
Bellis, J, Bourke, D, Maschinski, J, Heineman, K and Dalrymple, SE

 Climate suitability as a predictor of conservation translocation failure

http://researchonline.ljmu.ac.uk/id/eprint/12746/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Bellis, J, Bourke, D, Maschinski, J, Heineman, K and Dalrymple, SE (2020) 
Climate suitability as a predictor of conservation translocation failure. 
Conservation Biology, 34 (6). pp. 1473-1481. ISSN 0888-8892 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 
 

Climate suitability as a predictor of conservation translocation failure 1 

Joe Bellis1, David Bourke1, Joyce Maschinski2, Katie Heineman2 & Sarah E. Dalrymple1, 2 

 3 

1. Liverpool John Moores University, UK 4 

2. Center for Plant Conservation, USA 5 

 6 

Accepted by Conservation Biology, 10 April 2020 7 

Abstract 8 

 9 

The continuing decline and loss of biodiversity has caused an increase in the use of interventionist 10 

conservation tools such as translocation. However, many translocation attempts fail to establish 11 

viable populations, with poor release site selection often flagged as an inhibitor of success. We used 12 

species distribution models (SDMs) to predict the climate suitability of 102 release sites for 13 

amphibians, reptiles and terrestrial insects and compared suitability predictions between successful 14 

and failed attempts. We then quantified the importance of climate suitability relative to five other 15 

variables frequently considered in the literature to be important determinants of translocation 16 

success: number of release years, number of individuals released, life stage released, origin of the 17 

source population and position of the release site relative to the species’ range. We found that the 18 

probability of translocation success increased with predicted climate suitability and this effect was 19 

the strongest amongst the variables considered in our analysis, accounting for 48.3% of the variation 20 

in translocation outcome. These findings should encourage greater consideration of climate 21 

suitability when selecting release sites for conservation translocations and we advocate the use of 22 

SDMs as an effective way of doing this.  23 

 24 

Introduction 25 
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 26 

Threatened species management is increasingly involving more interventionist forms of conservation 27 

action to secure viable metapopulations and reverse local extinctions (Hobbs et al. 2011). 28 

Conservation translocation, defined as the intentional human-mediated movement of organisms 29 

from one location to another for conservation purposes (IUCN 2013), represents one such approach. 30 

In recent decades, there has been a global proliferation in the number of translocation-related 31 

studies (Seddon et al. 2007; Taylor et al. 2017). However, many translocations fail to establish viable 32 

populations (Fischer & Lindenmayer 2000; Cochran-Biederman et al. 2015). Attempts to improve 33 

translocation practice have identified a number of influential factors, such as the origin of the source 34 

population (Cayuela et al. 2019), the length of supplementary feeding (White et al. 2012), the life 35 

stage of individuals released (Muths et al. 2014) and the overall habitat suitability of the release site 36 

(Cochran-Biederman et al. 2015). Climate constitutes a fundamental component of overall habitat 37 

suitability but has received little attention in the literature, with very few translocation projects 38 

explicitly citing the use of techniques to estimate climate suitability (but see Brooker et al. 2018). 39 

Instead, past attempts have often relied on previous occupancy and the intuition of involved parties 40 

to select release sites (Osborne & Seddon 2012). 41 

 42 

Poor release site selection has been flagged as an impediment to translocation success (Osborne & 43 

Seddon 2012). To mitigate the risk of poor release site selection, the updated Guidelines for 44 

Reintroductions and Other Conservation Translocations (IUCN 2013) recommend that “the climate 45 

requirements of the focal species should be understood and matched to current and/or future 46 

climate at the destination site”. Species distribution models (SDMs) represent the most widely 47 

advocated approach for dealing with the challenge of selecting climatically suitable release sites 48 

(Osborne & Seddon, 2012; IUCN, 2013; but see White et al. 2015). SDMs identify statistical 49 

relationships between species occurrence and environmental descriptors. However, SDMs have 50 

recognized weaknesses such as the potential for disequilibrium between range and niche due to 51 
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dispersal limitations and biotic interactions (Svenning & Sandel 2013). Furthermore, examples of 52 

translocation projects explicitly outlining the use of SDMs to guide management decisions are scarce 53 

