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                                           ABSTRACT 

In recent years, marine pilotage accidents occurring on a worldwide basis as a result 

of human error have not ceased to transpire, despite advances in technology and a 

significant set of international conventions, regulations, and recommendations to 

reduce them. Existing studies reveal that previous maritime risk and safety assessment 

findings provide valuable insights, but over the last decade, scarce information in 

terms of human factor studies specific to pilotage operations can be found. The risks 

and uncertainties in pilotage operations have yet to be fully explored. As a result, 

identifying, evaluating, and mitigating the human factor-related risks influencing the 

safety performance of pilotage operations is essential.   

The aim of this research project is to investigate the effect of human factors on pilotage 

operations, and to evaluate the impact of these factors on operators' performance; this 

last in turn may affect current pilotage operations by ultimately proposing an effective 

risk management framework, based on a decision-making analysis methodology.  

Firstly, human-related risk factors (HCFs) identification is conducted through a 

combination of primary and secondary sourced data.  A comprehensive literature 

review was carried out, and a considerable number of real past case examples and 

maritime accident/incidents investigation reports have been reviewed. In order to 

validate the identified risk factors (HCFs) and to explore other contributory factors, 

survey questionnaires and semi-structured interviews with domain experts have been 

conducted. An initial structural hierarchy diagram for the identified risk factors 

(HCFs) has been developed and validated through experienced experts belonging to 

the maritime sector. 

In order to assess the human causal factors (HCFs), a novel hybrid MCDM technique 

based on the combination of the Analytic Hierarchy Process (AHP) and Decision-

Making Trial and Evaluation (DEMATEL) methods is applied. The AHP is firstly 

used to evaluate the weight and rank the importance of the identified human causal 

factors that affect pilotage operation safety, while the DEMATEL method is applied 

to determine whether there are relationships among the factors. 

The key findings of the previous models assist the decision-making process by 

informing of appropriate measures for mitigating the risks influencing pilotage 
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operations. Risk mitigation measures are identified through literature review, the 

implemented regulation, rules, and recommendations adopted by IMO and other 

organizations and via experts’ perspectives, and then evaluated through the Technique 

for Order Preference by Similarity to Ideal Solution (TOPSIS).     

The results of this study are beneficial to the maritime industry, by means of 

identifying a new database on causal factors contributing to the occurrence of maritime 

pilotage disasters. In addition, the study provides an effective risk factors assessment 

tool, and offers a diagnostic instrument to help implement effective risk reduction 

strategies, in order to prevent or at least mitigate a human error incident/accident from 

occurring. 
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                          CHAPTER 1: INTRODUCTION 

1.1. SUMMARY 

This chapter presents an overview of this thesis. The first section provides the 

background and justification for conducting the study, followed by the discussion of 

the research aim, objectives, and questions. The fourth and fifth sections outline the 

research framework (methodology, and the scope of the thesis) and the structure of 

this thesis, respectively. 

1.2. RESEARCH BACKGROUND 

Over the past decades, the complicated nature of pilotage operations has challenged 

researchers in the maritime industry to research, design and develop models and 

mechanisms to improve maritime safety and to solve the complexity associated with 

maritime transportation related risks, in particular, pilotage maritime operations. In 

spite of the development of new technologies, the developments in the shipping 

industry, and the implementation of safety related regulations, the impact of maritime 

accidents has remained on average at about the same level (Corovic & Djurovic, 2013; 

Noroozi et al., 2014), and the safety level of various ship types has not significantly 

changed (Eliopoulou & Papanikolaou, 2016).  

Most authorities concerned with safety at sea reported that human element factors have 

now become one of the major causes of accidents. And most of these accidents occur 

in narrow channels, and during berthing and unberthing manoeuvres (Uğurlu et al., 

2015b), resulting in damage to the environment and property (Erol and Basar, 2015). 

There are many causes that can result in maritime accidents such as organisational, 

mechanical, and electrical problems, as well as external factors such as adverse 

weather conditions; however, studies estimate that around 80% of maritime accidents 

are attributable to human error (Uğurlu et al., 2015a). And according to Graziano et al 

(2016), 96.5 % of the errors have been performed on the Bridge where the main actor 

is involved. 

 Prominent international organizations involved in the maritime industry such as the 

IMO, ASME and NFPA, UNCTAD have been improving on maritime navigation 
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safety through recommendation of rules and regulations aimed at addressing previous 

accidents. However, accidents still occur and will continue to happen if proactive risk 

assessment is not practised in pilotage operations. Therefore, the way pilotage 

operations’ risk is assessed and managed should be in a proactive rather than reactive 

manner.   

Over the past decade little has changed and cases of collisions and ship grounding are 

regularly reported, where numerous instances provide evidence that many incidents 

that occur during pilotage can be attributed to human error (Mercator, 2012; Uğurlu et 

al., 2015). Murdoch et al. (2012) stated that since 2000, the standard I&P club has seen 

the annual cost of dock damage claims increase from approximately $3 million to $19 

million, and almost 70% of these claims came because of bad ship handling, errors 

due to ship control, fast speed, tug errors or pilot errors. According to Gill and Wahner 

(2012) captains of the ships, deck officers, and pilots have caused the major 

contributory factor for many maritime disasters. The complication and the difficulties 

that the mater represents today in the shipping industry in terms of structural 

adjustments, technological changes and operational requirements reveal the necessity 

for further research to address this issue. 

In spite of the presence of marine pilots on board ships to avoid human error involved 

in marine accidents, and to ensure the safety of navigation of visiting ships, it is 

however, a fact that a considerable number of accidents still occur (Gard, 2014). Gard 

(2014) reported that, in recent years, the number of maritime accidents occurring 

worldwide has been increasing, involving significant contact damage to fixed objects 

by vessels manoeuvring in confined waters, mostly within port. Fixed objects include 

berths, docks, locks and shore side equipment such as cranes. The contact damage has 

resulted in some very large claims for the repair and/or loss of use of such objects. 

These accidents have raised questions on how risk/ safety is reviewed in pilotage 

operations.  

Pilotage operations involve the management of high-risk situations that require intense 

concentration and high standard levels of competence and skills, Pilotage operations 

are categorised as one of the most complex tasks, which is predominantly performed 

under a dynamic and uncertain working environment, extreme weather conditions, and 

heavily congested areas.  Pilotage operations are liable to diverse risks due to their 
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interaction and interdependence, in addition, the multiplicity of the entities who are 

performing ships’ berthing operations. It is conducted by multiple operators with 

different responsibilities including the pilot, ship’s crewmembers, tugboats and 

mooring boat crews, VTC regulators and shoreline personnel, who are required to 

work cooperatively together as one team with the objective of guiding the ship safely 

to its berth (Murdoch et al. 2012).  

It is worth mentioning that, during pilotage operations, high levels of operational 

uncertainties exist. Especially when a shipmaster is unfamiliar with the pilotage area 

or the master may be entering the port for the first time or the port pilot is not qualified. 

It is therefore essential that operators maintain a consistently high standard of human 

performance in order to maintain the ship's piloting safety, as any decrease in 

performance can potentially lead to a disaster (CAMSS, 2012).  Pilotage safety 

performance at sea contributes to maritime safety and is of great importance to 

seafarers, the shipping industry and the international maritime organisations.  

The quality of performance and safety of ship's operations during pilotage operations 

has a significant effect on productivity, safety, and reputation of the port. Therefore, 

a system evaluation that includes the early detection of risks is critical in avoiding 

performance degradation and damage to human life or properties. Furthermore, 

accidents or disasters that would endanger the pilotage operations will be avoided if a 

robust evaluation system forecasting mechanism is developed and effectively 

enforced. 

Ships have changed over the years and ship handling has to evolve in line with these 

changes, e.g. ship sizes have increased whereas, ports have not always increased in 

size accordingly (Armstrong, 2007, p.1).  Handling a large vessel in congested and 

restricted areas, such as straits, canals, and docks, is high-risk, making pilotage 

operations more challenging and complex (Uğurlu, et al., 2016). According to Xi et 

al. (2017), the technological innovations, developments in the shipping industry, and 

the emergence of complex systems and Very Large Crude Carrier (VLCC), makes the 

consequences of disasters more and more serious. The incredible growth of 

international trade and the introduction of new technologies mean that shipping 

industry risks are evolving. The issue is complex, and there is an imperative need to 

focus on this issue in more detail.  
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A large tanker ship entering a harbour may collide with a breakwater at the entrance 

of a port as a result of a pilot's error, which can cause an environmental disaster. An 

accident that may occur in areas, such as straits, or canals, or docks, may cause heavy 

traffic to slow down or even stop the transportation and shipping, and could causes 

high economic damage to the countries of the region (Erol and Başar, 2015). For 

instance, one serious accident caused by the grounding or collision of ships at sea or 

upon entering the port because of human error can endanger the port, crew, ships, 

cargoes, and damage the maritime environment, causing huge financial impact on 

coastal countries and companies (David, 2008). One such recent disaster was the 

collision of the M/V Cosco Busan with the San Francisco-Oakland Bay Bridge in 

2007, an accident that cost the vessel's operator and insurers more than $60 million in 

clean-up costs and claims damages (NTSB, 2009).  

In light of these considerations, and based on the above reasons, and the accidents 

described previously together with other disasters, the need for the maritime industry 

to improve its operations safety can be justified. It is now assumed that the assessment 

of the human related risk associated with pilotage operations, needs to be established 

in the maritime industry and threats to human performance must also be understood 

and mitigated to maintain pilotage operations safety, and achieve enhanced safety for 

international shipping and reduce consequent injuries, loss of life, and damage to the 

maritime environment and properties..   

Since the marine casualties, most frequently occur when ships are piloting in 

narrowing waters, such as ports, and channels, investigating the major contributory 

causes to human error, which play a central role in the causal chain of maritime 

accidents, is critical to mitigate threats to the marine pilotage operations. Thus, 

determining the human factor influence on ship navigation safety is becoming more 

and more important (Gerigk and Hejmlic, 2015). The human factor should be dealt 

with proactively, and more research on this topic should be conducted to reduce the 

risks of pilotage accidents.  

To tackle this issue, it is essential to understand what these risks are and how they 

influence the pilotage operations’ safety performance. The appropriate way to reduce 

the frequency and risk of maritime accidents is by identifying and mitigating the root 

causes of the accidents occurring in this region. In order to reach this aim, it is 
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necessary to consider how operators may contribute to causing these accidents, and 

how they may act to mitigate and escape from any accidents that do occur. As Dekker 

(2006) stated, in order to find the cause of an accident it is important to identify where 

people made incorrect assessments and wrong decisions.   

In this regard, the existing studies reveal that the findings of previous maritime risk/ 

safety assessments provide valuable insights. According to the literature review, there 

are a small number of studies specifically focused on the human factor risk assessment 

especially in pilotage operations. Nevertheless, the findings of the literature review 

reveals that the current human factor related risk analysing models are not capable of 

meeting challenges faced by maritime stakeholders. 

 The human related risks in the pilotage operations have yet to be fully explored. In 

addition, limited studies have examined the efficiency of the implemented mitigation 

measures in the maritime pilotage operations. Currently, the attention that is given to 

human related risk factors’ measurement in this area is limited and needs further 

investigation. Therefore, the research applications on pilotage operations safety 

performance is becoming more and more important  and should be emphasized to 

reduce the risks of accidents. The identification and mitigation of these risks is crucial 

as the successes or failures of the shipping industry can have far-reaching impacts on 

global trade and economy.  Therefore, this research presents a risk measurements tool 

and has developed a performance improvement framework, and decision-making 

techniques that are capable of finding solutions that will ensure safety and efficient 

performance of pilotage operations. 

1.2.1 Justification for conducting the research 

Providing high quality and safe port service that meet the needs of customers lead to 

increase the port attractiveness to attract shipping carriers to berth at the port and 

enhance the port competitiveness (Ding et al., 2019).  Therefore, the research 

applications on pilotage operations safety are becoming more and more important and 

should be emphasized to reduce the risks of accidents. As mentioned in the previous 

section, in the last decade the ships have not only become larger and faster, but there 

has also been a big increase in the numbers, resulting in more vessel traffic, 

particularly in ports and their vicinity (Hsu, 2012). Consequently, marine disasters are 

more likely in such waters causing loss of lives, damage to vessels and cargo, and 
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damage to the maritime environment (Pak et al., 2015). Any of the aforementioned 

reasons would be sufficient to justify the need for the maritime industry to examine 

the impact of the human elements on maritime safety. 

 On the whole the above concerns indicate that pilotage operations safety at sea is of 

great importance to all the parties interested in the maritime industry and the research 

applications on the human factor are becoming more and more important and should 

be emphasized to reduce the risks of pilotage accidents. On the other hand, the problem 

facing maritime stakeholders who are professionals in assessing and managing human 

related risks regarding the pilotage operations is the lack of a model that approximates 

the risk management realities of the field and confusion over terminology, approaches 

and methods in the discipline. There is an imperative need to form a generic 

framework that can highlight the human errors and pilotage operations’ safety issues 

facing marine professionals.  

In recent years many research projects, regarding the maritime risk management issue 

have been conducted from several aspects, by using different methods in order to 

reduce the occurrence of maritime accidents in open sea areas, however it appears 

from a review of the literature that little research has been done in the maritime domain 

on issues related to the pilotage operation safety analysis issue, and until now, few 

studies have employed an appropriate evaluation method to examine how human 

factors contribute to the maritime pilotage accidents.  

The incapability of traditional methods in addressing human-related risk factors in 

pilotage operations reveals a necessity for more practical research and a new approach 

in order to ensure proper implementation of the risk quantification and mitigation 

methods. There is a distinct need for a new human-related measurement tool not only 

to meet the need of port stakeholders but also to develop diagnostic instruments to port 

and pilotage systems capable of supporting decision-making in solving complex 

pilotage operations problems in an uncertain environment.  

The problem with the previous studies is that they could conclude that all risks or 

challenges could be considered “critical” or “important”, when the respondents were 

assessing each of them separately. Therefore, a ranking is missing to reflect the 

perceived degree of importance of risk factors in relation to each other. Without such 

ranking, stakeholders are not able to determine the relative importance of factors and 
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will have difficulties in determining the right strategies to overcome them. Therefore, 

in order to solve this problem, and to produce more realistic and reliable results, this 

study aims at introducing a multi-criteria decision making (MCDM) method, to 

overcomes the shortcomings of the previous studies by introducing a new approach to 

identify the relative importance among accidents’ human causal factors in maritime 

pilotage operations, by taking subjective judgments of decision makers into 

consideration.  

Another limitation of the previous studies is that in recent years, international maritime 

authorities, scholars and practitioners have made a significant amount of effort to 

evaluate the human factor in order to identify root causes of human error and accident 

causations in the shipping transportation industry in order to improve safety at sea; 

however, most of these researches frequently neglected to evaluate the causal 

relationships among the human factors that contributed to the pilotage accidents, and 

few of these studies focused on analysing the interaction between accident causation 

factors using MCDM method. Therefore, in order to solve this problem this thesis 

presents a new method which has the capability of effectively quantifying the causal 

relationships and interdependence among factors. The method could also be used to 

estimate, and assimilate the relationships and interdependencies among human factor 

variables involved in other transportation systems and industrial fields. 

At the substantive level, there exists a gap in knowledge about this issue. Similarly, at 

the academic level there is a need for more-practical research to find out the 

justification for the existence of the risk management and different methods for its 

proper implementation on this significant environment particularly with due regard to 

the potential requirements in the near future. This is a research gap that has not yet 

been intensely examined and needs to be addressed. This study, therefore, aims to 

propose a new comprehensive framework for identifying assessing, mitigating the 

human factors related risk affecting maritime pilotage operations safety, using a 

decision- making methods.  

1.3. RESEARCH AIM AND OBJECTIVES 

The aim of this research project is to propose a novel conceptual human-related risk 

management framework based on a decision-making analysis methodology for 

identifying, assessing, and mitigating the human factors affecting the maritime 
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pilotage operations safety. The developed conceptual framework provides an 

integrated and effective human-related risk factors assessment tool and offers a 

diagnostic instrument to reduce human error, enhance the maritime pilotage safety 

performance and thus subsequently mitigating maritime accidents. 

The aims specified above, can be addressed by achieving the following objectives:  

• To carry out a literature search on human related risk factor associated within 

maritime pilotage operations.  

• To develop a conceptual framework, to identify and develop a taxonomy for the 

human causal factors contributing to pilotage accidents 

• To establish an innovative human causal factors quantification method to evaluate 

the weight and rank the human causal factors using Analytic Hierarchy Process (AHP). 

• To develop an innovative method using a Decision Making Trial and Evaluation 

Laboratory (DEMATEL) technique to investigate the relationships between human 

causal factors 

• To develop a model for the selection of the most ideal risk mitigation strategy, based 

on the technique for order preference by similarity to ideal situation (TOPSIS).    

• To examine the proposed methods by the use of various case studies in some of the 

major ports and pilotage areas of the UK and Mediterranean. 

This thesis, therefore, raises the following research questions and will answer them at 

the end of this research.  

1.4. GENERAL RESEARCH QUESTIONS 

Given the research background aforementioned, this study aims to provide an effective 

human factor quantification tool, and offer a diagnostic instrument to pilotage 

operations to satisfy the port stakeholders in a flexible manner. In this regard, in order 

to ensure that the research objectives are met and for providing a base for activities in 

this research, the following questions have been generated:  

 RQ1.What are the risk factors (human element/ human factor) causing 

maritime pilotage accidents and how can they be identified and classified 

(develop a taxonomy)? 
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 RQ2. What are the most appropriate and useful methods to assess the most 

significant identified human related risk factors and how can they be used? 

 RQ3. How can the identified human factors risk be prioritised and ranked?  

 RQ4. What are relationships and interactions between human factors and 

how are these factors influencing each other?  

 RQ5. How can the identified human related risk factors be mitigated and 

controlled? What are the risk mitigation measures (risk control options) that 

can be implemented to control and improve the performance of bridge staff 

involved in the execution of pilotage operations?   

To answer the above questions, and based on the proposed conceptual framework, the 

three steps risk management process (i.e. human-related risk factors identification, 

assessment, and mitigation) as the main guideline to structure the research process is 

employed. This process is needed not just to meet the needs of interested stakeholders, 

but also to enrich the diagnostic tools available to support decision-making in complex 

pilotage operations in an uncertain maritime environment. 

What are the human factor related risks causing maritime pilotage accidents and how 

can they be identified and classified (develop a taxonomy)? 

“The human factor is a complex, multi-dimensional issue that affects maritime safety 

and marine environmental protection. It involves the entire spectrum of human 

activities performed by a ship's crew, shore-based management, regulatory bodies, 

recognised organisations, shipyards, legislators, and other relevant parties, all of 

whom need to cooperate to address human element issues effectively”(IMO, 2003). 

Human factors refer to human and individual characteristics, which influence 

behaviour at work in a way that can affect safety. In this study, much emphasis will 

be placed on operational aspects, including the human factor-related risks which have 

an impact on the operators who are responsible for executing pilotage operations. 

According to Berg et al (2013), the human factor plays a significant role in maritime 

safety. Therefore, managing the human factor that affects maritime safety is an 

important way to prevent accidents (Xuecai & Deyong, 2018). 
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The first objective of this study is to develop a comprehensive human factor related 

risks identification and classification methodology within the context of the maritime 

pilotage operations. The procedure for risk factors identification is one of the most 

significant steps in pilotage safety/risk assessment process. Risk identification enables 

decision makers to classify the contributory causal factors that can lead to maritime 

accidents during pilotage operations. Risk classification enables complexity to be 

simplified (Ugurlu et al., 2015). In addition, it facilitates the evaluation and helps risk 

managers to understand the events and the circumstances from which they arise (Pak 

et al., 2015). 

There are different types of human factors that can contribute to maritime accidents 

during pilotage operations. Furthermore, there are different methods and techniques 

for their identification. The investigation should not be limited only to identify the 

causes already known. The investigation must be carried out for potential causes which 

may lead to accidents in future but have not happened yet. It must be ensured that all 

the human causal factors are identified. Taking into consideration the ones which have 

previously occurred. There are different tools and techniques to do this. This study 

adopts more than one method to collect data and provide extra evidence of the human 

factors affecting maritime pilotage operations safety.  

In this research identifying the human causal factors contributing to pilotage accidents 

was accomplished through a combination of primary and secondary source data. 

Firstly, a comprehensive literature review related to the study was carried out. A 

detailed literature review is critical and extremely essential to research work, which 

must not only be comprehensive but also has to be up to date. The benefit of 

conducting this literature review is that it can assist to review previous relevant studies 

related to human factors and their impact on maritime accidents. It saves time and cost 

as the required data is previously searched and available (Saunders et al., 2007).   

In addition, because obtaining primary data about an accident that has occurred in the 

past is practically impossible, using accident and incidents reports as a secondary 

source of data is unavoidable (Mazaheri et al., 2013; Mazaheri et al., 2015). In this 

research a considerable number of real past case examples and an analysis of the 

maritime accident investigations reports regarding pilotage operations events that 

occurred between 1995 and 2015 have been reviewed and examined. These reports 
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were investigated by expert accident investigators and published by countries and 

relevant institutions and organisations such as, the Marine Accident Investigation 

Branch (MAIB) of the United Kingdom, the National Transportation Safety Board 

(NTSB) of the United States of America, and the Transportation Safety Board of 

Canada (TSB). Accident investigation reports are considered to be one of the most 

reliable sources of evidence to identify the root causes of the ships’ accidents 

(Mazaheri et al., 2015). These issues will be further discussed in the literature review 

in Chapter two.  

The main philosophy of reviewing and studying examples from past marine 

incident/accident, is to obtain an understanding of the concept of accidents, to figure 

out how they happen, to determine the causes and contributory factors which may 

negatively influence mooring operations safety and play a central role in the causal 

chain of maritime accidents. As Graziano et al. (2016) concluded “Accidents analysis 

provides important information on the root causes of marine accidents in specific 

locations and conditions”. Learning reasons for accidents should assist others to learn 

lessons from them, what went wrong and how to avoid recurrence of similar accidents 

in the future. Thus, determining the root causes of the accidents is extremely important 

in mitigating the likelihood of their occurring in the future (Ugurlu et al., 2015).  

The study is not all about the investigation of a particular previous accident. Revealing 

pilotage operations’ associated risks, is not an easy task, especially when the process 

is proactively based. And due to the lack of data, the use of domain experts’ knowledge 

is required to overcome this challenge. An empirical study has been conducted, 

interviews, and survey questionnaires with maritime experts were carried out through 

which it will be possible to explore and identify the other potential risk factors which 

may contribute to pilotage accidents in the future. After having identified the causal 

factors of the pilotage accidents, an initial structural hierarchy risk taxonomic diagram 

is developed, and then validated through experienced experts belonging to the 

maritime sector.  Chapter 4 will be dedicated to developing an appropriate 

methodology framework to identify and classify the human causal factors contributing 

to pilotage accidents. 

What are the most appropriate and useful methods to assess the identified human 

related risk factors and how can they be used? 
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The objectives of the above questions rely on widely used decision-making techniques 

such as Analytic Hierarchy Process (AHP), Decision Making Trial and Evaluation 

Laboratory (DEMATEL), and Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS). For the application of any specific risk-based model on the 

pilotage operations environment there will be a need to use expert judgements and to 

use knowledge-based decision support systems. The decisions are usually made on 

multiple uncertain attributes. As a result, this study needs to deal with the uncertainties 

of data which are mostly unavoidable in pilotage operational contexts. Furthermore, 

given the complexity of pilotage operations, knowledge of human factor influences is 

critical to understand and mitigate threats to performance. In addition, decision makers 

may require an essential understanding of the interdependence relationships among 

the identified risk factors and develop appropriate solutions to reduce their impact and 

improve pilotage operations’ safety  

The evaluations of human causal factors, their importance, relationships, and selection 

of an appropriate measures to ensure the pilotage operations safety is a crucial decision 

for many stakeholders including port managers, ship-owners, surveyors, and safety 

engineers. The determination process of human factors in maritime pilotage accident 

should have the technical ability of handling complex multidimensional factors with 

scientifically acceptable methodology. Therefore, identification, evaluating, and 

mitigation of maritime pilotage accident caused by human errors is a kind of multiple 

criteria decision-making (MCDM) problem and requires MCDM methods to solve it 

(Özdemir et al., 2015). Consequently, in this study, in order to handle the problem 

appropriately, MCDM methods, AHP, DEMATEL, and the TOPSIS are employed. 

MCDM is considered one of the most significant types of decision making studies. 

MCDM is a procedure that facilitates decision making processes, such as choosing, 

ranking or sorting actions. Multi-Criteria Decision Making (MCDM) methods have 

been applied by many researchers and practitioners for evaluating, assessing and 

ranking alternatives across diverse industries (Behzadian et al., 2012). Consequently, 

in this study, in order to handle the problem appropriately, MCDM methods, AHP, 

DEMATEL, and TOPSIS are employed. The MCDM techniques have been used 

because the scope of this research is to select from a predetermined number of decision 

alternatives on a set of attributes for a defined objective 
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 In such a process of complex group MCDM, ambiguous and incomplete data are 

usually presented in different quantitative and qualitative forms. According to Yoon 

and Gyutal (1989), MCDM is “technical decision aids for evaluating alternatives 

which are characterised by multiple attributes”. The attributes represent the different 

dimensions from which the alternatives can be viewed. Most critical situations that 

use MCDM problems in engineering practice are characterised by both quantitative 

and qualitative attributes with various types of uncertainties. In many circumstances, 

the attributes, especially in qualitative forms may only be properly assessed by human 

judgment, which is subjective in nature and is inevitably associated with uncertainties.  

From the above discussion, the quantification of human errors can be viewed as a 

typical multi-criteria decision making (MCDM) problem under uncertainty as it 

involves multiple criteria of both quantitative and qualitative features to solve multi-

criteria and complicated problems. The aforementioned techniques are based on the 

principle of the higher the weights, the more desirable the alternatives. The 

weights/ratings assigned to criteria are mostly obtained through subjective judgments 

and the scores are synthesised as a single value for each alternative to select the best 

solution from the alternatives. However, MCDM problems can be often assessed 

imprecisely due to uncertain and incomplete data related to different quantitative and 

qualitative determinants. 

In order to tackle the problem, a hybrid approach of two or more methodologies that 

are already proven to be successfully applicable for dealing with MCDM problems 

under uncertainty has shown more appropriate applications. In this research, a hybrid 

approach of AHP and TDEMATEL for solving MCDM problems under fuzzy 

environment was applied to address the choice of to human factors that affect pilotage 

operation safety. Using a combination of both subjective approaches of utilizing expert 

judgment to select appropriate criteria could reduce the effects of ambiguity that arose 

from using information from human judgment and preferences. 

In this study AHP method has been used to compare the importance or rating of a 

criterion against that of other criteria at the same level in the hierarchy decision. The 

fundamental criteria scale for the expert judgment was used in the pairwise 

comparison matrices, because it is already in the fuzzy form (Saaty, 2008a).  In this 

methodology, to deal with the uncertainty of human thoughts and expressions, 
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linguistic terms has been used in making decisions and the assessment grades. 

Linguistic terms are expressed by fuzzy numbers. In addition, to confirm the 

consistency of the pairwise judgement (judgement reliability), the consistency 

verification is employed, which is considered as one of the most important tasks of the 

AHP approach. The application of the fuzzy theory was introduced by Zadeh (1965) 

to express the linguistic terms used in the decision-making process in order to 

determine the existence of uncertainty and subjectivity of human judgment. The fuzzy 

theory has been preferred to assist in the selection of appropriate criteria because the 

fuzzy approach allows for the uncertainty of expert judgment to be taken into 

consideration.  

How can the identified related risk factors be prioritised and ranked? And what are 

the relationships and interactions between human factors and how are these risk 

factors an influence on each other?  

This research adopts a mixed approach, it is uses an MCDM approach as a data 

analysis technique. In the MCDM applications, the evaluations of human causal 

factors and their importance are conducted. The causal relationships and potential 

interactions among the selected human factors are also investigated. Analytic 

Hierarchy Process (AHP) is applied to determine the relative weights and rank the 

importance of the selected human factors that affect pilotage operation safety, while 

the DEMATEL method is applied to identify whether there are relationships among 

these factors. A mixed approach that uses different techniques and data sources in the 

same study can offset weaknesses in each. The combination of various methods (i.e. a 

hybrid approach) can yield more powerful decision-making support tools in MCDM 

problems. Therefore, this research applying a mixed methodology (i.e. hybrid 

approach). 

The aforementioned methodologies facilitate the decision-making process for 

identifying the most important risk factors influencing the safety of maritime pilotage 

operations, and provide a comprehensive illustration of relationships among the 

factors and offer insightful understanding of the mutual influence among the risk 

factors to be managed. The key findings of the previous methods assist the decision-

making process for choosing appropriate measures in later stages for mitigating the 

risks influencing pilotage operations, and prevent the occurrence of a similar 
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incident/accident to the one investigated from reoccurring. Chapters 5 will be 

dedicated to developing appropriate decision- making frameworks to evaluate the 

human causal factors contributing to pilotage accidents. 

How can the identified human related risk factors be mitigated and controlled? What 

are the main risk mitigation measures to be considered?   

After the pilotage related risks factors were identified and assessed in order to manage 

and control the risks, an appropriate decision-making method is employed to select 

the most ideal measures for their mitigation. The proposed risk mitigation model for 

pilotage operations enable us to choose optimal risk mitigation measures which are 

deemed to be an important and necessary step in pilotage operations’ safety 

improvement, and mitigating maritime accidents. The list of implemented risk 

mitigation measures (RMMs) to improve the pilotage operations’ safety is identified 

through a literature review, rules and regulations adopted by maritime authorities, and 

via marine experts’ perspectives. Afterwards, in order to obtain feasible alternatives 

(mitigation/control options), the identified risk mitigation measures are prioritized and 

selected. The selection is addressed by the adoption of the TOPSIS model.  

1.5 RESEARCH METHODOLOGY, AND SCOPE OF THE THESIS 

The previous literature review indicated that there is lack of knowledge about how to 

control risks in the maritime pilotage operations. Specifically, there is a lack of human 

related risk management framework in pilotage operations as a guidance or foundation 

which would support decision makers in the achievement of efficient risk 

management. According to Harris (2000), the ultimate objective of managing the risks 

is the capability of identifying, assessing, and mitigating the risk factors in which any 

company or industry is involved. In view of this, the research methodology of this 

study aims to develop a comprehensive framework for identifying, assessing, and 

mitigating the human factors related risks in maritime pilotage operations.  

The proposed framework offers valuable insight to find optimal solutions for effective 

risk control to improve the pilotage operations’ performance, and ensure that safety 

measures can be taken to reduce the potential human errors that may occur during 

maritime pilotage operations in real-world practice, and thus subsequently preventing 

or at least mitigating maritime accidents in the future. The research framework of this 

thesis is shown in Figure 1.1. 
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Maritime risk and safety are very broad research topics. This research focuses only on 

the evaluation of the impact of the human factor related risk on the safety of pilotage 

operations. In addition, it examines the currently implemented risk mitigation 

measures in this uncertain environment. The research will begin by reviewing 

literature articles, official documentation and other published materials related with 

pilotage incidents/accidents from reliable organisations to establish the need for 

carrying out human errors related risk research in pilotage operations to prevent or 

mitigate maritime accidents.  

In conducting research on the riskiness related to pilotage and pilotage safety 

performance, much emphasis will be placed on operational aspects, including the 

human factors which have an impact on the pilots, assistant parties, and ship’s 

crewmembers’ performance (personnel who are responsible for executing pilotage 

operations) which in turn may affect the normal pilotage operations, leaving other risk 

aspects influencing pilotage safety such as organizational, management, policy 

implications, and natural and political issues to be addressed in future work. The 

reason this research is focused on the human factor only is that it is evident from the 

literature review that the human element has proven to be a major contributory factor 

for many maritime accidents and the majority of these accidents have been caused by 

ship’s captain, ship’s crew members, pilots, and assistant parties’ errors. Examples 

come from data from a number of sources (Tzannatos, 2010), (Murdoch et al. 2012), 

(Gill and Wahner, 2012), (Akhtar and Utne, 2014), (Gard, 2014) and (MAIB, 2015).  

Relevant literature review is used as a base to identify the human factors contributing 

to pilotage maritime accidents (HCFs). The historical data that has been utilized for 

this study is the accident reports of the maritime accidents/ incidents investigations 

reports prepared by different maritime organisation. However, as a result of lack of 

data, and in order to validate the HCFs that were extracted from the existing resources, 

and to explore other contributory factors and potential causes which may contribute to 

accidents in future that have not been mentioned in the literature and other 

documentation, another source of data is used in the form of expert knowledge. The 

expert knowledge for this study is acquired as a primary source via survey 

questionnaire and interviews with domain experts. 
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This study adopts more than one method to collect data and provide extra evidence of 

the human factors affecting maritime pilotage operations’ safety. Data was collected 

via survey questionnaire and semi-structured interviews with experienced experts 

from both academic and industrial fields. This step was employed to better understand 

the role of humans in accident causation and ensure that all the causal factors 

contributing to pilotage accidents are identified. Questionnaires were designed and 

tested with the results being used to modify the contents. Ethical approval was also 

obtained to further validate questionnaire contents and participant consent. The 

questionnaires were then distributed via either emails or offline with a cover letter and 

content form to the targeted experts. The final questionnaire is shown in appendix II. 

After having identified the contributory factors of the pilotage accidents and based on 

previous maritime safety studies related with human factors and risk classification, 

with assistance of ship’s masters and academic experts with education level PhD 

degree from an educational institution, staff who have more than 10 years teaching 

and researching experience and have a good understanding of marine operations risk 

research, a hierarchal structure as a taxonomy is initially constructed. Thereafter, in 

order to validate the developed hierarchy a series of email questionnaires were 

distributed and face-to-face interviews were conducted.  

The geographical focus of the research within this thesis are a major ports and pilotage 

area located in the United Kingdom (UK), and Miditerraiian. Experienced experts 

were requested to participate and share their expertise in identifying and evaluating 

data for technical models in the research. In order to reduce the individual researcher 

bias (Oppermann, 2000), the participants of this study were selected from a variety of 

backgrounds and different geographical areas within the maritime industry. In order 

to obtain views on a wider scale and to get multiple points of view, the participants 

included ships’ captains who had served long periods onboard different types of ships 

which are navigating and visiting worldwide sea ports, experienced senior marine 

pilots, and tug masters who had been working long periods in different ports 

companies.  

Furthermore, senior marine risk consultants, and academics from maritime 

educational institution staff with rich knowledge and experience of risk assessment 

and questionnaire surveys, flag state administration officials, insurance and port 
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company managers who are professionals in assessing and managing risks, and who 

could provide factual information and broader data regarding causes of human errors 

that might occur during pilotage operations, and technical information and opinions 

on the research topic. All the criteria mentioned above ensures that the professionals 

are sufficiently senior and knowledgeable to answer the questions and are able to 

provide a good insight and valuable comments to all aspects of the survey.  

For the purpose of assessing the human related risk factors, it is essential to measure 

the human factors contribute to the maritime pilotage accidents by determining their 

priority weighting and evaluating their inter-relationships. Other questionnaire 

surveys (risk assessment survey) were conducted and analysed using a mixed 

methodology (i.e. hybrid approach) Analytic Hierarchy Process (AHP) and Decision-

Making Trial and Evaluation Laboratory (DEMATEL). AHP has been applied to rank 

and identify the importance of the HCF and DEMATEL has been utilised to evaluate 

the causal relationships among interdependent HCFs. This thesis presents decision 

making techniques that are capable of finding optimal solutions that will ensure safety 

of pilotage operations. 

In order to identify the relevant risk mitigation measures with regard to the identified 

risk factors, the current implemented measures in the real-time context and the rules 

and regulations adopted by maritime organizations were reviewed. In order to explore 

other mitigation measures that have not been mentioned in the literature and other 

documentation further questionnaire surveys were conducted. TOPSIS (Technique for 

Order Preference by Similarity to Ideal Solution) was then used to analyse the data 

and rank the relative importance of those risk mitigation measures. The safety 

improvement measures that can ensure optimal operations of the pilotage operations 

were selected. 
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Figure 1.1 Research framework in this study 

 

1.6. STRUCTURE OF THE THESIS 

The thesis consists of seven chapters to achieve the major research objectives.  

Chapter One – Introduction:  

This chapter outlines a general overview of the research background and justification, 

aim, objectives, and the generated research questions, the scope of research, and 

methodological approach and structure of this thesis. It briefly reviews the requirement 

for this research and outlines how the research will be conducted.  
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Chapter Two – Literature review:  

This chapter comprehensively reviews the literature on the concepts of safety in 

maritime transportation, intensive literature search on human related errors and main 

sources of risk factors (human related risk factors) and its effect on pilotage operations 

safety, the status of risk management in the maritime shipping operations context and 

their development as well as an analysis of the maritime accident investigations reports 

regarding pilotage operations events. This chapter discusses the current existing 

studies in association with human factors, and assesses the current knowledge on 

human factors and their effect on pilotage operations safety performance. The 

efficiency of currently implemented pilotage risk mitigation strategies in the maritime 

organizations. Eventually, some research gaps are found out, particularly concerning 

the pilotage operations human-related risks in the maritime sector.  

Chapter Three – Research methodology: This chapter details the research 

methodology adopted, philosophy, approach, strategies and choices that established 

the fundamental for the research work. After defining the overall research design, the 

chapter looks to justify the methodological choices to meet the research objectives by 

outlining the application of data collection and analysis methods.  

Chapter Four – causal factors contributing to pilotage accidents identification: This 

chapter presents the first step of the human factors related risk assessment process, i.e. 

the human factors affecting maritime pilotage operations safety identification. In order 

to expand the coverage of the risk factors identification and classify the unstructured 

risk factors, this chapter reviews relevant literature and other published materials 

involved with the human causal factors that contribute to maritime accidents, surveys, 

face-to-face and telephone interviews with professional experts belonging to various 

sectors of the maritime industry have been conducted. Based on the survey results, the 

hierarchical structure of identified risk factors is developed, modified and further 

validated through a serial of email and face-to-face interviews with the experts.  

Chapter five – maritime pilotage operations risk assessment: This chapter introduces 

the second phase of the risk management framework. This chapter focuses on the 

assessment of identified human factors influencing the safety of maritime pilotage 

operations (HCFs), using a hybrid approach of two methodologies. It illustrates second 

and third-round questionnaire surveys conducted by empirical studies, where the data 
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collected are analysed using AHP and DEMATEL methods. This is carried out to 

determine the relative weights of the risk factors identified and highlight the 

interrelationships between factors. First, the AHP (Analytic Hierarchy Process) is 

applied to determine the relative weights and rank the importance of the human factors 

that affect pilotage operation safety, and then the DEMATEL method is applied to 

identify whether there are relationships among the factors and which factors have 

influence on other factors. 

  Chapter Six – Identification and evaluation of risk mitigation measures: Instead of 

identifying the mitigation measures based just on the literature review, this research 

focuses on the current implemented measures and identifies them through the rules 

and regulations adopted by maritime organizations and via expert perspectives from 

both UK, Mediterranean, and other maritime industries. The significant levels of the 

identified risk mitigation measures are evaluated and ranked by using a TOPSIS 

method.  

Chapter Seven – Conclusion: This chapter summarises the overall results and findings 

of this study. It also suggests the limitations of this thesis and provides the direction 

and recommendations for further research. Figure 1.2 illustrates the overall thesis 

structure. 
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 Figure 1.2: The structure of the thesis   
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                             CHAPTER 2 LITERATURE REVIEW 

2.1 SUMMARY 

In this chapter, to review previous relevant studies related to human factors and their 

impact on maritime accidents, a comprehensive and carful literature review was 

carried out. The literature was used to provide background information and an 

understanding of the field. This review of the literature will concentrate on the type of 

human factors that influence pilotage performance and contribute to accidents during 

pilotage operations. The significance of carrying out an analytical literature review is 

critical to the success of this study, as this helped the researcher to use new and 

appropriate methods to fill the gaps in this area and contribute to the development of 

better policies and more effective preventative measures to improve maritime pilotage 

safety.  

2.2 INTRODUCTION 

Maritime safety in the last few decades has become one of the most significant issues 

in the maritime industry. Since the known disaster of the passenger ship, Titanic, 

where there where 1,502 fatalities, the greatest challenge and the largest problems 

facing the maritime industry, according to reports, is human error (Corovic and 

Djurovic, 2013). The human errors are the basic and by far the major cause of maritime 

accidents, where 80% of all maritime accidents are caused by human error (IMO, 

2011). As Graziano et al. (2016) stated, the human factor has been considered as 

contributing to most marine casualties. It is estimated that most of maritime accidents 

can be attributed to human error. Therefore, investigating of human factors and their 

contribution to accidents is essential. 

In recent years many research projects regarding the maritime safety and maritime 

transportation-related risks have been conducted from a range of perspectives and 

several aspects including hundreds of articles and reports, however, few studies have 

examined how the human factors contribute to the maritime pilotage accidents, and 

until now, very few works of literature has been produced in the maritime domain on 

issues related to human factors and the pilotage operation safety issue. Therefore, 

safety management of pilotage operations needs urgent attention, in order to prevent 

catastrophic accidents. 
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Due to the lack of data regarding this area this literature review is restricted to 

researches that have investigated similar themes and applied similar methodologies 

which attempted to examine the effect of human factors on maritime safety, determine 

the main contributory factors of the accident, and to provide a solution for evaluating 

causes of accidents in the marine industry. The purpose of this literature review is to 

present previous studies that have been conducted related to the human factors in 

shipping operations, and their impact on maritime safety with a particular emphasis 

on pilotage operations. Understanding how the research area has developed in the past 

can help researchers to target the right directions for their research and assist with the 

formulation of new policies and practices to reduce future maritime accidents. (Luo 

and Shin, 2016).  

 The literature review provides significant data and information to this study and it is 

envisaged, “to provide a historical perspective of the respective research area and an 

in-depth account of independent research endeavours” (Colicchio and Strozzi, 2012). 

This chapter reviews the fundamental elements which make a valuable contribution to 

every step of the research pathway.  It discloses, clarifies and exemplifies the structure 

of problems related to human factors and their effect on pilotage operations safety.  

The information has been sourced from academic journals, newspapers, books, and 

consultancy reports. 

In this chapter, the literature related to the study is reviewed. The concept of pilotage 

operations and the human factor are described. The role of `human factor in maritime 

accidents at sea is outlined and past case examples of real pilotage accidents, including 

human errors, and unsafe acts caused by pilots and ship crew members and their 

impact on maritime safety is also discussed in this Chapter. The international rules, 

regulations, and the recommendations which have been adopted by the International 

Maritime Organization, and presented by other organizations, in order to ensure 

maritime pilotage safety are presented. Existing human factor and maritime accident-

related methodology and various studies which have been conducted on the role of the 

human factor in the marine environment are discussed. 

2.3 THE CONCEPT OF THE PILOTAGE OPERATIONS 

Pilotage can be defined in number of ways relating to the nature of the pilotage act. 

For instance, harbour or port pilotage might refer to pilotage involving guiding a vessel 
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into or out of a port. This can also be known as sea pilotage. Coastal-based pilotage is 

understood in some countries to be where a vessel is guided by pilot along the coast 

and not necessarily into or out of a port or harbour in that country. Deep-sea piloting 

is a pilotage that takes place in the North Sea, the English Channel, and Baltic Sea, 

and is subject to the requirements of IMO Resolution A.480v and A.486. UK pilotage 

is governed under the 1987 Pilotage Act as amended. According to UKMPA (2012),  

the English law, section 742 of the Merchant Shipping Act 1894 which still stands 

today under current legislation, a pilot is defined as “any person not belonging to a 

ship who has the conduct thereof”.  

Maritime pilotage is managing of high-risk situations and complex tasks that requires 

intense concentration and high skill levels (CAMSS, 2012).  It is worth mentioning 

that, during pilotage operations, high levels of operational uncertainties exist, 

particularly when the weather is adverse or the ship is very large. Consequently, this 

will put pressure on the master at the peak and lead him to make his own assumptions 

on how the approach to the berth should be handled, especially when a shipmaster is 

unfamiliar with the area, or entering the port for the first time (Armstrong, 2007, p.8). 

Therefore, “Compulsory Pilotage in port areas is the principal risk mitigation measure 

available to ensure the safety of navigation of visiting ships; the safety of passengers 

and crews; the protection of the various environments: port, marine, riparian and 

littoral; the safety of other vessels navigating in the same waters and the overall 

efficiency and commercial success of the port” (UKMPA, 2012).  

The importance of employing qualified pilots in approaches to ports and other areas 

where specialised local knowledge is required was formally recognized by IMO in 

1968, when the organisation adopted the Assembly Resolution A.159 (ES.IV) 

recommendation on pilotage. The resolution recommends that governments organise 

pilotage services where they would be likely to prove more effective than other 

measures and to define the ships and classes of ships for which employment of a pilot 

would be mandatory. Qualified pilots are usually employed by the local port or 

maritime administration and provide their services to ships for a fee, calculated in 

relation to the ship's tonnage, draught or other criteria.  

 “Pilots with local knowledge have been employed onboard ships for centuries to guide 

vessels into or out of port safely or wherever navigation may be considered hazardous, 
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particularly when a shipmaster is unfamiliar with the area” (IMO, 2016). In addition 

to local knowledge and expertise which reduces risks of navigating in constrained 

waterways, marine pilots are able to provide effective communication with the shore 

and tugs, often in the local language. Pilots should be experts and skilful ship handlers 

who guide ships through dangerous or congested waters, such as harbours or river 

mouths, give expert advice to the master concerning navigation, berthing and un-

berthing conditions, and complete the berthing and un-berthing operation of the ships 

by controlling the ship's manoeuvrability directly and the tugs and shore linesmen 

through a radio. “The pilot is not simply a navigation adviser. In law the pilot has 

conduct of the navigation of the ship which involves a multitude of tasks and 

responsibilities” (UKMPA, 2012).  

Maritime pilots play a critical role in ensuring the safe navigation of vessels (Hsu, 

2012). Therefore, the pilot should ensure that he is adequately rested prior to an act of 

pilotage, in good physical and mental fitness and not under the effect of drugs or 

alcohol. The pilot and ship’s master are responsible for the safety of navigation of the 

vessel piloting, as well as for other ships they may encounter, wharves, locks and 

docks. Indeed, the situation is that the ship master remains in charge of the ship and 

the pilot is in charge of handling the ship. A marine pilot assigned to that task has a 

responsibility to the state, the port authority and the ship’s master, however, according 

to the IMO regulations, his presence onboard does not exempt the Master and the 

OOW from their duties and responsibilities for the ship’s safety.  

The relationship between ship’s captain and pilot has always been a delicate one; it 

should be one of mutual trust and respect (Armstrong, 2007, p.8). There should be a 

sense of increased confidence when the pilot comes on board the vessel. Not only does 

the pilot bring local expertise that reduces the risk of navigation in confined waters.  

