
Realtime Vehicle Route
Optimisation via DQN for

Sustainable and Resilient Urban
Transportation Network

Song Sang Koh

A thesis submitted in partial fulfilment of the requirements of
Liverpool John Moores University

for the degree of Doctor of Philosophy

January, 2020

i

Declaration of Authorship
I, Song Sang Koh, declare that this thesis titled, “Realtime Vehicle Route Opti-
misation via DQN for Sustainable and Resilient Urban Transportation Network”
and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Signed:

Date: 30th September 2019

ii

LIVERPOOL JOHN MOORES UNIVERSITY

Abstract
Department of Computer Science

Doctor of Philosophy

Realtime Vehicle Route Optimisation via DQN for Sustainable and
Resilient Urban Transportation Network

by Song Sang Koh

Traffic congestion has become one of the most serious contemporary city issues
for urban transportation network as it leads to unnecessary high energy con-
sumption, air pollution and extra travelling time. During this decade, many
optimization algorithms have been designed to achieve the optimal usage of ex-
isting roadway capacity in cities to leverage the problem. However, it is still a
challenging task for the vehicles to interact with the complex city environment
in a real time manner. In this thesis, we propose a deep reinforcement learn-
ing (DRL) method to build a real-time intelligent vehicle navigation system
for sustainable and resilient urban transportation network. We designed two
rewards methods travel time based and vehicle emissions impact (VEI) based
which aim to reduce the travel time for emergency vehicle (resilience), and re-
duce vehicle emissions for general vehicle (sustainability). In the experiment,
several realistic traffic scenarios are simulated by SUMO to test the proposed
navigation method. The experimental results have demonstrated the efficient
convergence of the vehicle navigation agents and their effectiveness to make op-
timal decisions under the volatile traffic conditions. Travel time based reward
schema perform better in reducing travel time however VEI based show better
result in reducing vehicle emissions. Furthermore, the results also show that
the proposed method has huge potential to provide a better navigation solution
comparing with the benchmark routing optimisation algorithms.

iii

Acknowledgements
It is an amazing journey for me to be able to complete my PhD program in
Liverpool. My greatest thank to my dearest family, my mother and my sister
who fully understand and always support me to do what I am interested in. I
also want to particularly express my appreciation to my uncle in law Mr. Chow
and my aunt Dr. Ng who had been guiding me to be a better person internally
and externally.

During the last four years, I feel grateful to the people I have been working
with in my PhD program. As my first supervisor, Dr. Bo Zhou is extremely
helpful not only for my PhD program, and also my well-being in Liverpool.
In fact, Dr. Bo Zhou was also the supervisor for my master degree, he is the
person who brought me into research life and gave me the confidence to start my
PhD. His kindness and patient helped me getting through so many challenges
in the last four years. He also helped me to broaden my research vision. I
could not express more grateful to have him as my supervisor. My sincere
gratitude also goes to Dr. Fang Hui, for his valuable and elaborate comments
on each of my significant experiment and submission. Without his suggestion
and guideline, I would never be able to complete my PhD in this four years. His
suggestion and opinion provided huge contribution for my research. In fact, he
pushed me to become a better researcher, helped me to improve my technical
and management skills and I will always appreciate it. My thank also goes to
my co-supervisor Dr. Po Yang and Dr. Zaili Yang, for their kindness and help
during my PhD program. They are always be there when I need them.

I highly appreciate the time in Liverpool John Moores University (LJMU)
for my master and PhD program. I would like to thank all the staffs in LJMU,
especially Tricia Waterson who had given me so many supports.

iv

List of Publications

[Journal]

• Song Sang Koh, Bo Zhou, Hui Fang, Po Yang, Zaili Yang, Qiang Yang,
Lin Guan, Real-time Deep Reinforcement Learning based Vehicle Navi-
gation, Elsevier Soft Computing. [Submitted]

[Conference]

• Song Sang Koh, Bo Zhou, Po Yang, Zaili Yang, Hui Fang, Jianxin
Feng, Reinforcement Learning for Vehicle Route Optimization in SUMO.
HPCC/SmartCity/DSS 2018: 1468-1473, 2018

• Song Sang Koh, Bo Zhou, Po Yang, Zaili Yang, Study of Group Route
Optimization for IoT Enabled Urban Transportation Network. iThings/-
GreenCom/CPSCom/SmartData 2017: 888-893, 2017

• Song Sang Koh, Bo Zhou, Po Yang, Zaili Yang. A Survey on Urban
Traffic Optimisation for Sustainable and Resilient Transportation Net-
work. 2016 9th International Conference on Developments in eSystems
Engineering (DeSE). IEEE, 2016

v

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Overview . 1
1.2 Research Motivation . 3
1.3 Research Aims and Objectives 9
1.4 Research Novelty . 10
1.5 Thesis Structure . 12

2 Literature Review 14
2.1 Overview . 14
2.2 Shortest Path Algorithm . 14

2.2.1 Dijkstra’s Algorithm . 15
2.2.2 Bellman-Ford’s Algorithm 18
2.2.3 A-Star Algorithm . 20
2.2.4 Heuristic Shortest Path Finding and Re-planning 22
2.2.5 Bidirectional Search . 23
2.2.6 Ant-Colony Algorithm 24

2.3 Traffic Management Systems . 26
2.3.1 Traffic Signal Control System 26
2.3.2 Vehicle Routing Optimisation 28

2.4 Summary of Limitations . 30

3 Deep Reinforcement Learning 32
3.1 Overview . 32
3.2 Reinforcement Learning . 32

3.2.1 Markov Decision Process (MDP) 32
3.2.2 Q-Learning . 35

3.3 Deep Reinforcement Learning 37
3.3.1 Artificial Neural Networks 37
3.3.2 Action Selection Policy 39
3.3.3 Optimisation Algorithm 40
3.3.4 Deep Q-Network . 42

3.4 Deep Reinforcement Learning for Urban Traffic Optimisation . . 44
3.4.1 Intersection Traffic Control 45
3.4.2 Urban Traffic Prediction 46

vi

3.4.3 Motivation of using DQN in Vehicle Navigation 46
3.5 Limitation . 47

4 Urban Traffic Simulation 48
4.1 Overview . 48
4.2 Background . 48

4.2.1 Traffic Simulation . 48
4.2.2 Simulation Models and Approaches 49
4.2.3 Simulators Overview . 52

4.3 Overview of SUMO . 53
4.4 Additional Features . 54

4.4.1 TraCI . 54
4.4.2 Emissions . 55

5 Preliminary Design and Experiment for Vehicle Route Optimi-
sation 57
5.1 Overview . 57
5.2 Markov Decision Process for Vehicle Route Optimisation Problem 57

5.2.1 Overview of Markov Chain 57
5.2.2 Apply Markov Chain Modelling in Urban Road Traffic

Network . 58
5.3 Reinforcement Learning for Vehicle Route Optimisation 60

5.3.1 Problem Statement . 61
5.3.2 Key term definition of RL for Vehicle Route Optimisation 61

5.4 Experiment Evaluation . 63
5.4.1 Experiment Setup . 63
5.4.2 Experiment Implementation 64
5.4.3 Simulation Result . 66
5.4.4 Discussion . 68

5.5 Summary . 68

6 The Proposed Framework and Structure Design 70
6.1 Overview . 70
6.2 Proposed Framework for Vehicle Route Optimisation 70

6.2.1 Overview of Proposed Framework 71
6.2.2 Training Framework Structure 71
6.2.3 Training Framework Process Flow 73

6.3 The Design of DRL for Real-time Vehicle Route Optimisation . 74
6.3.1 Problem Statement . 74
6.3.2 Vehicle Agent . 75
6.3.3 State Space . 76
6.3.4 Action Space . 77
6.3.5 Reward Function . 78

6.4 DRL method for Real-time Vehicle Route Optimisation 82
6.5 Deep Neural Network Architecture for Real-time Vehicle Route

Optimisation . 86
6.6 Summary . 87

vii

7 Experiment Implementation and Evaluation 89
7.1 Overview . 89
7.2 Experiment Implementation . 89

7.2.1 Training Simulation Overview 89
7.2.2 Scenario class definition 91
7.2.3 Building a Simulation with SUMO 91
7.2.4 Environment Class Definition 94
7.2.5 Data Extraction and Pre-processing 95
7.2.6 Benchmark Methods . 98
7.2.7 DRL Agent Class Definition 98
7.2.8 DRL Agent Architecture 99
7.2.9 Action Selection Policy 100

7.3 Experimental Evaluation . 104
7.3.1 Toy Data . 104
7.3.2 Realistic scenario analysis 106

8 Conclusion and Future Work 118
8.1 Overview . 118
8.2 Problem Overview . 118
8.3 Contributions and Achievements 119
8.4 Future work . 120
8.5 Summary . 121

Bibliography 123

A Key Code Snippets for Vehicle Route Optimisation 132
A.1 Scenario Class . 132
A.2 Environment Class . 135
A.3 DRL Agent Class . 144

viii

List of Figures

1.1 Urban and rural populations of the world, 1950-2050 [119] . . . 4
1.2 Population and number of urban agglomerations of the world by

size class of urban settlement, 1990, 2018 and 2030 [119] 4
1.3 Congestion Growth Trend – Hours of Delay per Auto Commuter

[100] . 5
1.4 Global transport CO2 emissions [23] 6
1.5 Souces of Congestion[109] . 7
1.6 Examples of car navigation system 9

2.1 A (u0, v0) path of minimum weight [10]) 15
2.2 Illustration of Dijkstra’s algorithm [85]) 17
2.3 Tracking nodes in A-Star algorithm and in Dijkstra’s algorithm

[85]) . 21
2.4 An illustration of the bidirectional version of Dijkstra’s algorithm

[85] . 24
2.5 Example of how the effect of laying/sensing pheromone during

the forth and back journeys from the nest to food sources to
determine shortest path between two nodes [28]) 25

2.6 3-tier system architecture of SCATS [103]) 27
2.7 Layout architecture for efficient dynamic traffic control system

[103]) . 28
2.8 Roadmap and its corresponding road network graph [21]) 29

3.1 Reinforcement Learning Design Flow 33
3.2 A Markov decision Process . 34
3.3 The interaction between environment and agent in Q-Learning . 36
3.4 Single neuron output based on weight, input, bias and non-linear

activation function . 38
3.5 Function curves of sigmoid, Tanh and ReLU 38
3.6 Visualization of the structure of neural network with multiple

hidden layers . 39
3.7 DQN Learning Diagram . 43
3.8 The traffic light control model in deep learning [21]) 45

4.1 Overview of traffic simulation models [14] 50
4.2 Space-discrete vs Space-continuous simulation 51
4.3 The relationship of traffic simulation models [15] 51

5.1 Sumo network . 59
5.2 The edge network associated to the Sumo map shown in Figure

5.1 . 59

ix

5.3 Edges in Sumo network that connected nodes shown in Figure 5.2 60
5.4 Dual Graph with rewards . 62
5.5 SUMO urban road traffic network 64
5.6 Dual graph network of Figure 5.5 64
5.7 Cumulative rewards per training episode 67
5.8 Travel time per training episode 68

6.1 The proposed framework structure 72
6.2 The Framework consists of SUMO simulator, Middleware and

RL Agent for the vehicle navigation task 73
6.3 Use case of vehicle route optimisation 75
6.4 Problem statement of the RL based multi-agents navigation . . 76
6.5 Problem statement of the RL based multi-agents navigation . . 78
6.6 State Matrix for network Figure 6.5 79
6.7 Virtualisation of reward calculation in urban network 80
6.8 The convergence graph for 2 proposed reward schemas in travel

time and VEI . 82
6.9 A popular single stream Q-network (top) and the dueling Q-

network (bottom). The dueling network has two streams to sep-
arately estimate (scalar) state-value and the advantages for each
action; the green output module combine both state-value and
the advantages and output the Q-values. [114] 84

6.10 Comparison of different DQN methods 85
6.11 Euclidean distances based action selection policy 86
6.12 The structure of neural network in this experiment 87

7.1 Training Simulation Mechanism Flowchart 90
7.2 SUMO traffic simulation process diagram 92
7.3 (a) openstreetmap (b) sumo map 93
7.4 (a) NetEdit (b) sumo map . 93
7.5 Three cases showing the limitations of the travel time calculation

using SUMO . 97
7.6 Overview of DQN architecture 100
7.7 Eval network architecture . 101
7.8 Target Network architecture . 102
7.9 Train and loss architecture . 103
7.10 Simple map structure and mean step in 100 episodes 105
7.11 The simulated illustration of conventional Dijkstra/A* method

and proposed method . 106
7.12 Real world city map that are captured for SUMO simulation in

this thesis . 107
7.13 Convergence of the Avg. travel time in City Map 1 109
7.14 Convergence of the Avg. VEI in City Map 1 110
7.15 Convergence of the Avg. travel time in City Map 2 111
7.16 Convergence of the Avg. VEI in City Map 2 112
7.17 Convergence of the Avg. travel time in City Map 3 113
7.18 Convergence of the Avg. VEI in City Map 3 114

x

List of Tables

4.1 CPU and Memory performance in different traffic simulators [59] 52
4.2 Pollutants covered by models 56

5.1 Vehicle agent hyper parameters for intelligent navigation 66
5.2 The connected roads table . 67

6.1 Vehicle agent hyper parameters for reward schemas comparison 82
6.2 Vehicle agent hyper parameters for intelligent navigation 86

7.1 Definition of vehicle type . 93
7.2 The comparison of expected travel time calculation from SUMO

and proposed approach . 98
7.3 Maps information . 107
7.4 The objective performance comparisons under various traffic con-

ditions . 116

xi

List of Abbreviations

RL Reinforcement Learning
DRL Deep Reinforcement Learning
VEI Vehicle Emissions Impact
RC Recurring Congestion
NRC Non-Recurring Congestion
SPP Shortest Path Problem
DA Dijkstra’s Algorithm
ARA Anytime Reparing A*
ADA Anytime Dynamic A*
SCATS Sydney Coordiated Adaptive Traffic System
SCOOT Split Cycle Offset Optimisation Technique
IP Internet Protocol
VANETs Vehicular Ad-hoc NETworks
ITLCS Intelligent Traffic Light Control System
EDTCS Efficient Dynamic Traffic Control System
TCU Traffic Control Unit
TMU Traffic Monitor Unit
TSU Road Side Unit
VSN Vehicular Sensor Network
AP Access Point
VADD Vehicle Assisted Data Delivery
TBD Trajectory Based Data
MDP Markov Decision Process
VI Value Iteration
ANN Artificial Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
MLP Multi-Layer Perceptron
ReLU Rectifier Linear Unit
MSE Mean Square Error
DQN Deep Q-Network
TMC Traffic Message Channel
TRSS Transportation Regulation Support System
APTS Advanced Public Transportation System
TraCI Traffic Control Interface
ERD Exploration Rate Decay
ICE Internal Combustion Engine
GUI Graphical User Interface
GDUE Gawron’s Dynamic User Equilibrium
DTA Dynamic Traffic Assignment

1

Chapter 1

Introduction

1.1 Overview
Over the last decade, sustainability and resilience have become a major consid-
eration that cannot be neglected in urban development, where most major cities
in the world are faced with challenges in increasing economic and environmental
pressures associated with urbanisation. Although many definitions abound, the
most often used definition of sustainability is that proposed by the Brundtland
Commission [11], which defined sustainability as "the ability to produce and/ or
maintain a desired set of conditions or things for some time into the future, not
necessarily forever". Generally, sustainable development aims at creating and
maintaining our options for prosperous social and economic development in fu-
ture [33]. It emphasizes an optimal balance between social needs, economy and
environment. Therefore, environmental, social, and economic concerns have to
be integrated throughout the decision making process [30]. Resilience, has be-
come a common term in risk analysis or risk management in highly complex and
adaptive systems [76]. However, it has been defined in different ways. Essen-
tially, resilience provides the capacity to absorb the shock and the availability
of maintaining the function where unexpected events happen [41]. It also refers
to the inherent ability and adaptive responses of systems that enable them to
avoid potential losses [42], in order to protect and enhance people’s live, secure
development gains, foster an environment for investment, and drive positive
change.

The urban transportation network is among the most complex and critical
system of modern cities. It is essentially playing an important role in the day-
to-day running of cities, directly influencing people’s daily life and activities
in all functions of society. It is linked to all aspects of urban life: leisure,
education and business. Ensuring a comprehensive, accessible and integrated
transportation network is essential to sustain social and economic development.
The central role of transport networks in urban life means that any reduction in
performance may compromise the city’s operations across a number of sectors,
causing large and costly disruptions. In order to make sure urban transportation
will meet the basic needs of society and individuals without seriously damaging
the environment and decreasing the safety level. Developing a sustainable and
resilient urban transportation network has become a major challenge nowadays.

Chapter 1. Introduction 2

Sustainability and resilience are the key factors in urban transportation net-
works in order to make sure they will meet the basic needs of society and individ-
uals without seriously damaging the environment and decreasing the safety level
on the roadway. There are a variety of unexpected events that could put urban
transportation at risk. For instance, some natural disasters including flood-
ing, earthquake or heatwaves could totally paralyse the urban transportation
network. Moreover, traffic congestion is also a major issue in urban planning,
especially when the number of vehicles on the road keeps growing and the ur-
ban infrastructure is not upgraded at a comparable pace to accommodate the
growing number of vehicles. Besides, although many different methods about
route optimisation have been widely studied, most of them lack the capability of
self-evolution based on the rapid nature of the transportation network and lack
of consideration from the urban perspective in terms of sustainability and re-
silience. Therefore, to develop a sustainable and resilient urban transportation
network has become a key topic in urban development nowadays.

For a sustainable and resilient transportation network, although there is
no universally accepted definition, with the combination of sustainability and
resilience concepts, it generally describes an intelligent transport network which
is able to use the urban transportation network efficiently and meet the basic
needs of individuals as well as the urban environment, and able to minimize
the emissions and waste, increase road safety and limit fuel consumption [108]
[46] [70]. Sustainability and resilience should be the main consideration of all
strategies for modern urban transportation networks in the future.

Sustainable transportation systems offer greater flexibility and coordination,
allowing users to be distributed across a diverse portfolio of transport options
and to transfer easily from one mode to another when required. Better inte-
grated systems provide a smoother, more efficient and user-friendly day-to-day
service which is also better able to cope with the stresses associated with peak
demand and strains of infrequent shocks or unforeseen events [83]. A resilient
transportation system is essential to avoid such events. Recent evidence suggest
that the frequency, extent and severity of extreme weather events is increasing
around the world exposing transport infrastructure to more severe stresses and
sudden (shock) events. Anticipating and preparing for the impacts of these
stresses and shocks on the transportation systems is key to achieving and sus-
taining resilient urban mobility [54].

However, to make a sustainable and resilient urban transportation network
is not easy. One of the major challenges is to resolve the traffic congestion. A
better utilization of vehicles and a cost effective vehicle routing solution would
more directly achieve sustainable transportation network schemes [69]. How-
ever, despite many problems, variations have been investigated and studied
through many different approaches, due to the complexity of urban transporta-
tion, there is still a huge gap to be filled for the traffic congestion problem.
Although travel time represents the major element that affects urban trans-
portation performance, there are limited research studies on resolving the ve-
hicle routing problem related to travel time dependency [31]. Therefore, route

Chapter 1. Introduction 3

optimisation is proposed recently as an approach to resolving the traffic con-
gestion problem.

Traditionally, most of the past routing algorithms for traffic congestion prob-
lem are based on static approach and without considering the unexpected events
in transportation network. They are lack of ability to deal with rapidly changes
circumstance especially with the complex nature of the urban transportation.
However, with the rapid development and recent success of machine learning
technologies lately, a self-evolute route optimisation approach which is able to
deal with real-time unexpected event for sustainable and resilient urban trans-
portation network become possible. Hence, this chapter will introduce the re-
search within this thesis, along with the research motivation, research aims, and
objectives, research novelty, and lastly the overall structure of this thesis will
be introduced.

1.2 Research Motivation
Globally, more people live in urban areas than in rural areas. According to
World urbanization prospects in 2018 [119] as shown in Figure 1.1, a total of
55 percent of the world’s population now live in urban areas in 2018, and by
2050, 66 percent of the world’s population are projected to be urban. Further-
more, [119] as shown in Figure 1.2, in 1990 there were 10 cities with more than
10 million inhabitants, hosting 153 million people, which represents less than
7 per cent of the global urban population. In 2018, the number of megacities
has tripled to 33. And by 2030, the number of megacities is expected to grow
to 43. Urbanization has many positive impacts on human society. It creates
an increasing number of better opportunities for jobs, education, and health-
care that more and more people are moving from the countryside to pursue.
Urbanization makes the global distribution of population more concentrated in
areas where fewer natural disasters occur, more food can be produced and more
infrastructure can be built. Additionally, urbanization facilitates the require-
ment of modern industrialized society so that individuals cooperate with more
people from diverse backgrounds. Consequently, the past 60 years of global
urbanization have resulted in enormous economic growth, and concentration of
population in densely populated cities.

However, with the growing population, urbanization leads to a series of
unprecedented challenges including urban rural inequality and environmental
damage. Cities around the world struggle to transform their infrastructure and
make the changes in order to meet the daily basic needs economically and envi-
ronmentally. It has caused severe damage to the environment such as increased
consumption of natural resources [80], excess of air pollution, noise and dust
[110], and raising hazardous waste on the urban population [81]. By achieving
sustainability and resilience, urban development will move towards further eco-
nomic and social progress, and at the same time strengthening environmental
protection.

Chapter 1. Introduction 4

Figure 1.1: Urban and rural populations of the world, 1950-
2050 [119]

Figure 1.2: Population and number of urban agglomerations
of the world by size class of urban settlement, 1990, 2018 and

2030 [119]

When considering the future development of the urban areas, especially in

Chapter 1. Introduction 5

the cities with high population, you find challenges dealing with sustainabil-
ity and resilience. A sustainable and resilient transportation network entails
an integrated system with social, environment and economic considerations.
Therefore the range of issues are addressed widely to cover different categories.
As shown in Figure 1, T.Litman and D.Burwell [70] listed a wide range of
sustainability issues in social, environment and economic categories. However,
they also acknowledged that although each issue fits into a specific category,
practically they are potentially overlapped and dependent.

Figure 1.3: Congestion Growth Trend – Hours of Delay per
Auto Commuter [100]

Traffic Congestion, one of the major challenges against sustainability and
resilience will be particularly studied in this thesis. In recent years, traffic
congestion in urban areas has become a serious problem due to the rapid de-
velopment of urbanisation. It brings a major impact on urban transportation
networks that leads to extra travelling hours, increased fuel consumptions and
air pollution. It is totally the flip side of a sustainable and resilient transport
network. A recent urban mobility report [100] states that in the year 2014 in the
United States, the monetary loss due to traffic congestion was evaluated as $160
billion, representing 6.9 billion hours of extra travel time and 3.1 billion gallons
of wasted fuel. As shown in Figure 1.3, larger cities with bigger population
group face more serious traffic congestion problems. Besides, according to [23],
CO2 emissions have more than doubled since the early seventies and increased
by around 40% since 2000. As shown in Figure 1.4, transport accounted for one
quarter of total emissions in 2016 at around 8 GtCO2, a level 71% higher than
what was seen in 1990 and 74% of the emissions come from road transport.

Generally, the congestion can be categorized into recurring congestion (RC)
and non-recurring congestion (NRC) [75]. Recurring traffic congestion is defined
as a congestion that consistently happens at the same place during the same
time each day. It refers to the congestion caused by the growing number of
vehicles and a lagging city infrastructure with limited capacity. It usually is
treated as a capacity problem and can be solved by increasing the roadway
capacity. However, from a sustainability perspective, increasing capacity is
not the efficient way to reduce traffic congestion socially, environmentally and

Chapter 1. Introduction 6

Figure 1.4: Global transport CO2 emissions [23]

economically [74]. Therefore an alternative route path optimisation is needed
to distribute the traffic in order to reduce the traffic congestion.

Meanwhile, non-recurring traffic congestion occurs randomly without expec-
tation. It refers to those congestion caused made by unexpected events, such as
construction work, inclement weather, accidents, and special events [43]. The
detection of non-recurring traffic congestion is critically more difficult compared
to the recurring type because it requires real-time traffic information [75]. Im-
proving roadway conditions does not seem to be a good option because of its
unpredictable nature. In this case, a good vehicle traffic system is needed to
control the traffic in dealing with unexpected events. Unsurprisingly, the NRC
accounts for a larger proportion of traffic delays in urban areas compared to
the RC due to its unpredictable nature [104]. As a result, significant attentions
have been paid to addressing the NRC issues. Often these solutions targeting
NRC issues will not require a huge financial investment in a city’s infrastruc-
ture. In addition, another advantage of targeting on NRC is that most solutions
to solve the RC issues rely on huge financial investment to increase the roadway
capacity in cities.

A US Federal Highway Administration report [109] defined six sources of
congestion as shown in Figure 1.5 which are (1) Bottleneck – vehicles stuck
at narrow road; (2) Traffic Incidents – The delay of traffic because of vehicles
crashing or spoil; (3) Work Zones – the road itself or a building that is beside
a main road are under construction or maintenance activities; (4) Bad Weather
– extreme weather such as heavy rain, snow, fog that can cause the congestion;
(5) Poor Signal Timing – traffic light controller does not control the traffic
signal efficiently with the time allocated for a signal not matching the traffic
volume; (6) Special Event – Unexpected event that causes congestion, such as
a marathon, car racing.

Chapter 1. Introduction 7

Figure 1.5: Souces of Congestion[109]

As it is up to 40% of congestion is caused by inadequate physical capacity.
Urban road traffic congestion is mainly considered as the consequence of short
supply in road capacity with respect to fast growing traffic demand. The mod-
ification of road infrastructure is not as flexible as traffic demand. One way
to alleviate urban traffic congestion is the implementation of a public policy to
restrict the growth of traffic demand.

The difficulty of deploying a centralized vehicle traffic management system
is another issue for a sustainable and resilient transport network. An urban
transportation network is usually inefficient due to the bad traffic management.
Therefore, a centralised vehicle traffic management system which can supervise
the routing process for local authorities by monitoring the urban traffic, and
react instantly against unexpected event in the traffic, is the key to build an
intelligent urban transport network [20]. However, a centralised vehicle traffic
management system relies largely on the application of advanced technologies.
Due to the high speed changes in traffic systems and the wide distribution of
vehicles on the roadway [21], a centralized vehicle traffic management system
requires sensing equipment deployed on each vehicle and advanced infrastruc-
ture on the roadway to adapt to the real-time traffic situation. Although some
network technologies such as wireless sensor network are getting widely used,
the lack of infrastructure in certain places may cause the delay in response from
the central traffic control, when an accident or unplanned event takes place.
It is especially more evident for those developing countries with high popula-
tion density. Therefore, the main challenge of designing a centralised traffic
management system relies on whether the infrastructure of the urban environ-
ment could support a reliable communication between vehicles and roadside
infrastructure in order to provide rapid information sharing.

Vehicle route optimisation is another major topic in a sustainable and re-
silient transport network, Dijkstra [29] proposed static algorithm to find the
shortest path without considering any external factor such as congestion, acci-
dent, or average vehicle speed. Despite the fact that [7] proposed an improved

Chapter 1. Introduction 8

approach with weight vertices, these methods are not practical enough as the
traffic of transport networks is changing with time and specific constraints.
Therefore, vehicle routing optimisation should always optimise the path contin-
uously with the real-time information and adapt to the latest circumstance.

Kerr and Menadue [56] argue that planners and policy-makers are making
efforts to adapt to various global processes that impact cities today. However,
these are often related to spatial (i.e. urban densification), economic (i.e. eco-
nomic crisis) and environmental (i.e. global warming) changes and tend to leave
out the complex problems regarding social costs. Friesen et al. [34] stated that
Technology will certainly play a major role in this transformation. Changes in
consumption patterns can drive the creation of new technologies necessary for
sustainability and their adoption and diffusion at the desired pace. Success in
bringing about these changes will require substantial reorganisation of the econ-
omy and society and changes in lifestyles. Economic and financial incentives
for the creation and adoption of new technologies will be needed which may
include innovative policy reforms.

There are a number of techniques proposed to tackle the NRC problem al-
though it is a challenging task given the unpredictable road conditions. One
popular type of method focuses on detecting and predicting traffic congestions
by utilising both the historical and real-time sensor data [123, 38]. These meth-
ods provide useful information for drivers to avoid accidents and roadblocks.
However, when drivers receive the information on the road, most likely they
have to make subjective decisions relatively quickly under an adversarial and
stressful environment while driving. This may actually cause further severe is-
sues in driving. Optimising traffic signal control and management is another
promising way to alleviate NRC. In such work, optimisation algorithms, such as
ant colony or genetic algorithm, are used to reduce the average number of vehi-
cles waiting in the queue at junctions [105, 121]. Alternatively, vehicle routing
and navigation systems show great potential from the personal level to solve
the NRC problem. It assumes that the overall travelling time in NRC can be
reduced significantly when each vehicle can make a better path planning to its
destination [6].

Currently, an increasing number of consumers have taken an interest in car
navigation equipment. Car navigation is no longer a luxury that is only for
the rich. A car navigation system is offered as one of the many extras or as
an advertising stunt of more and more "middle-class" cars. In the future, car
navigation equipment may become as normal as air-conditioning. Of course,
also other vehicles, such as trucks, buses and motorcycles can use car naviga-
tion. A navigation system offers the driver the possibility to be guided to his
destination, by means of spoken and/or visual advices. Figure 1.6 shows the
example of a car navigation system. Although in general common GPS appli-
cations such as Google map or Waze still rely on shortest path algorithm [63],
they also allow drivers to access some real-time traffic information such as ac-
cidents, construction, road blocking etc, which could be biased and inaccurate
due to the information relying heavily on human input.

Chapter 1. Introduction 9

Figure 1.6: Examples of car navigation system

Although recent research on automated routing and navigation has achieved
reasonable results, there are still several open questions need to be addressed:

1. Vehicle navigation is static and difficult to response to emergency situa-
tions.

2. Vehicle navigation does not consider different features in roadway condi-
tions.

3. Vehicle navigation algorithm is lack of ability to self-evolution.

1.3 Research Aims and Objectives
This research aims to address the urban traffic congestion problem by
developing a novel, self-evolution and real-time vehicle route optimi-
sation method, which is able to navigate vehicles by learning and adapting
to the complexity of the urban transportation network. In the term of self-
evolution in vehicle route optimisation, it enables the ability to dynamically
evolve or adapt in response to the unexpected. However, the real-time is a level
of responsiveness to the events in urban transportation. By achieving that, a
major city could fully utilise the capacity of its existing transportation network,
and also reduce the travel time for individual road users.

There are two extended subsidiary aims for this research; 1) Create an
artificial environment to allow simulation for the testing of complex
optimisation models for urban transportation networks in a reason-
able time with minimum cost. A good artificial environment is important
in this research as running experiments with traffic in the real environment is
just simply not practical. It also allows us to prove the concept of the proposed
methodology and provide a stable environment for future research. 2) Syn-
thesise the optimisation methodology and artificial environment to
support a decision making platform which can associate with sustain-
ability and resilience of urban transportation network. By combining
the proposed optimisation methodology and enhanced environment, we could

Chapter 1. Introduction 10

take this research a step further toward sustainability and resilience, such as
reducing the CO2 emissions or improving the safety of the urban transportation
network.

These aims are achieved after completing the steps below:

1. Studied and investigated the current methods of route optimisation or
traffic distribution for sustainable and resilient transportation networks,
analysed their strengths and weaknesses and possible improvements.

2. Studied the latest version of SUMO simulator to understand its techniques
and algorithms employed.

3. Evaluated a vehicle route optimisation methodology based on the research
above.

4. Extended the vehicle optimisation methodology with the consideration of
self-evolution and real-time responsiveness.

5. Enhanced the SUMO simulator to make it as an artificial environment for
proposed optimisation methodology.

6. Implemented the proposed optimisation methodology in enhanced SUMO
simulator with real urban map and evaluate the result.

7. Analysed the proposed optimisation methodology associated with sustain-
ability and resilience.

1.4 Research Novelty
The contributions of this thesis are summarized as follows:

• Design of a novel framework to facilitate the vehicle route opti-
misation research under complex urban transportation context.
This thesis proposes a novel framework to provide an accessible way to
optimise the vehicle route planning problem using DRL methods. It en-
hances the SUMO simulator in order to make it more suitable for opti-
mising vehicle route selection with DRL algorithms. The enhancements
include providing an improved calculation method for expected travel time
on a road depending on different circumstances, defining the segments in
each edge to indicate the best timing for obtaining states and converting
the SUMO network graph to a dual graph to model the states and ac-
tions in an urban network. The hand-designed controllers in the proposed
framework enable the interaction between environment and external RL
library through SUMO API TraCI, to allow model training in a rich en-
vironment with complex dynamics for vehicle route optimisation. There-
fore, the DRL model could be trained across road networks of different
size, density, number of edges and lanes. The demand traffic, network
characteristic or vehicle behaviour in the experiments can be easily mon-
itored and controlled. Besides, the state space and reward functions can

Chapter 1. Introduction 11

be constructed from the environment. This framework makes a more re-
alistic and interactive environment by embedding the smart agents (DRL
models) into the traffic simulator and the extensibility of the framework
provides huge flexibility to extend the features of framework for future RL
problems.

• Design of effective observations, reward scheme and DRL al-
gorithms to achieve efficient convergence of the DRL training
This thesis describes an effective observation as the representation of cur-
rent traffic conditions within a specific area of the urban network. The
representation variables contain multiple parameters reflecting the cir-
cumstances in the global urban transportation network to precisely de-
scribe the complexity of its dynamics. Besides, this thesis proposes an
algorithm to measure the impact of individual vehicles on air pollutant
emission called VEI. VEI takes several vehicle emissions as input such as
nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter
to compute the level of impact. Based on that, this thesis proposes 2
reward schemas to train the DRL model for vehicle route optimisation.
One reward schema aims to reduce the total travel time of a vehicle, and
another one aims to minimise the VEI from a vehicle. The results show
both reward schemas are efficient to optimise vehicle route. Furthermore,
a Euclidean distance based exploration method is proposed in this thesis
to combine with the traditional ε greedy exploration, the result shows that
it achieves more efficient convergence of DRL training than the traditional
method.