(Guisan et al. 2013; but see Brooker et al. 2018; Maes et al. 2019).  54 

 55 

Ectothermic species are particularly sensitive to climate (Angilletta et al. 2004). Temperature 56 

regulates the metabolism and physiology of ectotherms, which in turn affects the demographic 57 

performance of ectothermic populations through controls on their development, growth, 58 

reproduction, overwinter survival and behaviour. Precipitation also affects many of these 59 

parameters (Saenz et al. 2006), not as directly as temperature, but in some cases with 60 

equal/increased severity (Ficetola & Maiorano 2016). The metabolic and physiological controls 61 

imposed by temperature and precipitation on ectotherms mean that the performance of 62 

translocated populations is strongly influenced by exposure to climatic conditions present at release 63 

sites. Therefore, it is unsurprising that for a number of failed translocation projects involving 64 

ectotherms, the authors proposed that unfavourable temperature and precipitation regimes 65 

impeded population establishment (e.g. Cook in prep; Dempster & Hall 1980; Kuussaari et al. 2015).  66 

 67 

In this paper, we analysed data extracted from the available literature on the outcomes of 68 

amphibian, reptile and terrestrial insect translocations from a range of biogeographical regions. We 69 

constructed global SDMs for each species to compare the predicted climate suitability between sites 70 

of successful and failed translocation projects and then quantified the importance of climate 71 

suitability as a predictor of translocation success relative to five other variables commonly reported 72 

in the literature. These include how many individuals were released (Germano & Bishop 2009; Bellis 73 

et al. 2019), the duration of releases (Griffith et al. 1989), the life stage of individuals released 74 

(Muths et al. 2014; Cayuela et al. 2019), whether the source population was captive-bred or wild-75 

caught (Rummel et al. 2016) and the position of the release site relative to the species’ range 76 

(Griffith et al. 1989). We hypothesized a priori that translocations have a higher probability of 77 
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success at sites with higher predicted climate suitability (Lee-Yaw et al. 2016). Our study represents 78 

the first global comparative analysis on the importance of climate suitability in determining 79 

translocation outcome and the usefulness of SDMs as a conservation tool for aiding the selection of 80 

release sites.   81 

 82 

Methods 83 

 84 

Literature search 85 

 86 

We applied a range of approaches to find translocation case studies useful for quantifying the 87 

relative importance of climate suitability as a predictor of translocation success. As translocation 88 

reviews have already been published for herpetofauna (Dodd & Seigel 1991; Germano & Bishop 89 

2009) and terrestrial insects (Bellis et al. 2019), we began by capitalizing on the case studies found in 90 

these reviews. The herpetofauna reviews only covered literature up until 2006, thus, for relevant 91 

literature published post-2006 (until 2018) we performed our own search on the ‘Thomson Reuters 92 

Web of Science’. We used the following advanced search criteria: TS=((reintro* OR re-intro* OR 93 

translocat* OR conservation translocat* OR reinforce* OR re-inforce* OR reenforce* OR re-enforce* 94 

OR assisted migration OR assisted colonization OR assisted colonisation OR conservation 95 

introduction OR ecological replacement OR augment* OR restor* OR restock* OR re-stock* OR 96 

reseed* OR re-seed* OR managed relocation) AND (amphibian OR reptile)). The search retrieved 97 

1,419 results. We then imported all of the resulting papers into EndNote referencing software and 98 

manually screened each record to verify its relevance to amphibian and reptile translocation (see 99 

Supporting Information for full inclusion criteria). We screened the reference sections of each 100 

relevant paper to find additional studies of relevance. We also included translocation projects that 101 

were found via personal communication with authors. For terrestrial insects, as well as using the 102 

case studies found in Bellis et al. (2019), which covered the published literature up until the time of 103 
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the current study, we also included translocation projects found through personal communication 104 

with authors. For every conservation translocation, we collected data on five predictor variables in 105 

addition to climate suitability (Table 1; Supporting Information).  106 

 107 

Defining translocation success 108 

 109 

There is no broadly accepted definition of translocation success (Robert et al. 2015) and this was 110 

reflected in the variability of definitions adopted in the translocation projects that we found. For the 111 

purposes of this study, we adopted our own standardized definition of translocation success, but 112 

note that alternative metrics such as a translocated population’s finite rate of increase (growth rate 113 

predicted when the sex and age distribution stabilizes) have been used (Armstrong & Reynolds 114 