(CAMSS, 2012). But the pilot comes up on the bridge expecting to be a part of the 

bridge team. How the master and the pilot meet and greet each other is the key to how 

the rest of the passage and manoeuvring will be, it is very important that the chemistry 

between the pilot and ship’s master is good. Otherwise it might lead to dangerous 

situations (Gard, 2007). 
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2.4 HUMAN FACTOR/HUMAN ERROR  

A study on human factors to reduce human factor influencing the safety of operations 

of a complex system, was established in the 1950s (Subramaniam, 2010), however, 

the early work on the human-related risk assessment in maritime transport has been 

changed, and the scientists in the maritime field came to recognize that the old ways 

that have been used in past decades did not provide good system performance and are 

not capable of meeting challenges faced by maritime stakeholders. Furthermore, they 

also realized the need for new approaches for identification and quantification of 

human errors to verify various risks within a system, where the human factor has 

emerged as a major concern in maritime safety research and has become increasingly 

one of the most important maritime safety issues, as it has been widely acknowledged 

to be the most frequent cause that leads towards marine accidents.  

As has been mentioned previously, “When discussing maritime safety, the term human 

element or human factor plays a crucial role” (Berg et al., 2013). There is no 

established international definition of the term, but according to IMO (2003), the 

human element is a complex, multi-dimensional issue that affects maritime safety and 

marine environmental protection. Human factor is considered as one of the most 

important contributors to the causation and avoidance of accidents (Subramaniam, 

2010). Therefore, it is strategically important to carry out human factor evaluation in 

the shipping industry. Investigating human factors contributing to maritime accidents 

is of key importance for maritime policy and management, and highly required 

(Macrae, 2009). According to Özdemir and Guneroglu (2015), studying of the human 

factor and accident analysis has recently become a significant research topic among 

maritime professionals and scientists.  

One of the ways to improve a human performance is by incorporating human elements, 

which can be achieved by carrying out human performance analyses and mitigating 

potential human errors within the system. According to Sanders and McCormick 

(1993), human error is an inappropriate or unacceptable human decision or action that 

degrades efficiency, safety or system performance. Safahani (2009) stated that, human 

error is a general term, which covers a variety of unsafe acts, omissions, behaviours, 

and unsafe conditions or a combination of these. Rothblum (2000) defined human 

error as incorrect decision, improperly performed action, or an improper lack of action.  
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(Rudan et al. (2012) describes human error as a product of the making of an incorrect 

decision or action. Reason (1990) describes the human error as unsafe acts that have 

various forms such as, violations or errors. Errors are divided into three sub-categories: 

decision based-errors, skill-based errors, and perceptual errors. Violations are 

behaviours that show disregard for the rules, and regulations (Shappell and 

Wiegmann, 2003). 

 Human error associated with maritime pilotage operation accidents is an important 

issue in the shipping industry and to maritime stakeholders. The area of human error 

has continuously seen new publications and new findings over the past 30 years, 

signifying the complexity of human interactions with maritime operations (Luo and 

Shin, 2016). In order to mitigate potential human errors and improve the safety 

performance of the pilotage operations, it is of paramount importance that the aspect 

of human factor is incorporated in any effort of quantification of risk.  Thus, the 

appropriate way to reduce the risk and the frequency of maritime accidents is by 

identifying the contributing human factors to human error and investigating methods 

which will either eliminate or mitigate these accidents (Celika and Cebib, 2009). Once 

that has been achieved, the human errors element contribution to marine accidents can 

be reduced. As Lu and Tsai (2008) pointed out, reducing accidents at sea depends upon 

implementing effective safety measures. 

2.5 THE ROLE OF HUMAN FACTOR IN MARITME ACCIDENTS AT SEA 

Over the past decades the greatest challenge faced by the maritime industry and the 

largest problems contributing to most maritime disasters has been the human factor. 

The international studies on maritime accidents show that the human error continues 

to be the primary cause in a considerable number of accidents at sea and these have 

not ceased to occur (Chauvin et al., 2013; Noroozi et al., 2014; Uğurlu et al., 2015; 

Othman, et al; and Graziano et al., 2016), despite advances in technology, and many 

studies being undertaken by many researchers and professionals (Akyuz and Celik, 

2014), in addition, the rules and regulations that have been adopted by the International 

Maritime Organization in order to reduce them (Hetherington et al., 2006), resulting 

in the loss of life and damage to property and the environment (Hansen et al., 2002; 

Luo and Shin, 2016). Luo and Shin (2016) reported that, the overall number of 
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maritime accidents over the past 36 years is 63,991, an average of 1.777 per year and 

human error has been identified as the main cause of these accidents.  

UK Club reported that the percentage of the claims due to human error causes in 

maritime accidents increased, and the majority of these mistakes have been caused by 

deck officers, crew, shore persons and marine pilots (Goulielmos et al., 2012). In 

addition, less-skilled mooring parties CAMSS (2012). Mercator (2012) stated that 

over the past decade, cases of collisions and ships grounding are regularly reported, 

where numerous instances provide evidence that many incidents that occur during 

pilotage can be attributed to ineffective bridge team management, and it is often the 

case that the master and watchkeepers cease to monitor the navigation and position of 

the ship after the pilot has boarded. 

The data presented in Figure 2.1 highlights the statistics of the accidents reported to 

Marine Accident Investigation Branch (MAIB) from 2002 to 2011 to UK registered 

merchant vessels of 100 gross tons or more. Of 1337 accidents, 811 were caused as a 

result of human and technical factors, 555 accidents were due to human factor, 447 

accidents had a technical factor, and 191 accidents were both human and technical 

factors (MAIB, 2011).  

 

 

                                                   Source: MAIB, 2011. Graph author generated 

                               Figure 2.1 the accidents reported to MAIB from 2002 to 2011  

 

The data presented in Figure 2.2 highlights 1190 of the accidents (causalities and 

incidents reported to MAIB in  2016; these involved 1310 vessels. 42 of these  
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accidents involved only non-commercial vessels, there were 687 accidents involving 

750 commercial vessels that involved actual or potential casualties to vessels (MAIB, 

2016) 

                                                        

                                                                       Source: MAIB 2016 

                    Figure 2.2: The accidents reported to MAIB in 2016 

2.5.1. Past case examples of real marine accidents 

In this study, in order to identify contributing factors to maritime accidents,  

investigation reports related to a number of occurring real worldwide maritime 

accidents during pilotage operations between the period 1995 and 2015 have been 

reviewed and examined. These reports were investigated and published by countries 

and relevant institutions and organisations such as, the Marine Accident Investigation 

Branch (MAIB) of the United Kingdom, National Transportation Safety Board 

(NTSB) of the United States of America, and the Transportation Safety Board of 

Canada (TSB).  

As has been mentioned previously, determining the root causes of the accidents is 

extremely important in mitigating the possibility of their occurring in the future 

(Ugurlu et al., 2015),  as many disasters have occurred because organizations have 

ignored the warning signs of past incidents or have failed to learn from the lessons of 

the past (Rohleder & Cooke, 2006). Therefore, one of the methods to reduce the 

number of maritime accidents, is to identify the types of human errors, by studying the 

past case examples from the real marine accidents and to review the investigation 
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reports of marine accidents occurring worldwide, this last to determine how they 

happened (Chauvin et al., 2013). Moreover, ideally, learning the reasons behind 

accidents should help others to understand the causes and contributory factors which 

may negatively influence mooring operations safety, and to learn from them what went 

wrong and how to avoid similar incidents. By identifying and eliminating the causes, 

it is possible to prevent or mitigate the accidents in the future. 

Investigations have been carried out by the MAIB in the UK. These investigations 

were into accidents that involved a UK vessel or occurred in UK 12-mile territorial 

waters during the period 2005 to 2013.  In each case a pilot was onboard. The result 

of the analysis as demonstrated in Fig.2.3. showed that the major cause of the accidents 

which occurred was the human factor, and in the majority of cases reviewed the causes 

were  one or more of the following: the pilot-master information exchange failure, 

poor bridge team-pilot integration, lack of communication, lack of planning, lack of 

ship handling skills, and pilot distracted/ overloaded (MAIB, 2015). 

 

 

                                                                                  Source: MAIB 2015 

                  Figure 2.3. Pilots- top safety issues 2005-2013   
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2.5.1.1 Team working and its influence on pilotage operations safety 

Good teamwork plays a major role in safe and efficient navigation, as breakdowns in 

team work can lead to undesirable situation (Grech et al., 2008).The accident of the of 

container ship CMA CGM Centaurus is a case example of bridge team-pilot 

integration failure, when she had heavy contact with the quay and two shore cranes 

while under pilotage during her arrival at Jebel Ali, United Arab Emirates (Gard, 

2006). The collision of bulk carrier Heloise with the tug Ocean Georgie Bain in the 

port of Montreal, is also one of the best accident examples of bridge team-pilot 

integration failure. The TSB (2013) investigation into this occurrence found that the 

pilot on the Heloise was not monitoring the Ocean Georgie Bain's position at the time 

of the collision, and the bridge crew on the Heloise had not been assisting the pilot by 

maintaining a lookout or using navigational equipment to advise the pilot of relevant 

traffic.  

The lack of monitoring by the pilot and bridge team contributed to the collision 

between the two vessels. In this occurrence, when the pilot lost sight of the Ocean 

Georgie Bain while he was occupied with the task of locating the nearby pleasure craft, 

he did not request assistance from the bridge team, and the bridge team did not monitor 

the tug, maintain a lookout, or assist the pilot at that time. A significant factor in this 

situation was the language barrier that impeded communication. In addition, the 

master–pilot exchange was informal and minimal, and when the pilot made attempts 

to communicate with the officer of the watch (OOW) in English, his actions indicated 

that he had difficulty understanding the pilot's requests. The difficulties in 

communication among members of the bridge team while under way contributed to 

poor BRM and prevented the bridge team from serving as an effective backup for the 

pilot.  

2.5.1.2. Communication and language problems and their effects on pilotage 

operations safety  

Communication is very important for achieving the task goals, such as ship berthing 

operations. In a crisis situation good communication and language skills allow the 

deck officers to recognise a problem quickly and manage the situation and team safely 

and effectively (Saeed, 2015). Several studies have investigated coordination and 

communication between vessels, which showed that difficulties of communication 
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(between two or more vessels or between members of the same crew) are the main 

causes of accidents. 

 According to NTSB (1981), inadequate communication between ship crew is a 

contributing factor to maritime accidents, and 70% of major marine collisions 

occurred while a pilot was directing one or both vessels.  Study was conducted by the 

US Coast Guard (1995), they found that, the most important human factor challenges 

facing the maritime industry and the greatest problems which contributed to most of 

the casualties were: inadequate communication and coordination between pilot and 

bridge crew.  

Additionally, the IMO has underlined the importance of effective communication in 

an International Seminar as a crucial issue for Marine Safety (Winbow, 2002). In 

addition, Hetherington et al (2006) pointed out that, communication is considered as 

one of the core skills central to effective and safe performance in all high-risk 

industries, it also influences team situation awareness as well as team working and 

effective decision-making, the language barrier is one of the main communication 

problems found on ships, and should be taken into account. Chauvin et al. (2013) also 

reported that, maritime accidents occurred due to problems of coordination and 

problems of communication between crewmembers.   

One of the best examples of these accidents  occurring as result of poor language which 

resulted in poor communication and insufficient master/ pilot information exchange 

was when the vessel Sichem Melbourne, made contact with mooring structures at 

Coryton Oil Refinery Terminal on the River Thames estuary near London on 25 

February 2008. There was an inadequate exchange of information between the ship’s 

master and pilot before commencing unmooring operations, as a result of poor 

interaction and communications. Much of the conversation between the crew was 

conducted in the Russian language and this made it difficult for the pilot to understand 

and recognise the master’s actions and to be fully aware of situations, and effectively 

excluded the pilot from the bridge team (MAIB, 2008). 

Failure of communication represents one third of maritime accidents caused by human 

factors, and lack of maritime English, and improper use of Standard Maritime 

Communication Phrases (SMCP) are the reasons why one third of the accidents are 

due to communication failures (Ziarati et al., 2011). Communication disintegration is 
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listed as one among several significant factors which contributed to the maritime 

accidents (Psaraftis et al. 1998; Hanzu et al., 2008; Macrae, 2009; Chauvin et al., 2013; 

Ugurlu et al., (2015). 

 Problems are mainly related to ambiguities or misunderstandings or to an absence of 

relevant communication between two pilots or between pilot and ship’s crewmember, 

or between pilots, and the vessel traffic service (VTS) (Chauvin et al., 2013). Low 

level English language skills of the ships’ crews or pilots, results in ineffective 

communication and this ineffective communication affects negatively on the safety of 

the ship’s manoeuvring.  

Language barriers have been and will continue to be a challenge. Nowadays, in the 

maritime industry, employees of many cultures and nationalities work within the same 

environment. Multilingual and multi-national crew members on ships cause decisive 

problems for the shipping industry. Despite the positive impacts of multinational 

crews, communication was seen as the major problem. Ding & Liang (2005) stated 

that, multicultural crews and a possible lack of a common language have produced a 

rising concern about the competence of ship crews; proficiency in English is one clear 

example. According to Berg et al (2013) communication, and the language skills of a 

seafarer are the most important issues that contribute to maritime safety on the 

individual level.  

Language barriers on foreign ships continue to be a serious obstacle to the safe 

navigation of these vessels in pilotage waters. Since effective information exchange is 

vital to safe navigation, safety is compromised on those vessels where the pilots are 

unable to communicate with the crew. Berg et al (2013) highlighted that, the lack of 

language skills may cause accidents as misunderstandings are inevitable in an 

environment where the crew shares no common language. These issues were discussed 

by Theotokas and Progoulaki (2007) who stated that 96% of marine accidents caused 

by the human factor came as a result of issues with the relationships among 

multilingual crews and sailors from different nationalities and cultures.  

During pilotage operations, when skills in English are not good enough, it increases 

the risk of misunderstandings, which is a very dangerous activity and creates confusion 

on the bridge. Decisions based on wrong interpretations of complicated or ambiguous 

information as result of poor language or bad communication, might lead to 



35 

 

undesirable situations. As a result, the majority of accidents could be prevented if the 

pilot and the bridge team had proper knowledge of a language and a common 

understanding of how the manoeuvring would be carried out (Gard, 2006) 

2.5.1.3 Master/Pilot exchange information (MPX) and its effect on pilotage safety 

The failure to exchange the information between pilot and ships master and failure to 

prepare passage plan properly before manoeuvring commences is a contributing factor 

to maritime accidents, and to ensure effective berthing operations, it is essential that 

the relevant information is exchanged between the master and the pilot before the 

commence of berthing operations (Wild and Constable, 2013). “The master-pilot 

exchange forms the basis for the pilot and bridge team to work cooperatively to 

monitor the vessel's progress” (TSB, 2014a).  

In spite of Annex 2 of Resolution A.960 (23) and the IMO's Standards of Training and 

Certification of Watchkeeping (STCW) 2010 which obliged the ship’s master and the 

pilot to exchange information regarding navigation procedures, local conditions, and 

the ship's characteristic, investigations that have been conducted to analyses marine 

accidents, frequently reveal the root causes to be associated with the failure to 

exchange the information between pilot and ships master and failure to prepare a 

proper passage plan. The majority of cases investigated by Gard (2014) involving 

pilots showed that the major cause of accidents was due to failure to exchange the 

information between pilot and ship’s master, there had been insufficient time for the 

ship’s crew to familiarise themselves with the pilot’s intended passage plan because 

the pilot boarding ground was frequently closer to the harbour entrance compared with 

the charted boarding ground.   

One of these events was on 25 July 2013, in a strong tidal flow, when the tanker Apollo 

left its intended track and made contact with the quayside at the Northfleet Hope 

container terminal on the River Thames near London, the vessel and the quayside both 

sustained significant damage as a result of the accident. One of the main causal factors 

for the accident was that the information regarding the vessel’s propulsion system was 

not readily available to the pilots, either through the port’s information data system or 

the vessel’s pilot card (MAIB, 2014).  

The grounding of M/V Tundra, was another example that demonstrates how the failure 

to prepare a passage plan could contribute to the accidents, when the Tundra departed 
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Montreal, The Transportation Safety Board of Canada (TSB) investigation into this 

occurrence found that the pilot and other members of the bridge team had not been 

exchanging information pertaining to the navigation of the vessel. And passage plans 

for the voyage were not discussed and the bridge team was unaware of a planned 

course change. TSB found that fatigue and ineffective communication between the 

pilot and bridge team contributed to the grounding of the bulk carrier Tundra, near 

Sainte-Anne-de-Sorel, Quebec (TSB, 2014).  

2.5.1.4 Situation awareness and its effect on pilotage safety 

Analysis of a considerable number of pilotage accidents and several pieces of research 

has indicated that a lack of Situation Awareness (SA) is a high risk factor and one of 

the main contributory factors of a marine accidents. Hetherington et al (2006) stated 

that, Situation awareness is the “ability of an individual to possess a mental model of 

what is going on at any one time and also to make projections as to how the situation 

will develop”. SA was defined by Grech et al (2008, p.48) as “extent of convergence 

between multiple crew members continuously evolving assessments of the state and 

future direction of a process”.  

Situation awareness (SA) is important for successful performance and necessary for 

the pilot and ship’s master to select appropriate action during pilotage operations. 

Effective situational awareness is the most important factor that plays a major role in 

decision-making processes in pilotage operations. Saeed (2015) stated that, adequate 

Situation awareness (SA) is important for successful performance in maritime 

operations. He pointed out that inadequate or complete loss of SA can significantly 

affect performance and decision making in abnormal, time critical circumstances.  

Decision making is the process of reaching a decision based on appropriate judgments, 

which depend on problem identification, recognition of solutions and options, 

assessing all solutions and options, understanding risks involved and finally reaching 

the best decision, and this cannot be done unless the individual obtains the quality of 

situation awareness (Safahani, 2015).   Studies were conducted by Grech & Horberry, 

(2002) using a Leximancer tool  in order to determine the extent to which SA is a 

relevant issue in merchant shipping operations, They found that SA is the most 

important factor that plays a major role in decision-making processes in the maritime 

domain.  
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Another study was carried out by Grech et al., (2002) in which they evaluated human 

error in maritime operations, based on the analysis of maritime accident reports 

involving 177 vessels, during the period 1987–2000 from eight different countries. 

Using Endsley's error taxonomy to define the three levels of situation awareness 

(situation perception, situation comprehension, and situation anticipation). They found 

that 71% of all human error types on ships are due to lack of situational awareness. 

The collision of the M/V Cosco Busan with the San Francisco-Oakland Bay Bridge in 

2007, is the best example which demonstrate the negative effects of losing situational 

awareness, on maritime safety. The Transportation Safety Board of Canada found that 

the cause of the collision was the failure to safely navigate the vessel in restricted 

visibility as a result of three primary errors that were made, which eventually led to 

losing of situation awareness: The absence of a comprehensive pre-departure master-

pilot exchange; a lack of effective communication between the pilot and the master 

during the voyage, and thirdly, the master's ineffective oversight of the pilot's 

performance and the vessel's progress (NTSB, 2009). 

2.5.1.5 Influence of Ship Technology on pilotage operation safety  

Unfamiliarity with the electronic navigation equipment is considered a high risk and 

plays a significant role in the occurrence of maritime accidents (Hetherington, 2006). 

It can result in being fully unaware of the position of the ship and leading to loss of 

the whole situation awareness, particularly when the vessels navigate through narrow 

canals or while underway, inbound/outbound from/to ports and channels in the dark 

or under poor visibility conditions. For example, the case of the grounding of the 

chemical tanker Ovit in the Dover Straits in 2013, when the watch keepers failed to 

use an electronic chart display and information system (ECDIS) properly, due to the 

lack of on-board familiarisation training in the use of ECDIS (MAIB, 2015a).  

Advanced maritime technology and the novel electronic navigational systems have 

significant safety and efficiency benefits. The potential effect of automation on the 

performance of the shipboard tasks and the role of advanced technology systems can 

reduce the risk of maritime accidents. However, poor knowledge in the use of 

navigational aids such as automated identification system (AIS), radar, GPS, and 

ECDIS can have a negative effect on pilotage operation safety. Lützhöft and Dekker 
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(2002), pointed out that, automation creates new human weaknesses and plays a 

significant role in the success and failure of navigation today. 

Although new maritime technology can be viewed as beneficial in terms of being able 

to process more data, one of the consequences of the increasing level of technology is 

a loss of situation awareness, which significantly affects performance in abnormal, 

time-critical situations, potentially leading to an accident (Grech et al., 2008, p.125). 

An MAIB (2004) report, based on the analysis of 33 collisions involving 41 vessels 

during the period 1994–2003, showed that the poor use of radar is one of the biggest 

contributory factors in collisions, since it appeared in 73% of the cases being 

investigated. This conclusion is supported by Rios, and Baniela, (2013) and Chauvin 

et al. (2013), who emphasised the ratio of errors causing collisions and grounding, as 

result of mariners’ lack of knowledge in using technology. This indicates that the 

standard of training and the seafarer’s familiarity with electronic navigation equipment 

is inadequate and limited. 

According to the US Coast Guard studies (1995), a lack of technical knowledge and 

failure to use the available navigational tools (particularly radar), on the bridge is one 

of the most important human factors which challenges seafarers, and contributes to 

maritime casualties.  One case example was the near-collision between the cruise ship 

"Statendam", and the Tug/barge Unit "Belleisli Sond"/"Radium 622" on passage from 

Sitka, Alaska, to Vancouver, British Columbia, on the evening of 11 August 1996. 

The TSB (1996) investigated the occurrence of the near-collision, they found that the 

biggest contributing causes to the incident were: the reduced visibility in fog and 

darkness and the pilot's lack of familiarity with the navigational systems of the 

"Statendam". 

The Maritime Accident and Investigation Board (MAIB) (2009), presented the 

following examples of where ECDIS had been the cause of, or contributed to an 

accident.  In their report on the Pride of Canterbury, (2009) they report that despite an 

ECDIS system being onboard, none of the 8 officers was able to use it and it had been 

incorrectly configured. Navigation was conducted by eye and by reference to an 

electronic navigational chart display (ENC).  None of the bridge team had been trained 

in the use of ENC, and the settings were inappropriate such that key dangers would 
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not have been displayed. This case highlights that the greatest technology is only as 

good as the knowledge an officer possesses in respect of it. 

On 15 November 2012 the bulk carrier Amber made contact with moored craft and 

grounded on the south shore of the River Thames, England shortly after departing 

from Tilbury power station. The vessel’s bridge team lost situational awareness in 

dense fog as the vessel manoeuvred from the berth on the north shore, before 

grounding on the opposite side of the river. The MAIB (2013) investigation found that 

the accident was caused by the bridge team’s loss of situational awareness as the vessel 

left the berth in restricted visibility. The roles and responsibilities of the bridge team 

had not been confirmed before departure, no continuous radar watch was kept and the 

vessel’s position, course and speed were not effectively monitored during the 

manoeuvre. The collective loss of situational awareness, and poor standard of 

communications within the bridge team, led to the vessel making contact with moored 

barges and grounding. The pilot’s attempt to establish the vessel’s position and speed 

using the radar was unsuccessful as he was not familiar with the set. In addition, the 

radar display would have been cluttered by the trails of all targets, which would have 

moved relative to the vessel because there was no speed input to the set. 

Following the investigation into the bulk carrier Amber incident, recommendations 

were issued in the MAIB annual report 2013. They recommended that the bridge teams 

must be familiar with all navigational and communications equipment onboard and 

understand the need to ensure that radars are set at optimum range scales and 

performance monitoring is used. (MAIB, 2013). 

2.5.1.6. Fatigue and its effect on pilotage operations safety 

Fatigue is considered a contributing factor to human errors which eventually lead to 

maritime casualties (Phillips; 2000; Hetherington et al., 2006; Ferguson, et al. 2008; 

Akhtar, and Utne, 2014). The seafarers International Research Centre's definition 

contends that fatigue is a result of continuously high or prolonged levels of information 

load which involves subjective feelings of tiredness or a disinclination to work 

(Cardiff University, 1996, p. 5).  The marine Accident Investigation Branch (MAIB) 

(2004, p.3) conducted a study of vessel bridge watchkeeping to determine the extent 

to which fatigue, among other issues, affected marine safety. The study examined all 

collisions, groundings, contacts, and near collisions that had occurred in the United 
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Kingdom between 1995 and 2003. It concluded that, the current provision of STCW 

95 in respect of safe manning, hours of work and lookout are not effective. In addition, 

Investigators found that a third of all the groundings involved a fatigued officer alone 

on the bridge at night. 

Two of the most recent accidents caused by the fatigue factor, are the cases of the 

collision of the tanker ship Eagle Otome the Sabine-Neches Canal, Port Arthur, Texas, 

in 2011(NTSB, 2011), and the grounding of dry cargo vessel Beaumont at Cabo Negro 

on the north Spanish coast in 2012 (MAIB, 2013a).  Both of these cases had as a 

common feature a fatigued navigator on watch operation. While in the Eagle Otome 

case two different sources of fatigue that adversely affected the pilot’s cognitive 

performance as a result of his untreated obstructive sleep apnea and his work schedule 

in the days preceding the accident would have disrupted his circadian sleep pattern, in 

the dry cargo vessel Beaumont case the watch keeping chief officer fell asleep while 

on watch and alone on the bridge.  

The case of the grounding of the bulk carrier Raven Arrow” in the Johnstone Strait, 

British Columbia on September 24, 1997 also was another notable example of the 

influence of fatigue on pilot’s performance. The bulk carrier Raven Arrow grounded 

in fog when the pilot lost situational awareness and prematurely altered course to enter 

Blackney Passage after having elected to conduct the navigation of the vessel without 

assistance from the ship's complement. (Increasing his workload). The Pilot lost 

situational awareness and prematurely altered course.  

Contributing to the occurrence were the following factors: the pilot was probably 

fatigued (at the time of the occurrence the pilot had been awake for over 19.5 hours); 

sound navigational principles were not implemented by the bridge team, the exchange 

of information between the pilot and officer of the watch was minimal (the officer of 

the watch had some doubts with respect to course alteration but did not challenge the 

pilot’s decision, this report goes beyond the individual pilot and fatigue, and addresses 

fatigue from the perspective of management by examining pilot scheduling and fatigue 

management (TSB, 1997). Due to reduced manning levels in the maritime industry 

there is now an emphasis on automation. The increase in automation and decrease in 

manning levels has changed the role of the seafarer, resulting in faster ships which are 
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almost always sailing, with minimum time spent in ports and minimum rest periods 

for the crew, leading them to either physical or mental fatigue. 

The feedback from maritime accident investigation reports shows enormous 

challenges in preventing shipping accidents. Human fatigue is difficult to measure and 

even more difficult to state as a cause of an accident, therefore, accident investigation 

reports are often reluctantly to assign any great importance to human fatigue (Grech 

et al., 2008 p.59). As mentioned in the preceding section, the IMO adopted several 

actions, regulations, and guidelines in order to ensure maritime safety and to either 

eliminate or mitigate mistakes caused by human factors that contribute to marine 

accidents during maritime operations. For example, Maritime Labour Convention 

2006 (MLC 2006), and IMO (2001) Guidance on Fatigue, have developed practical 

guidance to assist interested parties to better understand and manage the issue of 

“fatigue.” However, the lack of an effective response to lessons learned from marine 

accident reports has threatened precautions already taken towards system safety 

2.5.1.7. Workload and its effect on pilotage safety 

Mental work load is a significant issue to consider when assessing the demand placed 

on an operator by changes in the marine task. Nowadays maritime Pilots and the ship’s 

crew perform many more tasks than before because of reduced numbers of staff. There 

has been a cultural shift in the maritime industry toward increased levels of automation 

in tasks, particularly with regard to navigation systems (Grech & Horberry, 2002). In 

addition, the impact of technology in the shipping industry has also caused a much 

larger number of tasks and a larger amount of stress to ships’ operators (Bielic and 

Zec, 2003). These two factors lead to mental fatigue, which lead to impaired 

information processing and reaction time, increasing the probability of errors and 

ultimately leading to ship accidents (Hetherington et al., 2006). 

In the event of the collision of the bulk carrier Heloise with the tug Ocean Georgie 

Bain, the difficulties in communication among members of the bridge team while 

under way contributed to poor BRM and prevented the bridge team from serving as 

an effective backup for the pilot. Furthermore, in communicating only minimally with 

the crew and perceiving that the bridge crew was not available to assist him, the pilot 

essentially assumed all navigational responsibilities, including that of lookout. This 

situation led to an increase in the pilot's mental workload, which led him to narrow, or 
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limit, his focus of attention to the pleasure craft at the expense of monitoring the Ocean 

Georgie Bain (TSB, 2013).  

Diehl (1991) reported that, may some people debate that it may be as result of the 

presence of the advanced instruments through which operators obtain more and quick 

data and they can make timely decisions. At the same time it can be argued that due 

to advanced instruments, operators are overloaded with information and will not be 

able to reach the second level of SA to make the proper decision. Grech et al., 2008, 

p.123) stated that too high a workload could lead to demands exceeding an operator's 

capacity to cope. The mariner’s high mental workload due to the use of technology 

and long-time monitoring navigational aids equipment can lead to memory loss and 

misperception of data. Therefore, controlling work load is a key factor with new 

technology, training and other forms of procedural guidance needed in order to make 

seafarers aware of the capabilities and limitations of new technologies. 

2.5.1.8. Distraction during the time of berthing operations and its impact on safety   

Grech et al (2008) concluded that the electronic equipment such as ECDIS, AIS, and 

electronic navigational chart display (ENC) are considered significant factors that 

overload, confuse, and distract operators, rather than assisting them. Therefore, the 

advanced instruments and technical innovations require greater knowledge and 

extensive training. In recent years, the use of personal communication devices has 

been also linked to numerous accidents across transportation modes worldwide (TSB, 

2012). The National Transportation Safety Board (NTSB) (2011a) reported that many 

accidents occurred due to failure of the ship’s operators to maintain a proper lookout 

due to distraction and inattentiveness, which resulted from repeated personal use of a 

cell phone and laptop computer while they were navigating the vessel.  

The use of personal communication devices (such as cellular telephones) may reduce 

situational awareness. “Cell phone calls from the pilot’s family are threats to ships’ 

safety” (Gard, 2007).   On Wednesday, July 7, 2010, the empty 250-foot-long sludge 

barge, being towed alongside the 78.9-foot-long tugboat Caribbean Sea, collided with 

the anchored 33-foot-long amphibious passenger vehicle DUKW 34 in the Delaware 

River at Philadelphia, Pennsylvania. The National Transportation Safety Board 

determined that the potential cause of this accident was the failure of the crew officer 

of the Caribbean Sea to maintain a proper lookout due to distraction and 
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inattentiveness as a result of his repeated personal use of his cell phone and company 

laptop computer while he was solely responsible for navigating the vessel. (NTSB, 

2011a) 

According to the Marine Accident Investigation Branch (MAIB) (2005) report into 

the grounding of the ATTILIO IEVOLI in the Western Solent, off the south coast of 

England in June 2004, the mobile phone use on the bridge for the majority of the time 

between the pilot disembarking and the vessel grounding was the main contributing 

cause for the accident. Furthermore, they stated that it was known that the Master made 

some, if not all, of the calls during this period. With the remainder of the bridge team 

unclear of their relative responsibilities for navigation, and the master distracted on 

the telephone, no one appeared to have been concentrating on the safety of the vessel.  

2.5.1.9. The excessive speed and its effect on mooring operations safety  

Many accidents have happened due to excessive speed during berthing operations as 

the one described below (Gard, 2014). Case of collision with terminal dolphin is one 

of the best example of breaching the rules when the vessel entered the breakwater at 

8.5 knots even though the maximum permitted speed was only 5 knots. Although the 

Master observed that they were exceeding the maximum speed, the Master did not 

attempt to bring this to the attention of the pilots. Four tugs were requisitioned to assist 

the vessel in berthing at the terminal. Due to the excessive speed of the vessel, the tugs 

had difficulty maintaining speed to keep up with the vessel as she made her way to the 

terminal. Extensive damage was caused both to the ship and to the mooring dolphin. 

The following causes contributed to this incident: (1) the vessel’s speed was excessive 

when trying to connect to the tugs. (2) There was a lack of communication between 

the pilot and the master at many stages while transiting the channel. There was little 

or no information exchanged regarding the docking plan and how the 4 tugs were to 

be put to use and coordinated. (3) The Master did not insist that the pilot did not exceed 

the maximum allowable speed as it entered the breakwater. (4) The pilot, when 

communicating with the tugs, was speaking a language that was not understood by the 

Master. This made it difficult for the Master to have a proper situational awareness. 

(5) The Master was over-confident as to the abilities of the pilot (Gard, 2014).  

2.5.1.10. Pilot boarding and disembarking close to the breakwater and its influence on 

berthing safety 
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A considerable number of research works showed that numerous maritime accidents 

occurred due to boarding and disembarking of the pilot close to the port entrance (P&I 

Club, 2012).  Pilot disembarking early before the ship leaves the port entrance or 

embarking the ship at the breakwater, is a high risk procedure which influences 

negatively on the pilotage operations safety, as it will leave insufficient time for the 

captain of the vessel to exchange information with the pilot, and to arrange the passage 

plan which is considered as one of the most significant factors to achieving safe ship 

berthing. According to Gard (2007), Captain Erik Blom Master of the M/V BLACK 

WATCH, reported that, "I have experienced pilots embarking at the breakwater, not 

giving us time to meet and greet at all, and forcing me more or less to disregard the 

pilot as there is no time to discuss or exchange information. This is very often the case 

in Mediterranean ports. This is a very unsatisfactory situation as the pilot is not 

integrated with the bridge team and sometimes just creates clutter to the organization”. 

One of the best examples of these incidents, has been reported by P&I Club (2012), 

when the bulk carrier with an experienced master was leaving a port to which he had 

been to many times before. The ship left the berth behind schedule during the late 

afternoon and in good weather, when the pilot told the master that he wanted to 

disembark before the designated pilot station. This request turned out later to be for 

the pilot’s personal reasons. The pilot did not leave the master with information of 

what courses to take, what dangers to avoid and/or any information about incoming or 

outgoing traffic. The watchkeeper had accompanied the pilot to the main deck to 

disembark and, during this period, the master was alone on the bridge. No positions 

were maintained on the chart and the master was navigating by ‘eye’. For reasons that 

can only be explained as human error, the master steered the ship the wrong side of a 

navigational mark and it ran onto submerged rocks, which ripped out the double 

bottom tanks. The wreck removal and oil pollution costs were significant.  

Even though  the resolution A.960 (23) adopted by IMO, which recommends that the 

boarding position for pilots should be located, where practical, at a great enough 

distance from the port, still pilots breach the rules and making such errors, which lead 

to maritime disasters and injuries for humans, and damage to the environment and 

properties. It can be seen from the above discussion that embarking and disembarking 

of a pilot close to the breakwater is high risk, it influences the safety of the pilotage 

operation and contributes to maritime accidents, as it will not give the ship's captain 
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and crew members the chance for the exchange of information with the pilot at all, 

and might force the ship’s master more or less to disregard the pilot, as there is no time 

to discuss or exchange information. 

2.5.2 Human factors and maritime accident research  

Over the past decades, maritime authorities have been continuously challenged to 

improve maritime operations performance and safety. The increased numbers of 

maritime accidents during the last few decades have forced the maritime professionals 

and scientists to conduct a numerous studies to identify risk factors and to analyse their 

impact on maritime safety (Özdemir and Güneroğlu, 2015). Maritime safety 

practitioners attempted to find appropriate solutions to minimize human error and 

enhance safety in maritime transportation.  For example, the Transportation Safety 

Board of Canada TSB (1995) in a study of operational relationships between 

shipmasters/watchkeeping officers and marine pilots, reported that the inadequate 

interpersonal communications among the bridge team, lack of adequate information 

exchange, incomplete understanding of the intended manoeuvres, loss of situational 

awareness, absence of monitoring of the ship's progress were the most contributory 

factors to maritime accidents. 

Likewise, Psaraftis et al. (1998) conducted extensive studies, in order to present a 

comprehensive analysis of the human element as a factor in marine accidents.  They 

investigated all accidents involving Greek-flagged ships, over the period of 1984 to 

1994, regardless of the accident’s geographical location. Moreover, all events that 

occurred in Greek territorial waters were similarly investigated, irrespective of the flag 

of the ship involved. As a result of the analysis, it was found that the major cause of 

all accidents was the human factor, and in the majority of cases reviewed, the incidents 

were due to one or more of the following: poor crew competence, lack of 

communication, lack of proper maintenance, and lack of application of safety.  

Moreover, a comprehensive review of literature was conducted by Hetherington et al. 

(2006) to identify the relative contributions of individual and organizational factors in 

shipping accidents. They found that fatigue, stress, health, situation awareness, 

teamwork, decision-making, communication, automation, and safety culture is the 

most frequent contributing factors to maritime accidents. (MAIB) (2004) conducted a 

study of vessel bridge watch keeping to determine the extent to which fatigue, among 
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other issues, affected marine safety. The study examined all collisions, groundings, 

contacts, and near collisions that had occurred in the United Kingdom between 1995 

and 2003. It concluded that “the current provision of STCW 95 in respect of safe 

manning, hours of work and lookout are not effective. In addition, Investigators found 

that “a third of all the groundings involved a fatigued officer alone on the bridge at 

night.  

Similar studies regarding this matter have shown that the duration between 00:00 and 

06:00 hours is the most dangerous period for ships accidents (Great Britain, 

Department of Transportation, 2004). The same period of time is supposed to be most 

dangerous for maritime accidents as a result of the biological clock within the human 

organism which makes a person subject to heavy sleep during that period of time 

(Fatigue: IMO guidance, 2006). Also Ferguson, et al. (2008) examined the impact of 

brief, unscheduled naps during work periods on alertness and vigilance in coastal 

pilots along the Great Barrier Reef, as the duration of the work period can extend well 

beyond 24 hours. Seventeen coastal pilots were volunteered for the study, they found 

that a pilot’s work environment, irregular and lengthy working hours without a decent 

nap, working at night without rest period, and travelling to and from their jobs impact 

on the alertness of marine pilots and can significantly contribute to fatigue.   

Another study has been carried out by Akhtar and Utne (2014), they constructed a 

Bayesian network (BN) using data from 93 accident investigation reports. It was found 

that a fatigued operator raises the probability of grounding for a large ship in long 

transit by 16 %. Moreover, the probability of a watchkeeper being fatigued was found 

to be 23 %. According to Akhtar and Utne (2014), alcohol misuse is a problem in 

maritime transport, and it also amplifies human fatigue levels, even low alcohol 

exposure significantly impairs the performance of navigators, and contributes to 

accidents at sea. Xhelilaj and Lapa (2010) reported that, quality, quantity and duration 

of sleep can play a significant role in a mariner’s performance.  Moreover, ingested 

chemicals such as alcohol, drugs and caffeine which are used very often among 

seafarers to overcome sleep and boredom can also limit a pilot’s opportunity to obtain 

restorative sleep and can significantly contribute to fatigue (Fatigue: IMO guidance, 

2006). 
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Macrae (2009) has also carried out accident analysis in two types of shipping 

accidents: groundings and collisions between 1995 and 2000. 30 detailed marine 

accident reports written by the Australian Transport Safety Bureau (ATSB) were 

reviewed. The study revealed that, 76% of shipping accidents caused by human error 

which occurred on the bridge. In addition, the analysis indicated that the most common 

causes of the accidents were due to a lack of communication among the bridge team, 

failure of position fixing, errors in determining the speed, failure to keep adequate 

watch, passage plan errors, and poor judgment of the situation. Moreover, the study 

showed that around 80% of marine accidents which occurred because of human error, 

had traditionally been viewed as a by-product of individual cognitive behaviour or 

occasionally moral issues caused merely by carelessness or ignorance. 

Similar research was carried out by Tzannatos and Kokotos (2009), where all accidents 

involving Greek-flagged ships during the period 1993-2006, accidents were examined 

according to the vessel type, cargo, and location. The findings showed that 63.9% of 

the pre-ISM accidents were due to human error, as opposed to the 51.7% during the 

post-ISM period. As an indication of human source analysis, Tzannatos and Kokotos 

(2009) stated that the captains of the ships were found to be responsible for 41% of all 

accidents and for 72% of all human-induced accidents. In addition, the results of the 

analysis reported that 83% of tanker accidents were caused by the human factor, and 

67% of accidents occurred in restricted areas as a result of human error.  

Tzannatos (2010) conducted similar studies on different incidents of Greek-flagged 

ships during the period of 1993 to 2006. The research provided an analysis of various 

accidents based upon the findings of formal enquiries conducted by the Hellenic Coast 

Guard. According to the investigation, 57.1% of ship accidents were attributed to the 

human element. Furthermore, it was discovered that the captains of the ships were 

responsible for almost all of the frequently encountered groundings and collisions, and 

were involved in 80.4% of the accidents. On the other hand, the engine officers were 

responsible for 8.1% of the incidents, and the bridge officers and crew were 

responsible for 6.8% and 4.7%, respectively. Furthermore, the studies found that the 

incidence of human error had arisen due to of the manning policies being carried out 

by shipping company managers.  
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Furthermore, studies were conducted by Ćorović and Djurovic (2013), they 

investigated the human factor and its impact on maritime safety from psychological 

and organisational aspects. They reported that, health is considered one of the most 

important factors that influence the professional efficiency of seafarers and correlated 

to psychophysical strength, duration of resting, seafarers’ job satisfaction, internal 

relationships and stressful situations. They also found that, psychological problems 

such as impatience, dissatisfaction, and lack of motivation may stimulate intolerance 

between crewmembers, which could also be a result of cultural and religious 

differences. In addition, they pointed out that working and living on a ship with 

employees of an array of nationalities and backgrounds could lead to 

misunderstanding, and operational problems which will have a negative effect on crew 

performance. And consequently, influence vessel safety.  

Another paper was introduced by Chauvin et al. (2013), utilising the Human Factor 

Analysis and Classification System (HFACS)  to determine the contributing factors in 

ship collisions, and jointly used the Multiple Correspondence Analysis (MCA) and 

hierarchical clustering methods to analyse the human factors and organizational 

factors in the ship collisions. This tool has been used to classify and analyse factors 

that are mentioned in accidents reports, for 39 vessels involved in 27 collisions that 

occurred between 1998 and 2012. 11 of those were under the conduct of a pilot. The 

results of the study show that most collision accidents occurring in restricted waters 

and involving pilot-carrying vessels are due to decision errors. They concluded that 

problems are mainly related to the inter-ship communications problems such as, 

ambiguities or misunderstandings or to an absence of relevant communication 

between two pilots or between pilot and ship’s crewmember, or between pilots, and 

the vessel traffic service (VTS), and bridge resource management (BRM) deficiencies.  

Another study concerning the human error during ship manoeuvring in restricted 

waters was presented by Gerigk and Hejmlic (2015) in order to find out how stress 

and stressing factors influence the decision-making process of ship’s masters and 

marine pilots during ship manoeuvring in restricted area. They found twenty-four 

difficult situations at sea which are the main stressors influencing the decision-making 

process and the performance consequently the potential for human error during ship 

manoeuvring in restricted areas. They also found that knowledge of port area, 
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experience, number of years of employment as ship master and pilot are significant 

factors affecting the manoeuvring performance in restricted waters. 

A new approach was presented by Özdemir and Güneroğlu (2015), using a novel 

hybrid accident analysis method to analyse marine accident causes which occur in 

complex social and technical reasons. The hybrid method involves the decision-

making trial and evaluation laboratory (DEMATEL) and Analytic Network Process 

(ANP) method in order to evaluate the importance level of the human factors in 

maritime casualties, and provide a solution for evaluating causes of accidents the in 

marine industry. As result of this study, the most important factors were found to be 

ability, skills, knowledge, physical condition and weather sea condition. 

Ugurlu et al. (2015) reviewed maritime accident reports issued for grounded ships 

between 1993 and 2011, in order to determine the causes of the collisions by using the 

Analytic Hierarchy Process (AHP). They concluded that, the lack of communication 

and coordination in Bridge Resource Management, position-fixing application errors, 

lookout errors, interpretation errors, use of improper charts, inefficient use of bridge 

navigation equipment, and fatigue, were the most common factors behind collisions. 

In order to reduce the accidents, they suggested to providing more education and 

training opportunities to seafarers, and improving seafarers’ working hours and rest 

breaks. 

A similar study was carried out by Uğurlu et al. (2015a). In this study, collision and 

grounding data registered in GISIS (Global Integrated Shipping Information System) 

were investigated. The database includes the information of the collision and 

grounding accidents during the period between 1998 and 2010 for oil tankers. The risk 

assessments were carried out using the fault tree analysis (FTA) method. They found 

that the main reasons for the accidents originating from human error are as follows: 

for collision accidents, Convention on the International Regulations for Preventing 

Collisions at Sea (COLREG) violation and the lack of communication between 

vessels; and for grounding accidents, the interpretation failure of the officer on watch 

and lack of communication in the bridge resource management. 

Likewise, Erol and Basar (2015) have examined 1,247 marine accidents occurring in 

the Turkish search and rescue area in the period between 2001 and 2009 by using the 

Decision Tree method.  They concluded that 60% of marine accidents happening in 
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the Turkish search and rescue area are caused by human error, and the main causes of 

the human error are navigational, manoeuvring failure, and carelessness. Technical 

failure and weather conditions followed human error as 18% and 15%, respectively.  

Recently, study was carried out by Uğurlu (2016), in this study questionnaires and 

interviews with 71 pilots, were conducted in order to investigate the pilots’ profile and 

structure of existing pilotage organisations in Turkey, to create an effective pilotage 

organisation model. They found that the commercial–political pressures and low 

salaries negatively affect maritime pilot performance. They concluded that the 

structural deficiencies in pilotage organisations caused commercial pressure on pilots, 

which has negative impact on task management and should be reduced. Moreover, 

they found that dense and irregular working conditions reduced job satisfaction and 

caused physical and social problems, they also found that the working schedule or job 

rotation is one of the most important factors affecting fatigue management, and 

maritime pilot performance.  

2.6 HUMAN FACTOR RISK/ SAFETY ASSESSMENT METHODS 

Over the past view decades, maritime risk and safety assessment researches have 

undergone many essential changes, and a considerable number of new approaches 

have been developed to facilitate risk quantification in order to improve maritime 

safety. The early studies in maritime accident research usually adopted very basic 

methods such as statistical and descriptive reviews, case studies and probability 

calculations, while recent studies often used multi-disciplinary approaches, 

comprehensive risk analysis, and system-width viewpoints (Luo and Shin, 2016).  

In recent years, the most frequently used method for risk analysis and safety 

assessment was the Human Factors Analysis and Classification System (HFACS) 

method.  It was proposed by Wiegmann and Shappell (2003) to investigate and analyse 

accident causes in the aviation industry, and the fundamental framework of the 

HFACS method was tailored from the Swiss cheese method which was initially 

introduced by Reason (1990) to provide researchers with a tool to identify the latent 

or active failures. The main aim of the method is to provide a schematic framework to 

assist safety practitioners in investigating and analysing human factor in accidents. 