• Integration of the proposed vehicle route optimisation approach
with real urban map to achieve a more sustainable and resilient
urban transportation network. The proposed vehicle route optimi-
sation approach in this thesis aims to improve the sustainability and re-
silience in the urban transportation network. The two proposed reward
schemas are applied in real urban networks with different sizes and dif-
ferent levels of demand traffic in order to evaluate their performance.
Although both reward schemas are able to optimise vehicle route signifi-
cantly to avoid traffic congestion, the results show the travel time based
reward schema performs better in minimising the total travel time of in-
dividual vehicles, meanwhile the VEI based reward schema gets the least
vehicle emissions to complete a trip. In terms of sustainability and re-
silience, the travel time based reward schema is suitable for emergency
vehicles in the road such as ambulances, fire-fighting cars or police cars as
those vehicles need to arrive at their destination as soon as possible in or-
der to maintain the urban safety. However, the VEI based reward schema
is suitable for general drivers in urban transportation networks to min-
imise the vehicle emissions for a more sustainable urban transportation
network.

In order to achieve the novelty of this thesis, we overcome several technical
challenges in our research. The first challenging part is to model the vehicle

Chapter 1. Introduction 12

navigation system as a Markov Decision Process in order to apply deep rein-
forcement learning method. Secondly, due to the limited hardware resources
(only one GPU for whole training), a very efficient DRL elements need to be
designed to reduce the model training time and achieve remarkable results.
This including the designation of the state, action and rewards to form a DRL
based vehicle navigation system for sustainable and resilient urban transporta-
tion network. Furthermore, another major challenge of our project is to create
a framework between the traffic simulator and the DRL components in order
to achieve the model training with virtual environment. Lastly, the challenge
is to make sure the model training and testing are functioning seamlessly with
multiple platforms and able to produce remarkable result for this project.

1.5 Thesis Structure
The remainder of the thesis is organised into the following 7 chapters and the
stucture of this thesis is shown as follows:

• Chapter 2: Literature Review This chapter outlines a critical litera-
ture review on existing research on vehicle route optimisation. This in fact
provides the motivation to carry out the following research by address-
ing the current limitations. This chapter presents the general algorithms
for the shortest path problem, then it introduces the traffic management
and the study of non-recurrent traffic congestion. Eventually, the limita-
tions are summarised and in fact the current research gaps are providing
motivation to carry out the following research.

• Chapter 3: Deep Reinforcement Learning Background This chap-
ters presents the main technical concepts of Deep Reinforcement Learning
(DRL) which is mainly to be used in this thesis in order to build the pro-
posed framework for real-time vehicle route optimisation. Various deep
reinforcement learning techniques are covered in here including Markov
Decision Process, Q-learning, Deep Q-Network etc.

• Chapter 4: Urban Traffic Simulation This chapter is to introduce the
background of urban traffic simulators. The general simulation models
and approaches are overviewed and the comparison of different traffic
simulator are presented. This chapter also briefly introduces the traffic
simulator SUMO and some of its features which are heavily used in this
thesis.

• Chapter 5: Preliminary Design and Experiment for Vehicle Route
Optimisation This chapter presents how the reinforcement learning method
is applied to solve vehicle navigation problem. It shows how an urban
network could be modelled as a Markov chain process, how to define the
problem statement and the key elements in reinforcement learning. This
chapter also discusses the limitation of this approach and how it provides
the motivation for the proposed approach in this thesis.

Chapter 1. Introduction 13

• Chapter 6: Proposed Framework and Structure Design This chap-
ter presents the main contribution of this thesis - the proposed vehicle
route optimisation mechanism by detailing its architecture and decision
making process using a heuristic approach. Specifically, the proposed ap-
proach uses DQN algorithm to train a vehicle agent to make better routing
decision for vehicle route optimisation in order to achieve the sustainable
and resilient urban development goal.

• Chapter 7: Experiment Implementation and Evaluation: This
chapter describes the experiment implementation of the real-time vehi-
cle route optimisation for sustainable and resilient urban transportation
networks. Firstly the python based classes and the components in the
experiment are presented. The preparation works that need to be done
before running the experiment are introduced with details, including map
converting, demand traffic generation, data pre-processing, etc.

• Chapter 8: Conclusion and Future Work This chapter summarises
the work of this thesis and describes the extent of the limitations overcome
by this research. Furthermore, it reveals future directions of this work and
how the research will be continued.

14

Chapter 2

Literature Review

2.1 Overview
This chapter outlines a critical literature review on existing research on vehicle
route optimisation. The original idea for solving the problem of traffic conges-
tion was via traffic control and optimisation in which a significant number of
research works had conducted. This chapter starts with introducing the famous
shortest path algorithm for vehicle route optimisation, including classic Dijk-
stra’s algorithm, A* algorithm, ant-colony algorithm etc. Furthermore, traffic
management systems for urban transportation are studied. Eventually, the
limitations are summarised and in fact the current research gaps are providing
motivation to carry out the following research.

2.2 Shortest Path Algorithm
The very first solution in the early years for the vehicle navigation problem
was shortest path algorithm, which aims to find a path between two nodes
with minimum travelling distance. Traditionally, traffic modelling approaches
consider the road network as a directed acyclic graph, of which nodes represent
junctions while edges represent roads and their corresponding driving directions.
In graph theory, the shortest path problem (SPP) is the problem of finding a
path between two nodes in a graph such that the sum of the weights of its
constituent edges is minimized [10]. If the graph is connected, then there is
always a finite shortest path between any pair of distinct nodes. This problem
has been studied extensively in the past decades. In a navigation scenario, the
shortest path problem typically aims to find the optimal path from the source
(or actual position) s ∈ V to destination (or target) t ∈ V which exhibits
minimal cost. Figure 2.1 shows an example of theshortest path problem. The
best approach to find this path crucially depends on the edge cost features.
Edge costs could be either a static constant values (shortest distance, shortest
time, etc) or a complex function (travel time dependent on departure time). The
shortest path problem essentially is an optimisation problem and it is widely
applied in different areas, such as communications, game development, robot
movement, vehicle navigation systems, etc. In this thesis the research study
focuses on the area of transportation in urban environments (vehicle navigation
systems).

Chapter 2. Literature Review 15

Figure 2.1: A (u0, v0) path of minimum weight [10])

There are two types of approaches for shortest path algorithm, which are
one-directional search and bidirectional search. The one-directional search per-
forms the search in one way, from the source node (or destination node), and
then expanding the visited area around the source (or destination) node until
the destination (or source) node is found. In other words, those algorithms only
search from one direction and do nothing on the other direction. There are
a wide-range of applications which are covered by this approach. However, in
a navigation scenario, one-directional search could be inefficient when dealing
with a large network which contains rapid, frequent changes as this approach
need to re-search for an updated route from scratch when a vehicle deviates
from its route or change its destination [77]. Therefore, to achieve better per-
formance, the idea of the two way search (bidirectional search) approach which
is to search in both directions simultaneously was proposed. In the following
sub-sections, the well-known shortest path algorithms and the implementation
of bidirectional search are briefly introduced.

2.2.1 Dijkstra’s Algorithm
Dijkstra’s algorithm was proposed by Dijkstra [29] in 1959 and is named after
himself. It is a classical algorithms for the shortest path problem in terms of
running time and is also used as the standard algorithm for evaluating other
algorithms for the SP problem. It is used to find the shortest path from a single
source node to all other nodes on a directed graph with non-negative edges cost
only. Dijkstra’s algorithm works on a static network where the edge weights
on the network are static and deterministic. The idea of the algorithm is to
exam the closest node to the start node, then update the distances from the
source node to other nodes via their adjacent nodes using the labeling technique.
However, it uses a weighted graph and a priority queue to decide which node
contains minimal cost to be expanded first. The reached nodes are labelled as
“visiting nodes” and stored in a priority queue with respect to their current
distances from the source node.

Chapter 2. Literature Review 16

Algorithm 1: Dijkstra’s algorithm
1 Function Dijkstra(graph, source, target):
2 create unvisited vertex set Q
3 foreach vertex v in graph do
4 dist[v]←∞
5 prev[v]← UNDEFINED
6 add v to Q
7 end
8 dist[source] = 0
9 while Q is not empty do

10 u← vertex in Q with min dist[u]
11 if u = target then
12 return dict[], prev[]
13 else
14 remove u from Q
15 end
16 foreach neighbor v for u do
17 alt← dist[u]+ length(u, v)
18 if alt < dist[v] then
19 dist[v]← alt
20 prev[v]← u

21 end
22 end
23 end
24 return dict[], prev[]

Algorithm 2: Recover shortest path from the array of previous nodes
1 Function (prev[], source, target):
2 p← UNDEFINED
3 if prev[t] = NULL then
4 return p
5 end
6 i← t
7 while i not equal s do
8 p← {prev[i], i} ⊕ p
9 i← prev[i]

10 end
11 return p
12 RecoverPath

The process of how Dijkstra’s algorithm finds the shortest path is shown
in Algorithm 1. Dijkstra’s Algorithm (DA) takes 3 input elements: the graph,
the source and target vertex. It returns 2 output elements: one array dist[] for
retrieving the cost value for the shortest path. This array (dist[]) stores the
minimum cost value from source vertex to one of the other vertices indicated in
the array index, while the array prev[] is used for retrieving the shortest path

Chapter 2. Literature Review 17

sequence. prev[] stores the predecessor vertex of a certain vertex given in the
array index, according to the found shortest path. DA initializes the value of
dist[] as infinity, the value of prev[] as empty for all vertices in the given graph,
and adds all initialized vertices into a set Q, which is used for recording the
unvisited vertices during the following execution process of DA. As the last
step before the searching process of DA, the minimum cost value from source
to destination, formalized as dist[source], is set to 0. The algorithm starts from
the source vertex searching each of its neighbours by updating their dist[], then
it moves on to one neighbouring vertex with the minimum dist[]. DA repeats
this searching process iteratively until the target vertex is chosen as the current
vertex or until all vertices are examined.

Dijkstra’s algorithm can also be used to find shortest paths from one source
node to many destination nodes on a given graph. In this case, the algorithm
terminates when the priority queue is empty or when all the destination nodes
are visited. The previous node of the node v on the shortest path from the
source node to v is stored in Pre(v). By tracking backward the previous nodes
of the visited nodes on the graph, the shortest path from the source node to
any visited node can be explicitly recovered. This tracking procedure, namely
RecoverPath(s,t,Pre[]), is expressed in Algorithm 2.

Figure 2.2: Illustration of Dijkstra’s algorithm [85])

Chapter 2. Literature Review 18

Figure 2.2 illustrates Dijkstra’s algorithm to find the shortest path from
the node v1 to the node v2. In the initial step, the current distances from v1
to other nodes are set to infinite, but the distance from v1 to v1 is set to 0.
The source node v1 is then added to the priority queue H. In Step 1, the node
v1 is extracted from the list H and marked as visited node (in red). Then,
the distances of its adjacent nodes, i.e. v3, v4 and v5 are updated. Because
g(v1, v3) =∞ > g(v1, v1) +w(v1, v3) = 3, the current distance from v1 to v3 is
updated to 3, i.e. g(v1, v3) = 3. The node v3 is then marked as visiting node (in
light blue) and added to the priority queue. Repeating the updating procedure
for the node v4 and v5 we have g(v1, v4) = 3, g(v1, v5) = 1. After Step 1, the
priority queue H has three visiting nodes v3, v4, v5 with their current distances
from v1 as follow: g(v1, v3) = 3, g(v1, v4) = 3, g(v1, v5) = 1. The node v5 is the
node with minimum distance from the source node v1.

In Step 2, since the visiting node on the priority queue with the smallest
current distance is v5, it is extracted from the priority queue and marked as
the visited node. The remaining steps, i.e. Step 3, Step 4, and Step 5, repeat
the updating procedure as in Step 1. The algorithm terminates at Step 5 when
the destination node v2 is visited. The shortest path tree from v1 to all visited
nodes is marked in red. Based on this tree, we can track backward to find the
full shortest path from the source node v1 to not only the destination node
v2 but all the visited nodes. For example, the shortest path from v1 to v2 is
(v1, v5, v3, v2), the shortest path from v1 to v3 is (v1, v5, v3).

The advantages of Dijkstra’s algorithm are its simplicity and its easy imple-
mentation, therefore it is used widely in both academic research and real-world
applications. For instance, Google Maps and most GPS navigation applications
initially used Dijkstra’s algorithm to find the most efficient route [63]. However,
despite its simplicity, Dijkstra’s algorithm is inefficient for large road networks.
Therefore, based on the framework of Dijkstra’s algorithm, many variants of
this algorithm have been proposed in the following decades using techniques
such as improving the data structure, introducing new heuristic functions, and
reinterpreting the definition of the cost function.

2.2.2 Bellman-Ford’s Algorithm
The Bellman-Ford algorithm is the common name for an algorithm for com-
puting single-source shortest paths in directed graphs. It is based on where the
graph G contains no negative cycles, the shortest path is always simple and
therefore any optimal path π(s, t) contains maximum n - 1 edges. The algo-
rithm maintains for every node a (temporary) distance label d() initialized with
∞. Then the label d(s) is set to zero. In every round all edges get relaxed, i.e.
for e = (v,w) ∈ E the property d(v)+c(e) < d(w) is checked and if possible d(w)
is updated to the new(smaller) distance value. Additionally a predecessor label
is stored for each node. If relaxing an edge (v,w) leads to an update of d(w),
the predecessor label of w changes to v. After performing n - 1 rounds of edge
relaxations the distance label of every node v reflects the minimal distance from

Chapter 2. Literature Review 19

s to v and the optimal path to t can be backtracked via the predecessor labels.
In case there are negative cycles in G there maybe no shortest path, because
there are paths with arbitrarily low costs (passing through the negative cycle
repeatedly).

The Bellman-Ford can be adapted to decide whether G contains such a
cycle by performing an additional round of edge relaxation. There exists a
negative cycle in G, if the distance of any node changes in the nth round.
The run time for a single query is O(nm) as in each of the n - 1 rounds m
edges are considered and edge relaxations can be performed in constant time (if
distance and predecessor labels are stored e.g. in an array and a suitable graph
representation is used). Observe that it is always sufficient to relax in every
round only the edges incident to nodes that were updated in the last round (or
adjacent to s in the first round). While this does not change the theoretical
runtime it might significantly reduce the query time in practice.

Algorithm 3: Bellman-Ford algorithm
1 Function BellmanFord(graph, source, target):
2 foreach vertex v ∈ V [graph] do
3 dist[v]←∞
4 end
5 dist[source] = 0
6 for i ← 1 to |V[G]| do
7 relaxed← FALSE
8 foreach neighbor v for u do
9 alt← dist[u]+ length(u, v)

10 if alt < dist[v] then
11 dist[v]← alt
12 relaxed← TRUE

13 end
14 end
15 if relaxed = FALSE then
16 exit the loop
17 end
18 end
19 foreach neighbor v for u do
20 alt← dist[u]+ length(u, v)
21 if alt < dist[v] then
22 return FALSE
23 end
24 end
25 return TRUE

The process of how the Bellman-Ford algorithm finds the shortest path is
shown in Algorithm 3. Bellman-Ford also takes 3 input elements: the graph,
the source and target vertex. It firstly initializes the value of dist[] as infinity,
and sets the distance to source dist[source] as zero. After that the algorithm

Chapter 2. Literature Review 20

starts from the source vertex searching each of its neighbours by updating their
distance dist[]. Then it iteratively relaxes those estimates by finding new paths
that are shorter than the previously overestimated paths. By doing this repeat-
edly for all vertices, the Bellman-Ford algorithm is able to guarantee that the
end result is optimized.

2.2.3 A-Star Algorithm
Despite its simplicity, Dijkstra’s algorithm is inefficient for large road networks.
This is primarily due to shortest paths needing to be rapidly identified either be-
cause an immediate response is always required and also the shortest path needs
to be re-computed repeatedly if the vehicle deviates from the pre-computed
route or changes the desired destination. Hence the search for speed-up tech-
niques is an important challenge for the purpose of reducing the execution time
of the shortest path algorithms. One of the first approaches in this direction is
the A* algorithm [44]. A* is the foundation for a heuristic search on the frame-
work of Dijkstra’s algorithm and widely used in artificial intelligence [86]. It is
a greedy and goal-directed approach, that uses lower bounds on path weights
to find a better processing order of the nodes, decreasing the search space sig-
nificantly. A* does not rely on any preprocessing and hence is especially useful
if edge costs might change over time.

The common idea of the Dijkstra’s algorithm and A* algorithm is the la-
beling technique and updating current distances from the source node s to the
adjacent nodes of the visited node. Both of the algorithms terminate when
the destination node t is visited or when the queue of visiting nodes is empty.
The difference between the algorithms is in the order of nodes to visit. In each
iteration, Dijkstra’s algorithm chooses a node v to visit with respect to only
the current distance from the source node s to v, i.e. g(s, v). The algorithm
does not consider the potential distance from v to the destination node t. Thus,
some nodes staying very far from the destination node may be visited before
some closer nodes. This is said to be the disadvantage of Dijkstra’s algorithm.
In order to overcome that difficulty, A-Star algorithm requires a potential func-
tion, denoted h(v, t) or h(v) for short, to evaluate the potential distance from
a node v to the destination node t. The function returns a lower bound on the
shortest distance from a node to the destination node. The potential function
is useful for knowing whether a node is close to or far away from the destina-
tion node. A popular lower bound of the shortest length between two nodes is
the Euclidean distance—the length of the straight line between the nodes. The
Euclidean is surely a lower bound on the shortest length of a path from v to t.
Note that the value of the potential function at the destination node must be
zero, i.e. h(t, t) = 0.

The A-Star algorithm chooses nodes to visit according to the sum of the
current distance from the source node s and the lower bound distance to the
destination node, i.e. nodes are visited orderly according to the sum f(v) =
g(s, v) + h(v, t). By choosing nodes to visit with respect to the value of f(v),

Chapter 2. Literature Review 21

Figure 2.3: Tracking nodes in A-Star algorithm and in Dijk-
stra’s algorithm [85])

A-Star algorithm may not need to visit nodes, that are very far from the desti-
nation node, thus the destination node is possibly reached after visiting fewer
nodes than those of Dijkstra’s algorithm. Figure 2.3 shows an example of the
difference in the order of nodes to visit between Dijkstra’s algorithm and the
A-Star algorithm using Euclidean distance as a lower bound on the length of
the shortest length of a path connecting two nodes. Both of the algorithms
start at the source node s and then update the distance from s to the adjacent
nodes u and v, i.e. g(s,u) = 3 and g(s, v) = 5.5. Because g(s,u) < g(s, v),
Dijkstra’s algorithm chooses the node u to be the next visited node. However,
it can easily be seen that the node u is further from the destination node than
s. In other words, the direction from s to u goes away from t, and Dijkstra’s
algorithm cannot take this fact into account. The A-Star algorithm consid-
ers also the Euclidean distance from all the nodes to the destination node,
i.e. h(u, t) = 12andh(v, t) = 6. We have f(u) = g(s,u) + h(u, t) = 15 and
f(v) = g(s, v) + h(v, t) = 11.5, thus the node v is chosen to be the next visited
node, and it is actually closer to t than u.

Chapter 2. Literature Review 22

Algorithm 4: A-star algorithm
1 Function AStar(graph, source, target):
2 create unvisited vertex set Q
3 foreach vertex v in graph do
4 dist[v]←∞
5 prev[v]← UNDEFINED
6 add v to Q
7 end
8 dist[source] = 0
9 while Q is not empty do

10 u← vertex in Q with min dist[u]
11 if u = target then
12 return dict[], prev[]
13 else
14 remove u from Q
15 end
16 foreach neighbor v for u do
17 alt← dist[u]+ length(u, v)
18 if alt < dist[v] then
19 dist[v]← alt
20 prev[v]← u

21 end
22 end
23 end
24 return dict[], prev[]

The A-Star algorithm to find a shortest path from a source node source to
a destination node target is described in Algorithm 4. It can be easily seen
that A-Star algorithm considers more “the future”, whereas Dijkstra’s algo-
rithm only focuses on the present. The A-Star algorithm is obviously the same
as Dijkstra’s algorithm when its potential function is equivalent to zero, i.e.
h(x, t) = 0. Therefore, in theory the complexity of A-Star algorithm equals
those of Dijkstra’s algorithm. However, its average running time for querying a
number of pairs of nodes is normally better than those of Dijkstra’s algorithm.
The running time of A-Star algorithm depends considerably on the potential
function h(x), i.e. the better lower bound the potential function h(x, t) can
give, the faster the algorithm reaches to the destination node. According to
this feature, various algorithms based on A-Star algorithm have been developed
by applying different potential functions, e.g., routing services in real trans-
portation networks using the landmark technique or shortcut technique.

2.2.4 Heuristic Shortest Path Finding and Re-planning
In general, a heuristic is considered as a trade-off between computation time
and optimality. Given a large-scale problem, heuristic-based methods are of-
ten used to provide a sub-optimal solution within an acceptable time range.

Chapter 2. Literature Review 23

Unlike many other heuristic algorithms, A* with a well-designed, or more for-
mally called admissible heuristic function can guarantee an optimal solution,
but with a significantly reduced search space compared to Dijkstra’s algorithm.
For example, in a road network scenario, the heuristic function in A* can be im-
plemented using Euclidean distance. As the geographical length of any possible
routes between any O/D pair cannot be less than its corresponding Euclidean
distance, this heuristic implementation is called admissible, which means it
never overestimates the cost in practice.

In dynamic environments, where the edge cost is changing over time, the
optimal route needs to be updated accordingly. The intuition to do re-planning
is to run A* from scratch once the graph is updated. However, re-planning
from scratch is a waste of computation when the changing environment has no
effect or only has a minor effect on the previous optimal solution. D* Lite [58]
is an efficient re-planning algorithm that only looks at certain areas that have
their edge cost changed and repairs the previous route only if it is necessary.
This process is achieved mainly by introducing a new heuristic function called
“one-step look ahead cost”, which is able to detect the changes in environment.
Moreover, the whole search process of D* Lite is done in the reverse way from
the target vertex to the current vertex, thus preventing a lot of computation
on updating the estimated cost from the moving current vertex to the target.
Compared to re-planning using A*, D* Lite is more efficient by nearly two
orders of magnitude. In addition to the dynamic environment, the typical A*
algorithm is also not applicable if a route solution is needed quickly in a complex
environment, where the number of vertices and edges in the given graph is
excessively large.

Anytime Repairing A* [66] (ARA*) solves this problem by using "inflation
factor ε" to increase the output value of the admissible heuristic function in the
typical A*. It is proven that maximally up to ε times computation cost could
be saved when ε > 1. The large ε is set, the faster the algorithm runs, and the
worse the optimality of the route will be. ARA* trades off the speed and the
optimality by decreasing the value of ε iteratively from a relatively large value,
until it reaches the time threshold. Anytime Dynamic A* (AD*) [67] combines
the advantages of the two algorithms to deal with the dynamic and complex
environment in real-time.

2.2.5 Bidirectional Search
Early stage research in applying shortest path algorithms for vehicle road guid-
ance consists of three major directions: bi-directional search, sub-goal search,
and hierarchical search. Due to the lack of powerful computation capability
and efficient geographical data techniques, these three directions have the same
objective: reducing the search spaces. To achieve this objective, bi-directional
search [53] starts the process from both directions in parallel, one from origin
to destination, the other from destination to origin, until both search processes
meet at the same vertex somewhere between origin and destination. The search

Chapter 2. Literature Review 24

from the source node, called forward search, and from the destination node,
called backward search. Algorithms following the bidirectional search have their
own stopping conditions.

For instance, the bidirectional version of Dijkstra’s algorithm, so-called bidi-
rectional Dijkstra, terminates when there exists a node visited from both search-
ing directions. The stopping conditions of bidirectional search using A-Star al-
gorithm, namely bidirectional A-Star algorithm, is more complex since having
a visited node in both directions does not guarantee that the shortest path is
found [40].

As shown in Figure 2.4, The green ball illustrates the visited area in the
forward search, while the red ball illustrates the visited area in the backward
search. The balls are enlarged simultaneously until they meet each other at the
node v4, i.e. v4 is visited in both directions. The shortest path from s to t is
the combination of the shortest path from s to v4, i.e. p1 = (s, v11, v4), and
the shortest path from v4 to t, i.e. p2 = (v4, t).

Figure 2.4: An illustration of the bidirectional version of Di-
jkstra’s algorithm [85]

2.2.6 Ant-Colony Algorithm
Ant-colony algorithm was firstly proposed by Dorigo et al. [12] which was in-
spired by the natural behaviour performed by ants in finding food resources. In
this natural behaviour, individual ants deposit on the ground a volatile chem-
ical substance called pheromone when they are moving, forming in this way
pheromone trails. Ants can smell pheromoneand, when choosing their way,
they tend to choose, in all probability, the paths marked by stronger pheromone
concentrations. In this way they create a sort of attractive potential field, the
pheromone trails allows the ants to find their way back to food sources (or

Chapter 2. Literature Review 25

to the nest). Moreover, they can be used by other ants to find the location
of the food sources discovered by their nestmates. Previous experiments have
proven that ants are able to find the shortest route between two individual sec-
tions. Therefore ant-colony algorithm is widely applied to the vehicle routing
problem, although some modifications have been applied depending on different
circumstances.

A simple transformation was applied to cost functionDesirability = 1/2cost.
The equation alters the cost function into a desirability scale of range 0.5 to
1.15. This states that the edges with a higher cost will have a lower desirability
to be selected while the edges with low cost will have higher desirability.

Figure 2.5: Example of how the effect of laying/sensing
pheromone during the forth and back journeys from the nest
to food sources to determine shortest path between two nodes

[28])

Figure 2.5 shows in a schematic way how the effect of round-trip pheromone
laying/sensing can easily determine the convergence of all the ants on the short-
est distance between two available paths. At time t = 0 two ants leave the nest
looking for food. According to the fact that no pheromone is present on the
terrain at the nest site, the ants select randomly the path to follow. One ant
chooses the longest and one the shortest path to the food. After one time unit,
the ant who chose the shortest path arrives at the food reservoir. The other ant
is still on its way. The intensity levels of the pheromone deposited on the ter-
rain are shown, where the intensity scale on the right says that a darker colour
means more pheromone. Pheromone evaporation is considered as negligible ac-
cording to the time duration of the experiment. The ant already arrived at the
food site must select the way to go back to the nest. According to the intensity
levels of the pheromone near the food site, the ant decides to go back by moving
along the same path, but in the opposite direction. Additional pheromone is
therefore deposited on the shortest branch. At t = 2 the ant is back to the nest,

Chapter 2. Literature Review 26

while the other ant is still moving towards the food along the longest path. At
t = 3 another ant moves from the nest looking for food. Again, he/she selects
the path according to the pheromone levels and, therefore, it is biased towards
the choice of the shortest path. It is easy to imagine how the process iterates,
bringing, in the end, the majority of the ants on the shortest path.

2.3 Traffic Management Systems
Agent technology is the key concept for implementing distributed artificial in-
telligence. Specifically, the paradigm of multi agent systems is well suited for
the management of road traffic [20], as the road traffic network can be treated
as a collective set of geographically distributed local areas, the traffic state is
changing over time in each local area, and this change is sensitive to behaviours
from any road network participants (i.e. drivers, pedestrians, traffic regulators,
etc). This section divides the traffic management systems into two categories:
traffic light signal control system and vehicle routing optimisation.

2.3.1 Traffic Signal Control System
Traffic light signal control is considered the most typical application of the
multi-agent concept in road traffic management. The most widely deployed
systems are Sydney Coordinated Adaptive Traffic System (SCATS) [103] and
Split Cycle Offset Optimisation Technique (SCOOT) [48]. Both SCATS and
SCOOT have a similar 3-tier hierarchy. Take SCATS for example, as shown in
Figure 2.6. The basic agent in the bottom layer is each intersection, which is
controlled and coordinated by a regional computer according to the real-time
traffic information. All the regional computers are then organized by a central
server for high level configuration and optimisation in a particular city. The
agents here are regional computers controlling tens of intersections. The main
differences between them are the mechanism of reaction to the real-time traffic
information. When the traffic states are updated, SCATS chooses the best
traffic light signal plan from several candidates that are configured manually in
advance.

On the contrary, SCOOT can adjust all the related parameters (i.e. slip,
cycle, offset, etc.) and provide an on-line optimised traffic signal plan. This dif-
ference is mainly due to the additional types of traffic data collectors (i.e. sen-
sors and cameras) SCOOT has, while SCATS mainly relies on induction loops.
More specifically, the different deployments of loop detectors, for example, have
led to the aforementioned difference as well. SCATS installs one induction
loop at the downstream for each lane to get the traffic information: occupancy,
while SCOOT deploys two loop detectors on each lane, one in downstream, the
other in upstream, so that it can retrieve traffic information like, queue length,
speed, and occupancy. Therefore, more information allows SCOOT to tune the
parameters in a finer granularity. Although SCOOT has more flexibility and
advanced control mechanism, SCATS has less deployment cost and is proven

Chapter 2. Literature Review 27

to have comparable effectiveness. The two systems have dominated the global
market in urban traffic control during the last 4 decades.

Figure 2.6: 3-tier system architecture of SCATS [103])

Traffic prediction technology frequently appears in the recent research on
enhancing the multi-agent traffic signal control system. This prediction tech-
nology is driven by the increased number of types of collected traffic information
from various deployed sensors. One typical example is InSync [87], which had
been applied in 31 states and 2300 intersections in the U.S. up to November
2015. InSync was ranked the top in terms of waiting time reduction in several
U.S. cities, as evaluated and compared in a survey [101] with four other popular
systems. The traffic information collection of InSync is mostly done by Internet
Protocol (IP) video cameras. This leads to a huge advantage as many useful
pieces of microscopic information can be extracted such as the exact number
of vehicles, speed for each particular vehicle, and even vehicle types. By tak-
ing advantages of this rich information, InSync can predict short-term traffic
conditions to create so call “green tunnels” minimizing the number of stops
for the longest platoon. Another way of collecting rich traffic information for
predictive control is to use vehicular ad-hoc networks (VANETs), where vehi-
cles are connected and periodically broadcast their states. VANETs are used
in the approach proposed by K. Pandit [87] in which an online scheduling al-
gorithm called “the oldest arrival first” is used. It is shown in the presented
simulation results that approximately equal-sized platoons can be achieved with
significantly reduced intersection delays, as compared to the state-of-the-art al-
gorithm. VANETs are used in a predictive control method proposed by B. Asadi
and A. Vahidi [4] that help to achieve minimum use of braking to improve fuel
efficiency accordingly. Some pioneering work have tried to apply multi-agent
reinforcement learning for adaptive traffic signal control.

Chao et al. [19] proposed an intelligent traffic management system based
on RFID for determination of traffic flow. The proposed intelligent traffic light
control system (ITLCS) uses an RFID system, which complies with the IEEE
802.11p protocol to detect the number of vehicles and find the time in seconds
spent by vehicles on main roads and on side roads passing through the intersec-
tion throughout a period of green light. They used Zig Bee modules to send real
time data like weather conditions and the vehicle registration information to the

Chapter 2. Literature Review 28

regional control centre. The proposed system can perform remote transmission
and reduce traffic accidents.

Traffic Signal Control System is also widely used for emergency units. Bharad-
waj et al. [9] proposed an Efficient Dynamic Traffic Control System (EDTCS)
to reduce vehicle traveling time and set the highest priority for emergency ve-
hicles at intersections. EDTCS is composed of Traffic Control Unit (TCU),
Traffic Monitor Unit (TMU) and Road Side Unit (RSU). Figure 6 shows the
process at the intersection. All the vehicles in the sensor area are counted and
emergency vehicles are identified by RFID tags. Those emergency vehicles are
able to communicate with the RSU via RFID tags. If the RFID tag is positive,
RSU will increase the emergency vehicle’s number by one. Then the centralised
traffic server will collect the number of both normal and emergency vehicles and
switch the traffic signal to green for about 30 seconds for the side of emergency
vehicles to go through the intersection.

Figure 2.7: Layout architecture for efficient dynamic traffic
control system [103])

2.3.2 Vehicle Routing Optimisation
Similar to the robotics research in the artificial intelligence area, most multia-
gent systems for vehicle route guidance consider each vehicle as an agent, then
use different proposed coordination mechanisms to achieve a reduction of total
travel cost (i.e. travel time, travel distance, fuel consumptions, etc.). For exam-
ple, a decentralised delegate multi-agent system [22] is proposed to reduce the
traffic congestion using anticipatory vehicle routing. The word “delegate” comes
from the pheromones in the ant colony algorithm used for agents to exchange
information. CARAVAN [27] puts vehicle agents into VANETs environment,
and applies “virtual negotiation” to exchange route allocation cooperatively to
achieve the reduction of total travel delay and communication overhead. Sejoon
Lim [68] built a probabilistic path choice model based on a realistic dataset. In
this model, each driver’s route decision is regarded as a fractional flow. All
vehicle agents in the same local area can exchange their route choice to achieve

Chapter 2. Literature Review 29

UE or SO. Relying on a central server, participatory routing planning [118,
117] uses the previously planned routes to estimate future traffic conditions for
the incoming routing requests. This routing collaboration among vehicle agents
is done by the communication between the cloud server and in-vehicle mobile
devices (i.e. smartphone).