2012). We defined translocations as successful if they met the following three criteria: i) >10 years 115 

had elapsed between the time of most recent release and most recent monitoring, ii) the period 116 

between the most recent release and most recent monitoring exceeded the generation time of the 117 

species, and iii) the results of the most recent monitoring indicated individuals were still present. We 118 

applied a 10-year minimum threshold in order to reduce the potential for abnormally favourable 119 

conditions following release to have temporarily benefitted the translocated species. Enforcing 120 

criterion ii led to the omission of seven translocations, all of which involved turtle or tortoise species 121 

with generation times exceeding 15 years. A translocation project was only considered to have failed 122 

if monitoring indicated that the species was no longer present at the site. Translocation projects that 123 

could not be categorized as a success or failure were not considered for analysis. In total, 102 124 

translocation projects covering 50 different species were eligible for statistical analysis (see 125 

Supporting Information for full eligibility criteria). 126 

 127 

Species distribution models 128 

 129 
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Species and climate data 130 

 131 

We downloaded species occurrence data from the Global Biodiversity Information Facility (GBIF). As 132 

occurrences were very limited for endemic New Zealand species, we supplemented the GBIF data 133 

with records from the New Zealand Department of Conservation. For all species, we considered their 134 

global range in order to model the full extent of their climatic niche (Barbet-Massin et al. 2010; Raes 135 

2012). We quality control checked each species occurrence dataset and reduced spatial bias caused 136 

by unequal sampling (Supporting Information).  We downloaded current climate data from the 137 

WorldClim Database at a 30 arc-second resolution (Fick & Hijmans 2017) for eight standard 138 

bioclimate predictors known/presumed to be important in structuring the distributions of 139 

ectotherms (Wiens et al. 2006; Kozak & Wiens 2007; Clusella-Trullas et al. 2011), describing annual 140 

averages, seasonality and highest/lowest monthly values of temperature and precipitation. Based on 141 

recommendations made in Barbet-Massin et al. (2012), pseudo-absences were sampled at random 142 

from the background extent for each species, weighted to reach an equal prevalence with presence 143 

records (see Supporting Information for more details). 144 

 145 

Modeling approach 146 

 147 

We used an ensemble of species distribution model algorithms in order to minimise the uncertainty 148 

associated with single modeling techniques (Buisson et al. 2010). Our ensemble consisted of 149 

Random Forests (RF), Generalized Boosted Models (GBM) and MaxEnt and was implemented in the 150 

biomod2 package (v. 3.3-7) (Thuiller et al. 2016) in R v. 3.5.1 (R Core Team 2018). We evaluated 151 

model performance using the receiver operating characteristic to determine an area under the curve 152 

(AUC) (Supporting Information). In order to make SDM predictions comparable across species, we 153 

standardized the predicted climate suitability values to range between 0 and 1 with the following 154 

formula: (x - min) / (max - min). Using the standardized outputs, we extracted the climate suitability 155 
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values for the 1 x 1 km grid cell(s) corresponding to the location of each translocated population 156 

(Supporting Information).  157 

 158 

Statistical analysis 159 

 160 

We fitted a binomial multivariate generalized linear model with mixed effects (GLMM) to test how 161 

translocation outcome (binary success/failure) depends on climate suitability and five other 162 

predictor variables commonly considered in comparative analyses of translocation outcomes (see 163 

Table 1 and Supporting Information). These five variables were treated as fixed effects in the GLMM. 164 

