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Validation of flood risk maps using Open source optical and radar satellite 

imagery  

ABSTRACT 

Flood risk maps delineate areas potentially at risk of flooding and are thus a crucial tool 

in flood risk management. In Spain, such maps are provided as Open geospatial data. 

This paper compares the flood prone areas according to those maps for floods of 

different return periods with the spatial extent of two floods that severely affected 

southwestern Spain using Open source optical and radar satellite imagery. Results using 

the recall metric were found to be very good and are the most relevant to emergency 

preparedness services as this metric focuses on the correctly predicted flooded areas.  It 

was also found that the 500-year flood risk map was the one with the best precision and 

accuracy for both flood events. The results confirm the accuracy of the flood risk maps 

based on Open source remote sensing imagery and hence demonstrate the potential of 

publicly available and freely distributed remote sensing data in their development. 
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1. INTRODUCTION 

Flooding is a major issue in many countries, affecting many communities and 

livelihoods (Olsson, Opondo, Tschakert, Agrawal, & Eriksen, 2014), and, despite major 

investments in flood protection schemes it remains a major issue in Europe 

(Kundzewicz et al., 2014). Many parts of Europe have been affected by floods in recent 

decades, causing loss of life and damages in the order of multiple billions of euros 

(Changes in Flood Risk in Europe, (2012).; Kundzewicz, Pińskwar, & Brakenridge, 

2013). In Spain, the economic impacts of floods have increased in recent decades, a 

trend that some have associated with a changing climate (e.g. Barredo, Saurí, and Llasat 

(2012)). With the magnitude of floods projected to increase under climate change for 

the Iberian Peninsula (Roudier et al. (2016); Alfieri, Dottori, Betts, Salamon, and Feyen 

(2018)), further damage and economic disruption caused by flooding are expected. A 

national flood risk assessment1, which was conducted as a result of Spanish Royal 

Decree 903/2010 July 9 2013 that followed Directive 2007/60/EC 23 October 2007 of 

the European Parliament on the assessment and management of flood risks, identified 

more flood prone areas in Spain than any other country of the European Union. Many 

parts of the autonomous community of Extremadura in Spain, and more specifically the 

province of Badajoz, given its geographical characteristics, are at risk of flooding, 

notably the provincial capital city of the same name as the province.  

 

Flood risk maps delineate areas prone to flooding and are thus a crucial tool for flood 

risk management. For instance, these maps, by identifying areas at risk of flooding 

during extreme precipitation events, can be used to prioritize adaptive actions and to 

                                                           
1 http://www.consorsegurosdigital.com/en/numero-03/front-page/flood-risk-management-plans 
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inform local planning policy. Flood risk maps are produced using a modelled simulation 

of a flood as a function of precipitation (de Moel, van Alphen, & Aerts, 2009) and are 

thus limited to precipitation-generated floods such as flash floods and urban floods and 

do not include the risk of flooding due to accumulated debris in watercourses, for 

instance. Hence, historical rainfall data and a hydrological model incorporating a Digital 

Elevation Model (DEM) are the main data type and technique used in the production of 

flood risk maps, but these can also be supplemented with studies or reports of previous 

flooding episodes.  

 

Even though there has been increasing use of remote sensing techniques to provide areal 

estimates of precipitation in data poor regions (Black et al., 2016), and as a result of a 

decline in the number of gauging stations in many parts of the world (Domeneghetti, 

Schumann, & Tarpanelli, 2019), the use of remote sensing techniques to map flood 

prone areas or for validating flood risk maps has to date been limited. Bates (2012) 

stated that the incorporation of remote sensing data into flood prediction systems could 

improve forecast accuracy. Accordingly, Di Baldassarre, Schumann, Brandimarte, and 

Bates (2011) described the potential of freely available remote sensing data to support 

near real-time modelling of a flood. The potential of using remote sensing and 

particularly Synthetic Aperture Radar (SAR) images for the monitoring of a flood was 

also demonstrated by Dewan, Kankam-Yeboah, and Nishigaki (2006) for the city of 

Dhaka in Bangladesh. However, uncertainties were found when using SAR images in 

the production of flood extent maps (Di Baldassarre et al., 2011). Although satellite data 

do not yet appear to be capable of completely substituting in-situ observations of water 

level, they have the potential to become a valuable source of information in flood risk 
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management (Domeneghetti et al., 2014), such as for validating the reliability of flood 

risk maps.  