Choi et al. [21] designed an optimal routing policy for the vehicular sensor
network (VSN). This project developed a delay-optimal VSN routing algorithm
by capturing three key features in urban VSNs: (i) vehicle traffic statistics, (ii)
any cast routing and (iii) known future trajectories of vehicles such as buses. In
Figure Figure 2.8(a), two Wi-Fi Access points (AP) are placed at the intersec-
tions i7, i9 and the path of bus A is the sequence of intersections, i1, i2, i5, i8
and i9. However, the Figure 2.8(b) represents a network that can be potentially
used for delivering data packets, and the existence of data links in the network
is highly uncertain. They conducted simulations on a GloMoSim simulator and
compared the performance of Optimal VSN Data Forwarding with the Vehicle
Assisted Data Delivery (VADD) algorithm and Trajectory Based Data (TBD)
forwarding scheme. The simulation results show that the OVDF outperforms
other algorithms.

Figure 2.8: Roadmap and its corresponding road network
graph [21])

There are also some approaches which use the Ant-Colony Optimisation
method for optimal routing. Nahar and Hashim [83] proposed a traffic conges-
tion control method based on different preferences to create an optimal traffic
system. These preferences allow the algorithm to reduce average travelling time
by adjusting ant colony variables. Their results show that the number of ants is
directly correlated with the algorithm performance. However, this method does
not perform well when there is a small number of agents in the network. Kam-
moun et al. [83] however proposed an adaptive vehicle guidance system which
is able to search the best path in smarter way by using real-time changes in
the network. In order to achieve dynamic traffic control and improve driver re-
quest management, this method used three types of agents, namely, city agent,
road supervisor agent and intelligent vehicle-ant agent. Besides, a multi-agent

Chapter 2. Literature Review 30

evacuation model was introduced by Zong et al. [122] to minimise the total
evacuation time for vehicles and balance traffic load. Experiments have shown
that MAS is more effective than a single agent system.

Cong et al. [24] developed a model to optimise dynamic traffic routing by
using a two-step approach: network pruning and network flow optimisation.
In the network-pruning phase, ant pheromone is removed after the best route
is found by the agents to increase the exploration rate. In the flow optimisa-
tion phase, which is based on ACO with the stench pheromone and coloured
pheromone, the agents correspond to the links selected in the network-pruning
phase only. Moreover, this two-step approach reduces the computational bur-
den by addressing complex, dynamic traffic control problems. Kponyo et al.
[24] proposed a distributed intelligent traffic system which uses vehicle average
speed as a parameter to determine the traffic condition. This system guides
cars to paths with low traffic. Therefore, this system selects the best path more
efficiently in comparison with the scenario where the agents select their path
randomly. Last but not least, BeeJamA [115] considers each junction-controlled
region as an agent for traffic congestion problems. The agent in BeeJamA plays
a role like a router in a computer network by keeping an updated routing table
and assigns routes for vehicles. The coordination of agents mimics the process
of bees foraging. Although these Ant-colony methods have achieved promising
results, they did not perform well when it comes to a more realistic, complex
and dynamic transportation system and lack the ability to deal with unexpected
events instantly.

2.4 Summary of Limitations
As the investigated research problem in this thesis is how to efficiently reroute
vehicles in order to significantly reduce non-recurrent congestions in urban ar-
eas, the limitations of the discussed related works, with regard to this problem,
are summarised as follows:

• Limitations of shortest path algorithm: The information access and rerout-
ing feedback process should be completed rapidly in order to respond to
the constantly updated urban transportation network, due to the limited
capability of existing techniques, shortest path algorithms struggle to deal
with large network maps as their computing time could take too long time.
Besides, they also lack the ability to self-adapt to the different situations
in real urban transportation networks.

• Limitations of traffic management system: In general, traffic control fo-
cuses on reducing the waiting time at intersections, which is not directly
correlated to minimising the total travel time. Moreover, the route choice
for the whole trip is not always available while driving, especially when
driving on a long trip or in unfamiliar areas. Additionally, vehicle-to-
vehicle communication is not reliable when exchanging relatively long
messages such as route choice information in real-time.

Chapter 2. Literature Review 31

• Limitations of vehicle route optimisation: Current approaches of vehicle
route optimisation are lack ability to self-evolve and adapt to highly com-
plex traffic network. Besides, most studies focus on reducing travel time,
however focusing on reducing vehicle emissions is important to achieve a
more sustainable urban transportation network.

Traffic optimisation can potentially be more efficient if it combines with
an intelligent vehicle navigation system in a complex traffic network via deep
reinforcement learning methods. After identifying the challenges of traffic op-
timisation and discussing the strengths and weaknesses of the related works,
the aforementioned limitations are addressed in the following chapters by the
proposed framework that uses deep reinforcement learning for real-time vehicle
route optimisation. In general, the proposed framework tends to navigate vehi-
cle to the less congested road based on the observation of the vehicle agent. The
vehicle agent is able to continuously learn the complex traffic patterns by receiv-
ing the reward. Therefore, it fits the rigorous real-time requirement of reducing
non-recurrent congestions. Moreover, it also avoids complex and error-prone
coordination mechanisms among vehicles by considering each junction and its
controlled roads. Finally, NRR increases the practicability of research in reduc-
ing non-recurrent urban traffic congestion via the deep reinforcement learning
method.

32

Chapter 3

Deep Reinforcement Learning

3.1 Overview
This sections covers the main technical concepts of Deep Reinforcement Learn-
ing (DRL) which is mainly to be used in this thesis in order to build the proposed
framework for real-time vehicle route optimisation. The first section presents
Reinforcement Learning which is essential for dynamic complex problems and
its most popular technique, so called Q-Learning. The second section introduces
the concept of Deep Learning and its impact nowadays. The third sections de-
scribes Deep Reinforcement Learning and the state of-the-art methods for Deep
Q-Learning. Then the next section describe the improvement method of DQN.
The last section describes the motivation to use DRL for the vehicle route opti-
misation problem and presents recent studies of urban transportation network.

3.2 Reinforcement Learning
A reinforcement learning (RL) method is able to gain knowledge or improve
the performance by interacting with the environment itself. The theory of rein-
forcement learning is inspired by psychology that focuses on learning behaviour
from rewards [73]. The reward is the positive or negative feedback based on the
interaction of an artificial agent who executes an action and its environment.
The goal of the agent is to learn which actions will lead to the highest reward
in long run.

3.2.1 Markov Decision Process (MDP)
A Markov Decision Process (MDP) is a mathematical framework for optimizing
decision-making under uncertainty. It is specified over an environment, where
the goal is for an agent to reach some desired state. As such, the MDP formalizes
a set of environmental states, a set of actions for the agent to take, a reward
function that assigns a reward signal to the outcome of taking certain actions
in certain states, and a transition function, that describes the change in the
environment as a result of taking a certain action in a certain state. An MDP
satisfies the Markov Property if the transition function depends only on the
current state s and the taken action a. That is, the probability of moving from
s to s, after taking a is dependent only on the current state. In mathematical
terms, a state St has the Markov property, if and only if:

Chapter 3. Deep Reinforcement Learning 33

Figure 3.1: Reinforcement Learning Design Flow

P (st+1|st, at, rt, st−1, at−1, rt−1, ..., s0, a0, r0) = P (st+1|st, at) (3.1)

Formally, an MDP is a four-tuple < s, a, r, t > where

• s is the space of possible states

• a is the space of possible actions

• ra
ss

′ is the a reward function specifying the reward r for taking action a

in state s and ending up in state s′

• ta
ss

′ is a transition function specifying the probability of taking action a

in state s and ending up in state s′

The agent’s goal is to maximize its reward over time, giving slightly more
preference to short-term than to long-term reward. This goal is captured in the
return, the discounted cumulative reward over time:

rt =
∞∑
k=0

γkrt+k+1 (3.2)

where γ is a discount factor such that 0 < γ ≤ 1, meaning that future
rewards are discounted exponentially.

Chapter 3. Deep Reinforcement Learning 34

Figure 3.2: A Markov decision Process

The Figure 3.2 illustrates an example of the Markov Decision Process. The
Markov Decision Process can be solved by Value Iteration (VI) which is an
algorithm that finds the optimal value function (the expected discounted future
reward of being in a state and behaving optimally from it), and consequentially
the optimal policy. The central idea of the Value Iteration algorithm is the
Bellman Equation, which states that the optimal value of a state is the value
of the action with the maximum expected discounted future return (the action
with maximum Q-value). And the Q-value for a state-action pair is defined as
the expected value over all possible state transitions of the immediate reward
summed with the discounted value of the resulting state. The formula is shown
below:

V (s) = maxQ(s, a) (3.3)

Q(s, a) =
∑
s

′
T (s

′
|s, a)[R(s, a, s

′
) + γV (s

′
)] (3.4)

In the case of Value Iteration, Bellman updates are performed in entire
sweeps of the state space. That is, at the start, the value of all states is initialized
to some arbitrary value. Then, the Bellman Equation updates the value function
[28] estimate sweeping over the entire state space. These steps are repeated for

Chapter 3. Deep Reinforcement Learning 35

some fixed number of iterations or when the maximum change in the value
function is small. The pseudocode of VI is shown in Algorithm 5.

Algorithm 5: Value Iteration
1 Initialize value function V (s) arbitrarily for all state s. Repeat until

convergence foreach state s do
2 V (s) = max

∑
s

′ T (s
′ |s, a)[R(s, a, s′

) + γV (s
′
)]

3 end

The Value Iteration is as a planning algorithm that makes use of the Bell-
man Equation to estimate the Value function. However, if the probabilities or
reward function is unknown, which is common in real systems, Value Iteration
algorithms can no longer be computed. The root cause of this problem is that
the planning algorithm need the access to a model of the world or at least a
simulator. The other drawback of VI is that when state space is large or infinite,
which may exceed the capability of modern computer.

3.2.2 Q-Learning
Unlike a planning algorithm, a learning algorithm like Q-learning [4] involves
determining behaviour when the agent does not know how the world works and
can learn how to behave from direct experience with the world. Figure 3.3
illustrates a typical example of how the agent interacts with the environment.
Unlike the planning algorithm, the Learning agent has no predefined knowledge
of the environment, which means the reward function and the transition function
are unknown. Instead, the agent learns how to behave by interacting with the
environment. As the name suggests, Q-learning estimates the optimal Q-values
of a Markov Decision Process, which means that behaviour can be learned by
taking actions greedily with respect to the learned Q-values. In the Q-learning
algorithm, the most common way to choose an action in the current world
state(s) is to use the greedy policy. ε is a fraction between 0 and 1. Based
on the policy, the agent randomly selects among all actions a fraction of time,
whereas the action with respect to the Q-value estimates a fraction of (1 - ε)
time. The update rule for Q-learning is below.

Q(s, a) = Q(s, a) + α[R(s, , a, s
′
) + γmaxQ(s

′
, a

′
)−Q(s, a)] (3.5)

The Q-value is updated by the Q-value of the last state-action pair (s, a)
with respect to the observed outcome state s′ and direct reward R(s, a, s′

). The
parameter between 0 and 1 stands for the learning rate.

The difference of update rules between Value Iteration and Q-learning al-
gorithm is that the Q value of a state in VI is the maximum Q-value which
is the expected sum of reward and discounted value of the next state, whereas
the Q-value of Q-learning algorithm is the sum of rewards and discounted max

Chapter 3. Deep Reinforcement Learning 36

Figure 3.3: The interaction between environment and agent
in Q-Learning

Q-value of the observed next state, which implies that we only use the states
and rewards we happen to get by interacting with the environment. As long as
we keep trying random actions on the same state, we could reach all possible
states of next. After multiple times of aggregation, we should finally move close
to the true Q-value. In order to have guaranteed convergence, some tips for the
parameter setting could be very useful in practice. Firstly, the greedy policy
should anneal linearly from 1.0 to a small fraction, for instance 0.1, over certain
training steps, and fixed at the small fraction thereafter. This setting enables
the agent to explore more action-state pairs at the beginning of the training,
and reduce the randomization when the agent gains more experience. The
other trick is slowly decreasing the learning rate α over time. The Q-learning
algorithm can be summarized in the following pseudocode.

Algorithm 6: Value Iteration
1 Initialize Q-values Q(s, a) arbitrarily for all state-action pairs. while

the learning is not terminated do
2 Choose an action a in the current world state s based on current

Q-value estimates Take an action a and observe the outcome state
s

′ and reward R(s, a, s′
) Update

Q(s, a) = Q(s, a) + α[R(s, , a, s′
) + γmaxQ(s

′ , a′
)−Q(s, a)]

3 end

As stated above, the basic idea of Q-learning is to estimate the action-value
function by using the Bellman Equation as an iterative update. In that case, the
value function converges to optimal the value function as the iteration i tends
to infinity. However, it is impractical since action value function is estimated
separately for each sequence without any generalization. Instead, it is common
to use a function approximator to estimate the action-value function. The other
problem is that traditional reinforcement learning algorithms heavily rely on
the quality of handcrafted feature representations, which limits the application
scope of these algorithms. There is no double that we could benefit more if
features can be directly extracted from raw high-dimensional sensory inputs,
for instance, the human-like visual and auditory information.

Chapter 3. Deep Reinforcement Learning 37

3.3 Deep Reinforcement Learning
The curse of dimensionality given by large state and action spaces make unfea-
sible to learn Q value estimates for each state and action pair independently as
in normal tabular Q-Learning. Therefore, Deep Reinforcement Learning (DRL)
models the components of RL with deep neural networks. The parameters of
these networks are trained by gradient descent to minimize some suitable loss
function.

3.3.1 Artificial Neural Networks
Artificial Neural Networks (ANN) was first designed in 1940s to mimic human
brains neurons for learning from experiences. Since then, there have been var-
ious notable advances including the unsupervised learning, backpropagation,
convolutional neural networks (CNN), recurrent neural networks (RNN), etc.
The most general neural network structure is the Feed-forward neural network,
also known as a Multilayer perceptron (MLP). A neural network consists of mul-
tiple artificial neurons that are connected in layers which can be divided into the
input layer, hidden layer(s) and the output layer. It is a machine learning model
parameterised by a set of parameters θ which maps the N-dimensional input
layer x = (x1,x2, ...,xn), through the hidden layer(s) with activations, to a K-
dimensional output layer y = (y1, y2, ..., yn). A hidden layer is composed by a
set of artificial neurons, an artificial neuron is a mathematical construction that
aims to mimic how neurons act in the human brain. As illustrated in Figure 3.4,
an artificial neuron takes a number of weighted inputs (w1x1,w2x2, ...,wnxn),
sums them up with a bias term b and applies a non-linear activation function g
to the sum. The single output y could be calculated by the following equation
Equation 3.6:

y = g

(
n∑
i=1

wixi + b

)
(3.6)

Activation functions play a key role in ANN. It generally is differentiable
and non-linear which is applied by the neurons in the hidden layers can differ
between networks and even between the layers within a single network. The
three most well-known activation functions are the Logistic Sigmoid, the Hyper-
bolic tangent and Rectifier Linear Unit (ReLU). The function curves of these
three activations are shown in Figure 3.5. There are no specific ways so far
to determine which activation function is the best approach for ANN. Differ-
ent application may get better performance in different activation functions.
Therefore it is always dependent on trial and error. However, generally the
ReLU activation was applied with more stable performance due to its positive
impact on the different machine learning tasks it has been the default first choice
when designing an ANN [91]. The ReLu activation function equation is:

relu(x) = max(0,x) (3.7)

Chapter 3. Deep Reinforcement Learning 38

Figure 3.4: Single neuron output based on weight, input, bias
and non-linear activation function

which contains the gradient:

d

dx
relu(x) =

{
0, if x ≤ 0
1, if x > 0

}

Figure 3.5: Function curves of sigmoid, Tanh and ReLU

In a multiple layers neural network, mapping the input vector (x1,x2, ...,xn)
through the first hidden layer h(0) with weights w(0) ∈ θ, bias b(0) ∈ θ and non-
linear activation function g(0) results in the following equation Equation 3.8:

h(0) = g(0)
(
W (0)x+ b(0)

)
(3.8)

Chapter 3. Deep Reinforcement Learning 39

The output h(0) from Equation 3.8 can be used as input to the next layer,
for example weights w(0) ∈ θ, bias b(0) ∈ θ and non-linear activation function
g(0) results in the following equation Equation 3.9:

h(1) = g(1)
(
W (1)h(0) + b(1)

)
(3.9)

h(1) = g(1)
(
W (1)g(0)

(
W (0)x+ b(0)

)
+ b(1)

)
(3.10)

And so on until forward the activation of the kth layer to the output layer
as illustrated in Figure 3.6. Setting up the weights between the neurons can
adapt how the input will be transformed by the neurons between the input
and output in order to approximate the function y = f(x; θ). As the network
grows deeper, the model can approximate more complex functions, but it also
becomes harder to train. Therefore, much of the field of deep learning is trying
to find more reliable and faster methods of training ANN.

Figure 3.6: Visualization of the structure of neural network
with multiple hidden layers

3.3.2 Action Selection Policy
The deep reinforcement learning algorithm does not specify what the agent
should actually do. The agent learns the policy that can be used to determine
an optimal action. There are two things that are useful for the agent to do:

• Exploration: For building a better estimate of the optimal policy. the
agent should select a different action from the one that it currently thinks
is best.

• Exploitation: For using the knowledge that it has found for the current
state s by doing one of the actions a that maximizes the reward.

Chapter 3. Deep Reinforcement Learning 40

In DRL, exploration is due to randomness (or partly), therefore it also means
the result always have huge difference in each run, however the experience from
exploration could be very useful for training data set in DRL.

However, exploitation is based on policy, one of the simplest policies is the
greedy policy, where the agent always chooses the action with the maximum
expected return. The equation for greedy policy is shown below:

a = argmaxQ(A) (3.11)

where A ∈ a1, a2, ..., an is the collection of actions in particular state.

In order to add some exploration into the mix, the ε-greedy is stepped in.
ε-greedy lets you decide what fraction of your decisions you want to spend
exploring (ε) and what fraction you want to spend exploiting (1-ε)the best
option so far. For instance, if ε is set as 0.4, then the RL agent will take the
option that gave him the best average reward in the past 60% of the time and
chose any other option 40% of the time. Typically, you want ε to be small so
that you mostly exploit your experience, but also go explore occasionally from
time to time. However, when a model just begin to start the learning process,
ε will be set to a large number to encourage initial exploration and reduce it as
you gather knowledge about the rewards.

3.3.3 Optimisation Algorithm
Essentially, training an ANN in order to approximate function y = f(x; θ)
is changing the weights appropriately. To that end, some form of gradient
descent is necessary. Firstly, a loss or cost function that quantifies the errors
between the output of the neural network and the ground truth is defined. The
objective is to minimise this quantity. The most common way to measure this
is to calculate the mean squared error between the approximation and ground
truth. The Mean Square Error (MSE) [26] is formally defined by the following
equation:

MSE =
1
N

N∑
i=1

(f(x; θ)− ŷi)2 (3.12)

Backpropagation Neural networks can be trained using gradient descent
methods - by minimizing the error function with respect to the parameters. To
do so, the gradient of the error function is computed. Backpropagation is a
method for passing the error in the output layer back through the individual
nodes in the neural network. Since a neural network is essentially a hierarchy
of nested functions, the chain rule can be used to compute the derivative of the
error function with respect to the neural network weights.

Adagrad [20] proposed Adagrad which is a method which adaptively up-
dates parameters based on a sum of squared gradients per parameter. It uses
that value to normalize the learning rate before the update for each parameter
i with the formula:

Chapter 3. Deep Reinforcement Learning 41

Gtj = G
(t−1)
j +

 δ`

δθ
(t−1)
j


2

(3.13)

θtj = θ
(t−1)
j − α

Gtj + c
· δ`θ
δθtj

(3.14)

where c is a small constant to prevent division by zero. The learning rate for
each parameter is set adaptively based on past updates. If past gradients for
parameter i were large, the learning rate for i is small and vice-versa. By divid-
ing the learning rate by the sum of past square gradients, Adagrad removes the
need for extensive learning rate tuning. Adagrad solved the problem of adap-
tively tuning the learning rate per parameter, but by dividing the learning rate
by the sum of squared gradients, the learning rate diminishes too aggressively
as time passes, since the sum keeps growing.

RMSProp has been developed independently from the need to solve Ada-
grads aggressive diminishing learning rates. [21] proposed RMSProp in order
to solve that problem by defining an exponentially decaying average of squared
gradients.

Gtj = γG
(t−1)
j + (1− γ)

 δ`

δθ
(t−1)
j


2

(3.15)

where originally γ = 0.9.

Momemtum is an addition to the optimisation step that functions by in-
creasing the strength of updates in directions that consistently lead to improve-
ment. It does this by storing a variable v, the so-called velocity:

vt = µv(t−1) − α` (3.16)

where µ is the momentum coefficient. By using momentum, learning speeds up
when gradients are following the loss curve down a slope.

ADAM [22] developed the Adaptive Moment Estimation (ADAM) algo-
rithm by combining Adagrad and RMSProp with a new implementation of
Momemtum. It uses a decaying average of squared gradients and a decaying
average of past gradients:

mt = β1m
(t−1)) + (1− β1)∇`θ (3.17)

mt = β2v
(t−1) + (1− β2)∇`θ2 (3.18)

where mt and vt are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients respectively. β1 and β1 are
hyper-parameters. Because mt and vt are initialized as zero vectors, this causes

Chapter 3. Deep Reinforcement Learning 42

a bias towards zero, especially during the initial time steps, and especially when
the decay rates are small due to β1 and β2 are close to 1. In order to solve this
issue, the first and second moment estimates are bias-corrected with:

m̂t =
m(t−1)

1− β(t−1)
1

(3.19)

v̂t =
v(t−1)

1− β(t−1)
2

(3.20)

and the final updating being:

θt = θ(t−1) − αm̂t√
v̂(t) + ε

(3.21)

3.3.4 Deep Q-Network
[25] proposed Deep Q-Networks (DQN) as a technique to combine Q-Learning
with deep neural networks where such technique proved to achieve super-human
performance in several Atari Games. This benchmark has become in the most
common one. Reinforcement learning is known to be unstable or even to diverge
when a non-linear function approximator such as a neural network is used to
represent the Q value. DQN addresses these instabilities by using two insights,
experience replay and target network.

The experience replay has three main advantages. Firstly, it allows greater
data efficiency because each step of experience is potentially used in many weight
updates. Secondly, learning directly from consecutive samples is inefficient, due
to the correlations between the samples; therefore, by randomizing the samples
these correlations can be broken and the variance of the updates can be reduced.
Thirdly, when learning on policy the current parameters determine the next
data sample that the parameters are trained on. By using this technique the
behaviour distribution is averaged over many of the prior states, stabilising the
learning and avoiding fluctuations or divergence in the parameters.

The other technique which improves the stability of neural networks is to use
a separate network to generating the targets yi during the Q-learning update.
Specifically, every C updates the network Q is cloned in order to obtain a target
network Q and use Q for generating the Q-learning targets yi for the following
C updates to Q. By using this generations with older set of parameters it allows
a delay between when an update is done to Q and when that update affects the
targets yi which makes unlikely the presence of divergences or oscillations.

DQN parameterises an approximate value function Q(s, a; θi) ANN, where
θi are the weights of the network at iteration i. The experience replay stores the
agent’s experiences et = (st, at, rt, st+1) at each time step t in a datasetDt = et.

Chapter 3. Deep Reinforcement Learning 43

et pooled over many episodes into a replay memory. Then, mini batches of
experience drawn uniformly at random from the dataset D are applied as Q-
updates during the training. The Q-learning update at iteration i follows the
loss function:

Li(θi) = E(s,a,r,s′) ∼ D

r+ γmaxQ(s
′
, a

′
; θ−i)︸ ︷︷ ︸

target

−Q(s, a; θi)


2

(3.22)

where θi are the parameters of the Q-network at iteration i and θ−i are the
target network parameters. The target network parameters are only updated
with the Q-network parameters every C steps and are held fixed between indi-
vidual updates. The Figure 3.7 illustrate the learning process of DQN and the
Algorithm 7 states the procedure.

Figure 3.7: DQN Learning Diagram

Chapter 3. Deep Reinforcement Learning 44

Algorithm 7: Deep Q-Learning with memory replay
1 initialise replay memory D to capacity N
2 initialise action-value function Q with θ
3 initialise target-value function Q̄ with θ− = θ
4 for episode=1, M do
5 for t=1, T do
6 with probability ε select a random action at
7 otherwise select at = argmaxaQ(s, a; θ)
8 execute action a, observe reward r and next state s,

9 store transition (s, a, r, s,) in D
10 sample random minibatch of transitions from D
11 if s,

j is terminal then
12 yj ← rj
13 else
14 yj ← rj + γmaxaQ(s,

j , a,;θ)
15 end
16 perform a gradient descent step on (yj-Q(sj , aj ; θ))2 with

respect to the network parameters θ
17 Every C steps reset Q̄ ← Q
18 end
19 end

Where D is the replay memory for each transition, N is the maximum number
of the storage of D, Q and Q̄ are action and target network which are with θ
and θ− as parameters.

3.4 Deep Reinforcement Learning for Urban
Traffic Optimisation

With the rapid development and recent success of machine learning technolo-
gies lately, Deep RL techniques have demonstrated their ability to tackle a
wide range of problems that were previously unsolved. Some of the most well-
known achievements include attaining superhuman-level performance in playing
ATARI games from the pixels, beating professional Go and Poker players etc.
These achievements in popular games are important mainly because they show
the potential of deep RL in a wide variety of complex and diverse tasks that
require working from high-dimensional inputs. In fact, deep RL has also already
shown lots of potential for real-world applications such as robotics, self-driving
cars, online marketing, face-recognition etc. Virtual environments such as the
ones developed by OpenAI [13] and DeepMind [8] will certainly allow to explore
even further the limits of the deep RL algorithms. Therefore, many researches
started to focus on solving traffic congestion problem based on the deep rein-
forcement learning method. M.G Karlaftis conducted an overview comparing
statistical methods with neural networks in transportation related research and
it demonstrated that solutions based on deep reinforcement learning are very
promising [55]. Despite its potential, to the best of my knowledge, there is no

Chapter 3. Deep Reinforcement Learning 45

study relating vehicle route optimisation via the deep reinforcement learning
method. Although there are some researches works focused on path planning,
using BP neural network and fuzzy neural network learning method [84, 120],
however, these approaches lacked the ability to deal with unexpected events
such as road accidents. Currently, most of the studies focused on urban traffic
prediction and intersection traffic control. This section introduces the previous
works based on deep reinforcement learning in these two major categories.

3.4.1 Intersection Traffic Control
Various researches attempted to handle the traffic at the intersections by such
methods as controlling the traffic light signal [92, 79, 37] and navigating vehicles
at occluded intersections [50, 49, 51]. The first approach to the problem of traffic
control using reinforcement learning was made by Thorpe and Anderson [106]
in 1996. The state of the system was characterised by the number and positions
of vehicles in the north, south, east and west lanes approaching the intersection.
The actions consist of allowing either the vehicles on the north-south axis to
pass, or those on East-West axis to pass. And the goal state is when the number
of waiting cars is 0. A neural network was used to predict the waiting time of
cars around a junction. In 2003, Abdulhai et al [2] showed that the use of
reinforcement learning, especially the use of Q-learning is a promising approach
to solve the urban traffic control problem. The state includes the duration
of each phase and the queue lengths on the roads around the crossing. The
actions were either extending the current phase of the traffic light or changing
to the next phase. This approach has shown a good performance when used to
control isolated traffic lights. An example of intersection traffic light control is
illustrated in Figure 3.8, the agent observe the road traffic as the state and give
the action accordingly based on the output of the neural network. Then the
action will affect the road traffic and a reward could be retrieved. After that,
the neural network will be trained based on the reward and improve the traffic
light control policy.

Figure 3.8: The traffic light control model in deep learning
[21])

Chapter 3. Deep Reinforcement Learning 46

M. Weiring used multi-agent reinforcement learning to control a system of
junctions [116]. A model-based reinforcement learning is used in this approach,
and the system is modelled in its microscopic representation. They counted
the frequency of every possible transition, and the sum of received rewards,
corresponding to a specific action taken. Then, a maximum likelihood model
is used for the estimation. The set of states was car-based: it included the
road where the car is, its direction, its position in a queue, and its destination
address. The goal was to minimise the total waiting time of all cars at each
intersection, at every time step. An optimal control strategy for area traffic
control can be obtained from this approach.

3.4.2 Urban Traffic Prediction
Most research in this area applies deep learning for traffic prediction [71, 93] or
accident prediction [96, 104] in order to detect traffic congestions in advance.
For traffic prediction, Yisheng Lv proposed a deep learning based traffic flow
prediction method by using stacked autoencoder model to learn generic traf-
fic flow features [71]. N. Polson also presented a deep learning predictor for
spatial-temporal relations present in traffic speed measurements. It focuses on
forecasting traffic flows that occur unexpectedly and hardly predictable such as
special events or extreme weather [93]. Besides, Honglei Ren collected big traf-
fic accident data and and analyzed the spatial and temporal patterns of traffic
accident frequency for an accident risk predictor [96]. And FangZhou Sun pro-
posed a deep neural network DxNAT to identiy non-recurring traffic congestion
by converting traffic data in Traffic Message Channel (TMC) format to image,
and use a convolutional neural network (CNN) to identify non-recurring traffic
anomalies. Although these research studies showed great potential in traffic
optimisation, they only solve half of the problem as drivers still need smarter
navigation system to guide their vehicles to destinations based on the predicted
results in order to optimise the traffic.

3.4.3 Motivation of using DQN in Vehicle Navigation
This subsection presents the motivation to apply Deep Q-learning in vehicle
navigation for this research. In vehicle navigation, the driver often depend on
the their driving experience (policy) to find out which way is faster. However,
the policy could be optimised if the driver know better what to explore. As the
DRL model been trained, based on that the driver therefore is able to know
about the ground truth values of states and actions. In order to achieve that,
DQN method contains several advantages in vehicle navigation system that
show below:

• Experience Replay: During DQN training, thousands even millions
transitions are stored into a buffer and sample a mini-batch of samples of
size 32 from this buffer to train the deep neural network. This forms an
input dataset which is stable enough for training. As the training process

Chapter 3. Deep Reinforcement Learning 47

randomly sample from the replay buffer, the data is more independent of
each other closer to independent and identically distributed.

• Target network: DQN uses two deep networks during the learning
process. The first one is called evaluate network which is to retrieve Q
values while the second one is called target network which includes all
updates in the training. After certain updates, the parameters in target
network will be synchronised to evaluate network. The purpose is to
fix the Q-value targets temporarily so we don’t have a moving target to
chase. In addition, parameter changes do not impact the evaluate network
immediately and therefore even the input may not be entirely independent
and identically distributed, it will not incorrectly magnify its effect.

With both experience replay and the target network in DQN, the learning
process will have a more stable input and output to train the network and
behaves more like supervised training for vehicle navigation.

3.5 Limitation
This section discusses the limitations of deep reinforcement learning for urban
traffic optimisation.

• Currently there is much less work in the literature devoted to determining
the appropriate reaction for vehicle route optimisation to reduce conges-
tion due to unexpected events via deep reinforcement learning.

• The existing research urban traffic control and prediction are insufficient
to reduce traffic congestion.

• There are lack of previous work to apply DRL methods in vehicle naviga-
tion system.

48

Chapter 4

Urban Traffic Simulation

4.1 Overview
This chapter presents the introduction of the urban traffic simulation. Simula-
tion is widely applied in research as, most of the time running experiments in the
real world is simply not practical and could waste too many resources. Three
main categories of traffic simulation (microscopic, mesoscopic and macroscopic)
which are designed for different requirements are covered in this topic. Further-
more, this chapter introduces different traffic simulators and compares their
performance in speed. Lastly, the simulator that is used in this thesis is briefly
introduced with its additional features such as TraCI and vehicle emissions.

4.2 Background
Simulation is a popular approach in computer science for research in different
scientific problems by simulating an artificial environment. It brings the ad-
vantage of allowing the assessment of system’s behaviour before it is deployed
or produced in real life. It is able to characterise system’s performance, test
scientific models in order to prove or disprove their feasibility and correctness
without any real implementation. Facilitating the increasing processing power
possessed by computers, simulation allows us to test the complex scientific mod-
els in a reasonable time with minimum cost. Simulation techniques are based
in mathematical models, which can take into account responses and constraints
of the system to be simulated appropriately [89]. If the system’s simulation
is appropriate, we can then provide practical feedback to real systems, time
compression or expansion, higher control, and lower costs.

4.2.1 Traffic Simulation
One of the most common systems that is widely studied by the scientific com-
munity using computer simulation is traffic simulation. Although there are
some traffic related architectures which are tested on real system, for instance,
the research in [5] developed and tested a Transportation Regulation Support
System (TRSS) prototype on the Brussels transportation network. However,
these models need to consider the system complexity that in many cases is hard
to capture and they cannot be easily solved by using common sense, simple cal-
culation, analytical methods, and direct experiments. Therefore, the real scale

Chapter 4. Urban Traffic Simulation 49

testing, validation and assessment of output are extremely complicated, risky
and expensive [39]. Traffic simulator which is able to create virtual scenarios is
widely used in transportation research because, as mentioned before, running
experiments with vehicles in the real world is simply not practical.

Traffic simulation is inherently complex, usually composed of diverse entities
such as vehicles, road networks etc that reflect real transportation behaviours.
In such cases, complex mathematical analyses in traffic simulation could be used
to deal with traffic as a whole, using flow equations to describe multiple vehicles
movements. Moreover, because of the time compressing characteristics that
condense information and create hypothetical situations, traffic simulation can
be used as a training set for real systems, and it allows the scientific community
to compare different studies between new infrastructures, and control without
interfering in the real system and wasting the resources [89]. In addition to all
the aforementioned advantages, traffic simulator is a suitable and cost effective
alternative tool for the scientific community, especially to validate and assess
the performance of urban transport system.