As the three continuous variables (climate suitability, number of release years and number of 165 

individuals released) were on very different scales, we standardized them for easier interpretation of 166 

model outputs. To account for evolutionary differences between the three taxonomic groups when 167 

submitted to a translocation, we included Class as a random effect in the model. We tested for 168 

multicollinearity amongst the predictor variables using the Variation Inflation Factor (VIF), 169 

implemented in R with the package car (v. 3.0-2) (Fox et al. 2019). Each predictor variable had a VIF 170 

of <2, indicating minimal correlation between the predictors (Quinn & Keough 2002). The global 171 

model, including all five predictor variables and taxonomic Class, was implemented in R with the 172 

package lme4 (v. 1.1-19) (Bates et al. 2019).  173 

 174 

Hierarchical partitioning (Chevan & Sutherland 1991) was employed to identify the predictor 175 

variables that best accounted for variation in translocation outcome. This method calculates 176 

goodness-of-fit measures for the entire hierarchy of regression models using all two-way 177 

combinations of predictor variables to obtain the average independent contribution of each 178 

predictor to translocation outcome. Statistical significance of the independent contribution of each 179 

predictor variable was determined using a randomization approach with 1000 iterations and a 180 

significance level of 0.05 (Mac Nally 2002). Hierarchical partitioning and associated randomization 181 
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tests were executed in R with the package hier.part (v. 1.0-4) (Walsh & Mac Nally 2013). 182 

 183 

Results 184 

 185 

The definition of translocation success adopted for this study resulted in the categorization of 61 186 

successful translocations and 41 failures. The majority of translocation projects were carried out on 187 

the European (61%) and North American continents (35%), with a limited number of projects 188 

originating from Oceania (3%) and a single project from Asia.  189 

 190 

The SDMs of the final species set were generally of high quality (Area Under the Curve; mean ± S.E. = 191 

0.935 ± 0.003), indicating good predictive power.  192 

 193 

There was a positive relationship between the SDM-based predicted climate suitability and the 194 

probability of conservation translocation success (Figure 1; Table 2). The average climate suitability 195 

was higher at sites where conservation translocations were successful (mean ± S.E. = 0.576 ± 0.030) 196 

compared to sites where translocations failed (0.365 ± 0.037). This was consistent across amphibians 197 

(successful = 0.741 ± 0.048; failed = 0.433 ± 0.092), reptiles (successful = 0.538 ± 0.048; failed = 0.356 198 

± 0.123) and terrestrial insects (successful = 0.533 ± 0.045; failed = 0.329 ± 0.034).  199 

 200 

When comparing the variation in translocation outcome explained by each of the variables, climate 201 

suitability came out on top (48.3%) (Figure 2). Life stage released and number of release years 202 

accounted for the second (21.3%) and third (15.3%) most variation, respectively (Figure 2). The 203 

independent effect of each of these three variables was significant (P < 0.05) but this was not the 204 

case for origin, number of individuals released or the position of the release site. For the life stage 205 

released variable, releasing a mixture of life stages proved to be the most successful approach 206 

among the three categories considered (Table 2; Supporting Information). When considering the 207 
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number of years to release individuals at a site, the probability of success increased with the number 208 

of release years (Table 2; Supporting Information). 209 

  210 

Discussion 211 

 212 

Climate suitability predicted from SDMs was higher at sites of successful translocation. When 213 

comparing the strength of this effect against five other variables commonly considered in 214 

comparative analyses of translocation outcomes, climate suitability explained the most variation in 215 

translocation outcome. Using real-life case studies with known outcomes, our findings provide the 216 

first evidence-based support for the use of SDMs to select suitable release sites (as recommended in 217 

Osborne & Seddon 2012; IUCN 2013). These findings both highlight the importance of climate as a 218 

key influencer of translocation outcome, as well as validating the usefulness of SDMs as a tool to aid 219 

release site selection. 220 

 221 

Climate-driven translocation failure 222 

 223 

Explicit consideration of release site climate suitability is rarely reported in the translocation 224 

literature (though see Brooker et al. 2018), but our results indicate that it is important to the 225 

outcome of conservation translocations. This supports the findings of a recent review of terrestrial 226 

insect translocations, where weather and climate related factors were the most frequently reported 227 

causes of failure (Bellis et al. 2019). We suspect that most managers do not explicitly consider the 228 

climate suitability of release sites because the majority of translocation projects involve the release 229 

of organisms into their indigenous range (definition as per IUCN 2013), i.e. reintroduction (97% of 230 

our sample were reintroductions). The failure to assess climate suitability might be excusable given 231 

the constraints facing conservation workers on the ground, however, the frequent concordance 232 

between predicted climate suitability and translocation outcome observed in our study shows that 233 
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climate warrants consideration. 234 