 

2. OBJECTIVES 

The aim of this paper is to examine the potential use of remote sensing technology in 

flood risk mapping. In particular, it validates current flood risk maps by comparing 

them with the spatial extent of two historical floods as determined using optical remote 

sensing and radar imagery and compared it with current flood risk maps. Using Open 

source remote sensing and hydrological data, this paper thus presents the potential for 

incorporating Open source remote sensing data and their analysis in a Geographical 

Information System (GIS) environment in the delineation of flood prone areas. 

 

3. STUDY AREA AND DATA  

3.1. Study area 

The study area is the city of Badajoz, the capital city of the Province of Badajoz in 

Spain (Figure 1). It is situated close to the border with Portugal, on the left bank of the 

river Guadiana. The population of the city was 150,543 in 2017. 

 

The first step in the implementation of the EU Floods Directive is a preliminary flood 

risk assessment. This assessment, identified 82,432,574 m2 of the catchment of the 

Guadiana River, which flows through the city of Badajoz, at risk of flooding (Figure 1). 

However, this study is limited to 33,923,660 m2 of this area, which covers a 6 km radius 
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around the city of Badajoz and includes the flood risk areas of tributaries of the 

Guadiana River, i.e., the Rivillas, Gévora and Caja Rivers, which have flood risk areas 

of 10,194167 m2, 3,444,777 m2 and 2,411,576 m2, respectively. There are 8825 

inhabitants living in the study area, and floods have previously affected 2648 of them. 

The catchment is covered by soils within Group C of the hydrologic soil groups (United 

States Department of Agriculture Natural Resources Conservation Service, 2007), 

because water transmission through the soil is restricted and hence these soils have a 

slow infiltration rate. Figure 1 depicts the spatial extent of the population at risk of 

flooding. 

 

3.2. Flood Risk maps 

Following the principles of Directive 2007/60 on flood risk assessment and 

management, the Government of Spain launched the National Flood Zone Mapping 

System (NFZMS) to support river space management, risk prevention, territorial 

planning and for transparency in administration. This supporting tool includes flood risk 

maps provided as Open geospatial data (Quirós & Polo, 2018), depicting the risk of 

flooding according to five probability scenarios: 

 

1) Extremely high probability of flooding associated with a return period of 5 years. 

2) Very high probability of flooding associated with a return period of 10 years. 

3) High probability of flooding associated with a return period of 50 years. 

4) Average probability of flooding associated with a return period of 100 years. 
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5) Low probability of flooding or scenario of extreme events associated with a return 

period of 500 years. 

 

The production of flood risk maps is complex, requiring modelling and data from 

various sources. It requires a DEM of the river basin and the river section, an updated 

orthophoto (i.e., an aerial photograph geometrically corrected to a uniform scale), both 

of which at the best resolution available. The production of the flood risk maps, also 

uses georeferenced historical aerial photos, cartography of the dimensions of the 

elements or infrastructures located in the study area that may affect flooding, such as 

bridges, specks and channelling, information on elements located upstream and 

downstream of the study area that can help define the boundary conditions or simulation 

edge, such as sea level and reservoir levels, as well as information on land use to 

determine water losses and maximum flow rates data. The verification of these flood 

risk maps has been recommended using historical aerial photographs and a 

reconstruction of historical flood series using surveys and other historical information 

(Martínez, Moreno, García-Oliva, & Olona, 2011). This is a challenging task and 

remote sensing, which is not currently used in the development or validation of those 

maps at government level, potentially presents an opportunity to facilitate this, as well 

as for gathering the information required for the production of those maps. 

 

3.3. Flood events 

The identification of flood events was first based on river discharge time series. 

Discharge data for the Guadiana River were obtained from an Open database of the 

Centro de Estudios y Experimentación de Obras Públicas (CEDEX), the Centre for 
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Water Studies or Centre for Studies and Experiments on Public Works in English.  

Figure 2 illustrates the discharge of the Guadiana River at Azud de Badajoz (station 

4030), which is situated downstream of Badajoz. The figure shows a number of peak 

discharge events, which were used to identify potential flood events, as well as the 

availability of Open source optical and radar satellite images during or near the time 

occurrence of the peak discharge events. 