4.2.2 Simulation Models and Approaches
Generally, there are 3 main categories to simulate traffic system (microscopic,
mesoscopic, and macroscopic) and 2 main approaches (space-discrete and space-
continuous) [95]. The overview of the three traffic simulation models is shown in
Figure 4.1. Macroscopic mainly focuses on the movement of platoons of vehicles
aggregate level, it aggregates the description of traffic flow and the relationships
of traffic characteristics (speed, flow and density) [12]. This model does not
consider the behaviour of a single vehicle but only the general evaluation of
traffic flows in a network, which means it handles every vehicle in the same
way and as a group in simulation. Moreover, macroscopic models the flow of
traffic using high-level mathematical models often derived from fluid dynamics.
Consequently, it can be used to predict the spatial and temporal congestion
that is caused by the traffic demand or incidents in a road network [97]. As
the macroscopic model does not require detailed modelling, it is often used for
regional transportation planning [72]. It could perform fast, accurate simulation
which is useful for the simulation of wide-area traffic systems, such as motorway
networks and interregional road networks. However, this approach is not well
suited to urban models as in real urban transportation there are many different
types of vehicle driven by different individuals who have their own styles and
behaviours [89]. The example of macroscopic simulation includes statistical
dispersion models [35], free-way traffic model [62] etc

The Microscopic model however simulates the characteristics and interac-
tions between individual vehicles. Essentially, the simulation produces the tra-
jectories of each single vehicle moving across the network and primarily focuses
on individual vehicle speeds and locations [72]. In this case, route options
which are playing important role in simulating traffic are considered as they
are becoming increasingly more complex in modern transport systems. The

Chapter 4. Urban Traffic Simulation 50

Figure 4.1: Overview of traffic simulation models [14]

simulation logic includes algorithms and rules that describe how vehicles move
and interact. For instance, behaviour of individual vehicles in intersections is
handled by car-following and lane-changing logics, which include acceleration,
deceleration, lane changes and overtaking manoeuvres algorithms [97]. There-
fore, microscopic can model traffic flow more realistically than macroscopic sim-
ulators do, due to the extra details added in modelling the simulated entities
individually [89]. As they model individual entitles separately at a high level
of detail, microscopic simulators are widely used to evaluate new traffic control
and management technologies as well as performing analysis of existing traffic
operations. Moreover, such microscopic models may be discrete in time and
space using cellular automata or only discrete in time. Figure 4.2 shows the
difference between space-discrete and space-continuous simulations. Although
they are mainly applied to narrow-range transportation systems, with the in-
creasing growth of computer processing power, microscopic simulations in big
complex urban transportation become more common. Examples of microscopic
simulation include cellular automata [102], multi-agent simulation [88], particle
system simulation [98] etc.

In contrast, the mesoscopic model consists of the aspects of both macro and
microscopic models. It fills the gap between the aggregate level approach of
macroscopic models and the individual interactions of the microscopic ones by
describing the traffic entities at a high level of detail, while their behaviour and
interactions are designed at a lower level of detail [15]. In mesoscopic simulation,
vehicles can be grouped in packets, which are routed throughout the network
and are treated as one entity. Another paradigm is that of individual vehicles
that are grouped into cells to control their behaviour. The cells traverse the
link and vehicles can enter and leave cells when needed, but not overtake [89].

Chapter 4. Urban Traffic Simulation 51

Figure 4.2: Space-discrete vs Space-continuous simulation

Mesoscopic simulators are useful for system wide evaluation of transit operations
and Advanced Public Transportation Systems (APTS), as they are for general
traffic [107].

Figure 4.3: The relationship of traffic simulation models [15]

The research from [15] studied links between the three traffic simulation
models. Figure 4.3 shows an overview of these relations. Klar and Wegener
[57] describe a hierarchy of models: the authors present a simple microscopic
flow model that is used to determine gas-kinetic flow equations. These are sub-
sequently transformed into a mesoscopic traffic flow model. The derivation of
the original Payne model [90] can be considered as an example of ‘degeneration’
of microscopic flow model to a macroscopic flow model. Nagel [82] shows the
relation between CA-models and the simple wave model. Application of the
method of moments (e.g. Leutzbach [64]) yields macroscopic equations from
mesoscopic traffic flow models. Van Aerde [111], used a particle discretisation

Chapter 4. Urban Traffic Simulation 52

Sumo Paramics
Modeller Aimsun SimTraffic CORSIM

TRAFVU

CPU
Usage

Between 5-17%,
depending on
the number of
vehicles currently
running on the
traffic network

Constant 50%

Between 25-40%,
depending on
the number of
vehicles and
the scenario
currently simulated

Constant 50% Constant 50%

Memory
Usage

Between
12-16 MB,
depending on the
traffic network

Between
40-140 MB,
depending
on the traffic
network and
the graphic
models used

Between
30-40 MB,
depending on the
traffic network

Around 35
MB, does not
depend much
on the traffic
network
simulated

Between
28-32 MB,
depending
on the
traffic network

Simulation
Output

Included
simulation output
through generating
output files.

Included tools
to statistically
represent what
is happening
in the
simulated
traffic network

Includes more
than 20 different
view styles for
graphical
representation
of statistical
information about
the traffic and the
events occurring
in the ongoing
simulation of
the traffic network

Lack of
information
because demo
version only
reveals limited
report

Did not
include
any type
of output files.

Table 4.1: CPU and Memory performance in different traffic
simulators [59]

method. Application of particle discretisation methods to derive microscopic
models from gas-kinetic equations has recently been reported by Hoogendoorn
and Bovy [45], who applied the method to gaskinetic equations describing pedes-
trian flows. Regarding the relation between microscopic and macroscopic traffic
flow models, Del Castillo [18] proposes a car-following model, the three param-
eters of which can be determined directly from speed-density data.

4.2.3 Simulators Overview
There are several widely used traffic simulators, including Quadstone Paramics
[16], VISSIM [32], AIMSUN [17], MATSIM [47] and SUMO [61]. These simula-
tors provide different features and models for commercial and research purposes.
G.Kotusevski et al. carried out a comprehensive comparison of these simulators
with their features, characteristics and limitations [59]. Among them, SUMO
comes with outstanding ability to simulate a very large and complex transporta-
tion network of up to 10,000 edges (roads).

G. Kotusevski and K.A. Hawick [59] reviewed different traffic simulators by
using a machine with Intel Core 2 Duo Extreme processors running at 2.8GHz
with 6MB of cache memory and 2GB of RAM memory. Table 4.1 provides infor-
mation about the CPU and Memory performance of the software applications
while they were actively simulating a traffic network.

Chapter 4. Urban Traffic Simulation 53

In simulation, most of the simulators generally enables most precise mod-
elling and simulation, with an emphasis on providing a high level of realism,
concerning both a network and vehicles/drivers. However, such precision is at a
price of low simulation speed [72]. In contrast, SUMO uses a space-continuous
car following model, and enables simulation for large, even regional, networks
but, at the same time, offers high speed simulation. Therefore, an alternative to
these simulators is SUMO that can be considered as a reasonable compromise.

In our research, SUMO becomes an obvious option as the traffic simulator
for DRL based vehicle navigation system. SUMO provides several advantages
as shown below:

• Open-source: SUMO is an open-source software which means it is totally
free and we are able to customise its features in order to apply DRL
method.

• Useful Output Files: SUMO provides meaningful output files for each
simulation. Those files contain useful data for DRL learning process.

• Speed and Stability SUMO provides stable processing speed while pro-
cessing traffic simulation, even for a very large traffic networks (Up to
10000 edges).

• API Available: SUMO provides API for user to gain real time infor-
mation from a running traffic simulation. This allows 3rd party libraries
to integrate with the traffic simulation in real time.

4.3 Overview of SUMO
The German Aerospace Center (DLR) started the development of the open
source traffic simulation package SUMO back in 2001. Since then SUMO has
evolved into a full featured suite of traffic modeling utilities including a road
network capable of reading different source formats, demand generation and
routing utilities from various input sources (origin destination matrices, traffic
counts, etc.), a high performance simulation usable for single junctions as well
as whole cities including a “remote control” interface (TraCI) to adapt the
simulation online.

SUMO was started to be implemented in 2001, with a first open source re-
lease in 2002. There are two reasons for making the work available as open
source. The first is the wish to support the traffic simulation community with
a free tool into which their own algorithms can be implemented. While there
are some open source traffic simulations available, most of them have been im-
plemented within a student thesis and got unsupported afterwards. A major
drawback – besides reinventing the wheel – is the almost non-exist comparabil-
ity of the implemented models or algorithms. A common simulation platform
should be of benefit here. The second reason for making the simulation open
source was the wish to gain support from other institutions.

Chapter 4. Urban Traffic Simulation 54

SUMO is not only a traffic simulation, but rather a suite of applications
which help to prepare and to perform the simulation of traffic. As the traffic
simulation “SUMO” requires the representation of road networks and traffic
demand to simulate in an own format, both have to be imported or generated
using different sources. SUMO is a purely microscopic traffic simulation. Each
vehicle’s details are given explicitly, defined at least by an identifier (name), the
departure time, and the vehicle’s route through the network. If wanted, each
vehicle can be described in more detailed. The departure and arrival properties,
such as the lane to use, the velocity, or the position can be defined. Each vehicle
can get a type assigned which describes the vehicle’s physical properties and the
variables of the used movement model. Each vehicle can also be assigned to one
of the available pollutant or noise emission classes. Additional variables allow
the definition of the vehicle’s appearance within the simulation’s graphical user
interface.

As SUMO is an open-source, microscopic, multi-model traffic and extensi-
ble simulator, it has been widely used in research projects with a worldwide
community support. It allows the user to simulate specific traffic scenarios per-
forming in given road maps. There are several reasons that SUMO is used as
the simulator in our experiments: (i) it performs an optimized traffic distribu-
tion method based on vehicle types or driver behaviors in order to maximize the
capacity of the urban transportation network; (2) it updates the vehicle’s route
in real-time when congestion or accident occurs; and (iii) it supports TraCI, a
Python based API that allows a user to get traffic observations from the traffic
simulation and control the simulation as it runs in response to the observations.

4.4 Additional Features
SUMO also provides several additional features for different purposes, as the
modern transportation network is become more and more diverse. Currently,
there are 8 additional features in SUMO which are emission model, electric
vehicle, logistics, generic parameters, shapes visualisation, wireless device de-
tection, emergency vehicles and simple platooning. In this section only two
them (Emission and emergency vehicles) are briefly introduced because it is
highly related to this thesis.

4.4.1 TraCI
Another major feature of SUMO is TraCI , which is a Python based API that
treats the SUMO simulator as a server. It allows the users to gain real time
information from a running traffic simulation, and modify the simulation cor-
respondingly. TraCI enables third party systems (or libraries) to integrate with
the SUMO traffic simulation at runtime. In our trainings, TraCI will play the
role of the communicator between SUMO and the RL agent to achieve this in-
teraction. It is able to retrieve every piece of information about the vehicles and

Chapter 4. Urban Traffic Simulation 55

road maps in the simulation and provide the useful features for the RL agent
to justify the states of the environment.

In 2006, the simulation was extended by the possibility to interact with
an external application via a socket connection. This API, called “TraCI” for
“Traffic Control Interface” was implemented by Axel Wegener and his colleagues
at the University of Lübeck [18], and was made available as a part of SUMO’s
official release. Within the iTETRIS project, see Section IV.B, this API was
reworked, integrating it closer into SUMO’s architecture.

To enable on-line interaction, SUMO has to be started with an additional
option, which obtains the port number to listen to. After the simulation has
been loaded, SUMO starts to listen on this port for an incoming connection.
After being connected, the client is responsible for triggering simulation steps in
SUMO as well as for closing down the connection what also forces the simulation
to quit. The client can access values from almost all simulation artifacts, such as
intersections, edges, lanes, traffic lights, inductive loops, and of course vehicles.
The client may also change values, for example instantiate a new traffic light
program, change a vehicle’s velocity or force it to change a lane. This allows
complex interaction such as online synchronization of traffic lights or modeling
special behavior of individual vehicles.

TraCI is not the only contribution to SUMO from other parties. SUMO
Traffic Modeler allows to define a population for a given area and compute this
population’s mobility wishes which can be used as an input for the traffic simu-
lation. The same is done by “activitygen” written by Piotr Woznica and Walter
Bamberger from TU Munich. eWorld allows to set up further environmental
characteristics, such as weather condition and visualizes a running, connected
simulation.

4.4.2 Emissions
Air pollution is one of the most serious problems in the world and transport
accounted for one quarter of total emissions in the world. And the development
of technical solutions for critical systems usually includes a step where the
solution is modelled and simulated. Fortunately, SUMO provides the feature
for vehicular emissions modelling. The emission model has been performed
within the projects “COLOMBO” [60] and “AMITRAN” [52]. SUMO includes
the following emission models:

• HBEFA v2.1-based: A continuous reformulation of the HBEFA v2.1 emis-
sions data base (open source)

• HBEFA v3.1-based: A continuous reformulation of the HBEFA v3.1 emis-
sions data base (open source)

• PHEMlight, a derivation of the original PHEM emission model (closed
source, commercial).

Chapter 4. Urban Traffic Simulation 56

Model Pollutant / Measurement
CO2 CO HC NOX PMX Fuel Consumption

HBEFA v2.1-based x x x x x x
HBEFA v3.1-based x x x x x x
PHEMlight x x x x x x

Table 4.2: Pollutants covered by models

As SUMO’s goal is to simulate real-world traffic in large areas, the model are
capable to be used as a further measurement within the simulator. Moreover,
not all available models cover all pollutants emitted by road traffic. Therefore
the pollutants assumed to be needed should be defined. SUMO model the
emission of CO, CO2, NOx, PMx, and HC, because these emissions are toxic
(CO), cause cancer (PMx), are responsible for ground-level ozone increase and
smog generation (NOx and HC) or are greenhouse gases (CO2). Additionally,
the fuel consumption should have been modelled. The Table 4.2 shows the
pollutants covered by models.

57

Chapter 5

Preliminary Design and
Experiment for Vehicle Route
Optimisation

5.1 Overview
This chapter presents how a RL method could work with SUMO simulator for
vehicle route optimisation. We run an experiment with 2 maps in SUMO by
applying a RL method to optimise the route of a single vehicle in a network.
The experiment shows promising results in finding the best path and avoiding
traffic congestion. Firstly, this chapter describes the Markov Decision Process
in vehicle route optimisation, how the urban network is to be modelled as a
dual graph by using Markov Chain. Then it introduces the problem defini-
tion and the key elements in RL. The experiment results then are evaluated
and discussed. The limitations of RL are also covered in the summary of this
chapter.

5.2 Markov Decision Process for Vehicle Route
Optimisation Problem

Reinforcement Learning briefly is a paradigm of the Learning Process in which
a learning agent learns, overtime, to behave optimally in a certain environment
by interacting continuously with the environment. The agent during its course
of learning experience various different situations in the environment it is in.
As RL could be only applied in the Markov Decision Process (MDP), vehicle
route optimisation need to be modelled as MDP. Inspired by [25], this section
introduces how the Markov Chain can be used to model an urban road traffic
network.

5.2.1 Overview of Markov Chain
A Markov chain is a discrete time stochastic process, in which the transition
probabilities depend only on the state of the chain at the previous time step and
not on the past history of the process. In a time homogeneous Markov chain
these probabilities are further independent of time. Let us consider a Markov

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 58

chain on n ∈ N states. For each pair of states, i, j = 1, ...,n, we denote by pij
the probability of going from i to j in one time step. As we consider only finite
state Markov chains, the matrix P ∈ [0, 1]nxn of elements pij together with the
initial distribution vector fully describe the evolution of the Markov chain for
all times.

A sumo network essentially is a set of nodes that can be connected by edges.
In this case only directed edges are considered here. Let’s again consider a finite
set of n nodes, then for each pair i, j = 1, ...,n an edge from node i to node
j indicates that it is possible to make a direct transition from state i to state
j. The case i = j is considered like a self-loop. It is possible to give a weight
to each edge that corresponds to the cost of using that edge. If the aggregate
cost of all outgoing edges of each node is normed to 1 then the costs can be
interpreted as the weight of using the corresponding edge to leave the node.

There is a strong link between Markov chains with finite state space and
graphs. States of the chain can be associated with nodes in the graph and non-
zero probabilities of transition between two states in the chain can be associated
with directed edges between the corresponding nodes with the given probability
as a weight. Graphs can thus be analysed using methods for Markov chains.
An important property of a graph is connectivity. A directed graph is called
strongly connected if starting from any node it is possible to reach any other
node by following the edge. Strong connectivity holds if and only if the transi-
tion matrix of the corresponding Markov chain is irreducible. Throughout this
part of the thesis we shall assume that all considered Markov chain transition
matrices are irreducible which means all nodes in the graph are reachable.

5.2.2 Apply Markov Chain Modelling in Urban Road
Traffic Network

To define a sumo network, nodes and edges are needed to represent as the
junction and road respectively. Therefore, the simplest way for the graph cor-
responding to the road network is constructed in the following way. Each inter-
section in the road network is a node in our graph and there is an edge between
two nodes if there is a road segment that connects the two corresponding inter-
sections. Below shows the example: In Figure 5.1, the left subfigure is a normal
urban road traffic network that run in SUMO simulator. The right subfigure
however is the corresponding graph of the urban road traffic network. We will
call this the primal graph [94] where junctions A, B, ..., F are connected by
road segments. For instance, the road segment CD is the road that allows a car
to go from C to D, and is different from DC which goes from D to C. Note that
in this specific example, Node A to B and node E to F are one way direction,
however the rest are two way directions.

The connection between a road network and a Markov chain is straightfor-
ward if a city map is interpreted as a directed graph, where nodes correspond

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 59

Figure 5.1: Sumo network

to junctions and edges to connecting roads. In the literature related to urban
networks, compared to a primal graph, a dual graph however is a representation
where the role of road and junctions is reversed (i.e. in the dual representation
road correspond to nodes and junctions to edges). The dual graph correspond-
ing to Figure 5.1 can be found in Figure 5.2. It can be noted that dual graphs
carry more information than primal graphs. For instance, we can see from Fig-
ure 5.1 that cars are not allowed to perform u-turns at junction D, while the
same information can not be recovered from the primal graph. The weights for
the edges in the dual graph are given by the turning probabilities.

Figure 5.2: The edge network associated to the Sumo map
shown in Figure 5.1

The first step to pass from a road network to a Markov chain is to transform
the primal map into the dual one, where the nodes of the graph are represented
by roads, as shown in Figure 5.2. The nodes of the dual network have been
called XY intending that XY is the road that connects junction X to Y , where

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 60

X and Y were nodes in the primal network. The dual network is more convenient
than the primal because it includes more information:

• In the primal network some edges should be inhibited depending on the
edge of origin. For instance from Figure 5.1 it seems possible to go from
node C to D and then to come back, while the more detailed dual net-
work of Figure 5.2 shows that at the end of road CD turnaround is not
permitted, and a longer route should be planned to enter road DC.

• A typical way of creating traffic flows is to exploit junction turning prob-
abilities. The probability of choosing an out-going road at a junction
clearly depends on the road segment of origin. This information is lost in
the primal network.

Figure 5.3: Edges in Sumo network that connected nodes
shown in Figure 5.2

The dual network could work seamlessly with Sumo network. The figure 5.3
shows how a dual network is represented in the SUMO network that I designed
for this experiment. Therefore, in principle, an urban road traffic network could
be modelled as MDP and reinforcement learning could thus be applied.

5.3 Reinforcement Learning for Vehicle Route
Optimisation

As with the complex nature of the urban transportation network, the vehicle
navigation problem is a complex problem which involves many features that
need to be considered, such as high-speed changes in traffic systems and the
wide distribution of vehicles on the roadway. However, with the growing devel-
opment of machine learning lately, reinforcement learning (RL) has led to very

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 61

promising results as a solution for complex systems. It also provides a potential
mechanism for artificial agents to resolve the vehicle navigation problem. This
section presents how reinforcement learning could be applied for vehicle route
optimisation.

5.3.1 Problem Statement
In reinforcement learning, the goal is to learn a policy π that chooses actions
at each time step in response to the current state thus the maximum total ex-
pected rewards could be received over all time. This is suitable for vehicle route
optimisation in environments where global knowledge of the map is available
nowadays. Inspired by recent success of reinforcement learning, a model free
RL algorithm Q-Learning is adapted to deal with urban road traffic network as
a Markov Decision Process for vehicle route optimisation.

Vehicle route optimisation requires prior knowledge or information of the
urban road traffic network for navigation. Our problem is to find an optimal
policy π for the agent to navigate nav_veh to its destination within this lo-
cal environment. In other words, this experiment aims to use the Q-Learning
method to obtain an efficient and self-learning based navigation system. Once
nav_veh approaches a junction, an observed state st is derived from the cur-
rent traffic environment to form the state space S (st ∈ S). The state st is
fed into the agent vi as the representation of current traffic observation. Based
on the st, the agent vi requires to select a decision from an action space A,
where a = {a1, a2, ..., am} ∈ A to perform re-routing for nav_veh in order to
avoid traffic congestion. After taking an action based on current state st, the
agent receives a reward rt(st, at) from the traffic environment. The following
subsection describes the specific implementations of the action space A, state
space S, reward R and the vehicle agent.

5.3.2 Key term definition of RL for Vehicle Route Opti-
misation

There are four key elements in the DRL system, named as vehicle agent, obser-
vation/state, action and reward scheme. The vehicle agent takes observations
from the traffic environment as input and provides a recommended action as its
output in order to maximize the final reward defined by reducing the travelling
time to its destination. Their details are explained as follows:

State space: In RL, state is an observation encountered by the agent, then
based on the observation an action is taken accordingly. The state space is
the set of all possible situations for the vehicle agent. In this experiment, for
simplicity purpose I only take the current road that the vehicle is on as the
observation. Therefore the number of total possible states will be same as the
total number of road in the network.

Action space: The agent observes the state (which road that vehicle is
in) and it takes an action. As the purpose is to navigate the vehicle to its

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 62

destination, the actions in this experiment are to move the vehicle to the next
road. In other words, the roads that are connected to the current road that the
vehicle is on are the actions. Therefore, in Figure 5.2, a "state" is depicted as
a node, while "action" is represented by the arrows that connect two nodes. In
this particular network graph, each road connects to a maximum of two roads,
therefore the possible actions of each state is 2.

Reward: To achieve the objective of this problem (To arrive at destina-
tion), a reward value to each action need to be set. The actions that lead
immediately to the destination have an instant reward 10. The actions that
lead to traffic congestion road have an instant reward -1. Other actions that
not directly connected to the destination road have an instant reward 0. As
shown in Figure 5.4, each arrow that represents action now contains an instant
reward.

Figure 5.4: Dual Graph with rewards

Agent: The agent acts as a virtual robot interacting with the environment
to learn the optimal route through experience by using the Q-Learning method.

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 63

A Q-table is created to store the Q-values that map to a (state, action) com-
bination. Firstly Q-table is initialised by all zeros then it starts exploring the
network. For each state s, the agent selects any one among all possible actions
for the current state and travels to the next stage s′ . It then updates the Q-
table with the action that has highest Q-value in the next stage by using the
Equation 3.5 that was introduced in subsection 3.2.2. After that it sets the next
state as current state. If the vehicle arrives at the destination, the agent ends
the simulation and repeats the whole process. At the early stage, the agent
has a high exploration rate to take more random actions to explore different
routes to reach its destination. During the training it slowly takes actions based
off rewards defined in the environment depends on the exploration rate. With
enough training episode the agent is able to learn the optimal route to the
destination once the Q-Table gets close enough to convergence.

5.4 Experiment Evaluation
This section introduces the concept of reinforcement learning for vehicle route
optimisation through a simple but comprehensive experiment in SUMO simu-
lator. This example describes a vehicle agent which uses unsupervised training
to learn about an unknown road network. The idea is to learn from the model
with optimal policy based on its observation. Each action that the agent has
taken will lead to a reward or punishment with the new observation of the
state. Through its learning progress, the agent learns an optimal routing pol-
icy to navigate a vehicle from origin to destination without encountering traffic
congestion. The major goal of this experiment is to demonstrate, in a simpli-
fied environment, how RL techniques are applied to develop an efficient and
safe approach for vehicle route optimisation. This section starts with the setup
of the experiment, after that the implementation of the experiments are briefly
described, including the hyper-parameter to represent the agent’s policy. The
result of the experiment then will be evaluated and analysed. At the end the
summary and limitation of this experiment will be discussed.

5.4.1 Experiment Setup
The experiments are purely trained in SUMO simulator since it is a fast and
efficient way of training and evaluating the model for urban transportation.
The SUMO tool python API TraCI is used here to interact with the simulation
environment. A SUMO network with corresponding graph design as shown in
Figure 5.5 is used as the urban road traffic network in this experiment. The
SUMO network then is converted to a Markov Chain dual graph as shown in
Figure 5.6 by using the method that was described in subsection 5.2.2. Hence,
each road in SUMO network becomes a node, and each junction in SUMO
network becomes an edge.

A vehicle with RL agent, which is called nav_veh, is set to depart from node
A to node J. In order to generate some traffic, various vehicles are inserted into

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 64

the network and are forced to stop for a certain number of time steps in order to
create traffic congestion. Note that as illustrated in Figure 5.1, the destination
of the vehicle in this experiment is node J, therefore in the dual graph, the
corresponding destination node would be IJ (In another case it could be more
than one road as long as it connects to node J, depending on the design of the
urban road network), which is the only road that connects to node J in this
case.

Figure 5.5: SUMO urban road traffic network

Figure 5.6: Dual graph network of Figure 5.5

5.4.2 Experiment Implementation
Two python classes are developed for this experiment. Python class sumo_env
is to represents the environment that interfaces directly with SUMO TraCI API
in order to recover parameters that are used in the simulation. The methods
provided by sumo_env class are listed as follows:

• get_edge_connection_info(self): This method is to get and compile
the connections between edges in the SUMO network and store the in-
formation in memory. The edge connection information is important in

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 65

this experiment as it is used as the reference to indicate which edge the
actions in specific edge are linked to and determine the number of actions
in each edge.

• gen_demand_traffic(self): This method is to generate the demand
traffic for the simulation. It randomly injects various vehicles and forces
them to stop for a certain amount of time in order to create traffic con-
gestion.

• is_state(self): This method returns a boolean flag indicating if nav_veh
is in a new state. This is for RL agent to determine the decision point to
assign action for nav_veh.

• reset(self) This method is for resetting the simulation to the initial state
in order to start a new episode. It returns to the initial state from the
environment.

• step(self, action): This method takes an action at and transitions from
state st to the new state st+1. It returns the new state st+1, the reward
r and a boolean flag indicating if the simulation has finished.

• get_obs(self): This method gets the required parameters from the en-
vironment and build the state matrix.

• get_reward(self): This method calculates and returns the reward for
the current state.

Another python class is called RL_agent which represents the RL agent that
interacts with the environment and uses the implementation of the RL algorithm
to make decisions for nav_veh. It implements the Q-Learning process by us-
ing the algorithm that was covered in subsection 3.2.2. The hyper-parameter
that was used in this class are listed in Table 5.1. The methods provided by
RL_agent class are listed as follows:

• create_qtable(self, n_action): This method is to create the Q-table
for Q-learning RL method. It uses a well known python library pandas
to create a two-dimensional data structure. The id is the state and the
columns number is the same as the actions number, which to store the
Q-value for each action in a specific state.

• update_qtable(self, state, action, reward): This method is to insert
new data in Q-table or update the existing data in Q-table. All columns
values are set to zero if it is a whole new state, otherwise it updates the
Q-value accordingly based on Q-learning algorithm with the state, action,
and reward parameters.

• get_action(self, state): This method returns an action value based
on the state and Q-table.

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 66

Parameter Value
Episodes 100
Learning Rate α 0.1
Exploration ε 0.1
Discount Factor γ 0.9

Table 5.1: Vehicle agent hyper parameters for intelligent nav-
igation

A python script imports the aforementioned two classes above to implement
the experiment. Initially, the SUMO network is loaded and the edge connection
information is created and stored in memory. An example of edge connection
information is shown in Table 5.2. A Q-table then is created for storing the
Q-values. In every training episode, the demand traffic is generated, various
vehicles are injected randomly into edges and stop for a certain time step, thus
if nav_veh moves into those edges, it will be stuck in traffic congestion. When
nav_veh is approaching the junction, a state will be observed and sent to the
RL agent. If the state is a new state that never existed in Q-table, it will
then be stored with all zeros in Q-table. A random action then will be selected
and assigned to nav_veh. Otherwise, if the state is existing in Q-table, then a
greedy policy ε is applied to determine if the agent chooses action randomly for
exploration or choose the action with highest Q-value among action space to get
more rewards. After executing the action, the nav_veh moves the target edge
and an instant reward will be calculated and update the Q-value in Q-table
by using the Q-learning algorithm that was described in Equation 3.5. This
step is repeated until nav_veh reaches its destination. Then the simulation
is terminated and runs a new episode to keep training the RL agent. The
pseudocode of this experiment is presented in 8.

Algorithm 8: Q-Learning method
1 initialise Q-value table Q(s, a) arbitrarily for episode=1, M do
2 repeat
3 observe state s
4 with probability ε or s is a new state select a random action at
5 otherwise select at = argmaxaQ(s, a; θ)
6 execute action a, observe reward r and next state s,

7 Q(s, a)← Q(s, a) + α[r+ γargmaxQ(s
′ , a′

)−Q(s, a)] s← s
′

8 until simulation is terminal;
9 end

5.4.3 Simulation Result
The result of the experiment is promising. The Figure 5.7 shows the results of
cumulative rewards that the RL agent received per episode. As illustrated in
Figure 5.7(a), during its stabilisation point (approximately after episode 100),
RL agent accomplishes positive rewards on average. According to the rewards

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 67

Road Connected Road 1 Connected Road 2
AB BC BD
BC CD CE
BD DC DE
CB BD BC
DB BC BD
CD DB DE
DC CB CE
DC CB CE
CE ED EF
EC CB CD
ED DC DB
DE EC EF

Table 5.2: The connected roads table

scheme in this experiment, this indicated that the RL agent manages to nav-
igate nav_veh to its destination with fewer edges and without going through
congested roads in the urban road traffic network. Figure 5.7(b) shows similar
performance, although it took more episodes to reach the stabilisation point
(approximately 250 episodes). It also has more fluctuations compared to Fig-
ure 5.7(a). Based on the observation we believe the reason is because the SUMO
network that run in second scenario is bigger and has more edges than the first
scenario. Therefore, the RL agent needs to navigate nav_veh through more
edges to reach its destination. Thus, based on the greedy exploration rate ε,
within one simulation in scenario 2, there are more chances that the RL agent
decides to randomly select an action to explore the map, and those random
actions could lead to the wrong route to the destination. Meanwhile, Figure 5.8
demonstrats the behaviour obtained in the travel time for nav_veh per episode.
Both travel time reduce significantly after convergence, where the travel time
are varying mostly between 40 and 60 time steps, and between 50 and 120 time
steps respectively.

(a) Scenario 1 (B) Scenario 2

Figure 5.7: Cumulative rewards per training episode

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 68

(a) Scenario 1 (B) Scenario 2

Figure 5.8: Travel time per training episode

5.4.4 Discussion
Although the work done in this chapter has shown that Q-learning is a simple yet
quite powerful algorithm to find an optimal route for vehicles in a transportation
network, some challenges and limitations in this approach are worth discussing.
Firstly, the real urban road traffic network is a lot bigger with more roads
and junctions. Implementing the RL approach in a real urban map is needed.
However, this means there could be a lot more states that the RL agent need
to handle. Besides, the real urban transportation is a complex and rapidly
changing system, and there are many features needing to be considered before
making a decision to do vehicle navigation. The current state matrix designed
for this experiment is insufficient for real urban transportation. However, the
traditional Q-learning method struggles to deal with a large number of states,
this is due to two main reasons, 1) as the number of states increases, the amount
of required memory would increase to store and update Q-table; 2) the amount
of time and power required to explore each state to create the required Q-
table would be wasteful and unrealistic. Secondly, due to the complex nature
of the urban transportation network, a dynamic reward function needs to be
designed in order to improve the efficiency of policy learning. And last but
not least, although the traditional exploration method in Q-learning makes the
agent explore all possible states equally, in real urban transportation network
this method could be using too much time and resources to explore some states
and that obviously does not make sense.

5.5 Summary
This chapter has presented how to use the Markov Chain to model the Urban
road traffic network in a dual graph. Dual graph is useful for RL method in
vehicle route optimisation because it is able to present a more detailed graph
and exploit junctions turning to probabilities. Besides, this chapter also has
presented an experiment to combine the SUMO simulator and the development

Chapter 5. Preliminary Design and Experiment for Vehicle Route
Optimisation 69

of the RL agent to find the optimal route for vehicles in an urban road traffic
network to avoid traffic congestion. Two SUMO maps with different scales are
used in this experiment. The results show that with proper design of states,
reward function and action, the RL method is able to optimise vehicle route in
order to arrive at the destination with less travel time. However, RL methods
could be inefficient when dealing with real large urban networks. Therefore the
next chapter will introduce the main contribution of this thesis which brings the
concept of the DRL method to overcome the limitation of the RL framework in
vehicle route optimisation.

70

Chapter 6

The Proposed Framework and
Structure Design

6.1 Overview
This chapter presents the proposed vehicle route optimisation mechanism by de-
tailing its architecture and decision making process using a heuristic approach.
Specifically, the proposed approach uses the DQN algorithm to train a vehicle
agent to make better routing decisions for vehicle route optimisation in order
to achieve the sustainable and resilient urban development goal. In other word,
this approach aims to reduce the travel time for vehicle and the vehicles pollu-
tion for the urban transportation network. Firstly, the structure of the proposed
training framework is presented. Furthermore, the key elements including two
novel reward functions of DRL vehicle route optimisation are presented. More-
over, the DRL techniques and a distance based exploration schema that are
used in the proposed approach are described. Finally, the comparison between
different DRL techniques is conducted.