 235 

Climate change offers one potential explanation for why areas within the indigenous range fail to 236 

support the establishment of translocated populations, as areas that once met the climatic niche 237 

requirements of species may no longer be able to support viable populations (Wiens 2016). Some 238 

reintroductions in our sample took place many decades after the species’ initial extirpation (e.g. 239 

Knisley et al. 2006; Fred & Brommer 2015) potentially allowing for considerable climate alteration at 240 

their release sites. The longer the time between initial extirpation and the planned release, the less 241 

likely the site will have retained its climatic suitability (Dalrymple & Broome 2010) and the greater 242 

the need to apply tools such as SDMs to assess the current suitability (Osborne & Seddon 2012).  243 

 244 

An interactive effect of climate with other limiting factors not considered in our analysis offers 245 

another potential cause of climate-driven translocation failure. A substantial proportion of the 246 

release sites in our sample received climate suitability predictions of between 0.3 and 0.5 (Figure 1) 247 

and there was a relatively even mixture of successes (n = 16) and failures (n = 14) within this range. 248 

When examining the authors’ perceived causes of failure, sub-optimal climate conditions in addition 249 

to other factors such as predation, competition and disease were frequently reported to have 250 

constrained population establishment (e.g. Harvey et al. 2014; Fred & Brommer 2015; Kuussaari et 251 

al. 2015). Behavioural alterations in response to sub-optimal climates (e.g. altered activity patterns) 252 

may diminish the effectiveness of an organism’s anti-predator strategy (Mori & Burghardt 2004) or 253 

its ability to forage (Traniello et al. 1984), thus reducing its fitness. This suggests that sites with low-254 

intermediate climate suitability (0.3 – 0.5) may require more detailed assessments of other 255 

potentially limiting factors (e.g. density of predators) before they are designated for translocation.   256 

 257 

There were some instances of inconcordance between SDM predictions and translocation outcome 258 

in our sample (Figure 1). Local-scale processes (e.g. habitat type, biotic interactions and 259 
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environmental disturbances) in addition to the global macroclimate influence the overall habitat 260 

suitability of individual sites (Louthan et al. 2015). If local interactions dominate species distributions 261 

in suitable climates then the the population dynamics of translocated populations may be decoupled 262 

from macroclimatic suitability. For example, in areas of high predicted climate suitability, 263 

populations might perform poorly due to intense competition, or in response to a temporary period 264 

of unfavourable weather (Fancourt et al. 2015; Louthan et al. 2015). The same counterintuitive trend 265 

may be observed in areas of low predicted climate suitability, with populations performing well 266 

through confinement to suitable microclimates (Dullinger et al. 2012; Dahlberg et al. 2014). 267 

However, local-scale processes may also be influenced by the global macroclimate (Louthan et al. 268 

2015) and our results suggest that generalizations about habitat suitability can be made with global 269 

SDMs.  270 

 271 

Using SDMs for release site selection 272 

 273 

Several authors have examined potential links between climate suitability estimated from SDMs and 274 

measures of demographic performance (Thuiller et al. 2014; Lee-Yaw et al. 2016; Csergő et al. 2017). 275 

Lee-Yaw et al. (2016) used SDMs and transplant experiments to uncover the positive relationship 276 

between predicted climate suitability and the short-term individual fitness of plant and invertebrate 277 

species. The frequent concordance between climate suitability and the translocation outcome of the 278 

three ectothermic groups considered in our study provides fresh support for the use of SDMs to 279 

infer measures of demographic performance. 280 

 281 

Our results indicate that the decision to select release sites based on SDM predictions of climate 282 

suitability influences translocation outcome more than other decisions frequently identified as 283 

important in the literature, such as how many individuals should be released (Germano & Bishop 284 