 

Two flooding events were selected on the basis of the availability of Open source 

optical and radar images during or near the occurrence of the peak discharge events, 

which correspond to the second and third highest peak discharge during the recent 

recording period. The flood associated with the highest peak discharge during the study 

period was not selected due to the lack of both optical and SAR images around the 

timing of the flood. Nonetheless, it was mentioned in the local press that authorities 

were better at controlled this peak discharge and, for this reason, it did not cause as 

much damage to the area as the other two selected flooding episodes.  

 

The first flood occurred on November 6, 1997, when the river discharge peaked at the 

3089 m3/s (Figure 2). It was an important flood affecting the area in terms of fatalities, 

23 people died, and it caused extensive damage to property (Lorente, Hernández, 

Queralt, & Ribera, 2008), as it affected a low-income area of the municipality, with low 

adaptive capacity against events of such magnitude (Olcina, 2016). The second flood 

occurred on March 8, 2010. Even though the discharge during that event reached 3060 

m3/s and was of a magnitude similar to the first selected flood, it was not as reported 

and studied as the 1997 flood but still caused the death of a child as well as extensive 
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material damage. The magnitude of the peak discharge during those two floods is just 

slightly higher than what would be expected for floods with a 10-year return period 

according to the Spanish map of maximum flows (Álvarez, 2010). Nonetheless, the 

damage that they caused was extraordinary, particularly for the 1997 flood. The Special 

Civil Protection Plan for Flood Risks of the Autonomous Community of Extremadura 

stated that the main cause for the 1997 flood was two tributaries (the Rivillas and 

Calamón rivers) that reached a discharge of a 500-year return period. 

 

3.4. Remote sensing images  

For the flood of 1997, a number of Open source remote sensing images were available. 

The first remote sensing image that was available subsequent to the occurrence of the 

flood was an optical image. This image was nearly free of clouds and was taken two 

days following the flood (Figure 2). The first available Open source image following 

the 2010 flood event, for its part, is a SAR image, which was taken eight days after the 

flood.   

 

4. MAPPING FLOODED AREAS 

The methodology for mapping the flooded areas differed between the optical and SAR 

images (figure 3) but all shown operations were implemented by means of the Open 

source SeNtinel Application Platform (SNAP) and the Open source GIS software QGIS. 
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4.1. Optical image 

For the 1997 flood, optical data were used to delineate the flooded areas. The image was 

acquired by the Landsat 5 satellite, which was taken only two days following the flood. 

This Landsat 5 image has seven spectral bands ranging from 0.45 to 2.35 microns and a 

spatial resolution of 30 m in all bands with the exception of the thermal band. 

 

The processing and analysis of the satellite images using the SNAP software required 

the Landsat images in the different bands to be combined together. As the Landsat 

images are georeferenced, layer stacking, which combines the images from the different 

Landsat bands into a single image, was the only pre-processing step required (Figure 3). 

The study area was then extracted from the satellite image using a geographical subset. 

 

Dao and Liou (2015) previously demonstrated the use of Normalized Difference 

Vegetation Index (NDVI) to support the detection of flooded areas using Landsat 8 

images. Following their approach, the NDVI was calculated on the subset of the larger 

satellite image over the study region using the following equation:   

𝑁𝐷𝑉𝐼 =
B4 –  B3

B4 +  B3
 

As NDVI compares the reflectance in the red (B3) and near-infrared bands (B4), and 

that water absorbs the energy in the red band, clear water has a negative NDVI value (-

1), its reflectance is nil, and thus appears black in the processed satellite image (Figure 

4). The resulting NDVI image was thus stacked as a new band to improve the 

classification (Figure 3). 
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After stacking the NDVI image, an unsupervised classification was performed using k-

means clustering, in which data in each subset (ideally) share some common trait for the 

post classification depuration, often proximity according to some defined distance 

measure. The k-means clustering technique is a simple partitional clustering algorithm 

that attempts to find k non-overlapping clusters. These clusters are represented by their 

centroids (mean) (Wu, 2012). Suppose D={x1, ··· , xn}is the data set to be clustered . K-

means can be expressed by the following function, which depends on the proximities of 

the data points to the cluster centroids: 

𝑚𝑖𝑛{𝑚𝑘},1≤𝑘≤𝐾 ∑ ∑ 𝜋𝑥𝑑𝑖𝑠𝑡(𝑥, 𝑚𝑘)

𝑥∈𝐶𝑘

𝑘

𝑘=1

 

where πx is the weight of x and nk is the number of data objects assigned to cluster Ck, 

and 𝑚𝑘 = ∑
𝜋𝑥𝑥

𝑛𝑘
𝑥∈𝐶𝑘

 

 

The flooded and non-flooded areas were then identified as part of the post-classification 

depuration, as well as the clouds and their corresponding shadows. The latter two 

elements are important as it is necessary to filter out the clouded areas when it comes to 

the validation of the flood risk map, as presented in section 5. 