6.2 Proposed Framework for Vehicle Route Op-
timisation

In this thesis, an improved Deep Q-Learning Network (DQN) method [78] is
proposed to train an intelligent agent to optimise vehicle route and navigate its
vehicle to the destination and avoid congestion. This section is an introduction
of the proposed framework for vehicle route optimisation from a system archi-
tecture perspective. The framework encapsulates the use of SUMO (Simulation
of Urban Mobility) with Traffic Control Interface (TraCI) that establishes the
connection with the DRL agent. It presents how the DRL agent is trained,
demonstrating the various interactions between different components over the
course of an experiment. Firstly, the structure of the training framework which
include the traffic simulator, middleware and RL agent is overviewed. After
that, the process of the training framework that establishes interaction between
traffic simulator and RL agent is presented in detail.

Chapter 6. The Proposed Framework and Structure Design 71

6.2.1 Overview of Proposed Framework
The objective of the proposed framework is to provide an accessible way to
optimise the vehicle route planning problem using DRL methods. The pro-
posed framework is written by python which is able to create an environment
encapsulating an MDP that defines a certain RL problem and handled by an
external RL library. The environment is a class that provides an interface to
initialize, reset and interfere the simulation, as well as various functions for re-
ceiving observations, executing actions and calculating rewards. In this work
Tensorflow [1] which provides a number of built-in training algorithms is used
as the machine learning application to support model training. This allows the
evaluation of the performance of different DRL algorithms in a specific scenario.

The proposed framework aims to enhance SUMO simulator in order to make
it more suitable for optimising vehicle route selection with DRL algorithms. To
this end, the framework provides hand-designed controllers which enables inter-
action between the environment and external RL library through SUMO API
TraCI, to allow model training in a rich environment with complex dynamics
for vehicle route optimisation. A central focus in the design of the proposed
framework is to step through the simulation in order to modify the demand
traffic, network characteristic or vehicle behaviour within an experiment, along
with an emphasis on enabling reinforcement learning control over an individual
vehicle. Thus, it enables the training of policies across road networks of different
size, density, number of edges and lanes. Moreover, the observation spaces and
reward functions can be easily constructed from attributes of the environment.
This makes the evaluation of the different scenarios straightforward after the
models are trained.

Additionally, the proposed framework also supports the converting of Open-
StreetMap to SUMO network. This enables vehicles and routing selection poli-
cies to be tested on real urban road networks seamlessly without designing a
road network. Given different car-following models, vehicle types, speed limits,
the framework makes it simple to evaluate traffic dynamics in different traffic
circumstances. Furthermore, the extensibility of the framework provides huge
flexibility to extend the features of the framework for future RL problems.

6.2.2 Training Framework Structure
As illustrated in Figure 6.1, a training framework is developed in order to pro-
vide several components to establish the interaction between the SUMO sim-
ulator and RL agent to run experiments. The training framework is designed
to be modular and extensible and this makes it especially easy to extend the
existing scenarios and environments to modify an experiment. The scenario is
a pre-defined class designed to create the required files that define a simulation
in SUMO. It holds various information about network, vehicle, etc and provides
functions to convert an urban map (e.g. OpenStreetMap) to a SUMO network
file and dynamically generate SUMO trips, routes and configuration files for
traffic simulation.

Chapter 6. The Proposed Framework and Structure Design 72

The Environment is a class to directly interact with SUMO via SUMO API
TraCI. It is mainly designed for controlling the SUMO simulator. It holds
methods to initialise, interfere, step through and reset a simulation, including
the definitions for the state spaces and action spaces, as well as the methods
that aggregate information to calculate observations and rewards, and the action
applicator to the simulation. Moreover, the environment allows adding multiple
vehicle types or car-following models in an experiment. Thus the framework
enables the straightforward use of diverse vehicle behaviour and configurations
in SUMO and provides fully-functional environments for DRL problems.

Implicitly, the DRL agent is a class to import RL library Tensorflow which
is supporting the implementation, training, and evaluation of reinforcement
learning algorithms. It focuses on building, training and evaluating the deep
neural network model for vehicle route optimisation policy. Based on the state
spaces and action spaces that are defined in the environment, the DRL agent
dynamically build the neural network with the corresponding input, output and
number of neuron in hidden layers. It also holds the indicator flag of the certain
DRL techniques in order to train the model with different DRL algorithms. The
trained model is consistently saved as the checkpoint during the training. The
saved model could be restored in a different scenario for evaluation or further
training. It also could be used as the recovery when a failure of the training is
detected.

Figure 6.1: The proposed framework structure

Chapter 6. The Proposed Framework and Structure Design 73

6.2.3 Training Framework Process Flow

Figure 6.2: The Framework consists of SUMO simulator, Mid-
dleware and RL Agent for the vehicle navigation task

As shown in Figure 6.2, the designed framework consists of three parts: The
first part is the SUMO, which is the environment simulator for training. The
second part is the middleware that connects the SUMO environment with the
reinforcement learning agent (RL agent), and the third part is the RL agent that
consists of the reinforcement learning program, which is capable of internally
maintaining and updating the policy, providing actions for the simulation.

The training framework coordinates the environment simulator SUMO with
the observations, actions, and rewards needed and produced by the RL agent.
When the training is being initialised, SUMO initialises the simulation by load-
ing the required information such as the transportation network and vehicles
information via TraCI. Note that the vehicle information includes the demand
traffic for the simulation, and also a specific vehicle which is navigated by the RL
agent, so called Agent Car. More details about the simulator SUMO and TraCI
are discussed in subsection 4.4.1. In the meantime, RL agent is imported and a

Chapter 6. The Proposed Framework and Structure Design 74

neural network with corresponding structure associate with SUMO network is
created and its parameters are initialised. After that, the simulation is started
and the initial state is observed and forwarded to the RL agent. Based on the
observation, the RL agent selects an action and sends it back to the middleware.
In my experiment, actions are the edges that are connected to the current edge
where Agent Car is. Subsequently, SUMO reroutes Agent Car accordingly based
on the action from the RL agent. A reward then is calculated and forwarded to
middleware with a new observation. This progress keeps going until Agent Car
arrives at its destination to complete the simulation. In the meantime, in each
training step, RL agent stores the required information (state, action, reward
and new state) into replay memory as training data. When the replay memory
has sufficient data, a mini-batch of transition is selected from replay memory
to feed to neural network for optimising the policy.

The objective of this proposed framework is to train the neural network that
is able to navigate a vehicle to find the best route to its destination and avoid
congestion. Therefore, Once the model is trained, it can be evaluated in scenar-
ios different from those in which they were trained, and making performance
evaluation. The Figure 6.3 visualises all the use cases of the key actors in ve-
hicle route optimisation. The driver or the user firstly plans the individual trip
and send to vehicle agent that with the trained model. The vehicle agent then
calculates the default route based on the trip info. The driver drives the vehi-
cle by following the route and consistently updates the current vehicle position
using GPS. When the vehicle is close to the junction, the vehicle agent makes
the decision of the re-routing based on the observation of the traffic and sends
the instruction to the driver. This process repeats until the driver reaches his
destination. In order to justify the feasibility of our training framework, several
experiments are run with different transportation maps and train the policy
network with different levels of demand traffic, and compare their performances
accordingly.

6.3 The Design of DRL for Real-time Vehicle
Route Optimisation

This chapter outlines the approach used to design the different components of
the vehicle route optimisation as an RL problem.

6.3.1 Problem Statement
Reinforcement learning improves system performance by means of taking real-
time observations and evaluating the outcomes from actions under a complex
environment. This is suitable to solve the navigation task as the nature of
the traffic condition is dynamic and volatile. Inspired by recent success of
deep reinforcement learning methods, an improved deep-Q learning method is
adapted to deal with the real-world complexity given the fact that the navigation
task can be modelled as a Markov Decision Process (MDP).

Chapter 6. The Proposed Framework and Structure Design 75

Figure 6.3: Use case of vehicle route optimisation

As illustrated in Figure 6.4, assume that each vehicle has an acting agent
defined as v ∈ {v1, v2, ..., vn} to navigate the vehicle to reach its destination.
Once the vehicle approaches a junction, an observed state st is derived from the
current traffic environment to form the state space S (st ∈ S). The state st is
fed into the agent vi as the representation of current traffic observation. Based
on the st, the agent vi requires to select a decision from an action space A, where
a = {a1, a2, ..., am} ∈ A. In addition, we defined a decision zone that has a fixed
distance to each junction in order to make sure that the acting agent manages
to change lane in our simulator to reach all possible actions in the action space.
After taking an action based on current state st, the agent receives a reward
rt(st, at) from the traffic environment. The goal of each reinforcement learning
agent is to drive its vehicle to reach its destination as quickly as possible in
order to achieve a higher reward. There are four key elements in the DRL
system, named as vehicle agent, observation/state, action and reward scheme.
The vehicle agent takes observation from the traffic environment as input and
provides a recommended action as its output in order to maximize the final
reward defined by reducing the travelling time to its destination. Their details
are explained in the following subsections.

6.3.2 Vehicle Agent
Vehicle agent is a self-evolved neural network (NN) model, that takes traffic
observations as its input and action decisions as its output. The number of

Chapter 6. The Proposed Framework and Structure Design 76

Figure 6.4: Problem statement of the RL based multi-agents
navigation

inputs and outputs are dependent on the network characteristic. At its early
training stage, the agent has a high exploration rate to take more random ac-
tions to explore different routes to reach its destination. During the training, a
so-called exploration rate decay (ERD) is set to make the agent learn a more
deterministic policy π : S → A so that the expectation of travel time under
similar travel conditions can be reduced significantly. In terms of implementa-
tion, an acting agent is a four-layer NN with two hidden layers by using the
Tensorflow library.

6.3.3 State Space
In order to allow the vehicle agent to makes a decision with the knowledge of
the current traffic condition, state is an efficient representation of current traffic
condition within a specific area of urban network. The representation variables

Chapter 6. The Proposed Framework and Structure Design 77

contain multiple parameters reflecting the circumstances in the global urban
transportation network to precisely describe the complexity of its dynamics.
Here, the state is defined as a vector with [te,ne, cv, dv] where the te is the
expected travel time in the road, ne is the numbers of vehicles in the road, and
the cv and dv represent the current location of the agent and its destination.

Figure 6.5 illustrates an example of the state representation in a sample net-
work and how the traffic conditions are observed and extracted. From the exam-
ple, there are in total 8 roads in the network asE ∈ {AC,CA,BC,CB,CD,DC,CE,EC}.
The traffic information is extracted in each road. Road DC has the most ve-
hicles, which is 3 as nDC = 3; road CA, EC have 2 as nCA,nEC = 2; road
AC, BC, CD have 1 as nAC ,nBC ,nCD = 1 and road BC has none as nBC = 0.
Meanwhile, in order to reduce the dimensionality of the state space, feature
construction is applied for the calculation of expected travel time in road. Ex-
pected travel time in road is obtained from several features in the network, the
calculation is shown by the following:

te =

{
le
ve

, if ne > 0
le
me

, if ne = 0

}
where le is the length of the road, ve is the average driving speed in the road,
me is the speed limit in the road and ne is the number of vehicles in the road.
Moreover, the state also takes the vehicle’s current road and the destination
road as the observation as well. As the roads in the network are label data,
the coordinate of the middle point of each road is extracted as the observation.
In the example, vehicle position xv is the coordinate of the middle point of
road AC which the vehicle agent (the red vehicle) is currently in. However, the
destination yv is the coordination middle point of road CE. The state matrix
is shown in Figure 6.6. As the vehicle agent only requires the latest state to
make a decision, I compartmentalise a segment in each edge, named as Decision
Zone to indicate the best timing for obtaining state. The decision zone zv is
expressed as:

zv = min[ledge, vmax + vmaxb(v)τv] (6.1)

where ledge is the length of the edge, vmax is the maximum speed of the indi-
vidual vehicle v, bv is the deceleration function of vehicle v and τ is the driver’s
reaction time. The decision zone is determined by both vehicle type and driver’s
reaction time due to the safety considerations of urban transportation networks.

6.3.4 Action Space
Action in vehicle route optimisation refers to the navigation decision made by
a vehicle agent. As mentioned before, when the vehicle agent arrives at the
decision zone in a road, it observes the state Sroad and then chooses one action
aroad ∈ A. The action space A varies depending of the structure of network.

Chapter 6. The Proposed Framework and Structure Design 78

Figure 6.5: Problem statement of the RL based multi-agents
navigation

The actions are discrete values corresponding to the decisions of navigating the
vehicle to m connected edges from current edge. For example, the vehicle agent
in road AC has actions which include left-turn, right-turn, go-straight or U-turn
which link to road CB, CD, CE and CA as illustrated in Figure 6.5 if m = 4.
Thus the action space is AAC ∈ {eCB, eCD, eCE , eCA}. Meanwhile, if the vehicle
agent is in road CA, the action space then is ACA ∈ {eAC} as road CA only
allows vehicle to make a U-turn to road AC. Finally, in the experiments with
realistic city maps, m is set to the maximum number of connected edges in the
maps.

6.3.5 Reward Function
Reward is the most important factor in the DRL system as it guides each agent
to converge to an optimal policy πθ by encouraging good actions made from the

Chapter 6. The Proposed Framework and Structure Design 79

Figure 6.6: State Matrix for network Figure 6.5

function approximations. The definition of the reward function is one of the
hardest parts of DRL. The overall principle of the reward setting in our work
is to maximise the expected future discounted returns. the expected reward is
described as:

r =
T∑
k=0

γkrs+k (6.2)

In order to improve the efficiency of vehicle routing, the first objective is
to minimise the travel time. This is because travel time in vehicle routing is
essentially important not only for normal vehicles but also for emergency vehi-
cles in order to make urban transportation networks more resilient. However,
the reward function can not be directly defined as total travel time because the
travel time of a vehicle cannot be computed until it has completed the route,
which leads to the problem of extremely delayed rewards. Fortunately, the total
travel time can break down to travel time in each road of the route to avoid
the long delay reward issues. Therefore, in the proposed system the reward
function rs sets the travel time in the road as an instant reward manner after
the vehicle reaches the end of the road rather than the total travel time from
origin to destination. Thus, the reward function can be formulated as:

rst = −(tst+1 − tst) (6.3)

where tst+1 is the total travelling time to the state st+1 and tst is the total
travelling time to the state st.

In order to optimise vehicle routes towards sustainable and resilient urban
transportation network, the travel time should not be the only factor that needs
to be considered. Vehicle emissions affect local and regional air quality. There-
fore, the reduction of vehicle emissions in urban networks is another important

Chapter 6. The Proposed Framework and Structure Design 80

Figure 6.7: Virtualisation of reward calculation in urban net-
work

optimised objective. The criteria pollutant emissions generated from fuel com-
bustion by internal combustion engines (ICE) include nitrogen oxides NO and
NO2, together called NOx, hydrocarbons HC and carbon monoxide CO, and
particulate matter PMx. A method to measure the environmental damage from

Chapter 6. The Proposed Framework and Structure Design 81

vehicle NOx, HC, CO and PMx emissions which is called Vehicle Environmen-
tal Impact (VEI) is proposed as another reward schema in this thesis. The idea
of this reward schema is to optimise the vehicle route in order to minimise the
VEI that is caused by vehicles. Thus reducing the vehicle emissions in urban
networks for sustainable development. The VEI equation can be formulated as:

V EI =
∑
k

EkWk

Mk
(6.4)

where k is vehicle emission as {NOx,HC,CO,PMx} ∈ K, E is the actual
vehicle emission, M is the Euro 6 standard [65] for vehicle emission NOx, HC,
CO, PMx and W is the damage impact weight value for NOx, HC, CO, PMx

corresponding with Euro 6 emission standard. Similar to travel time reward
schema, VEI reward schema takes the VEI in a road as an instant reward to
avoid the extremely delayed reward problem. Thus, the VEI reward function is
shown as follows:

rst = −(V EIst+1 − V EIst) (6.5)

where Tst+1 is the total VEI of vehicle to the state St+1 and Tst is the total VEI
of vehicle to the state St.

The Figure 6.7 illustrates how travel time R1 and VEI R2 instant rewards in
a state are calculated in a network. Assuming a vehicle’s origin and destination
are AC and FH respectively. In Figure 6.7(a), the vehicle arrives in the decision
zone on road AC, the vehicle agent observes the state SAC and makes action
ACF to road CF, note that currently the time step is 5 and the VEI for vehicle
is 100. In Figure 6.7(b), vehicle arrives on road CF in time step 6 and the VEI
is 120. In Figure 6.7(c), vehicle arrives in the decision zone in road CF, state
SCF is observed and action AFH is decided. Note that until this stage, both
travel time R1 and VEI R2 rewards are not yet computed as the vehicle has not
completed road CF. In Figure 6.7(d), the vehicle arrives on road FH in time step
12 and total VEI is 180. In this stage since vehicle has completed road CF, both
travel time R1

CF and VEI R2
CF can now be computed as R1

CF = −(12− 6) = −6
and R2

CF = −(180− 120) = −60. The transition (SAC ,ACF ,R1
CF ,R2

CF ,SCF)
then could be stored.

The two proposed reward schemas then are used to train the neural network
and evaluate their performance in different scenarios for vehicle route optimi-
sation. Table 6.1 shows the hyper-parameters used for the training. For the
epsilon decay function in this research, in the beginning it starts with 1, where
it indicates the probability that vehicle agent decides to explore the network
instead of taking an action with highest Q-value. The rate will be reduced
when the model is trained until 0.05, which indicates that there are 5% of time
the vehicle agent will explore the network to looking for potential better path.
The training showed promising results in vehicle route optimisation. As shown
in Figure 6.8, both reward schemas start converging around episodes 480. Al-
though both reward schemas are able to reduce travel time and VEI of a vehicle,

Chapter 6. The Proposed Framework and Structure Design 82

travel time reward schema had better performance in reducing the travel time.
However VEI reward schema performed better in minimising the vehicle emis-
sion. Therefore, this experiment proved that both reward schemas could be
chosen for vehicle route optimisation depending on the scenario. For instance,
travel time reward schema could be applied for emergency vehicles as they al-
ways need to arrive at the destination with least travel time in order to maintain
the resilience of the urban transportation network; VEI reward schema is more
suitable for general vehicles for urban citizens in order to control the vehicle
emissions for urban sustainable development.

Parameter Value
Episodes 1000
Learning Rate 0.001
Exploration Rate (Decay Function) 1.0 → 0.05
Target Network Update per learning step 3000
Discount Factor 0.99
Replay Memory Size 10000
Mini Batch for Update 32

Table 6.1: Vehicle agent hyper parameters for reward schemas
comparison

Figure 6.8: The convergence graph for 2 proposed reward
schemas in travel time and VEI

6.4 DRL method for Real-time Vehicle Route
Optimisation

In our work, an improved DQN architecture is designed for the real-time in-
telligent vehicle navigation. DQN is an online training method to maximise
an action-value function Q(s, a), defined in Eqn.6.6, that is an estimation of
expected cumulated return from a sequential decision making. In the method,
multi-layer neural networks are utilised as function approximators that map
from a state to Q-values Q(s, a) ≈ Q(s, a|θ).

Chapter 6. The Proposed Framework and Structure Design 83

Q(s, a) = E[Rt|st = s, at = a] (6.6)

According to the Bellman equation, if the Q values for all actions in next
state st+1 are known in Qπ(st+1, at+1), the Q-value in current state is the
summation of the immediate reward rt and the maximum cumulated reward in
the next step. Therefore, we can set the target maximum expected reward for
current stage as rt + γmaxQπ(st+1, a), where 0 < γ ≤ 1 is a discount factor.
By updating the Q value iteratively, the expected return is defined in Eqn.6.7:

Qt+1(s, a) = Qt(st, at) + α(rt + γmaxQt(st+1, a)−Qt(st, at)) (6.7)

The parameter θ is trained by minimising the error between the expected
cumulated return and the Q-value predicted by the agent. Same as the work
in [78], two neural networks, including a target network and an online trained
network, are adopted in our work. The target network is used to estimate the
Q values and being updated after a certain number of episodes. The loss of an
individual experience to train the online network is defined in Eqn.6.8:

L(θ) = (rt + γmaxQ(st+1, a|θ−)−Q(st, a|θ))2 (6.8)

When sampling the eperiences (st, at, rt, st+1) from replay memory, priori-
tised experience replay algorithm [99] is used in our work to update the DQN
network θ. In the method, the probability pt defined in Eqn.6.9 is calculated to
increase the possibility of sampling experiences which are new in the memory
for faster convergence.

pt =
1

rank(i)
(6.9)

Here rank(i) is the rank of transition i when the replay memory is sorted ac-
cording to new or old degree.

The techniques used in Double DQNs [112] and Dueling DQN [113] are also
implemented in our DRL networks. The double DQNs method is integrated
into our method is for solving the Q value overestimation problem. The max
operator in standard Q-learning and DQN uses the same values both to se-
lect and to evaluate an action. It is known the this maximization sometimes
produces to learn unrealistically high action values which tends to prefer over-
estimated values over underestimated values, resulting in overoptimistic value
estimations. To prevent this, Double Q-learning decouples the selection and
the evaluation. In this algorithm, two value functions are learned by assigning
each experience randomly to update one of the two value functions, such that
there are two sets of weights, θ and θ′ . For each update, one set of weights is
used to determine the greedy policy and the other to determine its value. The
difference with the Double Q-learning is that the weights of the second network
θ

′
t are replaced with the weights of the target network θ−t for the evaluation of

Chapter 6. The Proposed Framework and Structure Design 84

the current greedy policy. The update to the target network works the same as
normal DQN.

However, the dueling DQN is for achieving better convergence when pre-
senting many similar-valued actions. is a technique proposed by [114] which
computes separately the value V(s) and advantage A(s, a) functions that are
represented by a duelling architecture that consists of two streams where each
stream represents one of these functions. These two streams are combined by
an convolutional layer to produce an estimate of the state-action value Q(s, a)
as shown in Figure 6.9. The dueling network automatically produces separate
estimates of the state value and advantage functions without supervision. Be-
sides that, it can learn which states are valuable, without having to explore the
consequence of each action for each state.

Figure 6.9: A popular single stream Q-network (top) and
the dueling Q-network (bottom). The dueling network has two
streams to separately estimate (scalar) state-value and the ad-
vantages for each action; the green output module combine both
state-value and the advantages and output the Q-values. [114]

Therefore, this architecture helps us accelerate the training. We can calcu-
late the value of a state without calculating the Q(s,a) for each action at that
state. And it can help us find much more reliable Q values for each action by
decoupling the estimation between two streams.

Chapter 6. The Proposed Framework and Structure Design 85

In the proposed method, a novel two-stage exploration scheme is designed
to improve the network convergence as well as the converging speed. In the
first stage, the conventional ε-greedy policy is used to control the ratio between
exploration and decisions made by the current neural network. In the second
stage of the scheme, a distance based method is used to replace the random
selection for edge exploration. As illustrated in Figure 6.10, the agent vehicle is
in decision zone (the vehicle in red colour), the edges with blue colour are the
edges that link to agent vehicle current edge, as known as the possible actions
of agent vehicle in this particular case. We calculate their Euclidean distances
between the end of blue edges and the end of destination edge. After keeping
all the Euclidean distances of each edge to the destination of the vehicle, where
{d1, d2, ..., dm} ∈ D and m is the number of connected edges, the probability P
is calculated from Eqn.6.10 to decide the explored edge selection.

P = softmax
(
D− D̄
σ

)
(6.10)

where D̄ is the average value of the distances in D, and σ is its standard deviation
of distances in D.

Figure 6.10: Comparison of different DQN methods

As illustrated in Fig.6.11, our proposed DRL method has the best conver-
gence performance on both the converged travel time and the converging speed
when compared to the traditional DQN and the combination of double DQN,
dueling DQN method and priority experience replay (called Combo-DQN in our
work). In the figure, it shows that the average converged travel time by using

Chapter 6. The Proposed Framework and Structure Design 86

Figure 6.11: Euclidean distances based action selection policy

the proposed method after 10,000 epochs is 100 time steps which is reduced
about 50% and 37% than the DQN and Combo-DQN respectively. Further-
more, it shows that the cumulative travel time of the proposed method during
the training is also the best among the three methods. The training parameters
are presented in Table.6.2.

Parameter Value
Episodes 10000
Learning Rate 0.001
Exploration 1.0 → 0.05
Target Network Update per learning step 3000
Discount Factor 0.99
Replay Memory Size 10000
Mini Batch for Update 32
Prioritisation Exponent 0.6
Prioritisation important Sampling 0.4 → 1.0

Table 6.2: Vehicle agent hyper parameters for intelligent nav-
igation

6.5 Deep Neural Network Architecture for Real-
time Vehicle Route Optimisation

This section presents the deep neural networks structures that are used for the
proposed framework. As mentioned in subsection 6.2.2, the RL agent build
the neural network dynamically based on the urban network structure. This
is because the state space and action space in our proposed framework varied
depending on the total number of roads and the maximum number of connected
roads in the urban network. The input number ninput for the deep neural
network could be defined as follows:

ninput = 2nroads + 4 (6.11)

where nroads is the total number of roads in an urban network. This is based on
the design of the state in this proposed method, where we observed two features

Chapter 6. The Proposed Framework and Structure Design 87

(expected travel time and vehicle number) in each road, plus the coordination
of the origin and the destination for the agent vehicle.

There are two deep neural networks for training a model. One is called
actor network and another one is called target network. Both networks have
the same structure but only actor network is trainable as target network is
used to estimate the target Q-value for calculating loss. At certain steps the
parameter θ of actor network will be copied to update the target network.

The deep neural network architecture for vehicle route optimisation contains
five fully connected layers with two hidden layers and dueling structure. The
first hidden layers has total 150 neurons and second hidden layers has total 100
neurons. Both hidden layers use Relu as the activation function. A dueling
network splits into two streams of fully connected layers which are the advan-
tage stream and value stream. The value stream only has one output and the
advantage stream has the output of as many as the number of actions which
is the maximum number of connected roads in the urban network. This deep
neural network architecture is implemented for all the experiments performed
in the next section. The Figure 6.12 shows the structure of the neural network
in this experiment.

Figure 6.12: The structure of neural network in this experi-
ment

6.6 Summary
In this chapter, the proposed real-time vehicle route optimisation based on the
DQN method is introduced. Firstly the proposed framework presented how the
work had been done to extend the existing applications in order to establishes
interaction between the RL library and the traffic simulator for model training

Chapter 6. The Proposed Framework and Structure Design 88

and testing. Then the design of DRL for vehicle route optimisation is discussed.
It described the key components of the proposed DRL approach such as vehicle
agent, state and action spaces, reward function. In order to move towards a
sustainable and resilient urban transportation network, a novel vehicle emis-
sion damage measurement algorithm called vehicle environment impact (VEI)
is proposed. Based on that, two rewards schemas which aim to reduce the travel
time or VEI are designed and compared where travel time based reward is suit-
able for first priority vehicle such as emergency vehicle, and VEI based reward
which targets general vehicles in the urban transportation network. Moreover,
the DQN techniques for the proposed approach are introduced and compared.
The proposed approach combined several DQN techniques and a novel distance
based method exploration schema to improve the training and exploration effi-
ciency. Additionally, the deep neural network architecture that was designed for
vehicle route optimisation is described. In the next chapter the implementation
of the training and testing in three real urban networks with traffic simulator
SUMO and RL framework Tensorflow will be presented.

89

Chapter 7

Experiment Implementation and
Evaluation

7.1 Overview
This chapter describes the experiment implementation of the real-time vehicle
route optimisation for the sustainable and resilient urban transportation net-
work. Firstly the developed classes and the components in the experiment are
presented. The preparation works that need to be done before running the ex-
periment are introduced with details, including map converting, demand traffic
generation, data pre-processing, etc. Moreover, the benchmark methods are in-
troduced. Additionally, implementation of DRL agents and the communication
between agents and the simulation environment are described. Lastly, the ap-
plication of real-time vehicle route optimisation with the toy data and realistic
scenario are evaluated and discussed.

7.2 Experiment Implementation
There are three aforementioned python classes are developed for this experiment
which are scenario, environment and DRL_agent. This section introduces the
components of the developed classes and presents the interaction and commu-
nication between them. This section also describes the preparation works and
the enhancement of the existing framework.

7.2.1 Training Simulation Overview
This subsection presents the mechanism of the training simulation in this exper-
iment. The overview of the three main classes process flowchart is illustrated in
Figure 7.1. Initially, scenario class scenario.py converts the real urban map to
SUMO map and generates the required vehicle types, trips and routes to create
a configuration file for SUMO simulation. Environment class sumo_env then
starts SUMO via TraCI by using the configuration file. The sumo_env stores
the edge connection information and Euclidean distance to destination in mem-
ory, after that it starts the simulation and adds a vehicle "nav_veh" into the
traffic simulation. Meanwhile, agent class DRL_agent is initialised and builds
the corresponding DNN based on the road connection information. In environ-
ment class, the simulation starts after "nav_veh" is added. In every simulation

Chapter 7. Experiment Implementation and Evaluation 90

Figure 7.1: Training Simulation Mechanism Flowchart

step, sumo_env check the status of "nav_veh". There are four status defined in
this proposed approach, which are IN_ZONE, NEW, DONE and NONE. The
definitions of these 4 status are shown below:

• IN_ZONE: The nav_veh only is IN_ZONE status when it matches
the following 3 conditions. 1) nav_veh is not in its destination road. 2)
nav_veh front bumper is in decision zone of a road. 3) nav_veh has not
been assigned a action to its next road by vehicle agent.

• NEW: This is only when nav_veh front bumper has just reached the new
road.

• DONE: This is only when nav_veh has arrived at its destination (no
longer exist in the network).

• NONE: This status indicates the rest of the situation except the above
three special cases.

Environment keeps simulating until nav_veh is not NONE status. When
nav_veh is IN_ZONE status, environment observes the state, and passes to
agent class along with the road connection information and Euclidean distance
to destination. Agent then choose an action and returns back to environment.
Environment executes the action to nav_veh and monitors its status again.
When status is NEW, the instant reward is computed depending on which

Chapter 7. Experiment Implementation and Evaluation 91

reward schema is used and passed to agent. Agent then stores the transition
tuple < s, a, r, s′

> as experience replay. Agent randomly selects mini batch
from the experience replay as training data to train the DNN and save the
model. When the status is DONE, environment observes the state again and
sends to agent. After that it terminates the current simulation and resets the
simulation to initial state. During this stage, scenario generates a new trips and
routes files for the new simulation. And then the training process is repeated
until the training episode is ended.

7.2.2 Scenario class definition
The scenario python class is mainly designed for creating the required files for
SUMO simulator in order to run simulation in this experiment. The methods
provided by scenario class are listed as follows:

• convert_map(self, map): This method is to convert OpenStreetMap
(.osm) files to SUMO network file (.net.xml). It uses SUMO provided
application netconvert to read common data like lists of edges and optional
nodes from .osm file and convert it into a complete SUMO-network.

• gen_vType(self, vType_list): This method is to generate additional
file (.add.xml) in SUMO to store the definitions of vehicle type that are
used in this experiment.

• gen_trips(self, duration, n_veh): This method encapsulates SUMO
provided randomTrip tool to generate the trip file (.trips.xml) which con-
tains a list of origin/destination pair for individual vehicle.

• gen_routes(self, method=’dijkstra’, accident=False): This method
is to generate routes file (.rou.xml) for simulation. It uses SUMO provided
duarouter tool to define the route for each origin/destination pair in trips
file accordingly.

• gen_conf(self): This method is to generate the SUMO configuration file
(.cfg) for simulation. A sumo configuration file contains all the required
parameters to start a simulation.

7.2.3 Building a Simulation with SUMO
This subsection presents the implementation of how to build a simulation for
experiment. Figure 7.2 illustrates the SUMO traffic simulation process diagram.

Network building: To create a simulation for experiment, a network needs
to be created. This experiment targets to optimise the vehicle route in urban
transportation network, therefore all of the simulations are using real urban
maps that have been converted from OpenStreetMap via convert_map method
except the toy data simulation. OpenStreetMap is a valuable source for real-
world map data which is totally free to be viewed and enhanced. For toy data
simulation, the network is built by using a SUMO graphical network editor

Chapter 7. Experiment Implementation and Evaluation 92

Figure 7.2: SUMO traffic simulation process diagram

NetEdit. Figure 7.3 and Figure 7.4 show the examples of converting an Open
Street Map to SUMO map and the manual network designed by network editor
NetEdit. Eventually, the SUMO networks are designed with the detail needed
by microscopic road traffic simulations, which is ready for routing (navigation)
purposes for individual vehicles.

Demand Traffic: Each vehicle in the SUMO simulation is defined explicitly
since SUMO is a microscopic traffic simulator. They are given at least by
a unique identifier, the departure time, and the vehicle’s route through the
SUMO network. A route is the complete list of connected edges between the
origin/destination pair. A trip is defined as the trajectory of a single vehicle
that contains the origin/destination pair and the departure time. The trip data
is stored in .trips.xml file.

Moreover, vehicle’s properties can be further categorised as vehicle type.
The considered properties for the description of vehicle type in this experiment
are described as follows:

• id: Unique identifier for this vehicle type.

Chapter 7. Experiment Implementation and Evaluation 93

Figure 7.3: (a) openstreetmap (b) sumo map

Figure 7.4: (a) NetEdit (b) sumo map

• accel: The acceleration ability of vehicles of the corresponding type.

• decel: The deceleration ability of vehicles of the corresponding type.

• sigma: An evaluation of the imperfection of the driver whose value is
between 0 and 1.

• maxspeed: The maximum velocity of the vehicle.

• color: The colour for this vehicle type (only apply in SUMO-GUI).

• probability: The probability of the distribution for this vehicle type.

Two vehicle types are defined in this experiment which are "normal_car"
and "truck". The definition details of these two vehicle types are displayed in
table 7.1 and are stored in .add.xml file. Then, the .trips.xml and .add.xml are
supplied to gen_routes() to generate the route file .rou.xml for traffic simulation.

