can methodologies from other domains be used and applied to them?

This set of questions are used as a building block to direct the research throughout the

thesis.

Introduction 3

1.3 Contribution of the thesis

Contributions in this thesis can be classified into three main groups:

In the first group, the following contribution is made: (1) A new problem of practical

importance is introduced. (2) An MILP model is designed with a linearised constraint

to use the CPLEX solver. (3) An Evolutionary Local Search algorithm including split

and local search procedures that can check a solution’s feasibility in O(1).

The second group includes the following: (1) A new model gathering several VRP at-

tributes which are most important as logistics evolves. The model handles multiple

cross-docks in a new and more flexible way while the other attributes have been gath-

ered and combined from the literature. (2) An algorithm with new operators which

include generic features as well as problem specificities. (3) An adapted version of

the previous model is provided to match the needs of a company. (4) The functional

framework is upgraded with realistic constraints including dynamism, multi-objective

with a new lexicographic method and node prediction feature. (5) A new Evolutionary

Algorithm (EA) is developed with a new crossover tailored to this problem.

The third group covers the following: (1) A preliminary work aiming at providing a proof

of concept of how machine learning can be beneficial for a vehicle routing problem. (2)

This research also reveals new perspectives that can be considered using state-of-the-art

learning methods to solve the problem. (3) Details of further investigations are provided

to continue in that direction.

1.4 Outline of the thesis

This thesis aims to answer the research questions presented above. It is organised as

follows:

Chapter 2 reviews existing research related to the proposed approaches in this thesis.

In Chapter 3, a Bike Routing Problem (BRP) with a mathematical model is presented.

An evolutionary algorithm is designed to handle large instances. Computational results

and analyses of the algorithm are also provided to demonstrate its efficiency.

Chapter 4, presents a rich VRP with several attributes. A mathematical formulation

of the problem is given with a meta-heuristic algorithm. A comparative analysis of

the meta-heuristic and CPLEX results is shown. The efficiency of the algorithm on a

classical benchmark is also discussed.

Introduction 4

In Chapter 5, an extension of the work from Chapter 4 is presented. A mathematical for-

mulation of the model including multi-objective, dynamism and uncertainty is proposed.

A new and simpler meta-heuristic for the extended problem is given. Computational

results and analyses of the algorithm compared to the previous one is discussed. The

performances of a predictive function are also presented.

In Chapter 6, a machine learning method is presented for the container routing problem.

A state-of-the-art algorithm is used to efficiently solve the problem. While the relevance

of this method is discussed, suggestions for a future extension are detailed.

Finally, Chapter 7 concludes the work in the thesis. Contributions of the research are

summarised and future research directions are also suggested.

Chapter 2

Literature review

2.1 Delivery using bikes

To tackle the pollution problem, many researchers are trying to solve the green vehicle

routing problem (Lin et al., 2014; Erdoğan and Miller-Hooks, 2012). Green Logistics is

a concept aiming at delivering efficient supply chain management while considering the

environment. The traditional objective of distribution management was upgraded to

minimising system-wide costs related to economic and environmental issues. In urban

areas, trucks, on top of the pollution they cause, have difficulty achieving door-to-door

deliveries. In densely populated urban areas, bike-couriers or bike-messengers offer de-

livery advantages. Although bikes are seen as a good start towards green transportation

(Tipagornwong and Figliozzi, 2014), very few papers in the literature deal with the de-

livery of goods using push-bikes with cargo. Instead, when it comes to optimisation

of models for bikes, researchers mainly focused on e-bikes, the itinerary for cycling or

the bike-sharing re-balancing problem. Bike-sharing systems offer a mobility service

whereby public bicycles, located at different stations across an urban area, are available

for shared use. These systems contribute towards obtaining more sustainable mobility

and decreasing traffic and pollution caused by car transportation (Dell’Amico et al.,

2014).

An important number of papers dealt with the route choice model for cyclists. For

example, Ehrgott et al. (2012) studied such a problem by considering a bi-objective

variant. It is said and acknowledged that cyclists choose their route differently to drivers

of private vehicles. They optimised routes for bikes by calculating a suitability score

considering safety and comfort such as motor traffic volume, motor traffic speed, road

lane width, presence of on-street parking, road gradient, percentage of heavy commercial

vehicles, presence of cycle facilities (cycle lanes or shared bus/cycle lanes), pavement

5

Literature review 6

condition, etc. This score is then evaluated and considered alongside the route distance.

Hrncir et al. (2015) and Song et al. (2014) also considered the bicycle routing problem

with road characteristics. It is also argued that in contrast to car drivers, cyclists consider

a significantly broader range of factors while deciding on their routes. They emphasise

on the importance of slope, turn frequency, junction control, noise, pollution, scenery,

and traffic volumes in addition to travel time and distance for cyclists. The paper

from Silbernagl et al. (2016) is another example of cycling routing where elevation is

considered. However, just like the previously mentioned papers, their work does not

consider delivery purposes and therefore does not compute the energy required.

The problem of delivering goods using bikes was studied by Ghiani et al. (2009). They

solved a dynamic vehicle dispatching problem with pickups and deliveries. Their model

considers the use of bicycles for same-day courier services. Although they studied a

dispatching problem instead of VRP, their paper is closer to our problem compared

with the aforementioned ones. However, they did not take into account any cycling-

related constraints. Another paper dealing with a delivery problem using bicycles is

from Serna et al. (2010). Their problem is actually based on the VRP but they did

not consider the energy required according to the weight and road slope. The paper

from Ćirović et al. (2014) also solved the VRP while considering the environment. They

provided solutions for routing of light delivery vehicles in urban areas but their model

only accounts for motorcycles and therefore does not consider the road gradient.

Bike-messengers (Maes and Vanelslander, 2012) and bike-couriers (Lee et al., 2019) prob-

lems are also well studied in the literature. However, they are mainly using electrical

bikes for deliveries and can neglect uphill constraints, and therefore do not consider the

energy required according to the load carried. Using push bicycles to carry goods re-

quires a non-negligible amount of energy power. Di Prampero et al. (1979) were certainly

among the first ones providing an equation of motion for cyclists. Their equation consid-

ers several metrics such as air resistance/temperature, altitude, body size etc. to provide

the power required to move the bicycle. Their aim was to predict the speed attained un-

der a given set of conditions, provided the metabolic power of the subject is known. Since

this paper, lots of studies were conducted to improve models including power (Barth and

Boriboonsomsin, 2009; Ross, 1997) for motor vehicles via a similar formula. Martin et al.

(1998) derived a mathematical model of cycling power from the same formula and pro-

vided values for the model parameters. A bicycle-mounted power measurement system

was validated by comparison with a laboratory ergo-meter. They provided an analysis

of the parameter effect by altering their values. Their results demonstrated the accuracy

of the formula which emphasises that cycling power can be predicted by a mathematical

model. Kara et al. (2007) introduced the so-called Energy-Minimising Vehicle Routing

Problem. This problem is an extension of the VRP where a weighted load function (load

Literature review 7

multiplied by distance), rather than just the distance, is minimised. Bektaş and Laporte

(2011) introduced the Pollution-Routing Problem (PRP). The PRP is an extension of

the classical VRP with a broader and more comprehensive objective function. On top of

the travel distance, few other constraints such as the amount of greenhouse emissions,

fuel, travel times and their costs are considered. Moreover, the total load carried is

considered and influences the energy required by a vehicle which makes the problem

more challenging. The main difference with our work is that we consider bikes with no

emission. Therefore, the calculation of the CO2 is not necessary but the load weight is

of greater importance in slopes. Also, Bektaş and Laporte (2011) calculated the CO2

generated by vehicles in the objective while our method requires the computation of the

energy for a constraint. Another difference is that they linearised their model through

discretisation of the speed variables while we linearised ours to handle the accumulated

load carried by each bike. They concluded that a weighted load-minimising solution can

have counter-intuitive results on energy consumption due to a possible increase of dis-

tance travelled. Our model, however, only provides distance-minimising solutions where

the energy is checked in a constraint. Therefore, such results are not obtained by our

proposed approach.

2.2 Physical Internet

Sustainability in the current SCM is receiving growing attention (Montreuil, 2012). As

a consequence, new systems have to be built to handle physical objects throughout

the world in a manner that is economically, environmentally and socially efficient and

sustainable. As logistics organisation is one of the major problems, designing a new

logistics organisation using connected systems can represent a step toward sustainable

solutions. To respond to this situation, it was suggested that it could be possible to

mimic the Digital Internet (DI) into the physical one. The idea is to use the DI as

a metaphor for the physical world (Sarraj et al., 2012). The Physical Internet (PI-π)

implements this idea by interconnecting logistics systems and networks. A set of world-

standard modular containers, interfaces and protocols (Montreuil et al., 2012) are being

designed to improve the worldwide efficiency and sustainability of logistics (Montreuil,

2012). The main concept is that logistics have to evolve and stop using specific material

transportation means in order to focus on PI-container transportation means instead.

The goods carried or products would have to fit and to be consolidated into containers

to minimise the waste of space.

Just like encapsulation protocols in the DI, conveyors would only deal with PI-containers

without knowing the content. These modularised black-boxes are much easier to be

Literature review 8

transported through networks and facilities than loads of non-standardised cases and

pallets. A PI-container can be made up of smaller PI-containers. On top of that, by

transmitting information, these smart objects would minimise their movements. Basi-

cally, these PI-containers are routed through Physical Internet facilities called PI-hubs

(which are cross-docks adapted to the PI). By using such facilities, a container deliv-

ery process will dramatically evolve. The container delivery process will be similar to

a parcel one. Each truck will exchange their loads at transit PI-hubs every hundred

miles, so that, another truck could rapidly pick up the loads to exchange it further in its

itinerary until the destination is reached. PI-hubs have some differences with classical

cross-docking hubs as described in Meller et al. (2012) but the concept of trans-shipment

stays the same. However, while cross-dock hubs are restricted to specific users like sup-

pliers, retailers, clients, etc., PI-hubs can be used by any contracted users around the

world. This is facilitated by the use of only modular and standard PI-containers with

fixed sizes.

Just like the PI, City Logistics (CL) is a research area which is focused on the trans-

portation improvement. CL and PI have similarities which allow them to work alongside

each other. One of the first works about their compatibility was done in Crainic and

Montreuil (2016). In their paper, it is explained that the CL provides the final building

blocks for the PI to be complete with regards to transportation in cities. This concept is

not limited to trucks but can also include trains, planes, bicycles, cars etc. The Physical

Internet has already been applied to a few real cases (Meller et al., 2012). Also, technical

papers which specify various PI-object aspects can be found in the literature (Montreuil,

2011). In the end, this concept could also be applied to human mobility (Crainic and

Montreuil, 2016).

With emerging concepts such as PI, the implementation of new methodologies becomes

possible. As detailed in Meller et al. (2012), there are similarities between PI-hubs

and cross-docks. This could allow a better transition and modelling by using current

cross-docking methods. By exploiting the similarities with the DI, one could use packet

routing protocols to route containers. PI-containers with their standard interface could

be encapsulated like in packet switching (Montreuil et al., 2012).

2.3 Practical attributes for the VRP

A fundamental building block to optimise transportation logistics, such as PI, is the

PDP. In operational research, it is a central problem for logistics as it gives a solution

to the transportation process. To help grasp the relevant models and methodologies,

numerous reviews can be found such as the work of Silva and Zuluaga (2016). They not

Literature review 9

only presented a classification of the different attributes of the problem but also pro-

vided insights on modelling and solution techniques. When a combination of multiple

constraints is being solved, the problem can be categorised as a rich VRP. Caceres-Cruz

et al. (2014) gave a survey on the rich VRP by summarising problem combinations,

constraint definitions and different approaches. Lahyani et al. (2015) also worked on the

rich VRP by providing a comprehensive and relevant taxonomy alongside its definition.

As real-world applications require an increasing number of attributes to be considered

simultaneously, researchers tend to design general-purpose solvers. Vidal et al. (2014)

developed a unified solution framework to tackle a multi-attribute VRP. They demon-

strated that such a general method can be efficient for this class of problem. Another

attempt to solve a rich VRP with a unified heuristic can be found in Pisinger and Ropke

(2007). A pickup and delivery model was provided with a robust and self-calibrating

framework to solve it.

Different classes of problems arise for the PDP, two of them are simultaneous and mixed

PDP. In the simultaneous PDP, pickups and deliveries can be made at the same time.

Originally, this variant considers a homogeneous fleet of vehicles to satisfy the customer

demands. However, nowadays, there are different types of vehicles available to be used.

Wang et al. (2015) addressed the VRP in which customers require simultaneous pickup

and delivery of goods during specific time windows. They used a parallel Simulated

Annealing algorithm to efficiently solve this variant. This problem was also solved

in Zachariadis et al. (2010) with an adaptive memory framework that generates high-

quality solutions by collecting and combining promising solution features. In the mixed

PDP, pickups and deliveries can occur in any order on a vehicle route. Wassan and

Nagy (2014) presented a taxonomy of different problem versions including mixed pickup

and delivery. They focused on the back-hauling aspect of the PDP while providing a

review of solution methodologies and highlighting issues in the literature. Rich solution

frameworks like in Vidal et al. (2014) also consider this attribute. However, this variant

seems to suffer from a lack of published papers even though it has immense practical

applicability within logistics.

A commonly used attribute for the VRP is time windows, as shown in Solomon (1985), it

requires that the delivery is made within a specific time window given by the customers.

Two categories can be defined: soft time windows which can be violated while inducing a

penalty cost and hard time windows which cannot. Cordeau et al. (2000) wrote a survey

in which they presented approximation methods and optimal approaches to tackle this

variant.

Compatibility or site-dependency constraints can also be added on a VRP model. As

shown in Pellegrini et al. (2007), this refers to the situation in which a customer must be

Literature review 10

served from a specific depot, by a specific vehicle or a specific driver. For instance, goods

demanded by a customer might require vehicles with special equipment for loading and

unloading. Access restrictions regarding the vehicle type can apply in a given area or

city. The work of Desrochers et al. (1990) also covered this attribute.

Companies that have several depots can solve the multi-depot VRP to satisfy all its

customers. In this variant, vehicles can be located at different depots while customers

can be assigned to different depots. Montoya-Torres et al. (2015) reviewed the state-of-

the-art on this variant by considering relevant papers since 1988. They studied several

variants and provided a classification for solution approaches dealing with single or

multiple objectives. Nagy and Salhi (2005) also studied this variant while avoiding the

common assumption that pickups and deliveries must be completed in two different

stages.

It has been demonstrated that cross-docking strategy plays an important role in goods

distribution. In their PDP and VRP with cross-dock models, Nikolopoulou et al. (2017)

gave a comparison of direct-shipping and cross-docking strategies. They developed a

local-search optimisation framework and tested on existing and new benchmark data-

sets. It was concluded that depending on the environment and constraints, a cross-

docking strategy can outperform the direct-shipping. However, in some cases direct-

shipping can still be relevant, this could mean that hybrid methods are necessary. As

cross-docking strategies become common, scheduling and door assignment are being

solved simultaneously with cross-dock constraints. Enderer et al. (2017) proposed two

formulations of the problem and compared computational results. They showed that

integrated solution approaches can lead to significant savings in costs. Cross-docking

might create situations in which vehicles have to wait for empty doors or even prod-

ucts to arrive. Dondo and Cerdá (2014) considered this constraint by introducing a

mixed-integer linear programming formulation. They also used an integrated solution

approach in which the dock door assignment and the truck scheduling at the cross-dock

are simultaneously decided. Miao et al. (2012) studied the multiple cross-docks where

penalty values are added when the time windows are not met. They proved the NP-hard

difficulty of the multiple cross-docks problems and therefore designed a hybrid method

to solve the problem compared with CPLEX. Although the interest for cross-docking

is increasing, only very few papers considered multiple cross-docks constraints. The

paper of Maknoon and Laporte (2017) is one of them, they proposed a mathematical

formulation of the problem in which requests have to pass through at least one cross-

dock. The efficiency of their proposed adaptive large neighbourhood search heuristic

was demonstrated with a comparison with CPLEX. However, their model using hetero-

geneous vehicles which must start and end their routes at the same assigned cross-dock

is not entirely compatible with PI constraints. Their transportation process is divided

Literature review 11

into two separate shifts (pickup and delivery) which cannot model a mixed pickup and

delivery.

In some situations, once the last customer on the route has been visited, the driver does

not have to return to the depot. The driver could terminate his route at another depot

or even at home. This problem was introduced by Schrage in 1981 and is called open

VRP. A few papers have been devoted to this problem. Alinaghian et al. (2016) dealt

not only with cross-docking but also with open VRP. On top of the capacity of vehicles

that is not completely used, some companies use rental vehicles due to the high cost of

purchasing vehicles with high capacity. Therefore, the authors proposed a cross-docking

and open-close VRP problem solved by a simulated annealing algorithm. Russell et al.

(2008) showed relevant applications of the open VRP like newspaper logistics. It was

explained that the independent outsourcing characteristic of these processes as indepen-

dent contractors requires this type of modelling. Yu et al. (2016) studied and solved a

capacitated homogeneous cross-docking and open VRP with a simulated annealing al-

gorithm. They showed that their proposed method can outperform CPLEX. Atefi et al.

(2018) also solved this variant while considering a decoupling points strategy which gen-

eralises the open VRP as multiple trucks delivery. The first truck performs part of the

deliveries, then drops off the load while the second one and others continue from that

point onwards. Their decoupling points strategy is similar to our model handling con-

solidations in a PI environment. On top of open routes, our model also allows vehicles

to start and end their routes to different depots.

Although the above VRP attributes have been studied with different combinations, to

the best of our knowledge, none has modelled this problem considering all the above

constraints simultaneously. Only a few papers proposed to solve the VRP with a sin-

gle cross-dock and very few solved this problem with multiple cross-docking facilities.

Papers like Maknoon and Laporte (2017), Miao et al. (2012), Chen et al. (2015), Wang

et al. (2017) and Ahkamiraad and Wang (2018) dealt with multiple cross-docks but

modelled the problem differently compared to this thesis. When considering multiple

cross-docks, pickups and deliveries were often handled in a less flexible way. They were

satisfied in separate stages/vehicles or could not be consolidated within several succes-

sive cross-docks before delivery. However, there are real-world problems with all the

aforementioned constraints.

Literature review 12

2.4 Dynamic, multi-objective and uncertainty constraints

for the VRP

As the interest for connected technologies in logistics increases, real-time systems become

even more important nowadays. The most common source of dynamism in VRP is the

arrival of customer requests during the operation. In this type of dynamism, some

requests are available initially, while customers can place orders at any time in the

day. However, dynamism can also be on travel time, service time or even on vehicle

availability when the breakdown of vehicles is considered.

Wilson and Colvin (1977) pioneered the work of Dynamic Vehicle Routing Problem

(DVRP). They studied a single-vehicle dial-a-ride problem in which customer requests

appear dynamically. Since that paper, this research area has gained interest in the liter-

ature. Abbatecola et al. (2016) reviewed the state-of-art of DVRP and emphasised the

importance of the information and communications technologies for real-time decision

making. Psaraftis et al. (2016) proposed a taxonomy of DVRP papers according to

several criteria. They identified important gaps in the literature and discussed future

research incorporating probabilistic information. In their survey, Pillac et al. (2013) clas-

sified VRPs from the perspective of information quality and evolution. They introduced

and investigated the degrees of dynamism which represents the frequency at which new

data becomes available. They also presented a comprehensive review of applications and

solution methods for DVRP while mentioning the lack of reference benchmarks for this

class of problems. Ghiani et al. (2009) studied a real-time vehicle dispatching problem in

which an anticipatory algorithm is developed. They developed an algorithm which an-

ticipates future demands through a sampling procedure and demonstrated the relevance

of such methods. In the applications considered in this thesis, the source of dynamism

is on the customers themselves. To solve a DVRP, a possible approach is to change

solutions at any point in time, depending on events such as the arrival of new requests

or the service of a customer. In this work, however, we opted for a different approach

in which changes to the solution may only be made at pre-determined intervals.

In a VRP, when one or several components of the problem are random, the problem is

called the Stochastic Vehicle Routing Problem (SVRP). There are three common kinds of

SVRP, (1) stochastic customers, (2) stochastic demands and (3) stochastic times. When

some data are random, it is no longer possible to guarantee that all constraints will

be satisfied for all realisations of the random variables. Therefore, two approaches can

be considered, (1) the model includes corrective actions to be taken when a constraint

is violated or (2) the decision-maker requires the satisfaction of some constraints with

a given probability. In SVRP, two stages are usually made to solve the problem. In

Literature review 13

the first stage, a solution is determined before knowing the realisations of the random

variables. Then, in the second stage, the recourse or corrective action can be applied if

necessary when the values of the random variables are known.

The survey of Ritzinger et al. (2016) summarised the recent literature in this area. Be-

sides the traditional classification according to the available stochastic information, they

introduced a new classification. Their classification is based on when computational ef-

fort for determining decisions or decision policies arises. Furthermore, they analysed the

solution quality between approaches which consider only dynamic or stochastic problems

with those which consider both. Hence, the strength of the approaches incorporating

dynamic and stochastic information was demonstrated. Oyola et al. (2016) Oyola et al.

(2017) also reviewed the literature in this area by providing two different types of mod-

els: chance-constrained program and stochastic programming with recourse. Albareda-

Sambola et al. (2014) introduced the dynamic multi-period VRP with Probabilistic

Information. Their work is similar to ours in the sense that at each time period, the set

of customers requiring a service in later time periods is unknown, but its probability dis-

tribution is available. As usual, requests must be satisfied within a given time window in

the time horizon. Moreover, to reduce distribution costs, they proposed an adaptive ser-

vice policy that aims at estimating the best time period to satisfy each request. Through

computational experiments, they showed the effectiveness of their policy method com-

pared with alternative methods. Bruni et al. (2014) studied an innovative concept to

tackle the SVRP. A robust demand-responsive transportation (DRT) system where ve-

hicles may deviate from the planned route to accept late requests, is introduced. They

proposed a new formulation of the problem as a stochastic mixed-integer program and

provided an efficient heuristic procedure that merges different scenario solutions. They

also provided computational results which demonstrated the validity of the heuristic and

provided useful insights into DRT systems. Their work is also contributing to promot-

ing the incorporation of uncertainty into the planning process. In our work, customer

requests are predicted with a probability and added into the model to be solved. As

the time horizon passes, dynamic requests are ordered in and replace predicted requests.

The uncertainty characteristic of the problem implies that not all requests are correctly

predicted, hence the pseudo optimal nature of the solutions created.

Due to the constraints and structure of the VRP, the optimisation of one objective may

lead to the deterioration of other important characteristics. Multi-objective optimisa-

tion focuses on solving optimisation problems with several objectives simultaneously.

Optimisation methods for this type of problem can be divided into four classes that can

be differentiated by the decision-maker’s involvement. (1) In “no preference” methods,

there is no decision-maker, but a trade-off solution is identified without preference in-

formation. (2) In “a priori” methods, preferences are asked from the decision-maker in

Literature review 14

order to provide a solution that best suits its preferences. (3) In “a posteriori” methods,

a set of Pareto optimal solutions is first found and provided to the decision-maker which

then has to choose a single solution. (4) In “interactive” methods, the decision-maker is

involved in the search to direct the process and get the most preferred solution.

Our work considers several objectives for a generalised version of the VRP - the pickup

and delivery problem. Many other papers tackled the problem from a multi-objective

perspective. Garćıa-Nájera and López-Jaimes (2018) studied a similar problem as they

solved a PDP with multi-objective. They analysed the problem as the objectives change

via different perspectives - problem difficulty, problem properties, objective conflicts and

scalability. Four reference algorithms were used for comparison purposes with an EA

tested on benchmark instances. They provided comprehensive insights as to how the

benchmark instances were generated. Núñez et al. (2014) also developed a predictive

control approach to solve the multi-objective PDP. However, they considered a dynamic

version of the dial-a-ride service. They considered the practicability of their tool for

a dispatcher to make decisions. They demonstrated its potential benefits in terms of

the operator cost and quality of service perceived by the users. Finally, Yang et al.

(2017) solved a dynamic multi-objective PDP with time windows. On top of that, they

considered three-dimensional request predictions to enhance the effectiveness of their

method. Similarly to our work, the statistical distribution of historical data is used to

make predictions about future requests. The predictive routes are created and tuned

subsequently when the dynamic requests appear. Their research is close to ours as they

use request prediction but only considered one vehicle and no cross-docks which makes

the problem simpler compared to ours. They showed the efficiency of the proposed

algorithm by comparing it with two other popular algorithms.

2.5 Machine learning applications for routing problems

Viewing the PI as a DI allows us to use networking protocols as described in Montreuil

et al. (2012). The term “ad hoc networking” typically refers to a system of network

elements that combine to form a network. In other words, a network is ad hoc if it does

not rely on a pre-existing infrastructure, such as routers in wired networks or access

points in managed wireless networks. Instead, each node participates in routing by

forwarding data for other nodes, so the determination of which nodes forward data is

made dynamically based on network connectivity and the routing algorithm in use. A

Mobile Ad hoc NETwork (MANET), also known as wireless ad hoc network or ad hoc

wireless network, is a continuously self-configuring, infrastructure-less network of mobile

devices connected wirelessly (Zanjireh and Larijani, 2015; Toh, 2001). Each device in a

Literature review 15

MANET is free to move independently in any direction, and will therefore, change its

links to other devices frequently. Each must forward traffic unrelated to its use, and

therefore be a router. Such networks may operate by themselves or may be connected

to the larger Internet. This results in a highly dynamic, autonomous topology (Zanjireh

et al., 2013). In this analogy, PI-hubs are the routers of the DI while links are the

vehicle routes. Vehicular Ad hoc NETworks (VANETs) is another concept that could

be exploited if we consider different PI-hubs to be used over time. VANETs are created

by applying the principles of MANETs where networks can be formed and information

can be relayed among cars.

To solve these problems, traditional methods like RIP (Hedrick, 1988) or OSPF (Moy,

1997) can be used. However, with the recent breakthrough in ML, numerous research

studies showed that ML could be applied to a broader range of applications. ML is

composed of four main areas - supervised, unsupervised, semi-supervised and reinforce-

ment learning. (1) In supervised learning, there’s an external “supervisor”, which has

knowledge of the environment and who shares it with the agent to complete the task.

The task is to learn a function that maps an input X to an output Y based on exam-

ple input-output pairs - the data. The end result is to be able to predict the output

variables Y for the given input. Supervised learning can be further grouped into re-

gression and classification problems. (2) Unsupervised learning is where you only have

input data X and no corresponding output variables. In unsupervised learning, rather

than considering a mapping, the task is to find the underlying patterns in order to learn

more about the data. Unsupervised learning can be further grouped into clustering and

association problems. (3) Semi-supervised learning is another area that makes use of

both labelled and unlabelled data for training. Usually, a small amount of labelled data

is used alongside a large amount of unlabelled data. Therefore, semi-supervised learning

can be classified between unsupervised learning and supervised learning. (4) Reinforce-

ment Learning (RL) is concerned with how software agents ought to take actions in an

environment to maximise a cumulative reward. It is about mapping situations to actions

in order to learn what to do. Usually, the agent is not told which action to take but

instead must discover which action will yield the maximum reward.