 

4.2. SAR image 

The second flooding episode, which took place in 2010, was analysed using a SAR 

image available eight days following the flood. The only Open source optical image 
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available near the timing of the flood was taken before the flood. For this reason, the 

delineation of the flooded and non-flooded areas using the procedure described in 

section 4.1 could not be followed, and an alternative methodology using a SAR image 

was used for that purpose. The SAR image originates from the European Remote 

Sensing (ERS)-2 satellite, which operates mainly in a 35-day repeat cycle. ERS-2 

images have a spatial resolution of 26 m in range (across track) and between 6 and 30 m 

in azimuth (along track) and a single VV polarization mode. Di Baldassarre et al. (2011) 

previously used these SAR images obtained from the ERS satellite to map the extent of 

a flood with 2 m accuracy. 

 

Figure 3 depicts the processing of the SAR image. First, the image was pre-processed 

using three steps, consisting of calibration, speckle-filter, and terrain correction: 

a) Calibration 

Calibration was performed using the Sigma Nought method (𝜎0). The radar 

backscattering coefficient σ0 was defined by (Laur et al., 2003) and is related to 

the radar brightness β0 as follows: 

𝜎0 = 𝛽0 ∙ sin 𝛼 

where α is the local incidence angle. 

Then, the new Sigma Nought calibrated digital number (DN) of a given pixel 

was given by: 

[𝐷𝑁]2 = 𝐶 ∙ 𝛽0 = 𝐶 ∙
𝜎0

sin 𝛼
 

b) Speckle- filter 
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A Lee sigma speckle was used to reduce the speckle effect. Speckles are 

produced by random interferences of the de-phased, although coherent, return 

waves scattered by the elementary scatters within each pixel. 

The Lee filter utilize the statistical distribution of the DN values within the 

moving kernel to estimate the value of the pixel of interest (Mansourpour, 

Rajabi, & Blais, 2006). 

𝐷𝑁𝑜𝑢𝑡 = [𝑚𝑒𝑎𝑛] + 𝐾 ∙ [𝐷𝑁𝑖𝑛 − 𝑚𝑒𝑎𝑛] 

where  𝐾 =
(

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒+𝑚𝑒𝑎𝑛2

𝜎2+1
)−𝑚𝑒𝑎𝑛2

𝑚𝑒𝑎𝑛2∙𝜎2+(
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒+𝑚𝑒𝑎𝑛2

𝜎2+1
)−𝑚𝑒𝑎𝑛2

 and the variance and mean are 

calculated in a specific window. 

c) Terrain correction 

Terrain correction was done using the NASA Shuttle Radar Topographic 

Mission (SRTM) DEM. Images that are not directly at the SAT sensor’s Nadir 

location will have some distortion and terrain corrections intend to correct these. 

This terrain correction procedure, consisted of an orthorectification which was 

based on available orbit state vector information in the metadata or external 

precise orbit, the radar timing annotations, and the slant to ground range 

conversion parameters together with the reference DEM.  

The procedure was defined by (Small & Schubert, 2008) and consisted of an 

orthorectification employing “backward geocoding” that takes a slant range and 

azimuth time as input and uses the same geolocation equations to determine a 

map geometry. After geolocation, once the range and azimuth indices were 
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determined, a value was extracted from the input image content using the user-

selected resampling kernel, and output in the DEM’s map geometry. 

 

Once the SAR image was pre-processed, the study area was extracted from the whole 

scene following the same subset area used for the optical Landsat scene. 