HFACS is a schematic powerful tool to investigate human contributions to marine 

accidents. Recently the HFACS method was successfully extended by (Akyuz et al., 
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2016), introducing a comprehensive schematic framework consisting of four 

schematic levels:  organisational influences; unsafe supervision; pre-conditions for 

unsafe acts, and the actual unsafe acts in order to analyse the role of the human error 

in accidents. 

In the past decade many different approaches have been developed to address the 

maritime safety problems. Maritime accident research based on accident statistics has 

had significant effects on safety management practices in the industry. However, they 

are, on their own, unable to manage the uncertainty in data, failing to look at the overall 

picture of maritime safety analysis, as a result, a considerable number of developed 

approaches and different techniques have been used to quantify the risks in maritime 

transportation including fuzzy logic, Bayesian networks (BNs) evidential reasoning, 

Monte Carlo simulation, Markov chains and genetic algorithm to model risks in this 

dynamic and data-scarce application area have been put forward (Yang et al., 2013). 

 Yang et al. (2013) concluded that the formal safety assessment (FSA) provided by 

IMO is the primary method that is currently being utilised for the analysis of maritime 

safety, which provides a reasonable and integrated framework to facilitate maritime 

safety analysis, including the development of new risk-modelling and decision-

making methods to address uncertainty in data as well as new cost–benefit analysis 

approaches to facilitate the implementation of maritime regulations. Furthermore, 

research on design for safety, risk-based inspection, traffic safety evaluation, 

evacuation and rescue simulation, fire risk estimation and human reliability analysis 

(HRA) has been also applied in the last decades.  

2.6.1 Human Reliability Assessment (HRA) methods 

 The way of identifying and quantifying human error related risks in the maritime 

industry has undergone a transformation in the past decades. In recent research, there 

are many approaches that have been used for facilitating human error identification 

and human reliability analysis.  HRA techniques have been an essential research issue 

in safety critical systems in the new century, it has been widely conducted to tackle 

specific difficulties in challenging maritime safety (Yang et al., 2013a). “HRA is a 

tool used to evaluate human reliability as well as the uncertainty of data concerning 

human factors and the complexity of the human behaviours” (Zhou et al., 2018).  It is 

regarded as one of the most important methods that have been used to improve human 
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performance and to describe the human contribution to risk, which includes a series 

of methods to identify sources of human errors and to predict the likelihood of their 

occurrence (Boring, 2008).  

 HRA has been employed since the early 1980s. It has become notable after the Three 

Mile Island accident in 1979, from which the method has become familiar to the 

nuclear industry, and has been utilised in many different industries (Kirwan et al., 

2008).  The HRA aims to assess and provides a good collection, interpretation and 

application approach to human failure data, resulting in enhancing human 

performance, and mitigating potential human errors within the system, including in 

the maritime industry, in a shipping company or onboard a ship (Cepin, 2008). It 

involves the use of qualitative and quantitative methods to assess the human 

contribution to risk (Holroyd & Bill, 2009), where quantitatively it facilitates to obtain 

HEPs, and qualitatively it identifies potential human errors in an incident/accident 

investigation (Subramaniam, 2010).  The following subsections provide a summary of 

some of those tools identified as being of potential use to human factor identification 

and quantification.  

2.6.1.1 First Generation Methods 

Some of the methods developed and used were a well-known first generation HRA 

techniques, including, Technique for Human Error Rate Prediction (THERP) (Swain 

and Guttmann, 1983), Success Likelihood Index Methodology (SLIM) (Embrey, 

1983), (ASEP), and Human Cognition Reliability (HCR) model, (Hannaman et al., 

1984), etc. (Holroyd & Holroyd, 2009). These tools were the first to be developed to 

assist risk assessors predict and quantify the likelihood of human error. The first 

generation HRA techniques utilized a simple error taxonomy and "fits/doesn't fit" 

dichotomy to correspond error state to error identification and quantification (Boring, 

2005). These approaches tend to be atomistic in nature; they encourage the assessor to 

break a task into component parts and then consider the potential impact of modifying 

factors such as time pressure, equipment design and stress. By combining these 

elements the assessor can determine a nominal human error potential (HEP).  

First generation methods focus on the skill and rule base level of human action and 

are often criticised for failing to consider such things as the impact of context, 

organisational factors and errors of commission (Subramaniam, 2010). Despite these 
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criticisms they are useful and many are in regular use for quantitative risk assessments. 

The first generation of the HRA methods are proposed based on the premise that 

inherent deficiencies lead to humans failing to perform tasks just like mechanical, 

electrical or structural components do (Marseguerra et al., 2007). This generation is 

represented by the THERP method (Zhou et al., 2018), etc. (Kim and Bishu, 2006).  

One of the first HRA methods developed and used was the Technique for Human Error 

Rate Prediction (THERP), in 1961. The first meeting to discuss HRA was held in 1964. 

The first large scale application of HRA was carried out in 1972, when THERP was 

used to assess the impact of estimated human errors in a probabilistic risk assessment 

(PRA) of two nuclear power plants, referred to as the WASH-1400 reactor safety 

study. The method has been extensively used in the USA and in the UK nuclear 

industry, it has been also been successfully applied in many industries including 

nuclear, chemical, aviation, rail, medical and maritime to the other sectors such as 

offshore and medical sectors for assessing human reliability that deals with task 

analyses error identification and representation, as well as the quantification of HEPs 

(Kirwan, 1994). Kirwan et al (1997) conducted validation to an independent validation 

of THERP along with two other methods (HEART and JHEDI). They found that no 

one technique out performed the others, and all three achieved a reasonable level of 

accuracy. 

The advantages of using the THERP method, are that designed to be a quick and 

simple method for quantifying the risk of human error. It is a general method that is 

applicable to any situation or industry where human reliability is important. In 

addition, it is a flexible, quick, and easy human reliability calculation method, which 

allows the user suggestions on error reduction, it requires relatively limited resources 

to complete an assessment, and it can also be easily integrated with fault tree reliability 

methodologies.  

The disadvantages of the THERP method, are that the error dependency modelling is 

not included, it requires an enormous effort to obtain reliable HEPs and greater clarity 

of description to assist users when discriminating between generic tasks and their 

associated Error Producing Conditions (EPCs); there is potential for two assessors to 

calculate very different human error reliability (HEPS) for the same task, also the 
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method lacks information about the extent to which tasks should be decomposed for 

analysis.  

Success Likelihood Index Method (SLIM) tool is an expert judgement method which 

was first developed by Embrey (1983) for the US Nuclear Regulatory Commission 

and has become popular in the mid-1980s and remains so, particularly in less safety 

critical environments than major hazard industries. SLIM is an approach utilized to 

assess human error probabilities using structured expert judgment. The SLIM provides 

a quick tool to predict human error and evaluate human error probability (HEP) that 

occurs during the completion of a specific task. This tool provides a structured means 

for experts to consider how likely an error is in a particular scenario (Embry et al, 

1984). However, the method, like other expert judgement tools, does have 

shortcomings, the weakness of this method is the subjectivity in the process of experts’ 

judgments causing difficulties in ensuring consistency (Akyuz, 2016). To remedy this 

problem, Park and Lee (2008) developed a method where an Analytic Hierarchy 

Process (AHP) method was used to estimate HEP, known as AHP-SLIM, which 

quantifies the subjective judgement and confirms the consistency of collected data”. 

Also, study was conducted by Akyuz (2016), using a fuzzy based SLIM technique 

which provides more accurate estimation during human error quantification. In the 

proposed approach, while the SLIM is utilized to estimate HEP, the fuzzy sets deal 

with the vagueness of expert judgments and expression in decision-making during the 

weighting process of performance shaping factors (PSFs).    

The method, like other expert judgement tools, does have users and has been evolved 

to address the early problems that were identified with the method. According to 

Holroyd & Bill (2009), SLIM is a flexible tool and appropriate for application in major 

hazard sectors. It facilitates gross cost benefit evaluations to take place. It is found that 

the main criticisms of SLIM are that it requires an expert panel to perform an 

assessment, its methods are poorly structured resulting in various results for different 

analysts, it is resource intensive, and there is a lack of theoretical foundation on its 

quantification procedures. The mixed reviews of SLIM suggest that if the method is 

rigorously employed and the experts are sufficiently observed to reduce bias, then it 

can be beneficial. 
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 In general, the disadvantages of the first generation HRA methods can be described 

as follows: they have generally recognised shortcomings in a scarcity of data, 

insufficient treatment of performance shaping factors (PSFs), inadequate proof of 

accuracy, inadequate psychological realism, lack of consistency in treating error of 

commission, inadequate treatment of dynamic situations, a mechanical view of 

human, high level of uncertainty, lack of systematic task analysis structure and 

inadequate error reduction strategies (Hollnagel, 1998, Kristiansen, 2005,  Kim and 

Bishu, 2006).  Second generation HRA methods have therefore been developed to 

overcome such difficulties by appropriately taking into account the contextual 

influence of a task and by being equipped with the more powerful ability of 

incorporating expert judgments to deliver quantitative human failure analysis results. 

Although attractive, these methods have still exposed some shortcomings in their 

practical application (Yang et al., 2013a).  

2.6.1.2. Second Generation Methods  

The development of ‘second generation’ tools began in the 1990s and is on-going, 

including, Cognitive Reliability and Error Analysis Method (CREAM) (Hollnagel, 

1998), and A Technique for Human Error Analysis (ATHEANA) (Cooper et al., 

1996), Human Error Assessment and Reduction Technique (HEART) (Williams, 

1988), SHERPA (Embrey, 1986), and Simplified Plant Analysis Risk Human 

Reliability Assessment (SPAR-H) (Gertman et al., 2004), and there are also other 

methods (Holroyd & Bill, 2009).    

The second generation approaches consider the context as the most crucial factor 

affecting human performance failure and hence focus on the relationship between 

context and associated human error probability (HEP). The literature shows that 

second generation methods are generally considered to be still under development but 

that in their current form they can provide beneficial insight into human reliability 

issues (Holroyd & Bill, 2009). Kirwan et al. (2008) reports that the most prominent of 

the second generation tools are the ATHEANA, and CREAM methods. The 

ATHEANA approach is defined as a method for obtaining qualitative and quantitative 

HRA results. It is the assessment method for the performance of safety operation 

(Holroyd & Bill, 2009). 

https://www.sciencedirect.com/science/article/pii/S0029801812003915#bib5
https://www.sciencedirect.com/science/article/pii/S0029801812003915#bib6
https://www.sciencedirect.com/science/article/pii/S0029801812003915#bib6
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 ATHEANA was developed to assess the performance of safety operations, 

particularly for the probabilistic safety assessment of reactors in nuclear power plants, 

however the approach is suitable for application in other industries. It uses error 

forcing contexts (EFCs), which are defined as a compositions of working conditions 

and other influences that make an operator error more likely, to obtain qualitative and 

quantitative HRA results. It utilizes psychology, human factors, engineering 

knowledge and probabilistic risk assessment for retrospective and prospective 

analyses. It takes into account ergonomics, psychology and accidentology in 

modelling management system behaviour and safe system failure in the operation of 

nuclear power plants. It utilizes consistent configurations/orientations (CICA) of the 

system (Holroyd & Bill, 2009).  

The benefits of using ATHEANA are that it is capable of estimating HEPs for various 

conditions of events and that it allows for a focused approach in predicting specific 

error and significant factors influencing that specific error. ATHEANA is an approach, 

which attempts to solve the problem of including EOC [errors of commission] in PSA 

in an extensive way. If the method is properly applied, the methods that comprise 

ATHEANA should be able to yield significantly more insight into the nature of human 

actions. ATHEANA can be used to develop detailed qualitative insights into 

conditions that may cause problems. It provides a systematic way of exploring how 

action failures can occur (Holroyd & Bill, 2009).    

Meanwhile, the disadvantages of applying ATHEANA are that there are a limited 

number of ATHEANA applications and rigorous methods are applied in identifying 

the influencing factors used for quantification purposes (Forester et al., 2004). The 

ATHENA method is difficult to use and very costly. The guidance is too complex and 

depends too much on subject matter experts. The measurement method is weak, and 

the quantitative results are not proven. The quantification is extremely dependent on 

expert judgement, thus properly has low reliability as a method.  

 Hollnagel (1993) developed CREAM and the method is still under development. 

CREAM was first proposed for nuclear power plant applications (Jung et al., 2001, 

Tang et al., 2014) and was adopted by the National Aeronautics and Space 

Administration (NASA) in the early 1990s to predict human error (Calhoun et al. 

2014). It is based on a set of principles for cognitive modelling with detailed 
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classification of erroneous actions. Hollnagel (1998) provides comprehensive details 

on the principles of CREAM, classification and the methods of assessment, both 

retrospective and prospective.  

The main advantages of CREAM are that it provides a well-structured systematic 

approach for identifying and quantifying human error, CREAM can be used 

retrospectively to analyse and quantify error, and prospectively to identify potential 

human error for an incident/accident that is possibly encountered. In recent years the 

method has become one of the most common methods and widely applied in many 

industries. In particular, for the maritime sector, researchers have applied the method 

to examine human reliability in maritime activities (Akyuz and Celik, 2015).  

In order to overcome some of the shortcomings of the human reliability analysis 

methods, a new approach has been developed, it is the use of combined methods and 

coupled analysis. For example, an advanced CREAM and a human reliability 

quantification model was proposed by Subramaniam (2010) in order to address some 

of the shortcomings of the generic HRA and FSA methodologies that exist 

independently in the management of oil tankers to prevent oil spills. In this study a 

DEMATEL model, which allows for an inclusive understanding of relationships and 

interdependencies among the Common Performance Conditions (CPCs), and an 

integrated AHP and fuzzy TOPSIS model for determining the selection of appropriate 

risk control options are integrated into CREAM.  

Yang and Wang (2012) also conducted a study in order to develop a generic method 

by modifying the CREAM methodology. In the paper, fuzzy evidential reasoning and 

Bayesian inference logic are integrated into the CREAM methodology to facilitate the 

quantification of human failure in the marine industry. Likewise, a similar study was 

introduced by Yang et al. (2013a) to extend the traditional CREAM approach by 

incorporating fuzzy evidential reasoning and Bayesian network techniques to facilitate 

human reliability quantification in marine engineering. In addition, an application of 

the CREAM method into the cargo loading processes of LPG tankers has been 

implemented by Akyuz and Celik. (2015). In the paper, the main focus of this research 

is to predict human error potential for identified tasks and to determine required safety 

control levels on board LPG ships. As a result, Akyuz (2015) has recently introduced 

an approach to measure human error probability in the gas inerting process of crude 
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oil tankers. The paper provides a CREAM quantification approach on the case of a 

critical shipboard operation.  

Furthermore, later, for making human error probability quantification in CREAM 

rational, and to quantify human error probability in maritime domain, a modified 

CREAM methodology based on an Evidential Reasoning (ER) approach and a 

Decision Making Trial and Evaluation Laboratory (DEMATEL) technique was 

proposed by Xi et al. (2017). This was the first time the method addressed the data 

incompleteness in HEP, given that the previous relevant studies mainly focused on the 

fuzziness in data. The findings provided useful insights for quantitative assessment of 

seafarers' errors to reduce maritime risks due to human errors.  

2.6.2 Multi-Criteria Decision Making (MCDM) 

Most of the aforementioned approaches and the traditional approaches such as FTA, 

ETA, Failure Mode, FMECA and Bow-Tie have been frequently used in human 

reliability analysis of critical systems and have widely enriched the risk analysis 

literature. However, due to their incapability  in addressing human-related risk factors 

associated with the system operation, multi-criteria decision making (MCDM) 

methods such as the AHP and other assessment methods are nowadays widely used in 

many industrial sectors to overcome the previously mentioned drawbacks  (John et al., 

2014). The MCDM is a procedure that facilitates decision making processes, such as 

choosing, ranking or sorting actions. It is considered as one of the most significant 

types of decision-making studies.  

The development of ‘MCDM’ was officially established in the 1970s, as a conference 

on MCDM was held by Cochrane and Zeleny at Columbia University in South 

Carolina in 1972 (Figueira et al., 2005). There are two main techniques to the MCDM 

method: Multi-attribute Decision Making (MADM) and Multiple Objective Decision 

Making (MODM). The MODM analyses decision problems where the decision field 

is continuous, such as mathematical programming problems with multiple objective 

functions. While the MADM, concentrates on problems with discrete decision fields 

where the decision alternatives have been predetermined.  

MCDM is one of the most recognised branches of decision making studies 

(Triantaphyllou, 2000). The MCDM can be categorized depending on the type of data 

used such as deterministic, stochastic, fuzzy and combined MCDM approaches. 
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Another method of categorising MCDM methods is according to the number of 

decision makers involved in the decision process, including a single decision maker 

and a group of decision makers MCDM methods. 

 In general, the advantages of using MCDM methods is that the choice of objectives 

and criteria that a decision maker made initially can be further reviewed and modified 

if they are felt to be inappropriate. Another advantage of MCDM is that it facilitates 

the assessing process of the MCDM method used for administration purposes 

(Dodgson et al., 2009). The difficulties of applying  MCDM method is the conflicts 

among criteria, where different criteria represent different dimensions of the 

alternatives and incommensurable units, where different criteria could be associated 

with different units of measurement (Triantaphyllou, 2000).  

There are many various MCDM techniques developed to tackle real-world complex 

issues involving multiple criteria decision (MCDM) problems and these differences 

do not mean that one method is a better or worse methods, however each method has 

its own characteristics, advantages and disadvantages and some techniques are more 

appropriate to solve particular decision problems than others (Mohagheghi et al., 

2017). An appropriate MCDM method to solve a decision making problem can only 

be selected once all the elements relating to the concerned problem have been designed 

in detail (Bufardi et al., 2004). There are some commonly known methods which use 

the MCDM approach to make decisions, which are briefly described in the following 

subsections. 

2.6.2.1. Analytic Hierarchy Process (AHP) 

The AHP technique is first introduced by Saaty (1980) in order to solve multiple 

criteria decision problems. It utilised a pairwise comparison technique to obtain 

relative weights of criteria base upon a hierarchical structure. Analytic hierarchy 

process (AHP) was recognized as the major method of decision making in the field of 

management engineering after the 1980’s since professor Saaty of University of 

Pittsburgh developed the AHP method in the 1980’s (Lee and Kim, 2013). The 

Analytic Hierarchy Process (AHP) is a multi-criteria decision making (MCDM) 

method which is rigorously concerned with the scaling problem and what sort of 

numbers to use and how to correctly combine the priorities resulting from them (Saaty, 
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1990). The main aim of the method is to calculate the importance-weight of the 

criteria, and to obtain relative performance measures of the alternatives (Saaty, 1980).  

The AHP technique is suitable for dealing with complex systems that require making 

a choice from among several criteria, which provides a comparison of the considered 

options. One of the main advantages of this the method is the relative ease with which 

it handles multiple criteria. In addition to this, the AHP approach is easier to 

understand and it can effectively handle both qualitative and quantitative data. 

Moreover, it also has the capability to check and minimise inconsistencies in expert 

judgements, by computing a Consistency Ratio (CR) (Riahi et al., 2012). It is worth 

mentioning that a number of studies have been conducted by utilising the AHP method 

(Saaty, 2003). This method has been proven to be a powerful supporting tool for 

solving a wide variety of complex decision problems in different domains. Therefore, 

AHP method will be applied in this study to evaluate the relative importance of the 

human (HCFs) and more detail will be discussed in the later chapter (chapter 5).  

2.6.2.2 Decision-making trial and evaluation laboratory (DEMATEL)  

The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method was 

developed by the Geneva Research Centre of the Battelle Memorial Institute (Fontela 

and Gabus, 1976; Gabus and Fontela, 1973). It’s introduced to build the network of 

relationships map for illustrating the interrelations among factors/criteria (Liou et al., 

2007). Recently this method has proven to be a more successful tool for measuring 

and illustrating the causal relationships among interdependent factors (Özdemir, 

2015), it has been widely used to display the cause and effect groups of a system (or 

subsystem) by applying matrices and digraphs to visualize the structure of complicated 

causal relationships (Tzeng et al., 2007; Lin and Wu, 2008; Jeng et al., 2012; Elham 

et al., 2013). This method will be used in this study and more detail will be discussed 

in the chapter (chapter 5). 

2.6.2.3. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

The technique for order preference by similarity to ideal solution (TOPSIS), is one of 

the well-known ranking methods for MCDM that has been commonly used in solving 

decision-making problems (Ding, 2011). It was initially proposed by Hwang and Yoon 

(1981) to help in selecting the best alternative, and with a limited number of criteria 

as a simple ranking method in conception and application. The primary concept of the 
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TOPSIS method is that the preferred alternative should not only have the shortest 

distance from the positive ideal solution (PIS), but also have the farthest distance from 

the negative ideal solution (NIS)  (Hung and Chen, 2009). The positive ideal solution 

comprises all best values obtained of criteria, while the negative ideal solution 

comprise for the all worst values attained of criteria (Wang, and Chang, 2007). It is 

worth mentioning that numerous research study have been conducted by using 

(TOPSIS) to solve decision-making problem in various fields. This method is simple 

and less complex to use compared to other methods. Such advantages make this 

technique an appropriate method to be used in this research, in addition, it will assist 

the decision makers to choose the best countermeasures for mitigating human errors, 

and, preventing accidents from happening again. Thus, it will be presented as 

beneficial to the maritime industry.  

It is worth mentioning that there are many other techniques available for decision-

making methods such as the Analytic Networks Processes (ANP), Evidential 

Reasoning (ER), and so on. Nevertheless, given the strength of the three 

aforementioned methods (AHP, TOPSIS, and DEMATEL) in tackling complex 

problems and their ability to effectively evaluate the human factor that contributes to 

the occurrence of maritime accidents during pilotage operations, these techniques have 

therefore been utilized in this research. Such powerful methods have been fully utilised 

in this research and will be discussed in more detail in forthcoming chapters (chapters 

5, and 6).  

2.7 LITERATURE GAPS IDENTIFIED 

In the literature, a gap still exists with regard to the studies on human factors and 

maritime pilotage accidents. It was limited attention given to human related risk 

factors in the pilotage operations area. In recent years many research projects, 

regarding the maritime risk management issue have been conducted from several 

aspects, by using different methods in order to reduce the occurrence of maritime 

accidents in open sea areas, however it appears from a review of the literature that 

little research has been done in the maritime domain on issues related to the pilotage 

operation safety analysis issue, and until now, few studies have employed an 

appropriate evaluation method to examine how human factors contribute to the 

maritime pilotage accidents.  
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 The primary research gap was the lack of the comprehensive framework to 

evaluate (e.g., human related risk factors identification, assessment, and 

mitigation) safety performance in the pilotage operations. Currently, the 

attention that is given to human related risk factors’ measurement in this area 

is limited and needs further investigation. There is a distinct need for a new 

human-related measurement tool not only to meet the need of port stakeholders 

but also to develop diagnostic instruments to port and pilotage systems capable 

of supporting decision-making in solving complex pilotage operations 

problems in an uncertain environment. 

 The second research gap was related to the need for using a decision-making 

methods to overcome the shortcomings of the previous studies by introducing 

a new approach to identify the relative importance among accidents’ human 

causal factors in maritime pilotage operations, by taking subjective judgments 

of decision-makers into consideration. In spite of quantifying accidents’ 

human causal factors in maritime pilotage operations being type of multi-

criteria decision making (MCDM) problem, there is a limited (MCDM) study 

which focused on this kind of problem. 

 The third research gap identified was the lack of studies to examine the causal 

relationships and interdependencies among the human factors contributed to 

the pilotage accidents. Most of the previous research studies frequently ignored 

to evaluate the causal relationships among the human factors which 

contributed to the pilotage accidents, and few of these studies focused on 

analysing the interaction between accident causation factors using MCDM 

method. 

 The forth research gap identified was the lack of studies examining the risk 

mitigation measures in the pilotage operations environment using a decision-

making methods. In addition, limited studies have examined the efficiency of 

the current implemented mitigation measures in the maritime pilotage 

operations. 
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Within this context, this study will identify the human causal factors that affect 

maritime safety, with a particular emphasis on the pilotage operations. Moreover, this 

research will address the lack of appropriate measurement methods addressing the 

pilotage human error-related risk by proposing an integrated AHP and DEMATEL 

method, which allows for an inclusive understanding of independency relationships 

and interdependencies among the human factors contribute to the maritime pilotage 

accidents. Finally, the research will be concluded with an integrated AHP and TOPSIS 

method for determining the selection of appropriate risk mitigation measures to 

improve the safety and efficiency of maritime pilotage operations performance. 

2.8 CONCLUSION  

In this chapter, the concept of the maritime pilotage operations is described. This is 

followed by a brief description of human factors being a part of the human error 

element. Various studies that have been conducted related to human factors are also 

reviewed in this research. The role of the human factor in maritime pilotage accidents 

and detailed analysis of past pilotage incidents/accidents from 1995 to 2014 are 

presented in order to learn lessons from these past accidents and to learn from them 

what went wrong and how to avoid similar incidents. Brief descriptions of risk/safety 

assessment methods are provided. Finally, the research gap which will be addressed 

in this research is determined. 
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CHAPTER THREE - RESEARCH METHODOLOGY   

3.1 INTRODUCTION  

This chapter aims to describe research methods that can adequately address the 

research questions in the previous chapter based on the research gaps found in the 

literature review. Thus, this chapter makes a link between the previous chapters 2 

(literature review) and the following chapter 4 (pilotage human factor related risk 

identification) and then chapter 5 (causal factors assessment) and 6 (risk mitigation 

measures for pilotage performance improvement). As the interests of this research 

comprises all three steps of the safety/risk assessment processes, namely risk factors 

identification, risk assessment and risk mitigation, one research method is not able to 

sufficiently cover the entire topic of finding optimal solutions that will ensure safety 

performance of maritime pilotage operations and reduce the human related risk . 

Rather, selection of appropriate research methods for each step will be more desirable, 

which eventually leads to Chapters four, five and six which are at the core of this 

thesis. 

Meanwhile, this chapter also helps for the selection of the appropriate methodology to 

validate and further develop the proposed model of this research. According to Blaikie 

(1993), “research methodology is a study which is discusses how theories are 

generated, and how particular theoretical perspectives can be related to particular 

research problems'' This chapter mainly deals with the whole issue of the research 

design, including research strategy and design, research methods, sampling selection, 

data collection and analysis techniques. Figure 3.1 provides an illustrative view of a 

methodological framework for the purpose of this research upon which the research 

methodology will be directed. 
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Figure 3.1: Proposed methodology of pilotage operation safety performance 

improvement   

3.2 RESEARCH STRATEGY AND DESIGN 

Research design can be described as the basic research plan or method, which aims at 

responding to research questions and to seek the validity and viability of the research 

(Lewis et al., 2007). In this research, the researcher applied a hybrid research 

approach, comprised of qualitative and quantitative approaches in a sequential 

exploratory approach to elicit the key factors that are considered a significant and 

influencing the safety performance of pilotage operations.  In this study in order to 

satisfy the purposes of this research and meet the objectives of the researcher, both 

qualitative and quantitative methods are employed to identify, assess and mitigate 

human related risks in the pilotage operations environment. This thesis partially adopts 
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more than one method to collect data, such as interviews, questionnaires, and 

documents, more than one data sources and more than one method to analyse the data.   

In this research, the causal factors contributing to pilotage accidents were ascertained 

through a combination of primary and secondary source data. Primary data collection 

involves collecting new data, whereas secondary data collection concerns the 

collection of existing data. In this thesis in order to identify the human error related 

risk associated with the pilotage operations, literature review, questionnaire surveys, 

and interviews are adopted. To verify the comprehensiveness and validation of the 

identified risk factors as well as to examine the appropriateness of the risk 

classification method, questionnaire surveys have been conducted with experienced 

experts belonging to maritime industries of different geographical area from both the 

UK, and the Mediterranean. 

Another questionnaire survey was used for the data collection in risk assessment and 

mitigation stages. The data collection method applied in this thesis is mainly based on 

expert judgements. The obtained risk data are used as inputs of the proposed 

conceptual decision making framework to understand the priority of risks and 

evaluation of currently implemented risk mitigation measures. From the discussion, 

human factor measurement can be viewed as a typical multicriteria decision making 

(MCDM) problem under uncertainty as it involves multiple criteria of both 

quantitative and qualitative features to solve multi-dimensional and complicated 

problems. This study uses an MCDM approach as a data analysis technique such as 

analytic hierarchy process (AHP), DEMATEL, and technique for order preference by 

similarity to ideal solution (TOPSIS). Full details about research methods and research 

techniques will be discussed in the subsequent sections.   

3.3 METHODOLOGY FOR DATA COLLECTION AND ANALYSIS  

This section presents a detailed explanation of the data collection and analysis methods 

used in the research. For the purpose of systematically identifying and understanding 

the relevant risk factors, it is necessary to employ an approach involving the use of 

both qualitative and quantitative methods to obtain and examine the risks along with 

justification. The first sub section describes the data collection method in each pilotage 

safety/risk assessment process.  More specifically, the first phase of questionnaire 

surveys and interviews covering the key concepts of the identified risk factors will be 
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conducted to validate the identified risk factors (HCFs) that were extracted from the 

existing resources, and to explore other contributory factors and potential causes 

which may contribute to accidents as well as the validation of the proposed 

classification method.  

The second and third phase of the questionnaire survey will be conducted to quantify 

the level of importance and interrelationships of the identified risks factors. The 

current implemented measures in the real-time context and the rules and regulations 

adopted by maritime organizations were reviewed, and empirical study (questionnaire 

surveys) were conducted to extract identified pilotage risk mitigation measures for 

further evaluation. Moreover, the last questionnaire survey is designed to acquire the 

priority ratings of identified measures for mitigating pilotage risks. The forthcoming 

sub-section presents the data analysis methods in each risk management phase. Table 

3.1 describes the methodologies for data collection and data analysis, which involves 

the three main risk management steps, and the related approaches and purposes of 

these approaches.  

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

Table 3.1: Summaries of the research methods for data collection and analysis 

Steps Approaches Purpose 

 

Risk factors identification 

Literature review  

(previous studies and  maritime 

accident investigations reports 

regarding pilotage operations 

events) 

To identify the existing risks 

causal factors contributing to 

pilotage accidents (HCFs) 

   Empirical studies  

Questionnaire survey,  telephone 

and face to face semi-structured 

interview 

To investigate validation of 

identified risk factors and explore 

if there are more risk factors that 

are not mentioned in previous 

studies.   

          Questionnaire survey,  

               interviews 

To investigate the reliability and 

validation of risk classification 

method, and further explore the 

appropriateness of the developed 

hierarchy model 

Risk assessment          Empirical studies 

(AHP questionnaire survey) 

Analytic Hierarchy Process 

(AHP) method 

To determine the relative weights 

and rank the importance of the 

human factors that affect pilotage 

operation safety 
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             Empirical studies  

(DEMATEL questionnaire 

survey) 

Decision Making Trial and 

Evaluation Laboratory 

(DEMATEL) method. 

to identify the relationships 

among factors 

Risk mitigation measures 

identification 

To review the existing articles, the 

rules and regulations adopted by 

maritime organizations 

To identify the current 

implemented risk mitigation 

measures 

 

 

 

 Empirical studies 

          (questionnaire survey) 

To validate the identified risk 

mitigation measures and explore 

the current implemented risk 

mitigation measures via maritime 

experts  

Risk mitigation measures 

evaluation 

         Empirical studies  

(TOPSIS questionnaire survey)  

Technique for Order Preference 

by Similarity to Ideal Solution 

(TOPSIS) method 

to rank and select the most ideal 

risk mitigation measures for 

pilotage  
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3.3.1. Data collection method 

This study conducts three types of data collection methods: online/offline 

documentation (secondary data collection), questionnaire surveys (primary data 

collection) and interviews (primary data collection). Secondary data collection 

concerns the collection of existing data, whereas primary data collection involves 

collecting new data. Due to the lack of the research done in this area, and to understand 

the research problem it is required to use an approach involving the use of multiple 

methods. In order to identify and understand the human factors that influence the 

pilotage safety performance, it is necessary to conduct an approach involving the use 

of both qualitative and quantitative methods to collect and investigate the risk source 

along with justification due to the limitation of the existing research in this field.  

In this thesis, empirical studies have been conducted to gain an understanding of 

human related risk factors that lead to accidents in the maritime pilotage operations 

area, and to identify the currently implemented risk mitigation measures. Empirical 

studies were conducted separately for chapters four, five, and six, respectively.  This 

study employs different types of structured questionnaire surveys for data collection 

(i.e. qualitative HCFs data collection, AHP questionnaire for HCFs weight, 

DEMATEL questionnaires for HCFs interdependency, TOPSIS questionnaire). 

The first sub-section introduces the data collection methods in the risk factors 

identification phase. In this stage questionnaire surveys and semi-structured interviews 

are conducted to identify risk factors as well as to construct an initial hierarchal 

structure as a taxonomy and test the validity of the appropriateness of the risk 

classification model. The second subsection discusses the data collection methods in 

the risk assessment phase. This step proposed another two questionnaire surveys B 

and C to evaluate the weight and assign the priority and relationships among the 

human related risk factors.  The third subsection describes the data collection methods 

of risk mitigation measures identification, validation, and evaluation.  Some sources 

of evidence i.e., careful literature review, rules and regulations adopted by maritime 

authorities, and questionnaire surveys with experts from maritime industries are 

utilized in order to identify the current implemented risk mitigation measures 

(RMMs). Then the questionnaire survey was conducted to analyse those identified 

measures by ranking their priority.  
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 This study employs a questionnaire survey because, questionnaire surveys can be 

considered as one of the main tools for collecting data to quantify the opinion and 

behaviour of individuals (Bryman and Bell, 2011). A questionnaire as an efficient tool 

to collect data is composed of structured questions that become data and can be 

statistically analysed. This study employs different types of structured questionnaire 

surveys for data collection (i.e. qualitative HCFs data collection, AHP questionnaire 

for HCFs weight, DEMATEL questionnaires for HCFs interdependency, TOPSIS 

questionnaire). 

 The advantages of a surveys and questionnaires is that data collection does not require 

a skilled interviewer to be present. The research questionnaire method is useful for 

quantitative and qualitative data collection because it reaches a wide variety of 

respondents through electronic media with less time spent to complete the survey and 

less cost (Saunders et al., 2012). In contrast, there are drawbacks of the questionnaire 

surveys: they cannot ask more questions that are not prominent to respondents, there 

is a risk of missing data, and they cannot gather further data (Bryman and Bell, 2011). 

In order to avoid these drawbacks, questionnaires need to be short and easy to answer 

(closed questions) (Bryman and Bell, 2011).  

For the purpose of this research as data required is qualitative and would require using 

an exploratory technique to probe for information clarification, a semi-structured 

qualitative interview method with marine experts was conducted. Qualitative 

interviews such as semi-structured interviews are an appropriate method for an 

exploratory study to seek what is taking place and to find out new insights (Saunders 

et al., 2012). Therefore, a semi-structured interview is the most appropriate method 

for this type of research (exploratory study), and has many advantages. It is reliable 

and efficient to extract maximum information from the interviewee and suitable to 

create a huge amount of data. In a semi-structured interview there is more flexibility 

for the interviewer to investigate the issues that arise during the interview and 

questions can be adapted. These advantages were presented by Saunders, (2009). This 

was further confirmed by Saunders et al, (2012) and Creswell and Creswell, (2017). 

3.3.1.1 Data collection methods in risk factors identification and classification 

To conduct the risk factors identification, the research continues with the empirical 

studies including the key definitions of (risk sources) the human factors that affect the 
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operators who are performing ships’ berthing operations (HCFs).  Chapter four 

presents a detailed description of data analysis and taxonomic diagram validation in 

the risk factors identification phase. Many methods can be utilised for identifying risk 

factors such as, interviews, relevant document review, group meetings, and historical 

data collection (Water, 2007). A literature review has also been used by researchers to 

identify the risks in the maritime sector (Moreton, 2000; Subramaniam, 2010; Saeed, 

2015; and Xi et al., 2017). This research first reviewed the relevant literature including 

the official documentation, historical data of the human factor in maritime pilotage 

accidents, and other published materials related to pilotage incidents/accidents from 

reliable organisations in order to identify the human factors related risk associated 

with ship operations in the pilotage environment and marine ports in the form of 

qualitative data. As has been mentioned in Chapter 2 and based on Saunders et al, 

(2009), the advantage of the literature review is that it saves time since it has already 

been collected, and it is also less expensive than other methods. It is also likely to be 

of higher-quality, and the data can be used in conjunction with the data collected 

through other qualitative methods such as experts' judgements.  

In this thesis through conducting a literature review in Chapter 2 human factors were 

identified in the first phase of the qualitative data collection. After this, to validate the 

identified risk factors and explore other potential contributory causal factors that play 

a major role in maritime accidents during pilotage operations a questionnaire survey 

and interviews involving 25 professional captains who have served long periods 

onboard a variety of vessels have been conducted. Thereafter, a panel of experienced 

experts belonging to maritime fields were invited to take part in order to develop and 

validate a structural hierarchy risk taxonomic diagram. 

In a survey research, a sample of the people is significant because the success of this 

type of study is dependent on the representativeness of the sample with respect to a 

target population of interest to the researcher (Bryman and Bell, 2011). Saunders 

(2009) suggested different techniques for the sampling design such as a probability 

sampling method (simple random, systemic, stratified random and multi-stage cluster 

samplings) and a non-probability sampling method (convenience, purposive, snowball 

and quota samplings). The non-probability sampling method is using a sample that has 

not been selected using a random selection method (Bryman and Bell, 2007). This 
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type of sampling is more suitable for in-depth qualitative research (Saunders et al., 

2012).  

 This research uses purposive sampling and snowball sampling. In purposive or 

judgmental sampling the method enables researchers to use their judgement to select 

cases that will best enable them to answer research question(s) and meet their 

objectives and, in snowball sampling, a researcher makes initial contact with a small 

group of people who are relevant to the research topic and then uses these to establish 

contacts with others (Saunders et al. 2007).  This study targets the maritime industry 

as the population. 

 In order to obtain reliable views on a wider scale and to obtain multiple points of 

view, the participants of this study were selected from a variety of backgrounds and 

different geographical areas within the maritime domain. The respondents were 

chosen based on the following criteria: The first criterion for the selection of the 

(experts) participants was that they must hold a master mariner certificate of 

competency (an unlimited master licence). The second criterion, experts must be 

professionals who belong to the maritime industry including; professional ships’ 

captains who had served long periods on board a variety of vessels in shipping 

companies; experienced senior marine pilots and tug masters who had been working 

long periods in different ports companies. They were selected as the study focuses on 

pilotage operations and they are the main operators who are performing and play a 

significant role in achieving safe and successful piloting and berthing operations. 

Thus, they are key for avoiding marine accidents, so they could provide views on their 

performance through their long practical experience and observations during maritime 

pilotage operations, as well as giving significant information regarding the human 

element factors contributing to maritime accidents. Additionally, they can judge their 

associated pilotage operations performance, if they had faced any abnormality or 

difficulties during their tasks, and they can explain regarding the situation and the 

actions that were taken to handle the situation during the performed pilotage 

In addition, the participants included maritime educational institution staff who have 

a good understanding of marine operations risk research. Moreover, insurance and port 

company managers who are professionals in assessing and managing risks, and who 

could provide factual information and broader data regarding human errors and causes 
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of maritime accident that might occur during pilotage operations. The main factor in 

selecting these experts was based on their expertise that they have contributed in the 

fields related to the human risk factors. The criteria ensure that the professionals are 

sufficiently senior and knowledgeable to answer the questions and are able to provide 

reliable technical information and opinions on the research topic. Thus, their responses 

will give robustness to the study and can be relied upon in explaining the study 

objectives. 

 In this research structured questionnaire was developed with the purpose of 

investigating the effect of human factors on the safety of pilotage operations, and 

identifying the accidents’ causal factors in pilotage operations from the experts' 

perspective. Initially a draft version of the questionnaire was designed in line with 

research questions and the relevant studies to be completed in 30 minutes. The 

questionnaire designed for this stage of study used closed-ended questions including 

12 items, to validate the existing factors and opened-ended questions to explore other 

potential contributory causal factors that might influence safety performance of 

maritime pilotage operations. 

In order to investigate the feasibility, content validity of the developed risk factors and 

consent of its design, the proposed questionnaire was first examined by three ships’ 

captains with education level PhD degree who have a good understanding of marine 

operations risk research and are highly knowledgeable of human related risk 

associated with pilotage operations. They were asked to test the context and investigate 

the precision of questions in order to establish suitable questions to reach the final 

questionnaire. Based on their feedback, the final draft of the questionnaire was 

developed for data collection. Ethical approval was also obtained to further validate 

the questionnaire content and participant consent. A sample copy of this questionnaire 

is shown in Appendix II. 

Questionnaire surveys were conducted with twenty-five experienced seafarers to 

verify the extent to which any of the risk factors (HCFs) might impact on pilotage 

performance and contribute to maritime accidents. The number of responses was 

deemed acceptable for this study, as Saaty (2001) reported that just a small sampling 

size is required if the data collected are gathered from the experienced experts. This is 

due to that fact that experts should share consistent beliefs and thus reduce the 
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necessity for a large sample size. The detailed information on the experts and sample 

selection process are described in chapter 4. For further information, please refer to 

chapter 4. 

12 Statements were made and participants were asked to answer each statement using 

the following 5-point Likert scale: strongly disagree; disagree; neither agree nor 

disagree; agree; and strongly agree. This, as advocated by Saunders et al. (2012), can 

allow the participants to clearly express their perceptions with an adequate level of 

agreement with the statements given. The five-point Likert scale as a common 

measurement tool is considered the most widely used technique for scaling data in 

questionnaires, providing the respondent with a number of possible options from 

which to make a selection (Field, 2013). This method has been employed because, it 

is much easier for the researcher to analyse the data and for the potential participants 

to stay focused on the statements given and carefully respond to the questions.  Based 

on the Likert measurement, the quantitative data generated from the questionnaire has 

been analysed using the basic descriptive statistics. As pointed out by Woo et al., 

(2011), descriptive statistics is one of the statistical analysis methods for describing 

attributes in seaport research.  

In order to investigate the human factors that can affect pilotage operations’ safety, 

and to collect broader data regarding contributing factors to maritime accidents, a 

number of interviews were also carried out with experts belonging to different 

maritime sectors. For the purpose of this research as data required is qualitative and 

would require using an exploratory technique to probe for information clarification 

(Saunders et al, 2012), the method used in this study was a semi-structured qualitative 

interview method. Initially the requests for conducting interviews were sent, to 10 

professional experts with more than 10 years’ working experience from a variety of 

backgrounds and different geographical areas within the maritime domain, by 

letter/email depending on which addresses were known. However, 6 professionals 

among them replied positively to interview requests.  Interviews were held face-to-

face or telephonically. Of the six interviews, three interviews were conducted by 

telephone because of distance constraints. The details of the interview plan, sampling, 

related questions and interview administration are explained in chapter 4.  For further 

information, please refer to chapter 4.  
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Finally, and based on the obtained results, twenty-five factors have been identified and 

then summarized into a final hierarchy structure, which provides a comprehensive risk 

database to risk/safety pilotage operations research. 

Behind doing this, and after having identified the contributory factors of the pilotage 

accidents (HCFs) and before conducting the further larger-scale risk assessment 

survey (to measure their weight priority and inter-relationships), these risk factors 

(HCFs) are designed in a hierarchal order forming the contributory factors of the 

pilotage accidents (HCFs). Questionnaires were conducted and distributed to the 

“validation team” by email to ensure the applicability and appropriateness of the 

hierarchy structure.  

In this important step and based on previous maritime safety studies related with 

human factors and risk classification model, with assistance of two experienced ship’s 

captains a hierarchal structure as a taxonomy is initially constructed, those experts 

were academic with education level PhD degree from an educational institution, staff 

who have more than 10 years teaching and researching experience and have a good 

understanding of marine operations risk research. They had also served long periods 

on board a variety of vessels which are navigating and visiting sea ports worldwide.  

First of all, the two experts were invited to construct the preliminary taxonomy and 

provide their opinion with respect to the level of each factor. They were asked to help 

in categorising and placing the accident causal factors in the correct position in the 

taxonomy. They were asked to classify twenty-five factors which can represent their 

associated main factors (categories) and sub factors and if necessary, modification, 

removal, division and combination are allowable. Through the iterations and 

feedbacks, some factors (HCFs) were modified, removed, and combined. Instead of 

twenty-five factors identified, the experts selected only twenty-one factors and 

classified the factors into five main group factors, each group was then divided into 

several sub-factors (see chapter 4).  

Thereafter, to assure the validity and confirm the reliability of the developed hierarchy 

diagram, a panel consisting of six experienced experts belonging to the maritime sector 

were consulted. Emails distributed questionnaire and face-to-face and telephone 

interviews with the validation team were subsequently conducted. The experts were 
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all experienced ship masters who have been working in shipping and port industries 

for more than 10 years. They were asked to review and validate the effectiveness of 

the developed taxonomy and to confirm if the identified factors were grouped in 

accordance with their characteristics and grouped factors were presented in a hierarchy 

properly. Finally, experts agreed and the developed hierarchy diagram was accepted 

without any modification. The identified risk factors are summarized into a final 

hierarchy structure, which would be followed by the analytical hierarchy process 

(AHP) for ranking the set of criteria raised. The details of the identification and 

classification process, are explained in chapter 4.  For further information, please refer 

to chapter 4. 

3.3.1.2 Data collection methods in risk assessment stage  

Following the questionnaire development procedures described in the previous 

section, the questionnaire surveys B and C in respect of risk assessment stage are 

constructed to elicit expert opinion on the pilotage operations human risk factors 

regarding their weight priority and inter-relationships.  Draft copies of the suggested 

questionnaires, AHP questionnaire for HCFs weight, and DEMATEL questionnaires 

for HCFs interdependency were sent to the supervisory team to be approved. Based 

on the comments of the supervisory team, the questionnaires were adjusted and then 

the final versions were completed. In this study, the developed questionnaires were 

sent via email to the experienced experts from the maritime field with more than 10 

years working experience. The participants of this study were selected from different 

geographical areas within the maritime domain.  Full explanations and discussion in 

respect of those two questionnaire survey procedures are presented in Chapter five.  

3.3.1.3 Data collection methods in risk mitigation measures identification and analysis  

The current implemented risk mitigation measures will firstly be identified, validated, 

and finally evaluated. Based on the results obtained from the risk assessment phase of 

this thesis, in order to identify the risk mitigation measures in the pilotage  operation, 

firstly the most relevant studies that can reflect the latest information about the current 

situation of the last implemented risk mitigation measures in maritime pilotage are 

reviewed.  Followed by reviewing the recommendations, regulations and rules adopted 
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by maritime authorities for maritime pilotage safety performance improvement, and 

questionnaire surveys with marine experts are conducted.  

In order to identify the relevant risk mitigation measures with regard to the identified 

risk factors, the current implemented measures in the real-time context and the rules 

and regulations adopted by maritime organizations were reviewed. In order to explore 

mitigation measures that have not been mentioned in the literature and other 

documentation, a further questionnaire survey was conducted. 