An Artificial Neural Network (ANN) is a computational model based on the structure

and functions of biological neural networks. Neural networks are widely used in su-

pervised learning and reinforcement learning problems. The main purpose of a neural

network is to receive a set of inputs, perform progressively complex calculations on them,

and give output to solve real-world problems like classification. Information that flows

through networks affects their structure because of changes during the training phase.

It is said that the network learns to produce an output based on the input. These net-

works are based on a set of layers connected to each other. An ANN can have one or

Literature review 16

multiple hidden layers in which the weights and biases are modified during the training.

When more than one hidden layer is used, the network is called a deep neural network

(DNN). Similar to shallow ANNs, DNNs can model complex non-linear relationships. In

deep learning, each level learns to transform its input data into a slightly more abstract

and composite representation. DNN models can produce better results than normal ML

networks. Deep Reinforcement Learning (DRL) is another method which combines the

strength of ANN and RL. The goal of DRL is to create artificial agents that can achieve

a high level of performance and generality. The performance at scale of this method

was demonstrated in Mnih et al. (2015) for the first time. Many papers on DNN and

DRL can be found in the literature (Lillicrap et al., 2015; Mnih et al., 2013; Silver et al.,

2016).

In the area of ML, RL techniques have already been used in the context of routing

optimisation, which was pioneered in Boyan and Littman (1994). Several reviews can

be found in the literature. Fadlullah et al. (2017) did a comprehensive survey on the

state-of-the-art on deep learning architectures and algorithms. A proof-of-concept was

introduced for applying the deep learning technique to perform intelligent traffic control

in future networks. They emphasised the challenges due to the continually varying

network conditions arising from the tremendous traffic growth. It is argued that deep

learning is a viable approach to configure and manage networks more intelligently and

autonomously. However, they stated that DNN for routing received little attention

compared to other applications. Alsheikh et al. (2014) also recommended deep learning

as a more efficient method for the Wireless Sensor Networks (WSN). Readers can also

refer to the survey of Mao et al. (2018) on deep learning for intelligent wireless networks.

More recently, Wang et al. (2018) promoted the use of deep reinforcement learning for

networking problems. They provided a selective survey of the latest representative

advances with explanations of their design principles and benefits.

ML techniques can be used for routing in different ways. One of them is delay prediction

in which an ML algorithm is plugged into a network to gather information to assist

routing decisions. Wang et al. (2007) developed such a method to analyse data and

extract useful features and correlations in WSNs for Routing protocols. To address

this problem, they used supervised learning techniques to make informed decisions.

They not only showed that offline learning was able to improve the data delivery rate

over traditional methods but also showed that an online learning algorithm can achieve

similar accuracy. Guo et al. (2010) also proposed a method to predict delays with

neural networks. Their system is devised as a distributed, independent, and continuous

neural network training and prediction process conducted on individual nodes. As in

Dudukovich et al. (2017), by integrating the delay prediction mechanism with another

protocol, they were able to improve the packet deliveries.

Literature review 17

Another way of using ML algorithms is by directly controlling routing decisions. Stampa

et al. (2017) proposed such a method in which a DRL approach is used to optimise

routing and reduce delays. Similarly, You et al. (2019) introduced an approach in which

two multi-agent DRL routing algorithms are integrated. The first one replaces Q-table

by a deep neural network, while the second employs information including the past

actions and the destinations of packets. Tang et al. (2018) proposed an online algorithm

to be integrated into any routing protocol to improve or provide new routing strategies.

They used an OSPF to train a DNN based on deep convolutional neural networks.

Massively parallel computing is also discussed and argued to be an enabler for DNN to

improve network traffic control. Mao et al. (2017) also emphasised the current parallel

computing capacities which can enable DNN applications on routing. They explored

new opportunities in packet processing to shift from rule-based to DNN based route

computation for high-throughput packet processing. Like previous researchers, they

also emphasised the lack of DNN based route computation in the literature.

2.6 Conclusion

This chapter reviewed some fields in optimisation algorithms applied to routing.

The literature related to bike usage is mainly about one-way itinerary planning, bike-

sharing re-balancing problem or routing delivery. However, a few researchers consid-

ered delivery problems using push-bikes but did not include important bike-related con-

straints such as uphill and energy. Hence the need for filling this gap by providing a

new BRP.

A rich VRP can arise in many practical applications and therefore contributes toward a

more efficient SCM. The PI is one of such examples which uses several types of vehicle

and allows load exchanges at multiple facilities to satisfy customers within time win-

dows. Collaboration using external transportation means is another feature of the PI

which must be considered. Vehicles can belong to external companies or even private

owners and are therefore available for a given period but are not forced to return to

the same depot. One issue cross-docking is tackling is the capacity of vehicles not be-

ing entirely used during the deliveries. Having mixed pickups and deliveries is another

characteristic of a model that can improve the overall efficiency by introducing some

degree of flexibility. The vehicle fulfilment could also be improved by using consolida-

tions during deliveries. Real-world problems usually have to deal with dynamic and

multi-objective constraints. Several methods exist to tackle these constraints, for the

dynamism, it is common that changes to the solution can occur over time to account for

new requests. To handle multiple objectives, the literature contains numerous methods

Literature review 18

involving more or less the dispatcher to make decisions. It was also demonstrated that

anticipating future demands can improve the resulting solutions. Developing models and

algorithms that can deal with all these constraints is of high practical value. Therefore,

these requirements represent another research direction to contribute.

As stated by several researchers, ML and RL methods were successfully adapted to fit

in the DI for packet routing. It was demonstrated that those methods can improve

the overall efficiency of the routing decisions. However, there is a gap in the literature

regarding this promising research area. On top of that, very few conducted such research

applied to a logistics transportation problem. Since this problem is tackled from a PI

perspective, this thesis takes advantage of the PI and DI similarities and solves the

proposed VCRP with this approach.

Chapter 3

A bike routing problem with

energy constraints

3.1 Introduction

Around 80 per cent of European citizens live in urban areas (Allen et al., 2010). Because

of the high density of population in those areas, large quantities of goods have to be

transported for commercial and domestic purposes. However, transportation has sev-

eral impacts on the environment, such as resource consumption, noise, and greenhouse

gas emissions (Bektaş and Laporte, 2011). Among these, gas emissions, in particular

CO2 emissions, are of great concern as they have consequences on human health and

contribute towards climate change. In several countries, transportation is one of the

biggest cause of CO2 emissions. Thus, decision-makers are trying to reduce pollution

in their countries or cities (Koning and Conway, 2016). Bike use is promoted and en-

couraged in countries like the Netherlands, Denmark and Germany. While bicycles have

even become the standard over vehicles in cities like Amsterdam, some other cities like

London voted laws to get entry fees for vehicles. As a result, Supply Chain Management

businesses became more concerned about environmental issues and try to tackle those

issues. Those growing concerns force to revise planning approaches for road transporta-

tion by for example changing last miles deliveries. One adopted solution is to focus on

environment-friendly means such as bikes. Cycling is said to be one of the most energy

efficient and healthy transport modes (Ehrgott et al., 2012). Moreover, cargo-based

push-bikes as shown in Figure 3.1 can transport much heavier loads than traditional

ones. However, the speed can be dramatically reduced with a heavy load due to the

effort demanded of the cyclist. A cyclist could even struggle to move a fully loaded bike

in a too steep road.

19

A bike routing problem with energy constraints 20

Figure 3.1: The cargo-based push-bike of the industry partner

Therefore, this chapter introduces a new vehicle routing variant called the Bike Routing

Problem (BRP), that takes effort into account. The energy required to move push-bikes

with cargo is calculated and checked so that it does not exceed a cyclist’s power.

3.2 Problem description and formulation

3.2.1 Context

Formally, the BRP is defined on a complete graph G = (N,A) with N = {0, 1, 2, ..., n}
as the set of nodes and A as the set of arcs defined between each pair of nodes. Node

0 is the depot where a homogeneous set of bikes K = {1, 2, ...,m} is located. Each bike

has a capacity of Q. The remaining nodes represent a set of customers N0 = N \ {0}.
Each customer i ∈ N0 has a positive demand qi representing the amount of product that

needs to be picked up and transport to the depot. The distance from node i to node j is

denoted by dij . Each cyclist k needs a certain amount of energy ekij to travel over an arc

(i, j). This amount is dependent on a number of factors, such as load weight and slope.

The BRP consists in findings at most m bike routes such that the total travel distance

is minimised and

• Each bike begins and ends at the depot;

• Each customer node is visited exactly once;

• The total load on each bike is less than its capacity Q;

• The total energy spent by each cyclist is less than a given value E.

A bike routing problem with energy constraints 21

The power requirements of a vehicle to move along a road segment depend on not only

the dynamic parameters (e.g., speed and acceleration), but also the static ones as vehicle

weight, aerodynamic drag, rolling resistance, and road grade, etc. We use the formula

proposed in Martin et al. (1998) to compute the energy ekij (in joules/seconds) generated

by a biker k to go from node i to node j without any load. In their paper Martin et al.

(1998), Martin et al. showed that some terms of the formula contribute far more than

others that are thus negligible. By omitting these terms (Frictional loss in the drive

chain, frictional loss in wheel bearings etc.) we get the same formula as in (Barth and

Boriboonsomsin, 2009):

ekij =
dij
v

[
wkav + wkgv sin(θij) + 0.5cwfρv

3 + wkgcr cos(θij)v
]
∀k ∈ K ∀i, j ∈ N (3.1)

The parameters used in this formula and their default values are provided as follows:

• cr: rolling resistance coefficient = 0.005 (for a typical bitumen road on clinchers)

• cw: wind resistance coefficient = 0.5 (no headwind nor tailwind)

• ρ: air density = 1.226 kg/m3 (at sea level)

• g: gravitational constant = 9.8 m/s2

• wk: the total weight of bike and biker = 100 kg

• a: the acceleration 0.5 m/s2

• v: the speed of the bike on the road = 20 km/h (or 5.56 m/s)

• f : the frontal area of the bike and rider = 1.5 m2

• θij : the slope of the road node i to node j.

3.2.2 Mixed-integer linear programming formulation

We now formulate the problem as a Mixed Integer Linear Programming (MILP). Our

formulation allows to define mathematically the problem and can be used to solve small-

size instances to optimality with MILP solvers. There are three types of variables as

follows:

• xkij : binary variables equal to 1 if bike k travels from i to j

A bike routing problem with energy constraints 22

• lki : real variables representing the load weight on bike k when it leaves node i

• ekij : real variables representing the energy spent on arc (i, j) by bike k.

As shown in Bektaş and Laporte (2011), minimising the energy can increase the distance

travelled by vehicles with detours (e.g. to avoid uphills). Since we consider cyclists, the

distance remains more important than the energy that is thus handled as a constraint.

Therefore, the objective function is to minimise the total distance travelled by bikes:

Minimise
∑
k∈K

∑
i,j∈N

dijx
k
ij (3.2)

subject to:

Each customer is visited by exactly one bike:

∑
k∈K

∑
j∈N

xkij = 1 ∀i ∈ N0 (3.3)

Flow conservation constraint. Each bike must continue its tour until the depot:

∑
i∈N

xkij =
∑
i∈N

xkji ∀k ∈ K ∀j ∈ N (3.4)

Constraint for the depot. All bike tours must pass by the depot:

|N |
∑
i∈N

xk0i ≥
∑
i,j∈N

xkij ∀k ∈ K (3.5)

Capacity constraint. Each bike load must respect the bike’s capacity

lki ≤ Q ∀i ∈ N0 ∀k ∈ K (3.6)

A bike routing problem with energy constraints 23

Relationship between lki and xkij : This constraint also removes sub-tours:

lkj ≥ lki + qj −M1 ∗ (1− xkij) ∀k ∈ K ∀i ∈ N ∀j ∈ N0 (3.7)

lkj ≤ lki + qj +M1 ∗ (1− xkij) ∀k ∈ K ∀i ∈ N ∀j ∈ N0 (3.8)

where M1 is a large number and can be estimated by Q.

Load of bike k at depot is null:

lk0 = 0 ∀k ∈ K (3.9)

Energy constraint: The energy generated by a biker is limited to a given value:

∑
i,j∈N

ēkij ≤ E ∀k ∈ K (3.10)

where ekij is the amount of energy that biker k generates to move from i to j and its

computation is based on formula (3.1). By taking into account the time a bike needs to

travel between i and j and its load weight when leaving node i, we get:

ekij =
xkijdij

v

[
(lki + wk)av + (lki + wk)gv sin(θij) + 0.5cwfρv

3+

(lki + wk)gcr cos(θij)v
]
∀k ∈ K ∀i, j ∈ N (3.11)

These constraints are non-linear and can be linearised by using an additional variable

ykij = xkijl
k
i . It equals 0 if xkij = 0 and equals lki if xkij = 1. We then can replace (3.11) by

the following constraints:

ekij =
[
a+ g sin(θij) + gcr cos(θij)

]
ykijdij+

xkijdij
[
wkav + wkg sin(θij) + 0.5cwfρv

2 + wkgcr cos(θij)
]
∀k ∈ K ∀i, j ∈ N (3.12)

A bike routing problem with energy constraints 24

ykij ≤M2x
k
ij ∀k ∈ K ∀i, j ∈ N (3.13)

ykij ≤ lki ∀k ∈ K ∀i, j ∈ N (3.14)

ykij ≥ lki +M3(xkij − 1) ∀k ∈ K ∀i, j ∈ N (3.15)

Constraints (3.12) express the relationship between variables ekij and ykij . Constraints

(3.13) ensure that if xkij = 0, the variable ykij must be set to zero. The combination of

constraints (3.14) and (3.15) requires that if xkij = 1, the variable ykij is set to lki . Here,

M2 and M3 are sufficiently large numbers and can be set to Q.

3.3 Meta-heuristic

The algorithm proposed in this chapter is an Evolutionary Local Search (ELS) derived

from Prins (2009). We decide to select this metaheuristic because it is simple, fast and

has been used widely in the literature to successfully solve a variety of VRP variants

(e.g., Hà et al. (2013, 2014)). In the ELS method, a single solution is mutated to obtain

several children that are then improved by local search operators. The next generation

is the best solution among the parent and its children.

Our version of the algorithm includes the following: (1) a modified split() function

which handles the energy and is bounded, (2) local search procedures which check the

energy constraints (using the distance, load and slope) in O(1), (3) a mutation opera-

tor which swaps two nodes to improve the efficiency of the search for small instances.

Algorithm 1 describes the overall ELS algorithm which handles giant tours and BRP

solutions with split() and concat() functions described below. ni is the number of

iterations (number of attempts to produce better local optima). nc is the number of

children solutions generated in each iteration. Hence, the total number of calls to the

local search is ni ∗ nc. Function cost() is used to get the distance cost. The current

best solution Sb is updated only when it is outperformed by the best child S.

The well-known savings heuristic from Clarke and Wright (1964) is used to initialise

ELS. Their heuristic starts from a trivial solution with one dedicated trip per customer.

Each iteration evaluates all capacity-feasible mergers (concatenations) of two trips and

executes the one with the largest positive saving. The process stops when no such merger

can be found. The resulting VRP solution must be converted into a giant tour to start

the alternating cycle, using function concat(). Their algorithm was adapted to fit into

our model by not only evaluating the capacity of bikes but also their energy.

A bike routing problem with energy constraints 25

Algorithm 1: ELS algorithm

1 Input: problem data;
2 Output: best solution Sb found;
3 Sb ← init solution();

4 T ← concat(Sb);
5 for i from 1 to ni do

6 f ← cost(Sb);
7 for j from 1 to nc do

8 T ← mutate(T);
9 S ← split(T);

10 S ← local search(S);

11 if cost(S) < f then
12 Sc ← S;

13 f ← cost(S)

14 if cost(Sc) < cost(Sb) then
15 Sb ← Sc;

16 T ← concat(Sb);

Algorithm 2: Bounded Split

1 //Input: a max number K of bikes, an order of n customer nodes;
2 //Output: an optimal solution regarding the given order of customers;
3 for k from 0 to K + 1 do
4 p[k][0]← 0;
5 for i from 1 to n do
6 p[k][i] =∞;

7 for i from 0 to n− 1 do
8 load← 0;
9 j ← i+ 1;

10 while j ≤ n do
11 if j = i+ 1 then
12 distance← d0,j ;
13 energy ← e0,j //computed by Eq. (3.16) with current load;

14 else
15 distance← distance+ dj−1,j ;
16 energy ← energy + ej−1,j ;

17 load← load+ qj ;
18 if load ≤ Q and energy + ej,0 ≤ E then
19 for k from 0 to K do
20 if p[k][i] 6=∞ and p[k][i] + distance+ dj0 < p[k + 1][j] then
21 p[k + 1][j]← p[k][i] + distance+ dj0;
22 pred[k + 1][j] = i;

23 j ← j + 1;

A bike routing problem with energy constraints 26

As described in Prins (2009), our algorithm alternates between solutions encoded as TSP

tours, called giant tours, and genuine BRP solutions. A split algorithm is used to get a

BRP solution from a giant tour. The function adds all the depots to create a complete

solution which satisfies the capacity and energy constraints. Like most papers on VRP

meta-heuristics, the number of vehicles used is variable but bounded. The overall process

is defined as follows. Given a giant tour of n customers such as T = (T1, T2, ..., Tn), the

function builds a weighted directed graph H = (X,A,D). This idea was proposed by

Beasley (1983) as a route-first cluster-second heuristic. The nodes in X are indexed

from 0 to n: 0 is a dummy node while each node i 6= 0 represents a customer Ti. Each

sub-sequence of customers (Ti, Ti+1, ..., Tj) of the giant tour is evaluated to see if the trip

(0, Ti, Ti+1, ..., Tj , 0) is feasible. This evaluation not only includes the bike capacity, but

also the total energy required for the trip. If the trip is feasible, it is modelled in the

arc-set A by one arc (i− 1, j), with a weight equal to the trip cost. An optimal splitting

of T into feasible trips corresponds to a min-cost path from node 0 to node n in the

created graph. The Bellman algorithm is then used to find the shortest path problem

which indicates how to separate the giant tour. Each selected arc represents a bike trip

which is included in the returned solution.

ei,j =
[
(load+ w)a+ (load+ w)g sin(θi,j) + 0.5Cwfρv

2+

(load+ w)gCr cos(θi,j)
]
dij (3.16)

Algorithm 2 shows the different steps of the split procedure. The main difference with

Prins (2009) is that checking if a trip is feasible in O(1) also requires us to check the total

energy using the formula in Eq. (3.16). At the end of the procedure, array pred contains

several paths to reach the last node Tn in the graph H. Given a max bike number k and

a node i, value pred[k][i] represents the precedent node in the graph path. Therefore,

reversely looping on pred with a decreasing k gives us the last customer node of each

bike trip bounded by k trips. Since graph H is directed acyclic by construction and

presents other characteristics described in Vidal (2016), other faster algorithms could

be used.

After the local search, function concat() in Algorithm 3 is called to convert a BRP

solution into a giant tour T by concatenating the sequences of customers of its different

trips. Each copy of the depot node used as trip delimiters is then removed from the

solution. Function insert() is used to insert a node at a given position in a solution

route.

A bike routing problem with energy constraints 27

Algorithm 3: concat function

1 //Input: a solution S, a request ID, the depot node;
2 //Output: solution S′ found;
3 S′ ← ∅;
4 foreach node in S do
5 if node 6= depot then
6 insert(S′, node);

7 return S′;

Algorithm 4: Local search function

1 //Input: a solution S, string length λ, improvement policy bi;
2 //Output: a better solution S;
3 while (i1 or i2 or i3 or i4 or i5) = true do
4 Classical2Opt(S, bi, i1);
5 CrossoverMove(S, bi, i2);
6 SwapTwoNodes(S, bi, i3);
7 OrOptMove(S, λ, bi, i4);
8 StringExchange(S, λ, bi, i5);

9 return S;

The Local Search (LS) described in Algorithm 4 includes the following procedures:

Function Classical2Opt() takes a sub-sequence of customers in a trip and inverts its

order; Function Crossover() replaces two edges by two other edges from two differ-

ent trips; Function SwapTwoNodes() swaps two nodes from two different trips; Function

OrOptMove() changes the position of a sub-sequence of customers from two different

trips; Function StringExchange(), which exchanges two sub-sequences of customers

from two different trips. To limit the running time of the procedure, the length of a

string is restricted to λ ∈ {1, 2, 3}. Our local search operators are executed in a best-

improvement fashion. After a best-improvement move is found, the procedure executes

it, which modifies S, and sets a Boolean flag (last argument) to true. Otherwise, the flag

is set to false. All neighbourhoods are searched again if at least one of them brings an

improvement. Every procedure is given a solution S encoded in a list including several

depots. The first and last nodes are depots while the others delimit the different trips.

The local search cannot alter any depot position. Therefore, the LS procedures can only

modify edges in one or two trips but cannot modify the trip length.

The main difference between our local search and Prins (2009) is that checking if a trip

is feasible in O(1) is more complicated. This is due to the energy formula which includes

the bike load at any given position in the trip. Hence, changing a node position at the

beginning of the trip would affect the energy required at the end of the trip because the

load would not be the same anymore. Therefore, the procedure has to check if the rest of

A bike routing problem with energy constraints 28

the trip from the changed edge is still feasible. A straightforward approach would be to

parse the new solution from the index of the changed node until a depot is reached. The

function can therefore, return false if the constraints are violated and true otherwise.

The best case scenario is when the modified node is the last one in a bike trip. The

parsing will then calculate the energy only for one node. However, if the solution only

contains a single trip and the changed node is the first one, the worst case scenario is

that the parsing will have to go through the entire solution. In order to improve that

and check each move in O(1), we use the following mechanism.

The formulation to compute the energy spent on arc (i, j):

eij =
dij
v

[
(lki + wk)av + (lki + wk)gv sin(θij)+

0.5Cwfρv
3 + (lki + wk)gCr cos(θij)v

]
(3.17)

This can be rewritten as follows:

eij = dijl
k
i [a+ g sin(θij) + gCr cos(θij)] + dij

[
wka+ wkg sin(θij)+

0.5Cwfρv
2 + wkgCr cos(θij)

]
(3.18)

Only the first term depends on the bike load. The remaining terms depend on the arc

only and do not depend on the load. We then can simplify the equation as follows:

eij = lkiAij +Bij (3.19)

Let S be a solution such as S = (0, 1, 2, 3, 4, 0, 5, 6, 7, 0) where nodes 0 are the depots.

When only considering the term depending on load, the energy of this solution’s first

trip is computed as follows:

e = A01l0 +A12l1 +A23l2 +A34l3 +A40l4 (3.20)

As the load weight lki represents the accumulated demands from the depot to node i,

the equation can be rewritten as follows:

e = A12q1 +A23(q1 + q2) +A34(q1 + q2 + q3) +A40(q1 + q2 + q3 + q4) (3.21)

where qi is the demand of customer i. Finally the equation can be simplified as:

e = q1(A12 +A23 +A34 +A40) + q2(A23 +A34 +A40) + q3(A34 +A40) + q4A40 (3.22)

A bike routing problem with energy constraints 29

As a result, an array Ai can be calculated to save the summation of A from node i to

the depot. An array Li can also be calculated to save the total load of bikes at node i.

Therefore, if node 2 and node 6 are swapped, the energy in the first trip will change by

an amount calculated as follows:

(q6 − q2)A3 − e12 − e23 + e16 + e63 (3.23)

This energy delta is then used to update the current energy value of the first trip. In

this example, the energy for the second trip is then calculated in the same way and

checked if it violates the constraint. It should be noted that Li is used to compute

e16 + e63 − e12 − e23 in O(1).

Algorithm 5 depicts a template search function used in all the procedures to check if a

move is feasible in O(1) with the mechanism described above. The procedure iteratively

checks each possible position and moves the string only if the constraints are respected.

The move is applied only if the indices i and j belong to two different trips and if

the string does not contain any depot. This simplifies the function as otherwise, in

the case of SwapTwoNodes(), the array A should be updated because of the other node

change. The constraints for the first trip are not checked as we remove nodes from

it, therefore it is necessarily feasible. Function cost() calculates the distance cost of

a trip or solution. Function demand() returns the demand of a given node. Functions

energy() and load() return the total energy and load of the trip containing the given

node. Functions energies() and loads() initialise the arrays with a given solution.

Function move() applies the move on a solution. For the procedure OrOptMove(), the

move consists in relocating the string of customers from index i to index j.

The objective of the mutation procedure is to diversify the search. Here, we do not

operate this procedure directly on a complete BRP solution, but indirectly on a giant

tour. Thus, neither capacity nor energy constraint needs to be considered. We use two

operators detailed in Algorithms 6 and 7 which are randomly selected at each iteration.

The first one relocates a random node while the second one consists of swapping two

different nodes randomly selected in the giant tour. After an operator is selected, p

successive moves are executed. The value of p is modified during the search process.

It is set to a minimum value pmin at the beginning and each time a new best solution

is found. It is incremented whenever the mutation followed by local search returns a

degraded solution, but never exceeding a maximum value pmax. Function random() is

used to return a random number given a bound. Function remove() does this opposite

of insert(), it removes a node from a given position.