 

Second, as illustrated in Figure 3, two processes were performed in order to improve the 

SAR image for the classification. On the one hand, a texture analysis was done by 

means of a Grey Level Co-occurrence Matrix (GLCM). This technique has been widely 

employed in previous research, e.g. Shanmugan, Narayanan, Frost, Stiles, and Holtzman 

(1981), Pradhan, Hagemann, Shafapour Tehrany, and Prechtel (2014), Dasgupta, 

Grimaldi, Ramsankaran, Pauwels, and Walker (2018), and proved to produce 

meaningful results, notably by improving the lack of spectral information in a SAR 

single band image (Pulvirenti, Chini, Pierdicca, Guerriero, & Ferrazzoli, 2011).  

 

The texture analysis, defined as correlation texture in Haralick, Shanmugam, and 

Dinstein (1973), measures the linear dependence of grey levels on those of between 

neighbouring pixels. There are several texture features can be computed from the 

GLCM matrix, e.g., mean, variance and correlation. Considering an image as 

rectangular with Nx resolution cells in the horizontal direction and Ny resolution cells in 

the vertical direction, the mean, variance, and correlation are computed using the 

following equations: 
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𝐺𝐿𝐶𝑀 𝑚𝑒𝑎𝑛 = ∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

𝐺𝐿𝐶𝑀 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦)2𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

𝐺𝐿𝐶𝑀 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

where 

  p(i,j) (i,j)th entry in a normalized gray-tone spatial dependence matrix, 

with which two neighbouring resolution cells separated by distance d occur 

on the image, one with gray tone i and the other with gray tone j. 

 px(i) (i)th entry in the marginal-probability matrix obtained by summing 

the rows of p(i,j).  

Ng is the number of distinct gray levels in the quantized image. 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑥+𝑦(𝑖) ∙ 𝑙𝑜𝑔

2𝑁𝑔

𝑖=2

{𝑝𝑥+𝑦(𝑖)} 

Using the above formulas, the mean, variance and correlation were calculated and 

stacked to the main bands of the SAR image in order to improve the classification. As 

an example the obtained GLCM correlation band is presented in Figure 5 to show the 

improvement in definition in relation to the original band.  

 

Finally, a terrain mask was also included as an additional step to determine areas on the 

map with steep slopes (Figure 3). This is accomplished using a DEM and has the 
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purpose of separating the flat areas on the map, where flooding is more likely, from the 

mountainous areas. 

 

The bands resulting from the above procedure were stacked together in order to 

compose a multiband image for the classification, but, before that, a coregistration with 

ground control points was necessary in order to increase the geometric accuracy of the 

image. This step is crucial for images that have been corrected without using orbit files 

during terrain correction. 

 

In the same way as for the optical image, an unsupervised classification using K-means 

cluster analysis was performed to extract the flooded pixels from the study area. Li and 

Wang (2017) demonstrated that this unsupervised clustering applied to a single 

polarization SAR image is a suitable technique for flood mapping. 

 

Because of the presence of speckle noise in the SAR image data, which was not an issue 

for the optical data, some post classification depuration was required to achieve greater 

uniformity of the results. For this reason, a filter based on clumping and sieving was 

applied to the image to deal with the problem of isolated pixels during the classification. 

This consisted of clumping adjacent similarly classified pixels together and 

segmentation to obtain regular results. This sieve filter was defined by (Bangham, 

Chardaire, Pye, & Ling, 1996) and works at several scales (one per each step of the 

process) and performs a decomposition by scale. At each stage the filtering operator 

removes pixels with extreme values of only that scale. 
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5. VALIDATION OF THE FLOOD RISK MAPS 

The above methodological approach on the optical and SAR images resulted in the 

classification of flooded and non-flooded areas, which was then used for validating the 

Open access flood risk maps from the government. In order to perform a more precise 

validation, the hydraulic public domain delimitation was excluded from the study, i.e., 

the channel areas were excluded from the validation, as the interest was in identifying 

the areas submerged with water beyond the normal limits of the channel. 

 

The methodology selected for the validation is based on Horritt (2006) for comparing 

uncertain maps of inundation extent with single observed events. This methodology was 

selected because extreme flood events are infrequent and, there is often limited 

availability of satellite images around the timing of a flood. 