Vehicle
Type Length Accel Decel Sigma Max Speed Color Probability

Normal Car 5.0 2.0 5.0 0.5 20.0 yellow 0.8
Truck 8.0 1.0 5.0 0.5 5.0 green 0.2

Table 7.1: Definition of vehicle type

Chapter 7. Experiment Implementation and Evaluation 94

Simulation: Once the the network file .net.xml and route file .rou.xml
are ready, a SUMO configuration file .cfg could be created with the required
parameters for traffic simulation. SUMO simulations only start when this con-
figuration file is given. There are two types of traffic simulation provided by
SUMO. The application called "sumo" is a pure command line application for
efficient multi batch simulation. The application so called "sumo-gui" however
offers a graphical user interface (GUI) rendering the simulation network and
vehicles. For training speed wise, most of the training and testing are run in
application "sumo". However, application "sumo-gui" will be used if the visual
observation is needed.

7.2.4 Environment Class Definition
The environment class sumo_env is designed to encapsulate the use of SUMO
simulator with TraCI. It enables the features to control SUMO including to
initialise and interfere a simulation, define the state spaces and action spaces,
reward calculation, and the action applicator to the simulation. The methods
provided by sumo_env are presented as below:

• get_edge_conn_info(self): This method is to get and compile the
connections between roads in SUMO network and store the information in
memory. The road connection information is important in this experiment
as it is used as the reference to indicate which road the actions in a specific
road are linked to and determine the number of actions in each edge.

• get_dist_to_dest(self): This method is to calculate the Euclidean
distances between the end point of each road to the destination and store
the information in memory. The information is for the proposed Euclidean
distances based exploration method.

• reset(self) This method is to reset the simulation to initial state in order
to start a new episode. It returns to the initial state from the environment.
An initial state will be returned in this method.

• add_veh(self): This method is to add the vehicle that uses vehicle agent
for navigation. The id of the vehicle is a global value which is "nav_veh".

• run_simulation(self, action=None) This method is to process the
simulation with or without applying an action. When nav_veh arrives
in a decision zone of a road (method is_in_zone() is applied in here),
this method returns an observation of the current state st, the number of
available actions of current state, the reward rt− 1 for the previous state
st− 1, and a flag to indicate the if nav_veh has arrived its destination.
Note that unlike common DRL example, after applied action at, reward
rt does not return immediately. This is because the reward rt could not
be computed instantly.

• get_status(self): This method returns a status code to determine which
status nav_veh is currently in.

Chapter 7. Experiment Implementation and Evaluation 95

• get_obs(self): This method gets the required parameters from environ-
ment and return the state matrix.

• get_reward(self, done): This method is to calculate the reward for
nav_veh.

• get_VEI(self): This method is to calculate the VEI for nav_veh in
specific road and return when VEI reward schema is applied. The equation
for VEI is introduced in Equation 6.4.

• get_emission(self): This method return a list of total emissions (CO,
HC, NOx, PMx) of nav_veh.

7.2.5 Data Extraction and Pre-processing
Environment class imports SUMO API TraCI to interact with SUMO. Although
SUMO and TraCI can provide a powerful and high quality simulation for this
experiment, there are still some issues on design and implementation that need
to be further enhanced. This subsection presents how the environment class
extracts and compile the data from SUMO simulation in order to compose the
observation for state space, aggregate reward, and calculate vehicle emission
and proposes an improved method to revise a problem in SUMO with infinity
expected travel time. Besides, this subsection also presents the compilation of
the data that is extracted from SUMO.

Data preprocessing is an integral step in DRL as the quality of data and
the useful information that can be derived from it directly affects the ability of
the trained model to learn. Therefore, it is extremely important to pre-process
the data before feeding them into DRL agent class. One of the most common
methods of data pre-processing is data scaling, which is a recommended pre-
processing step when working with deep learning neural networks. It can be
achieved by normalising real-valued input and output variables.

Normalisation is a technique often applied as part of data preparation for
DRL. The goal of normalisation is to change the values of numeric columns in
the dataset to a common scale, without breaking differences in the ranges of
values [3]. For instance, rescaling of the data from the original range so that all
values are within the range of 0 and 1. For DRL, normalisation is required when
features have big different ranges. In this proposed approach, the four features
which are expected travel time, vehicle number, the (x, y) coordinates of vehicle
current road and the destination road have big different ranges. Consequently,
normalisation is needed to be applied in order to make DRL achieve better
performance. A typical way to perform normalisation is Min Max Scaling, a
Min-Max scaling is done via the following equation:

xnorm =
x− xmin

xmax − xmin
(7.1)

where xmin and xmax are the minimum and maximum value of data set. From
equation above x could only be in range 0 to 1 if its value is not outside the

Chapter 7. Experiment Implementation and Evaluation 96

bounds of the minimum and maximum values. Therefore, all the minimum and
maximum values of the features need to be known in order to apply Min Max
Scaling Normalisation. Fortunately, all these values could be computed from
environment via SUMO API TraCI.

As mentioned above there are four features in state space, which are ne the
number of vehicle in the road, te the expected travel time in the road, and the
cv and dv represent the current road of the agent and its destination. Data for
feature ne could be precisely retrieved via the method getLastStepVehicleNum-
ber() in TraCI edge class. The absolute minimum value nmin is straightforward
0 which means that there is no vehicle in a road. However, its absolute max-
imum value means the biggest number of vehicles that could possibly occupy
the longest road. The equation for computing nmax is shown as follows:

nmax =
lmax

`V min +mingapV min
(7.2)

where lmax is the road with biggest space and `V min is the length of vehicle
with shortest length and mingapV min is the minimum gap of the vehicle. The
length and minimum gap of vehicle could be retrieved by mehtods getLength()
and getMinGap() via TraCI vehicle class.

To retrieve the current road of the agent and its destination is also straight-
forward, TraCI edge class provides method getShape() to return the coordinates
of the middle point of road. And the absolute minimum and maximum number
for the (x, y) coordinates could be simply defined by extracting the coordinates
of the network boundary, which could be retrieved by method getNetBound-
ary().

The data for te expected travel time in the road however is more tricky.
Although TraCI provides method getTraveltime() in edge class, which calcu-
lates travel time by dividing the road length by the mean vehicle speed in the
road. Therefore, this method is not truly accurate as it does not consider the
infinity travel time problem when the mean vehicle speed is equal to zero. The
disadvantages are presented based on three aforementioned cases when using
SUMO as illustrated in Figure 7.5. In SUMO, all three cases return 1000000
expected travel time which are incorrect as they are totally different scenarios.

To overcome this problem, the following methods are applied. The first case
scenario could be determined if getLastStepOccupancy() in lane via TraCI is
100%, for this case the expected travel time is still calculated by dividing the
road length by the mean vehicle speed in the road. The length and mean vehicle
speed could be retrieved by getLength() and getLastStepMeanSpeed() via traci
lane class. A minimum mean vehicle speed 0.1 is set to prevent infinity travel
time. Therefore, if two roads are both fully occupied, the expected travel time
should be less in the road with shorter length, which reflects closer to the real
scenario. In the second scenario, the road segment is divided according to its
occupancy, and minimum vehicle speed 0.1 is set to the vehicle that is in the
end of the road. Thus, for the unoccupied part we use the road maximum

Chapter 7. Experiment Implementation and Evaluation 97

speed to calculate the expected travel time while we use average vehicle speed
for the last segment with vehicle. Then add both to get the final travel time.
The road maximum speed can be retrieved by getMaxSpeed(). The third case
works similarly to the second case by dividing the road segment. However, for
the vehicle that stops in the middle of road at the accident, a constant "accident
clearance time" which indicates how long this accident will take to be cleared,
is used as the expected travel time. For normalisation, the absolute minimum
value in expected travel time will be the smallest value among road length
divided by road max speed. However, its absolute maximum value will be the
longest road lmax divided by the minimum vehicle speed 0.1. Table 7.2 shows
the comparison of the expected travel time.

(a) First case: road fully occupied

(b) Second case: Waiting in the junction

(c) Third case: Accident in the middle of road

Figure 7.5: Three cases showing the limitations of the travel
time calculation using SUMO

To retrieve the action value, the approach is the same as the experiment in
chapter 5. All the connected road details are stored in a python dictionary. The

Chapter 7. Experiment Implementation and Evaluation 98

Scenario traci.edge.getTraveltime() Improve Calculation
Case 1 1000000 856.0
Case 2 1000000 35.6
Case 3 1000000 55.7

Table 7.2: The comparison of expected travel time calculation
from SUMO and proposed approach

connected roads could be provided by method getLinks() in TraCI lane class.
Similarly, the Euclidean distances info between the end point of roads and
destination are also stored in another python dictionary. Lastly, for travel time
reward schema, the current time step could be retrieved by getTime() in TraCI
simulation class. Meanwhile, for VEI reward schema, the vehicle emissions
for CO, HC, NOx and PMx could be retrieved by methods getCOEmission(),
getHCEmission(), getNOxEmission(), getPMxEmission() in TraCI vehicle class
respectively.

7.2.6 Benchmark Methods
This section introduces the benchmark methods that are used in this experi-
ment. The default traffic assignment method in SUMO is Gawron’s dynamic
user equilibrium (GDUE) [36]. GDUE uses Dynamic traffic assignment (DTA)
to model the traffic via a discrete time dependent network. It assigns routes
for all trips using some shortest path algorithms (e.g. Dijkstra algorithm or
A* algorithm) as an initialisation step by taking the edge length as edge cost.
After running the traffic simulation, it records the actual travel time on each
edge, then uses the same shortest path algorithms to re-assign the routes. This
step is done iteratively until the edge cost for all roads is relatively converged.

SUMO also provides automatic routing to perform dynamically routing in a
running simulation. This routing approach works by giving some or all vehicles
the capability to re-compute their route periodically or in specific time. The
routing takes into account the current and recent state of traffic in the network
and thus adapts to jams and other changes in the network. Based on this
method, specific vehicle could be re-routed dynamically while a simulation is
running. In order to further demonstrate the performance of the proposed
method, the SUMO auto-routing methods which use Dijkstra and A* algorithm
are applied to compare the performance in travel time and VEI with the trained
models. The vehicle emissions are also recorded for comparison. The benchmark
methods could be done via method rerouteTravelTime() in TraCI vehicle class.
I name these two benchmark methods as dynamic-Dijkstra and dynamic-A* in
this experiment.

7.2.7 DRL Agent Class Definition
The DRL agent class agent is to interact with the environment through the
environment class sumo_env and use the implementation of the DRL algorithms

Chapter 7. Experiment Implementation and Evaluation 99

to train a model in order to optimise vehicle’s routing selection. It imports
Tensorflow library to implement the DQN learning process that described in
chapter 3. The methods provided by agent are given as below:
• build_net(self): This method is to build the DNNs for agent. The

number of input and output of the neural network varies depending on the
network characteristic, such as the number of total roads, or the maximum
connected roads. It created two DNNs which are q_net and target_net.
More details of the implementation of the DNN will be presented in the
next subsection.

• store_transition(self, sim_data): This method is to store the simula-
tion transition tuple < s, a, r, s′

> into memory. The parameter sim_data
is an array which keeps the transition from environment and pass to agent.

• choose_action(self, obs, n_actions, e_distances=None): This
method is to decide which action to take based on the observation of
the environment. The exploration function with ε greedy value and the
proposed Euclidean distances are applied here. The parameter obs is the
observation from the environment, n_action is the number of available
actions in this state, which is equal to the number of connected roads
and e_distances is an array which keeps the Euclidean distances from
the end point of the connected road to the destination. More details of
the implementation of the action selection policy will be introduced in
subsection 7.2.9.

• learn(self): This method is to train the agent to learn the policy by
minimising the error in Bellman’s equation on a batch sampled from ex-
perience replay buffer and compute TD-error. It is also responsible for
updating exploration ε greedy value.

7.2.8 DRL Agent Architecture
This subsection presents the DQN architecture in DRL agent class. The archi-
tecture was built on top of the implementation of TensorFlow library. Figure 7.6
illustrates the overview of the DQL agent. Two DNNs textiteval_net and tar-
get_net are created where eval_net is for estimating the q value in each state to
decide which action to apply, and textittarget_net output the target q value for
calculating the loss for training. In every certain learning step, the parameters
in target_net will be replaced by the parameters in eval_net. Moreover, the
model will be saved by the save component.

Both eval_net and target_net have the same structure. As illustrated in
Figure 7.7 and Figure 7.8, eval_net takes state s as input and target_net takes
next state s_ as input. Both DNN have 3 hidden layers, where l1 is the first layer
that contains 150 neurons and l2 is the second layer that contains 100 neurons.
Relu activation function is applied in these hidden two layers. The last layer is
the dueling layer that has an advantage and value streams. Advantage estimates
the advantage for each action and value estimates the value of specific state.
The advantage and value streams then will compute the q value as the output.

Chapter 7. Experiment Implementation and Evaluation 100

Lastly, Figure 7.9 illustrates the component of train and loss in DRL agent
class. Adam optimiser is applied in this experiment as the optimiser to min-
imise the loss. Gradient represents the gradient decent, beta1_power and
beta2_power represent the hyper-parameter β1 and β2 for Adam optimiser.

Figure 7.6: Overview of DQN architecture

7.2.9 Action Selection Policy
This subsection presents the implementation of the action selection policy in
DRL agent. The DRL agent makes a decision accordingly based on the obser-
vation it receives. An aforementioned two-stage exploration scheme is designed
to improve the network convergence as well as the converging speed. With
probability ε, the agent decides to make exploration rather than take the action
that is made by the current DNN. In this stage, there are two possible ways

Chapter 7. Experiment Implementation and Evaluation 101

F
ig

ur
e

7.
7:

Ev
al

ne
tw

or
k
ar
ch
ite

ct
ur
e

Chapter 7. Experiment Implementation and Evaluation 102

F
ig

ur
e

7.
8:

Ta
rg
et

N
et
w
or
k
ar
ch
ite

ct
ur
e

Chapter 7. Experiment Implementation and Evaluation 103

F
ig

ur
e

7.
9:

Tr
ai
n
an

d
lo
ss

ar
ch
ite

ct
ur
e

Chapter 7. Experiment Implementation and Evaluation 104

to do exploration. One way is using the traditional way that selects an action
with an even chance. In the other case, with a constant probability δ, the agent
explores the network based on Euclidean distances policy. The road connection
information and their Euclidean distances to a destination that is defined by the
environment class will be passed to the DRL agent. Based on this information,
the DRL agent computes the probabilities of selecting the connected road by
following the algorithm that is presented in Equation 6.10. Consequently the
DRL agent randomly selects a connected road as the explored road based on
the probabilities that are just computed.

Moreover, the number of DNN outputs is dependent on the maximum num-
ber of connected roads in the network. However, in most cases roads in the
network do not connect to the same number of roads in a network. Therefore,
when the DRL agent decides to use the action that is based on DNN output,
with the q values estimated by DNN, the DRL agent only selects the action
with the highest q value among the number of connected roads and ignores the
extras. For instance, assuming the maximum number of connected roads of a
network is 4, and road AB only connects to road BC, BD and BE (3 actions).
Based on the observation, DNN estimates 4 q-values [q1, q2, q3, q4] as output.
In this case, DRL agent only selects the highest q-value among [q1, q2, q3] and
ignores the q4 as it does not apply to any connected road.

7.3 Experimental Evaluation
There are two subsections in the experimental evaluation: Firstly, two toy data
maps are generated for testing the convergence of the intelligent agent. Addi-
tionally, the toy data simulation can further provide a tool to gain the insight of
the decisions made by the intelligent agent during the navigation. Secondly, nine
traffic conditions based on three regions in Liverpool city centre are simulated
to demonstrate the efficiency of the DRLs with 2 proposed reward schemas.
To further demonstrate the performance of the proposed method, the trained
models are compared with the benchmark methods Dynamic-Dijkstra and Dy-
namic A* which are described in subsection 7.2.6 to evaluate their performance
in vehicle route optimisation for sustainable and resilient urban transportation
network.

7.3.1 Toy Data
In the toy data experiments, two simple maps are built via SUMO graphical
network editor NetEdit to train and test the intelligent vehicle agent. The
first map has 12 edges and each edge connects with two other edges (m=2) as
illustrated in Figure 7.10a. The second map has 18 edges and each edge connects
with three other edges (m=3) as illustrated in Figure 7.10b. In the maps, two
location icons (red and green icons) are used to show the starting point and the
destination of the navigation tasks. In the experiments, two types of vehicles,
normal cars and trucks, are injected into the maps to simulate realistic traffic

Chapter 7. Experiment Implementation and Evaluation 105

conditions by using gen_trips() and gen_routes() method in scenario class.
The two types of vehicles have different maximum speeds, accelerations and
decelerations. The number of vehicles is set at 10 and 20 and these vehicles are
added into the maps randomly during the time stamp between 0 and 10.

(a) Simple map 1

(b) Simple map 2

Figure 7.10: Simple map structure and mean step in 100
episodes

In Figure 7.10a and Figure 7.10b, the middle and right sub-figures illustrate
the convergence of the DRL agent during the training process with travel time
based reward schema and VEI based reward schema. It demonstrates that all
the cases converge in 1,000 episodes from random explorations. Two reward
schemas have a similar convergence pattern and are able to significantly reduce
the travel time and VEI. The converged mean travelling time is about 40 time
steps in simple map 1 and about 70 time steps in simple map 2. Meanwhile the
converged mean VEI is about 150 in simple map 1 and about 300 in simple map
2. Compared to the simple map 1, the average travel time of the agent trained
in the simple map 2 is slightly longer as the agent has more action selections
and state spaces at the start of the training stage, and simple map 2 has bigger
map size with more roads. Therefore, simple map 2 has higher travel time and
VEI level due to the different routing distance and traffic complexity. In the
experiments, it is also found that the convergence of the run with more vehicles
in the maps is slightly faster than the run with fewer vehicles.

When the decision network converges, it is capable of selecting optimal de-
cisions to navigate its vehicle to the destination based on its observations of
the current traffic states. The average decision making process timing is 2.7
millisecond and it means that the agent is suitable to make real-time decisions
for the navigation task. The routing selected by using Dijkstra and A* methods
is shown in Fig.7.11 (a). It is static and not able to be adapted to the volatile

Chapter 7. Experiment Implementation and Evaluation 106

Figure 7.11: The simulated illustration of conventional Dijk-
stra/A* method and proposed method

traffic states. However, the DRL based agent (illustrated from Fig.7.11 (b) to
Fig.7.11 (e)) makes a flexible routing decision based on its observation when it
approaches each decision zone. In Fig.7.11 (b), the Q value of the decision to
travel straight is much higher than the Q value of the decision to turn left. It
is consistent with an intuitive observation that a truck with lower speed is on
the left edge. In Fig.7.11 (c), the selection of the left edge is reasonable as the
vehicle number on the right edge is much more than the number on the left
edge. The routing selected by the intelligent agent is illustrated in Fig.7.11 (f).
In this demonstration, it takes 39 time steps to reach the destination by using
the proposed algorithm while it takes 56 time steps when using the routing of
Dijkstra and A*. In other words, the proposed navigation method improves
30.4% travel time in this case.

7.3.2 Realistic scenario analysis
This thesis further tests the effectiveness of the framework in a more realistic
scenario. In the experiments, two busy traffic regions in Liverpool city centre
are selected on OpenStreetmap and converted into the SUMO maps in our

Chapter 7. Experiment Implementation and Evaluation 107

(a) Liverpool city map 1

(b) Liverpool city map 2

(c) Liverpool city map 3

Figure 7.12: Real world city map that are captured for SUMO
simulation in this thesis

framework. The highlighted regions on GoogleMap, OpenStreetMap and SUMO
generated maps are illustrated in Fig.7.12. In each map, three demand traffics
with different number of vehicles are made accordingly to test the proposed DRL
method in the integrated environment. The details of the map information are
presented in Table 7.3.

The convergence for two rewards schemas under different level of demand
traffic is illustrated in Figure 7.13, Figure 7.14, Figure 7.15, Figure 7.16, Fig-
ure 7.17 and Figure 7.18. In these three maps, all the cases converge to certain
levels ranging from 100 to 200 time steps or 500 to 600 VEI. This is highly cor-
related to the complexity of the maps as the converged average travelling time

City Map 1 City Map 2 City Map 3
Total edges 40 60 80
Avg edge length (m) 107.79 143.23 173.95
Edge max speed range (mph) 20-30 30-50 30-50

Table 7.3: Maps information

Chapter 7. Experiment Implementation and Evaluation 108

in the second map is much longer while compared to the time in the first map.
Another finding is that the converging speed is relatively slower when there are
more vehicles in the simulation due to the more volatile road conditions.

When the RL agent converges, 100 runs are made on each traffic condition
to compare the two proposed reward schemas with the Dynamic-Dijkstra and
Dynamic-A* methods objectively. The average travelling time, VEI and vehicle
emissions of the runs and the standard deviation is presented in the Table 7.4.
The results show that the proposed method outperforms the other algorithms
in all traffic conditions. Furthermore, it is also proved that the improvement of
the performance becomes much better when the road condition is more complex
and volatile. The travel time based reward schema has the least average travel
time compare to the others. However, VEI based reward schema outperform
the others in the VEI and the vehicle emissions. For vehicle route navigation, it
is very important to recognise the potential traffic congestion in order to arrive
destination as fast as possible. From our experiment, we can see under a same
city map, when the demand traffic is higher, it is more likely get sharply peak
while training. This is because when the number of vehicle is bigger, more
possibly certain roads in the map are having traffic congestion. And since the
greedy policy is applied during the training, the vehicle agent might act greedy
and randomly go into the road with heavy congestion and consequently cost
much longer time than usual to arrive its destination. Besides, city map 3
had much bigger vibration in the beginning of convergence, the reason behind
this is because city map 3 contain the highest number of edges and average
edge length. Therefore while a vehicle goes on a wrong edge, it takes longer
time than the other maps to finish that edge and arrive next junction to make
another decision. According to the comparison table, in smallest map city map
1, our proposed method reduces at most 5.3%, 5.1% and 16.4% travel time with
different demand traffic. However, in the largest map city map 3, our proposed
method reduces at most 4.9%, 12.4% and 22.5% travel time in different demand
traffic.

Chapter 7. Experiment Implementation and Evaluation 109

(a) travel time based reward schema

(b) VEI based reward schema

Figure 7.13: Convergence of the Avg. travel time in City Map
1

Chapter 7. Experiment Implementation and Evaluation 110

(a) travel time based reward schema

(b) VEI based reward schema

Figure 7.14: Convergence of the Avg. VEI in City Map 1

Chapter 7. Experiment Implementation and Evaluation 111

(a) travel time based reward schema

(b) VEI based reward schema

Figure 7.15: Convergence of the Avg. travel time in City Map
2

Chapter 7. Experiment Implementation and Evaluation 112

(a) travel time based reward schema

(b) VEI based reward schema

Figure 7.16: Convergence of the Avg. VEI in City Map 2

Chapter 7. Experiment Implementation and Evaluation 113

(a) travel time based reward schema

(b) VEI based reward schema

Figure 7.17: Convergence of the Avg. travel time in City Map
3

Chapter 7. Experiment Implementation and Evaluation 114

(a) travel time based reward schema

(b) VEI based reward schema

Figure 7.18: Convergence of the Avg. VEI in City Map 3

Chapter 7. Experiment Implementation and Evaluation 115

City Map 1
Demand
Traffic Method Travel

Time VEI CO HC NOx PMx

20
vehicles

Dynamic-
Dijkstra

80.30
(±4.80)

288.29
(±23.11)

3924.11
(±430.28)

23.67
(±2.29)

101.62
(±6.75)

4.40
(±0.34)

Dynamic-
A*

83.00
(±6.32)

327.51
(±38.97)

4303.31
(±558.83)

25.86
(±3.16)

109.77
(±11.44)

4.78
(±0.55)

Travel Time
Based

78.5
(±2.60)

276.79
(±27.35)

3450.07
(±275.76)

20.98
(±1.63)

91.81
(±7.51)

3.90
(±0.39)

VEI
Based

80.0
(±3.70)

247.57
(±14.69)

3231.44
(±291.04)

19.59
(±1.62)

84.50
(±5.29)

3.50
(±0.22)

30
vehicles

Dynamic-
Dijkstra

85.82
(±5.24)

286.08
(±21.17)

3942.32
(±444.53)

23.76
(±2.32)

101.59
(±5.93)

4.40
(±0.26)

Dynamic-
A*

92.54
(±5.11)

349.83
(±56.13)

4593.38
(±766.32)

27.68
(±4.40)

118.22
(±17.60)

5.11
(±0.79)

Travel Time
Based

80.68
(±3.58)

273.96
(±39.84)

3554.93
(±584.27)

21.49
(±3.28)

92.24
(±11.46)

3.89
(±0.56)

VEI
Based

81.62
(±3.99)

247.08
(±12.63)

3239.62
(±287.96)

19.63
(±1.55)

84.46
(±4.49)

3.47
(±0.17)

50
vehicles

Dynamic-
Dijkstra

91.68
(±11.45)

316.58
(±37.67)

4853.75
(±1103.41)

28.30
(±5.51)

109.05
(±9.77)

4.77
(±0.49)

Dynamic-
A*

104.34
(±13.98)

368.86
(±59.79)

5825.03
(±1326.34)

33.33
(±6.92)

120.41
(±17.60)

5.28
(±0.85)

Travel Time
Based

84.76
(±4.23)

281.37
(±27.23)

3753.36
(±418.99)

22.50
(±2.35)

94.26
(±8.89)

3.97
(±0.45)

VEI
Based

86.64
(±4.06)

261.01
(±15.89)

3566.23
(±264.34)

21.23
(±1.38)

86.96
(±3.99)

3.61
(±0.20)

Chapter 7. Experiment Implementation and Evaluation 116

City Map 2
Demand
Traffic Method Travel

Time VEI CO HC NOx PMx

30
vehicles

Dynamic-
Dijkstra

105.12
((±4.49)

348.12
(±17.70)

4405.76
(±382.15)

27.23
(±1.97)

123.73
(±4.93)

5.24
(±0.24)

Dynamic-
A*

107.80
(±6.15)

347.91
(±30.50)

4386.96
(±670.74)

27.09
(±3.37)

122.64
(±6.91)

5.18
(±0.41)

Travel Time
Based

103.46
(±2.23)

339.87
(±13.93)

4044.67
(±311.56)

25.42
(±1.65)

120.54
(±4.45)

5.06
(±0.23)

VEI
Based

104.42
(±3.08)

322.36
(±21.44)

3787.49
(±234.72)

24.00
(±1.23)

115.93
(±3.69)

4.82
(±0.19)

50
vehicles

Dynamic-
Dijkstra

109.44
(±9.60)

362.45
(±50.81)

4791.53
(±1253.79)

29.19
(±6.30)

127.47
(±12.11)

5.40
(±0.62)

Dynamic-
A*

110.74
(±10.27)

370.30
(±53.17)

4686.42
(±1076.19)

28.81
(±5.56)

129.13
(±12.93)

5.47
(±0.65)

Travel Time
Based

106.04
(±3.57)

341.92
(±21.62)

4076.18
(±305.60)

25.50
(±1.67)

119.27
(±5.57)

4.99
(±0.27)

VEI
Based

106.14
(±4.14)

332.15
(±31.09)

3970.42
(±408.25)

24.91
(±2.15)

117.08
(±6.32)

4.89
(±0.31)

80
vehicles

Dynamic-
Dijkstra

127.54
(±8.33)

445.94
(±42.10)

7033.50
(±1271.80)

40.29
(±6.24)

145.32
(±10.07)

6.44
(±0.52)

Dynamic-
A*

124.16
(±14.67)

412.19
(±81.33)

5876.67
(±1807.11)

34.52
(±9.14)

135.24
(±19.64)

5.82
(±0.97)

Travel Time
Based

118.36
(±7.59)

392.87
(±32.44)

5080.88
(±1123.55)

30.59
(±5.49)

128.70
(±8.57)

5.48
(±0.47)

VEI
Based

121.3
(±9.73)

385.36
(±27.75)

4966.95
(±837.62)

30.04
(±4.16)

128.45
(±7.99)

5.46
(±0.42)

Table 7.4: The objective performance comparisons under var-
ious traffic conditions

Chapter 7. Experiment Implementation and Evaluation 117

City Map 3
Demand
Traffic Method Travel

Time VEI CO HC NOx PMx

50
vehicles

Dynamic-
Dijkstra

149.86
(±12.45)

476.88
(±47.25)

6313.20
(±1110.57)

37.73
(±5.69)

156.16
(±12.79)

6.55
(±0.62)

Dynamic-
A*

151.00
(±9.99)

482.94
(±38.88)

6167.88
(±793.09)

36.94
(±4.12)

153.89
(±9.89)

6.41
(±0.49)

Travel Time
Based

146.96
(±5.91)

423.51
(±33.72)

4733.29
(±726.83)

29.83
(±3.79)

141.16
(±9.45)

5.68
(±0.44)

VEI
Based

148.22
(±5.97)

416.73
(±24.23)

4610.60
(±350.12)

29.10
(±1.84)

138.25
(±6.54)

5.54
(±0.27)

80
vehicles

Dynamic-
Dijkstra

164.04
(±13.01)

521.94
(±34.04)

7423.78
(±959.05)

43.41
(±4.73)

167.75
(±8.34)

7.11
(±0.43)

Dynamic-
A*

168.82
(±17.28)

544.07
(±55.28)

7279.73
(±1325.27)

43.16
(±6.79)

174.42
(±16.55)

7.34
(±0.78)

Travel Time
Based

148.64
(±6.31)

477.58
(±38.69)

5397.59
(±578.58)

33.54
(±3.28)

154.14
(±12.63)

6.35
(±0.59)

VEI
Based

153.84
(±7.61)

454.04
(±32.51)

5363.39
(±620.06)

32.97
(±3.23)

147.18
(±9.02)

6.02
(±0.42)

120
vehicles

Dynamic-
Dijkstra

193.56
(±9.60)

630.80
(±40.43)

10421.43
(±1174.41)

58.44
(±5.83)

194.66
(±10.06)

8.51
(±0.56)

Dynamic-
A*

203.22
(±28.70)

659.25
(±96.83)

10223.98
(±1390.89)

58.10
(±7.51)

203.17
(±33.08)

8.75
(±1.34)

Travel Time
Based

160.62
(±8.83)

523.54
(±40.52)

6295.46
(±957.38)

38.24
(±4.80)

165.26
(±9.31)

6.84
(±0.52)

VEI
Based

162.9
(±11.52)

510.33
(±32.04)

6004.18
(±665.11)

36.76
(±3.40)

161.96
(±8.34)

6.63
(±0.40)

118

Chapter 8

Conclusion and Future Work

8.1 Overview
This chapter concludes this thesis by recalling the investigated research problem,
summarising the contributions and significant achievements, and then discusses
the remaining research issues related to this work and propose the recommen-
dations for future work.

8.2 Problem Overview
Global urbanisation has brought a lot of positive impacts on human society, it
creates an increasing number of opportunities for jobs, education, and health-
care that benefit more and more people. In the past 60 years, global urbanisa-
tion has resulted in enormous economic growth, and concentration of population
in densely populated cities. However, urban traffic congestion has risen as global
urbanisation leads to the growing number of vehicles in urban transportation
networks. It brings major impacts on urban transportation networks that lead
to extra travelling hours, increased fuel consumption and vehicle emissions that
cause air pollution.

Although there are various research projects that have been carried out
to resolve recurrent traffic congestion, to the best of my knowledge, there is
still a research gap to be filled for the non-recurrent traffic congestion prob-
lem. Non-recurrent traffic congestion is often caused by emergency events, such
as accidents, road events and so on. Currently, most vehicle navigation sys-
tems struggle to response instantly to the non-recurrent congestion problem
and lack the ability to self-evolve and to adapt rapidly to change in the urban
transportation networks. Consequently, this causes serious traffic congestion
problems and leads to environmental damage. Therefore, the objective of this
thesis is to propose a self-evolution vehicle route optimisation approach by using
the deep reinforcement learning method to re-route a vehicle to its destination
and adapting the complexity of the urban transportation network in order to
avoid traffic congestion.

Chapter 8. Conclusion and Future Work 119

8.3 Contributions and Achievements
To address the unexpected urban traffic problem for sustainable and resilient
urban transportation network, this thesis proposes a self-evolution, novel adap-
tive approach for vehicle route optimisation via the DRL method which is able
to navigate vehicle response to non-recurrent traffic congestion. There are three
main contributions in this thesis as summarised as below:

• Design of a novel framework to facilitate the vehicle route opti-
misation research under complex urban transportation context.
This thesis proposes a novel framework to provide an accessible way to
optimise the vehicle route planning problem using DRL methods. It en-
hances SUMO simulator in order to make it more suitable for optimising
vehicle route selection with DRL algorithms. The enhancements include
providing an improved calculation method for expected travel time in a
road depending on different circumstances, defining the segments in each
edge to indicate the best timing for obtaining state and converting the
SUMO network graph to a dual graph to model the states and actions in
an urban network. The hand-designed controllers in the proposed frame-
work enable the interaction between environment and external RL library
through SUMO API TraCI, to allow model training in a rich environ-
ment with complex dynamics for vehicle route optimisation. Therefore,
the DRL model could be trained across road networks of different size,
density, number of edges and lanes. The demand traffic, network charac-
teristic or vehicle behaviour in the experiments can be easily monitored
and controlled. Besides, the state space and reward functions can be
constructed from the environment. This framework makes a more real-
istic and interactive environment by embedding the smart agents (DRL
models) into the traffic simulator and the extensibility of the framework
provides huge flexibility to extend the features of the framework for future
RL problems.