A bike routing problem with energy constraints 30

Algorithm 5: Template for local search procedure based on OrOptMove()

1 //Input: a solution S, improvement policy bi, [string length λ];
2 //Output: a better solution S;
3 dbest ←∞;
4 while bF lag do
5 A← energies(S);
6 L← loads(S);
7 d← cost(S);
8 bF lag ← false;
9 for i from 1 to |S| − λ− 1 do

10 for j from i+ λ to |S| − 1 do
11 a← j − λ+ 1;
12 b← j;
13 d∆ ← dS[j],S[i] − dS[i−1],S[i];

14 d∆ ← d∆ + dS[i+λ−1],S[j+1] − dS[i+λ−1],S[i+λ];

15 d∆ ← d∆ + dS[i−1],S[i+λ] − dS[j],S[j+1];

16 dnew ← d+ d∆;
17 e← energy(a) //get the total energy required for trip containing node a;
18 l← load(a) //get the total load for trip containing node a;
19 l∆ ← 0;
20 for z from 0 to λ do
21 c← z + a;
22 e∆ ← e∆ + eS[c−1],S[c];

23 l∆ ← l∆ + qc;

24 e∆ ← e∆ + eS[b],S[b+1];

25 e∆ ← e∆ − eS[a−1],S[b+1];

26 enew ← e+ e∆ + l∆ ∗A[b+ 1];
27 lnew ← l + l∆;
28 if d∆ < 0 and dnew < dbest and enew < E and lnew < Q then
29 dbest ← dnew;
30 ibest ← i;
31 jbest ← j;
32 bF lag ← true;

33 if bF lag = true then
34 S ← move(ibest, jbest, S);
35 bF lag ← bi;

36 return S

3.4 Computational results

All the computational results were obtained with a computer that has the following

specifications: a CPU ’Intel(R) Core(TM) i9-7900X CPU @3.30GHz’ and 32 GB of

RAM. The proposed algorithm is developed in a framework using Java 1.8. The model

is implemented using the CPLEX OPL library and included in the framework. The

A bike routing problem with energy constraints 31

Algorithm 6: Move operator

1 //Input: a solution S;
2 //Output: solution S′;
3 S′ ← S;
4 index1← random(|S′|);
5 index2← random(|S′|);
6 node← remove(S′, index1);
7 insert(S′, node, index2);
8 return S′;

Algorithm 7: Exchange operator

1 //Input: a solution S;
2 //Output: solution S′;
3 S′ ← S;
4 index1← random(|S′|);
5 index2← random(|S′|);
6 node1← remove(S′, index1);
7 node2← remove(S′, index2);
8 insert(S′, node1, index2);
9 insert(S′, node2, index1);

10 return S′;

version 12.7 of CPLEX is used with its default configuration and therefore allows parallel

computing.

3.4.1 Data

Generator parameters Values

customer number {10, 25, 50, 100}
bike number {1, 5, 10}
bike capacity 100 kg

bike speed 5.56 m/s

request load 1-10 kg

surface 1.5 m2

acceleration 0.5 m/s2

cyclist + bike weight 100 kg

3D coordinates (x,y,z) 0-100

Table 3.1: Generator parameters

Request loads and customer locations were generated randomly with a uniform distri-

bution. x and y represent the latitude and longitude respectively and are bounded by

A bike routing problem with energy constraints 32

0-100. z represents the altitude and is bounded by 0-10. Parameter E was firstly set as

a big value to get feasible solutions. Then for each solution, the energy calculated was

selected and used to modify the instances. The max energy parameters were therefore

set with values slightly lower than the energy calculated to constrain the algorithm to

find other solutions.

3.4.2 Parameter tuning

Description Parameters modified Energy values

none 5314062

speed v=1 205206

speed v=10 23555000

bike and load weight w+l=200 10436562

acceleration a=1 2814062

slope θ=0.349 13686169

slope θ=0.698 21033700

surface A=2 5505625

Table 3.2: Energy formula sensitivity

Table 3.2 shows different values of the equation (3.17). Each value was obtained by

modifying a single parameter from these default values - v=5, w+l=100, a=2, θ=0,

A=1. It can be seen that the speed is the variable that affects the most the energy

required while the surface is the least. All the other variables play an equally important

role in the energy required.

ELS parameters Values

ni 200

nc 200

bi true

λ 2

pmin 1

pmax 2

Table 3.3: ELS parameters

Figures from 3.2(a) to 3.2(d) depict the convergence of ELS and were used to select

the default parameters values in Table 3.3. The plots show the average cost at each

time-stamp from 1 to 8 seconds for 30 runs.

A bike routing problem with energy constraints 33

2 4 6 8

880

885

890

Time(s)

C
os

t

10-10
50-10
100-10
500-10
10-50
10-100
10-500
100-100
200-200
500-500

(a) ni and nc parameters

2 4 6 8

875

880

885

890

895

Time(s)

C
os

t

1-1
1-2
1-5
5-5
5-10
10-10

(b) pmin and pmax parameters

2 4 6 8

875

880

885

Time(s)

C
os

t

1
2
3

(c) string length λ parameter

2 4 6 8

880

882

884

886

888

Time(s)
C

os
t

true
false

(d) bi parameter

Figure 3.2: Convergence of the algorithm with different parameter values

3.4.3 CPLEX and ELS comparison

CPLEX ELS

Instance Objective Lower Bound Gap Time (s) Avg objective Avg time (s) Best objective Best time (s)

10c1b 269.16 269.16 optimal 0 269.16 0 269.16 0

10c1b 236.85 236.85 optimal 0 236.85 0 236.85 0

10c1b 183.89 183.89 optimal 0 183.89 0 183.89 0

25c5b 387.41 223.33 42.35 OOM 374.48 19 374.48 2

25c5b 234.06 152.19 34.98 OOM 227.17 17 227.17 2

25c5b 731.08 110.26 84.92 OOM 481.28 38 476.95 14

50c5b 199.21 >10800 432.5 365 431.67 833

50c5b 154.56 >10800 472.17 52 470.28 24

50c5b 173.5 >10800 492.41 39 492.34 101

100c10b 224.2 >10800 740.74 7592 732.98 10040

100c10b 229.67 OOM 889.88 7366 1063.51 9911

100c10b 235.31 OOM 1081.17 4558 1063.51 4107

Table 3.4: CPLEX and ELS performances on clustered instances

A bike routing problem with energy constraints 34

CPLEX ELS

Instance Objective Lower Bound Gap Time (s) Avg objective Avg time (s) Best objective Best time (s)

10c1b 253.89 253.89 optimal 0 253.89 0 253.89 0

10c1b 333.04 333.04 optimal 0 333.04 0 333.04 0

10c1b 303.31 303.31 optimal 0 303.31 0 303.31 0

25c5b 641.28 386.14 39.79 OOM 574 11 574 6

25c5b 741.12 412.51 44.34 >10800 723.79 34 722.48 43

25c5b 688.1 351.58 48.91 OOM 493.47 18 493.47 43

50c5b 494.8 >10800 702.54 111 701.42 397

50c5b 548.95 OOM 820.32 372 779.54 112

50c5b 519.35 >10800 701.56 125 700.44 27

100c10b 612.2 OOM 1361.91 1747 1324.31 2672

100c10b 656.5 >10800 1453.71 5823 1416.05 9204

100c10b 642.75 OOM 1362.53 3629 1342.56 6093

Table 3.5: CPLEX and ELS performances on random instances

CPLEX ELS

Instance Objective Lower Bound Gap Time (s) Avg objective Avg time (s) Best objective Best time (s)

10c1b 290.75 290.75 optimal 0 290.75 0 290.75 0

10c1b 305.41 305.41 optimal 0 305.41 0 305.41 0

10c1b 328.01 328.01 optimal 0 328.01 0 328.01 0

25c5b 349.68 >10800 732.58 17 715.92 27

25c5b 712.04 431.05 39.46 OOM 677.43 13 674.41 12

25c5b 594.36 407.51 31.44 OOM 551.53 48 548.16 22

50c5b 476.1 >10800 839.83 490 775.8 968

50c5b 546.89 >10800 809.72 118 783.32 146

50c5b 487.35 >10800 863.23 591 852.63 284

100c10b 640.39 >10800 1349.05 4651 1320.75 6247

100c10b 653.6 >10800 1434.31 5412 1394.61 5071

100c10b 598.69 >10800 1240.62 6133 1225.48 5079

Table 3.6: CPLEX and ELS performances on clustered-random instances

CPLEX was run only once with a time limit of 3 hours. ELS was run 30 times with the

parameters described in Table 3.3. However, for the instances containing a single bike,

parameter pmax was set to 5 as the algorithm mostly relies on the mutation operators

to find solutions. This is due to the local search procedures requiring two distinct trips

A bike routing problem with energy constraints 35

to operate. Tables 3.4 to 3.6 show the comparison of CPLEX and ELS. The instance

names give some details about their characteristics, for example, “10c1b” means that

the instance includes 10 customers and 1 bike. While column “Best objective” gives the

objective value of the best solution found among the 30 runs, column “Best time (s)”

provide the time needed to find this same solution. Column “Time (s)” can sometimes

contain “OOM” which stands for “Out Of Memory” and indicates that CPLEX was not

able to continue the search as too much memory was being needed. As a consequence, the

process was automatically stopped. Three sets of instances were generated by varying

the customer locations - random, clustered and semi-clustered. To generate clustered

instances, 5 points were randomly selected as centres of the clusters with 10 as radius.

Then for each customer, its location is randomly generated within the boundaries of

a random cluster. As expected, although CPLEX struggles to scale up for instances

containing 50 or more customers, ELS does not seem to have difficulties and can find

better solutions. Moreover, ELS is able to find all the optimal solutions found by CPLEX

in less computational time.

3.4.4 Real-world case

The need for such a model is reinforced by our collaboration with Peloton, a company

which delivers goods using bikes in Liverpool. As their customer identities and locations

are private, 50 restaurants in Liverpool were randomly selected to create instances. The

depot is Asda Breck Road Superstore. The bike number is bounded to 5, the request

load is bounded by 1 and 5 and the bike capacity is 50 kg. All the remaining properties

of the instance are set as described in Table 3.1. An OpenStreetMap API was used to

get the coordinates (latitude, longitude, altitude). The real distances were also got from

this API by requesting the shortest path for each pair of customers.

A bike routing problem with energy constraints 36

Figure 3.3: BRP solution in Liverpool

Figure 3.4: BRP solution in Liverpool with tighter energy constraint

The first instance is created with a large value for the energy constraint. Figure 3.3

shows the solution route for such a delivery. Figure 3.4 shows the solution for a second

instance based on the previous one but with a tighter energy constraint.

A bike routing problem with energy constraints 37

Bike 1 Bike 2 Bike 3 Bike 4 Bike 5 Totals

Instance 1

distance 29058 12362 29385 33233 0 104038

energy 34727182 15120361 37648382 39928471 0 127424396

load 28 32 45 30 0 135

uphill 21.97 18.83 28.25 0.29 0 69.27

Instance 2

distance 30271 27840 27803 28294 14575 128783

energy 33795350 33214404 33235254 33081808 17537016 150863832

load 12 31 32 25 35 135

uphill 7.84 17.26 20.4 20.4 0.37 66.27

Table 3.7: Details of the bike trips with and without a tight energy constraint

Table 3.7 presents the results of the algorithm in both instances. Due to their capacities

of 50 kg, 4 bikes are needed to satisfy all the customers in the first instance. In both

figures we can notice some small triangles made by the itineraries of the bikes. Although

this might not seem as the shortest path for distances as the crow flies, it is however the

shortest path when considering real distances. In some places, this is due to the network

of real roads e.g. one way roads or detours.

Adding an energy limit on bikes forces the algorithm to use one more bike in the second

instance compared to first one. As a result, we can see that the bikes’ loads are more

balanced. Moreover, the total distance and energy required have increased. This can be

explained by the fact that one more bike has to travel to and from the depot to satisfy

customers that could have been handled by another bike already in the area.

∑
i,j∈N0

max(xkijθij , 0)

|trip|
(3.24)

We compute a metric representing the uphills a bike has to go through with Eq. (3.24)

where |trip| is the number of arcs in its trip. This metric measures how steep and

therefore difficult a bike trip is. From the rows “uphill” in Table 3.7, it can be seen

that the difficulty of the trips is more balanced, this is also supported by the slightly

decreased value of the total uphill compared with the instance 1. The algorithm avoided

steep roads.

Overall, the two solutions are not dramatically different because the objective is still to

minimise the distance. However, we suspect that the distances in an instance can affect

such a change. When distances are too large, changing the customer order to avoid

A bike routing problem with energy constraints 38

uphills would not necessarily decrease the energy as the detours induced could require

more energy. Moreover, changing the sequence of customers would also modify the

load carried and therefore impact the energy. In order to witness a bigger change, one

would need instances with customers closer to each other with good elevation gradients.

Alternatively, one could include another constraint limiting the instantaneous energy

required to move a bike with its load on each arc. As shown in Table 3.2, slopes play an

important role in the energy, therefore the objective could also be changed to include

the energy so that the algorithm would better avoid uphills. Otherwise, limiting the

energy per bike trip would mainly result in re-balancing the load between bikes as in

Figure 3.4. Finally, in our model, the altitude gradient between 2 customers is used to

calculate the elevation profile of each arc i, j. However, 2 customers at the same altitude

could be linked by a road that could have a series of uphills and downhills which should

also be considered.

3.5 Conclusion

This chapter introduced a bike routing problem and made several contributions. First, a

new model was proposed to tackle deliveries by push-bikes while taking into account the

road slopes. It considers the energy required to move the bike as the load accumulates

during the trip. A linearisation was applied to simplify the model and avoid using non-

linear solvers. Second, a modified Evolutionary Local Search was introduced to solve

large instances in a reasonable amount of time. A new split function was designed to

handle energy constraints. Third, a sensitivity analysis was conducted to show how

each parameter influences the performance. This gave a set of default values used

for a comparative analysis of ELS and the proposed mathematical model solved by

CPLEX. The computational results demonstrated the efficiency of our method compared

to CPLEX. Moreover, an instance based on real-world customers was created to better

demonstrate the relevance of the method.

Further research directions can be investigated. Grappe et al. (1997) studied the power

required from a cyclist to move given a certain position. They concluded that an impor-

tant part of the energy is due to the aerodynamic drag of air. Due to the cargo-based

bikes that are being used, the frontal surface area is not negligible when facing significant

winds. Therefore, studying the BRP while considering the wind direction could lead to

better itineraries. Another improvement could be to consider real characteristics of the

roads such as the elevation profile or alternative paths. Two customers could be linked

by several paths of different elevation profiles which could require different energy from

the cyclist. The energy constraint could also be modified to limit the instantaneous

A bike routing problem with energy constraints 39

energy on a given road section instead of considering the accumulated energy for a trip.

Finally, the model could be extended to an arc routing problem for another type of

delivery.

Chapter 4

A rich multi-cross-docking VRP

with pickup and delivery

4.1 Introduction

Commonly, the VRP assumes a homogeneous fleet of vehicles to serve a set of customers

requiring delivery and pickup services with time windows. Sometimes different attributes

are considered alongside another one or two. However, in many practical situations,

companies need to consider numerous attributes of the VRP at once. The large numbers

of transactions implying goods to be delivered to customers all over the world in an

efficient way is a challenge for the logistics companies. To face this challenge, many

research efforts have been made with a strong focus on VRP attributes.

Many VRP attributes have been mostly studied independently, however, emerging con-

cepts like the PI emphasises the need to consider multiple attributes simultaneously.

Few papers like Vidal et al. (2014) attempt to unify and solve numerous problems with

a single general solution. This kind of unification eases the choice of a solution algo-

rithm from the literature given a particular problem. As problems with cross-docking

and the PI are given more interest, companies will need to face optimisation problems

with such constraints. Therefore, this chapter aims to solve a rich VRP with pickup and

delivery including several attributes at once to fill the gap in the literature. To tackle

this problem, a linear programming model is first introduced and solved with CPLEX

for comparison purposes on small instances. Then a multi-threaded SA is proposed to

handle real-world size instances.

40

A rich multi-cross-docking VRP with pickup and delivery 41

4.2 Problem description and formulation

4.2.1 Context

In this work, we aim at scheduling routes of a set of vehicles to satisfy all the customer

requests. The following list of realistic properties are handled: capacitated, hetero-

geneous, mixed pickup and delivery, multiple depots, open route, different start/end

depots, multiple cross-docks, customer time windows, site-dependent. Although this

work is not concerned about the scheduling at cross-dock doors, it differs from most

of the work studying cross-docking as it gathers numerous VRP attributes and mod-

els them with new constraints. As stated by Sarraj et al. (2013), a perceived possible

drawback of the PI comes from the shift from direct-shipping to distributed transport

involving containers being consolidated in several cross-docks with a possible costs in-

crease. However, they showed that PI scenarios can result in significantly lower overall

costs hence making it a profitable alternative. It is also demonstrated that by using

consolidations, PI can induce a significant gain regarding transportation fulfilment rate.

Many other researchers mentioned the benefit of using cross-docking. Yu et al. (2016)

studied cross-docking while considering the cost of hiring vehicles. In Yu et al. (2015),

they discussed the importance of cross-docking for efficient distribution networks as the

costs of holding and handling can be lowered in warehouses. Similarly, Chen et al. (2016)

stated that cross-docking can be an extremely efficient strategy when the inventory costs

are high. While showing that cross-docking can increase the cost of vehicle used, Ah-

madizar et al. (2015) also emphasised the efficiency of consolidation to minimise the

total overall costs. Other research proved the reduction of costs due to cross-docking

strategies in the SCM (Kreng and Chen, 2008). Real-world cases also support those

findings (Wang et al., 2017). In some scenarios, a direct-shipping strategy can still incur

lower costs (Nikolopoulou et al., 2017). However, when P&D pairs are remotely posi-

tioned and clustered, cross-docking can reduce the cost compared to the direct-shipping.

This is also the case when facing a densely connected network with a many-to-many re-

lation between suppliers and customers. Hence the need for a flexible model capable

of handling both strategies which could resemble a many-to-many problem because of

standardised PI-containers and consolidation. Several simulations already demonstrated

the benefit of the PI when simultaneously considering different cost related to vehicles,

truck fulfilment, distance travelled, handling, storage etc. Moreover, as the PI is about

collaboration by sharing resources, even if the cost of a company’s fleet could increase,

it has been shown that the global cost for all the companies collaborating would cer-

tainly decrease as they would share the fleet (Montreuil, 2011; Ballot et al., 2012). As

a consequence, our model designs a set of routes for vehicles while only considering the

cost related to driving time.

A rich multi-cross-docking VRP with pickup and delivery 42

In our VRP with cross-docks, a logistics organisation operates with multiple cross-dock

facilities O to satisfy a set of customers C calling for transportation requests R. The

problem is defined on a graph including a set of nodes N = C ∪O in which for each pair

of nodes i and j, there exists an arc (i, j) of driving time dij . Each customer requests

is characterised by a container, an origin and a destination given by two customers

c1, c2 ∈ C where the first denotes the pickup point, and the second one denotes the

delivery point. A customer request is satisfied when a vehicle picks up the container

at the origin and delivers it at the destination. Cross-docks and customers require a

service time si to handle requests. All requests are associated with their demands/loads

qr > 0 and must be satisfied between a time window [Ai, Bi]. For a given request r,

its pickup and delivery locations are represented by the set {Hp
r , Hd

r }. Each request

has the flexibility to pass through one or multiple cross-docks to be consolidated with

others but is not forced to visit any cross-dock if a direct shipping strategy is more

efficient. Moreover, requests are not necessarily expected to arrive at the cross-dock

simultaneously if an exchange is happening. The organisation uses a set of vehicles K

in which each vehicle k ∈ K has a capacity Qk, a type wk and a set of assigned start

and end cross-docks Ok = {oks , oke}. A single route can contain pickup as well as delivery

locations but cannot include the same cross-dock more than once, except for the cross-

dock depot. Each vehicle k is available within a time window [Ek, F k] and can only visit

nodes for which its type is allowed with zwk
i being equal to 1. Finally, to handle open

routes, a dummy node od representing a cross-dock depot is introduced in the graph. It

is assumed that each arc connecting the dummy cross-dock to another node of the graph

has zero driving time. As a result, any vehicle k with an open route can be addressed

by the model with oks = oke = od.

Figure 4.1: VRP solution with load exchanges

Figure 4.1 shows an example of a VRP solution which includes 4 cross-docks (squares),

10 customer locations (circles) and 4 vehicles represented with 4 small numbers in the

cross-docks. Five requests call for transportation of containers from nodes 5, 7, 9, 11 and

13 to nodes 6, 8, 10, 12 and 14 respectively. In this scenario, pickup and delivery nodes

are located in different cities and therefore must be done by different vehicles. Moreover,

A rich multi-cross-docking VRP with pickup and delivery 43

some constraints force vehicles to return to the depot within time windows. As a result,

vehicles are required to transit via the cross-dock facilities to enable consolidation to

share the transport work. Vehicle 1 first picks up the containers from nodes 7 and 5 to

drop them to cross-dock 2. Then vehicle 2 carries these containers to cross-dock 3 where

vehicle 3 picks them to deliver customers 8, 6. Customers 11 and 12 are also satisfied

by vehicle 3 during its journey in which the container from customer 9 is brought to the

cross-dock 3. After a wait, vehicle 2 can come back to cross-dock 2 with the container

to be delivered by vehicle 1 which was also waiting before visiting customers 13, 10

and 14. The model gives vehicles the flexibility to mix pickups and deliveries through

several cross-docks as for customers 5, 7, 6 and 8 or to directly deliver containers as for

customers 13, 14, 11 and 12. Cross-docks can be left unused if necessary as for cross-

dock 4 and an alternative scenario could allow vehicle 1 to return to another depot or

none after visiting customer 14.

4.2.2 Mixed-integer linear programming formulation

The decision variable y for request transportation and the Big-M formulation/method

are inspired by Maknoon and Laporte (2017) as this work also considers multiple cross-

docks. With M as a large constant slightly greater than the highest value of variables

Bi, the model is defined as follows:

Minimise
∑
k∈K

∑
i∈N

∑
j∈N

xkij ∗ dij (4.1)

subject to:

ukj ≤ Bj ∀k ∈ K, ∀j ∈ C (4.2)

vki +M

1−
∑
j∈N\i

xkij

 ≥ Ai + si ∀k ∈ K, ∀i ∈ C, (4.3)

A rich multi-cross-docking VRP with pickup and delivery 44

vko +M

1−
∑
j∈N\o

xkoj

 ≥ Ek ∀k ∈ K, | o = oks (4.4)

uko −M

1−
∑
j∈N\o

xkjo

 ≤ F k ∀k ∈ K, | o = oke (4.5)

∑
k∈K

∑
j∈N\i

xkij = 1 ∀i ∈ C (4.6)

∑
j∈N\i

xkij ≤ z
wk
i ∀k ∈ K, ∀i ∈ N (4.7)

∑
i∈N

xkij =
∑
i∈N

xkji ∀k ∈ K, ∀j ∈ N\Ok (4.8)

∑
i∈N

xkij ≤ 1 ∀k ∈ K, ∀j ∈ O (4.9)

vki + dij ≤ ukj +M
(

1− xkij
)
∀k ∈ K, ∀i, j ∈ N (4.10)

vki + dij ≥ ukj −M
(

1− xkij
)
∀k ∈ K, ∀i, j ∈ N (4.11)

ukj + sj ∗
∑
i∈N\j

xkij ≤ vkj ∀k ∈ K, ∀j ∈ N\{oks , oke} (4.12)

A rich multi-cross-docking VRP with pickup and delivery 45

∑
r∈R

qry
k
rij ≤ Qk ∀i, j ∈ N, ∀k ∈ K (4.13)

xkij ≥ ykrij ∀k ∈ K, ∀r ∈ R, ∀i, j ∈ N (4.14)

∑
k∈K

∑
i∈N

ykrio ≤ 1 ∀r ∈ R, ∀o ∈ O (4.15)



if oks = oke∑
i∈N x

k
ai +

∑
i∈N x

k
ib = 2 | a = oks , b = oke

otherwise∑
i∈N x

k
ai = 1 | a = oks∑

i∈N x
k
ia − xkaa = 0 | a = oks∑

i∈N x
k
bi = 0 | b = oke∑

i∈N x
k
ib + xkaa = 1 |a = oks , b = oke

∀k ∈ K (4.16)

∑
k∈K

∑
j∈N

ykraj = 1 ∀r ∈ R | a = Hp
r (4.17)

∑
k∈K

∑
j∈N

ykrja = 0 ∀r ∈ R | a = Hp
r (4.18)

∑
k∈K

∑
j∈N

ykrja = 1 ∀r ∈ R | a = Hd
r (4.19)

∑
k∈K

∑
j∈N

ykraj = 0 ∀r ∈ R | a = Hd
r (4.20)

A rich multi-cross-docking VRP with pickup and delivery 46

vka ≤ ukb ∀k ∈ K, ∀r ∈ R | a = Hp
r , b = Hd

r (4.21)

∑
i∈N

ykria −
∑
j∈N

ykraj = 0 ∀r ∈ R, ∀k ∈ K, ∀a ∈ C\Hr (4.22)

∑
k∈K

∑
i∈N

ykrio =
∑
k∈K

∑
i∈N

ykroi ∀r ∈ R, ∀o ∈ O\Hr (4.23)

uk
′
o −M

(
1−

∑
i∈N

yk
′
rio

)
≤ vko +M

(
1−

∑
i∈N

ykroi

)
∀r ∈ R, ∀o ∈ O, ∀k, k′ ∈ K (4.24)

xkij ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K (4.25)

ykrij ∈ {0, 1} ∀r ∈ R, ∀i, j ∈ N, ∀k ∈ K (4.26)

uki ∈ R ∀i ∈ N, ∀k ∈ K (4.27)

vki ∈ R ∀i ∈ N, ∀k ∈ K (4.28)

Eq. (4.1) is the objective considered in this chapter, it is the minimisation of the total

driving time of all the vehicles (without waiting times). The objective is subject to

constraints 4.2 - 4.28. Constraints (4.2) and (4.3) enforce that each customer j is avail-

able for pickup or delivery between times Aj and Bj . Similarly, constraints (4.4) and

(4.5) enforce that each vehicle is only available between times Ek and F k. Constraint

(4.6) imposes that each customer location is served by exactly one vehicle. Constraint

A rich multi-cross-docking VRP with pickup and delivery 47

(4.7) ensures that pickups and deliveries are made by allowed vehicles. Constraint (4.8)

means that each vehicle k can only start and end its route at its assigned cross-docks oks

and oke , respectively. Constraint (4.9) forbids vehicles to visit the same cross-dock more

than once. Constraints (4.10) and (4.11) computes the arrival and leaving times at node

j which in turn depends on the arrival and leaving times of node i and the driving time

between the two nodes. Given an arrival time, the service time at node j is considered

by constraint (4.12) to calculate the leaving time of a vehicle. Constraint (4.13) tracks

the vehicle load that must respect its capacity. For each request, constraint (4.14) links

its transfer decision to a vehicle route. Constraint (4.15) prevents requests from visiting

a same cross-dock more than once. Constraint (4.16) forces each vehicle to depart and

arrive at its assigned cross-dock depots, but it must not visit the depots more than once

(xkaa = 1 if vehicle k is not used). Constraints (4.17) and (4.20) allow request pickup

Hp
r or delivery Hd

r to be handled by a vehicle. The precedence constraints of pickups

and deliveries are checked by constraint (4.21) as they must be consistent. Constraint

(4.22) forbids a vehicle to drop any request load before reaching the delivery location.

Constraint (4.23) controls the flow of requests entering a cross-dock o which has to leave

this cross-dock. Constraint (4.24) synchronises each vehicle k leaving a cross-dock with

another vehicle v carrying its loads to be consolidated. Constraints (4.25)-(4.28) define

the domain of the decision variables as follows. Variable xkij in (4.25) is the route deci-

sion, it is equal to 1 if and only if vehicle k travels from node i to node j, otherwise, xkij

equals 0. Variable ykrij in (4.26) is the transportation decision, it is equal to 1 if customer

request r is transported using vehicle k on its route from node i to node j, otherwise, ykrij

equals 0. The variables uki in (4.27) and vki in (4.28) represent respectively the arrival

and leaving time of vehicle k at node i.