 Following the same procedure of developing the questionnaire survey above, 

questionnaire surveys have been conducted to validate and identify more risk 

mitigation measures. The developed questionnaires D were sent to the experienced 

experts with more than 10 years’ working experience from a variety of backgrounds 

and different geographical areas within the maritime domain, from both the UK, and 

the Mediterranean maritime industries.  The implemented risk mitigation measures 

were introduced to the experts, and they were asked to decide whether the identified 

measures are relevant or not and to identify more risk mitigation measures.  In 

addition, these experts were asked if they would be willing to accept the invitation to 

view the survey in advance to evaluate these identified measures. In the last phase, 

depending on the results obtained from above questionnaire, another questionnaire 

survey was conducted with experts aiming to evaluate the efficiency of the identified 

risk mitigation measures with relation to each risk factor. The finalised questionnaire 

D is attached in Appendix IIII. Full explanations and discussion in respect of those 

two questionnaire survey procedures are presented in Chapter 6.  

3.3.2 Data analysis methods  

Data analysis is considered one of the most important steps in any research study 

because it investigates and clarifies the data collected through the research process so 

that conclusions can be reached. As Yin (2009) stated, some specific methodologies 

and techniques are required to analyse collected data in order to produce high quality 

results. In this sense, to reduce potential analytical difficulties, as Yin (2014) pointed 

out, researchers should organise a clear strategy for data analysis to ensure using 

appropriate analytical tools that serve the ultimate research aims. For this study, as 

discussed earlier, a mixed methods strategy was chosen as an appropriate method in 
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this research. As a result, the process of analysis commenced firstly with the use of 

AHP and DEMATEL methods to analyse the survey results from questionnaire B and 

C respectively and further TOPSIS has been utilized to analyse the survey results from 

questionnaire D. For the purpose of ensuring the reliability and consistency of the 

gathered data, a series of tests (e.g. consistency check) should be conducted prior to 

carrying out the evaluation of risk factors and mitigation strategic research. The 

procedure of applying each model and producing a high-quality data analysis will be 

presented in Chapter five and Chapter six.     

3.4 CONCLUSION  

This chapter has explained and introduced the various research designs in an effort to 

lay down the basics for the research. It has presented the main philosophical views 

behind the research methodologies. Different research perspectives, research types, 

data collection methods, data collection techniques and data sources were described. 

The chapter explains in detail the reasons behind the selection of research methods 

and techniques for the present study. In this chapter, various research methodologies 

were reviewed based on the previous studies. Based on the literature study, the 

appropriate methodologies for this research were identified and outlined. The 

techniques for the data collection and analysis by conducting the empirical studies 

have been described in this chapter.  

 There are three main parts of the data collection methods, which are: (1) data 

collection methods in risk factors identification, validation, and classification (2) data 

collection methods in the risk assessment phase, and (3) data collection methods in 

risk mitigation measures identification, validation and evaluation.  In the first part, the 

risk factors are identified through literature review, the historical data of the accident 

reports of the maritime accident/ incidents investigations reports and then the 

validation, exploration, and categorization of the identified risks are done through 

questionnaire survey and interview with both industrial and academic experts. Next, 

another two questionnaire surveys are conducted for the assessment of risk factors. In 

the last part, the implemented risk mitigation measures are identified and validated by 

conducting the empirical studies (e.g. questionnaire survey). 
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 In order to evaluate the identified risk mitigation strategies, a mitigation-measures 

questionnaire survey is conducted. This enables the researcher to select the most 

efficient risk mitigation measures. The techniques for the analysis of data are based 

on the employment of combined AHP, DEMATEL and TOPSIS for the risk 

assessment and mitigation strategy evaluation.  In the next chapter the significant 

contributory factors of the pilotage accidents (HCFs) are identified and a preliminary 

model with a hierarchal structure as a taxonomy for causal factors contributing to 

maritime accidents in pilotage operations (HCFs) is developed. 
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CHAPTER FOUR: RISK FACTORS IDENTIFICATION AND 

CLASSIFICATION 

4.1 SUMMARY 

The objective of this chapter is to develop a comprehensive risk factors identification 

model within the context of the maritime pilotage operations. This chapter describes 

the methods and techniques used to identify and classify the human factor related risks 

influencing the maritime pilotage operations safety. In this research, the identifying of 

the human causal factors that contribute to pilotage accidents (HCFs) was 

accomplished through a combination of primary and secondary source data. After 

having identified the causal factors of pilotage accidents, a taxonomy is then 

developed and validated.  

4.2 INTRODUCTION 

The extensive review of the literature in Chapter 2 provides an outline for critical 

insight into the maritime related risks factors. Additionally, the literature review of 

maritime accidents and safety/risk analysis and their use in the marine and other safety 

critical industries, in addition to the experts’ perspectives, has provided a valuable 

input, as it indicates the type of human casual factors (HCFs) that need to be addressed.  

The visibility of the human factor related risks is one of the most challenging aspects 

of pilotage operations risk/safety management, it is therefore, essential to 

comprehensively identify human related risk factors existing in this area. Identifying 

the major causes of accidents and taking proper measures to mitigate further potential 

accidents are necessary for controlling the risks threatening the safety of pilotage 

operations. Within this research the term ‘HCFs’ is used to describe the human causal 

factors contributing to pilotage accidents which are not directly related to the risk 

factors applying to the a ship navigating in the open sea areas. Nevertheless, the same 

has been applied to address this problem.  

Firstly, to build a new organized classification model in the context of pilotage 

operations, the identification of potential human causal factors (HCFs) is conducted. 

Initially, based on a literature review including the previous related studies and marine 

accident investigation reports, then a questionnaire survey and interviews with marine 
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experts were carried out. The procedure for human factor related risks identification 

and classification is one of the most significant steps in the pilotage risk/safety 

assessment process.  

 

 

Figure 4-1: Proposed methodology for pilotage human risk factors identification 
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4.3. THE ACCIDENTS HUMAN CAUSAL FACTORS (HCFs) IDENTIFICATION 

AND CLASSIFICATION PROCESS 

This chapter presents the first step of the risk assessment process, i.e. human factors 

contributing to the maritime pilotage accidents identification and classification. 

Identification of the relevant pilotage operations human related risk factors is the vital 

step for employing efficient risk management in the maritime industry. This study 

consisted of three main steps as shown in Fig. 4.1. Firstly, this research started with 

identifying the human relate risk factors that have been addressed in the relevant works 

of literature (shown in Chapter two), in addition, as mentioned previously, this study 

reviewed the previous relevant studies which have been conducted related to human 

factors and maritime accidents and other published materials such as analysis of 

various reports of investigations into real world maritime incidents relating to vessels 

under pilotage operations during the period 1995 and 2015.  

The main philosophy behind it is to obtain an understanding of the concept of 

accidents, and to determine the causes and contributory factors which may negatively 

influence mooring operations’ safety and play a central role in the causal chain of 

maritime accidents. As determining the root causes of the accidents is extremely 

important in improving the maritime safety and mitigating the possibility of its 

occurring in future (Ugurlu et al., 2015). Consequently, this step enables the decision 

maker to provide extra and reliable evidence regarding the human factors contributing 

to pilotage accidents. 

To ensure that all the causal factors contributing to pilotage accidents (HCFs) are 

identified, survey questionnaire and semi-structured interviews with experienced 

marine experts were carried out in this study, attempting to validate and test the 

feasibility of the selected factors, as well as to explore new potential causes that may 

affect pilotage performance. This step leads up to in a composite the human causal 

factors affecting (HCFs) safety performance in the marine pilotage environment. After 

having identified the 25 risk factors (HCFs) and based on previous maritime safety 

studies related to human factors with assistance of maritime experts, a preliminary 

hierarchical structure for these factors (HCFs) was developed. The developed 

hierarchical structure of the identified risk factors is then modified and further 

validated through experienced marine experts. 
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4.3.1 Empirical study for risk factors (HCFs) identification  

Identification of critical risks for pilotage operations is a challenging problem, due to 

insufficient availability of data and the limitation of information. It is also very 

difficult to investigate the risks that influence ship masters and marine pilots’ 

personality characteristics on their attitudes towards risk, and the probability of error 

in maritime pilotage operations, due to the lack of evidence. Therefore, identifying the 

risk factors that might influence on human performance can be studied by using expert 

methods. As Long (2014) has explained the benefit of empirical studies is to verify 

current existing or newly proposed collected evidence about research on the basis of 

empirical data. 

 In this research in order to identify the human causal factors that impair the efficiency 

of pilotage performers, the primary research method was conducted in two phases. 

The first phase dealt with data collection by means of a survey, the second stage 

consisted of activities related to face-to-face and telephone interviews with 

professionals experts belonging to various sectors of the maritime industry. The 

researcher tried to combine, integrate and apply mixed methods to benefit from the 

advantages of each method and obtain accurate and reliable results.  

4.3.1.1. Questionnaire survey 

4.3.1.1.1 Procedure for developing questionnaire survey and sample selections 

 In this research a structured questionnaire was designed with the purpose of 

investigating and identifying the human factors influencing the safety performance of 

pilotage operations, and identifying the accidents’ causal factors in pilotage operations 

from the experts' perspective. The data was obtained and content validity was 

performed to improve the clarity of the developed questionnaire. At first and based on 

secondary source data, a draft version of questionnaire was designed to be completed 

in 30 minutes. In order to investigate the feasibility, content validity of the developed 

risk factors and consent of its design, the proposed questionnaire was first examined 

by three ships’ captains with education level PhD degree who have a good 

understanding of marine operations risk research and are highly knowledgeable of 

human related risk associated with pilotage operations. They were asked to test the 

context and investigate the precision of questions in order to establish suitable 

questions to reach to the final questionnaire. Based on their feedback, the final draft 



85 

 

of the questionnaire was developed for data collection. Ethical approval was also 

obtained to further validate the questionnaire content and participant consent. A 

sample copy of this questionnaire is shown in Appendix II.1.  

Once the questionnaire was developed initially it was sent to professionals to be 

completed electronically through an online survey tool as well as distributed by e-

mails. However, because of the difficulty of finding experts in this field, this study 

used purposive sampling and the snowball sampling method for the sampling 

processes. In purposive sampling, it is assumed that a researcher depends on his or her 

own knowledge when selecting members of the population to be included in the 

sample (Saunders et al. 2007).  The Snowball sampling method is a non-probability 

sampling technique (Black, 2010), in which a researcher begins with a small 

population of known members and extends the sample by asking those initial 

participants to identify others that should participate in the study. Snowball sampling 

is commonly used when it is hard to identify individuals of the required population 

(Saunders et al., 2007), and the experts are difficult to reach (Yang et al, 2016).  

In this study at first one ship’s master and two experienced senior marine pilots from 

different geographical areas within the maritime industry (UK, and Mediterranean) 

who were known and available were located for the questionnaire survey. They were 

asked to distribute the questionnaire and provide a named list of experts in this 

working environment for more questionnaire surveys. The respondents were requested 

to complete an item survey with responses collated anonymously. Finally, only 25 

survey responses were completed and returned. The number of responses was deemed 

acceptable for this study, as Saaty (2001) reported that just a small sampling size is 

required if the data collected are gathered from experienced experts. This is due to that 

fact that experts should share consistent belief and thus reduce the necessity for a large 

sample size. The detailed information of the experts is described in Figure 4.2 and 4.3. 

4.3.1.1.2 Sample Characteristics  

In order to obtain reliable views on a wider scale and to obtain multiple points of view, 

the participants of this study were selected from a variety of backgrounds and different 

geographical areas within the maritime industry. The respondents were chosen based 

on the following criteria: The first criterion for the selection of the (experts) 

participants was that they must hold a master mariner certificate of competency (an 
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unlimited master license). The second criterion, experts must be professionals who  

belong to the maritime industry including; professional ships’ captains who had served 

long periods onboard a variety of vessels; experienced senior marine pilots and tug 

masters who had been working long periods in ports and performed pilotage 

operations.  

 In addition, maritime educational institution staff who have a good understanding of 

marine operations risk research. Moreover, insurance and port company managers 

who are professionals in assessing and managing risks, and who could provide factual 

information and broader data regarding human errors and causes of maritime accident 

that might occur during pilotage operations.  

The main factor in selecting these experts was based on their expertise that they have 

contributed in the fields related to the human risk factors as illustrated in Figure 4.2 

and 4.3. The criteria ensures that the professionals are sufficiently senior and 

knowledgeable to answer the questions and are able to provide reliable technical 

information and opinions on the research topic. Thus their responses will gives 

robustness to the study and can be relied upon in explaining the study objectives. 

4.3.1.1.3 Questionnaire structure  

The research question that formed the basis for this study was:  How does the human 

factor contribute to maritime accidents. The questionnaire consisted of three parts, 

closed and open-ended questions as following: 

Part A. Feedback and professional background 

This section contained a set of questions intended to obtain information about the 

respondents’ background, to define the position held by the respondents and practical 

experience. The figure. 4.2, and 4.3 show the distribution of respondent’s occupation 

and work experience. 

Part B.  Validation of pilotage operations related risk factors (HCFs) 

As has been discussed previously, the previous studies and the analysis of the past 

marine accident investigation reports showed that the main cause of the accidents 

which occurred was the human factor, and in the majority of cases reviewed this was 

due to human error.  For this reason, the questionnaire survey is conducted with the 
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experienced seafarers to verify the extent to which any of the existing risk factors 

(HCFs) might impact on pilotage performance and contribute to maritime accidents. 

12 Statements were made and participants were asked to answer each statement using 

the following 5- points Likert scale: strongly disagree; disagree; neither agree nor 

disagree; agree; and strongly agree. This, as stated by Saunders et al. (2012), can allow 

the participants to clearly express their perceptions with an adequate level of 

agreement with the statements given. This method has been employed because, it is 

much easier for the researcher to analyse the data and for the potential participants to 

stay focused on the statements given and carefully respond to the questions which 

would be followed by the  Analytic hierarchy Process (AHP) for ranking the set of 

criteria raised. 

Part C.  Exploration of additional risk factors (HCFs) from the participants’ view point 

In this part of the questionnaire, in order to explore if any other remaining factors were 

yet to be determined, participants were asked their opinion to add any other factors 

that may affect pilotage operations’ safety performance. The question was as follows: 

From your experience do you know any additional risk factors (HFCs) that might 

negatively affect pilotage operations’ safety performance? , Have you had any issues 

or incidents in the past affecting the safety of the ship piloting? These particular 

questions were asked in order to provide the participants of the survey the opportunity 

to give their views through their observations and long practical experience during 

pilotage operations about the influential human factors and causes which might 

contribute to maritime accidents. Each participant was able to add any comment they 

felt necessary. 

4.3.1.2 Interviews  

In order to investigate the human factors that can affect pilotage operations safety, and 

to collect broader data regarding contributing factors to maritime accidents, a number 

of interviews were carried out with experts belonging to different maritime sectors. 

Initially the requests for conducting interviews were sent to 10 professionals by 

letter/email whichever addresses were known. However, 6 professionals among them 

replied positively to interview requests.  Interviews were held face-to-face or 

telephonically. Of the six interviews, three interviews were conducted by telephone 

because of distance constraints.  
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In this approach the interviewer requires a fair degree of understanding about the 

subject area to be able to know when to probe further, what to ask and to understand 

clearly the answers provided (Fletcher et al., 2003; Saunders et al., 2012). In this study 

the interviews were conducted by the author himself and were done individually and 

there was no obligation to take part. It is worth mentioning that the author has worked 

as a senior pilot in one of the biggest commercial ports in the Mediterranean Sea and 

held a first-class category licence which allows him to piloting all types of ships and 

unlimited tonnage, for almost 12 years in the period 2000-2012. The writer has gained 

long-term experience and sufficient practical knowledge related to pilotage operation 

issues. As a result, it was possible during the interview to adjust questions and to ask 

supplementary questions to follow up the themes and statements from the respondents.   

The questions in the interview do not have to be asked in the same order as in the 

interview guide. The interview method was flexible and gave the interviewer more 

options to add any comment felt necessary during the interview. It also provided an 

opportunity to correct misunderstandings. Respondents also had considerable freedom 

to formulate answers in their own way. Each interview started with a brief introduction 

by the interviewer, explaining to the respondents the main purpose and usefulness of 

the discussion. This was to gain the interviewees’ trust while making them feel 

comfortable at the same time, so as to achieve their honest and significant contribution.  

The main question that formed the basis for this study was, how does the human factor 

influence pilotage operations’ safety performance? The interview is divided into three 

parts: 1) the interviewee is asked to think of the human factor he considers to be the 

risk factor that might influence negatively on pilotage operations performance, the 

interviewee is asked to describe a real case from his own experience that was 

particularly challenging, 2) the interviewee was also asked to validate the factors that 

are presented in the developed questionnaire and suggest additional factors, 3)  issues 

related with risk mitigation measures were also discussed in the interviews. Each 

interview was conducted for approximately 60 to 90 minutes. Notes were taken during 

the interview since it was considered the best way to document the results. Lastly, 

confidentiality and data privacy was ensured and safeguarded at all times. 

 

 



89 

 

4.3.1.2.1 The interviewee’s background 

The telephone interviews were held with two senior pilots, and one tug master who 

had been working in one of the biggest ports in the Mediterranean for more than 20 

years. One telephone interview was held with the Director of Loss Prevention Standard 

P&I Club who has served 9 years onboard a variety of vessels, and sailed as master on 

gas tankers. Subsequently, he worked as marine superintendent for an oil/gas/chemical 

ship Management Company, followed by a spell as an external independent surveyor. 

For the last five years he has worked as internal surveyor for Standard P&I Club and 

took over as Director of Loss Prevention in 2013.  

A face to face interview was conducted with an experienced senior pilot who has been 

working in shipping and port industries more than 25 years. He has served long periods 

onboard a variety of ships, four years as ship master, two years as marine operations 

and safety manager, and 20 years as a marine senior pilot in the port of Liverpool and 

currently working as a lecturer at Liverpool John Moores University. In addition, a 

face to face interview was also held with a master mariner who has vast experience as 

a director in the maritime sector, he worked for a long period of time as a marine pilot 

in one of the most significant ports in the Middle East. In addition, he has held many 

positions such as: harbour master, director of maritime affairs, assistant chairman of 

port, and acting chairman of port management. All the professionals experts 

mentioned above are sufficiently senior and knowledgeable to answer the questions, 

and are able to provide reliable technical information and opinions on the research 

topic 

4.3.1.3 The survey results  

Twenty-five survey responses were received. In this section, feedback and results from 

questionnaire responses were analysed and presented in this section. This section will 

be structured into three sub-sections, the first relating to professional background, the 

second and the third section relating to human factor influencing the safety of maritime 

pilotage operations. 
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4.3.1.3.1 The survey professional background 

The first part of the questionnaire question was addressed in order to obtain 

information about the respondents’ background, to define the position held by the 

respondents, and the period of their practical experience.  

 The survey respondents’ position 

The pie chart shown in fig 4.2 illustrates the position held by the survey respondents. 

It is highlighted that the survey participants belonged to various sectors of the maritime 

industry, 40% of respondents were pilots, 32% were ship masters, whereas 8% were 

tug masters, and the rest were managers or insurers or academics. The majority of the 

respondents were ship masters and pilots who have the overall responsibility of ship 

berthing. 

                                

                    Fig. 4.2 The survey respondent’s profession and position 

 

The survey respondent’s experience 

The survey respondents were asked to provide information about their background and 

to outline a bit about the time period they have spent at sea so far. The intention for 

the question was to uncover the respondents’ experience in years. The results show 

that almost half of the respondent had between 8 and 12 years of experience, whilst 

16% had between 13 and 20 years of experience, and only 4% of the respondents had 
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7 years of experience. Meanwhile, 32% of respondents had over 20 years experience 

in the maritime field (Figure. 4.3). 

 

 

                                Figure 4.3 The experience period of the respondents. 

This study utilised a questionnaire containing three parts, A, B and C. Part B consists 

of twelve items related to the identified risk factors (HCFs), closed ended questions 

were designed to verify the extent to which any of the identified risk factors (HCFs) 

affect performance and contribute to maritime accidents. For the purpose of this 

research, 12 Statements were made and 25 participants were asked to answer each 

statement using the following 5 point Likert scale. This method was adopted to capture 

the degree of importance of the identified risk factors (HCFs). This, as stated by 

Saunders et al. (2012), can allow the participants to clearly express their perceptions 

with an adequate level of agreement with the statements given. Sekaran, (2000) has 

also pointed out that ‘a Likert’ scale is a widely accepted technique to reflect the 

amount of agreement of disagreement with a variety of statements about some beliefs, 

attitudes, person or objects.   

 Based on the Likert measurement, the quantitative data generated from the 

questionnaire has been analysed using the basic descriptive statistics. As described by 

Shannon (2000) and Saunders et al. (2007), descriptive statistics is a statistical analysis 

method for describing attributes. According to Saunders et al. (2012), in research, the 

three most frequently used tools of statistical measurement are median, mean and 

standard deviation. Therefore, the data collected from the questionnaire survey was 

analysed employing a variety of statistics, including; Cronbach's Alpha, frequencies, 
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value of mean, standard deviation, value of median, and Cronbach's Alpha. 

Cronbach’s alpha tests to see if multiple-question Likert scale surveys are reliable. 

Cronbach's Alpha  

Cronbach’s alpha, α (or coefficient alpha), developed by Lee Cronbach in 1951, is the 

first process used in statistical analysis and the most common measure of ‘internal 

consistency’ (reliability). It is most commonly used when you have multiple Likert 

questions in a survey/questionnaire that form a scale and you wish to determine if the 

scale is reliable (Yin, 2014). Cronbach’s alpha will tell you if the test you have 

designed is accurately measuring the variable of interest. It should be mentioned that 

the reliability of the questionnaire survey is closely associated with its validity. A 

questionnaire survey cannot be valid unless it is reliable. Accordingly, ‘internal 

consistency’ (reliability) test was carried out to test whether the study measures the 

required items and the reliability of the received responses. 

Cronbach’s Alpha can be calculated by using the formula: 

α =
𝑁.c̄ 

v̄+(N−1).c̄
 

Where: N = the number of items,  

c̄ = average covariance between item-pairs.  

v̄ = average variance. 

While it’s good to know the formula behind the concept, however, in this study, the 

reliability of the obtained results was evaluated by using the Cronbach's Alpha (α) 

method (Sijtsma, 2009) by employing the SPSS Statistics. It is most widely used 

because the method is much easier to use in comparison with other estimates as it only 

requires one test administration (Sijtsma, 2009).   

 

Cronbach’s Alpha ranges from 0 to 1, and the measurement instrument is considered 

to be more rigorous as long as this indicator is closer to 1 (Chomeya, 2010; Field, 

2013). The overall Cronbach’s Alpha coefficient for the data set in this study is 0.961, 

which indicates that the chosen item is consistent and reliable (see table 4.1). It can be 

concluded that the survey obtains a high level of internal consistency (reliability).  
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                         Table 4.1 the reliability test for the questionnaire survey 

   Cronbach's Alpha No of Items 

.961 12 

 

 

Table 4.2:  Likert Scale Interpretation 

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

Table 4.3 shows the frequency and percentage of the survey participant’s response 

             Risk factors (HCFs) Strongly 

disagree 

Disagree Neither 

agree nor 

disagree 

Strongly  

agree 

Agree Total Percent 

Lack of effective communication and language 

barriers (HCF1) 

0 0 0 60% 40% 25 100.0 

Lack of team work  (HCF2) 4% 4% 4% 40% 48% 25 100.0 

Failure to exchange the information  (HCF3) 0 0 0 88% 12% 25 100.0 

Failure to establish a proper manoeuvring plan  

(HCF4) 

0 0 8% 64% 28% 25 100.0 

 Distraction  (HCF5) 0 0 4% 52% 44% 25 100.0 

 Lack of situation awareness  (HCF6) 0 0 0 84% 16% 25 100.0 

 Lack of familiarity with the electronic navigational 

equipment knowledge  (HCF7) 

0 0 0 60% 40% 25 100.0 

 Failure to proceed with safe speed as stipulated in 

COLREG (HCF8) 

0 0 8% 64% 28% 25 100.0 

Pilot boarding and disembarking too close to 

breakwater (HCF9) 

0 0 8% 56% 36% 25 100.0 

 Mental and physical work load (HCF10) 0 0 12% 48% 40% 25 100.0 

 Stress (HCF11) 0 0 8% 72% 20% 25 100.0 

 Fatigue (HCF12) 0 0 8% 68% 24% 25 100.0 

 

Table 4.4 shows descriptive statistics for the risk factors (HCFs) 

Risk factors (HCFs)  

Sum  Mean 

 

Midian SD 

Lack of effective communication and language barriers (HCF1) 25 4.60 5 0.500 

Lack of team work  (HCF2) 25 4.24 4 1.012 

Failure to exchange the information  (HCF3) 25 4.88 5 0.332 

Failure to establish a proper manoeuvring plan  (HCF4) 25 4.56 5 0.651 

 Distraction  (HCF5) 25 4.48 5 0.586 

 Lack of situation awareness  (HCF6) 25 4.84 5 0.374 

 Lack of familiarity with the electronic navigational equipment  

knowledge  (HCF7) 

25 4.60 5 0.500 

 Failure to proceed with safe speed as stipulated in COLREG (HCF8) 25 4.56 5 0.651 

Pilot boarding and disembarking too close to breakwater (HCF9) 25 4.48 5 0.653 

 Mental and physical work load (HCF10) 25 4.36 4 0.700 

 Stress (HCF11) 25 4.64 5 0.638 

 Fatigue (HCF12) 25 4.60 5 0.645 
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Tables 4.4 illustrates the Sum, weighted Average and Standard Deviation (S.D.), and 

the ranking of the identified human related risk factors on the basis of expert 

judgements. In the questionnaire survey, the experts were asked to answer at which 

point they would mark to agree with or disagree with the given statements using a 

five-point Likert scale (i.e. 1= strongly disagree, 2= disagree, 3= neither agree nor 

disagree, 4= agree and 5= strongly agree).  

The average of the Likert scale will be 3 which can be calculated by (1+2+3+4+5)/5), 

therefore, where the mean average above 3 will show an agreement (extremely 

influence, strongly satisfied) with the statements meanwhile the mean average below 

3 will indicate overall disagreement (do not influence, strongly dissatisfied) with the 

statements (Table 4.2). Though the mean average is most frequently applied as a 

measure of central tendency compared to other measurements such as median, 

however, applying the mean alone will not be sufficient to describe and to give clear 

information and a frequency distribution about the data. Therefore, one of the 

important points that must be considered is measuring the standard deviation which is 

considered as a much more accurate and detailed estimate of dispersion or variation. 

Moreover, the small value of standard deviation indicates the tendency of data to 

similarity and homogeneity. The mean for each of these questions is above 4 which 

indicates that respondents ‘mostly agree’ and also what makes it more important is the 

fact that the standard deviation is far below 1 which shows that participants share the 

same belief and there is not any polarisation of their views.   

In this study the significance of each identified risk factor is ranked to suggest the 

significant and influential factors to pilotage operations. The results analysis according 

to the statistical means demonstrated that the weighted average values of the 12 risk 

factors are almost very high which clearly demonstrates agreement among the 

participants that the aforementioned risk factors are significant and contributing 

factors to maritime accidents.  Nevertheless, although the invited participants 

consisting of experts from different academic and industry fields and countries, the 

results reflect the consensus of their opinion. This implies that the experts have similar 

perspectives on the determined causal factors (HCFs) and their effects on the safety 

performance of the pilotage operations.  
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4.3.1.4 Findings from the survey and interviews   

The second part of the questionnaire was to know to what extent the human factors 

affects maritime pilotage safety performance. The finding of the survey and interviews 

in the current study show that most of the participants share common beliefs and 

agreed that the abovementioned risk factors influence the safety performance of 

pilotage operations (table 4.3 and 4.4). In this section, data collected from the survey 

responses were collected and presented in the following sections: 

4.3.1.4.1. Lack of effective communication and language barriers and their effects on 

pilotage operations   

The participants of the survey were asked to express their views on language problems 

and poor communication and their impact on pilotage operations safety. This item in 

the survey assessed the respondent’s views on whether or not they felt that accidents 

occurred during pilotage operations because of lack of effective communication and 

misunderstanding between the pilots, and the ship’s crewmember as result of language 

problems. Data from the survey shows that most of the participants agreed with the 

statement that the lack of effective communication due to poor language of crew 

members or pilot is a significant cause which negatively affects the safety of pilotage 

operations.  

The same questions were asked to the interviewees. The responses collected from the 

interview participants strongly support the statement, and the sweeping majority of the 

interviewees agreed that the low-level English language skills of the operators 

resulting in ineffective communication and this ineffective communication negatively 

affects the safety of the pilotage operations. The interview participants confirmed that 

the proper knowledge of English clearly facilitates communication and leads to fewer 

accidents.  

One interviewee reported that when English language skills are insufficient, this will 

lead to an increase of misunderstandings and lack of communication between the pilot 

and ship crew members, the language barrier is a significant risk factor which impedes 

communication among members of the bridge team. He stressed the fact that English 

has conquered seas worldwide and has become necessary to communicate onboard 

every vessel. Therefore, all seafarers should have a sufficient understanding of the 

English language. 
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Most of the interviewees confirmed that efficient pilotage is mainly dependent upon 

the effectiveness and understanding of the communications between the pilot and the 

bridge team members, between master and crewmembers as well as between pilot and 

assistant parties such as shore staff, mooring boats and tugs when manoeuvring. It was 

further stated that, during ship berthing when crewmembers, ship’s captain and pilot 

onboard ships do not speak the same language, and English language communication 

ability is insufficient, this increases the risk of misunderstandings, and can cause 

undesirable situations which will negatively affect the safety of ship berthing.  

One of the interviewees who is working as a senior pilot, when he illustrated his 

experience with an Asian captain, stated that during the manoeuvring whilst on board 

a ship he was unable to communicate with the captain because of the language barrier, 

the captain consistently said "Yes Mr. pilot" whilst he did not understand. This resulted 

in an undesirable situation for the captain and he was very disturbed because the cadet 

on board the ship had to translate the pilot’s instructions to him.  

An important point raised by the senior pilot was that, “I find with some of the crews 

that if they are not really good at English they have to translate into their own language 

before they can interpret and then they respond having translated back to English. That 

translation take a lot of the time, creates misinterpretation, doesn’t create the required 

response, does not create the required action, and that can induce errors. Language is 

always the cause, it’s causation for sure in incidents”. The senior pilot went on to state 

“how do I manoeuvre and conduct the safe navigation and berthing of the vessel if I 

do not have a line of communication with the prime member of the bridge team". 

One expert mentioned that, you can’t expect every tug master and the other assistant 

parties in every port to be able to speak in the English language, as that will simply 

not be the case and consequently, during ship berthing the port pilot will communicate 

with the port/tugs in a different language that the ship’s staff will not understand, 

making it difficult for the ship’s master and crew members to recognise the pilot’s 

actions and to monitor any subsequent actions taken by those external parties, as well 

as to be fully aware of the situation. As a result, the safety of the ship’s manoeuvring 

will be negatively affected. 

A study has been carried out by Hsu (2012) showed that when a pilot is communicating 

to external parties, such as vessel traffic services (VTS), tugs or linesmen with a 
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language that cannot be understood by the ship’s master on the bridge, the pilot should, 

as soon as practicable, explain what was said to enable the ship’s master and bridge 

personnel to understand and monitor any subsequent actions taken by those assistant 

parties. However, in this study during the interview one expert senior pilot presented 

an alternative view to the previous respondent and mentioned that “bridge team need 

to be informed of the action of the pilot/ tugs, how the vessel is going to be 

manoeuvred, they need that information, the ship’s master needs to know continuously 

about what’s happening with his vessel.  That won’t happen, if the pilot and tug master 

are talking in their common language, the pilot in a lot of situations will not have the 

opportunity and the time to tell the master in advance what he is going to tell the tug 

master. During manoeuvring you don’t want that distraction, so if the pilot is talking 

to tug master and watching the vessel and the tug, the last thing he wants to do is to be 

distracted and have explain to the master what action he is going to do”. 

One of the interviewees who is working as Director of Loss Prevention Standard P&I 

Club, stated that, “many accidents occur during the ship berthing because of the 

communication between pilots and assisting tugs with a language not understood by 

the ship master, and ship masters often have too much confidence and trust in the 

pilot’s abilities. However, the pilot is a human being and can make mistakes. As result, 

in order to avoid the risk of collision, the master must ensure that he is familiar with 

all commands and expected actions during the manoeuvring. He went on to state that, 

“I think, certainly having a common language helps, whether it’s English, French or 

any other language. Speaking a common language is undoubtedly the greatest 

facilitator of communication on board a ship and contributes considerably to pilotage 

safety”. Therefore, a common working language during pilotage maneuvering should 

be used.  

This issue was confirmed by results obtained in the TSB study of operational 

relationships between ship masters/watch keeping officers and marine pilots (TSB, 

1995). This study showed that the lack of a common working language is often a 

problem, in various ports, the pilot will communicate with the port tugs in a different 

language which the crew will not understand, and hence they may not be aware of 

what is being agreed/planned.  
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4.3.1.4.2. Lack of team work and its effect on pilotage operations safety 

The finding of the survey in the current study (table 4.3 and 4.4) show that most of the 

participants share common beliefs and agreed to the statement that the lack of team 

work is a contributory causal factor for pilotage accidents.  

The participants of the interviews were also asked to express their views on the above 

statement.  Most of the experts interviewed confirmed that failure of pilot, ship’s staff, 

and assisting parties (tugs masters, VTS, and shore personnel) to work with each other 

cooperatively, or failure to create an effective relationship on the bridge of a ship 

between pilot and ship’s captain can cause undesirable situations during ship berthing, 

which will negatively effect on the safety of the pilotage operations.  

It was further confirmed that, efficient teamwork is mainly dependent upon interactive 

co-operation, co-ordination and effectiveness of the communication between the pilot 

and the ship’s crewmembers and between pilot and assistant parties. These three 

factors are considered as very significant for achieving effective and safe mooring 

operations, which rely heavily on effective team working. 

 

4.3.1.4.3: Master/Pilot exchange information (MPX) and its effects on pilotage 

operations safety 

The previous marine accidents investigation reports show that a considerable number 

of accidents occurred due to the failure to exchange the information between pilot and 

master before manoeuvring commences. The marine experts were asked to verify and 

confirm the above statement made in the literature review. The finding show that all 

of the participants share common beliefs and agreed with the statement, as the results 

show that the majority of the respondents believe that the exchange of information 

between pilot and master is significant for ensuring an effective berthing operation. 

While 88% of the respondents strongly agreed, and 12% agreed with this statement 

(Table 4.4). 

When the interviewees were asked to express their views on the master-pilot exchange 

of information, they confirmed that failure to exchange the information prior to the 

commencement of a manoeuvre is a crucial risk factor and negatively affects the safety 

of the pilotage operations, and in order to ensure effective and safe piloting operations, 
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both the ship’s master and pilot should exchange information prior to the 

commencement of a manoeuvre. 

One Expert interviewed confirmed that marine pilots and ships’ crewmembers need 

to obtain the right information regarding details of the passage and berthing plan, as 

knowledge of these will assist both the pilot and the ship’s master, to be aware of the 

whole situation and enable them to easily identify the ship’s manoeuvring 

characteristics, and quickly assess the skills needed to make the correct decision and  

prepare a proper and effective berthing plan to control the ship and  handle it to its 

destination successfully and safely. This opinion was confirmed by MAIB (2013) in 

their annual report, in order to maintain overall situational awareness when navigating 

with a pilot, it is critical that information is exchanged regularly so that all members 

of the bridge team are aware of the pilot's intentions and can provide assistance or 

timely advice and observations.  

One expert marine captain pointed out that before entering the port and starting 

manoeuvring, the ship’s master and pilot must provide accurate information regarding 

the manoeuvring and how it will be conducted in order to avoid the risks and to ensure 

safe passage and successful manoeuvring. He went on to state that the pilot master 

exchange should have covered most of the principals, how the vessels is going to be 

manoeuvred, where, when, at what point and what they should expect. 

 One of the interviewed participants had a different opinion, as he believed that; it was 

unnecessary to constantly exchange information. He gave an example that if the vessel 

comes regularly to the port, it is well known by the captain and the pilot knows the 

ship's characteristics and how it should be manoeuvred, then the exchange of 

information may be limited to any defects or if there is anything new that the pilot 

needs to know about. Another example he suggested was, in the event that there was 

anything out of the ordinary which would lead to the pilot having to adjust how the 

operation will be conducted. However, he confirmed that, both the ship’s master and 

pilot should prepare a passage and berthing plan prior to the commencement of the 

manoeuvre. 

Nevertheless, one interviewed senior pilot stated that "every manoeuvre is different 

even if the same ship is in the same berth and the exchange of information between 

pilot and master is significant for ensuring effective berthing operations". This is an 
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opinion was supported by Armstrong (2007, p.3) who stated that, there are many 

variables including wind, tide, visibility and draught. Even the same ship in the same 

berth behaves differently each time, the pilot handle some kinds of ships he sees for 

the first time, and others he guides frequently".  

4.3.1.4.4. The passage plan and its effect on Pilotage operations safety 

How far do you agree with statement that many berthing accidents occur as a result of 

performing manoeuvring without a plan? The questionnaire intended to obtain 

information on whether the responses support the statement that failure to prepare a 

passage plan before manoeuvring commences is a contributing factor to maritime 

accidents.  

The above results shown in Table 4.4 highlighted the views of respondents towards 

the ship’s passage and berthing plan and its effects on pilotage operations safety. The 

survey results show that only 8% neither agreed nor disagreed whilst 28% of the 

respondents strongly agreed and 64 % agreed that in order to ensure effective and safe 

piloting operations, both the master and pilot should prepare a passage and berthing 

plan prior to the commencement of the manoeuvre. 

During the interviews the same question was asked. Most of the interviewed 

participants confirmed that establishing the ship’s passage and berthing operation plan 

is a contributing factor to reducing the risk of marine accidents during pilotage 

operations.  According to the perceptions of the pilots and captains interviewed, failure 

to prepare a proper manoeuvring plan prior to piloting vessel is considered to be an 

unsafe act, and a contributing factor to maritime accidents. This fact was further 

supported in Gard (2014); and the previous marine accidents investigation reports, 

where it was noted that a considerable number of accidents occurred due to the lack 

of berthing planning. The grounding of M/V Tundra on 28 November 2012, was one 

of the best case examples that demonstrate how the failure of preparing a passage plan 

could contribute to the accidents (TSB, 2014). 

One professional senior pilot stated that in order to ensure effective and safe piloting 

operations, after exchanging information and before manoeuvring commences, the 

pilot and master should give an outline of the ship’s suggested passage and berthing 

operation plan and how the manoeuvre will be conducted. The pilot and master should 

agree and be satisfied with the overall final plan. He considered that the primary task 
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for the ship’s master and pilot is to provide accurate information regarding the 

manoeuvring and how it will be carried out in order to avoid the risks and to ensure a 

safe passage plan and successful manoeuvring. 

4.3.1.4.5. Views on distraction and its effect on Pilotage operations safety 

Distraction during pilotage operations is one of the biggest contributory factors to 

maritime accidents. The participants of the survey were asked to express their views 

on the above statement and whether they agree that distraction can affect pilotage 

operations safety performance. Data from the survey shows that most of the 

participants agreed with the statement. The same questions were put to the 

interviewees. The responses collected from the interview participants strongly support 

the statement, and all participants interviewed agreed that distraction negatively 

affects the safety of the pilotage operations.  

One experienced expert stated that ship’s crewmembers or pilot are often distracted 

while they are performing the manoeuvring as a result of many reasons such as the use 

of personal communication devices (such as mobile phones), or when the operator 

concentrating too much on one navigational instrument such as radar or ECDIS as a 

result of unfamiliarity with the electronic navigational equipment knowledge. This 

point of view was confirmed by Grech et al (2008) (MAIB) (2005), and (NTSB, 

2011a).  

4.3.1.4.6. Lack of situation awareness and its effect on Pilotage operations safety 

Several research studies and an analysis of a considerable number of pilotage accidents 

shows that lack of situation awareness (SA) of the surrounding environment during 

pilotage operations is a high risk factor and one of the main contributory factors of 

marine accident. Poor shared situation awareness in the bridge team has a negative 

influence on the safety performance of pilotage operations. 

The participants of the survey were asked to express their views on the above 

statement.  Data from the survey shows that most of the participants confirmed that 

the loss of situation awareness of crew members and pilot during ships piloting is a 

significant risk which contributes to maritime incidents.  

The same questions were asked to the interviewees. The responses collected from the 

interview participants, strongly support the statement, and the sweeping majority of 
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participants considered it as one of the most significant human causal factors that 

contribute to the marine casualties and negatively affects the safety of the pilotage 

operations. 

When one experienced pilot was asked about the causes of the loss of situation 

awareness, he stated that, during manoeuvring, lack of planning and lack of exchange 

of information between the pilot and captain of the ship due to lack of communication 

and poor language of the pilot or ship’s bridge staff, are significant causes for the loss 

of situation awareness.  

One of the interviewed experts mentioned that the ship’s master or pilot might lose the 

awareness of the situation as result of distraction due to the use of electronic devices 

and mobile phones during the manoeuvring. In addition, the mariner’s mental high 

workload due to momentary task distraction and of using the new technology and long-

time monitoring of navigational aids equipment can also lead to memory loss and 

misperception of data. Therefore, controlling work load is a key factor with new 

technology, training and other forms of procedural guidance needed in order to make 

seafarers aware of capabilities and limitations of new technologies.  

4.3.1.4.7. Lack of familiarity with the electronic navigational equipment knowledge 

and its effect on pilotage operations safety 

A fact described previously in the literature review is that  ineffective use of the 

navigational equipment such as, ECDIS, AIS, Echo Sounder, RADAR, and GPS, etc., 

as a result of a lack of familiarity with the electronic navigational equipment 

knowledge, is considered a high risk and has a greater potential to cause major 

accidents. 

The participants of the survey were asked to express their views and whether they 

agree on the above statement. The question intended to investigate whether the lack 

of experience and poor knowledge of the use of navigational aids during pilotage 

operations is a cause and contributing factor leading to maritime accidents. The 

findings of the survey in the current study (table 4.3 and 4.4) show that most of the 

respondents agreed to the above statement, they believe that the lack of familiarity 

with the electronic navigational equipment knowledge and inability to use these aids 

influence the safety performance of pilotage operations and can lead to maritime 

accidents.   
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The interviewees were asked to give their opinions on the importance of using the 

technology during the pilotage operations. One of the interview participants reported 

that, good using of navigational aids such as AIS, RADAR, GPS, and ECDIS, is 

important and necessary, particularly when the vessel passes through narrow passages 

in the dark and under poor weather conditions. However, berthing operations inside 

the port particularly close to the berth, do not require the use of such navigational aids. 

It is worth mentioning by experts that the chance for human error increases when 

things are complicated, new, and unfamiliar. One senior pilot pointed out that when 

electronic navigational equipment knowledge skills are insufficient, this could lead to 

an increase in risk, which can lead to undesirable situations during pilotage operations.  

He went on to state that, the chance for human error increases when things are 

complicated, new, and unfamiliar, and it can result in the bridge team being fully 

unaware of the position of the ship and leading to loss of the whole situation 

awareness, particularly when the vessels navigate through narrow canals or while 

underway, inbound/outbound from/to ports and channels in the dark or under poor 

visibility conditions. Wrong handling of navigational electronic equipment when 

entering or leaving the port (e.g. ship on route of collision not acquired on the Radar, 

pilot or ship’s master fail to observe the information and set warning distances on the 

Radar, or vessel’s course and position are not efficiently monitored and plotted on the 

electronic chart), can negatively affect pilotage operation safety and lead to marine 

disasters. 

One of the interviewees reported that the use of technology is considered one of the 

most important issues. However, if the crew are unfamiliar with them and do not know 

how to set them up, they will make wrong decisions because they may be obtaining 

the wrong information from them. The use of technology is definitely helpful for pilot 

and ship’s crewmembers to avoid collisions and grounding as long as it is being used 

properly, however, it is not if they are putting too much reliance on it. Particularly, if 

the ship’s crewmembers are not properly trained and experienced in using technology, 

they will make wrong decisions as a result of wrong information they are obtaining. 

This was confirmed by Armstrong (2007, p.2), who stated that electronic aids are 

helpful for the pilot and ship’s master to make their tasks easier, more accurate and 

safer, however, they should not be totally dependent upon them. 
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4.3.1.4.8. The excessive speed of ship during berthing operations and its impact on 

safety 

How far do you agree with the statement that many berthing accidents occur because 

the speed of approach is too high?  

The above item intended to examine whether the excessive speed of a ship during 

berthing operations is one of the influencing factors towards maritime causalities. Data 

from the survey shows that 64% of the respondents strongly agree, and 28% agree 

with the statement that approaching the port at high speed is risky and could lead to 

maritime accidents. Meanwhile only 8% neither agreed nor disagreed (Table 4.4). 

 During the interviews the same question was asked. One pilot confirmed that safe 

speed is a contributing factor to safety during ship berthing and failure to proceed with 

safe speed as stipulated in COLREG is high risk and can negatively affect operation 

safety and lead to marine disasters.  However, in order to control the ship steering, 

high speed sometimes is needed, particularly, in severe weather conditions.  

 

4.3.1.4.9. Boarding and disembarking of pilot too close to breakwater   

The feedback of accident investigations reports indicated that the boarding and 

disembarking of the pilot too close to the breakwater is a contributory factor of the 

pilotage accidents. The participants of the survey were asked whether they agree with 

this statement, and how this action might affect pilotage safety. Data from the survey 

shows that almost half of the respondents strongly agree and 36% agree that many 

incidents occur as result of the pilot boarding and disembarking close to the port 

entrance. Meanwhile, 8% of the respondents neither agreed nor disagreed (Table 4.4). 

Two participants of the interviews were asked the same question and they confirmed 

that the boarding and disembarking of the pilot close to the port entrance is a risk and 

that could lead to dangerous situations and considered it to be one of the main factors 

contributing towards maritime disasters particularly, when the captain of the ship has 

not obtained the competence in coming so close to the port entrance or is not familiar 

with the port area. They also stressed the fact described previously in the literature 

review that when the pilot embarks at the breakwater there is insufficient time for the 

captain of the vessel to exchange information with the pilot, thus there is not enough 
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time to prepare the ship berthing plan and this results in an undesired situation for the 

pilot and ship's master.  

4.3.1.4.10. The mental and physical work load and its effect on Pilotage operations 

safety 

The increased workload is often presented as a predominant concern in pilotage 

operations. As mentioned earlier in the literature review, the mariner’s high mental 

workload due to the use of technology and continuous monitoring of navigational 

equipment can lead to memory loss and misperception of data especially if the ship’s 

operators are fatigued or not sufficiently trained. Analysis of a considerable number 

of pilotage accidents also reveals that the excessive mental and physical workload is 

a contributing factor to human error and has a negative impact on performance which 

in turn can lead to maritime disasters. 

The participants of the survey were asked in the questionnaire to express their views 

on the above statement. The rationale behind the question was to assess the perspective 

and views of respondents whether the factor mentioned above impacts pilotage 

operations safety. The result of the questionnaire indicates that most respondents 

believe that the above-mentioned factors increase the probability of errors and 

influence  the pilotage performance and are contributing factors to naval accidents 

(Table 4.3 and 4.4). 