 

Different metrics were employed in the validation of the flood risk maps, that is in the 

comparison of the flood risk maps from government and those drawn on the basis of 

satellite imagery: measure of fit, accuracy, precision and recall. In all measures, A refers 

to the extent of the flooded area that is correctly predicted by the model, B is the area 

predicted as flooded but that is actually not flooded (i.e., over-prediction), C is the 

flooded area not predicted by the model (i.e., under-prediction) and D represents the 

correctly predicted non flooded areas.  
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5.1. Measure of fit 

The measure of fit, F, is defined by Horritt (2006) as: 

𝐹 =
𝐴 − 𝐵

𝐴 + 𝐵 + 𝐶
 

The values for this measure can range from -1 to 1. One weakness of this measure is 

that it ignores the correctly predicted non-flooded areas in its calculation, i.e., D. 

 

5.2. Accuracy 

This metric represents the ratio of the correctly predicted extent of a flood to the sum of 

the areas that are correctly predicted and those that are over-predicted. This metric 

ranges from 0 to 1, with 0 and 1 representing zero and perfect accuracy, respectively: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴

𝐴 + 𝐵
 

As for the measure of fit, this metric ignores the correctly predicted non-flooded areas in 

its calculation, but also the flooded area not predicted by the model. 

 

5.3. Precision 

Precision is the only metric that considers all variables in its calculation. As for the 

accuracy metric, the ratio for this metric ranges from 0 to 1, with 1 representing the best 

accuracy:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐴 + 𝐷

𝐴 + 𝐶 + 𝐵 + 𝐷
 

 

 



18 
 

5.4. Recall 

The measure recall, which is also known as the true positive rate and sensitivity is the 

ratio of the correctly predicted spatial extent of a flood to the sum of the correctly 

predicted flood extent and the under-predicted areas, the latter representing the areas 

they were in fact flooded but that the maps did not identify at risk of flooding. This 

measure also ranges from 0 to 1, with 1 representing perfect agreement between the 

flood risk map and the area considered as flooded in the satellite image:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐴

𝐴 + 𝐶
 

 

6. RESULTS AND DISCUSSION 

Figures 6 and 7 show the results of the comparison between the areas considered as 

submerged during the 1997 and 2010 floods, respectively, according to the satellite 

images and those considered at risk of being flooded in the official flood risk maps for 

floods of different return periods. Thus, these maps show the correctly predicted 

flooded areas, the areas that are under predicted and the ones that over predicted on the 

basis of the flood delineation done using the satellite images in comparison to the flood 

risk maps. 

 

Figures 8 and 9 show the evolution of each metric ranging from a flood with a 5-year 

return period to one with a 500-year return period for the 1997 and 2010 floods, 

respectively.   
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The results of the validation of the areas delineated as flooded on the satellite images 

and those at risk of flooding using the recall metric were found to be very good, 

especially in 1997. This metric is considered to be the most relevant to emergency 

preparedness services as it focuses on the correctly predicted flooded areas. The values 

obtained using the recall metric for the 1997 flood are excellent, ranging from 0.75 to 

0.98, and are significantly higher than the ones obtained for the 2010 flood. Moreover, 

the values of this metric increase with the return period of a flood, hence it is highest for 

a flood with a 500-year return period in both cases. The values of the recall metric for 

the validation of the 1997 flood in Badajoz  are slightly higher than the ones obtained 

by Ouled Sghaier, Hammami, Foucher, and Lepage (2018).     

 

The precision metric represents the overall accuracy of the flooded/non-flooded areas 

using satellite imagery. Unlike the recall statistic, it includes the correctly predicted 

non-flooded areas and not only the correctly predicted flooded areas. As can be seen in 

figures 8 and 9, the values of this metric decrease with the return period of the flood, a 

pattern as is opposite to the one observed for the recall technique. In the case of both 

floods events, the value of the precision metric obtained during the evaluation of the 

floods with a return period from 5-year to 50-year are suitable and higher than the ones 

obtained by Endo, Adriano, Mas, and Koshimura (2018), who examined the areas 

flooded as a result of a tsunami in Japan. 

 

The results obtained using the measure of fit were not successful as negative values 

were obtained for all the return periods for the two flooding episodes studied. This 

occurs due to over-prediction of the flooded area. This could be because this statistical 
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measure ignores large areas that remained dry during both floods and that were 

correctly predicted using the satellite images. This is particularly an issue in the current 

study, as the correctly predicted non-flooded areas constitute, in some cases, over 80% 

of the area studied. 

 

The results obtained using the accuracy metric were better than those obtained using the 

measure of fit, but not as good as those using the precision and recall techniques. In the 

same way as the precision metric, the values for this metric for the 1997 flood decrease 

as the return period of the flood increases, while there is no trend for the 2010 flood. 