2009; Bellis et al. 2019), the duration of releases (Griffith et al. 1989), the life stage of individuals 285 
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released (Muths et al. 2014; Cayuela et al. 2019), whether to source from captive-bred or wild-286 

caught stock (Rummel et al. 2016), or the position of the release site relative to the species’ range 287 

(Griffith et al. 1989). There are many examples of translocation projects devoting resources to the 288 

construction of population models for making recommendations on the optimum number of animals 289 

to be released (e.g. Wagner et al. 2005; Tocher et al. 2006; Unger et al. 2013; Heikkinen et al. 2015). 290 

In contrast, none of the translocation projects included in our analyses cited the use of SDMs for 291 

making recommendations on the optimum site for release.  292 

 293 

The limited uptake of SDMs to guide conservation management decisions was noted by Guisan et al. 294 

(2013). Based on personal experiences with managers involved in translocation projects, we believe 295 

the lack of uptake may partly be resulting from a general assumption that parameterising and 296 

running SDMs requires advanced statistical and coding expertise. Although we chose an ensemble 297 

modeling approach that requires the use of coding software, one of the individual modeling 298 

techniques that contributed to our ensemble, MaxEnt, can be run through a standalone software 299 

package with a graphical user interface (Phillips et al. 2006). MaxEnt represents one of the most 300 

popular SDM techniques and can achieve high levels of predictive performance (Elith & Graham 301 

2009; Merow et al. 2013). Our model evaluation results support this (Area Under the Curve; mean ± 302 

S.E. = 0.849 ± 0.007), as do the climate suitability predictions, which also indicate an overall contrast 303 

between successful (0.579 ± 0.033) and failed (0.398 ± 0.040) translocations. Moreover, these 304 

outputs were generated with MaxEnt’s default configurations (though see Merow et al. 2013 for 305 

potential shortfalls of retaining the default configurations). These results should encourage wider 306 

uptake of SDMs by the translocation community, irrespective of statistical and coding expertise. 307 

 308 

Limitations 309 

 310 

Although there was frequent concordance between predicted climate suitability and translocation 311 
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failure, it should be noted that failures were not always equally represented in the dataset. 312 

Specifically, due to a skewed success:failure ratio (26:5) of reptile translocations, our findings 313 

potentially carry less relevance for this group. The paucity of failed reptile translocations is not 314 

necessarily indicative of a high success rate, but instead may be explained by the greater likelihood 315 

of reporting a successful project (see Miller et al. 2014 for a review of publication rates according to 316 

translocation outcome). The large number of successful reptile translocations also provides an 317 

explanation for the unexpected negative effect of number of individuals released on translocation 318 

outcome (Table 2), which contrasts with findings from previous reviews of insect and herpetofauna 319 

translocations (Germano & Bishop 2009; Bellis et al. 2019). In our dataset, reptile translocations 320 

contributed the greatest number of successes but on average released far fewer individuals than 321 

projects involving amphibians or insects. This likely results from the fewer offspring per annum that 322 

are produced by reptiles, thus constraining the number of individuals available for release. As our 323 

sample was of an insufficient size to split by taxonomic Class, the number of individuals released 324 

variable may have been less informative than in the previous review papers.  325 

 326 

Using correlative SDMs fitted with macroclimatic data to estimate the suitability of potential release 327 

sites may be hindered by their known weaknesses. A source of uncertainty may arise from not 328 

incorporating physiologically meaningful climate variables for all species or meaningful interactions 329 

between variables (Mod et al. 2016). AUC represents one of the most widely used evaluation metrics 330 

for SDMs, but has been criticized for its ability to assess the biological significance of models based 331 

on the set of predictor variables used (Fourcade et al. 2018). We applied a standardized approach to 332 

predict the suitability of translocation release sites by selecting eight climate variables 333 

known/presumed to be important in structuring the distributions of ectotherms (Wiens et al. 2006; 334 

Kozak & Wiens 2007; Clusella-Trullas et al. 2011), thereby conferring biological realism to the 335 

models. However, when planning for a translocation, it is advisable to adopt a more detailed 336 

species-specific variable selection protocol according to the known eco-physiology of the species of 337 
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interest (Austin & Van Niel 2011).  338 