• Design of effective observations, reward scheme and DRL algo-
rithms to achieve efficient convergence of the DRL training This
thesis describes an effective observation as the representation of current
traffic condition within a specific area of urban network. The represen-
tation variables contain multiple parameters reflecting the circumstances
in the global urban transportation network to precisely describe the com-
plexity of its dynamics. Besides, this thesis proposes an algorithm to
measure the impact of individual vehicles on air pollutant emission called
VEI. VEI takes several vehicle emissions as input such as nitrogen oxides,
hydrocarbons, carbon monoxide, and particulate matter to compute the
level of impact. Based on that, this thesis proposes two reward schemas to
train the DRL model for vehicle route optimisation. One reward schema
aims to reduce the total travel time of a vehicle, and another one aims to
minimise the VEI from a vehicle. The results show both reward schemas
are efficient to optimise the vehicle route. Furthermore, a Euclidean dis-
tance based exploration method is proposed in this thesis to combine with

Chapter 8. Conclusion and Future Work 120

the traditional ε greedy exploration, the result shows that it achieves more
efficient convergence of DRL training than the traditional method.

• Integration of the proposed vehicle route optimisation approach
with real urban map to achieve a more sustainable and resilient
urban transportation network. The proposed vehicle route optimi-
sation approach in this thesis aims to improve the sustainability and
resilience in urban transportation networks. The two proposed reward
schemas are applied in real urban networks with different size and different
level of demand traffic in order to evaluate their performance. Although
both reward schemas are able to optimise vehicle route significantly to
avoid traffic congestion, the results show travel time based reward schema
performed better in minimising the total travel time of individual vehicles,
meanwhile the VEI based reward schema gets the least vehicle emissions
to complete a trip. In term of sustainability and resilience, the travel time
based reward schema is suitable for emergency vehicles in the road such as
ambulances, fire-fighting cars or police cars as those vehicles need to arrive
at their destination as soon as possible in order to maintain urban safety.
However, the VEI based reward schema is suitable for general drivers in
the urban transportation network to minimise the vehicle emissions for a
more sustainable urban transportation network.

8.4 Future work
To further improve the proposed vehicle route optimisation for urban trans-
portation network, several recommendations to overcome the limitations of this
thesis are suggested as follows:

• Improve the scalability of the proposed approach. Although this
thesis shows a significant reduction of vehicle travel time and vehicle emis-
sions when applying the DRL method to train the model for vehicle agent,
the model is trained by giving the individual network, with a specific size
and number of roads, which means the model needs to be re-trained if
a vehicle has a trip beyond the boundary of the trained network, or a
new network. This potentially could bring the limitation of scalability for
this proposed approach. A potential solution for this problem is to use
convolutional neural networks to capture the features of the urban traf-
fic condition. Nevertheless, more investigations are required against this
limitation.

• Optimise the proposed framework towards a more sustainable
and resilient urban transportation network. The two proposed
travel time based and VEI based reward schemas in this thesis have
achieved remarkable results for vehicle route optimisation in sustainable
(VEI based) and resilient (travel time based) purposes respectively. To
further improve the performance in term of sustainability and resilience,
a few enhancements are worth developing in the future. With regard to
sustainability, the proposed VEI reward schema only focuses on vehicle

Chapter 8. Conclusion and Future Work 121

emissions for air pollution. Some other pollution such as noise pollution
should be considered in the future. Also, the special driving behaviours
on the roadway for emergency vehicles should be included in the consider-
ation such as exceeding the speed limit, overtaking on the right or driving
in the opposite direction to the road etc when the DRL agent is making
a decision. Although SUMO provides a certain level of emergency vehicle
simulation, some capabilities are limited and need to be future developed.
Training the model with the consideration of emission vehicle behaviour
can achieve more accurate decision making for resilient purposes.

• Investigate more features to represent a more realistic urban
traffic condition and vehicle behaviour. The features in the proposed
approach have proven they are sufficient to optimise vehicle routes in ur-
ban transportation networks. However, in practice there are more factors
that could affect the urban traffic condition which are worth investigating
in the future. For instance, the road conditions (number of lanes, lane
width, surface condition) that affect road capacity or the weather impact
on travel time prediction. Besides, considering more features for individ-
ual vehicle characteristics, such as vehicle maximum speed, car following
model, vehicle acceleration etc could potentially improve the efficiency
when the DRL agent is making a decision for navigation.

• Combine other DRL approaches on urban traffic optimisation in
order to improve performance of vehicle route optimisation and
eventually build an intelligent urban transportation network. As
mentioned before, there are several approaches focusing on using DRL
methods to optimise urban traffic in several different areas, such as in-
tersection traffic control and urban traffic prediction. Combining those
techniques show great promising to achieve a much more efficient system
for urban transportation networks. For instance, intersection traffic con-
trol like intelligent traffic light, speed limit control for bottlenecks could
give the DRL agent a clearer insight of the expected travel time in a road;
Meanwhile urban traffic prediction is able to provide the estimation of up-
coming traffic congestion, which is useful for DRL agent to make decisions
accordingly in order to avoid the traffic congestion.

8.5 Summary
This thesis proposed a novel DRL based solution for vehicle route optimisation
to avoid traffic congestion. It takes the complex traffic conditions across the
observed area into account, providing guidance to all the vehicles involved in
order to maximize the efficiency of the transportation network. The improved
design of a DQN architecture makes the proposed solution best suited for real-
time vehicle route optimisation. The framework is built based on SUMO traffic
simulator with an RL agent being able to observe and learn from the traffic
conditions and instruct the simulated vehicles to different paths toward their
destinations. The experiment results have shown that our solution outper-
formed both built-in navigation algorithms implemented by SUMO, whether it

Chapter 8. Conclusion and Future Work 122

is toy data in symbolic maps or realistic traffics in maps taken from the real
world. As a proof of concept, to the best of my knowledge the work in this
thesis is among the first to apply DRL solutions for vehicle route optimisation
and provide a promising direction for future works.

123

Bibliography

[1] Martín Abadi et al. “Tensorflow: A system for large-scale machine learn-
ing”. In: 12th Symposium on Operating Systems Design and Implemen-
tation. 2016, pp. 265–283.

[2] Baher Abdulhai, Rob Pringle, and Grigoris J Karakoulas. “Reinforce-
ment learning for true adaptive traffic signal control”. In: Journal of
Transportation Engineering 129.3 (2003), pp. 278–285.

[3] Luai Al Shalabi, Zyad Shaaban, and Basel Kasasbeh. “Data mining:
A preprocessing engine”. In: Journal of Computer Science 2.9 (2006),
pp. 735–739.

[4] Behrang Asadi and Ardalan Vahidi. “Predictive cruise control: Utilizing
upcoming traffic signal information for improving fuel economy and re-
ducing trip time”. In: IEEE transactions on control systems technology
19.3 (2010), pp. 707–714.

[5] Flavien Balbo and Suzanne Pinson. “Using intelligent agents for trans-
portation regulation support system design”. In: Transportation Research
part C: emerging technologies 18.1 (2010), pp. 140–156.

[6] John S Baras, Xiaobo Tan, and Pedram Hovareshti. “Decentralized con-
trol of autonomous vehicles”. In: 42nd IEEE International Conference
on Decision and Control. Vol. 2. IEEE. 2003, pp. 1532–1537.

[7] Michael Barbehenn. “A note on the complexity of Dijkstra’s algorithm
for graphs with weighted vertices”. In: IEEE transactions on computers
47.2 (1998), p. 263.

[8] Charles Beattie et al. “Deepmind lab”. In: arXiv preprint arXiv:1612.03801
(2016).

[9] Richa Bharadwaj et al. “Efficient dynamic traffic control system using
wireless sensor networks”. In: 2013 International Conference on Recent
Trends in Information Technology (ICRTIT). IEEE. 2013, pp. 668–673.

[10] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph
theory with applications. Vol. 290. Macmillan London, 1976.

[11] Iris Borowy. Defining sustainable development for our common future:
A history of the World Commission on Environment and Development
(Brundtland Commission). Routledge, 2013.

[12] Sharon Adams Boxill and Lei Yu. “An evaluation of traffic simulation
models for supporting its”. In: Houston, TX: Development Centre for
Transportation Training and Research, Texas Southern University (2000).

[13] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540
(2016).

Bibliography 124

[14] Bronx benefits from mesoscopic-microscopic modelling. https://www.
itsinternational.com/categories/gis-mapping/features/bronx-
benefits - from - mesoscopic - microscopic - modelling/. Accessed:
2019-08-4.

[15] Wilco Burghout. “Hybrid microscopic-mesoscopic traffic simulation”. PhD
thesis. KTH, 2004.

[16] Gordon DB Cameron and Gordon ID Duncan. “PARAMICS—Parallel
microscopic simulation of road traffic”. In: The Journal of Supercomput-
ing 10.1 (1996), pp. 25–53.

[17] Jordi Casas et al. “Traffic simulation with aimsun”. In: Fundamentals of
traffic simulation. Springer, 2010, pp. 173–232.

[18] J del Castillo. “A car following model-based on the lighthill-whitham
theory”. In: Transportation and traffic theory 13 (1996), pp. 517–538.

[19] Kuei-Hsiang Chao and Pi-Yun Chen. “An intelligent traffic flow con-
trol system based on radio frequency identification and wireless sensor
networks”. In: International journal of distributed sensor networks 10.5
(2014), p. 694545.

[20] Bo Chen and Harry H Cheng. “A review of the applications of agent
technology in traffic and transportation systems”. In: IEEE Transactions
on intelligent transportation systems 11.2 (2010), pp. 485–497.

[21] Okyoung Choi et al. “Delay-optimal data forwarding in vehicular sensor
networks”. In: IEEE transactions on vehicular technology 65.8 (2015),
pp. 6389–6402.

[22] Rutger Claes, Tom Holvoet, and Danny Weyns. “A decentralized ap-
proach for anticipatory vehicle routing using delegate multiagent sys-
tems”. In: IEEE Transactions on Intelligent Transportation Systems 12.2
(2011), pp. 364–373.

[23] CO2 emissions from fuel combustion 2018 overview. https://www.iea.
org/statistics/co2emissions/. Accessed: 2019-07-4.

[24] Zhe Cong, Bart De Schutter, and Robert Babuska. “A new ant colony
routing approach with a trade-off between system and user optimum”. In:
2011 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC). IEEE. 2011, pp. 1369–1374.

[25] Emanuele Crisostomi, Stephen Kirkland, and Robert Shorten. “A Google-
like model of road network dynamics and its application to regulation
and control”. In: International Journal of Control 84.3 (2011), pp. 633–
651.

[26] Frederik Michel Dekking et al. A Modern Introduction to Probability
and Statistics: Understanding why and how. Springer Science & Business
Media, 2005.

[27] Prajakta Desai et al. “CARAVAN: Congestion avoidance and route al-
location using virtual agent negotiation”. In: IEEE Transactions on In-
telligent Transportation Systems 14.3 (2013), pp. 1197–1207.

https://www.itsinternational.com/categories/gis-mapping/features/bronx-benefits-from-mesoscopic-microscopic-modelling/
https://www.itsinternational.com/categories/gis-mapping/features/bronx-benefits-from-mesoscopic-microscopic-modelling/
https://www.itsinternational.com/categories/gis-mapping/features/bronx-benefits-from-mesoscopic-microscopic-modelling/
https://www.iea.org/statistics/co2emissions/
https://www.iea.org/statistics/co2emissions/

Bibliography 125

[28] Gianni Di Caro. Ant colony optimization and its application to adap-
tive routing in telecommunication networks. Université libre de Bruxelles,
2004.

[29] Edsger W Dijkstra. “A note on two problems in connexion with graphs”.
In: Numerische mathematik 1.1 (1959), pp. 269–271.

[30] Rachel Emas. “The concept of sustainable development: definition and
defining principles”. In: Brief for GSDR (2015), pp. 1–3.

[31] Diego Falsini, Angela Fumarola, and MM Schiraldi. “Sustainable trasporta-
tion systems: dynamic routing optimization for a last-mile distribution
fleet”. In: Conference on sustainable development: the role of industrial
engineering. DIMEG Università di Bari. 2009, pp. 40–47.

[32] Martin Fellendorf. “VISSIM: A microscopic simulation tool to evalu-
ate actuated signal control including bus priority”. In: 64th Institute of
Transportation Engineers Annual Meeting. Vol. 32. Springer. 1994.

[33] C Folke et al. “Building adaptive capacity in a world of transformations”.
In: Scientific Background Paper on Resilience for the process of The
World Summit on Sustainable Development (2002).

[34] Marc Friesen et al. “Vehicular traffic monitoring using bluetooth scan-
ning over a wireless sensor network”. In: Canadian Journal of Electrical
and Computer Engineering 37.3 (2014), pp. 135–144.

[35] Donald T Gantz and James R Mekemson. “Flow profile comparison of
a microscopic car-following model and a macroscopic platoon dispersion
model for traffic simulation”. In: 1990 Winter Simulation Conference
Proceedings. IEEE. 1990, pp. 770–774.

[36] Christian Gawron. “Simulation-Based Traffic Assignment. Computing
user equilibria in large street networks”. PhD thesis. Universität zu Köln,
1998.

[37] Wade Genders and Saiedeh Razavi. “Using a deep reinforcement learn-
ing agent for traffic signal control”. In: arXiv preprint arXiv:1611.01142
(2016).

[38] Amin Ghafouri et al. “Optimal detection of faulty traffic sensors used
in route planning”. In: Proceedings of the 2nd International Workshop
on Science of Smart City Operations and Platforms Engineering. ACM.
2017, pp. 1–6.

[39] Nesrine Ghariani et al. “A survey of simulation platforms for the as-
sessment of public transport control systems”. In: 2014 International
Conference on Advanced Logistics and Transport (ICALT). IEEE. 2014,
pp. 85–90.

[40] Andrew V Goldberg and Chris Harrelson. “Computing the shortest path:
A search meets graph theory”. In: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics. 2005, pp. 156–165.

Bibliography 126

[41] Lance H Gunderson and Lowell Pritchard. Resilience and the behavior
of large-scale systems. Vol. 60. Island Press, 2012.

[42] Yacov Y Haimes. “On the definition of resilience in systems”. In: Risk
Analysis: An International Journal 29.4 (2009), pp. 498–501.

[43] Randolph W Hall. “Non-recurrent congestion: how big is the problem?
Are traveler information systems the solution?” In: Transportation Re-
search Part C: Emerging Technologies 1.1 (1993), pp. 89–103.

[44] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for
the heuristic determination of minimum cost paths”. In: IEEE transac-
tions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[45] Serge Hoogendoorn and Piet HL Bovy. “Gas-kinetic modeling and sim-
ulation of pedestrian flows”. In: Transportation Research Record 1710.1
(2000), pp. 28–36.

[46] Remco Hoogma et al. Experimenting for sustainable transport: the ap-
proach of strategic niche management. Routledge, 2005.

[47] Andreas Horni, David Charypar, and Kay W Axhausen. “Variability in
transport microsimulations investigated with the multi-agent transport
simulation matsim”. In: Arbeitsberichte Verkehrs-und Raumplanung 692
(2011).

[48] PB Hunt et al. “The SCOOT on-line traffic signal optimisation tech-
nique”. In: Traffic Engineering & Control 23.4 (1982).

[49] David Isele, Akansel Cosgun, and Kikuo Fujimura. “Analyzing Knowl-
edge Transfer in Deep Q-Networks for Autonomously Handling Multiple
Intersections”. In: arXiv preprint arXiv:1705.01197 (2017).

[50] David Isele et al. “Navigating Intersections with Autonomous Vehicles
using Deep Reinforcement Learning”. In: URL http://arxiv. org/abs/1705.01196
(2017).

[51] David Isele et al. “Navigating occluded intersections with autonomous
vehicles using deep reinforcement learning”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 2034–
2039.

[52] Eline Jonkers et al. Methodology and Framework Architecture for the
Evaluation of Effects of ICT Measures on CO2 Emissions. 2013.

[53] Hermann Kaindl and Gerhard Kainz. “Bidirectional heuristic search
reconsidered”. In: Journal of Artificial Intelligence Research 7 (1997),
pp. 283–317.

[54] Habib M Kammoun et al. “An adaptive vehicle guidance system insti-
gated from ant colony behavior”. In: 2010 IEEE International Confer-
ence on Systems, Man and Cybernetics. IEEE. 2010, pp. 2948–2955.

[55] Matthew G Karlaftis and Eleni I Vlahogianni. “Statistical methods ver-
sus neural networks in transportation research: Differences, similarities
and some insights”. In: Transportation Research Part C: Emerging Tech-
nologies 19.3 (2011), pp. 387–399.

Bibliography 127

[56] Lorraine Kerr and J Meandue. “Social change and social sustainability:
challenges for the planning profession”. In: Planning pathways. Congress.
2010.

[57] Axel Klar and Raimund Wegener. “A hierarchy of models for multilane
vehicular traffic II: Numerical investigations”. In: SIAM Journal on Ap-
plied Mathematics 59.3 (1998), pp. 1002–1011.

[58] Sven Koenig and Maxim Likhachev. “Improved fast replanning for robot
navigation in unknown terrain”. In: Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No. 02CH37292). Vol. 1.
IEEE. 2002, pp. 968–975.

[59] G Kotusevski and KA Hawick. “A review of traffic simulation software”.
In: (2009).

[60] Daniel Krajzewicz et al. “COLOMBO: Investigating the Potential of V2X
for Traffic Management Purposes assuming low penetration Rates”. In:
ITS Europe (2013).

[61] Daniel Krajzewicz et al. “Recent development and applications of SUMO-
Simulation of Urban MObility”. In: International Journal On Advances
in Systems and Measurements 5.3&4 (2012).

[62] Reinhart D Kuhne and Malte B Rodiger. “Macroscopic simulation model
for freeway traffic with jams and stop-start waves”. In: 1991 Winter
Simulation Conference Proceedings. IEEE. 1991, pp. 762–770.

[63] Daniel R Lanning, Gregory K Harrell, and Jin Wang. “Dijkstra’s algo-
rithm and Google maps”. In: Proceedings of the 2014 ACM Southeast
Regional Conference. ACM. 2014, p. 30.

[64] Wilhelm Leutzbach. Introduction to the theory of traffic flow. Vol. 47.
Springer, 1988.

[65] NE Ligterink et al. Investigations and real world emission performance
of Euro 6 light-duty vehicles. Delft: TNO, 2013.

[66] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. “ARA*:
Anytime A* with provable bounds on sub-optimality”. In: Advances in
neural information processing systems. 2004, pp. 767–774.

[67] Maxim Likhachev et al. “Anytime Dynamic A*: An Anytime, Replanning
Algorithm.” In: ICAPS. Vol. 5. 2005, pp. 262–271.

[68] Sejoon Lim and Daniela Rus. “Congestion-aware multi-agent path plan-
ning: distributed algorithm and applications”. In: The Computer Journal
57.6 (2013), pp. 825–839.

[69] Canhong Lin et al. “Survey of green vehicle routing problem: past and fu-
ture trends”. In: Expert systems with applications 41.4 (2014), pp. 1118–
1138.

[70] Todd Litman and David Burwell. “Issues in sustainable transportation”.
In: International Journal of Global Environmental Issues 6.4 (2006),
pp. 331–347.

Bibliography 128

[71] Yisheng Lv et al. “Traffic flow prediction with big data: a deep learning
approach”. In: IEEE Transactions on Intelligent Transportation Systems
16.2 (2015), pp. 865–873.

[72] Michal Maciejewski. “A comparison of microscopic traffic flow simulation
systems for an urban area”. In: Transport Problems 5 (2010), pp. 27–38.

[73] Samiksha Mahajan. “Reinforcement learning: A review from a machine
learning perspective”. In: International Journal 4.8 (2014).

[74] Jessica McGroarty. “Neihoff Urban Studio–W10 January 29, 2010”. In:
(2010).

[75] Jessica McGroarty. “Recurring and non-recurring congestion: Causes,
impacts, and solutions”. In: Neihoff Urban Studio–W10, University of
Cincinnati (2010).

[76] Sara Meerow, Joshua P Newell, and Melissa Stults. “Defining urban re-
silience: A review”. In: Landscape and urban planning 147 (2016), pp. 38–
49.

[77] Harvey J Miller, Shih-Lung Shaw, et al. Geographic information systems
for transportation: principles and applications. Oxford University Press
on Demand, 2001.

[78] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (2015), p. 529.

[79] Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. “Traffic light
control using deep policy-gradient and value-function-based reinforce-
ment learning”. In: IET Intelligent Transport Systems 11.7 (2017), pp. 417–
423.

[80] Shekhar Mukherji.Migration and urban decay: Asian experiences. Rawat,
2006.

[81] N Muthukumaran and NK Ambujam. “Wastewater treatment and man-
agement in urban areas—a case study of Tiruchirappalli City, Tamil
Nadu, India”. In: Proceedings of the Third International Conference on
Environment and Health, Chennai, India. 2003, pp. 15–17.

[82] Kai Nagel. “From particle hopping models to traffic flow theory”. In:
Transportation Research Record 1644.1 (1998), pp. 1–9.

[83] Shahrizul Anuar Abu Nahar and Fazida Hanim Hashim. “Modelling and
analysis of an efficient traffic network using ant colony optimization algo-
rithm”. In: 2011 Third International Conference on Computational In-
telligence, Communication Systems and Networks. IEEE. 2011, pp. 32–
36.

[84] Jose E Naranjo et al. “Lane-change fuzzy control in autonomous vehi-
cles for the overtaking maneuver”. In: IEEE Transactions on Intelligent
Transportation Systems 9.3 (2008), pp. 438–450.

[85] Tuan Nam Nguyen. “Solving Assignment and Routing Problems in Mixed
Traffic Systems”. PhD thesis. 2016.

Bibliography 129

[86] Nils J Nilsson. Principles of artificial intelligence. Morgan Kaufmann,
2014.

[87] Kartik Pandit et al. “Adaptive traffic signal control with vehicular ad hoc
networks”. In: IEEE Transactions on Vehicular Technology 62.4 (2013),
pp. 1459–1471.

[88] Praveen Paruchuri, Alok Reddy Pullalarevu, and Kamalakar Karlapalem.
“Multi agent simulation of unorganized traffic”. In: Proceedings of the
first international joint conference on Autonomous agents and multia-
gent systems: part 1. ACM. 2002, pp. 176–183.

[89] Lucio Sanchez Passos, Rosaldo JF Rossetti, and Zafeiris Kokkinogenis.
“Towards the next-generation traffic simulation tools: a first appraisal”.
In: 6th Iberian Conference on Information Systems and Technologies
(CISTI 2011). IEEE. 2011, pp. 1–6.

[90] Harold J Payne. “FREFLO: A macroscopic simulation model of freeway
traffic”. In: Transportation Research Record 722 (1979).

[91] Dabal Pedamonti. “Comparison of non-linear activation functions for
deep neural networks on MNIST classification task”. In: arXiv preprint
arXiv:1804.02763 (2018).

[92] Elise Van der Pol and Frans A Oliehoek. “Coordinated deep reinforce-
ment learners for traffic light control”. In: Proceedings of Learning, In-
ference and Control of Multi-Agent Systems (at NIPS 2016) (2016).

[93] N Polson and V Sokolov. “Deep learning predictors for traffic flows”. In:
arXiv preprint arXiv:1604.04527 (2016).

[94] Sergio Porta, Paolo Crucitti, and Vito Latora. “The network analysis
of urban streets: a dual approach”. In: Physica A: Statistical Mechanics
and its Applications 369.2 (2006), pp. 853–866.

[95] Nedal T Ratrout and Syed Masiur Rahman. “A comparative analysis of
currently used microscopic and macroscopic traffic simulation software”.
In: The Arabian Journal for Science and Engineering 34.1B (2009),
pp. 121–133.

[96] Honglei Ren et al. “A Deep Learning Approach to the Citywide Traffic
Accident Risk Prediction”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). IEEE. 2018, pp. 3346–3351.

[97] Mustapha Saidallah, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti
Elalaoui. “A comparative study of urban road traffic simulators”. In:
MATEC Web of Conferences. Vol. 81. EDP Sciences. 2016, p. 05002.

[98] Lisa A Schaefer et al. “Application of a general particle system model
to movement of pedestrians and vehicles”. In: 1998 Winter Simulation
Conference. Proceedings (Cat. No. 98CH36274). Vol. 2. IEEE. 1998,
pp. 1155–1160.

[99] Tom Schaul et al. “Prioritized experience replay”. In: arXiv preprint
arXiv:1511.05952 (2015).

[100] David Schrank et al. “2015 urban mobility scorecard”. In: (2015).

Bibliography 130

[101] Matt Selinger and Luke Schmidt. “Adaptive traffic control systems in
the United States”. In: HDR Engineering, Inc (2009).

[102] Bruno Castro da Silva et al. “ITSUMO: an intelligent transportation
system for urban mobility”. In: International Workshop on Innovative
Internet Community Systems. Springer. 2004, pp. 224–235.

[103] Arthur G Sims and Kenneth W Dobinson. “The Sydney coordinated
adaptive traffic (SCAT) system philosophy and benefits”. In: IEEE Trans-
actions on vehicular technology 29.2 (1980), pp. 130–137.

[104] Fangzhou Sun, Abhishek Dubey, and Jules White. “DxNAT—Deep neu-
ral networks for explaining non-recurring traffic congestion”. In: 2017
IEEE International Conference on Big Data (Big Data). IEEE. 2017,
pp. 2141–2150.

[105] Wadhah Z Tareq and Rabah N Farhan. “Autonomic Traffic Lights Con-
trol Using Ant Colony Algorithm”. In: International Journal of Advances
in Engineering & Technology 5.1 (2012), p. 448.

[106] Thomas L Thorpe and Charles W Anderson. Tra c light control using
sarsa with three state representations. Tech. rep. Citeseer, 1996.

[107] Tomer Toledo et al. “Mesoscopic simulation for transit operations”. In:
Transportation Research Part C: Emerging Technologies 18.6 (2010),
pp. 896–908.

[108] Department for Transport. Towards a sustainable transport system: sup-
porting economic growth in a low carbon world. Vol. 7226. The Stationery
Office, 2007.

[109] Federal Highway Administration (US) and Federal Transit Administra-
tion (US). 2013 Status of the Nation’s Highways, Bridges, and Transit
Conditions & Performance Report to Congress. Government Printing
Office, 2017.

[110] S Uttara, Nishi Bhuvandas, Vanita Aggarwal, et al. “Impacts of urban-
ization on environment”. In: International Journal of Research in Engi-
neering and Applied Sciences 2.2 (2012), pp. 1637–1645.

[111] M Van Aerde et al. “INTEGRATION: An overview of traffic simulation
features”. In: Transportation Research Records (1996).

[112] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement
learning with double q-learning”. In: Thirtieth AAAI Conference on Ar-
tificial Intelligence. 2016.

[113] Ziyu Wang et al. “Dueling network architectures for deep reinforcement
learning”. In: arXiv preprint arXiv:1511.06581 (2015).

[114] Ziyu Wang et al. “Dueling network architectures for deep reinforcement
learning”. In: arXiv preprint arXiv:1511.06581 (2015).

[115] Horst F Wedde and Sebastian Senge. “BeeJamA: A distributed, self-
adaptive vehicle routing guidance approach”. In: IEEE Transactions on
Intelligent Transportation Systems 14.4 (2013), pp. 1882–1895.

Bibliography 131

[116] MA Wiering et al. Intelligent traffic light control. 2004.
[117] David Wilkie, Cenk Baykal, and Ming C Lin. “Participatory route plan-

ning”. In: Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM. 2014,
pp. 213–222.

[118] David James Wilkie et al. “Self-aware traffic route planning”. In: Twenty-
Fifth AAAI Conference on Artificial Intelligence. 2011.

[119] World Urbanization Prospects 2018. https://population.un.org/
wup/Publications/Files/WUP2018-Highlights.pdf.

[120] WANGYanyang, WEI Tietao, and QU Xiangju. “Study of multi-objective
fuzzy optimization for path planning”. In: Chinese Journal of Aeronau-
tics 25.1 (2012), pp. 51–56.

[121] Zhanhong Zhou and Ming Cai. “Intersection signal control multi-objective
optimization based on genetic algorithm”. In: Journal of Traffic and
Transportation Engineering (English Edition) 1.2 (2014), pp. 153–158.

[122] Xinlu Zong et al. “Multi-ant colony system for evacuation routing prob-
lem with mixed traffic flow”. In: IEEE Congress on Evolutionary Com-
putation. IEEE. 2010, pp. 1–6.

[123] Nikolaos Zygouras et al. “Towards Detection of Faulty Traffic Sensors in
Real-Time.” In: MUD@ ICML. 2015, pp. 53–62.

https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf
https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf

132

Appendix A

Key Code Snippets for Vehicle
Route Optimisation

A.1 Scenario Class
This section presents the python codes for the key functions in scenario class.
scenario class is mainly designed for creating the required files for SUMO sim-
ulator in order to run simulation in this experiment. The python source code
for scenario class is shown as follows:

1 import os
2 import numpy as np
3 import xml.etree.ElementTree as ET
4

5 NET_FILE = ’sumo_conf/net.net.xml’
6 TRIP_FILE = ’sumo_conf/trips.trips.xml’
7 ROUTE_FILE = ’sumo_conf/routes.rou.xml’
8 VTYPE_FILE = ’sumo_conf/vtype.add.xml’
9 SUMO_CONF = ’sumo_conf/basic.cfg’

10 DEFAULT_VTYPE_FILE =
’D:/LJMU/PhD/SUMO_Projects/Deep_Learning/sumo_files/vtype.add.xml’

11 ACCIDENT_PROB = 0.01
12

13 class scenario():
14 def __init__(self,
15 map,
16 duration,
17 n_veh,
18 vType_list=None,
19 accidents=False
20):
21 self.n_veh = n_veh
22 if map.lower().endswith(’.osm’):
23 self.network = self.convert_map(map)
24 else:
25 self.network = map
26

27 if vType_list is not None:
28 self.vType = self.gen_vType(vType_list)

Appendix A. Key Code Snippets for Vehicle Route Optimisation 133

29 else:
30 self.vType = DEFAULT_VTYPE_FILE
31

32 self.trips = self.gen_trips(duration, n_veh)
33 self.routes = self.gen_route(accidents)
34 self.conf = self.gen_conf()
35

36 def convert_map(self, map):
37 cmd = ’netconvert --osm ’ + map + \
38 ’ --geometry.remove’ + \
39 ’ --ramps.guess’ + \
40 ’ --roundabouts.guess’ + \
41 ’ --junctions.join’ + \
42 ’ -o ’ + NET_FILE
43

44 os.system(cmd)
45

46 return NET_FILE
47

48 def gen_vType(self, vType_list):
49

50 with open(VTYPE_FILE, ’w+’) as vtype_file:
51 vtype_file.write(’<?xml version="1.0"?>\n’)
52 vtype_file.write(’<additional>\n’)
53 vtype_file.write(’\t<vTypeDistribution>\n’)
54 for vType in vType_list:
55 str = ’<vType ’
56 for key, value in vType.items():
57 str += key + ’="’ + value + ’" ’
58 str += ’/>’
59 vtype_file.write(’\t\t’ + str + ’\n’)
60 vtype_file.write(’\t</vTypeDistribution>\n’)
61 vtype_file.write(’</additional>\n’)
62

63 return VTYPE_FILE
64

65 def gen_trips(self, duration, n_veh):
66 n = duration / n_veh
67 cmd = ’\"\"%SUMO_HOME%tools\\randomTrips.py\" -n ’ +

self.network + \
68 ’ --trip-attributes=\"type=\\\"normal_car\\\"\" ’ + \
69 ’ -b 0’ + \
70 ’ -e ’ + str(duration) + \
71 ’ -p ’ + str(n) + \
72 ’ --prefix veh_’ + \
73 ’ -o ’ + TRIP_FILE + ’\" ’
74

75 os.system(cmd)
76

77 return TRIP_FILE

Appendix A. Key Code Snippets for Vehicle Route Optimisation 134

78

79 def gen_routes(self, accidents=False):
80 cmd = ’duarouter --route-files ’ + TRIP_FILE + \
81 ’ --additional-files ’ + self.vType + \
82 ’ -n ’ + self.network + \
83 ’ -o ’ + ROUTE_FILE
84 os.system(cmd)
85

86 if accidents:
87 n_accidents = int(self.n_veh * ACCIDENT_PROB)
88 accidents_id_list = []
89 for i in range(n_accidents):
90 while True:
91 j = np.random.randint(self.n_veh)
92 if j not in accidents_id_list:
93 accidents_id_list.append(j)
94 break
95

96 for i in accidents_id_list:
97 root = ET.parse(ROUTE_FILE).getroot()
98 veh = root.find(’.//vehicle[@id="veh_’ + i + ’"]’)
99 route = veh.find(’route’).attrib[’edges’]

100 route = route.split(’ ’)
101 ET.SubElement(veh.find(’route’), ’stop’)
102 veh.find(’route’).find(’stop’).set(’lane’,

route[np.random.randint(len(route))])
103 veh.find(’route’).find(’stop’).set(’endPos’, ’10’)
104 veh.find(’route’).find(’stop’).set(’duration’, ’20’)
105 ET.ElementTree(root).write(open(ROUTE_FILE, ’w’),

encoding=’unicode’)
106

107 return ROUTE_FILE
108

109 def gen_conf(self):
110 with open(SUMO_CONF, ’w+’) as conf:
111 conf.write(’<?xml version="1.0"?>\n’)
112 conf.write(’<configuration>\n’)
113 conf.write(’\t<input>’)
114 conf.write(’\t\t<net-file value="’ + self.network +

’"/>\n’)
115 conf.write(’\t\t<route-file value="’ + self.routes +

’"/>\n’)
116 conf.write(’\t<\input>’)
117 conf.write(’<\configuration>\n’)
118

119 return SUMO_CONF

Appendix A. Key Code Snippets for Vehicle Route Optimisation 135

A.2 Environment Class
This section presents the python codes for the key functions in scenario class.
The environment class sumo_env is designed to encapsulate the use of SUMO
simulator with TraCI. It enables the features to control SUMO including to
initialise and interfere a simulation, define the state spaces and action spaces,
reward calculation, and the action applicator to the simulation.