The accuracy metric puts an emphasis on the areas that were identified as flooded by the 

satellite images but that were in fact not at risk of flooding based on the Open source 

flood risk maps. This over-prediction based on the satellite images reduces the score 

obtained using this technique. Nonetheless, from an emergency response perspective, 

under-prediction is more of concern than over-prediction. Horritt (2006) mentioned that 

a good model is the one that strikes a balance between precision and uncertainty and 

through, this work, it was found that the flood risk maps with a 500-year return period 

are those that strike the best balance between precision and accuracy for both flooding 

episodes. Moreover, this is the map with the best recall values and the floods that would 

be expected to cause the most severe damage.  

 

The impact of including the NDVI band on the results of the validation of the 1997 

flood using the optical satellite imagery is shown in figure 10. As can be seen, there are 

clear differences in the range of NDVI values between the over-predicted flooded areas 
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versus those that are correctly predicted and under-predicted, as the latter two have 

lower NDVI values. 

  

A similar pattern is seen for the validation of the 2010 flood risk map. Figure 11 shows 

that the areas that are over-predicted, i.e., those that were delineated as flooded on the 

SAR image, but that are not considered at risk of flooding according to the government 

maps, have higher GLCM correlation band values. 

 

There are differences in the range of NDVI values amongst the three groups between 

the validation of the 1997 and 2010 floods. For example, there is large variability within 

all groups, but only the NDVI values for the areas correctly predicted as being flooded 

include extreme outliers (Figure 10). The situation is different for the validation of the 

2010 flood, as there is no extreme outlier for the areas correctly predicted as being 

flooded, meaning that the classification is more robust. 

 

With regard to the elevation of areas that were correctly predicted and those that were 

under-predicted during both flood events, figures 12 and 13 show that under-prediction 

takes place in areas with higher altitudes than the correctly predicted flooded areas. This 

may be due to the great level of importance that the DEM plays in the flood risk maps 

provided by the government. Thus, the non-predicted but flooded areas were non-

predicted because their elevation was not low enough to be considered as areas 

potentially at risk.  
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There are nonetheless differences between the two studied flood events in terms of the 

altitudes of the correctly predicted flooded areas. During the 2010 flood (figure 13), the 

flooded areas had further spatial extension that increases the elevation of the correctly 

predicted, almost matching the altitudes of the under-predicted areas. Attending to the 

variability in elevation of the predicted areas, it can be observed that for both events 

there is a high variability and the presence of a large number of extreme outliers, which 

are always located in high elevations.  

 

Figure 7 previously showed that the under-prediction of the 2010 flood is greater than 

that of the 1997 flood. Two potential reasons are suggested to explain this pattern. First, 

the SAR images are more sensitive to soil moisture as the radar signal can penetrate 

deeper into the vegetation canopy. Second, the optical image for the 1997 flood was not 

completely free of clouds, and the clouds impeded the validation at the peripheral areas 

of the main channels.  

 

In terms of validation metrics, in general, the best results were obtained for the 1997-

flooding event.  This could be caused by the image used for the evaluation of the 1997 

flood event, which is closer in time to the occurrence of the flood than the one used for 

the 2010 flood event, consequently the results are better. However, the soil type of the 

study area, with slow infiltration rate, in addition to the low topographical gradient of 

the area results in floodwater not receding quickly. Moreover, the first flood was of 

bigger magnitude in terms of damage cause than the second and more recent flood and 

is an additional potential reason for the better results obtained in the evaluation of the 

1997 flood episode.  
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The uncertainty associated with the flood risk maps provided by the government is not 

known, but inevitably arises to uncertainties due to a potential lack of observations, and 

uncertainties in the structure and parameters of the models used (Götzinger & Bárdossy, 

2008). The small number of Open source satellite imagery in the last decades further 

increases the difficulty of the validation of floods or any other natural disaster. The ideal 

situation would be to having ground-truth data and remote sensing images during the 

flood episode, but as discussed in (Di Baldassarre & Uhlenbrook, 2012) data that are 

often not available at the right time from the right location.  