4.3 Meta-heuristic

As shown in Section 4.4, the mathematical model in Section 4.2 cannot be solved exactly

for large instances within a reasonable time. Therefore a meta-heuristic approach is

considered - a multi-Threaded Simulated Annealing with Memory (TSAM). Simulated

Annealing (SA) algorithms have been successfully used to solve combinatorial problems

such as the VRP. Moreover, as shown in the result section, SA tested on the selected

reference benchmark in Li and Lim (2001) yielded good performance for instances up to

200 customers. Consequently, proposing a new SA to solve this problem and comparing

it with CPLEX and best-known results on large instances from SINTEF is the adopted

methodology in this chapter. Researchers, however, can easily integrate any other global

search algorithms of their choice with the features described in this work to handle the

proposed model or a variation of it.

A rich multi-cross-docking VRP with pickup and delivery 48

4.3.1 Architecture

The proposed algorithm has been inspired by Li and Lim (2001) and extended to tackle

the new model. The differences between the algorithm from Li and Lim (2001) and

TSAM are as follows. First, functions overall(), restart(), neighbour search(), and

simulated annealing() in Algorithms 8, 9, 24, 26 were modified and new functions

were introduced. Second, the algorithm was parallelised to better cope with different

instance characteristics simultaneously. The parallelisation allows the algorithm to apply

traditional operators on a solution while trying to add consolidations without slowing

down the overall search. The tabu list was removed and a memory mechanism was

added for the threads to communicate and exchange their last created solutions. Third,

operator PD rearrange() was removed and new ones were added to handle the model

constraints. For example, operator swap() in Algorithm 29 is introduced to better handle

the “different start/end depots” attribute of the model while operator consolidation()

in Algorithm 31 handles attribute “multiple cross-docks”.

Figure 4.2 shows the architecture of the algorithm. Three different threads are launched

on procedure overall(). Basically, procedure overall() handles the current solution

which will be altered by the other functions. Procedure restart() is used to explore

several times a different neighbourhood of the current solution. Compared to procedure

random() in Algorithm 25, procedure neighbour search() only returns a solution that

is better than the current one. However, they both use a random operator from a list

op list. By calling procedure random(), procedure simulated annealing() is used to

allow the exploration of worse neighbourhoods in order to escape local minima.

Figure 4.2: TSAM function architecture

The algorithm uses hierarchical clustering to extract clusters from the instance at hand.

The heights of the clusters are used to identify the group of requests that must be

A rich multi-cross-docking VRP with pickup and delivery 49

consolidated together. If two requests share the same pickup and delivery node clusters

(two distinct clusters), then they belong to the same group. Otherwise, they belong to

separate groups. The group list req groups is then used in function PD consolidate()

to ensure that the operators modify the requests (from the same group) in the same

way.

Each solution and its vehicle routes have a flexible size which depends on the number of

visited customer locations/nodes. In Figure 4.3, the vehicle tours/routes are delimited

by the departure and arrival cross-docks/depots which are the numbers without any

subscript. The ones with subscripts can be the customer or cross-dock nodes. These

subscripts are the links between the nodes which represent the request travel paths. In

Figure 4.3, such links are shown with the subscript numbers. Each node has a list of

request path IDs which links them to other nodes. Such links are necessary to specify

that a certain node must always be in the same vehicle route as another one. Moreover,

a link is used as a position constraint. Therefore, a link contains an ID, is associated

with two nodes and determines the positioning constraints of these two nodes. In Figure

4.3, node 1 and node 2 share a link of ID 1. The presence of this link, plus the respective

positions of these nodes in the solution representation mean that node 1 must be in the

same vehicle route as node 2, which must be positioned somewhere after node 1. This

is because the vehicle must pick up the request at node 1 before delivering it to node 2.

Figure 4.3: Solution representation

The TSAM algorithm uses several parameters as follows: PSMS defines the size of the

memory for the previous solutions. RPLI defines the number of iterations for operator

consolidation() in Algorithm 31 to change the request path length. RPLR defines the

probability for operator consolidation() to choose between operators PD stretch()

and PD shrink() in Algorithms 10 and 11. MIT defines the number of iterations before

using a previous solution in function overall() defined in Algorithm 8. RIT defines the

maximum number of restarts for procedure restart() in Algorithm 9. T0 defines the

initial temperature for procedure simulated annealing() in Algorithm 26. δ defines

the size of the temperature step for procedure simulated annealing().

Here we describe some sub-functions used by the algorithm. Function cost() computes

the objective value of a solution as defined in Section 4.2. Function random double()

returns a random double value between 0 and 1. Function random() picks a random item

from the given list. Function shuffle() randomly permutes the given list. Function

is delivery() returns true if the given node is a delivery node. Function is hub()

A rich multi-cross-docking VRP with pickup and delivery 50

returns true if the given node is a cross-dock. Function remove() removes the given

request from the given node. If the node has no request left, it will be removed from

the given solution route. Function insert() inserts the given request path ID in the

given node if it is not present. Then insert the node in the specified solution route.

However, if the node already exists in the route, the function only adds the request path

ID to the node. Function get best indices() returns all the possible indices from the

solution route at which the given node can be inserted. The indices are sorted from best

to worst giving the resulting route distance. Function get best solution() returns the

best solution found from all the threads. Function random previous solution() returns

randomly a previously found solution. Function is valid() checks if the given solution

is valid according to all the attributes defined in Section 4.2. Function PD arrange()

creates a solution where all the P&D pairs are positioned in vehicles of which the start

depots are located in the same clusters.

4.3.2 Algorithm functions

This section describes all the functions of the algorithm and gives some pseudo-codes.

Readers can refer to the appendix to get more details for the rest of the pseudo-codes.

Algorithm 8: Overall algorithm

1 //Input: problem instance;
2 //Output: the best solution Sb found;
3 Sb ← init solution();
4 no progress← 0;
5 while Termination criterion not reached do
6 S ← get best solution() //from shared memory;
7 if no progress % MIT = 0 then
8 S ← random previous solution() //from shared memory;

9 S ← restart(S);
10 if cost(S) < cost(Sb) then
11 Sb ← S;
12 no progress← 0;

13 else
14 no progress← no progress+ 1;

15 return Sb;

Algorithm 8 includes the main steps of the meta-heuristic. It is launched in parallel

by three different threads which contain a different operator list op list. Thread 1 has

an operator list of PD interchange() and PD move(). Thread 2 has an operator list

of PD consolidate(). Thread 3 has an operator list of PD swap() and PD exchange().

Each thread memorises all the solutions found so that they can be re-used if there is no

A rich multi-cross-docking VRP with pickup and delivery 51

improvement for a long time. This memory is shared between all the threads so that a

solution can be modified by all the operators. If the memory size is greater than PSMS,

a random solution is then removed.

In Algorithm 8, function restart() in step 9 is iteratively launched with the best solution

or a random previous solution until the termination criterion is reached. While step 6

is used to retrieve the best solution found among all the threads, step 8 get a random

solution found by all the threads. Algorithm init solution() in step 3 is used to

generate an initial solution based on the insertion heuristic of Solomon. The initialisation

function does not use the consolidation operators PD stretch() and PD shrink(). Only

customer nodes are handled at this stage as solutions involving load exchange with

hubs cannot be found at this stage. As a consequence, the feasible region of instances

must include at least one solution without consolidation. To start, one first pair of

P&D customers is inserted then the insertion positions of each unrouted pair of nodes

are considered to minimise the additional distance induced by their insertion in the

partially created route. The function continues inserting P&D pairs in the current route

until a constraint is violated, in that case, the insertion is tried in the next route. As

P&D nodes must be kept together, in case a delivery node could not be inserted, the

function first removes the pickup node and then tries another solution route with both

nodes.

Algorithm 9: Restart function

1 //Input: a current solution Sc;
2 //Output: the best solution Sb found;
3 S ← neighbor search(Sc);
4 Sb ← S;
5 while no progress < RIT do
6 S ← simulated annealing(S);
7 S ← reorder routes(S) //re-order routes modified by PD exchange() and

PD move();
8 S ← neighbor search(S);
9 if cost(S) < cost(Sb) then

10 Sb ← S;
11 no progress← 0;

12 else
13 no progress← no progress+ 1;

14 return Sb;

Algorithm 9 is used to explore the neighbourhood of a solution several times. Procedure

simulated annealing() in step 6, is used to escape local minima by potentially accept-

ing worse solutions. At each iteration, the temperature is updated to give a probability

to accept a solution created by procedure random solution(). This algorithm allows the

A rich multi-cross-docking VRP with pickup and delivery 52

global search to make random moves by returning a random solution in the neighbour-

hood of a given solution. At each iteration, a random operator in op list is applied to

the given solution until any solution is found or until the iteration count is greater than

RIT . To better explore the neighbour solutions, the proposed approach includes pro-

cedure neighbor search() which returns a better solution in step 8. At each iteration,

a random operator in op list is applied to the current solution until no improvement is

made. Function reorder routes() in step 7 is used to re-order the routes modified by

operators PD exchange() and PD move(). Each pair of nodes is re-inserted into its route

using Solomon’s insertion procedure.

4.3.3 Algorithm operators

This section describes all the operators implemented in the algorithm and provides

pseudo-codes. As before, readers can refer to the appendix to get more details for the

rest of the pseudo-codes. Each operator iteratively performs a move and returns a new

solution if it is valid. Otherwise, if the iteration count is greater than the number of

customer |N | or RPLI for Algorithm 31, the operator stops and returns no solution.

Algorithm 27 alters a node position in a vehicle route by removing and inserting it

somewhere else in the same vehicle route. Algorithm 28 moves a pair of P&D nodes from

a vehicle route to another one. It tries to select vehicles that are already used. Algorithm

29 replaces an entire vehicle route by another one. All the nodes from two routes are

exchanged while checking if the new routes do not contain the depots as intermediate

cross-docks. This can be useful when the vehicles have different depots. Algorithm 30

selects four P&D nodes from two different vehicle routes and exchanges them. Algorithm

31 changes a request path length by adding or removing an intermediate cross-dock.

At each iteration, a request group is randomly selected. Function PD stretch() or

PD shrink() is randomly selected (given the probability RPLR) to be applied to the

request path ID in the group. If the vehicle or the cross-dock count is equal to 1, there

are not enough resources to have load exchange, therefore the operator is not used.

Figure 4.4: Stretch operator

Figure 4.5: Shrink operator

A rich multi-cross-docking VRP with pickup and delivery 53

Algorithm 10: PD Stretch operator

1 //Input: a current solution Sc, a request r, a set K of vehicles;
2 //Output: a solution S found;
3 valid← false;
4 while not valid do
5 S ← Sc;
6 k ← random(K) //get a random vehicle route where r is present;
7 v ← random(r,K/k) //v must be different from k and must not contain r;

8 pickup← get pickup(r, Sk) //get pickup node of request r from route k of
solution S;

9 delivery ← get delivery(r, Sk);

10 hub1 ← get hub(Sk, Sv) //random cross-dock which is not a depot in the given
routes;

11 hub2 ← clone(hub1);

12 remove(delivery, r, Sk);

13 insert(hub1, r, S
k);

14 insert(hub2, r, S
v);

15 insert(delivery, r, Sv);
16 valid← is valid(S);

17 return S;

Algorithm 11: PD Shrink operator

1 //Input: a solution Sc, a request r, a set K of vehicles;
2 //Output: a solution S found;
3 valid← false;
4 while not valid do
5 S ← Sc;
6 k ← random(K) //get a random vehicle route where r is present;

7 pickup← get pickup(r, Sk);

8 hub1 ← get delivery(r, Sk);
9 if is hub(hub1) = false then

10 continue;

11 v ← get route(r, k) //get the vehicle route linked to route k via request r;
12 hub2 ← get pickup(r, Sv);
13 delivery ← get delivery(r, Sv);

14 remove(hub1, r, S
k);

15 remove(hub2, r, S
v);

16 remove(delivery, r, Sv);

17 insert(delivery, r, Sk);
18 valid← is valid(S);

19 return S;

Algorithm 10 inserts intermediate nodes in a request path. Instead of using the di-

rect shipping strategy, a trans-shipment strategy is applied. Therefore the requested

container will be exchanged at a cross-dock. When selecting v and hub1, vehicles and

A rich multi-cross-docking VRP with pickup and delivery 54

cross-docks from the same cluster as the pickup and delivery nodes are favoured. The

function memorises and reuses the selected vehicle route and intermediate cross-dock

so that each request path from a group gets the same route and cross-dock. In Figure

4.4, the solution at the top has been altered and resulted in the solution at the bottom.

The request path 2 has been changed and now includes the cross-dock node 10 as an

intermediate. This means that vehicle 1 will pick up the container from node 3 to drop it

at node 10 so that vehicle 3 could pick it up from its departure node 10 and deliver it at

node 4. Algorithm 11, represented in Figure 4.5, does exactly the opposite to Algorithm

10.

4.4 Computational results

4.4.1 Solver configuration

Generator parameters Values

cross-dock number {1, 2, 5}
request number {10, 15, 30, 50}
vehicle number {2, 4, 5}
vehicle capacity {50, 100}

request load 5

node time window 0-1000

vehicle time window 0-1000

node service time 1-10

2D coordinates (x,y) 0-100

Table 4.1: Generator parameters

As this VRP with P&D and multiple cross-docks is a new problem, there is no data-

set available. Therefore, data-sets must be generated randomly. Table 4.1 shows an

example of parameters that can be used to generate instances. Node locations and other

instance characteristics are randomly generated with an uniform distribution. The time

windows are generated as follows. They were first generated as loose constraints and

then iteratively tightened until the model became infeasible. In the end, values from

the last feasible iteration were saved and used. The ranges for the other parameters are

selected in a similar way. There is no predefined unit for the time and the coordinates.

Details about the instances are given in Table 4.3.

A rich multi-cross-docking VRP with pickup and delivery 55

Algorithm parameters Values References

PSMS 100 8

RPLI 2 31

RPLR 0.50 31

RIT 20 9

MIT 5 8

T0 50 26

δ 0.75 26

Table 4.2: Solver parameters

Table 4.2 presents the parameter values used for the experiments. These parameters val-

ues have been identified after a sensitivity analysis to allow the algorithm to provide the

best performances. Column “references” indicates where the parameters are mentioned

in the chapter.

Just like several papers in the literature, a comparative analysis of the proposed algo-

rithm and the proposed mathematical model solved by CPLEX is presented. The model

of the CPU used is ’Intel(R) Core(TM) i9-7900X CPU @3.30GHz’. The model is imple-

mented using the CPLEX OPL library and included in a Java framework. The version

12.7 of CPLEX is used with its default configuration and therefore allows parallel com-

puting. Therefore each instance was solved only once by CPLEX. The meta-heuristic

algorithm was also implemented and included in a Java framework. The algorithm was

launched 30 times for each instance, then the averages were reported.

4.4.2 Parameter tuning

Figure 4.6 shows the convergence of the algorithm with different parameters on the

instance d5q50k2c1r10. Compared to the one used in Table 4.3, this instance is more

challenging as the algorithm tends to get trapped in local minima more easily with

bad parameter values. Those results have been used to set the default values of the

parameters in Table 4.2. In order to analyse the parameter sensitivity, the following

reference values have been used: PSMS = 20, MIT = 5, T0 = 40, delta = 0.95,

RIT = 5, RPLI = 10, RPLR = 0.50. For each figure, a single parameter is changed

to 5 different values and the convergence of the algorithm is reported. The termination

criterion is set to 2 minutes of running time.

Overall, parameter values which give the best convergences also give the best results

at the end of the search, therefore those values are selected as default. RPLR is set

A rich multi-cross-docking VRP with pickup and delivery 56

20 40 60 80 100 120

530

540

550

Time(s)

C
o
st

5
10
50
100
200

(a) MIT sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
os

t

1
5
10
50
100

(b) PSMS sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
os

t

1
2
5
10
20

(c) RIT sensitivity analysis plot

20 40 60 80 100 120

525

530

535

540

545

550

Time(s)
C

os
t

1
2
10
20
30

(d) RPLI sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
os

t

5
10
50
100
200

(e) T0 sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
os

t

0.25
0.5
0.75
0.9
0.95

(f) δ sensitivity analysis plot

Figure 4.6: Parameters sensitivity analysis

at 0.50 as this ratio provides a good trade-off to create solutions with consolidation by

adding or removing intermediate cross-docks. A bigger ratio would provide solutions

with detours while a smaller ratio would prevent consolidations. It should be noted that

those convergences might vary from instance to instance as their characteristics can be

different. RPLI could be set to a bigger value to allow a longer search in an infeasible

region while using consolidations. PSMS and MIT can be useful to escape local minima

as they allow the algorithm to research in previous solution neighbourhoods. Besides,

T0 and δ can be adjusted to better explore those regions.

A rich multi-cross-docking VRP with pickup and delivery 57

4.4.3 CPLEX and meta-heuristic performances

CPLEX TSAM

Instance Objective Lower bound Gap Time (s) Avg objective Avg time (s) Best objective Best time (s)

d5q50k2c1r10 441.98 441.98 Optimal 107 441.98 0 441.98 0

d5q50k2c1r15 378.46 >10800 558.14 63 557.56 77

d5q50k4c1r30 603.18 >10800 1078.34 101 1010.07 49

d5q50k5c1r50 1535.28 209 1444.22 232

d5q50k2c2r10 589.65 589.65 Optimal 65 589.65 37 589.65 18

d5q50k2c2r15 440.24 >10800 681.04 29 649.43 77

d5q50k4c2r30 801.32 >10800 1224.89 116 1185.26 56

d5q50k5c2r50 973.09 >10800 1739.4 172 1571.92 113

d5q50k5c5r10 447.12 336.28 24.79 10343 407.88 60 398.22 232

d5q50k5c5r15 486.52 >10800 731.77 64 622.19 20

d5q50k5c5r30 592.49 >10800 1022.47 118 900.65 254

d5q50k5c5r50 >10800 1510.3 199 1371.46 237

d5q100k2c1r10 459.73 433.78 5.64 4358 459.73 6 459.73 2

d5q100k2c1r15 441.81 >10800 550.62 22 550.54 50

d5q100k4c1r30 614.89 >10800 1131.31 122 1025.49 79

d5q100k5c1r50 >10800 1622.08 213 1465.62 253

d5q100k2c2r10 605.43 605.43 Optimal 0.5 605.43 0 605.43 0

d5q100k2c2r15 769.08 769.08 Optimal 7 805.68 24 769.09 32

d5q100k4c2r30 745.17 >10800 1066.58 81 1056.99 94

d5q100k5c2r50 1002.97 >10800 1598.83 210 1509.94 278

d5q100k5c5r10 447.12 336.28 24.79 10326 409.8 39 398.22 138

d5q100k5c5r15 485.88 >10800 735.4 67 622.19 111

d5q100k5c5r30 588.83 >10800 1008.49 116 870.56 100

d5q100k5c5r50 >10800 1445.76 220 1325.15 271

Table 4.3: CPLEX and TSAM comparison

Table 4.3 shows the results of CPLEX and the meta-heuristic algorithm for several

instances of different request quantities. The instance names give the request demand

d, the capacity of the vehicle q, the vehicle number k, the cross-dock number c and the

request number r. On top of that, there are vehicles with different start and end depots,

requests with special vehicle type requirements and vehicle time windows. As CPLEX

is an exact solver and gives optimal solutions when feasible, it needs significantly more

time to finish the search. Therefore, the termination criteria for the meta-heuristic and

CPLEX are set at 5 min and 3 hours, respectively. Columns Lower bound and Gap give

the last infeasible lower bound and Gap found by CPLEX when it ended. If CPLEX

was able to find the optimal solution before the end, columns Lower bound would give

this optimal solution and column Gap would contain the word optimal. Column Time

(s) indicates when the solver found the last feasible solution. If the value is > 10800, it

indicates that the search needed more than 3 hours to converge. Columns Avg objective

and Avg time (s) give the average of the results over 30 runs while columns Best

objective and Best time (s) give the details of the best solution.

A rich multi-cross-docking VRP with pickup and delivery 58

From Table 4.3 it can be seen that the proposed algorithm outperforms CPLEX. On the

one hand, on instances containing more than 30 customers, CPLEX couldn’t provide

any feasible solutions but gave the lower bound. However, for some instances containing

50 requests and therefore 100 customers, CPLEX could not provide any lower bound

therefore, those rows are left blank. It can be noticed that the difficulty can also vary

between two instances containing similar characteristics. This is due to the node loca-

tions. On the other hand, the proposed algorithm is not only able to match the results

of CPLEX for small instances but is also able to find solutions for large instances. As

expected, on average, when the number of requests, vehicles, cross-docks increases or

the vehicle capacity decreases, the instance difficulty increases.

4.4.4 Consolidation performances

With Without

Instance Distance Vehicle Consolidation Time (s) Distance Vehicle Consolidation Time (s)

d1q2-5k5c6r2 253.14 3 4 0 284.7 1 0 0

d1q5k5c6r5 267.76 3 10 1 291.71 1 0 0

d1q10k6c4r10 280.74 6 12 3 292.99 1 0 1

Table 4.4: Consolidation feature results

To study the difference brought by using consolidation centres, we tested TSAM on

some special instances with and without the consolidation feature. Table 4.4 shows the

best results of the meta-heuristic algorithm on several instances with different numbers

of requests. The instances are clustered so that they represent cities where the deliveries

have to be made by special vehicles. Moreover, those cities are linked by highways that

can only be used by a specific type of vehicle. Vehicles of this type are not forced to

return to the start depot. As a result, using this vehicle would improve the solution cost

but require consolidations with the other vehicles. Columns With and Without give the

results of the algorithm with and without the consolidation function, respectively. The

distance, the number of vehicles used and the number of consolidations are reported.

From Table 4.4 it can be seen that the consolidation feature is of great importance to

find better solutions when cross-docking is involved. Without the consolidation, only

one vehicle is used to pick up and deliver all the requests, then it returns to the start

depot. However, with the consolidation, several vehicles are used and exchange their

loads. This decreases the total distance driven as a specific vehicle is used on the highway

and does not need to return to the start depot.

A rich multi-cross-docking VRP with pickup and delivery 59

Figure 4.7: Dendrogram of an instance with clustered nodes

Figure 4.7 represents the hierarchical clustering of the instance shown in Figure 4.1.

In this dendrogram using an average linkage strategy, the heights reflect the distance

between the clusters. In this case, the dendrogram shows that there are two main clusters

grouping customers. This clustering method helps the algorithm to group requests that

can be consolidated together for better solutions cost. In this case, since pickup nodes

5 and 7 belong to a different cluster from delivery nodes 6 and 8, the algorithm will try

to consolidate their containers.

4.4.5 Benchmark performances

Best known TSAM

Instance Distance Vehicle Avg distance Avg time (s) Avg iteration Best distance Best vehicle Best time (s)

lc101s 828.94 10 828.94 0 0 828.94 10 0

lr101s 1650.8 19 1650.8 66 493 1650.8 19 17

lrc101s 1708.8 14 1713.15 114 849 1703.21 15 252

lc1 2 1s 2704.57 20 2704.57 25 46 2704.57 20 18

lr1 2 1s 4819.12 20 5106.47 845 2129 4873.54 21 884

lrc1 2 1 3606.06 19 3765.98 859 3188 3606.06 19 872

lc109q 1000.60 9 839.25 56 695 827.82 10 88

lr201 1253.23 4 1339.09 320 5218 1286.83 5 512

lrc 1 2 5s 3715.81 16 4313.25 1043 4950 4044.81 20 1309

Table 4.5: Li&Lim benchmark

Table 4.5 shows the results of the proposed algorithm on some instances of Li&Lim’s

benchmark SINTEF to evaluate the performance of TSAM on the general PDP. It should

be noted that the results in SINTEF are continuously updated with the best-known

results from the state-of-the-art algorithms in the literature. To test all the different

configurations, instances from each group (clustered, random, and random-clustered

A rich multi-cross-docking VRP with pickup and delivery 60

nodes) for 100 customers and 200 customers were selected. Columns Best known give

the best-known solution details (taken from SINTEF) on the selected instances while

columns TSAM give the results of the proposed algorithm. Columns Avg distance and

Avg time (s) give the average of the results over 30 runs while columns Best distance,

Best vehicle and Best time (s) give the details of the best solution. Those results

include the distance driven by all the vehicles, the number of vehicles used and the time

at which the solution was found. The termination criterion for the meta-heuristic is set

at 25 min.

From Table 4.5 it can be seen that the proposed algorithm is able to find some of the

best-known solutions in a reasonable amount of time. On top of that, the interesting

result of instance lc109 shows that TSAM can provide solutions which improve the

distance compared to the best-known ones while using more vehicles. However, there

are instances for which TSAM could only find near-optimal solutions. This can be

explained by the objective being different, this type of instance is better solved by

approaches which focus on reducing the number of vehicles used. Our method, on the

other hand, needs to try several vehicles to find consolidation opportunities as shown

in Table 4.4 while also trying different combinations of vehicles due to the multi-depot

constraint.

4.5 Conclusion

Cross-docking is known to be one of the most effective strategies in logistics systems to

improve the flow of products in supply chains. Therefore, in this chapter, a rich VRP

with pickup and delivery and multiple cross-docks was considered. This problem tackles

several attributes of the problem to cope with realistic constraints - capacitated, het-

erogeneous, mixed pickup and delivery, multiple depots, open route, different start/end

depots, time windows and site-dependent. An MILP model is designed and solved by

CPLEX. Given the high complexity of the considered problem, especially in large scale,

a meta-heuristic is also developed. Experiments are conducted using a wide range of

generated data-sets that reflect different real-life constraints. Those constraints can force

requests to be consolidated in cross-docks during deliveries. It is shown that CPLEX

cannot find good solutions in a reasonable amount of time for the biggest instances.

However, the proposed algorithm not only outperforms CPLEX in all the benchmark

instances but is also able to scale up. Moreover, the proposed algorithm can also match

some of the best-known results by state-of-the-art methods on the benchmark of Li&Lim

on large instances.

A rich multi-cross-docking VRP with pickup and delivery 61

The main contribution is twofold. Firstly, we presented a new rich VRP that has not

been addressed before. An MILP model is proposed to tackle this problem. Secondly, a

multi-threaded simulated annealing algorithm with memory including new operators is

introduced to handle real-world size instances.

There are a few directions for further research. Since the problem is new, some standard

benchmarks could be created for future comparison purposes. Also, the proposed algo-

rithm could be integrated into a unified solution framework for multi-attribute. Finally,

one could extend the problem at hand by considering other constraints such as working

hours, rest times for drivers or even multi-objective and dynamism.