 During the interviews the same question was asked. The question was to which extent 

high physical and mental workload affects the ship’s crewmembers’ and pilot’s 

performance. There is a general consensus among all the pilots and captains 

interviewed that this factor plays a significant role in marine accidents. Most of the 

interviewed participants confirmed that increasing the level of mental and physical 

workload during the manoeuvring negatively influences the ship’s crewmembers and 

pilot’s performance and plays a significant role in marine accidents causation. 

 One expert stated that, because of the lowering of the number of staff, and increasing 

the level of automation in tasks, particularly with regard to navigation systems, ships’ 

crewmembers perform many more tasks than before. In addition, nowadays maritime 

pilots on the bridge are exposed to information from several sources, from crew verbal 

instructions, from multiple instrument displays, and communication systems which 

have increased the work burden. Moreover, the complexity of the maritime pilotage 
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operations and large number of tasks, such as long-time monitoring of navigational 

aids equipment, speaking on handheld radio to tugs operators, mooring boats and shore 

personnel, required high levels of skills, concentration, accuracy, and greater 

knowledge, and proficiency and need to be carried out at simultaneously. All of these 

factors can lead to an increase in the pilot's mental and physical workload, which in 

turn negatively influences the pilot’s performance and plays a significant role in the 

marine safety of the pilotage operation. 

4.3.1.4.11. Stress and its effect on pilotage operations safety 

The previous study shows that stress can influence the decision-making process of the 

pilot and ship’s master, particular during ship manoeuvring in restricted areas (Gerigk 

& Hejmlich, 2015).   

The experts in this study were asked, whether they agree with the statement that many 

berthing accidents occur as a result of stress. The above question was intended to 

obtain information on whether the responses support the statement. Data from the 

survey shows that 72% of the respondents strongly agree, and 20% agree with the 

statement. Meanwhile only 8% neither agreed nor disagreed (Table 4.4). 

 The same question was asked in interviews with a ship’s master and senior pilot. They 

asserted that, handling a large vessel in constrained waters such as a port or narrow 

channel is a high-risk task and the pilot with the ship’s master assigned to that task 

have a responsibility to handle the ship to its destination safely, because of the 

complexity of maritime pilotage operations and the large number of tasks involved 

which require high levels of skill and concentration and need to be carried out 

simultaneously. Additionally, piloting ships in harsh working conditions. Moreover, 

the short time allocated to achieve the tasks has increased the level of stress for the 

pilotage operators, and consequently the risk of error increases. 

Moving different types of large vessels in constrained waters is a high-risk task and 

the pilot assigned to that task has a responsibility to handle the ship to its destination 

safely. In addition, Introducing the new technology in the shipping industry and, which 

need a high level of accuracy, proficiency, high level of skills, and intelligence, and 

due to the number of tasks which need to be carried out at simultaneously such as 

speaking on a handheld radio to tugs operators and shore personnel; furthermore, the 
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short time allocated to achieve the task, has increased the work burden, and level of 

stress for the pilot.  

Moreover, the unique environment of seafaring is characterised by harsh working 

conditions including the excessive noise vibration coming from the main engines, 

manoeuvring devices such as the steering gear, the auxiliary systems such as the 

heating ventilation and air conditioning units, heat and bad weather, increase in stress 

level and fear, also impact and impair the performance of pilots and ship’s 

crewmembers during manoeuvres, which in turn contributes to the maritime accidents 

(Grech et al., 2008, p.91). The complexity of the task required high levels of skills and 

concentration. 

4.3.1.4.12. Fatigue and its effect on pilotage operations safety 

A fact described previously in the literature review was that fatigue during pilotage 

operations is considered a high risk and has a greater effect on seafarers and potential 

to cause major accidents.  The participants of the survey were asked to express their 

views and whether they agree on the above statement. The question intended to 

investigate whether fatigue is a contributing factor leading to maritime accidents. The 

results of the survey presented in the tables above (table 4.3 and 4.4) show that most 

respondents agreed with the above statement, they believe that fatigue negatively 

influences the performance of ship handlers and contributes to maritime accidents 

The findings indicate that most of the surveyed and interviewed respondents feel that 

fatigue impairs pilot and crew members’ performance and contributes to maritime 

disasters. 68% of survey participants strongly agree with the statement and 24% agree. 

Meanwhile, only 8% neither agree nor disagree (Table 4.4). 

 When the interviewees were asked to express their views on fatigue and whether they 

agree with the statement that fatigue impairs the performance of pilots and ship’s crew 

members and contributes to maritime disasters during ships pilotage, most of the 

participants share common beliefs and agreed with the statement made in the literature 

review. 

 One expert captain pointed out that “Certainly fatigue leads to less concentration and 

makes one more prone to making errors, but if the person is suitably trained and 

experienced he will be sure that he is not fatigued.”, he went on to state that 
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“Crewmembers have work/rest hours regulations to ensure that they are not fatigued 

(whether they follow/comply is a different matter), but pilots do not comply with the 

regulation and are often overworked and rushed from ship to ship”. 

 An interviewee senior pilot presented an alternative view to the previous respondent 

and mentioned that, "fatigue can be an issue but if the work pattern of a pilot is 

properly organised, then they should not be fatigued. Also, he reported that fatigue for 

crew members was more serious, particularly because before they get to the port, they 

have probably been in the bridge for twelve or more hours, working at night without 

a rest period and an adequate nap”. 

4.3.1.5: The findings of the part C of the questionnaire  

From your experience do you know any additional causal factors that might affect 

pilotage operations performance? Have you had any issues or incidents in the past 

which affected the safety of the ship piloting? 

In the above questionnaire a particular question was asked in order to provide the 

respondents of the survey and interviews the opportunity to give their views through 

their observations and long practical experience on board ships about the human 

element factors which might affect the safety performance of the pilotage operations. 

 In addition to the 12 aforementioned contributing factors, the experts have highlighted 

additional serious human element factors which can lead to maritime accidents. These 

factors presented in the table below (table 4.5) include the following:    
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     Table 4.5 Contributory causal factors of the maritime pilotage accident 

  

                

Ships piloting was considered as one of the most complex tasks. It requires high 

standards of professional ship handling skills. According to the perceptions of  most 

of the experts interviewed, a lack of ship handling skills, due to lack of experience, 

and improper training, was identified by experts as one of  the most significant factors 

that may adversely affect the safety of manoeuvring. It is considered among the most 

important causes of accidents in pilotage operations. Therefore, Marine pilots and all 

ship’s handlers should possess high levels of ship handling skills and navigational 

experience. The Collision of Ursine with the Pride of Bruges, in King George Dock, 

Hull, on the east coast of England on the 13th November 2007, during ship berthing, 

demonstrated how the shortcomings of ship handling knowledge and lack of 

experience of pilot and ship’s master affected the safety of manoeuvring and 

contributed to the accident (MAIB, 2008a). 

Ship handling is defined as an acquired art practised by harbour pilots, ship’s masters 

and officers of proper control of a ship while underway, especially in harbours, around 
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docks and piers (Armstrong, 2007, p.1). However, Murdoch et al., (2012) described 

ship handling as an art rather than a science, but a ship handler who is familiar with 

the science will be better at their art and this will enable them to easily identify a ship’s 

manoeuvring characteristics, and quickly assess the skills needed to control the ship. 

The most basic thing to be understood in ship handling is to know and anticipate how 

a ship behaves under all circumstances and what orders should be given in order to 

make the ship behave and move exactly the way you want her to (Murdoch et al., 

2012). 

One expert pilot stated that, during ship piloting, marine pilots are employed on board 

ships to give navigational advice to captains and guide vessels into or out of port 

safely. The pilot is also responsible for giving commands to assisting parties such as 

tugs, shore mooring men, mooring boats, and giving his instructions to the ship’s 

master. He must have a good knowledge of ships handling, because failure of the pilot 

to give precise instructions, or any flawed commands that the pilot gives to the tug’s 

masters, or any wrong orders given to the helmsman, engine room, or the fore and aft 

stations, could result in an undesirable situation and could affect the safety of the 

mooring operation and cause marine accidents.  

One interviewed expert stated that, the ship’s captain is responsible for giving orders 

to the ship’s crew, officers on the bridge, and officers at the ship’s bow and stern on 

what the pilot has suggested or instructed; an accident in pilotage is likely to occur as 

a result of failure of the ship’s master to correctly follow the pilot’s directions during 

manoeuvring .This conclusion was supported by Darbra et al. (2007), who stated that 

these occurrences (e.g. incorrect interpretations, refusal, rejection, intervention by 

master, etc.) are quite frequent making the pilot’s task much more difficult and 

increasing the potential of accidents. 

Experienced experts attributed this mistake to many reasons such as, an ineffective 

working environment and poor relationship on the bridge of a ship between the pilot 

and ship’s captain and failure of pilot and ship’s master to exchange information and 

establish  a proper passage and berthing plan prior to piloting vessel. The other reason 

that might lead the master of the ship to interfere or refuse the pilot’s advice or 

instructions during the period of ship piloting, is when the pilot is not qualified or 

gives wrong commands. However, according to the expert’s opinion the ship’s master 
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of the piloted ship should have a good relationship with the pilot and be confident that 

the pilot is doing his duties correctly and should not interfere and challenge the pilot 

or give conflicting orders unless the pilot’s actions are clearly negligent, or he is 

behaving irresponsibly, because failure of ship’s master to follow the pilot’s 

directions, is considered very hazardous and can affect ship navigation safety and 

contribute to disaster in ports. 

According to the perceptions of one of the experts interviewed, the lack of skills of the 

crewmembers on board ship, tugs masters, and shore mooring personnel is considered 

high-risk and can negatively influence the operations and contribute to pilotage 

accidents. During berthing operations, operators’ work characteristics such as 

professional skills and work attitudes, are very significant factors that can affect ships’ 

navigation safety. For instance, failure of crewmembers on board ship to carry out the 

pilot’s instructions regarding anchoring, and engine requests precisely results in high-

risk situations and can cause accidents, or when the pilot or master gives orders 

regarding steering and those orders are not carried out by the helmsman correctly, this 

failure can affect the safety of the ship berthing.  

One expert mentioned that, during berthing operations many factors affect ship 

handling. For example, communication failure from the bridge to the engine room or 

vice-versa, or to the fore and aft stations could result in an undesirable situation.  

Mutual misunderstanding in the bridge could be another ship posing a potential 

accident threat, when the pilot or master gives the order regarding steering, and this is 

not carried out correctly by the helmsman. Therefore, during ship handling, to be 

protected against the mutual misunderstanding, and support bridge team situation 

awareness, Pilot and bridge staff should be communicating with each other in 

sufficient detail to allow all to achieve a mutual understanding and close the loop. This 

opinion was confirmed by Grech et al., (2008, p.79) and TSB (2013a), they stated that 

rudder commands should be given by the pilot or master, and repeated by the 

helmsman clearly and loudly, and re-confirmed by the senders, this strategy is called 

closed-loop communication. This is the best method to ensure that a command is being 

followed and is a vital part of the bridge team management (Gard, 2007).  One example 

was described by Murdoch et al (2012) which demonstrate how the mistakes of 

operators could contribute to the accident, when the pilot gave the orders and the 

helmsman applied them incorrectly. The pilot commanded starboard helm, however 
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the helmsman applied port helm. By the time this mistake was discovered, the vessel 

was swinging towards rather than away from the berth. 

As has been mentioned previously, the interaction and interdependence, in addition, 

the multiplicity of the entities who are performing ships berthing operations add to the 

complexity of the task. Handling ships such as large passenger ships, container ships 

with towering deck cargo, high free board car carriers, mammoth tankers, and deep 

draught bulk carriers are considered complex tasks, and cannot be handled and treated 

the same way as small cargo ships (Armstrong, 2007, p.1). 

One expert pilot mentioned that, it requires intense concentration and special attention, 

as well as high standards of professional skills, and an adequate number of powerful 

tugboats. The pilot stated that, ineffective use of tugboats is one of the causes of marine 

accidents in ports. Practically, the factors affecting the quality of tugboat operations 

include the number of tugboats, the horsepower of the tugboat, and the operating skills 

of tugboat drivers. There is need for the assistance of sufficient numbers of powerful 

tugboats, which are necessary, particularly in adverse weather conditions.  

The main purpose of tugboats is to assist ships, such as pushing and towing the vessels. 

Tugboats play a significant role in assisting vessels in berthing alongside and 

unberthing from the berth, and as a result, failure to use sufficient numbers and 

sufficiently powerful tugboats, is considered high-risk and can negatively affect the 

manoeuvring and contribute to a ship’s berthing accident. In addition, improper use of 

tugs as a result of lack of skills of tugboats’ masters is considered by the interviewed 

experts as a high risk and can affect the manoeuvring negatively and contribute to a 

ship’s berthing accidents.  

For instance, failure of the tugs’ masters to correctly follow the pilot directions (e.g. 

incorrect interpretations, refusal, rejection, and intervention), or a delay between the 

pilot’s order and the execution of the order can affect the safety of manoeuvring. 

Furthermore, failure of the tug’s masters to carry out the pilot’s instructions precisely 

with respect to position and towing power could also affect manoeuvring safety or 

delays in securing a tug as a result of lack of skills of mooring parties, putting time 

pressure on the crew and thereby increasing the risk of the vessel sailing in unsafe 

conditions.  As result, the compliance of tugs operators, shore-side mooring personnel 
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and mooring boats with the instructions of the Pilot effectively, will support a safe and 

efficient mooring operation. 

Piloting ships in bad weather conditions, and navigating vessels outside published 

guidelines or draft limits is also considered by experts as a high risk and contributing 

factor to maritime accidents. One of the interviewees who has vast experience as a 

senior pilot in one of the biggest ports in the Mediterranean, mentioned that, piloting 

ships in adverse weather conditions frequently happened due to many reasons. One of 

these reasons is the commercial pressure, which is usually attributed to port 

authorities’ administration managers, ship’s owners, charterers, and agents. The 

interviewed considered it a high risk and affect negatively on the pilotage operations 

safety.  

During berthing operations the ineffective monitoring of the tugboats masters, 

mooring boats, and shore mooring personnel performance and vessel’s progress is 

considered by experts a high risk and contributing factor to maritime accidents. 

Therefore, good observing is considered by experts as one of the most significant 

factors for achieving effective and safe mooring operations.  

Ship’s crewmembers, and assisting parties (tugs masters, VTS, and shore personnel) 

must work together with the pilot in good teamwork with the objective of guiding the 

ship safely to its berth and not just rely on the pilot during berthing operations. This is 

considered crucial, particularly when a vessel is operating in intense fog and poor 

visibility conditions in restricted waters or congested areas.  

Hetherington et al (2006) stated that failure to comply with regulations is the major 

contributory factor for many maritime disasters and the majority of human errors have 

been caused. Based on this statement, this issue raises the question, why are the pilots 

and ship’s staff making errors in spite of the rules and regulations? In this study this 

question was asked to a captain who has a long period experience in the maritime field. 

According to the expert, lack of experience and proper training is the root cause of 

errors. Governing bodies, such as ships companies and port authorities still fail to 

implement the principles of IMO regulations. Nevertheless, port states cannot check 

what is happening while the ship is under navigation, so they can only check whatever 

they see on paper which will always be fine. Port control is doing whatever they can, 

however, the issue here is that even though on paper everything is fine, it does not 
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mean that in realty the crew is following the procedures and regulations and have high 

standard of training. There is still no real occupation standards/ certification/ 

measurement of competence for pilots and mariners who are performing pilotage 

operations. 

One interviewed pilot stated that, an increasing number of regulations does not equate 

to safer operations, rather, a change in mentality is what required. A continuous 

improvement in pilots and crew members’ safety culture and standard of training can 

minimize the number of marine accidents caused by human error.  Enforcement and 

implementation of the IMO legislation is considered an important factor that affects 

the human element and pilotage operations safety.  

It can be justified to say that the IMO has been successful in addressing many issues 

related to pilotage operations safety and often recommended the ships operators to 

comply and fulfil the requirements of the adopted rules and regulation. The IMO 

resolution A. 960 (23) is one of the most important of the pilotage operations safety 

regulations, nevertheless, the issue of interpretation and lack of enforcement prevent 

its full success. Governing bodies, such as governments and port authorities in some 

countries still fail to control the principles of IMO A. 960. Enforcement and 

implementation of the IMO legislations is considered an important factor that affects 

the human element and pilotage operations safety. 

The IMO is incapable of effective control and has absolutely no powers of 

enforcement. Therefore, in order to implement and enforce regulations in a good order, 

other players, such as flag states, regional Port States Control (PSC) authorities and 

classification societies should play key roles in the implementation and enforcement 

of maritime safety regulations and establish an advance monitoring system. (Akyuza 

and Celik (2014a). 

4.3.2 DEVELOPMENT AND ASSESSMENT OF THE RISK FACTORS 

(HCFs) TAXONOMY 

The literature review showed that many researchers have identified several 

different maritime accidents risk classification methods, sources, or types (Yee 

et al., 2005; O’Connor and Long, 2011; Wang et al., 2013a; Chauvin et al., 

2013; and Akhtar and Utne, 2015, Akyuz et al., 2016; Akyuz, 2017 and Fu et 

al., 2018). However, the literature review also showed the lack of a common 



116 

 

methodology or consensus among researchers that can outline a universally risk 

factors classification. The lack of a standard classification for pilotage 

operations has resulted in a research gap due to the conception of risks. Thus, it 

is necessary to establish a standard vocabulary that can be used to assess and to 

identify hman related risk factors in pilotage operations for a strategy with the 

most potential to mitigate risks. While there are risk factors taxonomies being 

used in assessment in other safety-critical industries around the world, in the 

maritime industry in particular pilotage operations, human relate risk factors 

(HCFs) taxonomy is a relatively new concept and it is important to develop a 

risk taxonomy first 

This section describes the human-related risk classification technique used in this 

study. Classification of the relevant pilotage operations human-related risk factors is 

the vital step for employing efficient risk management in the maritime industry. Risk 

classification enables the interpretation (Ugurlu et al., 2015), and facilitates the 

evaluation. In addition, it helps risk managers to understand the events and the 

circumstances from which they arise (Pak et al., 2015). 

In this study, in order to classify the human relate risk factors (HCFs) and create a new 

taxonomy, three main steps has been conducted. Firstly, this research started with 

identifying the risk factors that have been addressed in the relevant works of literature 

(shown in Chapter two), in addition, as mentioned previously, this study reviewed the 

previous relevant studies which have been conducted related to human factors and 

maritime accidents and other published materials such as analysis of various reports 

of investigations into real world maritime incidents relating to vessels under pilotage 

operations during the period 1995 and 2015. 

 And to ensure that all the causal factors contributing to pilotage accidents (HCFs) are 

identified, survey questionnaire and semi-structured interviews with experienced 

marine experts were carried out in this study, attempting to validate and test the 

feasibility of the selected factors, as well as to explore new potential causes that may 

affect pilotage performance. This step leads up to in a composite of the twenty-five 

human causal factors (HCFs) affecting safety performance in the marine pilotage 

operations environment. These factors are presented in the table 4.4 and 4.5. After 

having identified the contributory human causal factors of the maritime pilotage 
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accidents (HCFs), a preliminary hierarchical structure for these factors (HCFs) was 

developed. The developed hierarchical structure of the identified risk factors is then 

modified and further validated through experienced marine experts as illustrated in 

Table 4.6.  

This research presents a modified comprehensive taxonomy and classification 

approach to decompose the unstructured human risk factors to strengthen the 

knowledge base in pilotage risk assessment. The hierarchical decision model is a 

proper application for effectively introducing MCDM problems. In addition, in a 

complex decision-making issue, the hierarchical decision model is a beneficial tool 

and facilitates the complexity to be simplified (Yeo et al., 2014). Furthermore, the 

model easily adds or modifies new data in a flexible and instant way (Yang et al., 

2009). 

4.3.2.1 The contributory factors of the pilotage accidents classification and validation 

process  

To develop the taxonomy for the contributory causal factors of pilotage accidents the 

following steps were performed in this chapter: 

After having identified the twenty five contributory factors of the pilotage accidents 

(HCFs) and based on previous maritime safety studies related to human factors and 

risk classification model, with the assistance of two experienced ship’s captains, a 

hierarchal structure as a taxonomy is initially constructed. The experts were academics 

with education level PhD degree from an educational institution, staff who have more 

than 10 years teaching and researching experience and have a good understanding of 

marine operations risk research. They had also served long periods on-board a variety 

of vessels which are navigating and visiting sea ports worldwide.  

 First of all, the two experts were invited to conduct a review and evaluate the 

preliminary taxonomy and provide their opinion with respect to level of each factor. 

They were asked how the grouped factors should be presented in a hierarchy properly, 

and to help in categorising and placing the accident causal factors in the correct 

position in the taxonomy. The main questions in the interviews were asked to classify 

twenty-five factors which can represent their associated main factors (categories) and 

sub-factors and the questions were:   
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Do you think the main group factors (categories) and their sub-factors are well 

classified?” 

“Could you classify the main factors to represent their associated sub-factors?”, and 

if necessary, modification, removal, division and combination are allowable. 

Through the iterations and feedbacks, some factors (HCFs) were modified, removed, 

and combined. For instances, they combined the error factors with the same meaning 

in accidents' causal factors into a new one. This research found that the factors “using 

mobile phones” and “distraction” have a relatively similar meaning with regard to 

error factors which are more likely to influence the occurrence of an accident. Hence, 

these two factors were combined into one factor named distraction. Also, the blind 

trust and reliance on the pilot during berthing operations and lack of team work. In 

addition, improper/ inadequate use of tugs and failing to inspect the tug’s towing 

equipment. Finally, instead of twenty-five factors identified, the experts selected only 

twenty-one factors and classified the factors into five main factor groups , each group 

was then divided into several (4 or 5) sub-factors as illustrated in Table 4.6.  

Thereafter, to assure the validity and confirm the reliability of the developed hierarchy 

diagram, a panel consisting of six experienced experts belonging to the maritime 

sector were consulted. Emails distributed and face-to-face and telephone interviews 

with the validation team were subsequently conducted. The experts were all 

experienced ship masters who had served long periods on-board a variety of vessels, 

including two academics with education level PhD degree from a maritime 

educational institution staff who have good experience in maritime risk assessment 

research, two senior pilots currently working in different ports companies in the UK 

with a bachelor degree, one who has 30 years of marine experience and is currently 

working in the port of London and one senior pilot who has worked for a long period 

of time on a variety of ships, four years as ship master, two years as marine operations 

and safety manager, 20 years as a marine senior pilot in the port of Liverpool and is 

working as a lecturer at Liverpool John Moores University. 

One expert is a Master Mariner with education level of bachelor degree, who has vast 

experience as a director in the maritime sector, he worked also for a long period of 

time as a sea pilot in an Asian port. In addition, he has held many positions such as, 

harbour master, director of maritime affairs, assistant chairman of port, and acting 
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chairman of port management. One expert is an insurance company manager, he sailed 

as a master mariner on gas tankers, consequently worked as a marine superintendent 

for an oil/gas/chemical ship management company, followed by a spell as an external 

independent surveyor, and the last five years worked as an internal surveyor for 

Standard P&I Club and took over as Director of Loss Prevention in 2013. They were 

asked to review and validate the effectiveness of the developed taxonomy and to 

confirm if the identified factors were grouped in accordance with their characteristics. 

Finally, the experts agreed and the developed hierarchy diagram was accepted without 

any modification as shown in table 4.6.  

In the hierarchical model, the overall goal is illustrated in the first level. That is, the 

most contributory causal human factors of maritime pilotage accidents. This structure 

consist of five group main factors and each one is divided into sub-factors. The main 

factors are the criteria, which are, (F1, F2, F3, F3, and F4). The sub-factors are sub 

criteria which are, F1: (F11, F12, F13, F14 and F15), F2: (F21, F22, F23, and F24), 

F3: (F31, F32, F33, and F34), F4: (F41, F42, F43, and F44), and F5: (F51, F52, F53, 

and F54).  

 

 

 

 

 

 

 

 

 

 

 

 



120 

 

Table 4.6: The hierarchy for the contributory causal factors of pilotage accidents 

(HCFs) 

Factors Sub-factors  

1 F1 

Bridge team management 

failure 

(Non-technical skills 

shortcoming) 

F11 Lack of teamwork  1 

F12 lack of  effective communication and Language barriers  2 

F13 

Failure to exchange the information between pilot and 

ship’s master prior to pilotage operation. (Master/Pilot 

exchange information (MPX)) 

3 

F14 Lack of situation awareness 4 

F15 

The master’s and pilot’s ineffective monitoring of the  

tugboats drivers, mooring boats, and shore mooring 

personnel performance and vessel’s progress 

5 

2 F2 

(Technical skills 

shortcoming) 

F21 

Lack of ship handling skills due to improper training 

and lack of experience. 

6 

F22 

Lack of familiarity with the electronic navigational 

equipment knowledge 

7 

F23 

Lack of skills of the crewmember onboard ship, tugs, 

and shore mooring personnel. 

8 

F24 Improper/ inadequate use of tugs. 9 

3 F3 

Instructions and  

orders failure 

F31 Failure of pilot to give precise instructions. 10 

F32 

Failure of the ship’s master to correctly follow the pilot 

directions. 

11 

F33 

Failure of tug’s masters to carry out the pilot’s 

instructions precisely. 

12 
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F34 

Orders regarding anchoring, steering, and engine 

requests, are not followed out by ship’s crewmembers 

correctly. 

13 

4 F4 

Rules and regulations 

noncompliance 

   F41 

Failure to establish a proper manoeuvring plan prior to 

piloting vessel. 

14 

F42 

 

Failure to proceed with safe speed as stipulated in 

COLREG 

15 

F43 

Piloting ships in bad weather conditions or navigating 

vessels outside published guidelines or draft limits. 

16 

F44 

Poor boarding arrangements (e.g., pilot boarding and 

disembarking too close to breakwater) 

17 

5 F5 

Individual- task interaction 

factors 

F51 Fatigue. 18 

F52 Mental and physical workload. 29 

F53 Distraction during the time of berthing operations 20 

F54 Stress 21 

 

4.3.3 CONCLUSION  

This chapter recognises pilotage risk factors identification and classification as 

significant process for conducting an efficient risk assessment. The literature review, 

the questionnaire survey, and interviews serve as a base and guide to strengthening the 

knowledge base for pilotage human related risk factors identification. In this study in 

order to identify the risk factors (HCFs) that affect pilotage operations safety as 

completely as possible, a careful literature review, together with a considerable 

number of maritime pilotage accident reports were carefully investigated. 

Questionnaire surveys and a series of emails as well as in-depth interviews with 

experienced experts were carried out to validate and test the feasibility of the selected 
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factors, as well as to explore new potential causes that may effects pilotage 

performance. This step led up to in a composite the human causal factors of the 

pilotage accidents (HCFs).  After having identified the contributory factors of the 

pilotage accidents (HCFs) and to develop a structural hierarchy risk taxonomic 

diagram, interviews with experienced experts belonging to the maritime sector were 

established. A preliminary hierarchical structure consisting of 25 risk factors (HCFs) 

was developed. The developed hierarchical structure of the identified risk factors was 

then modified and further validated through experienced marine experts.  

 In the thesis, a hierarchical human error related risk classification is presented, which 

consists of five different risk categories. Thereafter, those five main categories of risk 

factors were further divided into twenty one sub-factors. The empirical studies in this 

chapter were carried out to make an inference about the experts’ opinions in order to 

capture the risk factors in a more comprehensive and reliable way. Meanwhile, the 

importance of the performance of the identified risk factors and developed 

classification model for the pilotage operations was addressed.  

Despite the invited participants consisting of experts from different fields and 

countries, the finding reflects the consensus of their opinion. This indicates that the 

experts have similar views on the aforementioned causal factors (HCFs) and their 

effects on the safety of the pilotage operations. The main challenges are: how the 

relevant causal factors (HCFs) to decision makers have to be dealt with; how the causal 

factors (HCFs) are measured, controlled, and managed. The problem with the studies 

above is that they could conclude that all risk factors could be considered “critical”, 

when the respondents were assessing each of them separately. Therefore, a ranking is 

missing that reflects the perceived degree of importance of risk factor in relation to 

each other. Without such ranking, decision makers are not able to determine the 

relative importance of risk factors and will have difficulties in determining the right 

and appropriate measures to overcome them. In the next chapter, the captured risk 

factors can be assessed by applying both AHP and DEMATEL models to discover the 

priorities, and select the most important causal factors which influence a pilotage 

operation safety and context relations among them.     
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CHAPTER 5 A HYBRID APPROACH TO THE ASSESSING OF HUMAN 

FACTORS IN MARITIME PILOTAGE OPERATIONS USING AHP AND 

DEMATEL METHOD 

5.1 SUMMARY  

This chapter aims at proposing a generic risk assessment model for pilotage 

operations, to evaluate the human related risk factors influencing the safety of 

maritime pilotage operations, using a hybrid approach of two methodologies. The 

proposed model is a key part in the human-related risk management framework for 

pilotage operations. Assessing human related risk factors influencing the safety 

performance of operators and determining the root causes of maritime pilotage 

accidents when there is uncertainty and a complex operations environment, is 

considered a type of multiple criteria decision-making (MCDM) problem in nature. 

Thus, this chapter introduces a new methodology, based on the combination of the 

AHP and DEMATEL techniques, in order to apply them for solving an MCDM 

problem, in order to address the human factors affecting maritime pilotage operational 

safety, with the aim of developing appropriate solutions for reducing human error and 

improving the quality and efficiency of pilotage operations’ performance, and thus 

subsequently mitigating the occurrence of pilotage accidents in the future.  

 First, the AHP (Analytic Hierarchy Process) is applied to determine the relative 

weights and rank the importance of the human factors that affect pilotage operation 

safety, and then the DEMATEL method is applied to identify whether there are 

relationships among the factors. This methodology is found to be particularly useful 

in dealing with the limited availability of data in the maritime domain and the 

complexity that exist in the quantitative analysis of human errors.  

5.2 INTRODUCTION 

The complexity of the human attitude involved in human operations results in 

difficulties in quantifying human factors/human errors and reliabilities of performance 

in maritime pilotage operations. In recent years many research projects regarding the 

maritime safety related risks have been conducted from a range of perspectives and 

several aspects in order to reduce the occurrence of potential human errors in maritime 

operations systems, but it appears from a review of the literature that a little research 
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has been done in the maritime domain on issues related to human errors and pilotage 

operation safety issue, and until now, few studies have employed a decision-making 

method to evaluate the weight and rank the importance of human factors which 

influence pilotage operation safety. This results in concern for the precision of pilotage 

accident causal factors weight assignment, uncertainty in identifying the root causes 

of pilotage human error and debates on the results of maritime pilotage safety 

measurement, demonstrating a significant research gap needing to be addressed.  

The problem with the previous studies is that they could conclude that all risks or 

challenges could be considered “critical” or “important”, when the respondents were 

assessing each of them separately. Therefore, a ranking is missing that reflects the 

perceived degree of importance of factors for accidents’ human causal factors in 

relation to each other. Without such ranking, stakeholders are not able to determine 

the relative importance of factors and will have difficulties in determining the right 

strategies to overcome them.  

Therefore, in order to solve this problem, to produce more realistic and reliable results, 

this study aims at introducing a multi-criteria decision making (MCDM) method, the 

Analytical Hierarchy Process (AHP) method. The proposed methodology in this 

chapter overcomes the shortcomings of the previous studies by introducing an AHP 

approach to identify the relative importance among accidents’ human causal factors in 

maritime pilotage operations, by carrying out pairwise comparison among the (HCFs) 

as a whole, by taking subjective judgments of decision makers into consideration.  

In addition, the limitation of the previous studies is that in recent years, international 

maritime authorities, scholars and practitioners have made a significant amount of 

effort to evaluate the human factor in order to identify root causes of human error and 

accident causations in the shipping transportation industry in order to improve safety 

at sea; however, most of these research studies often overlooked evaluating the causal 

relationships among the human factors contributing to the pilotage accidents and few 

of these studies focused on analysing the interaction between accident causation 

factors with a systematic method (Wang, 2015). 

 As has been mentioned previously, using assessment methods, which disregard 

evaluating the influencing relationship between accidents’ causal factors, can lead 

analysts to risk either underestimating the factors that can have a high influence on the 
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others or overestimating factors that do not have much influence. Yang et al. (2013b) 

stated that using an assessment method that ignores the relationships and 

interdependence between factors is not always feasible for solving real-world 

problems. As a result, the decision-makers will have difficulties in determining 

appropriate causal factors affecting pilotage operations’ performance that need to be 

improved. Consequently, right strategies cannot be taken to mitigate the human errors 

effectively in the marine pilotage operations area.  

 Therefore, in this study, in order to address these issues successfully, and find more 

reasonable results, an MCDM method, such as the decision-making trial and 

evaluation (DEMATEL) method is utilised, taking subjective judgments of decision-

makers into consideration.  The DEMATEL method is chosen to do further analysis. 

This analysis results in the identification of the complicated cause and effect 

relationships among the risk factors affecting pilotage operations. 

This research implies both analytic hierarchy process (AHP) and decision-making trial 

and evaluation laboratory (DEMATEL) methods for the following reason: A hybrid 

approach of two or more methodologies has been proven to be a powerful supporting 

tool for solving such complex decision problems. The significance of the proposed 

methodology is that it can help analysts in determining the most important contributing 

factors that may affect the pilotage operations’ safety, and therefore should be the most 

developed. In addition, the proposed hybrid method provides a comprehensive 

illustration of relationships among the factors, and assists analysts to identify the 

influence of each factor to the others, as well as enabling decision-makers in 

determining whether a factor belongs to a cause or an effect group and which causal 

factor needs to be first improved. As a result, countermeasures can be taken to reduce 

the human errors during maritime pilotage operations, thus subsequently preventing 

or at least mitigating maritime accidents in the future. 

This approach will facilitate the decision-making process for choosing appropriate 

strategies and take preventive/corrective actions in later stages for mitigating risks 

influencing pilotage operations. An analysis of the identified human factors (HCFs) 

influencing pilotage operations safety performance is conducted on real cases. The 

proposed methods is validated using case studies in major ports in the UK and 

Mediterranean from different marine expert perspectives.  The results indicate that the 
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hybrid approach, attempting to use quantitative modelling for dealing with the 

dependency and interdependency problems, for facilitating the quantification analysis 

of human factors in maritime pilotage operations can be successfully fulfilled.   

 In the next section, literature with regard to these two decision-making methods is 

introduced, and previous studies that used the methodology are reviewed. In section 

5.4, the research methodology for the proposed novel hybrid MCDM model with a 

detailed description of each step is illustrated.  In addition, the advantages of integrated 

AHP and DEMATEL methods are discussed. A case study of applying both AHP and 

DEMATEL methods on human factors in maritime pilotage operations is illustrated 

in Section 5.5, and 5.6. Finally, the conclusion is presented in section 5.7.  

5.3. A BRIEF OVERVIEW ON THE METHODS 

5.3.1 Overview on Analytic hierarchy process (AHP) 

The Analytic Hierarchy Process (AHP) method was recognized as one of the major 

methods of decision making in order to solve multiple criteria decision problems in 

the field of management engineering after the 1980s since Professor Saaty of the 

University of Pittsburgh developed the method in the 1960s (Lee and Kim, 2013). The 

AHP approach is a multi-criteria decision making (MCDM) method, a common and 

widely used method in decision-making and rating tasks, which is rigorously 

concerned with the scaling problem and what sort of numbers to use and how to 

correctly combine the priorities resulting from them (Saaty, 1990). It is an appropriate 

application when comparing the importance of an element against that of another 

element at the same level in the hierarchy tree structure, using a typical pairwise 

comparison technique to acquire relative weights of criteria based upon a hierarchical 

structure (Saaty, 1980).  

One of the best advantages of this method is its capability to check and minimize 

inconsistencies in expert judgments, by computing a Consistency Ratio (CR) (Riahi et 

al., 2012). In addition to this, the AHP approach is easier to understand and it can 

effectively handle both qualitative and quantitative data.  AHP is an effective tool that 

is proven to be appropriately applicable for dealing with MCDM problems and allows 

the decision-maker to obtain both subjective and objective aspects of a decision (Saaty, 

2004), and helps them to make the right decision in a complex situation (Ishikaza and 

Labib, 2009). 
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The AHP method in the individual tools and hybrid MCDM in the integrated methods 

were found as the first and the second methods in applications (Mardani et al., 2015).  

The AHP approach has been proven to be a successful tool for measuring 

independency among elements in the complex decision problems in various 

applications. It is noteworthy that a number of studies have been conducted by utilising 

the AHP method. AHP has been applied by Celik and Cebi (2009), in order to identify 

the role of human error in shipping accidents, by Saeed (2015) to select the most 

important of nontechnical skills required for deck officers’ in the crisis situations, by 

Zhang et al. (2012), to establish a risk hierarchical structure and to identify the 

significant influencing factor of an inland waterway transportation system. Lee and 

Kim (2013) used Analytic Hierarchy Process (AHP) to analyse the relative importance 

of the risk factors of the marine traffic environment, Pak et al., (2015) to identify the 

factors that can affect port navigational safety, and Ugurlu et al. (2015) in order to 

determine the causes of ships’ collisions,  by Fu et al (2018) to investigate the relative 

importance of potential risk influencing factors of the Arctic maritime transportation 

systems and others, and by Saeed et al (2019) in the development of a taxonomy of 

merchant marine deck officers’ non-technical skills (NTS). 

5.3.2 Overview on DEMATEL 

The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method was 

developed by the Geneva Research Centre of the Battelle Memorial Institute (Fontela 

and Gabus, 1976; Gabus and Fontela, 1973). It was introduced to build the network of 

relationships map for illustrating the interrelations among factors (Liou et al., 2007). 

Recently this method has proven to be a more successful tool for measuring and 

illustrating the causal relationships among interdependent factors Özdemir and 

Güneroğlu (2015); Elham et al. (2013). The DEMATEL technique is the most 

significant application to be applied in the multi-criteria decision making (MCDM) 

field to display the cause and effect groups of a system (or subsystem) by applying 

matrices and digraphs to visualize the structure of complicated causal relationships 

(Tzeng et al., 2007; Lin and Wu, 2008; Jeng, 2012).   

The DEMATEL method is an effective and innovative tool that is proven to be 

appropriately applicable for dealing with MCDM problems in an uncertain and 

complex operations environment (Liou et al., 2007; Tzeng et al., 2007). One of the 
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greatest advantages of using DEMATEL is that a huge sample size is not required for 

analysis (Yang et al., 2016). It is provides more realistic solutions and more accurate 

results by combining the qualitative subject matter expert opinion with the quantitative 

in a systematic method (Lin and Tzeng, 2009). Besides the results from the final step 

of DEMATEL, it could also be combined with other multi criteria decision making 

methods (Saaty, 1996), like Analytic Hierarchy Process (AHP), (ANP) and Technique 

for Order Performance by Similarity to Ideal Solution (TOPSIS).  

Given the strength of the DEMATEL method in tackling complex problems and its 

ability to effectively identify the relations among the factors within a system and 

determine the level of interdependence between them, as well as its capability to 

capture the cause and effect relationship successfully (Yang et al., 2008), the 

DEMATEL technique has therefore been widely applied in many domains including 

engineering (Hori and Shimizu, 1999; Seyed-Hosseini et at., 2006), business (Wu, 

2008; Hu et al., 2009; Noori and Amiri, 2009;) education (Tzeng et al., 2007), Airline 

safety measurement (Liou et al., 2007), maritime operations (Topcu, 2008; Xi et al., 

2017) and others. 

5.3.3 The application of the integrated AHP and DEMATEL technique 

This study uses the integrated MCDM method, AHP (Analytic Hierarchy Process) and 

DEMATEL technique to combine their desired properties for facilitating the 

quantification analysis of human risk factors in maritime pilotage operations. The 

proposed methodology in this chapter overcomes the shortcomings of the previous 

studies by introducing AHP and DEMATL approaches to obtain the importance and 

weights of influence of each factor by carrying out pairwise comparison among the 

factors. 

This research implies both analytic hierarchy process (AHP) and decision-making trial 

and evaluation laboratory (DEMATEL) methods for the following reason: Firstly, the 

integrated method has not yet been applied for identifying the relative importance and 

determining the mutual influence relationships among human factors in maritime 

pilotage operations. Secondly, the above-mentioned approaches have the capability of 

quantifying the subjective judgments of the respondents in a way that can be measured 

and evaluated (Sara et al., 2015). Thirdly, the approaches are proven to be 

appropriately applicable for dealing with MCDM problems in an uncertain and 
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complex operations environment and can effectively handle both qualitative and 

quantitative data.  The major advantage of integrating AHP and DEMATEL methods 

is that the decision maker such as practitioners and regulators (port authorities, 

shipping companies’ operators, and government) can continuously improve the 

pilotage’ performance effectively and efficiently from the short-term and long-term 

perspective, by determining the interrelationships among the risk factors and enables 

the decision-maker to clearly understand which factors have mutual influences on one 

another to be managed. 

 The integration of an MCDM technique can provide more practical solutions, 

(Mandal & Sakar, 2011). Each method has its own advantages and disadvantages 

(Mohagheghi et al., 2017). The AHP (Analytic Hierarchy Process) is applied to 

determine the relative weights and rank the importance of the human factors that affect 

pilotage operation safety. However, it assumes that the factors are independent and 

fails to consider their interactions and dependencies. Therefore, the technique of The 

Decision Making Trial and Evaluation Laboratory (DEMATEL) is applied to 

overcome this imperfection and provide a comprehensive illustration of relationships 

among the factors, taking the dependence among the factors into consideration.  

It is worthwhile mentioning that the AHP method enables a complex problem to be 

structured and presented in a simple hierarchy form and allows assessing the 

consistency of the performed pairwise comparison expert judgements, by computing 

a Consistency Ratio (CR) (Riahi et al., 2012), which is not possible to evaluate with 

the method of DEMATEL. On the other hand, the advantage of using the DEMATEL 

method is that it can effectively analyse the mutual influences (both direct and indirect 

effects) among different factors. The proposed innovative approach using the 

DEMATEL method plays a significant role in visualizing the interrelationships 

between factors via an IRM and enables the decision-maker to clearly understand 

which factors have mutual influences on one another. 

The approach of using both methods is increasingly being used for various problems 

in many fields and a wide range of areas.  An integrated approach of the AHP and 

DEMATEL has been proven to be a successful and powerful tool for measuring 

dependency and interdependency among elements in the complex decision problems 

in various applications. In addition, utilisation of AHP technique together with 
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DEMATEL method has been widely extended in many different disciplines, such as 

developing the competencies of managers (Kashi, 2015), selection of allied hospitals 

in outpatient services (Ortíz et al., 2016), supply chain performance (Najmi and 

Makui, 2010), personnel estimation (Roy et al., 2012), supplier selection (Chang et 

al., 2011).  Sara et al. (2015) used a combined method of the AHP and DEMATEL to 

assess carbon capture and storage (CCS) barriers in the ROAD project. The AHP was 

used to extract the relative weights of (CCS) barriers and DEMATEL was used to 

investigate interdependency among them. Wu and Tsai (2012) applied the AHP and 

DEMATEL approach to evaluate the criteria in the auto spare parts industry in Taiwan, 

and based on the diagraph derived from the DEMATEL, they suggested a long-term 

improvement opportunity for the auto spare parts industry.  

5.4 THE METHODOLOGY  

A hybrid MCDM techniques based on a combination of the AHP and DEMATEL for 

assessing accidents’ human causal factors in pilotage operations is proposed. The AHP 

(Analytic Hierarchy Process) is first used to evaluate the weight and rank the 

importance of the identified human causal factors that affect pilotage operation safety, 

while the DEMATEL method is applied to determine whether there are relationships 

among the factors. The proposed risk assessment model and procedures to this novel 

hybrid MCDM method are schematically shown in Figure 5.1 and each step is 

elaborated in detail in the forthcoming subsections.  
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  Figure 5.1: A generic risk assessment model for pilotage human-related risk factors 

 

5.4.1 The process of an analytic hierarchy process (AHP) 

This section focuses on risk assessment using the Analytic Hierarchy Process (AHP) 

method. In this study the AHP approach is employed to determine the most important 

human causal factors which are influencing pilotage operation’s safety, and causing 

maritime accidents. The process of the proposed method is illustrated in Figure 5.2. 

 



132 

 

 

                               Figure 5.2 the general framework of AHP process             

                                                                                       

Generally, AHP consists of three key principles: firstly, hierarchy framework, 

secondly, priority analysis and finally, consistency verification. Figure 5.2 shows the 

AHP method in five steps: (1) determine the objective of the problem, (2) form the 

hierarchical structure of the problem, (3) produce judgment data by pairwise 

comparison (4) calculate the priorities vector and check the consistency, (5) calculate 

the relative weight and confirm the consistency of the entire hierarchy. The process is 

presented as follows. 

The Analytical Hierarchy Process (AHP) method in this study is employed to evaluate 

the weight and rank the importance of human factors that influence pilotage operation 

safety performance and cause maritime accidents.  In order to achieve this aim, the 

first step is to develop a generic hierarchical structure based on the identified risk 

factors. Each factor and sub-factor was obtained, based on the information collected 

from the literature review, analysis of marine accidents investigations reports, and 

experienced marine experts’ perspectives. This step has been done in the last chapter 

(chapter 4).  

Relative weights of human causal factors’ independency at the same level can be 

obtained using pair-wise comparisons. Conducting the AHP based questionnaire 
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survey to obtain the experts’ judgement and opinions, the significance of the identified 

risk factors will be explored. The decision is made based on scores obtained by 

pairwise comparisons between the factors, in other words, the higher score, is the more 

important factor.  The ratio scale of assessment used for the pairwise comparison 

between factors of each hierarchy is 1 to 9 scale (Saaty, 1994) as shown in Table 5.1. 

 The experts are requested to give their judgements, and before proceeding with the 

“Pair-wise Comparisons” technique, an expert has to understand the ratio scale 

measurement (Table 5.1). This table contains two parts which describe the numerical 

assessment together with the linguistic meaning of each number. The first part is on 

the left side which explains “IMPORTANT”, while the right side is the second part of 

the table which describes “UNIMPORTANT”. It’s used for comparing factors with 

each other.  The importance is rated from 1 to 9. An expert is required to give a possible 

judgment to all questions based on his/her expertise and experience in the maritime 

pilotage operations.  

The decision makers should compare each element with the other by using the 

fundamental scale for pair-wise comparisons as shown in Table 5.1. Pair-wise 

comparison starts with comparison between two selected elements at the same level 

to get the relative importance between them. To select the most important factor, the 

expert will be asked to underline accordingly the rate of importance of each factor and 

sub-factor in the given column. For instance:  only one number either on the right or 

the left of the scale for every comparison as shown in the example at the beginning of 

the questionnaire survey (see appendix III). It is important to note that the respondents 

have to be careful not to get logical contradiction on these questionnaires for pairwise 

comparison. This logical contradictions of a respondent is measured as inconsistency 

ratio in the AHP method. 
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                 Table 5.1: Ratio scale for pair-wise comparisons (Saaty, 1994)

         

In this step, to conduct the pair-wise comparison matrix, at first, set up n criteria in the 

row and column of a n ×n matrix. The number of matrixes at each level depends on 

the number of elements at that level of hierarchy and the order of the matrixes at every 

level depending on the number of elements at the lower level that it connects to. 