 

7. CONCLUSIONS 

This paper validated the Open source flood risk maps provided by the Government of 

Spain by comparing them with the areas flooded during two major floods that affected 

the city of Badajoz in southwestern Spain. The spatial extent of the 1997 flood was 

mapped using Open source optical imagery while a SAR image, also Open source, was 

used for the flood of 2010 due to the lack of availability of optical satellite images soon 

after the occurrence of that flood. Nonetheless, such a strategy allowed for the use and 

thus the validation of two types of images. The comparison was performed using maps 

depicting flood prone areas for floods with a 5-, 10-, 50-, 100- and 500-year return 

period. For both the 1997 and 2010 floods, the highest values of all the metrics were 

obtained for the maps depicting the spatial extent of floods with a 500-year return 

period. The evaluation of the 1997 flood event using the optical image provided better 

results than that of 2010 using SAR imagery, but this could be due to the longer time 

interval between the occurrence of the flood and the timing of the satellite image. 
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Satellite imagery can support the validation of flood risk maps due to their high spatial 

coverage and can thus complement the field surveys that are undertaken following a 

flood. The main weakness of satellite images, as this paper demonstrates, is the time lag 

between the time the satellite passes over the flooded area and the occurrence of a flood. 

The closer is the satellite image acquired to the occurrence of the flood, the more 

accurate and reliable will the validation of the flood risk map be. Optical and SAR 

images both have their advantages and disadvantages in relation to their use in 

delineating the spatial extent of flooded areas. Optical images have better quality than 

SAR images, but as they are not acquired from active sensors they cannot penetrate the 

surface and can only detect areas that are waterlogged. SAR images are more sensitive 

to soil moisture and are not influenced by cloud coverage, but the noise contained in 

radar images can sometimes be a problem.  

 

Further research is recommended to determine whether optical images are better at 

delineating the spatial extent of a flood than SAR images when cloud coverage is 

limited or if the lower values for the different metrics are due to the longer time interval 

between the occurrence of the peak discharge and the timing of the satellite image, as 

the latter was longer for the 2010 flood. Many Open source optical and SAR images 

have recently become available as a result of the Copernicus Earth observation 

programme of the European Union. In particular, the inclusion of the Sentinel-1 and 

Sentinel-2 satellite data with a temporal resolution of five days into the Open source 

realm will potentially lead to a higher likelihood of the availability of a remote sensing 

image during or shortly after the occurrence of a flood, which was found to be a 

limitation for this study, particularly for the 2010 flood, but also to apply the two types 

of methodologies described as part of this paper (i.e., one using optical images and the 
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other radar images) for the same flood event. The use of both types of satellite imagery 

to analyse the same floods would allow for a more detailed assessment of the 

advantages and disadvantages of each type of satellite imagery in validating flood risk 

maps. Nevertheless, the results of the analyses presented in this paper show the potential 

of Open geospatial data and their manipulation and processing using Open source 

remote sensing/GIS software in delineating flood prone areas and could supplement the 

traditional hydrological modelling method currently use or partly substitute the 

expensive ground truth observation practiced in many countries for the development of 

flood risk maps.  
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FIGURE LEGENDS 

Figure 1. Categorization of the population at risk (a) and flood risk (b) in the study area. 

Figure 2. Guadiana River discharge during the period 1995-2014, and availability of 

Open source optical and radar images. 

Figure 3. Schematic representation of the methodological approach. 

Figure 4. NDVI band used for the detection of flooded areas. 

Figure 5. Texture analysis of the SAR image. Correlation image (left) compared to the 

original image (right). 

Figure 6. Validation of the 1997 flood. 

Figure 7. Validation of the 2010 flood. 

Figure 8. Accuracy metrics of 1997 flood event compared to flood risk maps. 

Figure 9. Accuracy metrics of 2010 flood event compared to flood risk maps. 

Figure 10. NDVI values of the areas correctly predicted as flooded, over-predicted, and 

under-predicted on the optical satellite image according the flood risk maps for the 1997 

flood. 

Figure 11. GLCM correlation band values of the areas correctly predicted as flooded, 

over-predicted, and under-predicted on the SAR image according the flood risk maps 

for the 2010 flood. 

Figure 12. Elevation values of the areas correctly predicted as flooded, over-predicted, 

and under-predicted according the flood risk maps for the 1997 flood. 
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Figure 13. Elevation values of areas correctly predicted as flooded, over-predicted, and 

under-predicted according the flood risk maps for the 2010 flood. 

 

 

 

 