1 import traci
2 import numpy as np
3 import os
4 import math
5 from prettytable import PrettyTable
6 import xml.etree.ElementTree as ET
7 from sklearn import preprocessing
8 import statistics
9

10 SUMO_DIR = ’D:/LJMU/PhD/SUMO_Projects/Deep_Learning/sumo_files/’
11 TEMP_ROUTE_FILE = ’sumo_conf/temp.rou.xml’
12 TEMP_TRIP_FILE = ’sumo_conf/temp.trips.xml’
13 ROUTE_FILE = ’sumo_conf/network.rou.xml’
14 TRIP_FILE = ’sumo_conf/trip.trips.xml’
15 VTYPE_FILE =

’D:/LJMU/PhD/SUMO_Projects/Deep_Learning/sumo_files/network.rou.xml’
16 ERROR_FILE = ’sumo_conf/error’
17 NAV_VEH_ID = ’nav_veh’
18 NAV_VEH_TYPE = ’nav_car’
19 STATUS_IN_ZONE = ’IN_ZONE’
20 STATUS_ARRIVED = ’ARRIVED’
21 ACCIDENT_CLEARANCE_TIME = 20
22

23 class Sumo():
24 def __init__(self,
25 sumo_conf,
26 gui=False,
27 reward_method = 0, # 0 is travel time based, 1 is VEI

based
28 start_edge="",
29 end_edge="",
30 incl_travel_time=False,
31 incl_n_veh=False):
32

33 sumo_cmd = ’sumo-gui’ if gui else ’sumo’
34 self.sumo_conf = sumo_conf
35 self.cmd = [sumo_cmd, ’-c’, sumo_conf]
36 self.start_edge = start_edge
37 self.end_edge = end_edge
38 self.incl_travel_time = incl_travel_time
39 self.incl_n_veh = incl_n_veh
40 self.reward_method = reward_method

Appendix A. Key Code Snippets for Vehicle Route Optimisation 136

41

42 # Run simulation once in order to get network information and
features number

43 traci.start([’sumo’, ’-c’, sumo_conf])
44 self.e_conn_dict, self.e_lane_dict, self.max_n_actions,

self.edges = self.get_edge_conn_info()
45 self.e_distance_dest_dict = self.get_dist_to_dest()
46 self.n_features = (self.incl_travel_time + self.incl_n_veh) *

len(self.edges) + 4
47 traci.close()
48

49 self.target = ""
50 self.veh_counter = 0
51

52 self.traci = traci
53

54 def get_edge_conn_info(self):
55 e_conn_dict = {}
56 e_lane_dict = {}
57

58 # max_link determines the number of actions in this network
59 max_link = 0
60 edges = []
61 self.shortest_travel_time = 1000
62 self.longest_travel_time = 0
63 for lane in traci.lane.getIDList():
64 if lane[:1] != ’:’:
65 l_edge = traci.lane.getEdgeID(lane)
66 e_length = traci.lane.getLength(lane)
67 e_max_speed = traci.lane.getMaxSpeed(lane)
68

69 if (e_length / e_max_speed) <
self.shortest_travel_time:

70 self.shortest_travel_time = (e_length / e_max_speed)
71

72 if (e_length / 0.1) > self.longest_travel_time:
73 self.longest_travel_time = (e_length / 0.1)
74

75 if l_edge not in edges:
76 edges.append(l_edge)
77

78 if l_edge in e_lane_dict:
79 e_lane_dict[l_edge].append(lane)
80 else:
81 e_lane_dict[l_edge] = [lane]
82

83 if traci.lane.getLinks(lane) != []:
84 e_conn_dict[l_edge] = []
85 if len(traci.lane.getLinks(lane)) > max_link:
86 max_link = len(traci.lane.getLinks(lane))

Appendix A. Key Code Snippets for Vehicle Route Optimisation 137

87

88 for i in range(len(traci.lane.getLinks(lane))):
89 connected_lanes =

traci.lane.getLinks(lane)[i][0]
90 connected_edges =

traci.lane.getEdgeID(connected_lanes)
91 e_conn_dict[l_edge].append(connected_edges)
92

93 t = PrettyTable()
94 field_names = [’Edge_ID’]
95 for i in range(max_link):
96 field_names.append(’action_’ + str(i))
97 t.field_names = field_names
98 for lane in traci.lane.getIDList():
99 if lane[:1] != ’:’:

100 row = [None for i in range(max_link)]
101 l_edge = traci.lane.getEdgeID(lane)
102 if l_edge in e_conn_dict:
103 for i in range(len(e_conn_dict[l_edge])):
104 row[i] = e_conn_dict[l_edge][i]
105 row = [l_edge] + row
106 t.add_row(row)
107 with open(’connected_edge.txt’, ’w+’) as f:
108 f.write(str(t))
109

110 return e_conn_dict, e_lane_dict, max_link, edges
111

112 def get_dist_to_dest(self):
113 e_distance_dest_dict = {}
114

115 for key, value in self.e_lane_dict.items():
116 l_end_pos_X, l_end_pos_Y =

traci.lane.getShape(value[0])[-1]
117 dest_lane = self.e_lane_dict[self.end_edge][0]
118 dest_pos_X, dest_pos_Y = traci.lane.getShape(dest_lane)[-1]
119 distance = math.hypot(dest_pos_X - l_end_pos_X, dest_pos_Y

- l_end_pos_Y)
120 e_distance_dest_dict[key] = distance
121

122 t = PrettyTable()
123 field_names = [’Edge_ID’, ’distance to destination’]
124 t.field_names = field_names
125 for key, value in e_distance_dest_dict.items():
126 t.add_row([key, value])
127 with open(’distance_to_destination.txt’, ’w+’) as f:
128 f.write(str(t))
129

130 return e_distance_dest_dict
131

132 def reset(self):

Appendix A. Key Code Snippets for Vehicle Route Optimisation 138

133 traci.start(self.cmd)
134 self.add_veh(is_nav=True)
135 self.actual_route = [self.start_edge]
136 self.status = ’NONE’
137 self.CO = 0
138 self.HC = 0
139 self.NOX = 0
140 self.PMX = 0
141 self.total_CO = 0
142 self.total_HC = 0
143 self.total_NOX = 0
144 self.total_PMX = 0
145 self.time_in_edge = [0]
146 self.VEI_in_edge = []
147

148 return self.run_simulation()
149

150 def get_default_route(self, start_edge, end_edge):
151 root = ET.parse(self.sumo_conf)
152 for type_tag in root.findall(’input/net-file’):
153 value = type_tag.get(’value’)
154

155 with open(TEMP_TRIP_FILE, ’w+’) as trip_file:
156 trip_file.write(’<?xml version="1.0"?>\n’)
157 trip_file.write(’<trips>\n’)
158 trip_file.write(’\t<trip id="0" depart="0.00" from="’ +

start_edge + ’" to="’ + end_edge + ’" />\n’)
159 trip_file.write(’</trips>\n’)
160

161 cmd = ’duarouter --route-files ’ + TEMP_TRIP_FILE + ’ -n ’ +
value + ’ -o ’ + TEMP_ROUTE_FILE

162 if not os.system(cmd):
163 root = ET.parse(TEMP_ROUTE_FILE).getroot()
164 for type_tag in root.findall(’vehicle/route’):
165 value = type_tag.get(’edges’)
166 self.default_route = value.split(" ")
167 return value.split(" ")
168

169 return None
170

171 def add_veh(self, is_nav=False, veh_id=None, route=None,
type=None):

172 if is_nav:
173 veh_id = NAV_VEH_ID
174 route = self.get_default_route(self.start_edge,

self.end_edge) if route == None else route
175 type = NAV_VEH_TYPE if type == None else type
176 route_id = veh_id + str(self.veh_counter)
177

178 traci.route.add(route_id, route)

Appendix A. Key Code Snippets for Vehicle Route Optimisation 139

179 traci.vehicle.add(veh_id, route_id, type)
180 self.in_zone = None
181 self.actual_route.append(self.start_edge)
182 self.time_in_edge.append(0)
183

184 else:
185 v_id = veh_id + str(self.veh_counter)
186 traci.route.add(v_id, route)
187 traci.vehicle.add(v_id, v_id, type)
188 self.veh_counter += 1
189

190 def run_simulation(self, action=None):
191 v_edge = traci.vehicle.getRoadID(NAV_VEH_ID)
192 if action is not None:
193 self.target = self.e_conn_dict[v_edge][action]
194 traci.vehicle.changeTarget(NAV_VEH_ID, self.target)
195

196 while True:
197 traci.simulationStep()
198 self.time_in_edge[-1] += 1
199 status = self.get_status()
200

201 if NAV_VEH_ID in traci.vehicle.getIDList():
202 self.get_emissions()
203

204 if status == ’NEW’:
205 self.time_in_edge.append(0)
206 self.VEI_in_edge.append(self.get_VEI())
207 self.actual_route.append(v_edge)
208 self.CO = 0
209 self.HC = 0
210 self.NOX = 0
211 self.PMX = 0
212

213 if status == ’IN_ZONE’:
214 done = 0
215 obs, t = self.get_observation()
216 v_edge = traci.vehicle.getRoadID(NAV_VEH_ID)
217 n_actions = len(self.e_conn_dict[v_edge])
218 reward = 0
219

220 return obs, t, n_actions, reward, done
221

222 elif status == ’DONE’:
223 done = 1
224 reward = self.get_reward(done)
225 obs = np.zeros(self.n_features)
226 t = ""
227 n_actions = 0
228

Appendix A. Key Code Snippets for Vehicle Route Optimisation 140

229 return obs, t, n_actions, reward, done
230

231 def get_status(self):
232 if NAV_VEH_ID in traci.vehicle.getIDList():
233 v_lane = traci.vehicle.getLaneID(NAV_VEH_ID)
234 if v_lane[:1] != ’:’:
235 v_pos = traci.vehicle.getLanePosition(NAV_VEH_ID)
236 l_len = traci.lane.getLength(v_lane)
237 v_edge = traci.vehicle.getRoadID(NAV_VEH_ID)
238 zone_length = self.get_decision_zone_length()
239

240 if self.in_zone == None and \
241 l_len - v_pos <= zone_length and \
242 v_edge not in [self.end_edge]:
243 self.in_zone = v_edge
244 self.status = ’IN_ZONE’
245 return ’IN_ZONE’
246

247 elif self.in_zone != None and self.in_zone != v_edge:
248 self.in_zone = None
249 self.status = ’NEW’
250 return ’NEW’
251

252 else:
253 self.status = ’NONE’
254 return ’NONE’
255

256 elif NAV_VEH_ID in traci.simulation.getArrivedIDList():
257 self.status = ’DONE’
258 return ’DONE’
259

260 def get_decision_zone_length(self):
261 v_lane = traci.vehicle.getLaneID(NAV_VEH_ID)
262 v_max_speed = traci.vehicle.getMaxSpeed(NAV_VEH_ID)
263 v_decel = traci.vehicle.getDecel(NAV_VEH_ID)
264 v_tau = traci.vehicle.getTau(NAV_VEH_ID)
265 l_len = traci.lane.getLength(v_lane)
266

267 zone_length = v_max_speed + (v_max_speed * v_decel * v_tau)
268 if l_len <= zone_length:
269 return l_len
270

271 return zone_length
272

273 def get_emissions(self):
274 self.CO += traci.vehicle.getCOEmission(NAV_VEH_ID)
275 self.HC += traci.vehicle.getHCEmission(NAV_VEH_ID)
276 self.NOX += traci.vehicle.getNOxEmission(NAV_VEH_ID)
277 self.PMX += traci.vehicle.getPMxEmission(NAV_VEH_ID)
278 self.total_CO += traci.vehicle.getCOEmission(NAV_VEH_ID)

Appendix A. Key Code Snippets for Vehicle Route Optimisation 141

279 self.total_HC += traci.vehicle.getHCEmission(NAV_VEH_ID)
280 self.total_NOX += traci.vehicle.getNOxEmission(NAV_VEH_ID)
281 self.total_PMX += traci.vehicle.getPMxEmission(NAV_VEH_ID)
282

283 def get_observation(self):
284 np_veh_pos = np.array([])
285 np_travel_time = np.array([])
286 np_n_veh = np.array([])
287 np_obs = np.array([])
288

289 l_ID = traci.vehicle.getLaneID(NAV_VEH_ID)
290 # v_pos_x, v_pos_y = traci.vehicle.getPosition(NAV_VEH_ID)
291 v_pos_x, v_pos_y = traci.lane.getShape(l_ID)[-1]
292 [min_x, min_y], [max_x, max_y] =

traci.simulation.getNetBoundary()
293

294 l_ID = self.e_lane_dict[self.end_edge][0]
295 des_x, des_y = traci.lane.getShape(l_ID)[-1]
296 display_obs = ’Destination: ’ + str([des_x, des_y]) + ’\n’
297 display_obs += ’Vehicle Position: ’ + str([v_pos_x, v_pos_y])

+ ’\n’
298

299 min_x = des_x if des_x < min_x else min_x
300 min_y = des_y if des_y < min_y else min_y
301 max_x = des_x if des_x > max_x else max_x
302 max_y = des_y if des_y > max_y else max_y
303

304 des_x = (des_x - min_x) / (max_x - min_x)
305 des_y = (des_y - min_y) / (max_y - min_y)
306 v_pos_x = (v_pos_x - min_x) / (max_x - min_x)
307 v_pos_y = (v_pos_y - min_y) / (max_y - min_y)
308

309 np_veh_pos = np.append(np_veh_pos, [des_x, des_y])
310 np_veh_pos = np.append(np_veh_pos, [v_pos_x, v_pos_y])
311

312

313 np_obs = np.append(np_obs, np_veh_pos)
314

315 if self.incl_travel_time or self.incl_n_veh:
316 t = PrettyTable()
317 field_names = [’Edge ID’]
318 for e_ID in traci.edge.getIDList():
319 if e_ID[:1] != ’:’:
320 row = [e_ID]
321

322 if self.incl_travel_time:
323

324 e_mean_speed =
traci.edge.getLastStepMeanSpeed(e_ID)

325 e_lane = self.e_lane_dict[e_ID][0]

Appendix A. Key Code Snippets for Vehicle Route Optimisation 142

326 e_length = traci.lane.getLength(e_lane)
327 e_max_speed = traci.lane.getMaxSpeed(e_lane)
328 if e_mean_speed == 0:
329 if traci.edge.getLastStepOccupancy() == 100:
330 e_travel_time = e_length / 0.1
331 else:
332 is_accident = True
333 first_veh_pos = 0
334 last_veh_pos = e_length
335 for veh in

traci.edge.getLastStepVehicleIDs():
336 v_lane_pos =

traci.vehicle.getLanePosition(veh)
337 if v_lane_pos == e_length:
338 is_accident = False
339 if v_lane_pos > first_veh_pos:
340 first_veh_pos = v_lane_pos
341 if v_lane_pos < last_veh_pos:
342 last_veh_pos = v_lane_pos
343

344 if is_accident:
345 e_travel_time = (last_veh_pos /

e_max_speed) + \
346 ACCIDENT_CLEARANCE_TIME

+ \
347 ((e_length -

first_veh_pos) /
e_max_speed)

348 else:
349 e_travel_time = (last_veh_pos /

e_max_speed) + \
350 ((e_length -

last_veh_pos) / 0.1)
351 else:
352 e_travel_time =

traci.edge.getTraveltime(e_ID)
353

354 e_travel_time = (e_travel_time -
self.shortest_travel_time) / \

355 (self.longest_travel_time -
self.shortest_travel_time)

356

357 np_travel_time = np.append(np_travel_time,
e_travel_time)

358 field_names.append(’expected travel time’)
359 row.append(e_mean_speed)
360

361 if self.incl_n_veh:
362 e_n_veh =

traci.edge.getLastStepVehicleNumber(e_ID)

Appendix A. Key Code Snippets for Vehicle Route Optimisation 143

363 e_n_veh = e_n_veh / self.max_n_veh
364 np_n_veh = np.append(np_n_veh, e_n_veh)
365 field_names.append(’vehicle number’)
366 row.append(e_n_veh)
367

368 if t.field_names == []:
369 t.field_names = field_names
370 t.add_row(row)
371

372 display_obs += str(t)
373

374 np_obs = np.append(np_obs, np_travel_time)
375 np_obs = np.append(np_obs, np_n_veh)
376 return np_obs, display_obs
377

378 def get_reward(self, done):
379 if done:
380 reward = 1
381 else:
382 if self.reward_method == 0:
383 reward = self.time_in_edge[-2] / -1
384

385 else:
386 reward = self.VEI_in_edge[-1] / -1
387

388 return reward
389

390 def get_VEI(self):
391 # Some values for calculation in this function is hardcoded by

following the euro standard
392 # need to change when using different vehicle type
393

394 w_CO = 1
395 w_HC = 1 / 0.068
396 w_NOX = 1 / 0.06
397 w_PMX = 1 / 0.005
398

399 std_CO = 1000
400 std_HC = 68
401 std_NOX = 60
402 std_PMX = 5
403

404 # convert from miles to km
405 CO_edge = self.CO * 1.6
406 HC_edge = self.HC * 1.6
407 NOX_edge = self.NOX * 1.6
408 PMX_edge = self.PMX * 1.6
409

410 VEI_CO = (CO_edge * w_CO) / std_CO
411 VEI_HC = (HC_edge * w_HC) / std_HC

Appendix A. Key Code Snippets for Vehicle Route Optimisation 144

412 VEI_NOX = (NOX_edge * w_NOX) / std_NOX
413 VEI_PMX = (PMX_edge * w_PMX) / std_PMX
414

415 VEI = VEI_CO + VEI_HC + VEI_NOX + VEI_PMX
416

417 return VEI
418

419 def step_count(self):
420 return traci.simulation.getTime()
421

422 def close(self):
423 traci.close()

A.3 DRL Agent Class
The DRL agent class agent is to interact with the environment through the
environment class sumo_env and use the implementation of the DRL algorithms
to train a model in order to optimise vehicle’s routing selection. It imports
Tensorflow library to implement the DQN learning process.

1 import numpy as np
2 import tensorflow as tf
3

4 class SumTree(object):
5 data_pointer = 0
6

7 def __init__(self, capacity):
8 self.capacity = capacity
9 self.tree = np.zeros(2 * capacity - 1)

10 self.data = np.zeros(capacity, dtype=object)
11

12 def add(self, p, data):
13 tree_idx = self.data_pointer + self.capacity - 1
14 self.data[self.data_pointer] = data
15 self.update(tree_idx, p)
16

17 self.data_pointer += 1
18 if self.data_pointer >= self.capacity:
19 self.data_pointer = 0
20

21 def update(self, tree_idx, p):
22 change = p - self.tree[tree_idx]
23 self.tree[tree_idx] = p
24

25 while tree_idx != 0:
26 tree_idx = (tree_idx - 1) // 2
27 self.tree[tree_idx] += change
28

29 def get_leaf(self, v):

Appendix A. Key Code Snippets for Vehicle Route Optimisation 145

30 parent_idx = 0
31 while True:
32 cl_idx = 2 * parent_idx + 1
33 cr_idx = cl_idx + 1
34 if cl_idx >= len(self.tree):
35 leaf_idx = parent_idx
36 break
37 else:
38 if v <= self.tree[cl_idx]:
39 parent_idx = cl_idx
40 else:
41 v -= self.tree[cl_idx]
42 parent_idx = cr_idx
43

44 data_idx = leaf_idx - self.capacity + 1
45 return leaf_idx, self.tree[leaf_idx], self.data[data_idx]
46

47 @property
48 def total_p(self):
49 return self.tree[0]
50

51

52 class Memory(object):
53

54 epsilon = 0.01 # small amount to avoid zero priority
55 alpha = 0.2 # [0~1] convert the importance of TD error to priority
56 beta = 0.4 # importance-sampling, from initial value increasing

to 1
57 beta_increment_per_sampling = 0.001
58 abs_err_upper = 1. # clipped abs error
59

60 def __init__(self, capacity):
61 self.tree = SumTree(capacity)
62

63 def store(self, transition):
64 max_p = np.max(self.tree.tree[-self.tree.capacity:])
65 if max_p == 0:
66 max_p = self.abs_err_upper
67 self.tree.add(max_p, transition)
68

69 def sample(self, n):
70 b_idx, b_memory, ISWeights = np.empty((n,), dtype=np.int32),

np.empty((n, self.tree.data[0].size)), np.empty((n, 1))
71 pri_seg = self.tree.total_p / n
72 self.beta = np.min([1., self.beta +

self.beta_increment_per_sampling])
73

74 min_prob = np.min(self.tree.tree[-self.tree.capacity:]) /
self.tree.total_p

75 for i in range(n):

Appendix A. Key Code Snippets for Vehicle Route Optimisation 146

76 a, b = pri_seg * i, pri_seg * (i + 1)
77 v = np.random.uniform(a, b)
78 idx, p, data = self.tree.get_leaf(v)
79 prob = p / self.tree.total_p
80 ISWeights[i, 0] = np.power(prob/min_prob, -self.beta)
81 b_idx[i], b_memory[i, :] = idx, data
82 return b_idx, b_memory, ISWeights
83

84 def batch_update(self, tree_idx, abs_errors):
85 abs_errors += self.epsilon
86 clipped_errors = np.minimum(abs_errors, self.abs_err_upper)
87 ps = np.power(clipped_errors, self.alpha)
88 for ti, p in zip(tree_idx, ps):
89 self.tree.update(ti, p)
90

91

92 class Agent:
93 def __init__(
94 self,
95 n_features,
96 n_actions,
97 learning_rate=0.005,
98 reward_decay=0.9,
99 e_greedy=0.95,

100 replace_target_iter=300,
101 memory_size=10000,
102 batch_size=32,
103 e_greedy_increment=0.00001,
104 output_graph=False,
105 prioritized=True,
106 double_q=True,
107 dueling=True,
108 sess=None,
109 name=’’,
110 saver=’’
111):
112 config = tf.ConfigProto()
113 config.gpu_options.allow_growth = True
114

115 self.n_actions = n_actions
116 self.n_features = n_features
117 self.lr = learning_rate
118 self.gamma = reward_decay
119 self.epsilon_max = e_greedy
120 self.replace_target_iter = replace_target_iter
121 self.memory_size = memory_size
122 self.batch_size = batch_size
123 self.epsilon_increment = e_greedy_increment
124 self.epsilon = 0 if e_greedy_increment is not None else

self.epsilon_max

Appendix A. Key Code Snippets for Vehicle Route Optimisation 147

125

126 self.prioritized = prioritized
127 self.double_q = double_q
128 self.dueling = dueling
129 self.learn_step_counter = 0
130

131 self._build_net(name)
132 t_params = tf.get_collection(’target_net_params’)
133 e_params = tf.get_collection(’eval_net_params’)
134 self.replace_target_op = [tf.assign(t, e) for t, e in

zip(t_params, e_params)]
135

136 if self.prioritized:
137 self.memory = Memory(capacity=memory_size)
138 else:
139 self.memory = np.zeros((self.memory_size, n_features*2+2))
140 self.saver = tf.train.Saver()
141 if sess is None:
142 self.sess = tf.Session(config=config)
143 self.sess.run(tf.global_variables_initializer())
144 else:
145 self.sess = sess
146 if saver != ’’:
147 self.saver.restore(self.sess,

’saver/my_policy_net_pg.ckpt’)
148 self.cost_his = []
149

150

151 def _build_net(self, name):
152 def build_layers(s, c_names, n_l1, w_initializer,

b_initializer, trainable, name):
153 with tf.variable_scope(name + ’l1’):
154 w1 = tf.get_variable(’w1’, [self.n_features, n_l1],

initializer=w_initializer, collections=c_names,
trainable=trainable)

155 b1 = tf.get_variable(’b1’, [1, n_l1],
initializer=b_initializer, collections=c_names,
trainable=trainable)

156 l1 = tf.nn.relu(tf.matmul(s, w1) + b1)
157

158 with tf.variable_scope(name + ’l2’):
159 w3 = tf.get_variable(’w2’, [150, 100],

initializer=w_initializer, collections=c_names,
trainable=trainable)

160 b3 = tf.get_variable(’b2’, [1, 100],
initializer=b_initializer, collections=c_names,
trainable=trainable)

161 l2 = tf.nn.relu(tf.matmul(l1, w3) + b3)
162

163 if self.dueling:

Appendix A. Key Code Snippets for Vehicle Route Optimisation 148

164 with tf.variable_scope(name +’Value’):
165 w2 = tf.get_variable(’w2’, [100, 1],

initializer=w_initializer, collections=c_names)
166 b2 = tf.get_variable(’b2’, [1, 1],

initializer=b_initializer, collections=c_names)
167 self.V = tf.matmul(l2, w2) + b2
168

169 with tf.variable_scope(name + ’Advantage’):
170 w2 = tf.get_variable(’w2’, [100, self.n_actions],

initializer=w_initializer, collections=c_names)
171 b2 = tf.get_variable(’b2’, [1, self.n_actions],

initializer=b_initializer, collections=c_names)
172 self.A = tf.matmul(l2, w2) + b2
173

174 with tf.variable_scope(name + ’Q’):
175 out = self.V + (self.A - tf.reduce_mean(self.A,

axis=1, keep_dims=True))
176 else:
177 with tf.variable_scope(name + ’Q’):
178 w2 = tf.get_variable(’w2’, [100, self.n_actions],

initializer=w_initializer, collections=c_names)
179 b2 = tf.get_variable(’b2’, [1, self.n_actions],

initializer=b_initializer, collections=c_names)
180 out = tf.matmul(l2, w2) + b2
181

182 return out
183

184 self.s = tf.placeholder(tf.float32, [None, self.n_features],
name=’s’)

185 self.q_target = tf.placeholder(tf.float32, [None,
self.n_actions], name=name+’Q_target’)

186 if self.prioritized:
187 self.ISWeights = tf.placeholder(tf.float32, [None, 1],

name=name+’IS_weights’)
188 with tf.variable_scope(name+’eval_net’):
189 c_names, n_l1, w_initializer, b_initializer = \
190 [’eval_net_params’, tf.GraphKeys.GLOBAL_VARIABLES],

150, \
191 tf.random_normal_initializer(0., 0.3),

tf.constant_initializer(0.1)
192

193 self.q_eval = build_layers(self.s, c_names, n_l1,
w_initializer, b_initializer, True, name)

194

195 with tf.variable_scope(name+’loss’):
196 if self.prioritized:
197 self.abs_errors = tf.reduce_sum(tf.abs(self.q_target -

self.q_eval), axis=1)
198 self.loss = tf.reduce_mean(self.ISWeights *

tf.squared_difference(self.q_target, self.q_eval))

Appendix A. Key Code Snippets for Vehicle Route Optimisation 149

199 else:
200 self.loss =

tf.reduce_mean(tf.squared_difference(self.q_target,
self.q_eval))

201 with tf.variable_scope(name+’train’):
202 self._train_op =

tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
203

204 self.s_ = tf.placeholder(tf.float32, [None, self.n_features],
name=’s_’)

205 with tf.variable_scope(name+’target_net’):
206 c_names = [’target_net_params’,

tf.GraphKeys.GLOBAL_VARIABLES]
207 self.q_next = build_layers(self.s_, c_names, n_l1,

w_initializer, b_initializer, False, name)
208

209 def store_transition(self, sim_data):
210 s = sim_data[0]
211 a = sim_data[1]
212 r = sim_data[2]
213 s_ = sim_data[3]
214 if self.prioritized:
215 transition = np.hstack((s, [a, r], s_))
216 self.memory.store(transition)
217 else:
218 if not hasattr(self, ’memory_counter’):
219 self.memory_counter = 0
220 transition = np.hstack((s, [a, r], s_))
221 index = self.memory_counter % self.memory_size
222 self.memory[index, :] = transition
223 self.memory_counter += 1
224

225 def choose_action(self, observation, n_actions, current_edge,
conn_edges, e_distance):

226 observation = observation[np.newaxis, :]
227 actions_value = self.sess.run(self.q_eval, feed_dict={self.s:

observation})
228 if np.random.uniform() < self.epsilon:
229 action = np.argmax(actions_value[0][:n_actions])
230 else:
231 if n_actions > 1:
232 if np.random.uniform() < 0.6:
233 prob_explore = []
234 for edge in conn_edges:
235 distance = e_distance[edge]
236 prob_explore.append(distance)
237 prob_explore = np.array(prob_explore)
238 prob_explore -= np.mean(prob_explore)
239 prob_explore /= np.std(prob_explore)
240 prob_explore = self.softmax(prob_explore)

Appendix A. Key Code Snippets for Vehicle Route Optimisation 150

241

242 action = np.random.choice(range(n_actions),
p=prob_explore)

243 else:
244 action = np.random.randint(0, n_actions)
245 else:
246 action = 0
247 return action, actions_value
248

249 def learn(self, episode, sim):
250 if self.learn_step_counter % self.replace_target_iter == 0:
251 self.sess.run(self.replace_target_op)
252 print(’\ntarget_params_replaced\n’)
253

254 if self.prioritized:
255 tree_idx, batch_memory, ISWeights =

self.memory.sample(self.batch_size)
256 else:
257 sample_index = np.random.choice(self.memory_size,

size=self.batch_size)
258 batch_memory = self.memory[sample_index, :]
259

260 q_next, q_eval4next = self.sess.run(
261 [self.q_next, self.q_eval],
262 feed_dict={self.s_: batch_memory[:, -self.n_features:],
263 self.s: batch_memory[:, -self.n_features:]})
264 q_eval = self.sess.run(self.q_eval, {self.s: batch_memory[:,

:self.n_features]})
265

266 q_target = q_eval.copy()
267 batch_index = np.arange(self.batch_size, dtype=np.int32)
268 eval_act_index = batch_memory[:, self.n_features].astype(int)
269 reward = batch_memory[:, self.n_features + 1]
270

271 if self.double_q:
272 max_act4next = np.argmax(q_eval4next, axis=1)
273 selected_q_next = q_next[batch_index, max_act4next]
274 else:
275 selected_q_next = np.max(q_next, axis=1)
276

277 q_target[batch_index, eval_act_index] = reward + self.gamma *
selected_q_next

278 if self.prioritized:
279 _, abs_errors, self.cost = self.sess.run([self._train_op,

self.abs_errors, self.loss],
280 feed_dict={self.s:

batch_memory[:,
:self.n_features],

281 self.q_target:
q_target,

Appendix A. Key Code Snippets for Vehicle Route Optimisation 151

282 self.ISWeights:
ISWeights})

283 self.memory.batch_update(tree_idx, abs_errors)
284 else:
285 _, self.cost = self.sess.run([self._train_op, self.loss],
286 feed_dict={self.s:

batch_memory[:,
:self.n_features],

287 self.q_target:
q_target})

288

289 self.cost_his.append(self.cost)
290 self.epsilon = self.epsilon + self.epsilon_increment if

self.epsilon < self.epsilon_max else self.epsilon_max
291 self.learn_step_counter += 1
292

293 def save(self):
294 self.saver.save(self.sess, "saver/my_policy_net_pg.ckpt")
295

296 def softmax(self, x):
297 x = x - np.max(x)
298 exp_x = np.exp(x)
299 softmax = exp_x / np.sum(exp_x)
300 return softmax

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview
	Research Motivation
	Research Aims and Objectives
	Research Novelty
	Thesis Structure

	Literature Review
	Overview
	Shortest Path Algorithm
	Dijkstra’s Algorithm
	Bellman-Ford’s Algorithm
	A-Star Algorithm
	Heuristic Shortest Path Finding and Re-planning
	Bidirectional Search
	Ant-Colony Algorithm

	Traffic Management Systems
	Traffic Signal Control System
	Vehicle Routing Optimisation

	Summary of Limitations

	Deep Reinforcement Learning
	Overview
	Reinforcement Learning
	Markov Decision Process (MDP)
	Q-Learning

	Deep Reinforcement Learning
	Artificial Neural Networks
	Action Selection Policy
	Optimisation Algorithm
	Deep Q-Network

	Deep Reinforcement Learning for Urban Traffic Optimisation
	Intersection Traffic Control
	Urban Traffic Prediction
	Motivation of using DQN in Vehicle Navigation

	Limitation

	Urban Traffic Simulation
	Overview
	Background
	Traffic Simulation
	Simulation Models and Approaches
	Simulators Overview

	Overview of SUMO
	Additional Features
	TraCI
	Emissions

	Preliminary Design and Experiment for Vehicle Route Optimisation
	Overview
	Markov Decision Process for Vehicle Route Optimisation Problem
	Overview of Markov Chain
	Apply Markov Chain Modelling in Urban Road Traffic Network

	Reinforcement Learning for Vehicle Route Optimisation
	Problem Statement
	Key term definition of RL for Vehicle Route Optimisation

	Experiment Evaluation
	Experiment Setup
	Experiment Implementation
	Simulation Result
	Discussion

	Summary

	The Proposed Framework and Structure Design
	Overview
	Proposed Framework for Vehicle Route Optimisation
	Overview of Proposed Framework
	Training Framework Structure
	Training Framework Process Flow

	The Design of DRL for Real-time Vehicle Route Optimisation
	Problem Statement
	Vehicle Agent
	State Space
	Action Space
	Reward Function

	DRL method for Real-time Vehicle Route Optimisation
	Deep Neural Network Architecture for Real-time Vehicle Route Optimisation
	Summary

	Experiment Implementation and Evaluation
	Overview
	Experiment Implementation
	Training Simulation Overview
	Scenario class definition
	Building a Simulation with SUMO
	Environment Class Definition
	Data Extraction and Pre-processing
	Benchmark Methods
	DRL Agent Class Definition
	DRL Agent Architecture
	Action Selection Policy

	Experimental Evaluation
	Toy Data
	Realistic scenario analysis

	Conclusion and Future Work
	Overview
	Problem Overview
	Contributions and Achievements
	Future work
	Summary

	Bibliography
	Key Code Snippets for Vehicle Route Optimisation
	Scenario Class
	Environment Class
	DRL Agent Class