Comparison of the decision elements is organized into matrices. These matrixes 

consist of n columns and n rows; it is a square matrix (i.e. ‘A’ matrix) as shown in 

equation (5.1). Each element of the matrix represent the preference of the factor in row 

i to the factor in column j.  

Where i, j = 1, 2, 3,…, n and each aij is the relative importance of attribute Ai to 

attribute Aj. For a matrix of order n, n (n-1)/2 comparison is necessary. 

If i = j on the comparison matrix, then the value will be 1, because in this case, the 

related factor is compared with itself. If Ai is judged to be of equal relative importance 

to Aj, then aij = aji = 1. If aij = α, then aji = 1/α, α ≠ 0   

A=𝑎𝑖𝑗 =

[
 
 
 
 
 
 

1 𝑎12             … 𝑎1𝑛 

𝑎
𝑎12⁄   1              …   𝛼2𝑛 

.     1              …  .

1
𝑎1𝑛⁄ 1

𝑎2𝑛⁄        … 1 ]
 
 
 
 
 
 

                                                            (5.1)                                                                                      
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Then, in order to determine the priorities from each pairwise matrix and to obtain the 

importance of each factor, the eigenvector method was used.  The local weights of 

factors can be calculated by using the following equation;   

  𝑊𝑖 =
1

𝑛
 ∑ (

𝑎𝑖𝑗

∑ 𝛼𝑖𝑗𝑛
𝑖=1

)𝑛
𝑗=1  , i, j, = 1, 2, 3, …, n)                                                                                (5.2)           

Where 𝑎𝑖𝑗 represents the entry of row i and column j in a comparison matrix of order 

n. 

According to Saaty (1980), the eigenvector approach is the most proper method to 

determine the priorities from each pair-wise matrix. The eigenvectors for priorities can 

be calculated by the Average of Normalized Column (ANC) method. After the 

comparison matrix was completed, the process of normalisation started. According to 

Muhisn et al (2015) the ANC process can be done by applying three steps as follows:  

 1) Sum of each column in matrix   

 2) Each element of matrix is divided by the sum of its column 

 3) Normalized principle of Eigen vector and that can be done by add the element in 

each resulting row and then dividing this sum by the number of elements in the row 

(n).  

 

1) ∑ 𝑎𝑖𝑗
𝑛
𝑗                                                                              

                                                                    

2)  
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖

                                                                              

                                                                                 

3) ∑
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖

𝑛
𝑗                                                                                                                           
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Since the normalised matrix is performed, to confirm the consistency of the pairwise 

judgement, the consistency verification is employed, which is considered as one of the 

most important tasks of the AHP approach. It is included to compute the consistency 

ratio among the pair wise comparisons (Riahi et al., 2012). In case that inconsistency 

ratio (CR) of pairwise comparison is zero, it means that respondents keep consistency 

perfectly. A good consistency is (a score <0.1). If inconsistency ratio (CR) is more 

than 0.10, it means lack of consistency (Saaty, 1980). A decision maker should review 

the pairwise judgements and is should be repeated or disregarded. The CR value is 

calculated according to the following equations (Saaty, 1980):   

 

CR = 
CI

RI
                                                                                                               (5.3)                                                                                                                                                                                        

𝐶I =
λmax −𝑛

𝑛−1
                                                                                                                                                                                                                                                                                                                                

λ max = 
∑ [(∑ 𝑤

𝑘
𝑎𝑗𝑘

𝑛
𝑘=1 )/𝑤𝑗] 𝑛

𝑗=1

𝑛
                                                                                                                                                          

Where CI represents the consistency index, RI is the average random index (Table 

5.2), n is the matrix order and λ max is represents the maximum weight value of the 

n-by-n comparison matrix A.       

    Table 5.2: Value of RI Random Index of (AHP) Process (Saaty, 1990)                

 

It is important to mention that the weights obtained are local weights at the same level. 

In multilevel structures, further calculations needs to be conducted to obtain the 

normalised weights of the bottom level factors by multiplying their local weights with 

the ones of their associated upper level factors. 
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5.4.2 The process of the DEMATEL method  

In this section a novel technique is introduced to investigate the relationships among 

the human causal factors by using DEMATEL method. The suggested proposed 

method plays a significant role in providing a comprehensive illustration of influential 

relationships among the human factors contributing to maritime pilotage accidents. 

The process of the proposed method is illustrated in Figure 5.3. 

 

                                 Fig. 5.3.The DEMATEL process 

 

The DEMATEL method and the calculation steps are described below according to 

number of sources (Liou et al., 2007; Tzeng et al., 2007; Lin and Wu, 2008; Wu, 2008; 

Jeng, 2012) as follows: 

Step1: Direct-relation matrix is calculated in this step. In this study it is supposed that 

there are “E” experts and “n” is the causal factors related to the pilotage accidents. 

First, to obtain a direct relation (Average) matrix; pair-wise comparison based on 

expert judgments in terms of the influence of the factors is carried out. Before 
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measuring the relationship between the different accidents causal factors and 

proceeding with the “Pair-wise Comparisons” technique, an “E” expert has to 

understand the ratio scale measurement used in this study. Table 5.3 below describes 

the numerical assessment together with the meaning of each number. It is used for 

evaluating the influence level and determining the values of relationships between 

different factors.  

                                       Table 5.3 Evaluation scale  

                     

 

A comparison scale has been designed as a pair-wise comparison scale with five 

levels, where scores ranging from 0 to 4 with ‘‘no influence (0)’’, or ‘‘low influence 

(1)’’, ‘‘medium influence (2)’’, ‘‘high influence (3)’’, and ‘‘very high influence (4),’’ 

respectively. The “E” experts are required to give a possible judgment and to evaluate 

the influence level among the factors based on his/her expertise and experience. The 

experts are asked to score the level of direct influence they believe each factor “i” 

exerts on every other factor “j”, as indicated by “𝑎𝑖𝑗”. The scores by each expert will 

give us “n× n” non-negative answer matrix 𝑋𝐾 = (𝑋𝑖𝑗
𝐾) n× n  with “1≤ K≤ E” “. Thus 

“ X1 , X2,   … , XE, ” are the answer matrices for each of the “E” experts, and each 

element of “ XK ” is an integer denoted by “𝑋𝑖𝑗
𝐾 ”. The diagonal elements of each 

answer matrix “ XK ” are all set to zero. 
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Then, as a result of these evaluations, a direct relation matrix would be created by each 

respondent, and then the average matrix “A” for all expert opinions can be computed 

by averaging “E” experts’ scores as follows: 

                                              (5.4)                                                 

Step 2: Normalize the direct-relation matrix: based on the direct- relation matrix “A”, 

the normalised direct-relation matrix “M” can be obtained using equations (5.4) and 

(5.5) (Wu, 2008). 

    M=A ×D                                                                                                                                 (5.5) 

                                                                                                                        

Step 3: Obtain a total-relation matrix 𝑇 and its sum of rows and columns. 

 After the normalised direct-relation matrix “M” is obtained, the total relation matrix 

T can be acquired by using equation (5.6), in which the “𝐼” is denoted as the identity 

matrix (Lin and Wu, 2008). 

                                                                                                (5.6) 

In eq. (5.7), “𝑅𝑖” and “𝐶𝑗” demonstrate the sums of rows and columns in the matrix 𝑇 

in which 𝑡𝑖𝑗  indicates the interdependent relationships value of each pair of evaluated 

factors. The influence of total relation matrix T is represented by𝑅𝑖, 𝐶𝑗, 𝑅𝑖+𝐶𝑗and 𝑅𝑖- 

𝐶𝑗. The 𝑅𝑖 is the factor that influences others, while the 𝐶𝑗, is the factor influenced by 

others.                                                                                                                                                                                                                                                      

The horizontal axis vector (𝑅𝑖+𝐶𝑗) is made by adding vector 𝑅𝑖 to vector 𝐶𝑗 which 

shows the state of the relationship among the factors, whereas the vertical axis of 

(𝑅𝑖−𝐶𝑗) is built by deducting vector 𝑅𝑖 from vector 𝐶𝑗 which displays the state of 

influence among the causal factors. The horizontal axis value   𝑝𝑟𝑖
+ (𝑅𝑖+ 𝐶𝑗) is called 

‘‘Prominence’’, which exhibits the total important influence of the factor on and by 

others. High prominence indicates that the factor influences other factors strongly 

while other factors also strongly influence it, while the vertical axis value 𝑝𝑟𝑖
− (𝑅𝑖- 𝐶𝑗 
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) is called “Relation”. Similarly, the vertical axis (𝑅𝑖- 𝐶𝑗) separates the factors into 

cause and effect groups. When the value of 𝑅𝑖- 𝐶𝑗 is positive, the factor belongs to the 

cause group, which dispatches the influence to other factors, whereas when the value 

of 𝑅𝑖- 𝐶𝑗  is negative, the factor, belongs to the effect group, which receives the 

influence from the other factors. The component with the highest positive value of 

(𝑅𝑖+ 𝐶𝑗) and (𝑅𝑖- 𝐶𝑗) can be named as the master dispatcher and the component with 

the lowest value can be named as the master receiver.  

 

                                                             (5.7) 

 

 

Step 4: Obtain a threshold value (b) and construct a digraph:  

In this step, a threshold value is obtained to construct a digraph. In order to reduce the 

complexity of the network relationship map (NRM), it is necessary to set a threshold 

value (b) in matrix T. The aim of setting a threshold value (b) is to remove some 

negligible effects indicated by the factors of matrix T. The threshold value can be 

decided by experts through discussion (Yang et al., 2013), and can also be acquired 

by using a mathematical equation (Özdemir et al., 2015). In this study, the threshold 

value was set up mathematically, by calculating the average of the value of 𝑡𝑖𝑗, where 

𝑁 indicates the total number of factors (𝑖 ×𝑗). Only the factors whose effect values of 

𝑡𝑖𝑗 are greater than the threshold value can be selected and transformed into a causal 

relationship diagram (Tzeng et al., 2007).  

𝑏 =
𝑁

                                                                                                          (5.8)      
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5.5 A CASE STUDY FOR THE WEIGHT AND RANK THE IMPORTANCE OF 

THE HCFs USING AHP METHOD 

The objective of this study is to select the most important factors that contribute to the 

occurrence of maritime accidents during pilotage operations. Given the strength of the 

AHP method in tackling complex problems and its ability to effectively determine the 

relative weights of the human factors that contribute to the occurrence of maritime 

accidents, it (the AHP technique) has therefore been utilized in this study. 

Using the analytic hierarchy process (AHP) method in this study will be beneficial to 

the maritime industry as an indicator to assess the human element causing human error 

during maritime pilotage operations, and providing a better decision-making 

methodology in the future. The process is presented as following subsection. 

5.5.1 Develop a hierarchal structure for pilotage accidents’ causal factors 

The first step is to construct the problem into a hierarchy including a goal, set of 

criteria and sub-criteria. The hierarchy is structured on different levels from the top 

level, indicating the main objective in the decision-making process (the goal), the 

criteria in the middle, and the alternatives at the bottom. The criteria are divided into 

sub-criteria or sub-sub-criteria if necessary. However, as the AHP method is employed 

only for the risk assessment in this research, thus the decision alternatives are not 

carried out in the hierarchy (The alternatives are not necessary in this study). 

Therefore, the main factors and the sub- factors in Fig.5.4 in this study correspond to 

the basic AHP structure.  

This structure consists of five main factors and each one is divided into sub-factors. 

That is, the most contributory causal human factors of maritime pilotage accidents. 

The main factors are the criteria, which are, (F1, F2, F3, F3, and F4). The sub-factors 

are sub criteria which are, F1: (F11, F12, F13, F14 and F15), F2: (F21, F22, F23, and 

F24), F3: (F31, F32, F33, and F34), F4: (F41, F42, F43, and F44), and F5: (F51, F52, 

F53, and F54). The reason behind applying this process is to enable interpretation 

(Ugurlu et al., 2015), and facilitate the evaluation of the factors (Pak et al., 2015). 
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            Figure 5.4 Hierarchal structure for pilotage accidents causal factors 

 

5.5.2 Constructing a pair wise comparison and performing judgment 

Once a hierarchical framework is created, to assign a weight, pairwise comparisons 

between the causal factors is conducted. A copy of the suggested questionnaire was 

sent to the supervisory team in the middle of January 2017. Based on the comments 

of the supervisory team, the pairwise comparisons questionnaire was adjusted. Once 

the questionnaire was approved, the final version was completed. AHP uses a simple 

Pair-wise Comparison technique to determine weights and ratings (Saaty, 2008), so 

that the decision-makers can focus on just two factors at the same time 

(Mahmoodzaden et al., 2007). In this study, as previously explained, the pair wise 
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questionnaires were sent to the experts. The ratio scale of assessment for the pairwise 

comparison between factors is used, for comparing factors with each other (Saaty, 

1994), as shown in Table5.2. 

It was pointed out that the AHP method is a subjective methodology and a large 

number of experts are not required if the data collected are gathered from the experts 

with sufficient knowledge and experience (Saaty, 2001). The pair wise questionnaire 

was sent to experts belonging to various maritime sectors to contribute their 

judgments. In order to increase the valid response rate, the respondents were contacted 

in advance to determine if they would agree to participate in our survey, and each 

expert had to understand it before completing the pair-wise comparisons. Experts are 

required to give a possible judgment on all questions based on their expertise and 

experience. 

 The experts were experienced ship masters who had served long periods on-board a 

variety of vessels, including five senior pilots currently working in different port 

companies in UK and Mediterranean, one expert who is an insurance company 

manager, and one ship’s captain with education level PhD degree from a maritime 

educational institution, staff all with more than 10 years working experience. 

Experienced professionals were selected to be the sample, as they are aware of the 

importance of the hazards and risk factors they are involved with, and due to their 

ability to compare and define which risk factors have priority over others. 

All responses were collected and recorded, but while feedback of seven experts was 

received in this study, only five participants’ results were considered as two 

participants’ weighting data was disregarded as a result of a lack of consistency in 

light of the AHP formula. Once a pairwise judgement is performed, comparisons of 

the decision elements are organised into matrices; eigenvectors (relative value vectors) 

are then calculated. The weight vector of the comparison matrix provides the priority, 

then the consistency ratio is calculated.      

 5.5.3 Eigenvector (Priority) (w) 

In order to determine the priorities from each pairwise matrix and to obtain the 

importance of each factor, the eigenvector method was used. The eigenvector 

(priorities) is calculated by using equation (5.2).  
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Table 5.4 illustrates the eigenvector (priorities) for the causal factors. For example, to 

calculate the priority of bridge team management failure (F1), it can be done by 

applying three steps as follows: 

1) ∑ 𝑎𝑖𝑗
𝑛
𝑗                                                                                                                                         

1+1/2+1/3+1/3+3= 5 

2)    
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖

                                                                                                                                                     

1

9.33
 = 0.11 

3) ∑
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖

𝑛
𝑗                                                                                                                                                                                                                  

0.11+ 0.13 +0.09 + 0.09 + 0.20 = 0.62 and divided this sum by the number of 

elements (n =  

4) Thus, 
0.62

5
 = 0.12 

Each value of the matrix in the Table 5.4 is based on one expert’s opinion. If several 

experts are involved, the geometric mean is used to find the averages of the judgments 

before calculating the eigenvectors. The weight value of the factor F1is found as 0.12, 

and the same process to calculate the weight of the other factors F2, F3, F4, and F5 

were applied (see Table 5.4).  

                         

 

 

 

 

 

 

 

 



145 

 

                Table 5. 4.  Normalised status of the five main causal factors comparison 

                            matrix and weight 

Consistency ratio CR = 0.2 

 

5.5.4. Perform the consistency 

Since the normalised matrix is performed, to confirm the consistency of the pairwise 

judgement, the consistency verification is employed, which is considered as one of the 

most important tasks of the AHP approach according to Muhisn et al., (2015). It is 

included to compute the consistency ratio among the pair wise comparisons (Riahi et 

al., 2012). When the Consistency Ratio (CR) of pairwise comparison is zero, the 

respondent keeps consistency perfectly. A good consistency is (a score <0.1). If CR is 

more than 0.10, it means a lack of consistency (Saaty, 1980). A decision maker should 

review the pairwise judgements and each should be repeated or disregarded. To 

calculate CR, each column of the comparison matrix is multiplied to calculate the 

weighted aggregate matrix (AW) as follows:   

 Aw = 0.12 

[
 
 
 
 

1
2
3
3

1/3]
 
 
 
 

 + 0.25 

[
 
 
 
 

1
2
3
3

1/3]
 
 
 
 

 + 0.27 

[
 
 
 
 
1/3
1
1
1

1/3]
 
 
 
 

 + 0.29 

[
 
 
 
 
1/3
1
1
1

1/5]
 
 
 
 

 + 0.07 

[
 
 
 
 
 3  
3
3
5
1

 

]
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Then, each element of the weighted Aw is divided by the priority vector element to 

calculate the Aw/w value.  The CR value is calculated by using equations (5.3).   

                                                                                                                                               

λ= 
(5.1+5.1+5.2+5.2+5.0)

5
 = 

25.6

5
     Lambda Max λ = 5.12      

 𝐶1 =  
5.12−5

5−1
 = 0.03      

CR= 
0.03

1.12
 = 0.02                                                                                       

Where CI represent the consistency index, RI is the average Random Index (Table 

5.2), n is the matrix order and λmax is represent the maximum weight value of the n-

by-n comparison matrix A. 

Determining the suitable value of (RI) from the table of random index of AHP as 

shown in Table 5.2, for the matrix size of five, the random index will be RI = 1,12, 

after that calculate Consistency Ratio (CR). For instance, the calculation to 

consistency test for the main CR = 0.02.  As the value of CR is less than 0.1, the 

judgements are acceptable. 

In this study to evaluate the weight of the five main causal factors and the twenty-one 

sub-factors presented in the hierarchical structure, a comparison matrix was created.  

Each value of the matrix in the tables is the geometric mean of five expert judgements. 

The geometric mean is used to find the averages of the judgments before calculating 

the eigenvectors, in this study, exile software was used to calculate the priority 

(eigenvector) and consistency CR. Table 5.6- Table 5.11 represents the priority weight 

of all pilotage accidents human causal factors. Consequently, the relative importance 

among the five main causal factors categories and the twenty-one sub-factors are 

shown in Fig. 5.5, and Fig. 5.6. The software calculated the eigenvector of priorities 

and the C.R 

It is important to mention that the weights obtained are local weights at the same level, 

it is necessary to obtain global weight for each of the sub-factors, which have an effect 

on the main goal and form the basis for further analysis, this has been conducted by 

multiplying the local weights of sub-factors by main factors weight value, which is the 
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ones of their associated upper level factors. For example, the weight of sub-factor F21 

(lack of ship handling skills) can be obtained by multiplying main F2 by F21 (= 0.30 

×0.39 = 0.117). 

 

5.5.5 Results and discussion     

           

            Table 5.5: Weight and consistency ratio of the 5 main causal factor 

 

     Consistency Ratio (CR) = 0.04 
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          Table 5.6. Weight and consistency ratio of sub-factors (F1)  

                                          

                                        Consistency Ratio (CR) = 0.01                   

                

            Table 5.7. Weight and consistency ratio of sub-factors (F2)    

 

                                                             Consistency Ratio (CR) = 0.01 
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                     Table 5.8. Weight and consistency ratio of sub-factors (F3)    

 

                                                                  Consistency Ratio (CR) = 0.04 

 

                                                   

                        Table 5.9. Weight and consistency ratio of sub-factors (F4)    

 

                                                            Consistency Ratio (CR) = 0.03 
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                      Table 5.10. Weight and consistency ratio of sub-factors (F5)                           

 

                                                               Consistency Ratio (CR) = 0.04 

 

 

 

 

                 

                         Figure 5.5 Relative weights of 5 main group of (HCFs)  
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                      Figure 5.6 Relative Importance among the 21 sub-factors (HCFs) 

 

 

 

 

               Figure 5.7 Global weight of the 21 factors contributing to pilotage accidents 
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The results in Table 5.5 show the relative weights among the five main groups of the 

causal factors of pilotage accidents. The data revealed that the most significant causes 

of human error-related pilotage accidents can be ranked as follows: F1 (bridge team 

management failure), F2 (technical skills shortcoming), F3 (instructions and orders 

failure), F4 (rules and regulations noncompliance), and F5 Individual- task interaction 

factors. The top three factors are F1, F2, and F5 with total weight rate 33.84%, 30.48%, 

13.25%, respectively.  

 In Table 5.6, it can be seen that the sub-factor F12 (language barriers and lack of 

effective communication) was ranked as the most important contributing causal factor 

among the F1 sub-factors, 25.38%, whereas the sub-factor F13 (failure to exchange 

the information between pilot and ship’s master) was ranked as the second most causal 

factor with total weight rate 24.87%. The sub-factor F11 (lack of team work) was the 

third most critical contributing causal factor which has the third highest priority weight 

among the F1 sub-factors while F14 (lack of situation awareness in the bridge team), 

was in fourth place. It can be seen that there is no big difference between the weight 

value of sub factors F11 and F14, as they are nearly the same, while F11 is 21.32%, 

F14 is 20.40%. However, the sub-factor F15 (The master’s and pilot’s ineffective 

monitoring of the external parties and vessel’s progress) was ranked as the least 

important one at 8.03%.  

The results in Table 5.7 show that the sub-factor F21 (lack of ship handling skills) is 

the most significant causal factor for pilotage accidents since it has the highest priority 

weight among the F2 sub-factors with a total weight rate of 39.20%. It is followed by 

the sub-factor F22 (lack of familiarity with the navigational systems) which was 

ranked as the second most important causal factor at 24.04%, and the sub- factor F23 

(lack of skills of crewmembers on-board ship, tugs and mooring boats masters, and 

shore mooring personnel) is ranked in the third place at 18.93%, and F24 (improper/ 

inadequate use of tugs) is ranked in the fourth place at 17.83%.  

Table 5.8 shows that the priority weights of the causal factor F31 (failure of pilot to 

give precise instructions) is the highest among the F3 sub-factors at 37.13%, followed 

by the causal factor F32 (failure of the ship’s master to correctly follow the pilot 

directions) at 24.68%, which ranked as the second largest cause of piloting accidents. 

The causal factor F33 (failure of tug masters to carry out the pilot’s instructions 

http://www.sciencedirect.com/science/article/pii/S0925753514002173#t0090
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precisely) was ranked as the third most important cause with a total weight rate of 

21.90% F34 (failure of ship’s crewmembers to follow orders regarding anchoring, 

steering, and engine requests correctly) was ranked in fourth place at 16.10%. 

Table 5.9 shows that the sub-factor F41 (failure to establish a proper manoeuvring 

plan prior to piloting vessel) is the most significant causal factor among the F4 sub-

factors for pilotage accidents since it has the highest priority weight of 34.58%. The 

sub-factor F42 (failure to proceed with safe speed as stipulated in COLREG) was 

ranked as the second most important causal factor among the F4 sub-factors, with total 

weight rate of 27.26%. The sub-factor F43 (piloting ships in bad weather conditions 

and navigating vessels outside published guidelines or draft limits) was ranked in third 

place with a total weight rate 25.61%. F44 (pilot boarding and disembarking too close 

to breakwater) was ranked in fourth place at 12.55%.  

Table 5.10 shows the priority weights of the F5 sub-factors. The data reveals that the 

most important contributory causal factors of pilotage accidents among the F5 sub-

factors, can be ranked as follows: F51 (fatigue), F52 (mental and physical work load), 

F53 (distraction during the time of berthing operations), and F54 (stress). The top three 

factors are F51, F52, and F53 have total weight rate 49.35%, 21.94%, 18.50%, 

respectively. There is a general consensus among all the pilots and captains 

interviewed that these factors play a significant role in pilotage accidents (see chapter 

4).  

Derived from the results of AHP, lack of ship handling skills (F21) is the most 

important causal factor among the entire hierarchy, which has a relative importance 

value of 0.117, followed  by language barriers and lack of effective communication 

(F12, 0.085), failure to exchange information between pilot and ship’s master (F13, 

0,085), lack of familiarity with the navigational systems (F22, 0.072), lack of team 

work (F11, 0. 071), lack of situation awareness in the bridge team (F14, 0.068), fatigue 

(F51, 0.063), lack of skills of crewmembers on-board ship, tugs and mooring boats 

masters, and shore mooring personnel (F23, 0.057), Improper/ inadequate use of tugs 

(F24, 0.054), and failure of pilot to give precise instructions (F31, 0.048) as illustrated 

the top 10 highest scores in a bar graph 5.7.  

The results of this study corroborate the findings of the Marine Accident Investigation 

Branch of the UK (MAIB) (2015), who investigated the accidents that occurred in UK 
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territorial waters during the period 2005 to 2013 in which a pilot was on board. The 

major cause of the accidents which occurred was the human factor, and in the majority 

of cases reviewed they were due to one or more of the following: the pilot-master 

information exchange failure, poor bridge team-pilot integration, lack of 

communication, lack of planning, lack of ship handling skills, and pilot distracted/ 

overloaded (MAIB, 2015). The results also support some existing findings, e.g., 

findings from Darbra et al., (2007), and Chauvin et al., (2013), who investigated the 

risks contributing to maritime accidents during pilotage operations.  

This finding is also in line with some results of research conducted by the 

Transportation Safety Board of Canada (TSB) (1995) who found that the inadequate 

interpersonal communications among the bridge team, lack of adequate information 

exchange, incomplete understanding of the intended manoeuvre, and loss of 

situational awareness were the most important factors. Based on these results, it can 

be easy to nominate the most significant risks that have great impact on the safety of 

the pilotage operations. The higher the value of human causal factors is, the higher the 

risk of pilotage safety performance. Therefore, an effective measure should be applied 

to reduce or mitigate their risks and effects.  

5.6. A CASE STUDY FOR IDENTIFYING THE RELATIONSHIP AMONG THE   

(HCFs) USING DEMATEL METHOD 

In the previous section, the importance of the human causal factors related to pilotage 

accidents has been outlined in detail. In this section a novel technique is applied to 

investigate the relationships among the human causal factors by using DEMATEL 

method. The suggested innovative method plays a significant role in providing a 

comprehensive illustration of influential relationships among the human factors 

contributing to maritime pilotage accidents.  

As has been described previously, maritime accidents are often reported as being 

multi-causal in nature, as highlighted by the so-called 'Swiss Cheese’ (Hollnagel, 

2006, p. 12). Previous accident investigation reports revealed that the maritime 

accidents occurring in the pilotage area are not usually caused by a single failure or 

mistake, but by the confluence of a chain or series of errors. It is recognised that 

multiple human factors may be present at any one time and these factors have an 

influence on each other. The occurrence of one risk gives rise to multiple risks 



155 

 

resulting in a cumulative effect. Therefore, it very important for decision-makers to 

determine and control these risks before they occur. 

Previous studies, which have been conducted by considerable numbers of researchers 

and international maritime authorities to evaluate human error have assumed that the 

accidents causal factors are independent, however Accident investigation reports 

revealed that the cause of maritime accidents occurring in the pilotage area are usually 

dependent on each other. Therefore, using a traditional assessment method which fails 

to identify the influencing relationship between accidents’ causal factors, to discover 

how the human factor can impact the others may introduce some level of uncertainty 

and could lead analysts to risk either underestimating factors that can have high 

influence on the others or overestimating factors that do not have much effect. In 

addition, the decision-makers would have difficulties in determining appropriate 

factors affecting pilotage operations performance that needs to be improved. Thus, in 

this study, to overcome this imperfection, and address these issues successfully, an 

MCDM method, the Decision-Making Trial and Evaluation (DEMATEL) method is 

utilised.  

The DEMATEL method has been used in this study because of its capability of 

assessing the influence of each human factor on the others, and determining whether 

a factor belongs to a cause or an effect group. Cause and effect are two different 

concepts. Causes tell the reason why something happened, whereas effects are the 

results of that happening (Lin and Wu, 2008). Detailed knowledge of the, intertwined 

effects , and the interrelation between the risks related to the human factors, can be 

very effective in identifying the most influential human factor that contributes to the 

occurrence of maritime accidents, and plays a significant role in providing reliable, 

accurate information, and an optimal solution for decision- makers to determine which 

causal factors need to be improved to reduce the human errors during maritime 

pilotage operations, and  prevent a similar incident/accident from occurring in the 

future.   

An original aspect of the proposed approach using a DEMATEL technique is that the 

approach has carried out practical work that has not been done before. Additionally, 

the proposed approach has looked into the relationships among the risk factors that 

researchers in the discipline have not looked at before. This method provides more 
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accurate and reliable results, and provide more realistic solutions. In addition, the 

method represent an effective performance measurement tool and offer a diagnostic 

instrument to ports to satisfy the port stakeholders in a flexible manner. 

5.6.1. The steps of the DEMATEL technique 

Step 1. Prior to employing the DEMATEL method, it is important to define the risk 

factors. This shall then be used as a pre-step into the DEMATEL. As has been 

discussed previously, a structural model was created; the list of human causal factors 

(HCFs) contributing to maritime accidents in pilotage operations which were required 

for evaluating are determined based on a literature review, accident investigations 

reports, and the marine experts’ perspectives in previous chapters (chapter 4). This is 

illustrated in Table 4.6. For further information, please refer to chapter 4.  

(Identification and classification process). 

Step 2. Carry out pairwise comparison and create the direct initial direct-relation 

matrix 

Following the same procedure of developing the pairwise comparison questionnaire 

above, the questionnaire for pairwise comparison was constructed. The objective of 

this questionnaire is to evaluate the relationships among the contributing human 

factors of the pilotage accidents, to obtain a direct relation matrix. It has been 

concluded by Yang et al. (2016) that a small sample size can be used for analysis and 

five to seven experts are ideally needed in the research on group decision-making 

problems. Furthermore, Saaty (2001) points out that a huge sample size is not required 

if the data collected are gathered from the experts. This is due to that fact that the 

Multi-Criteria Decision Making (MCDM) method is a subjective methodology, and 

professionals should share consistent beliefs and thus, it diminishes the necessity for 

a large number sample size.    

 As a result, this sample size was considered acceptable for this study, and to provide 

a rating and to score the relationship among HCFs, five marine experts from the same 

panel group of experienced specialists involved in the previous survey (Chapter 4 and 

section 5.5.3) were chosen and participated in the judgements to provide a rating and 

score the relationship among factors based on the DEMATEL method. Experienced 

professionals were selected to be the sample, as they are aware of the importance of 

hazards and risk factors they are involved with, and due to their ability to compare and 
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define which risk factors have the higher impact on the others. The experts were 

professional ship masters who had served long periods on-board a variety of vessels, 

including four senior pilots currently working in different port companies in the UK 

and the Mediterranean, and one who is an insurance company manager in the UK, all 

with more than 10 years working experience. The five decision makers gave their 

opinions on a 0 to 4 scale.  

The initial direct-relation 21×21𝑚𝑎𝑡𝑟𝑖𝑥 A is obtained by using eq. (5.4). Table 5.11 

illustrates the results of the expert judgments pairwise comparison in terms of the 

influence among the 21 HCFs.  

Table 5.11 the initial direct-relation 𝑚𝑎𝑡𝑟𝑖𝑥 “A” (21 x 21HCFs)

 

 

Step 3. Construct a normalised direct relation matrix. 

 A normalized direct-relation matrix “M” is obtained by using Equations (5.5). The 

maximum value of the sums of each row and column of the average matrix A, is 

calculated and determined as 58.2, which can be used to obtain the normalised direct-
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relation matrix M as presented in Table 5.12. Due to long and large calculation for a 

21x21 matrix, the Excel software has been used. 

An example of calculation to obtain normalised value of F11 to F15 by row is 

illustrated as follows:    

M=A×D      D=
1

58.2  
             F11 to F15 normalised value = 2. 60 ×

1

58.2
  =   0.0447    

 

       Table 5.12. A normalized direct-relation matrix “M” (21 HCFs)     

                                            

 

Step 4. Obtain a total-relation matrix 𝑇 and calculate its sum of rows and columns. 

 After the normalised direct-relation matrix “M” is obtained, the total relation matrix 

T can be acquired by using Equation (5.6), in which the “𝐼” is denoted as the identity 

matrix (Lin and Wu, 2008). The “I” is shown in Table 5.13.  

At first, to obtain (I - M) matrix, the normalised direct relation matrix M, is subtracted 

from an identity matrix I.  
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An example of the calculation to obtain value of F11 to F15 by row in the (I - M) 

matrix is shown as follows: F11to F15 (I - M) matrix value = (0 - 0.0447) = -0.0447, 

the (I - M) matrix is presented in Table 5.14.  

This is followed by inversing the obtained matrix (I - M).  For inversing a 21x21 

matrix, it would be too long and involves a large calculation; therefore, Excel software 

has been applied. The inverse matrix of the ( 𝐼 − 𝑀)−1  matrix is illustrated in Table 

5.15. Lastly, the normalised direct relation matrix M is multiplied by the inversed 

matrix (𝐼 − 𝑀)−1.  

To obtain the total relation matrix, T. An element in the T matrix can be obtained by 

computing the product of multiplication of each row in the M matrix with the 

corresponding column in the (𝐼 − 𝑀)−1  matrix. The total relation matrix T is 

illustrated in Table 5.16.  

Step 5. Set the threshold value and Build a cause and effect relationship diagram 

A threshold value (0.128) is calculated using Eq. (5.8), and the 𝑅𝑖, 𝐶𝑗, ( 𝑅𝑖 + 𝐶𝑗 ) and 

(𝑅𝑖 − 𝐶𝑗) values of the (HCFs) are obtained (Table 5.17). Based on Table 5.16 and 

5.17, a causal diagram is constructed. 
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      Table 5.13 the I Matrix of the 21 HCFs

 

     Table 5.14 the (I - M) Matrix of the 21 HCFs 
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   Table 5.15.The   ( 𝐼 − 𝑀)−1  matrix of the 21 HCFs 

 

 

  Table 5.16 the total relation matrix of the 21 HCFs     
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  Table 5.17. The 𝑅𝑖, 𝐶𝑗, 𝑅𝑖 + 𝐶𝑗 and 𝑅𝑖 − 𝐶𝑗 values of the HCFs  

Human causal factors (HCFs) 𝑅𝑖 𝐶𝑗 𝑅𝑖 + 𝐶𝑗 𝑅𝑖 − 𝐶𝑗  

F11 2.0188 2.1711 4.1899 -0.1523 

F12 2.2504 1.0694 3.3198 1.1810 

F13 1.8373 1.7503 3.5876 0.0870 

F14 1.8205 2.6490 4.4694 -0.8285 

F15 1.6620 2.3850 4.0471 -0.7230 

F21 2.1565 0.7955 2.9521 1.3610 

F22 1.8867 0.8043 2.6909 1.0824 

F23 1.8820 0.6486 2.5305 1.2334 

F24 1.4900 2.4814 3.9714 -0.9913 

F31 1.9268 2.5074 4.4342 -0.5806 

F32 1.7710 2.5435 4.3145 -0.7725 

F33 1.2179 2.4368 3.6547 -1.2189 

F34 1.4319 1.7837 3.2156 -0.3518 

F41 2.1298 2.1447 4.2745 -0.0149 

F42 1.6157 2.4394 4.0551 -0.8236 

F43 2.0813 2.6694 4.7506 -0.5881 

F44 1.6310 2.0317 3.6627 -0.4006 

F51 2.9651 1.1900 4.1552 1.7751 

F52 2.7444 2.1062 4.8506 0.6382 

F53 2.3650 2.3652 4.7303 -0.0002 

F54 2.7345 2.6462 5.3807 0.0884 
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Table 5.18 presents the value of the relationships between causes and effects of the 

contributory factors leading to pilotage accidents, all values of coloured cells are 

ignored for the computation purpose because these coloured cell values are less than 

the threshold value.  

             Table 5.18 the relationships between causes and effects 

 

 

 5.6.2. Results and discussion  

Derived from the results of the relationships among the identified causal factors that 

affect the safety of pilotage operations, it is apparent that most of  factors are 

influenced by most of the HCFs. In terms of cause-effect relationship, (F12) lack of 

effective communication and language barriers, (F13) failure to exchange the 

information between pilot and ship’s master, (F21) lack of ship handling skills due to 

lack of training and experience, (F22) lack of technical knowledge and failure to use 

the bridge navigation equipment, (F23) lack of skills of the crewmembers onboard 

ship, tugs, and shore mooring personnel, (F51) fatigue, (F52) mental and physical 

workload, and (F54) stress are classified in causal factors. 

While (F11) lack of team work, (F14) lack of situation awareness, (F15) The master’s 

and pilot’s ineffective monitoring of the tugboats drivers, mooring boats, and shore 
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mooring personnel performance and vessel’s progress, (F24) improper/ inadequate use 

of tugs, (F31) failure of pilot to give precise instructions, (F32) failure of the ship’s 

master to correctly follow the pilot directions, (F33) failure of tug’s masters  to carry 

out the pilot’s instructions precisely, (34) failure of ship’s crewmembers to follow 

orders regarding anchoring, steering, and engine requests correctly, (F41) failure to 

establish a proper manoeuvring plan, (42) failure to proceed with safe speed as 

stipulated in COLREG, (F43) piloting ships in bad weather condition, (F44) boarding 

and disembarking too close to breakwater, and (F53) distraction during the time of 

berthing operations are  classified in the effect factors.  

The results from DEMATEL show that the (F12) lack of communication due to 

language problems is considered one of the most influential causal factors for pilotage 

accidents. There is a strong relationship between this causal factor and the other factors 

such as the exchange of information, planning, teamwork and situation awareness 

which were considered as a significant factor for achieving effective and safe mooring 

operations. In this study, marine experts asserted that efficient pilotage is mainly 

dependent upon the effectiveness and understanding of the communications between 

the pilot and the bridge team members, between master and crew members as well as 

between pilot and assistant parties when manoeuvrings.  

In addition, the findings further showed that, during ship berthing when crewmembers, 

ship’s captain and pilot onboard ships do not speak the same language, and English 

language communication ability is insufficient, this increases the risk of 

misunderstandings, and can cause lack of coordination, lack of exchange of 

information, loss of bridge teamwork, and loss of situation awareness, which will 

negatively affect the safety of the pilotage operations. As good knowledge of English 

clearly makes it easy to understand conversations that take place during pilotage 

operations and also facilitates communication onboard the ship, furthermore, it makes 

it possible for the ship’s master and crew members to keep track of any actions taken 

by the pilot and any external parties (vessel and the Vessel Traffic System’ (VTS) 

operators, tug masters, mooring boat staff, and shore mooring men). It can be seen 

from the results that a language barrier can negatively influence communication and 

the exchange of information between master and pilot. 
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The findings of this study show that an effective exchange of information between 

pilot and master prior to the commencement of the manoeuvre is significant for 

ensuring effective berthing operations. In order to ensure effective and safe piloting 

operations, both the ship’s master and the pilot should exchange information prior to 

the commencement of a manoeuvre.  It is worth noting that, the feedback from marine 

experts showed that incorrect ship details provided to pilots such as vessel 

characteristics (e.g. Draft, efficiency of readiness and efficiency of 

navigation/propulsion equipment), or wrong information provided to ship’s master 

about berthing/sailing information e.g. port and channel depth of water, position of the 

berth, tugboats’ powers, and number of tugboats used etc.), prior to a pilotage 

operation may result in a dangerous and ambiguous situation on-board ship in 

particular on the bridge, and can influence the safety of a ship’s manoeuvring, and lead 

to increase of potential risk and accidents. 

 Marine pilots and ships’ crewmembers need to obtain the right information regarding 

details of passage and berthing plan, as knowledge of these will assist both the pilot 

and the ship master, to be aware of the whole situation and enable them to easily 

identify the ship’s manoeuvring characteristics, and quickly assess the skills needed 

to control the ship and prepare a proper and effective berthing plan to make the correct 

decision to handle the ship to its destination successfully and safely. 

The finding of this study shows that good teamwork is considered as one of the most 

significant factors for achieving effective and safe mooring operations. An efficient 

teamwork and familiarity with the situation are mainly dependent upon interactive co-

operation, effectiveness of the communication between the pilot and the ship’s 

crewmembers, and ship’s captain understanding of the communication between the 

pilots and assisting parties, as well as the effective exchange of information between 

the pilot and the ship’s captain.  

The result in this study showed that, factors such as lack of communication, or lack of 

information exchange can impact on Situation awareness and decision-making 

processes within the maritime pilotage operations. A wrong decision made by a pilot 

or shipmaster as a result of lack of situation awareness could result in an accident or 

disaster (Grech et al., 2008, p.51). It is therefore important to consider the 
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development of those two factors that influence the effectiveness of teamwork and 

situation awareness of pilotage performers.   

This result was supported by Chauvin et al. (2013), who concluded that effective 

teamwork relies on effective closed-loop communication, cooperation and 

coordination which play a significant role in obtaining and maintaining situation 

awareness (Chauvin et al., 2013). Øvergård et al. (2015), have also confirmed that 

effective teamwork requires interactive communication, cooperation and coordination 

which play a crucial role in gaining and preservation of Situation Awareness. 

Furthermore, Grech et al., (2008, p.125) stated that human factors (such as teamwork 

and communications) have a major effect on loss of situation awareness, which in turn 

may influence the piloting ship safety.  

Maintaining situational awareness through the practice of effective teamwork and 

communication between bridge team members is most important when a vessel is 

operating in restricted waters or areas of high traffic volume.  Therefore, Pilot, ship’s 

crewmembers, tug masters, mooring men and boat, must work together, in good 

teamwork with the objective of guiding the ship safely to its berth. This is considered 

crucial, particularly when a vessel is operating in dense fog and poor visibility 

conditions in restricted waters or congested areas.  

The results in table 5.18 show that the causal factor F21 (lack of ship handling skills) 

is one of the most significant influential causal factors for the pilotage incident. The 

success of the ship handler during berthing operations depends on the experience, 

knowledge, competence and the high level of the skills that the pilot, shipmaster, 

crewmembers, and tugboats masters have obtained. Lack of ship handling skills of 

pilot and ship’s master, due to the lack of experience, and improper training, were 

identified according to the study’s findings, as one of the most significant causal 

factors that may affect the safety of manoeuvring adversely.  It can be seen from the 

results that, lack of ship handling skills has a major influence on all factors 

particularly, the factor (F24) improper/ inadequate use of tugs, and factor (F31) the 

failure of the pilot to give precise instructions. This insight should help the 

stakeholders to concentrate on improving these particular factors that are most 

influential to the other factors.  
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 In table 5.18, it can be seen that the factor F22 (lack of familiarity with the electronic 

navigational systems knowledge such as AIS, RADAR, GPS, and ECDIS), is one of 

the most influential causal factors for pilotage incidents. Ineffective use of the 

navigational equipment such as, ECDIS, AIS, Echo Sounder, RADAR, and GPS, etc., 

as a result of a lack of familiarity with the electronic navigational equipment 

knowledge, is considered a high risk and has a greater potential to cause major 

accidents. The efficient use of such technology that plays a significant role in 

obtaining and maintaining situation awareness, and it can result in being fully unaware 

of the position of the ship and leading to loss of the whole situation awareness, 

particularly when the vessels navigate through narrow canals or while underway, 

inbound/outbound from/to ports and channels in the dark or under poor visibility 

conditions.  

In table 5.18, it can be seen that the factor (F23) lack of skills of tug masters and 

crewmembers on board ship, has a great impact on factor (F33) failure of tug masters 

to carry out the pilot’s instructions precisely, factor (34) failure of ship’s crewmembers 

to follow orders regarding anchoring, steering, and engine requests correctly, and 

factor (F24) the improper use of tugs, particularly in adverse weather conditions. 

During berthing operations, the attitude and operational skills of the ship’s staff and 

assistant parties is very important and affects the safety performance of pilotage 

operations.  

External parties such as tug boat masters, mooring boat, and shoreline personnel, are 

very important and play a significant role in ship’s manoeuvring safety, they must be 

ready for assistance and carry out the pilot’s instructions precisely. Orders regarding 

steering, engine requests, should be following out by ship’s crewmembers correctly. 

As failure of tugboat’s master/or personnel to correctly follow pilot’s instructions 

affect ship navigation safety and contribute to marine accidents in ports. Lack of skills 

of tugboats’ masters or crew members is considered high-risk and can affect the 

manoeuvring negatively and contribute to a ship’s berthing accidents. Operators’ work 

characteristics such as professional skills and work attitudes, are very significant 

factors and should be controlled.  

In Table 5.18 the result reveals that the causal factor (F51) fatigue, is affected by (F52) 

mental and physical workload, and (F54) (stress), and all of these three causal factors 



168 

 

have great impact on (F53) distraction which in turn can have significant impact on 

pilotage safety performance.  There is a general consensus among all the pilots and 

captains interviewed that these factors play a significant role in marine accidents.  

In Table 5.18 the result shows that there is a strong relationship between the situation 

awareness and unfamiliarity with the electronic navigational equipment knowledge, 

distraction and workload.  The mariner’s high mental workload due to the use of 

technology and continuous monitoring of navigational equipment can lead to memory 

loss and misperception of data especially if the ship’s operator is fatigued or not 

sufficiently trained.  

5.7. CONCLUSIONS 

As stated earlier, the literature lacks analysis of the potential risk to pilotage operations 

from human actions, relative importance, and causal relationships among human 

factors that influence maritime pilotage operations were rarely evaluated in a 

systematic method. In light of these considerations, studies to determine how the 

human causal factors influence the safety performance of maritime pilotage operations 

using an MCDM method is becoming more important and necessary. In this study to 

evaluate the relative importance of the pilotage human factors related risk, and 

determine the causal relationships among them, a novel technique using AHP and a 

DEMATEL method is applied. 

 An integrated method of the AHP and DEMATEL has been applied, because using 

only hierarchy structure (AHP) is not enough to have a complete and correct analysis 

of the problem, due to its restriction and inability to illustrate the cause-effect 

relationship between factors, which limits its applications.  The AHP method was used 

to evaluate and rank the human factors contributing to maritime pilotage accidents 

(HCFs). The DEMATEL method was used to analyse the causal relationships of 

(HCFs). The primary purpose of the proposed (DEMATEL) model in this study is to 

offer a comprehensive illustration of the causal relationships among the human factors 

contributing to maritime pilotage accidents, and to identify the influence of each factor 

on the others. The DEMATEL outputs help decision makers to understand how human 

factors affect each other and therefore how they affect the operator’s ability to achieve 

their tasks effectively. Thus, utilization of AHP and DEMATEL methods can help the 

stakeholders and company’s management in several areas, to know on which factor 
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they need to concentrate the most and also what knowledge/skills have to be improved 

by the operators the most. 