Chapter 5

A rich multi-objective and

dynamic VRP with uncertainty

5.1 Introduction

Because of recent advances in information and communication technologies such as GPS

IoT, and traffic flow sensors, vehicle fleets can now be monitored in real-time. As a re-

sult, interest from researchers increases to address the dynamic or stochastic version of

the problem. In this context, the dynamism characteristic implies that the information

needed to solve the problem is being revealed while searching a solution. This real-time

constraint forces the solver to re-optimise the problem solutions several times. Whereas

in a stochastic problem, some elements are known only by their probability distribution

and become certain when the vehicle visits the customers. Moreover, modern logistics

receives increasing attention for planning and scheduling operations of transport systems

in a more efficient and environmentally sustainable way. To respond to those new con-

cerns, the new concept of PI emerged to interconnect different transportation networks

while allowing collaborations to deliver containers. By doing so, transportation loads

are better shared, and therefore, cost and waste are reduced.

As an extension of the VRP, the pickup and delivery problem is also an important com-

binatorial optimisation problem in the transportation industry. Therefore, this chapter

considers the previous work from Chapter 4 in which we studied a rich VRP with pickup

and delivery while incorporating constraints for the PI. We extend the problem with re-

alistic constraints such as dynamism, multi-objective and uncertainty. Our motivation

in this context is the collaboration with a local company which handles a fleet of bikes

to deliver goods across the city. The company provides us with historical data which are

then used to anticipate future requests. Those request predictions are given probabilities

62

A rich multi-objective and dynamic VRP with uncertainty 63

and included in the model as stochastic information. Delivery via cross-docking is also

of great interest, therefore, this research aims at solving a rich VRP with pickup and

delivery including multi-objective, dynamism and uncertainty. The extension is also

intended to illustrate that the proposed approach can be applied to a wide range of

real-world problems.

5.2 Problem description and formulation

5.2.1 Context

This section reintroduces the problem described in Chapter 4 - a rich VRP while propos-

ing an extension of the model. The following list of properties are handled: capacitated,

heterogeneous, mixed pickup and delivery, different request types, open route, different

start/end depots, multiple cross-docks, multiple depots, customer time windows, vehicle

time windows (vehicle availability), site-dependent, dynamism, multi-objective, uncer-

tainty. The problem at hand is based on a case study from a distribution company in

Liverpool. One of the services offered by this company is to pick up goods from customer

locations and deliver them to other customer locations using bikes. As cycling uphill

with a cargo-bike might represent a considerable effort, altitude gradients have to be

considered. The company can use intermediate facilities such as cross-docks to allow

load exchanges between bikes. Bikes are initially placed at depots, are homogeneous,

and have a given capacity which cannot be exceeded. The logistics company operates

with multiple cross-dock facilities O and uses a set of bikes K where each bike k has

a capacity Qk. Each bike must start and end its route at its assigned cross-docks Oks

and Oke . The company is responsible for satisfying a set of customer requests R. Each

request is related to two nodes - customers or cross-docks (n1, n2 ∈ N); the first denotes

the pickup point, and the second one denotes the delivery point. All the requests are

associated with their demands qr > 0. For a given request r, its pickup and delivery

locations are represented by the set Hr = {Hp
r , Hd

r }. Each request can pass through

multiple different cross-docks to be consolidated with others. Customers are expected

to be served the same day and can have time windows restricting the service. Customers

are allowed to call in orders at any time during the day. Therefore, a rolling-horizon

procedure is followed to handle the dynamic characteristic of the system. This approach

consists in splitting the planning horizon in a sequence of periods of equal length. The

dynamic problem is therefore modelled as a sequence of static sub-problems aiming at

optimising the problem using only the information known in the current period. For

each period, a set of new customers C+ is revealed and incorporated into the model

with previous customers C− such as the set of current customers is C. The problem is

A rich multi-objective and dynamic VRP with uncertainty 64

defined on a graph including a set of nodes N such as N = C ∪O = C− +C+ ∪O. For

each pair of nodes i and j, there exists an arc (i, j) of driving time dij . The aim is to

design a set of routes with the lowest cost where each route is a solution for a certain

bike.

5.2.2 Mixed-integer linear programming formulation

One of the objectives of the PI is to be more flexible as to where requests can originate

and terminate. Therefore, constraint (5.1) allows requests to not only be from cus-

tomers to customers (customer requests) but also from customers to cross-docks (mixed

requests), cross-docks to customers (mixed requests) or cross-docks to cross-docks (cross-

dock requests). A request entering a cross-dock o still has to leave this cross-dock if the

delivery location is not this cross-dock. Therefore just like customers, cross-docks are

now also given time windows. Constraints (5.2) and (5.3) enforces that each node j is

available for pickup or delivery between times Aj and Bj . Variable xkij is equal to 1 if

and only if bike k travels from node i to node j. Variable ykrij is equal to 1 if customer

request r is transported using bike k on its route from node i to node j, otherwise, ykrij

equals 0.

∑
k∈K

∑
i∈N

ykrio =
∑
k∈K

∑
i∈N

ykroi ∀r ∈ R, ∀o ∈ O\Hr (5.1)

ukj ≤ Bj ∀k ∈ K, ∀j ∈ N (5.2)

vki +M

1−
∑
j∈N\i

xkij

 ≥ Ai + si ∀k ∈ K, ∀i ∈ N (5.3)

In this thesis, the DVRP is tackled by re-optimising solution routes at pre-determined

time intervals throughout the day. This allows a formulation as a p-interval problem,

where p is the number of periods where re-planning is allowed. By splitting the problem

into periods, we allow the algorithm to accumulate events before responding. As opposed

to the static routing problem, in the dynamic case, the time dimension is essential. The

dispatcher must know the position of all bikes at any given point in time and particularly

between each period. This allows the decision making to change a previous solution

A rich multi-objective and dynamic VRP with uncertainty 65

according to the nodes already visited by the bikes. Therefore, constraints (5.4) and

(5.5) forbid any decision taken before time t to be changed unless the bike has not yet

visited the node related to the decision. Given o = Oks , if xkoo equals to 1 then the bike

k stays in its start cross-dock and is not used for at least the current period. Variable

xk−ij is equal to 1 if bike k ∈ K was supposed to travel from location i to j according to

the solution of the previous period.

vk−i < t ∧ xk−oo = 0→ xkij = xk−ij ∀i, j ∈ N
k−, ∀k∈K | o = Oks (5.4)

vk−i < t ∧ xk−oo = 0→ ykrij = yk−rij ∀r ∈ R
−, ∀i, j ∈ N−, ∀k∈K | o = Oks (5.5)

A request prediction based on historical data is introduced to handle dynamic customer

requests. Since customers are mostly charities, restaurants, or shops, the requests are

regular enough to anticipate requests given a weekday. It is then reasonable to predict

the new dynamic requests according to the historical data. With accurate prediction,

the proposed algorithm is able to plan a good predictive route that can be easily tuned

to fit the real requests over time. Future consolidations can be anticipated by sending a

bike in a certain area to wait for requests. Each request prediction is given a probability

to appear in a certain period. The apparition probability is noted P(r). Then the

system filters the predictions with probabilities lower than a threshold and returns the

requests. The number of requests for each period is limited.

For the problem considered in this chapter, the uncertainty is defined by the likelihood

that the request would appear or not. All the other request attributes such as pickup

and delivery locations, demands, TWs are deterministic. Given the uncertainty at hand,

recourse actions can be performed as bikes might not be able to satisfy all the customers

within their TWs. In this case, recourses are handled by allowing TWs to be violated

as a soft constraint. Therefore, delays and early arrivals are now an objective to be

minimised by considering equations (5.6) and (5.7) for the delay and early time of bike

k at the node i.

lki =

0, if uki ≤ Bi

uki −Bi otherwise
∀i ∈ N, ∀k ∈ K (5.6)

A rich multi-objective and dynamic VRP with uncertainty 66

eki =

0, if uki ≥ Ai

Ai − uki otherwise
∀i ∈ N, ∀k ∈ K (5.7)

The objectives considered in this chapter can be summarised as the minimisation of the

vector function F defined in (5.12). F is subject to the constraints in Chapter 4 and

the modified ones in this section.

Equation (5.8) computes the total travel distance (f1). Equation (5.9) computes the

number of bikes used (f2). Equation (5.10) computes the total delays and early times

of all the bikes (f3). Equation (5.11) computes the elevation difficulty for the bike tours

(f4) with θij as the slope of arc (ij).

All these objectives have to be considered simultaneously to satisfy the company’s needs.

As shown in Chapter 3, distance minimising might increase the cyclist effort due to

slopes. Moreover, minimising the distance or the travel time does not necessarily assure

that all TWs will be met as customers might have TWs scattered throughout the day.

Finally, as discussed in Section 4.2, due to the cross-docking nature of this problem,

fewer vehicles does not always guarantee a better solution.

f1 =
∑
k∈K

∑
i∈N

∑
j∈N

xkij ∗ dij (5.8)

f2 =
∑
k∈K

(
1− xkii

)
| i = Ok (5.9)

f3 =
∑
k∈K

(∑
i∈N

lki +
∑
i∈N

eki

)
(5.10)

f4 =
∑
k∈K

∑
i,j∈N max(xkijθij , 0)∑

i,j∈N x
k
ij

(5.11)

A rich multi-objective and dynamic VRP with uncertainty 67

F = {f1, f2, f3, f4} (5.12)

5.3 Meta-heuristics

The mathematical model of Section 5.2 cannot be handled by traditional solvers, there-

fore a meta-heuristic approach is considered - a Genetic Algorithm (GA). In a GA, a

population of individuals evolves generations after generations toward better solutions

which are assessed for their fitness. For the VRP, each candidate solution is represented

by an individual chromosome which can be mutated and altered. GAs have been largely

used to solve VRPs, for example, papers by Prins (2004), Kuo and Zulvia (2017), Wang

and Wu (2017) showed the quality of GAs applied to the VRP. When it comes to adapt-

ability and flexibility to handle a maximum of constraints as in Vidal et al. (2014), GAs

are often used to tackle those problems.

Moreover, only a few papers proposed to solve the VRP with a single cross-dock using

GAs, for instance, Touihri et al. (2017). The others used other methods such as Tabu

Search, Swarm intelligence etc. But very few tried to solve this problem with multiple

cross-docking facilities (Maknoon and Laporte, 2017), and even fewer solved it with

many additional attributes (Dondo et al., 2011). Evolving a population of solutions

including multiple cross-docks is a challenging task. Spatial and time synchronisations

of the vehicles have to be constantly checked in order to keep a population of only

feasible solutions. This thesis fills this gap by solving this problem with a GA.

In a GA, a population of solutions called chromosomes is evolving through several genera-

tions. This evolution process includes parents mating and mutations to beget offsprings.

The fitness of each offspring is computed to control the evolution of the population

and discard the worst chromosomes. The idea is to steer the population to search for

the optimal solutions to a given problem instance. As generations occur, offsprings are

filtered while the best ones get stored. Classical GA crossovers are not applicable to

our problem due to the multiple cross-docks constraint. For instance, Shi et al. (2009)

proposed a genetic algorithm and implemented a pheromone-based crossover operator

for the VRP with pickup and delivery. It differs from the general VRP with pickup

and delivery as the commodity provided by pickup customers can be trans-shipped to

any delivery customers. Their pheromone-based crossover creates offsprings by selecting

neighbouring customers from the parents. However, in a cross-docking problem, their

crossover selection feature could not work due to cross-dock nodes appearing multiple

A rich multi-objective and dynamic VRP with uncertainty 68

times in a single chromosome. Hence the need for a new crossover that can handle

multiple cross-docks.

5.3.1 Architecture

(a) Architecture considering a Pareto method

(b) Architecture considering a Lexicographic method

Figure 5.1: Examples of framework architectures to handle the problem

Our framework can work in two different modes, the Pareto mode and the Lexicographic

mode. Its architecture is illustrated in Figure 5.1. For both modes, one main algorithm

is selected from N algorithms to solve the instance. In this chapter, we developed and

selected algorithm genetic algorithm() defined in Algorithm 12 to be launched by

three different threads. The process is defined as follows: The predicted nodes with

the static nodes are given to the framework as input to provide a solution. Before

sharing with the dispatcher, predicted request nodes that have not yet occurred are

removed from the solution. Figure 5.1(a), represents the Pareto method in which a

Pareto front of trade-off optimal solutions is found at each interval. The dispatcher must

then choose a single solution to schedule vehicles. Three procedures are used to handle

the multi-objective feature in this mode. Procedure pareto dominance() in Algorithm

A rich multi-objective and dynamic VRP with uncertainty 69

32 compares two solutions to know if the first one C1 dominates or not the second one

C2. Procedure pareto front() in Algorithm 33 returns a set of solutions which are

not dominated by any other solutions - the Pareto front. Procedure pareto ranks() in

Algorithm 34 ranks the solutions in a given set by iteratively removing Pareto fronts.

Figure 5.1(b), represents the Lexicographic method used as default in our framework.

In the classical lexicographic method, objectives are ranked in the order of importance.

A sequence of single-objective linear problems is solved according to the objective ranks.

Once a solution to the problem has been found, a new constraint is added to the next

subsequent linear problem to limit the value of the current objective. The next linear

problem is then solved considering the next objective in the rank. We propose a new

version of the lexicographic method which differs from the above as the objectives are

given probabilities instead of ranks. Single-objective linear problems are still solved

sequentially but no constraint is added. Only one linear problem is solved during each

period with a selected objective according to its probability. For instance, given the

objective priorities as follows: TW delays, distance, elevation and vehicle. A possible

probability distribution for the objectives could be 0.4 0.3 0.2 0.1. Therefore, at each

interval during the time horizon, a different objective is selected in order to get a single

solution from the Pareto set that best minimises the selected objective. As new requests

are ordered in, predicted nodes are being replaced accordingly if they match. However,

all the predicted nodes are removed from the solution given to the dispatcher. The

choice of such a method to handle dynamism is to try and test other features instead

of well-known scalarization methods. The idea is motivated by the hypothesis that the

crossover and local search operators can better focus on a single objective at a time.

As the time horizon is highly dynamic, the selected objective would regularly change to

allow those operators to produce solutions of different characteristics.

Figure 5.2: Algorithm methods

A rich multi-objective and dynamic VRP with uncertainty 70

The main features of the algorithm are separated from the problem specificities. Op-

erators are generic ones, this gives to the framework the flexibility to use other meta-

heuristics. Moreover, VRP attributes are handled by components which can be easily

added or removed to modify the problem. As shown in Figure 5.2, just like TSAM, it

is launched in parallel by three different threads which contain different operator lists

op list. Thread 1 has an operator list of PD interchange() and PD move(). Thread 2

has an operator list of PD consolidate(). Thread 3 has an operator list of PD swap()

and PD exchange(). Each thread memorises all the solutions found so that they can be

re-used at any time. This memory is shared between all the threads so that a solution

can be modified by all the operators.

Figure 5.3: Chromosome representation

Each solution and its vehicle routes have a flexible size which depends on the number

of visited nodes. In Figure 5.3 the vehicle tours/routes are delimited by the departure

and arrival cross-docks/depots which are the numbers without any subscript. The ones

with subscripts can be the customer or cross-dock nodes. These subscripts are the links

between the nodes which represent the request travel paths. In Figure 5.3 such links

are shown with the subscript numbers. Each node has a list of request path IDs which

links them to other nodes. Such links are necessary to specify that a certain node must

always be in the same vehicle route as another one. Moreover, a link is used as a position

constraint. Therefore a link contains an ID, is associated to two nodes and determines

the positioning constraints of these two nodes. In Figure 5.3, node 1 and node 2 share

a link of ID 1. The presence of this link, plus the respective positions of these nodes in

the solution representation mean that node 1 must be in the same vehicle route as node

2, which must be positioned somewhere after node 1. This is because the vehicle must

pick up the request at node 1 before delivering it to node 2.

5.3.2 GA overall

The main steps of the proposed GA are defined in Algorithm 12. To initialise the proce-

dure, in step 3, function init solution() defined in Algorithm 23 creates a population

of chromosomes of which the size is given by parameter rps. Each P&D pair is se-

quentially inserted into the solution routes. The given nodes to be inserted are sorted

by function sort nodes() to prioritise urgent requests over the others using their time

windows. In case a delivery node could not be inserted, the function first removes the

pickup node and then tries another solution route with both P&D nodes. Procedure

A rich multi-objective and dynamic VRP with uncertainty 71

Algorithm 12: Genetic Algorithm

1 //Input: set C of P&D locations, set K of vehicles;
2 //Output: set S of best chromosomes;
3 P ← init solution();
4 while Termination criterion not reached do
5 add(P, c1, c2) //add two chromosomes from other threads’ memories;
6 roulette wheel(P) //select and keep good chromosomes;
7 P ← crossover(P);
8 P ← mutate(P) //select and apply one mutation operator;
9 P ← neighbor search(P);

roulette wheel selector() defined in Algorithm 13 in step 6 must not only keep the

population size as defined in the parameters but also select good individuals for cou-

pling based on their fitnesses and selective pressure values. As shown in Sections 2.3

and 2.4, the VRP can have multiple attributes that must be taken into consideration

during the solving procedure. Attributes are handled by algorithms in two different

ways. (1) Operators consider the structure of the solutions they produce. For instance,

precedences between nodes are respected while performing any move. “mixed pickup and

delivery”, “different start/end depots”, “multiple cross-docks”, “multiple depots” are in-

cluded in that category. (2) Operators check the validity of the solutions afterwards and

re-perform their moves or discard infeasible solutions. “capacitated”, “customer time

windows” “vehicle time windows (vehicle availability)” “site-dependent” are included in

that category.

Algorithm 13: Roulette Wheel Selector function

1 //Input: set P of chromosomes, rps running Population Size;
2 //Output: population of chromosome S;
3 filter(P) //remove all the duplicates;
4 sp← get selective pressure(P);
5 while |P | < rps do
6 c1← get chromosome(sp)//get a chromosome given a selective pressure;
7 c2← get chromosome(sp);
8 add(S, c1, c2);

9 return S;

5.3.3 GA operators

All operators take advantage of the links present in any chromosome. Each operator

must check the links’ integrity to validate their moves or cancel the operation so that

the resulting solutions are always feasible. Operators PD shrink() and PD stretch() are

exceptions as they can produce infeasible solutions when used alone. However, they are

A rich multi-objective and dynamic VRP with uncertainty 72

Algorithm 14: Selective pressure function

1 //Input: set P of chromosomes;
2 //Output: selective pressure sp of population;
3 f ← get fitness(P) //according to current objective;
4 sp← ∅;
5 foreach c in P do
6 fitness← 1/f [c];
7 sum fitness← sum fitness+ fitness;
8 add(sp, fitness);

9 index← 0;
10 v ← ∅;
11 foreach c in P do
12 pressure← pressure+ sp[index]/sum fitness;
13 sp[index]← pressure;
14 index← index+ 1;

15 return sp;

only used via operator PD consolidation() to iteratively call them multiple times. This

is to better access local minima by allowing the operator to shrink and stretch solutions

until a feasible one is found.

Algorithm 15: Crossover overall algorithm

1 //Input: set P of chromosomes, crossover probability cp;
2 //Output: population P ′ of offsprings;
3 P ′ ← ∅;
4 while P 6= ∅ do
5 parent1← remove(P);
6 parent2← remove(P);
7 if random double() < cp then
8 links1, links2← distribute links(links1, links2);
9 offspring1← CX mate({parent1, parent2}, {links1, links2});

10 offspring2← CX mate({parent1, parent2}, {links2, links1});
11 if offspring1 6= ∅ then
12 add(P ′, offspring1);

13 else
14 add(P ′, parent1);

15 if offspring2 6= ∅ then
16 add(P ′, offspring2);

17 else
18 add(P ′, parent2);

19 else
20 add(P ′, parent1);
21 add(P ′, parent2);

22 return P ′;

A rich multi-objective and dynamic VRP with uncertainty 73

The crossover is described in Algorithm 15 while its process is represented in Figures

5.4, 5.5 and 5.6. It follows a probability given by parameter cp. Step 11 gives a list of

best indices where the node must be inserted according to the current objective. In the

example of Figure 5.4, there are 4 different requests and therefore 4 different links in

each chromosome. Instead of operating at the node level as traditional crossovers in the

literature, this crossover operates on the links. Step 8 creates two lists of links randomly

distributed from the two selected parents. With Figure 5.4 as parents, Figures 5.5 and

5.6 can be considered as their offpsrings. Offspring 1 gets request links 2 and 4 from

parent 1 and gets request links 1 and 3 from parent 2. Offspring 2 gets request links 1

and 3 from parent 1 and gets request links 2 and 4 from parent 2. Table 5.1 shows the

request paths in the parent chromosomes and the resulting offsprings’ ones.

Figure 5.4: Crossover parents

Figure 5.5: Crossover offspring 1

Figure 5.6: Crossover offspring 2

Algorithm 16: Crossover mating algorithm

1 //Input: list P of parent chromosomes, list L of request links, vehicles set K;
2 //Output: chromosome C;
3 C ← ∅;
4 for i from 1 to 2 do
5 parent← P [i];
6 links← L[i];
7 foreach k in K do
8 foreach node in parentk do
9 foreach link in node do

10 if link ∈ links then
11 indices← get best indices(Ck, node);
12 foreach j in indices do
13 if insert(Ck, node, j) = true then
14 inserted← true;
15 break;

16 if inserted = false then
17 return false;

18 return C;

A rich multi-objective and dynamic VRP with uncertainty 74

Algorithm 17: Mutation algorithm

1 //Input: population P , mutation probability mp;
2 //Output: population P ′;
3 while P 6= ∅ do
4 c← remove(P) //remove one chromosome from population P ;
5 if random double() < mp then
6 c′ ← PD operator(c) //apply a random operator from op list;
7 if c′ 6= ∅ then
8 add(P ′, c′);

9 add(P ′, c);

10 return P ′;

Request IDs Request paths

Parent 1

Request 1 5→6

Request 2 7→2→3→1→8

Request 3 9→2→10

Request 4 11→3→12

Parent 2

Request 1 5→3→6

Request 2 7→8

Request 3 9→1→10

Request 4 11→3→12

Child 1

Request 1 5→3→6

Request 2 7→2→3→1→8

Request 3 9→1→10

Request 4 11→3→12

Child 2

Request 1 5→6

Request 2 7→8

Request 3 9→2→10

Request 4 11→3→12

Table 5.1: Chromosome request paths

In addition to the crossover, mutation operators are implemented to make random moves

following a probability given by parameter mp. Procedure mutation() in Algorithm 17

depicts the function handling the call of operators for the mutations.

5.3.4 Request anticipation and dynamism

To handle historical data, the initial idea was to record all the previous request details

such as the node locations, demand, time windows etc. As the historical data are

A rich multi-objective and dynamic VRP with uncertainty 75

processed, each request is given a probability to appear in a certain period of the day.

If the probability of a request is high enough (over a threshold), it will be considered

an “anticipated request” and will be included in the problem instance. At the end of

each dynamism period, the list of anticipated requests will be updated based on updated

data when time goes by. Those that either did not happen or will become less likely

to happen will be removed from the list. Time windows of the remaining anticipated

nodes stay the same to allow vehicles to wait for probable opportunities. This provides a

pseudo optimal solution, but more robust. Since the logistics company handles requests

that are regular enough in a given weekday, this should method work.

However, since we are not allowed to share the real data of the case-study company, we

need to generate realistic data based on the actual operational plan of the company to

test this feature. When instances are generated, a “forecast validity rate” parameter is

provided to create uncertain requests with a probability. Their probabilities are ran-

domly generated given the ranges of parameters “Valid node probability” and “Invalid

node probability”.

Figure 5.7: Best chromosomes over time

Figure 5.7 shows the dynamic process of nodes without node anticipation in the first two

chromosomes and with node anticipation in the last two. During the planning horizon,

5 requests will be called in as follows: request 1 from node 5 to node 6; request 2 from

node 7 to node 8; request 3 from node 9 to node 10; request 4 from node 11 to node 12;

request 5 from node 13 to node 14.

The first and third chromosomes represent the solution planning at a given period while

the second and fourth are for the next period. In Figure 5.7, as vehicles progress through

their journey, visited nodes appear with a grey background. Therefore, the nodes with

a grey background cannot be changed in the future periods. The first chromosome

contains 3 requests in which the delivery process has already started as shown by the

grey background. Consolidations occur during this delivery, for example, request 3 is

first picked by vehicle 2 and then dropped by vehicle 3. Without the node anticipation,

when additional requests are registered, they must be added to the end of the vehicle

route as the grey nodes can not be changed. However, with node anticipation, future

requests are processed and added since the beginning of the planning horizon, if they are

well predicted. Hence, request 4 being handled at the beginning of the first trip in the

A rich multi-objective and dynamic VRP with uncertainty 76

third chromosome. Uncertain nodes are represented by numbers with quotes. Over time,

those uncertain nodes are replaced by the new request nodes if they occur. With this

feature enabled, vehicles can predict requests and wait for them in strategic locations

instead of going back to the depot and not being able to take requests anymore. They

could also forecast consolidation opportunities and deviate their routes to take advantage

of such situations. Besides, as time passes, vehicle routes get fixed which make previous

choices even more important, hence the usefulness of this feature. This is shown by

the fact that handling request 4 at the beginning will save some cost compared to the

solution found in the second chromosome.

5.4 Computational results

5.4.1 Data

Generator parameters Values

cross-dock number {1, 2, 4, 5, 8}
request number {10, 15, 30, 50, 100}
vehicle number {2, 4, 5}
vehicle capacity {50, 100}

request load 5

node time window 0-10000

vehicle time window 0-10000

node service time 10

3D coordinates (x,y,z) 0-100

cluster number 4

cluster radius 10

period number 1-20

period duration 100

prediction request number 10

forecast validity rate 1

valid node probability 0.7-1

invalid node probability 0-0.4

Table 5.2: Generator parameters

As this work extends Chapter 4, finding benchmarks in the literature on this specific

problem is still an issue. The VRP model with multiple cross-docks is a new problem and

there is no data-set available, and we are not allowed to publish the industry data from

A rich multi-objective and dynamic VRP with uncertainty 77

the partner. Therefore, new data-sets must be generated. Accordingly, the dynamic

requests are generated and attributed to different periods with a uniform distribution.

Table 5.2 shows an example of parameters that can be used to generate instances.

Distances are euclidean but there is no predefined unit for the time and coordinates.

Algorithm 18: Clustering function

1 //Input: cluster count g, set of nodes N , the graph coordinates (x, y), the size of
clusters (cx, cy);

2 //Output: set of nodes N clustered;
3 P ← ∅;
4 for i from 1 to g do
5 p← generate point(xmin, xmax, ymin, ymax) //generate a random point in the

given graph coordinates;
6 add(P, p);

7 foreach n in N do
8 p← random(P);
9 nx, ny ← generate point(px − cx, px + cx, py − cy, py + cy) //with cluster size;

10 return N ;

To create realistic instances, the generator uses Algorithm 18 to cluster nodes as we

find in geographical regions. The different groups of nodes could represent cities where

heavy vehicles cannot enter. In our case, a mix of different types of vehicles could be

used such as cars, trucks or bikes.