 339 

Correlative macroclimatic SDMs may also be less informative for species with few occurrence 340 

records, such as rare or data-deficient species. For rare species, the geographical range limit may be 341 

controlled by other factors such as dispersal capacity and biotic interactions (Svenning & Sandel 342 

2013), whereas data-deficiency is often an artefact of reporting mechanisms and therefore strongly 343 

dependent on the location of the species (e.g. species in the tropics, Feeley & Silman 2011). We 344 

excluded species with fewer than 30 spatially distinct occurrences as accuracy has been shown to 345 

decline severely beyond this threshold (Wisz et al. 2008). However, rare species are often the focus 346 

of translocation projects and for managers considering the movement of these species, alternative 347 

SDM methods such as the calibration of an ensemble of bivariate models (Breiner et al. 2015) or the 348 

construction of more complex mechanistic models (Kearney & Porter 2009) could be explored. 349 

 350 

Conclusions 351 

 352 

The effects of management decisions in conservation translocations are inherently uncertain and the 353 

fundamental step of selecting the release site is no exception (Osborne & Seddon 2012). By 354 

conducting the first global comparative analysis on the importance of climate suitability in 355 

determining translocation outcome, we provide evidence to suggest that climatic SDMs can help to 356 

reduce uncertainty in translocation projects by locating release sites with a higher probability of 357 

success. Furthermore, climate suitability explains more variation in translocation outcome than five 358 

other management-related variables that have received more attention in the literature. These 359 

findings should encourage wider adoption of SDMs by the translocation community, as they 360 

represent a useful predictive tool capable of reducing uncertainty in the planning and 361 

implementation of future translocation projects.  362 

 363 
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Supporting Information 364 

 365 

Inclusion criteria and predictor variable data extraction (Appendix S1), species and climate data 366 

(Appendix S2), modeling and climate suitability extraction approach (Appendix S3), data summary 367 

(Appendix S4) and results with all failures included (Appendix S5). The authors are solely responsible 368 

for the content and functionality of these materials. Queries (other than absence of the material) 369 

should be directed to the corresponding author. 370 
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Table 1. Predictor variables used in generalized linear model with mixed effects to identify factors 
relating to translocation success.  

Variable abbreviation Variable description (levels) 

ClimSuit Predicted climate suitability of release site 
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NRelYears Total number of release years 
NumRel Total number of individuals released 
LifeStageRel Life stage released (Adults, Immatures or Mixed) 
Origin Origin of source population (Wild or Captive-bred) 
Position Position of release site relative to the species’ range (Core or Edge) 
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 617 

 618 

Table 2. Generalized Linear Mixed Model results used to assess the effect of each 
parameter on translocation outcome for amphibians, reptiles and terrestrial 
insects. Variable abbreviations are described in Table 1.  

Parameter β 
 

β SE 
 

(Intercept) 1.008 0.852 
ClimSuit 1.161 *** 0.337 
NRelYears 0.764 * 0.419 
NumRel -0.083 0.383 
LifeStageRel (Immature)a -0.892 0.719 
LifeStageRel (Mixed)b -0.267 0.876 
Origin (Captive)c -0.940 0.631 
Position(Edge)d 0.827 0.585 
a Estimates for LifeStageRel = Immature versus Adult 
b Estimates for LifeStageRel = Mixed versus Adult 
c Estimates for Origin = Captive-bred versus Wild-caught 
d Estimates for Position = Edge versus Core 
* Significance at 0.1 level 
*** Significance at 0.001 level 
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Figure 1. Effect of predicted climate suitability on model-based probabilities of translocation 
success for amphibians, reptiles and terrestrial insects. The shaded area indicates 95% confidence 
intervals. 
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Figure 2. The percentage independent contribution of each predictor variable derived by 
hierarchical partitioning to translocation outcome for amphibians, reptiles and terrestrial insects. 
Predictor variables with significant (P < 0.05) independent contributions to translocation outcome 
are denoted with an asterisk. Variable abbreviations are described in Table 1. 
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