According to the results of AHP, (F11), (F12), (F13), (F14), (F21), (F22), (F23), (F24), 

(F31), (F51), and (F41) are the top important causes of human error-related pilotage 

accidents. In terms of cause-effect relationship, the results from DEMATEL imply 

that among the causal factors (F12), (F13) (F21), (F22), (F23), (F51), (F52), and (F54) 

are classified in causes factors that affect the most other factors. Based on these results, 

appropriate measures and preventive/corrective actions for mitigating the risks 

influencing pilotage operations will be taken.  

The aforementioned methodologies facilitated the decision-making process for 

identifying the most important risk factors influencing the safety of maritime pilotage 

operations, and provided a comprehensive illustration of relationships among the 

factors and offered insightful understanding of the mutual influence among the risk 

factors. The key findings of the previous models assist the decision-making process 

for choosing appropriate measures and take preventive/corrective actions in later 

stages for mitigating the risks influencing pilotage operations, and prevent a similar 

incident/accident to the one investigated from occurring. 

In the next chapter, based on the identified risk factors in the previous chapter, a 

decision-making framework for mitigating the risk factors affecting the safety 

performance of maritime pilotage operations is suggested. List of risk mitigation 

measures to improve the pilotage operations safety is determined. 
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CHAPTER 6 A NEW DECISION MAKING FRAMEWORK FOR 

SELECTING RISK MITIGATION MEASURES FOR PILOTAGE 

OPERATIONS 

6.1 SUMMARY  

This chapter proposes a decision-making framework for mitigating the human risk 

factors affecting the safety performance of maritime pilotage operations. In the 

previous chapters (i.e. chapter 5) AHP method is used to determine the relative 

importance weights of the most significant risk factors (the human causal factors 

contributing to pilotage accidents (HCFs)).  The weights of the criteria are used to 

facilitate application of TOPSIS method in selection of the best RMMs. Based on these 

risk factors, the list of risk mitigation measures to improve the pilotage operations 

safety is identified. The identified risk mitigation measures (RMMs) are prioritized 

and selected over the previously identified risk factors using a TOPSIS method. The 

proposed model has been demonstrated through a case study and sensitivity analysis 

was used to evaluate the robustness of the model results. The results yielded by the 

proposed framework present the ranking of ideal solutions for mitigating the identified 

risk factors affecting the safety of pilotage operations, and enables decision makers to 

find optimal measures to improve performance and safety of the pilotage operations.  

 

6.2 INTRODUCTION 

Over the past decade, maritime authorities have been continuously challenged to 

improve the safety performance of maritime pilotage operations.  Pilotage operations 

area is categorized as a complex, dynamic and uncertain working environment that 

liable to diverse risks due to interaction and interdependence, in addition, the 

multiplicity of the entities who are performing ships’ berthing operations. It is 

therefore essential that operators maintain a consistently high standard of human 

performance in order to maintain the ship's piloting safety, as any decrease in 

performance can potentially lead to a disaster (CAMSS, 2012).  

Maintaining safe and reliable operations in the maritime pilotage area is of great 

significance for the protection of human life, properties, the environment, and the 
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economy. In this regard, it is noteworthy to mention that, numerous researches studies 

have been conducted by using different methods in order to reduce the occurrence of 

maritime accidents, however, MCDM method application on issues related to pilotage 

operations is quite limited. There is a need for decision makers to adopt some risk 

mitigation measures in order to reduce the root causes of the accidents occurring in 

the marine pilotage operations area.  

 The risk mitigation procedure represents the method of dealing with unexpected 

hazardous events.  The literature in maritime risk management has provided extensive 

researches in assisting decision making for analysing and mitigating various types of 

maritime risks like Bayesian Theory, System Dynamics (SD), Data Envelopment 

Analysis and Structural Equation Modelling (SEM), etc. However, there are some 

disadvantages in each of these method. For example, by employing Bayesian theory, 

a large amount of data is required in order to generate stable results; Data Envelopment 

Analysis focuses on measuring organizational performance in respect of the inputs; in 

order to apply Artificial Neural Networks, Genetic Algorithms, and Simulation-based 

Methods, high computer language design skills and extensive quantitative data are 

usually required.   

Among the aforementioned MCDM methods, TOPSIS (Technique for Order 

Preference by Similarity to an Ideal Solution) is a practical and advantageous 

technique for ranking and choosing the best alternatives. The capability for TOPSIS 

to be effective in dealing with various weight estimation systems makes it to be a 

scalable method for risk mitigation strategies evaluation. TOPSIS method is ideal for 

determining the selection of an appropriate risk control option (RCO) by taking 

subjective judgments of decision makers into consideration. Therefore, in this study, 

in order to offer the best risk mitigation strategies with the most preferred safety 

control measures capable of addressing both operational efficiency and human-related 

risk reduction in pilotage operations, an MCDM method, such as the TOPSIS method 

is utilized, taking subjective judgments of decision-makers into consideration. 

TOPSIS technique is reasonable, understandable, and clear and less complex to use 

compared to other methods (Wang and Chang, 2007). Moreover, the calculation 

procedures are simple, and allows the pursuit of the best alternatives criterion 

illustrated in a simple straightforward mathematical calculation. In addition, this 
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approach is capable of reducing the computation time, which can provide reasonable 

and robust ranking results. By using the method proposed, decision-makers can select 

the ideal solutions or alternatives (i.e. risk mitigation measures). The use of TOPSIS 

in this Chapter can reasonably deal with the multiplicity of criteria and will enable the 

incorporation of additional criteria such as costs of the alternatives into the selection 

decision in the future work. Such advantages make this technique an appropriate 

method to be used in this research 

In this context, in the previous chapters (i.e. chapter 5) all the most significant human 

risk factors were assessed, ranked, and prioritised by using AHP method. The 

aforementioned methodology facilitated the decision-making process for identifying 

the most important human risk factors influencing the safety of maritime pilotage 

operations. The key findings of the previous method assist the decision-making 

process for choosing appropriate measures and taking preventive/corrective actions in 

later stages for mitigating the risks influencing pilotage operations, and prevent a 

similar incident/accident to the one investigated from occurring. 

This research aims to offer valuable insight to find optimal solutions to improve the 

pilotage operations safety performance, and ensure that safety measures can be taken 

to reduce the potential human errors that may occur during maritime pilotage 

operations in real-world practice, thus subsequently preventing or at least mitigating 

maritime accidents in the future.  To achieve this aim, this chapter is organised as 

follows.  

In the next section, a brief review of TOPSIS and some important previous studies that 

used this methodology is introduced. In section 6.4, the steps of the TOPSIS method 

are described.  In section 6.5, the description of each step of the methodology is then 

elaborated in detail including the process of the risk mitigating measures identification 

and a case study to demonstrate the procedure of the proposed TOPSIS method and to 

demonstrate its usefulness and validity.  Section 6.5.2.1 develops a discussion based 

on the results obtained. Section 6.5.2.3 concludes the chapter with a detailed 

description of each step.  
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6.3 A BRIEF REVIEW OF THE TECHNIQUE FOR ORDER PREFERNCE BY 

SIMILARITY TO IDEAL SOLUTION (TOPSIS) 

“Multi-Criteria Decision Aid (MCDA) or Multi-Criteria Decision Making (MCDM) 

methods have received much attention from researchers and practitioners in 

evaluating, assessing and ranking alternatives across diverse industries” (Behzadian et 

al., 2012). The technique for order preference by similarity to ideal solution (TOPSIS) 

is one of the well-known ranking methods for MCDM that has been commonly used 

in solving decision-making problems (Ding, 2011). It was initially proposed by 

Hwang and Yoon (1981) to help in selecting the best alternative, and with a limited 

number of criteria as a simple ranking method in conception and application. The 

principles of the TOPSIS (Technique for Order Preference by Similarity to an Ideal 

Solution) is that the best alternative should not only have the shortest distance from 

the positive ideal solution (PIS), but also have the farthest distance from the negative 

ideal solution (NIS) (Hung and Chen, 2009; Othman et al., 2015). The positive ideal 

solution comprises all best values obtained of criteria, while the negative ideal solution 

comprises the all worst values attained of criteria (Wang, 2007). 

It is worth mentioning that numerous researches studies have been successfully 

conducted by using the TOPSIS methodology to solve decision-making problem in 

various domains with varying subjects. A literature survey on TOPSIS applications 

and methodologies was conducted by Behzadian et al., (2012), the review included 

266 papers from 103 scholarly journals since the year 2000. They found out that the 

TOPSIS approach is one of the most popular methods lately used by researchers and 

has been successfully utilised to rank the preference order of alternatives and 

determine the optimal option, they indicated that the TOPSIS method has been widely 

and intensively applied for resolving complex decision problems in various 

application areas and many industrial sectors with different subjects, such as Supply 

Chain Management and Logistics; Design, Engineering and Manufacturing Systems; 

Business and Marketing Management; Health, Safety and Environment Management; 

Human Resources Management; Energy Management; Chemical Engineering; Water 

Resources Management; Education; Agriculture; Medicine; Design; Government; 

sport and social aspects. 
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In the past decades, the TOPSIS technique has been applied in numerous disciplines, 

however the AHP–TOPSIS application in the maritime sector particularly, on issues 

related to pilotage operations is quite limited. For instance, a study on TOPSIS 

application was utilised by Yang et al. (2011) in order to select a vessel under uncertain 

environment, a hybrid decision-making methodology by integrating Analytic 

Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS) has also been applied by Nooramin et al. (2012) in order to select 

the most efficient gantry crane installed in a marine container yard. 

Furthermore, a study on AHP–TOPSIS application was utilised by (Chang et al., 

2012). In this paper, an AHP and TOPSIS method was practised in order to support 

the critical decision upon shipping registry selection. Another study on AHP–TOPSIS 

hybrid technique was performed by Akyuz and Celik (2014). This study takes the 

advantage of TOPSIS and AHP hybrid technique for measuring the effectiveness of 

SMS implementation on board ship. The TOPSIS method has also been presented by 

Othman et al. (2015) in order to establish effective solutions and to investigate the 

contributing factors to the psychological distraction and to examine its impact on 

Senior Deck Cadets, Senior Deck Officers, and Junior Deck Officers among 

Malaysian seafarers. Given the advantages of both, AHP and TOPSIS, the proposed 

model provides a reliable means of determining an appropriate selection of RMMs. 

The AHP, and TOPSIS as an integrated methodology, enabling the specific decision 

maker’s preferences to be considered in making the strategic decision on human-

related risk management. 

6.4. THE PROCEDURES OF THE TOPSIS METHOD 

The MCDM tool TOPSIS in this study is applied for prioritizing and selecting the risk 

mitigation measures related to the maritime pilotage operations. The general 

framework of the proposed model is illustrated in Figure 6.1. The TOPSIS method and 

the calculation steps are described below according to (Akyuz and Celik, 2014) as 

follows:        
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Figure 6.1. The general framework of the TOPSIS method 

       

                 

                                 

Step 1: The TOPSIS method begins with the construction of a decision matrix (D) 

shown in Equation 6.1. This step is to represent all information available for the 

criteria/ risk factors in the decision matrix. The structure of the decision matrix can be 

defined as follows;  
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                          6.1 

 

The MCDM problem can be demonstrated in a matrix format as shown in  Equation 

6.1,   𝐴1,  𝐴2, …… 𝐴𝑚 the alternatives/options related, while  𝐶1 ,𝐶2 ,… 𝐶𝑛 represents 

the criteria/risk factors, and xij represents the performance value of alternative/ option 

with respect to criteria/risk factors cj. Then, as a result of these evaluations, a decision 

matrix would be created. The average for all expert opinions can be computed by 

averaging “E” experts’ scores. In situations, where decision makers/experts are more 

than one and rated xij. The average of their ratings is taken as xij value. In this study, it 

is suggested that the experts use the five linguistic rating variables shown in Table 5.8 

for rating the alternatives with respect to criteria.  

                     

                 Table 6.1:  Evaluation scale for the alternatives rating                                          

                   

 

Step 2: The decision matrix (D) in formula 6.1, is normalised: This step normalizes 

the decision matrix by using the following Equation; 
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                                               6.2 

 

Wherein x ij is the score of the i th option, with respect to the j th criterion. 

Step3: Calculating weighted normalised decision matrix: In order to construct a 

weighted normalised decision matrix (𝑣𝑖𝑗), associated weight is to be multiplied with 

its normalised decision matrix. The calculation is as follows; 

𝑣𝑖𝑗=𝑤𝑗 × 𝑟𝑖𝑗,   𝑖  = 1, 2, … n, j = 1, 2…,  n                                                            6.3 

 

Whereas 𝑤𝑗 according to Yoon and Hwang represents the weight of the jth 

criterion/risk factors, while 𝑟𝑖𝑗 represents the performance value of alternative/ 

option   𝐴𝑖 with respect to criterion 𝐶𝑗 in a weighted normalised decision matrix.  

Step 4: Determining the (PIS) and (NIS): The PIS and NIS values can be determined 

by taking the maximum and minimum values within the row of weighted normalised 

decision matrix. 

 The PIS and NIS indicated as 𝐴+ and 𝐴− respectively, are mathematically determined 

in formulas 6.4 and 6.5, in order to ease the computation of the  Sⅈ
+ and Sⅈ

− which are 

developed to measure all the alternatives/options with their PIS and NIS. The Sⅈ
+and 

Sⅈ
− are mathematically described in Equations 6.6 and 6.7.  

Positive ideal solution: 

                                               6.4                                                    

Negative ideal solution: 

                                          6.5                         
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where J = 1,2,3,...,n. is associated with benefit (positive criteria) and J′ = 1,2,3,...,n is 

associated with cost (negative criteria) (Akyuz and Celik, 2014).  

Step 5: Calculate the separation measures (distance from PIS and NIS) for each 

alternative: The separation of each alternative from the PIS can be defined by using 

equations 6.6 and 6.7.  

The separation from the positive ideal alternative (PIS) is: 

                                                                   6.6 

Likewise, the separation from the (NIS) can be defined as; 

                                                            6.7 

Step 6: Calculating the relative closeness to the ideal solution. This step is provided to 

rank the mitigation alternatives/options  𝐴1,  𝐴2,…,  𝐴𝑚,. The relative closeness has 

been measured by the following equation; 

                                                                                                     6.8 

 0≤ 𝑅C𝐼
+≤1 and the preferred alternative/option is the one with the value of 𝑅C𝐼

+closest 

to 1. 

Step 7: Rank the preference order.  

In this step, the decision maker selects the high ranked alternative. 

                                                                                                                                                                        

6.5 METHODOLOGY FOR IDENTIFICATION AND EVALUATION OF RISK 

MITIGATION MEASURES IN PILOTAGE OPERATIONS 

This study aims to propose a generic risk mitigation model for determining and 

evaluating the implemented risk mitigation measures. The generic framework of the 
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proposed model and decision hierarchy of the best risk mitigation measures (RMMs) 

selection are illustrated in Figures 6.2 and 6.3, respectively. Figure 6.2 illustrates the 

research methodology, which consists of identifying the implemented risk mitigation 

measures and the TOPSIS application to select an appropriate RMMs. Figure 6.3 

illustrates a decision hierarchy structure for the selection of the best measures to 

mitigate the human factors related to the risk associated with maritime pilotage 

operations. 

In this chapter, a novel technique is introduced to investigate the risk mitigation 

measures for improving the pilotage operations’ safety performance. The list of risk 

mitigation measures (RMMs) is determined based on the identified risk factors 

(human factors affecting maritime pilotage operations’ safety performance and 

contributing to maritime accidents) (HCFs) in previous chapters (chapter 5) (see table 

6.2), through a careful literature review, and via rules and regulations adopted by the 

maritime organisations and authorities. Thereafter, the validation and exploration of 

new risk mitigation measures are conducted via marine experts’ perspectives. 

Afterwards, in order to obtain feasible alternatives (mitigation/control options),  the 

identified risk mitigation measures (RMMs) are prioritized and selected over the 

previously ranked risk factors using an appropriate MCDM tool, a TOPSIS method. 

The proposed model has been demonstrated through a case study and verified using a 

sensitivity analysis. The description of the methodology is elaborated in detail in the 

following subsections. 

The significance of the proposed method is that the approach has carried out an 

empirical work that has not been done before, and during the selecting of the risk 

mitigations measures (RMMs), the proposed approach has looked into the 

relationships among the risk factors that researchers in the discipline have not looked 

at before, in addition to this no risks are categorized as independent risk and with a 

little influence on the system, all the risk factors that have influence on the other 

factors were considered and selected to be managed. This study can assist in 

implementing effective risk reduction measures to mitigate human errors affecting the 

safety performance of pilotage operations and can also assist in determining 

appropriate preventive measures against future maritime pilotage accidents. 

Moreover, it can help relevant stakeholders, such as port authorities and shipping 

companies, in the development of better policies, safety guidelines, and risk control 



180 

 

measures to improve the performance of operators and improve the safety of maritime 

pilotage operations.   

 

Figure 6.2: Framework for identification and evaluation of risk mitigation measures 

in pilotage operations 
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Figure 6.3: Decision hierarchy of alternative selection for mitigating risk factors 

6.5.1 Identification of risk mitigation measures for pilotage  

Once the AHP approach of expert judgment is applied to obtain relative weights of 

importance of criteria (pilotage human related risk factors) (HCFs) (chapter 5), it is 

necessary to identify the most ideal measures for their mitigation (Irukwu, 1991). 

Choosing appropriate risk mitigation measures is deemed to be an important step in 

improving the performance and mitigating maritime pilotage human error related 

risks. Risk mitigation is a decision-making process whereby actions are taken in view 
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of the results of risk assessment. The Institute of Risk Management IRM (2002) 

pointed out that "risk treatment is a process of selecting and implementing measures 

to modify the risk". Risk treatment includes as its major element, risk 

control/mitigation. According to IMO (2018) “Risk control measures (RCMs) should 

in general be aimed at one or more of the following: (1 reducing the frequency of 

failures through better design, procedures, organizational policies, training, etc.; (2 

mitigating the effect of failures in order to prevent accidents; (3 alleviating the 

circumstances in which failures may occur; and (4 mitigating the consequences of 

accidents”. In this research, based on the identified risk factors in previous chapters, 

twenty-one risk mitigation measures were identified (see table 6.3) and their efficiency 

will be evaluated through the developed method. 

 The risk mitigation measures identification methods are implemented through the 

following steps:  

In this study in order to extract the most appropriate risk mitigation measures that can 

reflect the current situation for further evaluation, multiple sources of evidence were 

employed for data collection. The study followed the particular steps to ensure that all 

sources were used in the study. The studies were conducted in three phases: (1) careful 

literature review, (2) review of rules and regulations, and (3) Empirical studies were 

conducted in some of the major ports in the UK and Mediterranean maritime 

industries. Each of the phases is discussed below. As a result, the hierarchy is 

constructed in Figure 6.2 with 11 risk factors and 21 alternatives (risk mitigation 

measures).  

6.5.1.1. Description of the process of selecting the risk mitigating measures 

Phase (1) careful literature review  

In order to identify the risk reduction measures to mitigate the identified risk factors, 

some relevant studies that can reflect the latest information about the current situation 

of the last implemented risk mitigation measures in maritime pilotage practice were 

reviewed critically through an appropriate literature review. A literature review can 

provide significant data and information about what has been done in the past in the 

research area.  Nonetheless, after the review, only some mitigation measures were 

identified because the existing literature is rather limited and fragmented. Therefore 

other methods have been used in this research to overcome this weakness. 
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 Phase (2) review of regulations 

Instead of identifying the risk mitigation strategies through a literature review, this 

research explored the currently implemented measures which turned out to be more 

reasonable in actual situations, all the recommendations, regulations, and rules 

adopted by maritime authorities for maritime pilotage safety performance 

improvement have been reviewed. Marine authorities have been attempting to reduce 

and prevent marine accidents in recent decades in accordance with regulation 

requirements (Akyuz and Celik, 2014). For instance, International maritime 

authorities have adopted several regulations in parallel with considerable efforts to 

maintain a high level of safety standards at sea to improve maritime safety and mitigate 

marine accidents, (Hetherington et al., 2006).  All statutory regulations introduced by 

international bodies including classification society rules, recommendations issued by 

organizations, and IMO Conventions and Codes are deemed typical examples of 

strategies used for the purpose of risk control.  

 A careful review of related rules and regulations in the maritime pilotage field is an 

effective mechanism to track the development of relevant regulations and policies over 

a long period of time. In addition, it provides significant data about what preventative 

measures have been done in the past to improve maritime pilotage safety, and also it 

is less costly than other techniques, especially when information may be accessed 

easily. Understanding the evolution of the changes over the past decades can help the 

researcher to know what has been done in the past, how maritime safety can be 

improved, and how to reduce or eliminate the risks to ships in the future (Luo and 

Shin, 2016).. 

Furthermore, using such an approach has the advantage of ensuring that the researcher 

gains access to the information that offers valuable solutions for decision-makers to 

use, to take the correct actions in order to improve the quality of pilotage performance 

and reduce maritime accidents, which would otherwise be challenging to acquire using 

other means like human beings, who may be difficult to track down or maybe 

unwilling to engage in an official study. And sometimes human beings, by their very 

nature, would not normally be willing to tell their thoughts during interviews or to 

write their honest opinions on questionnaires. As Yang et al., (2013) pointed out that, 
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experts may overlook certain safety aspects in a brainstorming session as a risk event 

might be considered ‘natural’ from their point of view.   

Phase (3) Empirical studies to collect domain experts' opinions  

At the beginning, a draft version of the questionnaire was examined by three academic 

researchers from a UK University to comment on the appropriateness and clarity of 

the questions. Moreover, the ethical approval was also obtained to further validate 

questionnaire contents and participant consent. The revised questionnaire as 

represented at the end was sent out to experts for data collection. A sample copy of 

this questionnaire is shown in Appendix IIII-1. 

 The survey questionnaires were conducted and took place in March 2019 in the 

maritime industry, by inviting five experts from the United Kingdom and 

Mediterranean maritime industry, whose levels of experiences have been detailed 

previously to take part in the survey, one is a captain who is a general manager of an 

insurance company and another four experts are marine pilots from different ports 

companies. All respondents have been involved in our previous surveys and regular 

contact was maintained from the point of contacting until the research project’s 

completion. All the experts were professional shipmasters who had served long 

periods on board a variety of vessels, all with more than 10 years of working 

experience. The experts selected, based on their adequate qualifications, skills, and 

experience on the field. Consequently, integrating the abovementioned three sources, 

ensured research with reduced bias. In the end, 21 risk mitigation measures were 

identified and discussed below.  

6.5.1.2 Description of the risk mitigation measures of pilotage operations 

The following risk factors shown in the table below (table 6.2) are identified as 

contributory causes of maritime pilotage accidents. In addition, these factors have 

been weighted by the experts as the most significant risk factors (HCFs) leading to 

pilotage accidents. And in order to mitigate their negative influences on pilotage safety 

performance and prevent or at least reduce the maritime pilotage accidents, the 

relevant risk mitigation measures for each risk factor are determined. As illustrated in 

(table 6.3) the identified risk mitigation measures are summarized and more details 

will be discussed below.            
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 Table.6.2 the most important contributory factors to maritime pilotage accidents 

(HCFs) 
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Table 6.3 Risk mitigation measures (RMMs) for improving pilotage operations 

performance 

S/N                                       Risk mitigation measures (RMMs) 

A1 Pilots should have an appropriate experience as a ship master before becoming a pilot.  

A2 Implement safety management system (SMS) for pilotage operations 

A3 Providing an adequate and a high standard of theoretical and practical training courses 

with regular renewal training including ship handling, bridge simulator training, bridge 

resource management (BRM), ECDIS, and NAEST generic training courses.  

A4 Using common communication language on board. 

A5 Improving the pilotage operators’ English language skills. 

A6 Ship’s staff, pilot, and assisting parties should maintain effective communication, 

cooperation, an effective co-ordination, and effective exchange of information.  

A7 A standard marine vocabulary should be used during the manoeuvrings.   

A8 Compliance with resolution A.893 (21) on Guidelines for voyage planning. 

A9 An effective working environment and close working relationship on the bridge of a 

ship between pilot and ship’s captain should be created.  

A10 Provide an adequate number of qualified, experienced, and well trained ship’s crew 

members, pilots and tugs operators working on shift (adherence to MLC rest hour 

maritime regulations). 



187 

 

 

 

 

A11 Tasks and responsibilities should be understood and distributed properly among the 

bridge team members.   

A12  Providing training courses in safety and cultural awareness 

A13 Keeping high level of alertness and avoiding distractions elements 

A14 All pilotage performers should be in good physical and mental fitness and not under the 

effect of drugs or alcohol 

A15 Implement  standard operating procedures (SOP’s)  for ship board operations 

A16 Pilot boarding point should be at a sufficient distance from the commencement of the 

act of pilotage.  

A17 During pilotage operations distractions elements should be avoided. 

A18 Not to squeeze pilots or ship's captains for working outside established rules or piloting 

ships in poor weather condition situations due to commercial pressure.  

A19 

 

Keeping a high level of alertness, and maintaining continuous watchkeeping (the 

surrounding area, tug’s, and piloted ship’s performance and progress should be 

monitored effectively and continuously to be aware of the whole situation properly). 

A20 Provide sufficient and the required number of powerful tugboats which are necessary 

for all kind of ships manoeuvers. 

A21 Compliance with the principles and the requirements of IMO resolution A960  
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6.5.1.2.1 Measures for mitigating the risks due to the lack of ship handling skills 

(RF1). 

Lack of ship handling skills, due to lack of experience, and improper training, were 

identified as the most significant factors that may affect the safety performance of 

manoeuvring adversely. It is considered among the most important causes of accidents 

in pilotage operations. Therefore, in order to mitigate the effects of this failure and 

ensure safe and efficient ship-handling, qualified and well-trained pilots and ship’s 

masters should be employed by the port authorities and shipping companies. 

Employing qualified pilots in approaches to ports and other areas where specialised 

local knowledge is the most important step in mitigating maritime pilotage related 

risks. This was formally recognized by the IMO in 1968 when the organisation 

adopted the Assembly Resolution A.159 (ES.IV) recommendation on pilotage. 

 In order to provide high standards of pilotage services, every ship’s master and pilot 

must possess a Master Mariner certificate. The certificates should be appropriate to 

the service in which the vessel was engaged. In addition, the pilot should hold an 

appropriate pilotage certificate or license issued by the competent pilotage authority, 

furthermore, pilots should have appropriate experience as a shipmaster before 

becoming a pilot. Such a prior background provides appropriate skills to deal with any 

situation, and enable pilots to carry out their tasks safely and efficiently, in addition, 

experience in both positions (master and pilot) enables a pilot to relate more easily to 

a master when performing a pilot’s task (Darbra et al., 2007). Employing a highly 

experienced captains is deemed a significant factor to prevent maritime accidents 

(Akyuz, 2015). 

Ship handling was considered as one of the most complex tasks; particularly, when 

navigating a ship in restricted waterways, or in harbour basin or alongside the quay. 

Ship Handling is defined as an acquired art practised by marine pilots, masters, and 

officers of proper control of a ship while underway, especially in harbours, around 

docks and piers (Armstrong, 2007, p.1). One expert pilot mentioned that “it needs to 

be understood that not everyone has the aptitude to become a skilled ship handler.  

Ship handling is an art rather than a science, but a ship handler who is familiar with 

the science will be better at their art and this will enable them to easily identify a ship’s 
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manoeuvring characteristics, and quickly assess the skills needed to control the ship 

safely”. 

 This was also confirmed by Murdoch et al. (2012), efficient ship-handling during 

berthing and un-berthing operations is extremely important to the safety of the ship, 

which requires the master to understand what is happening to the ship and, what will 

happen a short time in the future. Ship handling skills is considered as one of the most 

important aspect of knowledge that must be gained by any pilot, ship’s master, officers 

and others who assist the pilot. The safety of the ship handling during berthing 

operations depends on the navigational experience, competence and the high level of 

skills that the pilot, and master of the ship who have the command of the ship have 

obtained. Ship-handling skills are acquired through a combination of formal training 

and practical experience.  

According to Yang et al. (2013) in spite of the International Maritime Organization 

(IMO) attention through international standards, training regimes and assessment are 

not consistent as a result of poor regulation implementation and this may lead to 

variations in seafarers’ competence. Therefore, in order to lower the risks, ensure a 

high standard of operation and improve maritime safety, companies have to be 

competitive and have well trained crews (Barsan et al 2012). And this can be done, 

according to Berg et al. (2013), by good quality training. An appropriate education 

and training for pilots and ship crewmembers is the best method to proceed toward 

this aim and considered one of the most important risk mitigation measures (Akyuz, 

2017). 

Previous related studies revealed that improving the operator's professional skills 

should be an important issue for port authorities to consider, and regular training 

should be provided for marine pilots and tugboat masters (Hsu, 20012). One expert 

pilot pointed out that, to ensure that the training will impact on their knowledge and 

attitude, shipping companies and competent pilotage authorities should provide an 

adequate  training period for its pilots, ships’ masters,  tugs’ crews, and deck officers, 

and the level and standards of training for certification or licensing should be real, 

proper, and of a higher standard and the content of courses should be higher quality 

and meet the IMO requirement, the expert also mentioned that refresher training for 
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their mariners should be reinforced, and pilotage standard operating procedures (SOP) 

should be implemented. 

An expert marine pilot who working at one of the biggest see ports in UK confirmed 

that, to ensure safe pilotage operations, the principles and requirements of the IMO’s 

resolution A960 should be embraced by all ports authorities and implemented by all 

pilotage performers. He considered it as one of the most effective ways to improve the 

safety performance of pilotage operations. In this respect, in order to provide high 

standards of pilotage services, the resolution A960 (23), recommended each applicant 

for a pilot certificate or license to be familiar with the necessary knowledge of the 

ship-handling for piloting, anchoring, berthing and unberthing, manoeuvring with and 

without tugs, and emergency situations. 

 In order to ensure the continued proficiency of pilots and updating of their knowledge, 

the Resolution A.960 encouraged competent pilotage authorities to provide sufficient 

and high-quality training with regular refreshers (renewal training), include; courses 

in bridge simulator training (simulation exercises), which may include radar training 

and emergency ship-handling procedures; and courses in ship-handling training 

centres using manned models, particularly, the courses that include ship simulator 

training scenarios, scenarios of simulation manoeuvres under control of an 

experienced pilot in particularly dangerous manoeuvres, when the vessels navigate 

through narrow canals or during entering or leaving the port in the dark or under poor 

visibility conditions.  

All marine pilots have to undertake an advanced training course. The training should 

include both theoretical and practical ship-handling training courses. Practical ship-

handling experience should be gained under the close supervision of experienced 

pilots.  This practical experience should be obtained on vessels under actual piloting 

conditions and should be supplemented by simulation, both computer and manned 

model, classroom instruction, or other training methods. Ship-handling simulator 

training courses can help operators acquire skills, learn vessel navigation, and 

understand the causes of and preventive measures against accidents (Akyuz, 2017). 

Simulator training is valuable training and an assessment tool which provides a 

realistic environment for trainees. Simulation exercises have proven to be very 

successful in high risk domains non-technical skills training and assessments (Wanger 



191 

 

et al., 2013). It has been utilised in diverse research studies to analyse different 

maritime related topics such as the effectiveness of officer competence under various 

circumstances (Saeed, 2015).  

6.5.1.2.2 Measures for mitigating the risks due to the lack of communication and 

language problems (RF2). 

It can be seen from the results shown in the previous studies that lack of 

communication due to language barriers on foreign ships continues to be a serious 

obstacle to the safe navigation of these vessels in pilotage areas. In this study, the 

results also show that the lack of effective communication and misunderstandings 

among operators due to language problems are among the most contributing factors to 

pilotage accidents. Therefore, a common working language is very significant and 

should be used during pilotage manoeuvring, and because the common 

communication language during periods of pilotage is English according to the revised 

STCW Convention 1995, both Pilot and crew must be able to communicate effectively 

to ensure navigation safety.  

According to the expert senior pilot, a common working language during pilotage 

manoeuvring should be used, and because the common communication language in 

maritime is English, competency in spoken English is important and leads to fewer 

accidents. Most of the participants of the study confirmed that proper knowledge of 

English clearly makes it easier to understand conversations that take place during 

pilotage operations. In addition, it facilitates communication on board the ship and 

contributes considerably to the ship’s manoeuvring safety. Furthermore, it makes it 

possible for the ship’s master and crew members to keep track of any actions taken by 

the pilot and those external parties (VTS operators, tug masters, mooring boat staff, 

and shore mooring men), and any actions taken by ship passage in the surrounding 

area. Enhancing operators’ English language skills abilities could not only help 

facilitate communication on board the ship, it also facilitates the exchange of 

information between pilot and ship’s master, and assists them to be fully aware of 

situations and help to avoid pilotage operations disasters. 

Effectiveness and understanding of the communications between the pilot and the 

bridge team members, between master and crewmembers as well as between pilot and 

assistant parties when manoeuvring, is mainly dependent upon proper knowledge and 
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competence of English language.  Therefore, in order to mitigate the risk of 

misunderstanding and lack of communication between pilot and the bridge staff 

member, operators’ English languages skills should be enhanced, and more attention 

needs to be paid to the quality of English tuition as a second language for all non-

native English speakers, and a high quality of training courses is necessary and should 

be provided to improve the proficiency in the English language. As Hsu (2012), 

pointed out, to avoid pilotage accidents, operators’ English language communication 

abilities should be enhanced, and regular training, by port authorities should be 

provided. “The level of English taught in maritime education has to be advanced and 

also implemented for on shore operators such as port operators” (Berg et al., 2013). 

The use of English as the working language on the bridge is obligatory on all ships 

except warships, ships below 150 gross tonnage on any voyage, ships below 500 gross 

tonnage not on international voyages and fishing vessels (IMO, 1997).  On this basis, 

IMO resolution A. 960 (23) attempted to overcome the issue of language barriers that 

may cause misunderstandings between bridge team members and risks to pilotage 

safety. The resolution attempts to set up the minimum language proficiency 

requirements for pilots, members of ships’ crews, pilots, and tug masters as well.  

According to the resolution, all pilots, shall have proper knowledge of English 

language skills, and a high level proficiency in spoken English language, especially 

competency in maritime English, and all other crew members, shore mooring men, 

tugs and mooring boats operators shall have a sufficient understanding of the English 

language and must be familiar with the IMO Standard Marine Communication Phrases 

(SMCP). The resolutions, recommended all pilotage operatives’ English language 

should be to a standard adequate to enable them to express communications clearly. 

Moreover, the communications on board between the pilot and bridge crew member 

should be conducted in the English language or in a language other than English that 

is common to all those involved in the operation. 

The IMO's International Convention on Standards of Training, Certification and 

Watchkeeping for Seafarers (STCW), 1978 was the first internationally-agreed 

Convention to address the issue of minimum standards of competence for seafarers. It 

is the prime authority on training that applies to ship-owners, training establishments 

and national maritime administrations and it concerns merchant ships in domestic or 
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international operations. The convention applies separate requirements for each 

position on board a ship. It also states that “all officers must have a good command of 

spoken and written English”.  

In order to address the problem of language barriers at sea and avoid 

misunderstandings between bridge team members that may cause accidents, IMO’s 

Standard Marine Communication Phrases (SMCP) were adopted by the 22nd 

Assembly in November 2001 as a resolution A.918 (22) IMO Standard Marine 

Communication Phrases.  It is recognised that maritime safety can be enhanced by the 

improvement of crew communication, through training in the use of Standard Marine 

Communication Phrases (SMCP) (Hughes, 2000). The IMO SMCP replaced the 

Standard Marine Navigational Vocabulary (SMNV) adopted by the IMO in 1978 (and 

amended in 1985). SMCP has been developed as a more comprehensive, standardised 

safety language taking into account changing conditions in modern seafaring and 

covering all major safety-related verbal communication. The IMO SMCP includes 

phrases that have been developed to cover the most important safety-related fields of 

verbal shore-to-ship (and vice-versa), ship-to-ship and on-board communications. The 

STCW Code requires ships’ masters and officers in charge of a navigational watch on 

vessels of 500 gross tonnages or above to be able to understand and use the Standard 

Marine Communication Phrases (SMCP).  

A study has been conducted by Culic (2014) to present the activities undertaken since 

2012 by the German Association for Maritime English (G.A.M.E) in order to address 

the problem of language barriers at sea and avoid misunderstandings which can cause 

accidents. The emphasis has been put on the pilotage and tug assistance phrases 

(SMCP), as the existing body of phrases has not been felt entirely suitable to the 

activities performed, in order to address the problems related to the tug assistance-

pilot-master communication. He concluded that the existing Standard Marine 

Communication Phrases (SMCP) have not been considered elaborate enough for the 

operation. As result, a request has been made to provide pilots and tug masters with a 

set of phrases for their working language - English - to be used during manoeuvring 

(Culic, 2015). 

The difficulties of communication among members of the bridge team while under 

way were mostly attributed to poor BRM and prevented the bridge team from serving 
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as an efficient support for the pilot (TSB, 2013). Thus, shipping and port companies 

including managers need to ensure that BRM procedures are actually practised on 

board ships, by providing courses for all operators in bridge resource management 

(BRM). The obligation of BRM training was introduced by ISM code and STCW 2010 

Manila amendments, which aimed to increase the knowledge and skills of seafarers 

worldwide, to reduce the human error, and mitigate maritime accidents. 

According to Resolution A.960 (23), English language qualifications of seafarers must 

be enhanced. Sufficient and high quality of training courses include courses to improve 

proficiency in the English language where necessary should be provided for pilots. 

Competent pilotage authorities should provide for pilots’ sessions and regular 

refreshers or renewal training courses in bridge resource management (BRM) for 

pilots to enhance the ability of pilots to communicate with local authorities and other 

vessels in the area.  BRM training is a great step towards improving communication 

(Rothblum, 2000; Hetherington et al. 2006, and Chauvin et al. 2013).  

6.5.1.2.3 Measures for mitigating the risks due to of the Exchange of information 

failure (RF3). 

The findings of this study indicate that failure to exchange the information between 

pilot and ship’s master prior to the commencement of a manoeuvre is one of the most 

significant factors that can cause the occurrence of accidents in pilotage operations. 

Thus, in order to mitigate this risk and ensure effective and safe piloting operations, 

both ship’s master and pilot should exchange information prior to pilotage operation 

(Wild and Constable 2013). In accordance with Annex 2 of the IMO’s Resolution 

A.960, “the master and the pilot should exchange information regarding navigational 

procedures, local conditions and rules and the ship’s characteristics.  This information 

exchange should be a continuous process that generally continues for the duration of 

the pilotage. According to, Resolution A.960 (23), all competent pilotage authorities 

should develop a standard exchange of information practice, taking into account 

regulatory requirements and best practices in the pilotage area.  Pilots should consider 

using an information card, form, checklist or other memory aid to ensure that essential 

exchange items are covered”.  

The Master/Pilot exchange information (MPX) process can be divided into two parts: 

an exchange of technical and the non-technical information, the successful completion 
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of an act of pilotage is dependent on both these components being undertaken 

effectively (Wild and Constable, 2013). The exchange of information regarding 

pilotage, and the passage plan should include the following information:  roles and 

responsibilities of the master, pilot and other members of the bridge's management 

team; local regulations; intended courses and route, how manoeuvres will be carried 

out, navigational intentions; local conditions including navigational or traffic 

constraints; expected weather conditions;  tidal and current information; details of 

passage and berthing plan; mooring boat use; proposed use of tugs; characteristics and 

ship details such as, year built, maximum allowable draft, breadth, and  length of the 

ship; main engine, to ensure steering gears fully operational; thrusters and propeller 

details; and to ensure that the thrusters are fully operational before approaching the 

berth. The main engines should be tested ahead and astern before beginning to 

manoeuvre and at the pilot station, details of equipment defects and any special 

peculiarities that affect the ship’s manoeuvrability should be noted.  

It can be seen from the results of this study that, lack of information exchange between 

pilot and ship’s master is influenced by many factors that need to be considered. Lack 

of communication between pilot and ship’s master mainly happens due to language 

problems. Language barriers is one of the main communication problems found on 

ships, and should be taken into account (Hetherington et al., 2006).  Therefore, in order 

to carry out an efficient Master/Pilot exchange information (MPX), a common 

language should be used and English language skills for pilot and ship’s master should 

be enhanced. A proper knowledge of English language skills is considered as one of 

the most significant factors for achieving an adequate and effective face-to-face 

exchange of information.  This measure will mitigate the risk of misunderstanding and 

facilitate the communication and help to understand the conversations that take place 

during exchange of information.  

Additionally, the finding of this study and the previous studies conducted by 

Transportation Safety Board of Canada TSB (1995), and Chauvin et al. (2013) 

concluded that, one of the reasons for information exchange failure was attributed to 

deficiencies in the effectiveness of bridge team management practices in compulsory 

pilotage areas. As a result, to facilitate information exchange between the pilots and 

ship’s master and lower the effect of this risk, BRM training should be provided.  
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This was also recommended by the IMO resolution A. 960, to facilitate information 

exchange between the pilot and ship’s master, each pilot has to undertake high quality 

training courses in bridge resource management (BRM). This training should include 

a requirement for the pilot to conduct an exchange of information with the master 

and/or officer in charge of navigational watch. This signifies that the safety 

management system (SMS) for pilotage operations introduced by the IMO should be 

implemented properly to avoid the risk of vessel accident and to ensure the safety of 

ship berthing 

Another factor that could affect exchange of information according to the finding of 

this study is the pilots disembarking early before the ship leaves the port entrance or 

embarking the ship at the breakwater, as will leave insufficient time for the captain of 

the vessel to exchange information with the pilot, and to arrange the passage plan 

which is considered as one of the most significant factors for achieving safe ship 

berthing. As a consequence, IMO resolution A.960 (23), recommended the boarding 

position for pilots to be located where practical, at a great enough distance from the 

port, so as to allow sufficient time for a comprehensive face-to-face exchange of 

information and agreement of the final pilotage passage plan. Gard (2014), reported 

that, the pilot boarding point should be at a sufficient distance from the 

commencement of the act of pilotage to allow sufficient time to meet the requirements 

of the master-pilot information exchange and agreement of the final pilotage passage 

plan (Gard, 2014).  

An expert senior pilot stated that, lack of safety culture and safety awareness could be 

another reason for the (MPX) failure. The pilot and other team members are not 

exchanging information, because they think that it is not necessary. They believe that 

the manoeuvring operation could be done by pilot and master individually. However, 

this is not true. Therefore, in order to improve a safety culture, safety awareness 

training program for pilots, and bridge team members’ safety awareness should be 

established by on-board training. Safety regulations for pilotage operations introduced 

by the IMO should be implemented properly to avoid the risk of vessel accident and 

to ensure the safety of ship berthing. 
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6.5.1.2.4. Measures for mitigating the risks due to of lack of bridge navigation 

equipment knowledge and failure to use the electronic navigational systems properly 

(RF4). 

 As has been mentioned previously, ineffective use of the navigational equipment such 

as, ECDIS, AIS, Echo Sounder, radar, Automatic Radar Plotting Aids (ARPA) and 

Global Positioning System (GPS), etc. due to the unfamiliarity with the electronic 

navigational systems knowledge is considered a high risk and play a significant role 

in the risk of pilotage operations. Many accidents have occurred due to the failure of 

bridge team or pilot to use the bridge navigation equipment properly, therefore, in 

order to avoid some of the difficulties outlined above, operators’ knowledge of bridge 

navigation equipment should be improved.   

In order to improve operators’ skills and knowledge of bridge navigation equipment, 

pilotage performers have to undertake specific training on the bridge equipment, 

including; the use of all the advanced navigation technology; navigational aids; and 

other electronic devices on the bridges of ships. Marine pilots, bridge team members 

(ship’s masters, deck officers) and tug’s masters are required to understand the 

cognitive task involved with the advanced navigation technology,  as well-educated 

and trained crew with skills is considered an important factor for maritime pilotage 

safety. 

According to Berg et al, (2013) “The increase of technology aboard ships has 

increased the need for training, especially training on modern ships”.  Pilots, ships’ 

masters, deck officers and those who are in charge of a navigational watch, have to 

complete high standard Navigation Aids and Equipment Simulator Training (NAEST) 

course. All ship handlers (crew and pilot) have to undertake a high standard of generic 

ECDIS equipment training, including an Electronic Chart Display and Information 

Systems (ECDIS) simulator training course. Familiarity with the electronic 

navigational systems knowledge will assist both the pilot and ship’s crew member to 

be aware of the whole situation and enable them to easily handle the ship to its 

destination successfully and safely. 

ECDIS is a modern piece of navigation equipment designed to optimize the ship 

routing (Zang et al., 2007). It’s an electronic chart that is connected to other bridge 

equipment such as radar, GPS, AIS, and Gyro, to present the ship’s route for the voyage 
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and to plot and check positions throughout the voyage, displays ship’s, speed, course, 

leeway, depth of water, proximity to hazards, names and movements of the vessels in 

the surrounding area, and collision risks.  Training on ECDIS, ensures that navigators 

can use and understand ECDIS in the context of navigation and can demonstrate all 

competencies contained in and implied by STCW 2010. ECDIS training will eliminate 

human errors and operation errors, as well as ensure maritime pilotage safety. It was 

considered essential, to ensure that officers understand how to deal with new 

technology to avoid or reduce human error during maritime operations (Saeed, 2015).   

The regulatory requirements for generic training and familiarisation with ECDIS are 

covered by various international instruments including the IMO, the International 

Convention on Standards of Training, Certification and Watchkeeping for Seafarers 

Convention (STCW),  the International Convention for the Safety of Life at Sea 

(SOLAS), the International Safety Management (ISM) Code, the Manila amendments 

to the STCW Convention and its associated Code that were adopted by the IMO at a 

Diplomatic Conference in Manila in June 2010. Resolution A.960 (23), has also 

encouraged competent pilotage authorities to provide updating and refresher training 

conducted for certified or licensed pilots to ensure the continuation of their proficiency 

and updating of their knowledge, including seminars on new bridge equipment with 

special regard to navigation aids; Simulation exercises, which may include radar 

training (use of radar), and ECDIS and other electronic devices; their limitations and 

capabilities as navigation and collision avoidance aids.  

“ECDIS can deliver tremendous benefits for safe, compliant and efficient navigation. 

However, once installed, ship owners, operators and managers must fulfil their 

responsibilities for its ongoing use, including compliance with all relevant regulations. 

This includes updating their bridge procedures, upgrading their ECDIS software to the 

latest electronic navigational chart (ENC) standards and, above all, ensuring that 

bridge teams are trained and certified in the operation of ECDIS and in line with the 

requirements of Port State Control inspections and audits” (Martek marine, 2017).  

Thus, a proper education and training in ECDIS use is important and constitutes one 

of the most important risk reduction measures (Ugurlu et al., 2015). 

6.5.1.2.5 Measures for mitigating the risks due to lack of teamwork (RF5) 

Pilotage operations are categorised as a complex, dynamic and uncertain working 

environment and liable to diverse risks because of interaction and interdependence, in 
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addition, the multiplicity of the entities who are performing ships’ berthing operations. 