5.4.2 Parameter tuning

Figures from 5.8(a) to 5.8(d) show the convergence of the GA over time. These results

were used to set the values of the algorithm parameters in Table 5.3. These parameters

values are used as standard during all the runs to allow the algorithm to provide the

best performances.

GA parameters Values References

running population size rps 200 5.3.2

mutation probability mp 0.9 5.3.3

crossover probability cp 0.9 5.3.3

Table 5.3: GA parameters

5.4.3 Comparison on generated instances

As stated in Chen et al. (2016), there is presently no reference benchmark for the specific

problem presented in this chapter. Therefore, the previously tested algorithm TSAM

A rich multi-objective and dynamic VRP with uncertainty 78

20 40 60 80 100 120
1,050

1,100

1,150

1,200

1,250

Time(s)

C
o
st

5
10
50
100
200

(a) Chromosome population

20 40 60 80 100 120
1,060

1,080

1,100

1,120

1,140

1,160

1,180

Time(s)

C
o
st

0.25
0.5
0.75
0.9
1

(b) Crossover performance

20 40 60 80 100 120

1,080

1,100

1,120

1,140

1,160

1,180

Time(s)

C
o
st

0.25
0.5
0.75
0.9
1

(c) Mutation operators’ performance

20 40 60 80 100 120

1,600

1,800

2,000

2,200

Time(s)
C

o
st

with
without

(d) Multi-threading performance

Figure 5.8: Convergence of the proposed algorithm with different parameters values

from Chapter 4 is used as a reference and compared with the new algorithm. For a

fair comparison, just like GA, we use TSAM with the procedure init solution() in

Algorithm 23 to initialise solutions and without function reorder routes().

A rich multi-objective and dynamic VRP with uncertainty 79

GA TSAM

Instance Avg objective Avg time (s) Best objective Best time (s) Avg objective Avg time (s) Best objective Best time (s)

d5q50k2c1r10 441.99 0 441.99 0 448.93 48 441.99 41

d5q50k2c1r15 581.52 0 581.52 1 569.61 44 483.73 185

d5q50k4c1r30 1049.08 107 1026.73 24 1115.78 98 953.6 77

d5q50k5c1r50 1639.63 262 1466.71 204 1641.8 93 1445.21 100

d5q50k2c2r10 589.66 0 589.66 0 589.66 8 589.66 2

d5q50k2c2r15 648.68 122 604.8 78 666.35 63 628.26 2

d5q50k4c2r30 1221.52 76 1105.29 166 1262.67 73 1122.31 3

d5q50k5c2r50 1716.89 226 1598.88 294 1768.7 106 1568.26 82

d5q50k5c5r10 387.99 7 387.99 2 403.48 31 387.99 1

d5q50k5c5r15 632.6 12 622.19 5 694.33 69 622.19 123

d5q50k5c5r30 950.54 103 866.31 144 987.14 114 851.59 287

d5q50k5c5r50 1529.79 239 1412.53 229 1525.35 138 1419.44 49

d5q100k2c1r10 459.74 0 459.74 0 459.74 1 459.74 1

d5q100k2c1r15 549.18 128 533.91 52 606.25 42 533.91 76

d5q100k4c1r30 1012.37 172 940.75 221 1124.93 87 981.52 49

d5q100k5c1r50 1570.08 263 1358.34 296 1600.25 119 1445.96 108

d5q100k2c2r10 605.43 0 605.43 0 605.43 0 605.43 0

d5q100k2c2r15 769.09 1 769.09 1 769.09 5 769.09 1

d5q100k4c2r30 1164.18 27 1052.87 286 1197.9 88 1111.15 32

d5q100k5c2r50 1657.39 252 1532 277 1716.5 101 1595 97

d5q100k5c5r10 387.99 5 387.99 6 398.73 50 387.99 188

d5q100k5c5r15 631.29 11 622.19 3 704.99 78 587.66 169

d5q100k5c5r30 947.1 105 852.88 79 963.72 110 859.45 245

d5q100k5c5r50 1513.53 248 1395.13 261 1487.83 152 1376.79 209

Table 5.4: Results for GA and TSAM comparison

Table 5.4 shows the results of TSAM and GA for several instances of different request

quantities. The instance names give the request demand d, the capacity of the vehicle q,

the vehicle number k, the cross-dock number c and the request number r. On top of that,

there are vehicles with different start and end depots, requests with special vehicle type

requirements and vehicle time windows. The termination criteria for TSAM and GA are

set at 5 min. Columns Avg objective and Avg time (s) give the average of the results

over 30 runs while columns Best objective and Best time (s) give the details of the

best solution. From Table 5.4 it can be inferred that on average the GA outperforms

TSAM on this type of instances. This could be explained by the population-based

characteristic of a GA allowing a thorough exploration of a search space containing

several local minima.

A rich multi-objective and dynamic VRP with uncertainty 80

5.4.4 Comparison on existing benchmark instances

GA TSAM

Instance Avg distance Avg time (s) Best distance Best vehicle Best time (s) Avg distance Avg time (s) Best distance Best vehicle Best time (s)

lc101s 831.93 88 828.94 10 84 828.94 29 828.94 10 18

lr101s 1653.42 134 1650.8 19 141 1650.8 94 1650.8 19 21

lrc101s 1766.25 203 1714.99 15 172 1741.47 158 1703.21 15 99

lc1 2 1s 2828.65 30 2704.57 20 1019 2754.66 635 2704.57 20 753

lr1 2 1s 5319.74 1115 5015.94 23 1095 5231.25 996 5024.23 23 793

lrc1 2 1 3977.33 1121 3744.31 20 1175 3863.58 879 3724.37 20 781

lc109q 835.42 199 827.82 10 114 827.82 30 827.82 10 29

lr201 1421.07 251 1364.19 9 286 1419.98 174 1330.15 8 247

lrc 1 2 5s 4233.85 1185 4012.59 21 960 4184.54 1099 3985.84 20 1139

Table 5.5: Results on Li&Lim benchmark

Table 5.5 shows the results of the GA on some instances of Li&Lim’s benchmark SINTEF

compared to those of TSAM. To test all the different configurations, instances from

each group (clustered, random, and random-clustered nodes) for 100 customers and 200

customers were selected. Columns Avg distance and Avg time (s) give the average

of the results over 30 runs while columns Best distance, Best vehicle and Best time

(s) give the details of the best solution. Those results include the distance driven by

all the vehicles, the number of vehicles used and the time at which the solution was

found. The termination criterion for the meta-heuristics is set at 25 min. From Table

5.5 it can be seen that the GA is able to match TSAM on some instances. However,

TSAM yields on average better results than GA on other instances. As opposed to the

previous subsection, these results might indicate that a single-solution algorithm can

provide better results on this type of instances.

5.4.5 Comparison on clustered and non-clustered instances

GA TSAM

Instance clustered clustered random random clustered clustered random random

4c 8c 4c 8c 4c 8c 4c 8c

d5q50k4c4r30 335.18 553.1 805.81 872.67 339.55 636.93 892.62 931.18

d5q50k4c4r30 510.27 296.91 774.13 860.35 633.42 393.55 887.52 985.79

d5q50k4c4r30 518.38 418.19 885.79 866.18 609.68 528.78 977.45 1014.55

Table 5.6: Results on clustered and non-clustered instances

Table 5.6 shows the performances of both GA and TSAM algorithms on clustered and

non-clustered instances. The results are averages of 30 runs of 20 minutes on 4 different

types of instances containing clustered or random nodes and 4 or 8 cross-docks repre-

sented by columns “4c” and “8c” respectively. As in the previous section, the instance

details are given by their names. Each type of instances was generated 3 times. Table 5.6

A rich multi-objective and dynamic VRP with uncertainty 81

shows that GA outperforms TSAM in any type of clustered or non-clustered instances.

Increasing the number of cross-docks has an impact on the complexity of instances, es-

pecially if the nodes are clustered. However, the gap between both algorithms stay the

same - the GA provides better results.

5.4.6 Comparison on dynamic instances

1 2 3 4 5 6 7 8 9 10

Instance cost time cost time cost time cost time cost time cost time cost time cost time cost time cost time

d5q50k4c4r20

GA 127.79 0 127.79 0 262.76 0 370.16 0 388.38 0 406.71 0 475 0 608.22 217 667.42 328 716.84 400

TSAM 127.79 0 127.79 0 262.76 0 370.16 0 388.38 0 406.71 0 475 0 629.16 79 675.18 84 730.34 170

d5q50k4c4r20

GA 91.27 0 91.27 0 218.87 0 218.87 0 317.75 0 343.11 0 469.21 20 561.64 12 623.93 278 685.52 307

TSAM 91.27 0 91.27 0 218.87 0 218.87 0 317.75 0 343.11 0 472.61 135 577.86 109 674.05 94 763.85 100

d5q50k4c4r20

GA 182.8 0 358.74 0 369.47 0 470.84 23 608.85 164 595.93 343 629.09 348 724.94 49 724.94 0 724.94 0

TSAM 182.8 0 358.74 0 369.47 0 471.15 0 589.69 119 589.11 10 635.78 134 704.6 50 704.1 25 703.96 182

Table 5.7: Results of all the intervals on dynamic instances

Table 5.7 shows the average results of 30 runs for GA and TSAM on dynamic instances.

The time horizon is divided into 10 intervals of equal length. The algorithm is launched

at the beginning of each interval, with new information about customer requests. The

cost and time of both GA and TSAM are reported on 3 different instances series. As

in the previous section, the instance details are given by their names. The results from

Table 5.7 also demonstrate the effectiveness of GA in a dynamic setting. Compared to

the previous section, the number of requests is decreased to 20. As shown in the third

series of instances, TSAM became competitive after the fifth period. However, GA still

provided better results for the two first series.

5.4.7 Comparison on dynamic multi-objective instances

GA TSAM

Instance distance delay vehicle elevation distance delay vehicle elevation

d5q60k4c4r20 1819.36 5175.17 3.93 0.16 1753.14 5027.42 3.9 0.15

d5q60k4c4r20 1577.48 1158.54 3.9 0.15 1648.64 1974.91 3.87 0.15

d5q60k4c4r20 1644.95 2683.85 3.9 0.12 1525.23 2062.53 3.77 0.13

Table 5.8: Results of the last interval on dynamic multi-objective instances

Table 5.8 also shows the results of GA and TSAM on dynamic instances but with multiple

objectives considered. The algorithms are run 30 times on the instances containing 10

periods. As in the previous section, the instance details are given by their names.

A rich multi-objective and dynamic VRP with uncertainty 82

Details about the last periods are reported to show how these algorithms converge on

such instances. The probability distribution is (0.5, 0.2, 0.1, 0.2) for distance, delays,

vehicle and elevation objectives respectively. From Table 5.8, it is not clear anymore

which algorithm is better than the other one. Both algorithms were able to compete

with each other and provided mixed results that can be explained by the randomness

included in them. Indeed, at each period, a new objective is randomly selected to be

improved. Moreover, if an algorithm happens to find a bad solution during the first

periods, it will carry this bad solution until the end due to the continuity of the time

horizon. In other words, finding a bad solution at the beginning penalises more than

finding one at the end.

5.4.8 Performance of the prediction feature using uncertainty

With Without

Instance distance delay vehicle elevation distance delay vehicle elevation

d5q70k4c4r30 1839.29 15046.13 4 0.18 2231.16 3035.66 3.97 0.15

d5q70k4c4r30 1900.82 11101.11 4 0.18 2231.44 5530.19 4 0.16

d5q70k4c4r30 2011.67 12349.6 4 0.18 2183.8 6201.22 4 0.16

Table 5.9: GA results of last interval with and without the node prediction feature
on dynamic multi-objective instances

The node prediction feature is tested and results are reported in Table 5.9. To better

demonstrate the performances of this feature, the GA is launched 30 times on each

instance over 15 periods, with and without the feature enabled. Average results of

the last periods are reported to show how the algorithm converges with such settings.

As in the previous section, the instance details are given by their names. Table 5.9

demonstrates the validity of the node prediction feature. The probability distribution

is (0.5, 0.2, 0.1, 0.2) for distance, delays, vehicle and elevation objectives respectively.

GA was able to find better solutions for all the instances with regard to the probability

distribution. However, no improvement is made on objectives elevation and vehicle as

they have a low probability. It must be noted that improving those objectives can be

difficult because of the elevation profile of the instance and the number of requests being

high compared to vehicle capacities.

5.5 Conclusion

In this chapter, we presented a new method to solve a rich VRP with pickup and delivery.

The problem at hand has extended previous work to originally satisfy a company’s needs.

A rich multi-objective and dynamic VRP with uncertainty 83

The company is responsible for delivering goods by bikes and therefore must not only

consider distances and time windows, but also altitude gradients and the number of bikes

used. This company usually receives requests throughout the day and can use cross-dock

facilities to exchange loads between bikes. To efficiently solve the problem, we modelled

a new multi-objective, dynamic VRP dealing with uncertainty. A predictive node feature

was then developed to use historical data to improve the performance of the algorithm.

A genetic algorithm was introduced and compared to the previous algorithm. A new

crossover was developed to handle our multiple cross-docks problem without any repair

function. Computational results show that the new algorithm is highly competitive

while being simpler to develop and to configure.

Three main gaps are identified as opportunities for further research. Firstly, when

considering the Pareto mode, the new algorithm can be improved to better cope with

multiple objectives. A mechanism could be added to direct the search toward unexplored

regions of the Pareto front. Secondly, a feature which reuses the population from a

previous interval with an insertion heuristic could improve the speed of the search in

dynamic conditions. Thirdly, as the literature only has few benchmarks for the VRP

with a single cross-dock, one could create a benchmark for the PDP with multiple cross-

docks. Otherwise, a reference algorithm in multi-objective could be implemented for

further comparisons.

Chapter 6

A learning algorithm for the

vehicle and container routing

problem

6.1 Introduction

In previous chapters, the PI was viewed from a vehicle routing perspective, algorithms

were proposed to solve the VRP of different sizes. This allowed containers to be carried

from customers to customers as in a pickup and delivery problem. PI requirements such

as consolidations were considered and modelled using constraints like cross-docking.

However, the PI can also be viewed from a container routing perspective (Sarraj et al.,

2012). Readers can refer to Sarraj et al. (2013) for more information on the idea of

container routing. The recent work of Gontara et al. (2018) was also about the analogy

between routing PI-Containers in PI and routing data using BGP Protocols. In their

network, requests can go through several cities connected by larger providers. This

way of modelling the problem allows us to see it as an ad hoc network where the links

represent the VRP routes which can change over time. Hence the comparison with ad

hoc originally made by Sarraj (2013).

In this chapter, a new perspective is presented - the Vehicle and Container Routing

Problem (VCRP). This idea accounts for several VRPs being solved in different areas

which are linked and included in a container routing problem. Figure 6.1 shows a

possible scenario of France with several PI-hubs linked by the road network. With

this representation, a VRP area can include one or several PI-hubs. Containers are

therefore routed to go through sequences of VRP areas in which vehicles carry them to

the customers. This can also be viewed as a solution to connect CL and PI as described

84

A learning algorithm for the vehicle and container routing problem 85

Figure 6.1: France with PI-hub facilities

in Crainic and Montreuil (2016). This research aims to improve the routing of containers

on a higher level. VRP algorithms proposed in previous parts will be used alongside a

container routing algorithm introduced in the following sections. To further exploit the

PI concept, Machine Learning (ML) methods can be used and included as the container

algorithm to improve driving distances and vehicles fulfilment. As a result, we design

an ML algorithm based on a state-of-the-art method to solve this new logistics problem.

Since greenhouse gases emission and cost are correlated to those metrics, we would not

only contribute to the idea of “drivers should be able to return home at end of their

shifts” (Montreuil, 2011) but also to make a more sustainable SCM.

6.2 Problem definition

The VCRP aims at finding the optimal transportation route between pickup and delivery

customers. The objective considered in this model is to minimise the total distance while

considering the truck fulfilment rates. In future work, researchers could easily replace

these metrics in the reward function by e.g., the travel time, energy or even CO2 emission

etc. Nevertheless, it should be noted that minimising empty trips contributes toward a

sustainable transportation system, which is one of the goals of the PI.

The VCRP network is modelled as a directed graph in which nodes are the PI-hubs

or customers and edges are vehicle routes. This graph can be separated into several

clusters of sub-graphs representing VRP areas modelling cities, regions or even countries

A learning algorithm for the vehicle and container routing problem 86

Figure 6.2: VRP networks

depending on the instance. Figure 6.2 shows such a topology of PI-hubs/cross-docks

that can be seen as routers in the network. There are two types of PI-hubs represented

by: (1) Squares for internal PI-hubs which are used for VRP consolidations only, as

described in previous work. (2) Hexagons for external PI-hubs which are not only used

for consolidations but also for inter-cities transportation. This difference can be viewed

as the difference between Border Gateway Protocol (BGP) routers and normal routers

(or switches L3). In this network, the PI-hubs’ locations do not change over time as

opposed to the customers and vehicle routes. Arrows in Figure 6.2 represent logistics

services a container has to go through to reach another area. However, in a given

area, it is assumed that any PI-hub can be linked to another one from the same area

since the VRP could provide such routes, if necessary. As a result, a VRP area could be

simplified as a fully connected sub-graph. Therefore, traditional routing algorithms such

A learning algorithm for the vehicle and container routing problem 87

as OSPF, RIP or the one proposed in Gontara et al. (2018) can be used alongside the

ML algorithm. Customers are distinct from the PI-hubs and are represented by circles

in Figure 6.2. They are all associated with one area to be solved by one VRP heuristic.

Customer locations and characteristics are randomly generated. Then, requests between

customers are handled by the VCRP model as follows: For each new request, the closest

external PI-hub in the same area will be selected to handle the container. Each request

path is being computed as the container progresses through the network. When a

container reaches an external PI-hub, it will check the destination and provide the next-

hop external PI-hub the container must be brought to. If the current and next-hop

PI-hubs are in the same VRP area, the VRP heuristic would handle the transportation,

otherwise, another transportation service is used. As stated in Gontara et al. (2018),

this separation would allow different Logistic Service Providers (LSP) participating in PI

to handle their networks as they wish. When a container reaches the destination area, it

would be brought to the customer instead of being carried to another external PI-hub. It

is assumed that vehicle routes can only be congested by the customer requests creating

a bottleneck in one or several VRP areas. Therefore, external factors such as private

vehicles on roads is not considered. For the sake of simplicity, it is also assumed that

each time slot is equal to one day. Transportation services in the entire network start in

the morning, therefore a container needs one working day to go through a VRP area or

be carried from one area to another. If a container has to go through 3 VRP areas, the

transportation will necessarily last 5 days (3 areas + 2 inter transportation). This is the

case even if the actual driving time is several hours. The total distance and number of

empty vehicles metrics can still be considered. The dynamic case would be considered

in future work as we would need to anticipate driving transportation duration for the

system to know when a container would arrive at its next hop hub. Whereas in this

static case, we can easily anticipate that the container will arrive the next day.

Request path ID Paths

1 17 2 1 4 5 11 12 16 18

2 17 2 1 4 6 13 15 16 18

3 17 3 8 10 14 15 16 18

Table 6.1: Examples of VCRP request path

In the traditional pickup and delivery problem, requests are usually from customers to

customers, and could also be brought from/to a depot for some variants of the VRP.

However, as modelled in Chapter 5, requests in our VRP are more flexible and can be

placed from cross-docks to cross-docks, customers to customers or customers to cross-

docks etc. This allows VRP heuristics to handle requests passing through VRP areas

A learning algorithm for the vehicle and container routing problem 88

via two external PI-hubs. Table 6.1 shows examples of possible request paths for a

container transportation from customer 17 to customer 18 represented in Figure 6.2.

Considering request path 1, in the beginning, a call for transportation is placed from

customer 17 to customer 18. The container is routed to the closest external PI-hub 2 by

the VRP heuristic. The VCRP algorithm provides node 1 as the next-hop destination

the container must be brought to via a special logistics vehicle operating between those

areas. At node 1, node 4 is provided as the next-hop destination without the need for

a VRP vehicle to operate. However, at node 4, the container has to go through the

VRP network to reach node 5. Those steps are repeated until the container reaches the

destination area 7 where a VRP vehicle will carry it to customer 18.

As explained above, the system infrastructures are static but the model can have dy-

namic properties. Requests and VRP solutions differ from day to day and create new

scenarios that need to be dealt with. Traditional packet routing algorithms can deal

with congestion but not under situations that have not been anticipated beforehand by

developers. In other words, they do not learn from previous experiences regarding net-

work abnormalities such as congestion etc. On top of that, they usually react only when

congestion is already present. Moreover, when congestion is detected in a path link of a

container, they would try to select another path even though the congestion could have

been gone by the time the container reaches the link. This is because they were designed

for the DI and react in milliseconds, whereas in the PI, the time is measured in hours or

even days. Therefore, an intelligent network traffic control method is essential to avoid

this problem. RL is typically the kind of algorithm that could anticipate that. More-

over, it is said that even if the data are not labelled correctly, ML would still be able to

learn, but slowly. Therefore, in our case, even if VRP heuristics are not able to provide

optimal solutions, the ML algorithm could still learn. All the VRP routing decisions of

the entire VCRP are used to create a large set of data and are fed to a single RL net-

work to learn from. Consequently, all the PI-hub uses the same RL network to get the

path next-hop. It is important to note that, as stated in You et al. (2019), algorithms

with a centralised learning process are not necessarily the best choices for real computer

networks. This could be due to centralised learning controllers not being able to gather

information about their neighbours. The bandwidth can be a constraint for a widely

distributed system to communicate as protocol information packets would add up on

top of data packets. However, since our model deals with the PI, in this analogy, routers

are PI-facilities. Therefore, PI-hubs will still be able to communicate with each other

by using an actual DI network on top of the PI one. This would avoid issues related to

bandwidth congestion as we deal with physical containers. We expect the RL algorithm

to learn when and where to send containers in an efficient way based on a small number

of input metrics: the number of containers, their sizes/weights, their current locations

A learning algorithm for the vehicle and container routing problem 89

and the time. The algorithm would learn how to balance the flow of containers to avoid

congestion by carefully selecting intermediate PI-hubs while minimising the distance and

truck unfulfilment rates.

6.3 Methodology

6.3.1 Reinforcement learning

RL algorithms work in a trial and error way through the actions of an agent. These ac-

tions are performed in an environment at discrete times indexed by t and called episodes.

There are two main types of RL methods: (1) The policy-based methods such as “REIN-

FORCE” and “Policy Gradients”; and (2) the value-based methods such as “Q-learning”

and “Deep Q-learning”. Policy-based methods learn a policy π : st → at which describes

which action at should be taken in each state st. The objective is to find the optimal

policy directly without the Q-value and by using the total rewards of each episode;

Value-based methods learn a value function that maps each state-action pair to a value.

This estimates the value of each state based on future rewards that can be obtained,

starting at a given state. The objective is to find the optimal value function. The higher

the value, the better the action. Equation 6.1 shows the value of a state st which is the

expected total sum of discounted future rewards starting from this state.

V (st) = E

[∞∑
k=0

γkRt+k+1

]
= E [Rt+1 + γV (st+1)] (6.1)

where γ ∈ [0, 1] is the discount factor.

6.3.2 Environment

The environment is composed of several VRP areas as shown in Figure 6.2. As opposed

to classical implementations where only one action is available from the environment,

our implementation provides an agent with a set of functions it can perform. Func-

tion handle requests() sequentially generates new requests, creates and solves VRP

instances with the requests present in a given area. Fulfilment rate and distance met-

rics are retrieved from the VRP solutions. Function move requests() transfers requests

from one node to another. Function select requests() handles requests that need to

be routed and remove the ones that have arrived. Function preprocess requests() re-

turns the current state given a request being routed. Function do action() performs the

A learning algorithm for the vehicle and container routing problem 90

routing for the request being processed. When called iteratively, function get results()

returns the different states, actions and rewards for any request arrived.

An episode in the RL algorithm corresponds to a day in the transportation network.

Therefore, at the end of every episode, all the present requests are already routed and

transferred to another location. Each episode is composed of several steps which are

defined as the action of routing transiting requests inside and outside VRP areas. The

environment embeds the Dijkstra algorithm coded with a priority queue to be used

in the reward function for finding the shortest paths between nodes. Since customers

appear at different locations over time, the RL algorithm would struggle to learn where

to route requests. Therefore, when selecting the next-hop hub during the routing phase

for a given request, the inputs do not consider the departure and arrival customers but

instead closest external hubs. As a consequence, a request is routed to an external hub

which is in the destination area. This external hub is chosen by comparing the path

distances to all external hubs in the destination area and selecting the shortest one.

6.3.3 Asynchronous Advantage Actor-Critic

We implement our RL algorithm as the Asynchronous Advantage Actor-Critic (A3C)

described in Mnih et al. (2016). The most important differences with traditional RL

algorithms are now explained.

The actor-critic property combines the benefits of both value-based and policy-based

approaches. In the case of A3C, the network will estimate both a value function V (s)

which determines how good a certain state is to be in and a policy π(s) which is a set

of action probability outputs. These will be separate fully-connected layers sitting at

the top of the network. The policy structure is called the actor, which takes actions in

states. The value structure is called the critic, which criticises the current policy being

followed by the actor. The structure of the actor-critic model is illustrated in Figure 6.3.

The environment presents the representation of the current state st to both the actor

and the critic. The actor uses this input to compute the action to perform according to

its current policy. The actor then selects the action which causes the agent to get into

a new state st+1

A learning algorithm for the vehicle and container routing problem 91

Figure 6.3: A3C architecture

In DRL, a single agent represented by a single neural network interacts with a single

environment. Whereas, the asynchronous property of A3C allows the algorithm to utilise

multiple agents to learn more efficiently from copies of the environment. In this way, all

agents start at different points within the environment which produces a more diverse

overall experience for training. The agents share one neural network that feeds into

separate actors to perform different actions, into one critic that connects them together.

The agents provide each other with knowledge of the environment through the critic.

The network gets updated and then the critic shares the information to all agents. This

consists of two values being back-propagated through the critic to the agents - value

Loss 6.5 (related to the critic) and policy Loss 6.6 (related to the actor).

The critic knows the value of the state but it doesn’t know how much better an action

could be compared to the current value of state. This is what the advantage property

represented in Eq. 6.2 is used for. Q(st, at) represents the max value we could get from

state st, and V (st) the average value. Intuitively, this means how much better it is to

take a specific action at compared to the average, at the given state. The discounted

rewards in Eq. 6.3 is used to tell the agent which of its actions were “good” and which

were “bad”. When the environment gives a new reward based on the previous action,

the critic observes a new state and computes its estimate for this new state. Based on

the reward and the current value function estimation, both Rt+1 and γV (st+1) are now

available and used in Eq. 6.4.

A(st, at) = Q(st, at)− V (st) (6.2)

A learning algorithm for the vehicle and container routing problem 92

Q(st, at) = E [Rt+1 + γV (st+1)] (6.3)

A(st, at) = Rt+1 + γV (st+1)− V (st) (6.4)

Lv =
∑

(Rt − V (st))
2 (6.5)

where Rt − V (st) is an estimate of A(st, at)

Lp = − log(π(st)) ∗A(st)− β ∗H(π) (6.6)

Value Loss 6.5 and Policy Loss 6.6 functions are used in order to encourage and discour-

age actions accordingly. The policy function incorporates the advantage A(s) and an

entropy H(π) which measures the diversity of the action probabilities. As mentioned,

these losses provide gradients to update the global network parameters (the critic and

actor). The training of the two networks is performed separately and uses gradient as-

cent to find the global maximum. Each of these gradients is typically clipped to prevent

overly-large parameter updates which can destabilise the policy.

6.3.4 A3C implementation

Since the RL algorithm is used to route requests through a VCRP network, we define a

state input as a matrix M representing the current position and destination of a request.

The matrix dimensions are Ne ∗Ne where Ne is the number of external hubs. This input

matrix is initialised with zeros and gives the request flow as described in Eq. 6.7. The

output is a vector that gives probabilities to select the next-hop hub. From an RL

perspective, this is the action the agent can perform. Given a request location, a certain

number of hubs are not directly reachable due to the network topology. Therefore, we

set the vector dimension to match the number of gates Ng an external PI-hub has. As

a consequence, instead of providing a hub ID, the output gives the gate ID that will be

A learning algorithm for the vehicle and container routing problem 93

Algorithm 19: Reward function

1 //Input: agent action, dijkstra action, request;
2 //Output: reward;
3 dijkstra ehub← request current node gates[dijkstra action];
4 agent ehub← request current node gates[agent action];
5 if dijkstra ehub = agent ehub then
6 dreward← 1

7 else
8 distances← ∅;
9 foreach hub in request current node gates do

10 d← get dijkstra distance(hub, request arrival hub);
11 append(distances, d);
12 if hub = agent ehub then
13 cdist← d;

14 dmax ← max(distances);
15 dmin ← min(distances);
16 delta← dmax − dmin;
17 dreward← −(cdist− dmin)/delta;

18 if request next node in request path then
19 loops← loop+ 1;
20 reward← −1;

21 else
22 reward← α ∗ dreward+ σ ∗ freward //fulfilfment freward is calculated and

provided afterward;

23 if request next node area = request arrival area then
24 reward← reward+ 10;

used to reach the connected PI-hub. This representation prevents the algorithm from

producing infeasible routes by giving non-connected hubs as the next-hops.

M [current node][destination node] = 1 (6.7)

The reward function in Algorithm 19 takes into account the distances and the fulfilment

rate of vehicles. This allows request paths to converge toward the shortest paths while

favouring consolidations. As fulfilment and distance objectives can compete with each

other, we introduced two parameters α and σ to control this trade-off in step 22. As

stated in the comment, freward is calculated afterwards as all the requests need to

be routed to calculate the resulting fulfilment. Steps 3 and 4 retrieve the neighbour

hubs from the Dijkstra and RL algorithms, respectively. Step 10 is used to identify

the distance to reach the destination hub from a selected neighbour hub. The resulting

distance is then used in step 17 to calculate a penalty induced by taking a certain gate.

A learning algorithm for the vehicle and container routing problem 94

Algorithm 20: Training algorithm

1 //Input: baseline values, rewards, actions, states;
2 value← 0;
3 values← ∅;
4 foreach reward in reversed(rewards) do
5 if reward = −1 then
6 value ← 0;

7 value← reward+ γ ∗ value;
8 add(value, values);

9 reverse(values);
10 advantages ← values - baseline values;
11 train agent(states, actions, values, advantages);

In step 20, a penalty is added if a container returns to a PI-hub already visited - a loop

is made by the container. Finally, a bonus is added in step 24 when a container reaches

a PI-hub located in the same area of its destination.

Algorithm 20 depicts our training function. As implemented in steps 5 and 6, the

advantage used in our algorithm is different from the standard one represented in Eq.

6.2. We set the value to 0 when a request makes a loop. As a consequence, the agent

does not consider the discounted rewards from the part of the path which contains loops.

Therefore, this modification prevents the agent from learning paths containing loops.

ANN properties layer 1 layer 2 layer 3 policy output value output

outputs number 256 512 256 Ng 1

activation relu relu relu softmax none

weights initialiser xavier xavier xavier xavier xavier

biases initialiser zeros zeros zeros none none

Table 6.2: Neural network configuration

Our implementation of A3C uses the Adam algorithm as the optimiser with the network

configuration described in Table 6.2. Readers can refer to the papers from He et al.

(2015); Glorot and Bengio (2010); Bishop (2006); Kingma and Ba (2014) for more details

about these properties. Our A3C algorithm launches as many agents as there are VRP

areas. Algorithm 21 describes the instructions processed by the agents in different

threads. As detailed in step 3, we include a series of instructions to synchronise the

agents with each other. This is to avoid race conditions in the case an agent X is, for

example, moving a request to another area handled by an agent Y . If agent Y has

already routed its requests, the ones coming from agent X will not be routed during the

current episode. Step 11 checks if there are requests in the given environment area to

A learning algorithm for the vehicle and container routing problem 95

Algorithm 21: Agent algorithm

1 //Input: environment env handled by the current agent;
2 while T < Tmax do
3 wait() //wait for all the other agents to reach this step;
4 handle requests();
5 wait();
6 move requests();
7 wait();
8 select requests();
9 wait();

10 state, terminal = preprocess requests();
11 while terminal = false do
12 policy, value ← get policy and value(state);
13 action ← random choice(Ng, policy);
14 do action(value, action);
15 state, terminal ← preprocess requests();
16 while True do
17 values, states, actions, rewards ← get results();
18 if rewards 6= ∅ then
19 do training(values, rewards, actions, states);

20 else
21 break;

route. Step 12 retrieves the policy and value from the ANN for a given state. Step 13

select a random action given a probability distribution from the policy. Step 14 performs

the action and stores the value and action in the environment alongside the state and

reward for a given request. Step 17 retrieves all the variables needed to train the agent

when some requests have arrived.

6.4 Computational results

All the computational results were obtained with a computer that has the following spec-

ifications: a CPU ’Intel(R) Core(TM) i9-7900X CPU @3.30GHz’ and 32 GB of RAM.

The proposed algorithms are developed with python 3.7 using the following libraries:

TensorFlow version 1.14.

6.4.1 Example of 7 areas for distance optimisation

The machine learning algorithm is launched on the network represented in Figure 6.2.

Note that since this research is a proof of a new concept, the size of the network is kept

relatively small for ease of analysis and understanding. Each area is of dimension 100*100

A learning algorithm for the vehicle and container routing problem 96

while the entire graph dimension is 1,000*1,000. All the external hubs have 4 gates to

connect with hubs from other areas via logistic service providers. Several gates can lead

to the same hub when the number of connected neighbour areas is less than 4. Requests

are randomly generated between each pair of external hubs with a uniform distribution.

The request load is randomly selected between 1 and 5. The vehicle capacities are set to

30 while parameters α and σ equal 1 and 0, respectively. We report the results of the RL

algorithm learning on its own for 2 different examples of traffic intensity in Figure 6.4.

The reward computed in Algorithm 19 is plotted alongside the path reward computed

at step 17. The former represents the overall average quality of an agent’s decisions

while the latter represents the average quality of an action regarding the shortest path.

Figure 6.5 shows the performance of the algorithm while using Dijkstra to make routing

decisions until episode 200,000. After this episode, the RL algorithm learns on its own.

0 0.5 1 1.5 2 2.5 3

·104

0

1

2

3

4

5

Episodes

R
ew

ar
d

va
lu

e

reward

path reward

(a) Rewards of agents with 1 request gen-
erated per area per episode

0 0.5 1 1.5 2

·105

0

1

2

3

4

5

Episodes

R
ew

ar
d

va
lu

e

reward

path reward

(b) Rewards of agents with 5 requests
generated per area per episode

Figure 6.4: Convergence of the algorithm with different parameter values for the
traffic

0 0.5 1 1.5 2 2.5 3

·105

1

2

3

4

5

Episodes

R
ew

ar
d

va
lu

e

reward

path reward

(a) Rewards of agents with 1 request gen-
erated per episode

0 0.5 1 1.5 2 2.5 3

·105

0

0.5

1

1.5

·104

Episodes

N
u

m
b

er
of

lo
o
p

s

with dijkstra

without dijkstra

(b) Number of loops with 1 request gen-
erated per episode

Figure 6.5: Convergence of the algorithm learning with Dijkstra

A learning algorithm for the vehicle and container routing problem 97

6.4.2 Example of 6 areas for fulfilment optimisation

Figure 6.6: VRP networks including 6 external hubs in 6 different areas

In this section, we will analyse the benefit of machine learning (using fulfillment reward)

in improving vehicle fulfillment and reducing travel distance. This will be done by

comparing the case with shortest path rewards only against the case with both the

shortest path and fulfilment rewards. The ML algorithm is launched on the network

represented in Figure 6.6. The network was modelled to emphasise a specific use case in

which considering the fulfilment rate could improve global efficiency. The entire graph

dimension is 300*1,000. At each episode, two requests are generated at node 1 and

node 3 to be delivered at node 4 and node 6, respectively. The request load is fixed at

5. The vehicle capacities are set to 10 while parameters α and σ equal to 0.1 and 1,

respectively. Figure 6.7 illustrates the performance of the algorithm considering different

reward functions on the network.

0 0.5 1 1.5 2

·105

0

2

4

6

8

10

12

Episodes

R
ew

ar
d

va
lu

e

reward

path reward

(a) Rewards of agents considering the
shortest path

0 0.5 1 1.5 2

·105

0.5

0.52

0.54

0.56

0.58

Episodes

F
u
lfi

lm
en

t
ra

te

fulfilment

(b) Fulfilment of agents considering the
shortest path

0 1 2 3 4 5 6

·104

1

2

3

4

Episodes

R
ew

ar
d

va
lu

e

reward

path reward

(c) Rewards of agents considering the ful-
filment and the shortest path

0 1 2 3 4 5 6

·104

0.54

0.56

0.58

0.6

0.62

Episodes

F
u

lfi
lm

en
t

ra
te

fulfilment

(d) Fulfilment of agents considering the
fulfilment and the shortest path

Figure 6.7: Convergence of the algorithm with different reward functions

A learning algorithm for the vehicle and container routing problem 98

6.4.3 Discussion

Our computational results show that ML techniques can be applied to routing problems

to not only optimise the driving distance with the shortest path but also to improve the

vehicles’ fulfilment via consolidations. From Figures 6.4(a) and 6.4(b), we demonstrated

that the proposed technique is entirely independent of the existing routing protocols

to learn how to handle requests. The path rewards attest that the algorithm is able

to route requests with near-optimal decisions after 100,000 episodes when there are 5

requests generated per area and after 15,000 episodes when there is 1 request generated.

RL for routing suffers from a drawback: during the training, containers will be sent in

wrong directions causing delays. One possible solution is to run a simulation and train

the network before handling real-world requests. Another solution is to route containers

with a shortest path routing algorithm such as Dijkstra to avoid sending containers

to wrong destinations. In the meantime, the RL algorithm could learn these routes to

reduce the number of loops when it would take over. A possible outcome is that one could

start learning the shortest path to learn a near-optimal policy and switch to another

reward function to continue optimising a different objective. Figure 6.5(a) demonstrates

that the algorithm can passively learn the Dijkstra routing decisions. As a result, when

Dijkstra is switched off at episode 200,000 in Figure 6.5(b), the RL algorithm can take

over while limiting the number of loops. Without Dijkstra, 179,316 loops were made

whereas using RL as an online method with Dijkstra significantly reduced this number

to 3,694.

Moreover, we also showed that the algorithm can be used as it is to optimise different

objectives by only changing the reward function. When using a smaller graph as in

Figure 6.6 and considering the shortest path in the reward function, the near optimality

for routing decisions is reached faster as shown in Figure 6.7(a). We can observe an

average fulfilment rate of 0.5 as requests travelled directly from node 1 to node 4 and

from node 3 to node 6. However, when the fulfilment is considered in the reward function

as in Figure 6.7, we observe a decrease in the average path reward. This is due to the

agent routing requests to hub 2 even though it is not the shortest path, they now travel

via arc 2-5. This increases the distances travelled by each request but the overall cost

is reduced as the vehicles have to drive less distance, hence the average fulfilment rate

increased to 0.65 on average. Readers can refer to Sarraj et al. (2014) and Section 4.2

for details about the efficiency of consolidations in PI-hubs regarding logistics cost.

From a fulfilment perspective, the predictability of the traffic flow is of great importance.

In Figure 6.6, an agent can notice rapidly that a request is always sent from node 1 to

node 4 and another from node 3 to node 6. Therefore, during its exploration phase, it

A learning algorithm for the vehicle and container routing problem 99

can learn that sending both requests on the arc 2-5 would increase the reward. However,

in Figure 6.2, since the number, origin and destination of requests are randomly chosen,

the agent would have difficulties learning when and where to do consolidations. As a

consequence, we suggest a possible research direction to overcome this difficulty.

6.4.4 Future work

To better anticipate consolidation opportunities, one could add several other matrix

frames to the input. The first matrix would still be the request flow as presented in Eq.

6.7. However, a second one could represent the load of the request being processed as in

Eq. 6.8. As described in Algorithm 22, a third matrix could represent the accumulated

load flow of all the requests in all the areas. The matrices’ dimensions would still be the

same - Ne ∗Ne where Ne is the number of external hubs. One could even add temporal

frames which would capture the network flow at previous episodes. Convolution layers

could be envisaged to handle the different frames and extract properties that can be

used by the ANN.

The agent should learn over time where to efficiently send containers in order to minimise

the distances and maximise the fulfilment rates. This would be done by mapping matrix

1, 2 and 3 with the reward indicating if the vehicles were full. This design should even

work in the case where requests are scheduled to depart with delays or at a specific time.

The challenge is that when the agent tries to send more containers for consolidation,

the fulfilment rate would increase until a certain threshold above which it will decrease

due to the use of another vehicle. Because of this, the algorithm might not be able to

converge toward an optimal policy. When too many requests must be handled, another

challenge occurs due to the travelled distances. This is because if the requests load in

an area is greater than the capacity of the vehicles available, they would have to make

detours at some hubs to satisfy part of the requests before handling the rest. As a

consequence, when the distance is being optimised, those situations would induce more

distance driven and decrease the reward value. This situation can be considered as a

congested area.

M2[rcurrent node][rdestination node] = rload | r = current request (6.8)

A learning algorithm for the vehicle and container routing problem 100

Algorithm 22: Algorithm for the requests flow input

1 //Input: set of requests R;
2 //Output: a matrix M3;
3 foreach r in R do
4 M3[rcurrent node][rdestination node] = M3[rcurrent node][rdestination node] + rload

6.5 Conclusion

In this chapter, a deep reinforcement learning algorithm was designed to solve the con-

tainer routing problem including several VRP networks. This problem is of great prac-

ticability as PI protocols are gaining importance across the world. Several contributions

were made. First, a new model handling the transportation of containers in a PI envi-

ronment was designed. Second, a deep reinforcement learning method using A3C was

proposed. Third, suggestions to better anticipate load deliveries and congestion were

provided. Simulation results showed the relevance of the proposed method to tackle

such a problem. Once the DRL algorithm was configured, several reward functions were

used to solve the problem differently. The learning mechanism was used as a black box

to optimise different aspects of delivery transportation like the distance and fulfilment

rate.

In addition to the suggestions in Section 6.4, further research directions are possible to

extend this work. (1) Instead of iteratively calculating the next-hop for requests, one

could calculate the entire path when a request is placed. This would allow the algorithm

to better anticipate the traffic and avoid congestion or seize consolidation opportunities.

(2) Instead of using meta-heuristics in the VRP areas to transfer containers between

nodes, one could use ANNs to accelerate the learning phase. As studied in Nazari et al.

(2018), ANNs can be trained to provide VRP solutions instead of running heuristics.

Since the locations of the hubs are static, given a set of requests, an ANN could learn

to return different metrics such as distances or fulfilment rates. As a result, a trained

ANN could dramatically improve the speed of the learning phase for container routing.

(3) To better demonstrate the relevance of the proposed method, a simulation can be

launched to compare the results with a more traditional approach such as OSPF.

Chapter 7

Conclusion and future work

This thesis investigated routing algorithms to improve transportation systems from an

efficiency and sustainability perspective. Routing models were introduced to solve a

variety of problems for bicycle, vehicle and container routing related to pickups and

deliveries. This type of problem is of great practicability as concepts like the PI are

gaining importance across the world.

The research questions raised in Section 1.2 were all answered in different chapters. First,

a literature review was conducted to identify the current methodologies used within the

scope presented in Section 1.1. Then, each technical chapter has an introduction stating

the different gaps to be filled. The next questions related to the design and solvability of

new models was answered with the different new problems and methods created. While

MILP models were implemented with CPLEX to compare the performances, meta-

heuristics were also developed to handle large instances. Experimental results showed

the accuracy and stability of the proposed algorithms. The resulting algorithms were

integrated into a framework to be used by a local delivery company. The adaptability

of the models was also addressed by selecting and handling a list of constraints that are

mandatory for the PI. As demonstrated in Chapter 6, methods from other domains such

as the DI can also be adapted and used to offer more flexibility.

The results of this thesis on vehicle and container routing provide a deeper understanding

of methodologies to solve these problems, and suggest some promising ways to solve these

challenging problems using meta-heuristics and learning methods.

101

Conclusion 102

7.1 Summary of major contributions

Details of the contributions can be found at the end of each chapter. The most significant

contributions are listed as follows:

1. A new model was proposed to tackle deliveries by push-bikes while taking into

account the road slopes. It considers the energy required to move the bike as

the load accumulates during the trip. A modified evolutionary local search was

introduced with a new split function handling energy constraints to solve large

instances in a reasonable amount of time.

2. A new rich VRP that has not been addressed before was introduced with an MILP

model to be implemented with CPLEX. A multi-threaded simulated annealing

algorithm with memory including new operators is introduced to handle real-world

size instances.

3. A new multi-objective, dynamic VRP dealing with uncertainty was modelled to

efficiently solve the problem. A genetic algorithm was developed with a predictive

node feature to use historical data to improve the performance of the algorithm.

A new crossover was developed to handle a multiple cross-docks problem without

any repair function.

4. A new model handling the transportation of containers in a PI environment was

designed with a deep reinforcement learning method using A3C. Suggestions to

better anticipate load deliveries and congestion were provided. Insights as to how

one could efficiently use the learning algorithm were provided to optimise different

aspects of delivery transportation like the distance and fulfilment rate.

7.2 Future work

As this thesis covered a large research area, several related research topics in the rout-

ing domain have been identified. Among these topics, some promising future research

directions are listed as follows:

1. While studying the power required from a cyclist to move given a certain position,

Grappe et al. (1997) concluded that an important part of the energy is due to

the aerodynamic drag of air. As a consequence, due to the shape of cargo-based

bikes, studying the BRP while considering not only the instantaneous energy on a

given road section but also the wind direction could lead to better itineraries. The

model could be extended to an arc routing problem for another type of delivery.

References 103

2. As the literature only has few benchmarks for the VRP with a single cross-dock, one

could create a benchmark for the rich PDP with multiple cross-docks introduced

in this thesis. Also, one could integrate the proposed algorithms into a unified

solution framework for more flexibility regarding multi-attribute such as working

hours and rest times etc.

3. The new GA can be improved to better cope with multiple objectives by using a

mechanism to direct the search toward unexplored regions while considering the

Pareto front. A feature which reuses the population from a previous interval with

an insertion heuristic could improve the speed of the search in dynamic condi-

tions. A reference algorithm in multi-objective could be implemented for further

comparisons.

4. Instead of iteratively calculating the next-hop for requests, one could calculate the

entire path when a request is placed. This would allow the algorithm to better

anticipate the traffic to avoid congestion or seize consolidation opportunities. As

studied by Nazari et al. (2018), ANNs can be trained to provide VRP solutions

instead of running heuristics. Therefore, instead of using meta-heuristics in the

VRP areas to transfer containers between nodes, one could use ANNs to accelerate

learning phases. To better demonstrate the relevance of the proposed method,

a simulation can be launched with a more traditional approach such as OSPF

included.

References

Abbatecola, L., Fanti, M. P., and Ukovich, W. (2016). A review of new approaches

for dynamic vehicle routing problem. In 12th Conference on Automation Science and

Engineering.

Ahkamiraad, A. and Wang, Y. (2018). Capacitated and multiple cross-docked vehicle

routing problem with pickup, delivery, and time windows. Computers & Industrial

Engineering, 119:76–84.

Ahmadizar, F., Zeynivand, M., and Arkat, J. (2015). Two-level vehicle routing with

cross-docking in a three-echelon supply chain: A genetic algorithm approach. Applied

Mathematical Modelling, 39(22):7065–7081.

Albareda-Sambola, M., Fernández, E., and Laporte, G. (2014). The dynamic multiperiod

vehicle routing problem with probabilistic information. Computers & Operations Re-

search, 48:31–39.

Alinaghian, M., Kalantari, M. R., Bozorgi-Amiri, A., and Raad, N. G. (2016). A novel

mathematical model for cross dock open-close vehicle routing problem with splitting.

International Journal of Mathematical Sciences and Computing, 2(3):21–31.

Allen, J., Browne, M., and Holguin-Veras, J. (2010). Sustainability strategies for city

logistics. Green logistics: Improving the environmental sustainability of logistics, pages

282–305.

Alsheikh, M. A., Lin, S., Niyato, D., and Tan, H.-P. (2014). Machine learning in wireless

sensor networks: Algorithms, strategies, and applications. IEEE Communications

Surveys & Tutorials, 16(4):1996–2018.

Atefi, R., Salari, M., Coelho, L. C., and Renaud, J. (2018). The open vehicle rout-

ing problem with decoupling points. European Journal of Operational Research,

265(1):316–327.

Ballot, E., Gobet, O., and Montreuil, B. (2012). Physical internet enabled open hub

network design for distributed networked operations. In Service orientation in holonic

and multi-agent manufacturing control, pages 279–292. Springer.

104

References 105

Barth, M. and Boriboonsomsin, K. (2009). Energy and emissions impacts of a freeway-

based dynamic eco-driving system. Transportation Research Part D: Transport and

Environment, 14(6):400–410.

Beasley, J. E. (1983). Route first-cluster second methods for vehicle routing. Omega,

11(4):403–408.

Bektaş, T. and Laporte, G. (2011). The pollution-routing problem. Transportation

Research Part B: Methodological, 45(8):1232–1250.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Boyan, J. A. and Littman, M. L. (1994). Packet routing in dynamically changing net-

works: A reinforcement learning approach. In Advances in neural information pro-

cessing systems, pages 671–678.

Bruni, M., Guerriero, F., and Beraldi, P. (2014). Designing robust routes for demand-

responsive transport systems. Transportation research part E: logistics and transporta-

tion review, 70:1–16.

Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., and Juan, A. A. (2014). Rich

vehicle routing problem: Survey. ACM Comput. Surv., 47(2):32:1–32:28.

Chen, M.-C., Hsiao, Y.-H., Reddy, H., and Tiwari, M. K. (2015). A particle swarm

optimization approach for route planning with cross-docking. In 7th International

Conference on Emerging Trends in Engineering & Technology (ICETET). IEEE.

Chen, M.-C., Hsiao, Y.-H., Reddy, R. H., and Tiwari, M. K. (2016). The self-learning

particle swarm optimization approach for routing pickup and delivery of multiple

products with material handling in multiple cross-docks. Transportation Research

Part E: Logistics and Transportation Review, 91:208–226.

Ćirović, G., Pamučar, D., and Božanić, D. (2014). Green logistic vehicle routing problem:

Routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert

Systems with Applications, 41(9):4245–4258.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations research, 12(4):568–581.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M. M., Soumis, F., and

GERAD (2000). The VRP with time windows. Groupe d’études et de recherche

en analyse des décisions Montréal.

Crainic, T. G. and Montreuil, B. (2016). Physical internet enabled hyperconnected city

logistics. Transportation Research Procedia, 12:383–398.

References 106

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management

Science, 6(1):80–91.

Dell’Amico, M., Hadjicostantinou, E., Iori, M., and Novellani, S. (2014). The bike

sharing rebalancing problem: Mathematical formulations and benchmark instances.

Omega, 45:7–19.

Desrochers, M., Lenstra, J. K., and Savelsbergh, M. W. P. (1990). A classification

scheme for vehicle routing and scheduling problems. European Journal of Operational

Research, 46(3):322–332.

Di Prampero, P., Cortili, G., Mognoni, P., and Saibene, F. (1979). Equation of motion

of a cyclist. Journal of Applied Physiology, 47(1):201–206.

Dondo, R. and Cerdá, J. (2014). A monolithic approach to vehicle routing and operations

scheduling of a cross-dock system with multiple dock doors. Computers & Chemical

Engineering, 63:184–205.

Dondo, R., Méndez, C. A., and Cerdá, J. (2011). The multi-echelon vehicle routing

problem with cross docking in supply chain management. Computers & Chemical

Engineering, 35(12):3002–3024.

Dudukovich, R., Hylton, A., and Papachristou, C. (2017). A machine learning concept

for dtn routing. In 2017 IEEE International Conference on Wireless for Space and

Extreme Environments (WiSEE), pages 110–115. IEEE.

Ehrgott, M., Wang, J. Y., Raith, A., and Van Houtte, C. (2012). A bi-objective cyclist

route choice model. Transportation research part A: policy and practice, 46(4):652–

663.

Enderer, F., Contardo, C., and Contreras, I. (2017). Integrating dock-door assignment

and vehicle routing with cross-docking. Computers & Operations Research, 88(Sup-

plement C):30–43.

Erdoğan, S. and Miller-Hooks, E. (2012). A green vehicle routing problem. Transporta-

tion Research Part E: Logistics and Transportation Review, 48(1):100–114.

Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., and Mizutani, K.

(2017). State-of-the-art deep learning: Evolving machine intelligence toward tomor-

row’s intelligent network traffic control systems. IEEE Communications Surveys &

Tutorials, 19(4):2432–2455.

Garćıa-Nájera, A. and López-Jaimes, A. (2018). An investigation into many-objective

optimization on combinatorial problems - analyzing the pickup and delivery problem.

Swarm and Evolutionary Computation, 38:218–230.

References 107

Ghiani, G., Manni, E., Quaranta, A., and Triki, C. (2009). Anticipatory algorithms for

same-day courier dispatching. Transportation Research Part E: Logistics and Trans-

portation Review, 45(1):96–106.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pages 249–256.

Gontara, S., Boufaied, A., and Korbaa, O. (2018). Routing the pi-containers in the

physical internet using the pi-bgp protocol. In 2018 IEEE/ACS 15th International

Conference on Computer Systems and Applications (AICCSA), pages 1–8. IEEE.

Grappe, F., Candau, R., Belli, A., and Rouillon, J. D. (1997). Aerodynamic drag in field

cycling with special reference to the obree’s position. Ergonomics, 40(12):1299–1311.

Guo, Z., Sheikh, S., Al-Najjar, C., Kim, H., and Malakooti, B. (2010). Mobile ad

hoc network proactive routing with delay prediction using neural network. Wireless

Networks, 16(6):1601–1620.

Hà, M. H., Bostel, N., Langevin, A., and Rousseau, L. (2013). An exact algorithm and

a metaheuristic for the multi-vehicle covering tour problem with a constraint on the

number of vertices. European Journal of Operational Research, 226(2):211–220.

Hà, M. H., Bostel, N., Langevin, A., and Rousseau, L. (2014). An exact algorithm and

a metaheuristic for the generalized vehicle routing problem with flexible fleet size.

Computers & Operations Rearch, 43:9–19.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-

ing human-level performance on imagenet classification. In Proceedings of the IEEE

international conference on computer vision, pages 1026–1034.

Hedrick, C. L. (1988). Routing information protocol. Technical report, No. RFC 1058.

Hrncir, J., Zilecky, P., Song, Q., and Jakob, M. (2015). Speedups for multi-criteria urban

bicycle routing. In OASIcs-OpenAccess Series in Informatics, volume 48. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik.

Kara, I., Kara, B. Y., and Yetis, M. K. (2007). Energy minimizing vehicle routing prob-

lem. In International Conference on Combinatorial Optimization and Applications,

pages 62–71. Springer.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

References 108

Koning, M. and Conway, A. (2016). The good impacts of biking for goods: Lessons from

Paris city. Case studies on transport policy, 4(4):259–268.

Kreng, V. B. and Chen, F.-T. (2008). The benefits of a cross-docking delivery strategy:

a supply chain collaboration approach. Production Planning and Control, 19(3):229–

241.

Kuo, R. J. and Zulvia, F. E. (2017). Hybrid genetic ant colony optimization algorithm

for capacitated vehicle routing problem with fuzzy demand - a case study on garbage

collection system. In 4th International Conference on Industrial Engineering and

Applications (ICIEA), page 244–248.

Lahyani, R., Khemakhem, M., and Semet, F. (2015). Rich vehicle routing prob-

lems: From a taxonomy to a definition. European Journal of Operational Research,

241(1):1–14.

Lee, K., Chae, J., and Kim, J. (2019). A courier service with electric bicycles in an

urban area: The case in seoul. Sustainability, 11(5):1255.

Li, H. and Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time

windows. In Proceedings 13th IEEE International Conference on Tools with Artificial

Intelligence. ICTAI 2001, page 160–167.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971.

Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., and Lam, H. (2014). Survey of green

vehicle routing problem: past and future trends. Expert systems with applications,

41(4):1118–1138.

Maes, J. and Vanelslander, T. (2012). The use of bicycle messengers in the logistics

chain, concepts further revised. Procedia-Social and behavioral sciences, 39:409–423.

Maknoon, Y. and Laporte, G. (2017). Vehicle routing with cross-dock selection. Com-

puters & Operations Research, (77):254–266.

Mao, B., Fadlullah, Z. M., Tang, F., Kato, N., Akashi, O., Inoue, T., and Mizutani, K.

(2017). Routing or computing? the paradigm shift towards intelligent computer net-

work packet transmission based on deep learning. IEEE Transactions on Computers,

66(11):1946–1960.

Mao, Q., Hu, F., and Hao, Q. (2018). Deep learning for intelligent wireless networks: A

comprehensive survey. IEEE Communications Surveys & Tutorials, 20(4):2595–2621.

References 109

Martin, J. C., Milliken, D. L., Cobb, J. E., McFadden, K. L., and Coggan, A. R.

(1998). Validation of a mathematical model for road cycling power. Journal of applied

biomechanics, 14(3):276–291.

Meller, R. D., Montreuil, B., Thivierge, C., and Montreuil, Z. (2012). Functional design

of physical internet facilities: A road-based transit center. Technical report, Progress

in Material Handling Research 2012.

Miao, Z., Fu, K., and Yang, F. (2012). A hybrid genetic algorithm for the multiple

crossdocks problem. Mathematical Problems in Engineering.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In

International conference on machine learning, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,

A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control

through deep reinforcement learning. Nature, 518(7540):529.

Montoya-Torres, J. R., Franco, J. L., Isaza, S. N., Jiménez, H. F., and Herazo-Padilla,

N. (2015). A literature review on the vehicle routing problem with multiple depots.

Computers & Industrial Engineering, 79:115–129.

Montreuil, B. (2011). Towards a physical internet: Meeting the global logistics sustain-

ability grand challenge. In Logistics Res., vol. 3, nos. 2-3, pp. 71-87, 2011.

Montreuil, B. (2012). Physical internet manifesto. In Transforming the way physical

objects are moved, stored, realized, supplied and used, aiming towards greater efficiency

and sustainability.

Montreuil, B., Ballot, E., and Fontane, F. (2012). An open logistics interconnection

model for the physical internet. In 14th IFAC Symposium on Information Control

Problems in Manufacturing.

Moy, J. (1997). Ospf version 2. Technical report, No. RFC 2178.

Nagy, G. and Salhi, S. (2005). Heuristic algorithms for single and multiple depot ve-

hicle routing problems with pickups and deliveries. European Journal of Operational

Research, 162(1):126–141.

References 110

Nazari, M., Oroojlooy, A., Snyder, L., and Takác, M. (2018). Reinforcement learning for

solving the vehicle routing problem. In Advances in Neural Information Processing

Systems, pages 9839–9849.

Nikolopoulou, A. I., Repoussis, P. P., Tarantilis, C. D., and Zachariadis, E. E. (2017).

Moving products between location pairs: Cross-docking versus direct-shipping. Euro-

pean Journal of Operational Research, 256(3):803–819.

Núñez, A., Cortés, C. E., Sáez, D., Schutter, B. D., and Gendreau, M. (2014). Multiob-

jective model predictive control for dynamic pickup and delivery problems. Control

Engineering Practice, 32:73–86.

Oyola, J., Arntzen, H., and Woodruff, D. L. (2016). The stochastic vehicle routing

problem, a literature review, part i: models. EURO Journal on Transportation and

Logistics, page 1–29.

Oyola, J., Arntzen, H., and Woodruff, D. L. (2017). The stochastic vehicle routing prob-

lem, a literature review, part ii: solution methods. EURO Journal on Transportation

and Logistics, 6(4):349–388.

Pellegrini, P., Favaretto, D., and Moretti, E. (2007). Multiple Ant Colony Optimization

for a Rich Vehicle Routing Problem: A Case Study, pages 627–634. Springer Berlin

Heidelberg.

Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2013). A review of dynamic

vehicle routing problems. European Journal of Operational Research, 225(1):1–11.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems.

Computers & Operations Research, 34(8):2403–2435.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing

problem. Computers & Operations Research, 31(12):1985–2002.

Prins, C. (2009). A grasp× evolutionary local search hybrid for the vehicle routing

problem. In Bio-inspired algorithms for the vehicle routing problem, pages 35–53.

Springer.

Psaraftis, H. N., Wen, M., and Kontovas, C. A. (2016). Dynamic vehicle routing prob-

lems: Three decades and counting. Networks, 67(1):3–31.

Ritzinger, U., Puchinger, J., and F. Hartl, R. (2016). A survey on dynamic and

stochastic vehicle routing problems. International Journal of Production Research,

54(1):215–231.

References 111

Ross, M. (1997). Fuel efficiency and the physics of automobiles. Contemporary Physics,

38(6):381–394.

Russell, R., Chiang, W.-C., and Zepeda, D. (2008). Integrating multi-product pro-

duction and distribution in newspaper logistics. Computers & Operations Research,

35(5):1576–1588. Part Special Issue: Algorithms and Computational Methods in Fea-

sibility and Infeasibility.

Sarraj, R. (2013). Interconnexion des reseaux logistiques : elements de definition et

potentiel. PhD thesis, Ecole Nationale Superieure des Mines de Paris.

Sarraj, R., Ballot, E., Pan, S., Hakimi, D., and Montreuil, B. (2013). Interconnected

logistic networks and protocols: simulation-based efficiency assessment. International

Journal of Production Research, 52(11):3185–3208.

Sarraj, R., Ballot, E., Pan, S., Hakimi, D., and Montreuil, B. (2014). Interconnected

logistic networks and protocols: simulation-based efficiency assessment. International

Journal of Production Research, 52(11):3185–3208.

Sarraj, R., Ballot, E., Pan, S., and Montreuil, B. (2012). Analogies between internet

network and logistics service networks: challenges involved in the interconnection.

Journal of Intelligent Manufacturing, 25(6):1207–1219.

Serna, M. D. A., Adarme-Jaimes, W., and Cortés, J. A. Z. (2010). Commodities dis-

tribution using alternative types of transport. a study in the colombian bread smes.

Dyna, 77(163):222–233.

Shi, X., Zhao, F., and Gong, Y. (2009). Genetic algorithm for the one-commodity

pickup-and-delivery vehicle routing problem. In Intelligent Computing and Intelli-

gent Systems, 2009. ICIS 2009. IEEE International Conference on, volume 1, page

175–179. IEEE.

Silbernagl, D., Krismer, N., Malfertheiner, M., and Specht, G. (2016). Optimization of

digital elevation models for routing. In GvD, pages 103–108.

Silva, P. P. B. and Zuluaga, A. E. (2016). Review of state of the art vehicle routing

problem with pickup and delivery (vrppd). Ingenieŕıa y Desarrollo, 34(2):463–482.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering

the game of go with deep neural networks and tree search. nature, 529(7587):484.

SINTEF. Li&lim benchmark. https://www.sintef.no/projectweb/top/pdptw/

li-lim-benchmark/. Accessed: 2018-09-10.

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

References 112

Solomon, M. M. (1985). Algorithms for the vehicle routing and scheduling problems

with time window constraints. In Operations Research, number 254-265.

Song, Q., Zilecky, P., Jakob, M., and Hrncir, J. (2014). Exploring pareto routes in

multi-criteria urban bicycle routing. In Intelligent Transportation Systems (ITSC),

2014 IEEE 17th International Conference on, pages 1781–1787. IEEE.

Stampa, G., Arias, M., Sanchez-Charles, D., Muntés-Mulero, V., and Cabellos, A.

(2017). A deep-reinforcement learning approach for software-defined networking rout-

ing optimization. arXiv preprint arXiv:1709.07080.

Tang, F., Mao, B., Fadlullah, Z. M., Kato, N., Akashi, O., Inoue, T., and Mizutani,

K. (2018). On removing routing protocol from future wireless networks: A real-time

deep learning approach for intelligent traffic control. IEEE Wireless Communications,

25(1):154–160.

Tipagornwong, C. and Figliozzi, M. (2014). Analysis of competitiveness of freight tricycle

delivery services in urban areas. Transportation Research Record, 2410(1):76–84.

Toh, C. K. (2001). Ad hoc mobile wireless networks: protocols and systems. Pearson

Education.

Touihri, A., Dridi, O., and Krichen, S. (2017). A multi operator genetic algorithm

for solving the capacitated vehicle routing problem with cross-docking problem. In

Computational Intelligence (SSCI), 2016. IEEE.

Vidal, T. (2016). Split algorithm in O(n) for the capacitated vehicle routing problem.

Computers & Operations Research, 69:40–47.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2014). A unified solution frame-

work for multi-attribute vehicle routing problems. European Journal of Operational

Research, 234(3):658–673.

Wang, C., Mu, D., Zhao, F., and Sutherland, J. W. (2015). A parallel simulated anneal-

ing method for the vehicle routing problem with simultaneous pickup–delivery and

time windows. Computers & Industrial Engineering, 83:111–122.

Wang, J., Jagannathan, A. K. R., Zuo, X., and Murray, C. C. (2017). Two-layer sim-

ulated annealing and tabu search heuristics for a vehicle routing problem with cross

docks and split deliveries. Computers & Industrial Engineering, 112:84–98.

Wang, M., Cui, Y., Wang, X., Xiao, S., and Jiang, J. (2018). Machine learning for

networking: Workflow, advances and opportunities. IEEE Network, 32(2):92–99.

References 113

Wang, S. and Wu, Y. (2017). A genetic algorithm for energy minimization vehicle

routing problem. In 2017 International Conference on Service Systems and Service

Management, page 1–5.

Wang, Y., Martonosi, M., and Peh, L.-S. (2007). Predicting link quality using super-

vised learning in wireless sensor networks. ACM SIGMOBILE Mobile Computing and

Communications Review, 11(3):71–83.

Wassan, N. A. and Nagy, G. (2014). Vehicle routing problem with deliveries and pickups:

modelling issues and meta-heuristics solution approaches. International Journal of

Transportation, 2(1):95–110.

Wilson, N. H. M. and Colvin, N. J. (1977). Computer control of the Rochester dial-a-ride

system. Number 77. Massachusetts Institute of Technology, Center for Transportation

Studies.

Yang, Y., Ma, X., Sun, Y., and Zhu, Z. (2017). Multi-objective memetic algorithm based

on three-dimensional request prediction for dynamic pickup-and-delivery problem with

time windows. In Shi, Y., Tan, K. C., Zhang, M., Tang, K., Li, X., Zhang, Q., Tan,

Y., Middendorf, M., and Jin, Y., editors, Simulated Evolution and Learning, page

810–820, Cham. Springer International Publishing.

You, X., Li, X., Xu, Y., Feng, H., and Zhao, J. (2019). Toward packet routing with fully-

distributed multi-agent deep reinforcement learning. arXiv preprint arXiv:1905.03494.

Yu, V. F., Jewpanya, P., and Kachitvichyanukul, V. (2015). Particle swarm optimization

for the multi-period cross-docking distribution problem with time windows. Interna-

tional Journal of Production Research, 54(2):509–525.

Yu, V. F., Jewpanya, P., and Redi, A. P. (2016). Open vehicle routing problem with

cross-docking. Computers & Industrial Engineering, 94:6–17.

Zachariadis, E., D. Tarantilis, C., and Kiranoudis, C. (2010). An adaptive memory

methodology for the vehicle routing problem with simultaneous pick-ups and deliver-

ies. European Journal of Operational Research, 202:401–411.

Zanjireh, M. M. and Larijani, H. (2015). A survey on centralised and distributed cluster-

ing routing algorithms for wsns. In 2015 IEEE 81st Vehicular Technology Conference

(VTC Spring), pages 1–6. IEEE.

Zanjireh, M. M., Shahrabi, A., and Larijani, H. (2013). Anch: A new clustering algo-

rithm for wireless sensor networks. In 2013 27th International Conference on Advanced

Information Networking and Applications Workshops, pages 450–455. IEEE.

Appendices

114

Appendix A

Publications resulting from this

thesis

Refereed or submitted journal papers

[1] Y. Ancele, H. H. Minh, C. Lersteau, D. B. Matellini, and T. T. Nguyen. Toward

a more flexible vrp with pickups and deliveries allowing consolidations. Transportation

Research Part C: Emerging Technologies, 2019.

[2] Y. Ancele, H. H. Minh, D. B. Matellini, and T. T. Nguyen. Bike routing problem

with energy constraints. European Journal of Operational Research, 2020.

Future journal submissions

[3] Y. Ancele, D. B. Matellini, and T. T. Nguyen. A learning algorithm for the vehicle

and container routing problem. IEEE Access, 2020.

[4] Y. Ancele, D. B. Matellini, and T. T. Nguyen. A rich multi-objective and dynamic

VRP with uncertainty.

The following lists materials (or part) of the publications presented in the thesis:

• Chapter 2 : publications [1,2,3,4]

• Chapter 3 : publication [2]

• Chapter 4 : publications [1]

115

Appendix 116

• Chapter 5 : publication [4]

• Chapter 6 : publication [3]

Appendix B

Algorithms for functions and

operators of meta-heuristics

Algorithm 23: Initialisation function

1 //Input: set C of P&D customers, set K of vehicles;
2 //Output: an initial solution S;
3 add depots(S) //add depot nodes for all vehicle routes;
4 sort nodes(C) //sort P&D pairs by Bi;
5 node← pop(C) //remove first node;
6 k ← random(K);
7 while node 6= ∅ do
8 indices← get best indices(k, S, node);
9 foreach i in indices do

10 if insert(Sk, node, i) then
11 inserted← true;
12 if is delivery(node) then
13 pickup← ∅;
14 k ← random(K);

15 else
16 pickup← node;

17 break;

18 if not inserted then
19 add(C, node);
20 if pickup 6= ∅ then
21 remove(Sk, pickup) //remove the pickup node as the delivery one failed;
22 add(C, pickup);
23 pickup← ∅;

24 k ← random(K);

25 node← pop(C);

117

Appendix 118

Algorithm 24: Neighbour Search function

1 //Input: a solution S;
2 //Output: the best solution Sb found;
3 Sb ← S;
4 while true do
5 S′ ← PD operate(Sb) //apply a random operator from op list;
6 if cost(S′) < cost(Sb) then
7 Sb ← S′;

8 else
9 break;

10 return Sb;

Algorithm 25: Random Solution function

1 //Input: a solution S;
2 //Output: a solution S′ found;
3 it← 0;
4 S′ ← ∅;
5 while S′ = ∅ and it < RIT do
6 S′ ← PD operate(S);
7 it← it+ 1;

8 if S′ = ∅ then
9 S′ ← random previous solution();

10 return S′;

Algorithm 26: Simulated Annealing function

1 //Input: a solution S;
2 //Output: a solution S′ found;
3 f ← false;
4 t← T0;
5 while f = false do
6 S′ ← random solution(S);
7 ∆← cost(S′)− cost(S);
8 if ∆ ≤ 0 then
9 p← 1;

10 else

11 p← e−∆/T ;

12 t← δ ∗ T ;
13 if random double() ≤ p then
14 f ← true;

15 else if t < 0.01 then
16 f ← true;
17 S′ ← S;

18 return S′;

Appendix 119

Algorithm 27: PD Interchange operator

1 //Input: a current solution Sc, a set K of vehicles;
2 //Output: a solution S found;
3 valid← false;
4 while valid = false do
5 S ← Sc;
6 k ← random(K);

7 node← remove(Sk) //remove a random node;

8 if insert(node, Sk) then
9 valid← is valid(S);

10 return S;

Algorithm 28: PD Move operator

1 //Input: a current solution Sc, a set K of vehicles, a set R of requests;
2 //Output: a solution S found;
3 valid← false;
4 shuffle(K);
5 r ← random(R);
6 v ← ∅;
7 changed← 0;
8 while valid = false do
9 S ← Sc;

10 foreach k in K do
11 foreach node in Sk do
12 //cross-docks can contain several r;
13 if contain(node, r) then
14 if v = ∅ then
15 v ← random(K/k) //new vehicle route v must be different from k;

16 remove(node, r, Sk);
17 if not insert(node, r, Sv) then
18 break 2 loops;

19 changed← changed+ 1;

20 if changed = 2 then
21 valid← is valid(S);
22 break 2 loops;

23 return S;

Appendix 120

Algorithm 29: PD Swap operator

1 //Input: a solution S, a set K of vehicles, a set R of requests;
2 //Output: a solution S′ found;
3 valid← false;
4 while valid = false do
5 S′ ← ∅;
6 v1 ← random(K);
7 v2 ← random(K/v1) //vehicle v2 must be different from v1;
8 foreach k in K do
9 if k = v1 then

10 S′k ← Sv2 //the depots are those from vehicle v1;

11 else if k = v2 then
12 S′k ← Sv1 //the depots are those from vehicle v2;

13 else
14 S′k ← Sk;

15 valid← is valid(S′);

16 return S′;

Appendix 121

Algorithm 30: PD Exchange operator

1 //Input: a current solution Sc, a set K of vehicles, a set R of requests;
2 //Output: a solution S found;
3 valid← false;
4 shuffle(K);
5 while valid = false do
6 r1 ← random(R);
7 r2 ← random(R/r1);
8 node1a ← ∅;
9 node1b ← ∅;

10 node2a ← ∅;
11 node2b ← ∅;
12 S ← Sc;
13 foreach k in K do
14 foreach node in Sk do
15 if contain(node, r1) and (node1a = ∅ or node1b = ∅) then
16 k1 ← k;
17 if node1a = ∅ then
18 node1a ← node;

19 else
20 node1b ← node;

21 remove(node, r1, S
k);

22 if contain(node, r2) and (node2a = ∅ or node2b = ∅) then
23 k2 ← k;
24 if node2a = ∅ then
25 node2a ← node;

26 else
27 node2b ← node;

28 remove(node, r2, S
k);

29 if contain(Sk1 , r2) or contain(Sk2 , r1) then
30 continue;

31 insert(node1a, r1, S
k2);

32 insert(node1b, r1, S
k2);

33 insert(node2a, r2, S
k1);

34 insert(node2b, r2, S
k1);

35 valid← is valid(S);

36 return S;

Appendix 122

Algorithm 31: Consolidation function

1 //Input: a current solution Sc;
2 //Output: the best solution Sb found;
3 Sb ← ∅;
4 S ← Sc;
5 if random double() < 0.5 then
6 S ← PD arrange(S);

7 group← random(req groups);
8 while no progress < RPLI do
9 if random double() < RPLR then

10 operator← PD stretch;

11 else
12 operator← PD shrink;

13 cnt← 0;
14 foreach r in group do
15 S ← operator(S, r) //apply PD stretch() or PD shrink();

16 if is valid(S) and cost(S) < cost(Sb) then
17 Sb ← S;
18 no progress← 0;
19 group← random(req groups);

20 else
21 no progress← no progress+ 1;

22 return Sb;

Appendix C

Algorithms for Pareto

optimisation

Algorithm 32: Pareto dominance function

1 //Input: chromosomes c1, c2, objective set O;
2 //Output: the dominance relation r;
3 better ← 0;
4 worse← 0;
5 foreach obj in O do
6 if cost(obj, c1) < cost(obj, c2) then
7 better ← better + 1;

8 else if cost(obj, c1) > cost(obj, c2) then
9 worse← worse+ 1;

10 if better = |O| then
11 r ← pareto.dominates;

12 else if worse = |O| then
13 r ← pareto.dominated;

14 else if better > 0 and worse = 0 then
15 r ← pareto.dominates;

16 else if worse > 0 and better = 0 then
17 r ← pareto.dominated;

18 else if worse = 0 and better = 0 then
19 r ← pareto.equal;

20 else
21 r ← pareto.equivalent;

22 return r;

123

Appendix 124

Algorithm 33: Pareto front function

1 //Input: set of chromosomes C;
2 //Output: a Pareto front P ;
3 foreach c in C do
4 foreach p in P do
5 if pareto dominance(c, p) = pareto.better then
6 mark p to be removed from P ;
7 mark c to be added in P ;

8 else if pareto dominance(c, p) = pareto.worse then
9 unmark c;

10 break;

11 else
12 mark c to be added in P ;

13 manage marked solutions;

14 return P ;

Algorithm 34: Pareto ranking function

1 //Input: population of chromosomes C;
2 //Output: the Pareto ranking pr of C;
3 i← 1;
4 while C 6= ∅ do
5 front← pareto front(C) //remove the resulting front from the given set C;
6 foreach c in front do
7 pr[c]← i;

8 i← i+ 1;

9 return pr;

	Declaration
	Abstract
	Acknowledgements
	Declaration of Authorship
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Scope of the thesis
	1.2 Research questions
	1.3 Contribution of the thesis
	1.4 Outline of the thesis

	2 Literature review
	2.1 Delivery using bikes
	2.2 Physical Internet
	2.3 Practical attributes for the VRP
	2.4 Dynamic, multi-objective and uncertainty constraints for the VRP
	2.5 Machine learning applications for routing problems
	2.6 Conclusion

	3 A bike routing problem with energy constraints
	3.1 Introduction
	3.2 Problem description and formulation
	3.2.1 Context
	3.2.2 Mixed-integer linear programming formulation

	3.3 Meta-heuristic
	3.4 Computational results
	3.4.1 Data
	3.4.2 Parameter tuning
	3.4.3 CPLEX and ELS comparison
	3.4.4 Real-world case

	3.5 Conclusion

	4 A rich multi-cross-docking VRP with pickup and delivery
	4.1 Introduction
	4.2 Problem description and formulation
	4.2.1 Context
	4.2.2 Mixed-integer linear programming formulation

	4.3 Meta-heuristic
	4.3.1 Architecture
	4.3.2 Algorithm functions
	4.3.3 Algorithm operators

	4.4 Computational results
	4.4.1 Solver configuration
	4.4.2 Parameter tuning
	4.4.3 CPLEX and meta-heuristic performances
	4.4.4 Consolidation performances
	4.4.5 Benchmark performances

	4.5 Conclusion

	5 A rich multi-objective and dynamic VRP with uncertainty
	5.1 Introduction
	5.2 Problem description and formulation
	5.2.1 Context
	5.2.2 Mixed-integer linear programming formulation

	5.3 Meta-heuristics
	5.3.1 Architecture
	5.3.2 GA overall
	5.3.3 GA operators
	5.3.4 Request anticipation and dynamism

	5.4 Computational results
	5.4.1 Data
	5.4.2 Parameter tuning
	5.4.3 Comparison on generated instances
	5.4.4 Comparison on existing benchmark instances
	5.4.5 Comparison on clustered and non-clustered instances
	5.4.6 Comparison on dynamic instances
	5.4.7 Comparison on dynamic multi-objective instances
	5.4.8 Performance of the prediction feature using uncertainty

	5.5 Conclusion

	6 A learning algorithm for the vehicle and container routing problem
	6.1 Introduction
	6.2 Problem definition
	6.3 Methodology
	6.3.1 Reinforcement learning
	6.3.2 Environment
	6.3.3 Asynchronous Advantage Actor-Critic
	6.3.4 A3C implementation

	6.4 Computational results
	6.4.1 Example of 7 areas for distance optimisation
	6.4.2 Example of 6 areas for fulfilment optimisation
	6.4.3 Discussion
	6.4.4 Future work

	6.5 Conclusion

	7 Conclusion and future work
	7.1 Summary of major contributions
	7.2 Future work

	Appendices
	A Publications resulting from this thesis
	B Algorithms for functions and operators of meta-heuristics
	C Algorithms for Pareto optimisation