They are conducted by multiple operators with different responsibilities including the 

pilot, ship’s crewmembers, tugboats and mooring boats crews, VTC regulators and 

shoreline personnel, who are required to work cooperatively together as one team with 

the objective of guiding the ship safely to its berth (Murdoch et al. 2012). A team can 

be described as “two or more individuals with specified roles interacting adaptively, 

interdependently, and dynamically toward a common and valued goal” (Salas et al., 

1992). As team effectiveness and team performance depend upon a well-functioning 

team, a breakdown in team processes can lead to team failure which will negatively 

affect the whole situation (Salas et al., 2005). 

 The finding of this study shows that the failure of pilot, ship’s staff, and assisting 

parties (tugs masters, VTS, and shore personnel) to work with each other 

cooperatively, or failure to create an effective relationship on the bridge of a ship 

between pilot and ship’s captain can cause undesirable situations during ship berthing, 

which will negatively affect the safety of the pilotage operations. This was also 

confirmed by Grech et al. (2008), who stated that optimal teamwork is extremely 

important for on-board safety and plays a major role in the safety of maritime 

navigation, as breakdowns in teamwork can lead to undesirable situations. 

In order to create efficient teamwork, pilot, ship’s staff, and assisting parties (tugs 

masters, VTS, and shore personnel) should work with each other cooperatively. And 

ship’s crewmembers should not rely only on the pilot. As the STCW Code stated that,  

“despite the duties and obligations of pilots, their presence on board does not relieve 

the master or officer in charge of the navigational watch from their duties and 

obligations for the safety of the ship. Ship’s master and bridge team members should 

be in a higher state of attentiveness, and vigilance and not rely completely on the pilot 

(Gard, 2006). 

To mitigate the risk due to lack of teamwork, IMO Resolution A.960 recommended, 

the master of the ship and the watchkeeper to always monitor the position of the ship 

and pilot’s actions after the pilot has boarded and ensure that they are integrated into 

the bridge team properly. IMO Resolution A960 also recommended masters and 

bridge officers to support the pilot and to ensure that his/her actions are monitored at 

all times and the master, bridge officers and pilot must share a responsibility for good 
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communications and understanding of each other's role for the safe conduct of the 

vessel in pilotage waters.  

Mismanagement of tasks and failure to delegate the responsibilities of each team 

member during pilotage operations will degrade bridge team performance; as a result, 

in order to establish an effective team performance, tasks and responsibilities should 

be understood and distributed properly among the bridge team members. Pilot, ship’s 

master and OOW (officer of the watch), should work with each other in mutually 

supportive ways, and effective communication, interactive co-operation, and co-

ordination between them should be established (Flin et al., 2008, p. 94). One expert 

mentioned that the captain of the ship and pilot need to provide appropriate support 

and encouragement as well as motivate the individuals to understand their tasks and 

responsibilities in the team context.  

Officers at the ship forward and aft must maintain closed loop communications with 

the bridge. Pilot, captain, and officers of the watch must keep monitoring the tugs and 

ship's progress during the ship’s navigating. Pilot must give commands to external 

parties (tug boat mooring men and mooring boat) correctly. External parties such as 

tug boat masters, mooring boat, and shoreline personnel, must be ready for assistance 

and listen carefully to every command that is given by the pilot, and carry out the 

pilot’s instructions precisely, orders regarding steering, engine requests, should be 

following out by ship’s crewmembers correctly (Murdoch et al. 2012). 

The feedback of Accident investigations reports indicated that poor team work is one 

of the most significant contributory factors of pilotage accidents, and according to the 

result of this study, poor team work is influenced by most of the other factors such as 

lack of communication and language barrier, insufficient information exchange, and 

lack of planning. Therefore, in order to mitigate its influences and prevent the 

occurrence of such accidents, pilot, ship’s master, OOW (officer of the watch), and 

assistant parties should work together in accordance with the principles of BRM 

(MAIB, 2018), and an efficient communication between the pilot and the ship’s 

crewmembers (Hsu, 2012), and adequate information exchange (TSB, 2013a), should 

be established. Efficient and successful bridge team communication is acknowledged 

as a key to safe operations of sea-going vessels, and enables team members to perform 
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their specific task and thus supports effective team performance (Øvergård et al., 

2015).  

Exchanges of information and agreements on passage and berthing plan enable bridge 

team sharing of a common understanding of the manoeuvring (TSB, 2013a).) As Salas 

et al. (2005) stated, an exchange of information, shared mental models, and closed-

loop communication are considered to be necessary for achieving optimal teamwork. 

In order to effectively monitor the vessel movements and assist the pilot in maintaining 

situational awareness, it is essential that the relevant information has been exchanged 

between the master and the pilot beforehand. The master-pilot exchange forms the 

basis for the pilot and bridge team to work cooperatively to monitor the vessel's 

progress (TSB, 2014a). 

An efficient teamwork required that the team members possess specific knowledge, 

skills, and attitudes, such as; knowledge of their own and other team members’ tasks 

and responsibilities, skill in monitoring each other's performance, and a positive 

attitude towards working in a team (Øvergård et al., 2015). Those operators’ work 

characteristics, such as professional skills and work attitudes, should be enhanced by 

providing high quality specific training (Hsu, 2012). Additionally, bridge resource 

management training (BRM) for OOW (officers of the watch), ship’s masters, tug 

operators and pilots to improve cooperation and understand roles and responsibilities 

should be provided (Chauvin et al., 2013). The U.S. National Transportation Safety 

Board (NTSB) reported that lack of proper crew interaction is a contributing factor to 

several marine accidents and has made many recommendations to present Bridge 

Resource Management (BRM) in training for deck officers on U.S.–flag vessels (TSB, 

1995). 

6.5.1.2.6 Measures for mitigating the risks due to of lack of situation awareness (RF6) 

Situation awareness (SA) was defined by Endsley (1995), as “being aware of what is 

happening around you and understanding what that information means to you now 

and in the future”.   

Experienced pilots mentioned that situation awareness during ships piloting plays a 

significant role in the safety of the maritime pilotage operations. The importance of SA 

in operator decision-making processes is little understood within the maritime pilotage 
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domain. It is an area of extreme importance within high risk industries which the 

maritime industry ignores. This is the underlying reason why the matter of shared 

situational awareness (SA) during pilotage operations is not dealt with and thus leads 

to often serious incidents which might otherwise have been avoided.  Situational 

awareness error is closely connected with lack of training, experience, and 

familiarization. If the bridge team members and/or pilot are unfamiliar with the risks 

and conditions of the intended manoeuvre or the vessel, a lack of situational awareness 

will naturally emerge.  

The results of this study show that, the factors, lack of communication and 

misunderstanding due to language barrier, poor teamwork, lack of exchanging of 

information and preparing a proper plan, lack of familiarity with the electronic 

navigational systems knowledge due to insufficient training, work load, and distracting 

elements, have a negative effect on the situation awareness and play a crucial role in 

situation awareness during pilotage operations.  According to the result of this study, 

poor shared situation awareness about the current situation is a contributing factor to 

the maritime accidents, and the safety of the ship handling during berthing operations 

depends on the level of the situational awareness that the pilot, and master of the ship 

who have the command of the ship are able to attain. Maintaining the desired state of 

pilot's SA at every stage of task achievement is so important. This is of particular 

importance when navigating a ship in restricted waterways, or in a harbour basin or 

alongside a quay.  

 According to Chauvin et al. (2013), three key elements of bridge resource 

management (BRM) are monitoring the vessel's progress, sharing the voyage plan, and 

maintaining situational awareness. Maintaining situational awareness through the 

practice of effective teamwork and communication between bridge team members is 

most important when a vessel is operating in restricted waters or areas of high traffic 

volume. In addition, information exchange was associated with high levels of SA and 

that high levels of SA were related to high levels of performance in teams (Øvergård 

et al., 2015).  

In order to maintain overall situational awareness when navigating with a pilot, it is 

critical that information is exchanged regularly so that all members of the bridge team 

are aware of the pilot's intentions and can provide assistance or timely advice and 
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observations (MAIB annual report, 2013). According to TSB (2012) to be aware of 

the situation properly pilot and crewmembers need to obtain the right information 

regarding details of passage and berthing plan, tasks and responsibilities of the master, 

pilot, tugs operators, deck officers and other crew members prior to the 

commencement of the manoeuvre to assist them to be aware of the situation and enable 

them to easily identify the ship’s manoeuvring characteristics, and quickly assess the 

skills needed to control the ship and handle it to the berth safely.  

According to the above-mentioned conclusions, implementing the SA process and 

acquiring the required state of SA by the pilot and ship’s crew staff is very important 

to the implementation of the decision-making process. Pilot and ship master should be 

aware of all the relevant elements influencing the quality of situational awareness. 

They must be aware of the all relevant factors external to the vessel constituting the 

situation, such as the environmental condition (wind, current, waves, visibility) 

particularly during the approaching and entering of the vessel to the port in adverse 

weather situations such as, strong current or wind, or reduced visibility.  

The presence of the other vessels must be detected visually or by technical means such 

as radar. Ship’s speed, and ship’s location and its clearance from the jetty must be 

precisely controlled, also tugs boats and mooring boat position must be observed if 

they carry out the pilot’s instructions precisely with respect to position and towing 

power requirements. In addition, pilot and ship’s captain must be aware of the factors 

internal to the vessel such as the state of the vessel, availability and usability of the 

equipment, and technology, the state, attitudes and attention of the crew, for example, 

the pilot must be aware if the orders regarding steering and engine requests during the 

ship piloting are followed up by ship’s crewmembers correctly.  

During berthing operations any wrong commands occurring as a result of lack of 

situation awareness could lead to an undesirable situation, and can negatively affect 

the safety of the ship during berthing operations. Therefore, effective teamwork, co-

operation and co-ordination, between the pilot and bridge team members should be 

performed, to be aware of the whole situation properly, and this could be achieved by 

bridge resource management (BRM) practical training on board ship for shipmasters, 

officers, tugs’ masters and pilots. According to TSB (1995), and Ugurlu et al (2015), 

providing practical training on board the vessel for ship’s operators, to fully understand 
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bridge resource management (BRM) is significant and  helpful for attaining the desired 

level of situational awareness.  This was also confirmed by most of the experts 

surveyed in this study. 

One expert mentioned that, to protect against mutual misunderstanding and to increase 

the situational awareness and support bridge team situation awareness during the ship 

handling, pilot and bridge staff should be communicating with each other in sufficient 

detail to allow all to achieve a mutual understanding and close the loop. The 

effectiveness of the communications between the pilot and ship’s master, and 

understanding of the communication between master and crewmembers as well as 

between pilot and assistant parties during manoeuvring is very significant for 

maintaining situation awareness during ship berthing (TSB, 2013a). 

 A common working language (English language or a common language other than 

English) during pilotage manoeuvring should be used. It is particularly important that 

the pilot communicates with the port/tugs and other assistant parties (VTS operators, 

mooring boats staff, and shore mooring men), in a common language which the ship’s 

master and crew staff can understand. This makes it easy for the ship’s master and crew 

members to recognize the pilot’s instructions and commands, as well as help them to 

monitor any subsequent actions taken by those external parties, or any actions taken by 

ships’ passage in the surrounding area. As a result, to be fully aware of situations, 

seafarers shall have a proper knowledge of the English language.  Enhancing operators’ 

English language skills abilities could not only help facilitate communication on board 

the ship, it also facilitates the exchange of information between pilot and ship’s master, 

which in turn will assist them to be fully aware of situations and help to avoid pilotage 

operations disasters. 

To increase situational awareness during the pilotage operations, bridge crew and pilot 

must be attentive, and alert, as well as having the ability to assess the situation 

continuously and act appropriately and correctly (Akyuze, 2015). The National 

Transportation Safety Board (NTSB) (2011a) reported that many accidents occurred 

due to the failure of the ship’s operators to maintain a proper lookout due to distraction 

and inattentiveness, which resulted from repeated personal use of a cell phone and 

laptop computer while they were navigating the vessel. 
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 As a consequence the maritime and coastguard agency (MCA) (2005), issued a notice 

to ship owners, ship operators, charterers, masters, ships’ officers, fishing and leisure 

vessel skippers, shipping agents, pilots, port authorities, ship chandlers, tug operators, 

bunkering providers, that the use of mobile phones at inappropriate times is distracting 

bridge management teams from their primary duties of navigating and conning their 

vessel. Control measures, must be taken to ensure that entertainment devices and 

mobile telephones are not distracting for the bridge team at a time when they should 

be concentrating fully on the navigation of the vessel. As a result improving the 

operators’ cultural awareness by providing training courses is significant. 

The Marine Accident Investigation Branch (MAIB) (2005) pointed out that the use of 

mobile telephones in the approaches to a port should be restricted, for both incoming 

and outgoing calls.  This can be achieved by designating pilotage, and other restricted 

waters, as ‘red zones’, in which outgoing mobile telephone calls are prohibited, and 

incoming calls must be diverted to a message service. Use of this technique, or similar 

control measures, ensures that mobile telephones are not a distraction for the bridge 

team at a time when they should be concentrating fully on the navigation of the vessel.  

One expert stated that to build and maintain a clear picture and perceive the situation 

correctly, during the manoeuvring, a high standard of continuous watchkeeping must 

be established, by using all the available electronic means on the bridge. Additionally, 

the bridge must maintain a proper look-out by visual sight (observations) and hearing 

and not just rely on electronic navigational systems during pilotage operations, 

particularly when the vessel navigates inside the port or while approaching close to the 

berth. The need for an all-round lookout should be not overlooked, to move out to the 

bridge wings to check the stern of the vessel on both sides, track the movement of the 

other ships in the surrounding area, and tug’s and piloted ship’s performance and 

progressing should be effectively and continuously monitored by pilot and master.  

According to the rule 5 of the COLREGs, "every vessel shall at all times maintain a 

proper lookout by sight and hearing as well as by all available means appropriate in 

the prevailing circumstances and conditions so as to gain an appraisal of the situation 

and of the risk of collision". Keeping a proper lookout (watchkeepers) in accordance 

with the requirements of North West European Area Guidelines (NWEA) plays a 

significant role in detecting other vessels and assessing, obtaining and maintaining 
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situation awareness, particularly when the vessels navigate through narrow canals or 

while underway, inbound/outbound from/to ports and channels in the dark or under 

poor visibility conditions. Keeping a good lookout (watchkeepers) at all times of the 

pilotage operation enables them to detect the potential navigation hazards, assess the 

situation effectively and acquire the desired state of SA.  

Advanced maritime technology and the new electronic navigational systems have 

significant safety and efficiency benefits. The potential effect of automation on the 

performance of the shipboard tasks and the role of advanced technology systems is 

aimed at reducing the risk of maritime accidents. However, poor knowledge in the use 

of navigational aids such as; Automated Identification System (AIS), RADAR, GPS, 

and Electronic Chart Display and information Systems (ECDIS), can have a negative 

effect on SA.  

Although new maritime technology can be viewed as beneficial in terms of being able 

to process more data,  one of the consequences of an increasing level of technology is 

a loss of situation awareness (Sandhåland., et al, 2015), which significantly affects 

performance in abnormal, time-critical situations, and can lead to an accident (Grech 

et al., 2008, p.125).  Therefore, to achieve and maintain SA effectively, Pilot, ship’s 

masters, and officers have to undertake a high standard of watchkeeping training 

courses includes using all bridge navigation equipment such as echo sounders, Radar, 

AIS, and ECDIS. Also, an advanced training course, including simulation exercises 

and practical training on board ship should be provided, this will help the bridge crew 

and pilots to monitor, observe critical available information, discriminate and detect 

data correctly.   

In spite of the importance and benefits of the technologies on ships through which 

operators obtain more data more quickly, allowing them to make timely decisions, the 

advanced instruments and technical innovations require greater knowledge and 

extensive training. Due to the complexity of the tasks involved, operators are 

distracted and overloaded with information and might not be aware enough of the 

situation to make the proper decisions during berthing operations. It is worth 

mentioning that the chance for human error increases when things are complicated, 

new, and unfamiliar. This opinion was confirmed by Grech et al (2008, p.125) who 

concluded that the electronic equipment such as ECDIS, AIS, and electronic 
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navigational chart display (ENC) are considered significant factors that overload, 

confuse, and distract operators, rather than assisting them.  

Analysis of a considerable number of pilotage accidents shows that situation 

awareness of the surrounding environment was lacking, and mistakes were due to 

failure to monitor or observe data. In most cases, these mistakes were as a result of the 

operator being too focused on one instrument, or of momentary task distractions, or 

excessive workload. The mariner’s mental workload due to the use of technology and 

long-time continuous monitoring of navigational equipment can lead to memory loss 

and misperception of data especially if the ship’s operator is fatigued or not 

sufficiently trained.  

Therefore, according to the experts, controlling work load is a key factor when using 

new technology, and in order to mitigate operator’s mental workload due to excessive 

workload of using new technology and long-time monitoring navigational aids 

equipment, tasks need to be evenly and properly distributed among the bridge team 

members, and bridge team members and pilot have to work cooperatively. Training 

and other forms of procedural guidance are needed to make seafarers aware of both 

the capabilities and limitations of new technologies. Previous related study revealed 

that providing more education and training opportunities to seafarers, promoting 

widespread use on board of electronic chart display and information systems, and 

improving seafarers’ working hours and rest breaks would help to reduce the risk of 

high work load and prevent maritime accidents (Ugurlu, 2015). 

6.5.1.2.7. Measures for mitigating the risks due to of fatigue (RF7) 

As mentioned in the preceding section, human fatigue is difficult to measure and even 

more difficult to state as a cause of an accident, therefore, accident investigation 

reports are often reluctant to assign any great importance to human fatigue (Grech et 

al., 2008 p.59). The IMO adopted several actions, regulations, and guidelines in order 

to ensure maritime safety and to either eliminate or mitigate risks caused by human 

fatigue such as; the enforcement of the International Convention STCW (1995) related 

to working hours on board that produces scheduling and sufficient manning which has 

certainly reduced the ill effects that could lead to mental illness and fatigue among 

seafarers. Chapter VIII (Fitness for duty) of the STCW Convention sets limits on the 

hours of work and minimum rest requirements for watchkeepers. Additionally, 
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measures have been introduced for watchkeeping personnel to prevent fatigue. 

Administrations are required to establish and enforce rest periods for watchkeeping 

personnel and to ensure that watch systems are so arranged that the efficiency of 

watchkeeping personnel is not impaired by fatigue. 

 IMO (2001) Guidance on Fatigue, has also developed practical guidance to assist 

interested parties to better understand and manage the issue of “fatigue.” The 

guidelines on fatigue contain practical information that can assist interested parties 

(naval architects/Ship designers, owners/operators/managers, masters, officers, 

maritime pilots, tugboat personnel, other crew members and training institutions) to 

better understand and manage fatigue.  

Furthermore, Maritime Labour Convention 2006 (MLC 2006) is an important 

international labour Convention that was adopted by the International Labour 

Conference of the International Labour Organization (ILO), under article 19 of its 

Constitution at a maritime session in February 2006 in Geneva, Switzerland.  The 

convention addressed significant issues which might influence the seafarers on board, 

and maritime safety, in order to protect the seafarers from the fatigue.  

According to the convention, the rest hours should be implemented in national 

legislation. The maximum hours of work in that legislation should not exceed 14 hours 

in any 24-hour period and 72 hours in any seven-day period, or at least ten hours of 

rest in any 24-hour period. In addition, the daily hours of rest may not be divided into 

more than two periods and at least six hours rest should be given consecutively in one 

of those two periods. In spite these above-mentioned actions, however, maintaining 

minimum crewing levels for reducing operational cost resulted in the risk of fatigue 

(Yang et al, 2013). In addition, the lack of an effective response to lessons learned 

from marine accident reports, also has threatened precautions already taken towards 

system safety.  

The factors mentioned above might have resulted in additional occurrence of fatigue 

due to the reduced number of pilots and tug operators in shift, and the reduced number 

of crew members on the ships. Moreover, lack of necessary rest periods makes fatigue 

an essential element of human error that contributes to marine accidents. The feedback 

from maritime accident investigation reports show enormous challenges to preventing 

shipping accidents. Darbra (2007) highlighted that, a shortage of pilots in some ports, 
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makes fatigue management more difficult, and commercial pressures sometimes do 

not allow fatigue to be managed as effectively as pilots would like. Therefore, Port 

authorities should increase the number of pilots and tug operators working on any 

given shift and ship owners should not reduce the number of crewmembers to avoid 

an increasing work load and mitigate the risk of fatigue. Operators should ensure that 

they are adequately rested prior to an act of pilotage, in good physical and mental 

fitness and not under the effect of drugs or alcohol. 

 In addition, in order to perform well at work, pilots, tug operators, and ship’s staff 

should have a deep and uninterrupted sleep during rest hours. Rest breaks during work, 

particularly aboard ship should be sufficient and strictly complied with by the vessel's 

seafarers and management due to the importance of this element which can also impair 

the performance and alertness of seafarers during the operations. Mismanagement of 

workload can cause degradation in bridge team performance. Therefore, the intense 

workload of the officer on watch must not be reflected in the voyage’s shifts, and 

inconvenient working hours must be avoided (Uğurlu et al., 2015a). 

Pilots and ship’s staff are performing a high-risk task that requires intense 

concentration and alertness, and any decrease in performance as a result of workload 

can potentially lead to a disaster. The result of this study and previous studies show 

that excessive workload can lead to mental fatigue which in turn impairs information 

processing and reaction time, increasing the probability of errors and ultimately 

leading to ship accidents (Hetherington et al., 2006).  In busy situations this is very 

difficult to manage, and if tasks are not deputed properly omissions could occur and 

disasters could happen.  

It is important to mention that nowadays maritime pilots on the bridge are exposed to 

information from several sources: crew verbal instructions, multiple instrument 

displays, and communication systems. Due to the introduction of the new 

communication and navigation devices on the bridge which require greater 

knowledge; higher levels of accuracy, proficiency, and intelligence are necessary. In 

addition, the complexity of maritime pilotage operations and the large number of tasks 

involved add to the pressure. Furthermore, harsh working conditions, and poor 

weather conditions add to the risk.  Moreover, the short time allocated to achieve the 

tasks has increased the work burden, level of stress, and fear for the pilotage operators. 
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As a result, in order to mitigate the effects of workload during the pilotage operation, 

tasks need to be evenly and properly distributed among the bridge team members. As 

Saeed (2015) stated, on port approaches, on the bridge of a ship the master needs to 

make sure that the tasks are allocated properly to be sure that the whole operation is 

performed successfully and safely.  

When responsibilities are assigned by the pilot and the captain of the ship during s 

pilotage operation to perform a task, then an individual is made responsible to perform 

one particular task and can avoid the risk of being overloaded. According to studies 

conducted by Chauvin et al. (2013), failure to delegate responsibilities of each team 

member, and inadequate task allocation are significant factors that can lead to 

maritime accidents. Chauvin concluded that, maintaining bridge resource management 

training for OOW (officers of the watch), ship’s masters, and pilots to manage this 

issue is necessary. 

6.5.1.2.8 Measures for mitigating the risk due to the improper/ inadequate use of tugs 

(RF8) 

As mentioned earlier, handling ships such as large passenger ships, container ships 

with towering deck cargo, high free board car carriers, mammoth tankers, and deep 

draught bulk carriers is considered one of the most complex tasks, and cannot be 

handled and treated the same way as small cargo ships (Armstrong, 2007, p.1). It 

requires sufficient numbers and sufficiently powerful tugboats, particularly in adverse 

weather conditions (Hus, 2012). The main purpose of tugboats is to assist ships, such 

as pushing and towing the vessels. Tugboats play a significant role in assisting vessels 

in berthing alongside and unberthing from the berth safely and efficiently. The lack of 

using sufficient tugs is considered high-risk and can affect the manoeuvring negatively 

and contribute to a ship’s berthing accident. It is important to highlight the fact that a 

shortage of tugs in some ports, makes ship’s manoeuvring more difficult, and as a 

result, using adequate numbers and sufficiently powerful tugboats are considered a 

major factor for ship piloting safety. 

According to the expert perspective, pilots always prefer to use adequate tugs during 

port manoeuvres, however due to the commercial pressure attributed to shipping 

companies, ship’s masters use the minimum number of tugs in order to make the 

manoeuvres cost efficient. Flag states and port states need to reconsider the mandatory 
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pilotage and tug usage regulations to mitigate this risk factor. This study and previous 

related studies showed that commercial pressures result in pilots and ship’s masters 

working outside established rules and sometimes do not allow pilotage operations to 

be performed as effectively as pilots would like. Therefore, in order to mitigate this 

risk factor, ports authorities should not squeeze pilots or ship's captains to work outside 

established rules due to commercial pressure (Darbra et al., 2007).  

The finding of this study shows that efficient ship-handling during berthing and 

unberthing operations is extremely important to the safety of the ship, which requires 

sufficient number and sufficiently powerful tugboats, skilful tugboat masters, and a 

qualified pilot. Failure to use sufficient numbers and sufficiently powerful tugboats 

and skilful tugboat masters may affect the quality of tugboat operations and contribute 

to marine accidents in ports. Therefore, in order to achieve successful and safe 

manoeuvres, port authorities should provide the required number of tugboats that are 

necessary for all kind of ships manoeuvres, particularly in adverse weather conditions. 

Additionally, qualified and experienced personnel should be employed and regular 

training for pilots and tugboat masters should be provided (Hsu, 20012).  

This opinion was confirmed by an expert senior pilot, who confirmed that, in order to 

avoid pilotage accidents and achieve safe berthing, qualified, experienced, and well 

trained pilots who have an appropriate knowledge of a complex manoeuvre with multi-

tugs should be employed, and personal qualifications and experience of operators 

should reflect the tug use in any particular operation. In order to ensure safe and 

efficient ship berthing, the port pilot should be familiar with the necessary knowledge 

of the berthing and unberthing and manoeuvring with tugs. The pilot should be fully 

aware of how to deal with each tug to carry out the task safely and efficiently.  

 In addition, theoretical and practical advanced training courses should be provided, 

and the level and standards of training for certification or licensing should be real, 

proper, and to a high standard. According to Akyuz (2017), the safety of the ship 

handling during berthing operations depends on the navigational experience, 

competence and high level of skills that the pilot, master of the ship, and tug operator 

have attained. Therefore, an appropriate education and training is the best method to 

proceed toward this aim and considered one of the most important risk mitigation 

measures. 
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 6.5.1.2.9. Measures for mitigating the risk due the failure of pilot to give correct and 

precise instructions (RF9).            

The Captain of the ship is the individual responsible for commanding the ship and 

giving the orders to the ship’s crew, officers in the bridge, and officers at the ship’s 

forward and aft, on what the pilot has suggested or instructed. The marine pilot in is 

on board ship because he is familiar with the port and the local area, he is responsible 

during piloting the vessel for the ship handling, as well as for other assistant parties 

such as tugs, shore mooring men, and mooring boats (Gard, 2014).  As a result, failure 

of the pilot to give precise or correct instructions during ship piloting is a high risk and 

can lead to disaster. Thus, in order to ensure safe and efficient ship berthing, control 

measures must be taken to ensure that the orders given by the pilot regarding steering, 

engine, instructions and commands to the bridge staff and external parties are correct 

and precisely. 

According to the experts and the results of this study, there are many contributing 

causal factors likely to occur during manoeuvring and affecting the pilot and 

preventing him from giving correct instructions. A pilot might fail to give precise 

instructions if he is fatigued or stressed due to high mental or physical workload or he 

might not be in good physical and mental fitness and under the effect of drugs or 

alcohol. Furthermore, the pilot might lose situational awareness, due to lack of 

planning for the intended manoeuvre, as a result of inadequate communication and 

language barriers and sometimes he is just not experienced and not a qualified pilot. 

Therefore, in order to mitigate the effect of this risk and reduce its frequency, it’s 

important to employ a trained, qualified and experienced pilot who has good 

knowledge of ship’s handling skills and is able to avoid all causes that could adversely 

influence his performance, and implement all the mitigations measures, to manage 

problems sufficiently and successfully.  

The most basic thing to be understood by a pilot in ship handling is to know how a 

ship behaves under all circumstances and what orders should be given in order to 

handle the ship to its destination successfully and safely (Murdoch et al., 2012). 

According to experts, ship’s handling characteristics must be also understood by the 

pilot. In addition, instructions from the pilot should be clear, simple and in a common 

language (English or a common language other than English). Port pilot should be 
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familiar with the knowledge of the electronic navigational systems, principles and the 

requirements of IMO resolution A960, as well as being fully aware of each tug’s power 

and how to use them properly. 

Moreover, situation awareness is very important to the implementation of the decision-

making process, and in order to acquire the required state of SA pilot should be 

familiar with the knowledge of the local area of the port, all the relevant elements 

influencing the quality of situational awareness, particularly during the approaching 

and entering of the vessel to the port in adverse weather conditions such as, strong 

current or wind, or reduced visibility. He must be aware of all the relevant factors 

external to the vessel such as tug’s and piloted ship’s performance, progress should be 

effectively and continuously monitored by the pilot 

The pilot shall also have a proper knowledge of the English language to maintain an 

effective and closed-loop communication and exchange information with the master 

regarding the passage and berthing plan prior to the commencement of the manoeuvre. 

Knowledge of this information will help to improve the marine pilot’s professional 

piloting ability, and will assist him, to easily identify the ship’s manoeuvring 

characteristics, as well as enable him to quickly assess the skills needed to control the 

ship and make the correct decision to handle the ship to its destination successfully 

and safely. 

The results of this study show that accidents in pilotage are likely to occur as a result 

of failure of the ship’s master to correctly follow the pilot’s directions (e.g. incorrect 

interpretations, refusal, rejection, intervention by master, etc.) during manoeuvring. 

This fact was also confirmed by Darbra et al. (2007), they reported that these 

occurrences are quite frequent making the pilot’s task much more difficult and of 

increased risk. There are many reasons that might lead the master of the ship to 

interfere or refuse pilot’s advice or instructions during the period of ship piloting. 

Because the pilot is human and he can make mistakes, and can become very fatigued, 

fall sick, and sometimes he is just not qualified (Gard, 2006).  However, on the other 

hand, failure of ship’s master to correctly follow the pilot’s directions, is also 

considered very hazardous and can affect ship navigation safety and contribute to 

marine accidents in ports. Therefore, in order to mitigate the influence of this risk 

factor and reduce its frequency, the full bridge team is required to be involved and 
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manoeuvring should be carefully planned and monitored. The ship’s bridge team and 

pilot should create an effective working environment on the bridge of a ship, and 

shipmasters should not challenge the pilot during the pilotage task (Darbra et al., 

2007). Sufficient briefing and discussion about who is in charge of the con are 

significant factors for achieving successful and safe ship piloting (Chauvin et al., 

2013).  

An experienced pilot stated that, “it has to be understood that one person only has the 

conduct of the vessel”. If that is the pilot then the master of the piloted ship must be 

confident that the pilot is doing his duties correctly and should not interfere or give 

conflicting orders unless the pilot is clearly behaving irresponsibly.  This point of view 

was also supported by Armstrong (2007, p.9).  A mutual trust and respect between 

pilot, and ship’s captain should be created (Salas et al., 2005). In addition, master and 

pilot must work as one team, and a close working relationship between pilot, and 

ship’s captain should be created (Armstrong, 2007, p.8). 

6.5.1.2.10 Measures for mitigating the risk due to the failure of pilots and ship’s 

masters to prepare a proper passage and berthing plan (RF10). 

As has been stated in the preceding section, in spite of the regulations, guidelines and 

large set of international conventions and codes which have been adopted by the 

International Maritime Organization, which aimed to either eliminate or mitigate 

mistakes caused by human factors during maritime operations, numerous maritime 

accidents still occurred as result of failure of pilots and ship’s masters to conduct a 

proper and effective passage and berthing plan prior to piloting the vessel, and many 

accidents could have been avoided if the pilot and the bridge team had a common 

understanding about how the passage would be carried out (Gard, 2007).  

Therefore, in order to avoid a crisis situation and achieve a successful and safe pilotage 

operation, the passage and berthing plan should be prepared and performed by the 

ship’s master and pilot prior to the commencement of the manoeuvre. In order to 

establish a proper and effective berthing plan, as mentioned earlier, both ship’s master 

and pilot must provide sufficient information regarding details of the passage and 

berthing plan before manoeuvring commences, marine pilot and ship’s master need to 

obtain the right information regarding vessel characteristics and berthing/sailing 

information e.g. port and channel depth of water, tugboats’ powers, and number of 
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tugboats used, etc., as soon as possible once the pilot has boarded the ship and prior 

to pilotage operation commencing. Knowledge of this information will help to 

establish a shared mental model of the voyage (TSB, 2014a), and assist both the pilot 

and the ship’s master to be aware of the whole situation (TSB, 2012), as well as help 

them to make the correct decisions and enable them to easily identify the ship’s 

manoeuvring characteristics, and in addition, help them to quickly assess the skills 

needed to control and handle the ship to its destination successfully and safely 

(CAMSS, 2012). 

Hetherington et al (2006) pointed out that, failure to comply with regulations is the 

major contributory factor for the majority of human errors that have been the cause of 

many maritime disasters. IMO has introduced several regulations to reduce the risk of 

vessel accident occurring due to failure of pilots and ship’s masters to prepare a proper 

passage and berthing plan, nevertheless, the issue of negligence and breaching the 

rules and regulations introduced by maritime authorities, as well as the lack of 

interpretation and enforcement prevent its full success. As mentioned previously, the 

IMO is incapable of effective control and has absolutely no powers of enforcement. 

Therefore, in order to implement and enforce regulations in good order, ship 

management organization, flag states, port states and classification societies should 

play key roles in the implementation and enforcement of maritime safety regulations 

and establish an advance monitoring system. 

According to IMO resolution A.893 (21), on Guidelines for voyage planning, voyage 

planning is a required task obliging the development of a plan in accordance with IMO 

rules and other factors specified by the master. The vessel’s passage plan is intended 

to enhance safety by highlighting high-risk areas and providing key information in a 

format that is readily available to those involved in the vessel’s navigation. When a 

pilot boards a vessel, it is important that both the vessel’s passage plan and the pilot’s 

passage plan are discussed during the master-pilot exchange. In order to avoid the risk 

of vessel accident and ensure safety of ship berthing, rules and regulations introduced 

by IMO such as safety management system (SMS) for pilotage operations and IMO 

resolution A. 960 (23), and IMO Resolution A. 893 ‘‘Guidelines for voyage 

planning’’, should be obeyed and implemented properly. Previous related studies 

showed that knowledge of IMO Resolution 960, IMO Resolution A. 893 ‘‘Guidelines 
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for voyage planning’’, SMCP, and Standard Maritime Communications Phrases are 

contributing factors to safety of pilotage and are required (Darbra et al., 2007). 

In addition, Mutual insurance organisations, which are commonly known as Protection 

and Indemnity clubs (P&I) have also produced guidance and an example of such is ‘A 

Master’s Guide to Berthing’ (Murdoch et al., 2012). They reported that, a berthing 

plan and exchange of information between pilot and master is significant for ensuring 

effective berthing operations, the captain of ship and pilot should know from each 

other what the difficulties in navigating the ship are. They confirmed that the primary 

task for the ship’s master and pilot is to provide accurate information regarding the 

manoeuvring, and how it will be conducted, in order to avoid the risks and to ensure 

safe passage and successful manoeuvring. 

The findings of this study show that the language barrier, and lack of communication 

and master-pilot information exchange, and pilot boarding point are influencing 

factors on the berthing and pilotage passage plan. An expert pilot mentioned that pilot 

boarding point should be at a sufficient distance from the commencement of the act of 

pilotage to allow sufficient time to meet the requirements of the master-pilot 

information exchange and agreement of the final pilotage passage plan. These two 

factors are considered significant factors in achieving safe ship berthing, and play a 

major role in the safety of pilotage operations. Sharing the vessel’s passage plan during 

the master-pilot information exchange enables pilots and bridge officers to identify 

and account for variables and discrepancies that may affect the safe navigation of the 

vessel. It also allows the pilot and all bridge team members to reach a common 

understanding of how the voyage will progress (TSB, 2014a).  

6.5.2 A CASE STUDY FOR THE APPLICATION OF THE TOPSIS ON MARINE 

PILOTAGE OPERATIONS. 

In Chapter 5 all of the relative weights for risk factors (i.e. criteria) in pilotage 

operations by use of the AHP method were calculated. In this Chapter the twenty-one 

mitigation options (i.e. alternatives) which were identified previously in section 

6.5.1.2 and illustrated in table 6.3 will be applied on marine pilotage operations using 

the TOPSIS method. The hierarchical structure of this decision problem is shown in 

Figure 6.3. This process is carried out to rank and select the alternatives as per their 

priorities for risk mitigation purposes as per the following steps:  
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Step 1: Step 1: Creation of Decision Matrix. 

In this study a questionnaire has been developed (see Appendix IIII-2) to evaluate the 

identified risk mitigation measures. At the beginning, a draft version of the 

questionnaire was developed. The questionnaire was then examined by three academic 

researchers from LJMU to comment on the appropriateness and clarity of the 

questions. The revised questionnaire as represented at the end was distributed to five 

experts who are working in the related field to contribute their judgements. In order to 

increase the valid response rate, the respondents were contacted in advance to 

determine if they would agree to participate in our survey. The same participating 

experts introduced in sections 6.5.1.1, 5.3.3, and section 5.6.1 have contributed to the 

evaluation purposes here in this chapter.  

As a first step of the TOPSIS method, the decision matrix is created, the established 

decision matrices are based on the evaluation sheet shown in Appendix IIII-2. It is 

used for evaluating 21 various alternatives (mitigation options) for each of the 11 risk 

factors separately. In order to rate the alternatives, experts used the linguistic variables 

shown in able 6.1. This research uses the basic linguistic reference as very low (VL), 

low (L), medium (M), High (H) and very high (VH). After collecting the experts' 

opinions through the evaluation sheet constructed, explained and depicted in 

Appendix IIII by using Equation 6.1, the results of the evaluations (performance 

scores) are obtained and assigned, and a decision matrix is developed. Then the 

average of their ratings are calculated and illustrated in Tables 6.4. For example, 

regarding the risk factor (criteria) “RF1” with respect to the alternative “A1”, all of 

the five experts ticked the number five. Then the average rating value for such a risk 

is 5 (25/5). As similar calculation process is applied to all other risk factors (criteria). 
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 Table 6.4.  Standard Decision Matrix

      

                   

Step 2: Construct the normalised decision matrix, 𝑟𝑖𝑗 

In this research, all the criteria are the risks in the pilotage operations, as per the goal 

mitigation of these risks is required. Hence, all the risks are termed as cost criteria. 

The normalized decision matrix was obtained by reducing each value on a column to 

a single denominator through dividing each such value to the square root of sum of 

squares of all values on such column. The normalized decision matrix, created by 

means of rij values is computed according to the Equation 6.2, as shown in the Table 

6.5. 

 By using the alternative ‘A1’ with respect to the risk factor (criteria) ‘RF1’ as an 

example, the value of rij is calculated as follows: 

𝑟𝑖𝑗=   

5

√52+32+4.42+1.62+ 4.22+1.42+42+1.62+3.82+4.22+1.42+1.42+12+1.42+1.42+1.42+1.22+1.42+32+1.42+1.22
  

= 0.4045 
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In a similar way, the calculation technique is applied to all alternatives with respect to 

all the attributes for calculating the rij values (Table 6.5). 

  Table 6.5.  The normalized decision matrix values for the pilotage risk mitigation 

measures 

 

 

Step3: Calculating the weighted normalised decision matrix, 𝑣𝑖𝑗 

 In order to construct weighted normalised decision matrix (𝑣𝑖𝑗), the weight of each 

risk factor obtained through AHP, which are 0.117, 0.086, 0.085, 0.072, 0.071, 0.068, 

0.063, 0.057, 0.054, 0.048, and 0.035 respectively (see table 6.2) is multiplied with 

each column of the normalised decision matrix. The weighted evaluation matrix ( 𝑣𝑖𝑗), 

is established using the Eq. (6.3) which is shown in Table 6.6.  

For instance, the 𝑣𝑖𝑗 value of the alternative ‘A1’ with respect to the risk factor 

(criteria) ‘RF1’ is calculated as follows: 

  𝑣𝑖𝑗= 0.117×0.4045= 0.0473 

In a similar way, other values of  𝑣𝑖𝑗are obtained as shown in Table 6.6. 
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 Table 6.6:  The weighted normalised decision matrix for the pilotage risk mitigation 

measures 

 

 Step 4: Determining the positive ideal solution (PIS), 𝐴+  and negative ideal solution 

(NIS),  𝐴−   

Based on the output values in Table 6.6, the positive and negative ideal solutions are 

determined respectively. As it was explained before the positive ideal solution (PIS) 

and the negative ideal solution (NIS) for the alternatives (mitigation options) can be 

determined via taking the maximum and minimum values within the row of weighted 

normalised decision matrix. The values of   

{(maxj Vij | j € j) and {(min j Vij | j € j’)} belong to the positive ideal solution and the 

values of {(maxj Vij | j € j) and {(min j Vij | j € j’)} belong to the negative ideal 

solution. Table 6.7, and Equations 6.4 and 6.5 refer.  
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     Table 6.7:  The positive ideal solution (PIS) and the negative ideal solution (NIS) 

 

 

Step 5: Calculate the distance separation measures for PIS, Sⅈ
+ and NIS  Sⅈ

− 

The distance separation is divided into two parts which are related to the PIS and NIS. 

The Sⅈ
+ is calculated using formula 6.6, while the Sⅈ

− is computed using equation 6.7. 

By using the distance separation values of Sⅈ
+and Sⅈ

−,  𝑅Cⅈ
+  is calculated using 

equation 6.8.  Referring to the alternative ‘A1’ as an example, the values of Sⅈ
+and Sⅈ

− 

are obtained as follows: 

√(0.0473 − 0.0473)2 + (0.0283 − 0.0322)2 + (0.0272 − 0.0272)2 + (0.0262 − 0.0262)2 + (0.0190 − 0.0207)2

+(0.0155 − 0.0177)2 + (0.0167 − 0.0222)2 + (0.0206 − 0.0206)2 + (0.0148 − 0.0148)2 

+(0.0124 − 0.124)2+ (0.0099 − 0.0113)2 

Sⅈ
+ = √0.0125 = 01118 

√(0.0473 − 0.0113)2 + (0.0283 − 0.0064)2 + (0.0272 − 0.0054)2 + (0.0262 − 0.0054)2 + (0.0190 − 0.0051)2

+(0.0155 − 0.0042)2 + (0.0167 − 0.0046)2 + (0.0206 − 0.0043)2 + (0.0148 −

0.0088)2 +(0.0124 − 0.0084)2+ (0.0099 − 0.0031)2 

Sⅈ
−= √0.00351 = 0.0593 
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In a similar way, the calculation technique is applied to the other alternative with 

respect to all factors for obtaining values of 𝐴+and 𝐴−. Table 6.8 illustrate the values 

of the distance separation and closeness of each alternative. 

Table 6.8. The distance separation and closeness of each alternative for the pilotage 

risk mitigation  

 

Step 6: Calculate the relative closeness to the idial solution 𝑅Cⅈ
+ 

 

The best solutions for pilotage risk mitigation will be selected based on the 𝑅Cⅈ
+ value 

closest to the one which has the shortest distance from the positive idial solution point 
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and the farthest distance from the negative idial solution point. The 𝑅Cⅈ
+  values will 

be used to show how important each alternative is through ranking. Alternative with 

high 𝑅Cⅈ
+  value is more important than the one with low 𝑅Cⅈ

+  value. Refering to the 

alternative “A1” as example and the Sⅈ
+ and Sⅈ

− value from  Table 6.8 the value of 𝑅Cⅈ
+ 

is calculated using equation 6.8.  as follows:  

 𝑅Cⅈ
+ A1 =

0.0593

0.1118+0.0593
 = 0.3465   

The 𝑅Cⅈ
+of the other alternatives can be computed and ranked accordingly in a similar 

way and their results are shown in Table 6.9.  

Table 6.9 illustrates TOPSIS results and final ranking for the implementation of risk 

mitigation measures as follows: 
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Tble 6.9:  Sⅈ
+, Sⅈ

− and 𝑅Cⅈ
+ values and ranking of all alternatives 

 

 

Step 7: Ranking the preference alternatives  

Based on the results shown in table 6.9, it is obvious that the value of 𝑅Cⅈ
+for the A21, 

A3, A5, A19, A6, A9, A4, A20, A10, and A1, are ranked according to their overall 

priorities by experts as the most optimal measures for safety performance 

improvement of pilotage operations and best solutions for mitigating the human 

related risk factors contributing to pilotage accidents.  
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6.5.2.1. Result and discussion 

The final results shown in table 6.9 indicate that A21 “compliance with the principles 

and the requirements of IMO resolution A960”  with  𝑅Cⅈ
+ value of 0.9844, A3 

“providing an adequate and a high standard of theoretical and practical training 

courses with regular renewal training including; ship handling, bridge simulator, 

BRM, ECDIS, and NAEST training courses to improve knowledge and competence” 

with  𝑅Cⅈ
+ value of 0.7657, A5 “improving the pilotage operators’ English language 

skills” with  𝑅Cⅈ
+ value of 0.7644, A19 “maintaining continuous watch keeping 

(surrounding area, tug’s and piloted ship’s performance and progressing should be 

monitored effectively and continuously)” with  𝑅Cⅈ
+ value of 0.6806, A6 “Ship’s staff, 

pilot, and assisting parties should maintain effective communication, cooperation, 

effective co-ordination, and  an effective exchange of information” with  𝑅Cⅈ
+ value 

of 0.5388, A9 “ Close working relationship on the bridge of a ship between pilot and 

ship’s captain should be created” with  𝑅Cⅈ
+ value of 0.5185, A4 “using common 

communication language on board” with  𝑅Cⅈ
+ value of 0.4167 and A20 “Provide 

sufficient and the required number of powerful tugboats which are necessary for all 

kind of ships manoeuvres” with  𝑅Cⅈ
+ value of 0.3601, A10  “Provide an adequate 

number of qualified, experienced, and well trained ship’s crew members, pilots and 

tugs operators working on shift (adherence to MLC rest hour maritime regulations)” 

with  𝑅Cⅈ
+ value of 0.3479, A1  Pilots should have an appropriate experience as a ship 

master before becoming a pilot 𝑅Cⅈ
+ value of 0.3465, A8  “Compliance with resolution 

A.893 (21) on Guidelines for voyage planning with  𝑅Cⅈ
+ value of 0.3439, and A11 

“Tasks and responsibilities should be understood and distributed properly among the 

bridge team members” with  𝑅Cⅈ
+ value of 0.3350, have the highest relative closeness 

indices and should therefore be recommended as the top risk mitigation measures for 

the maritime pilotage operations to be implemented. 

Resolution A.960 (23), recommendations on training and certification and on 

operational procedures for maritime pilots other than deep sea-pilots have been 

introduced by the International Maritime Organization (IMO) in 2003 in order to 

provide high standards of pilotage services. IMO resolution A960 (23), is the main 

reference guide available for the management of maritime pilotage safety. Its 

recommendations represent the essential demands to be considered in establishing 
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pilotage operations’ safety. It is aimed at ensuring pilotage safety performance at sea, 

preventing human injury or loss of life, and avoiding damage to the maritime 

environment and property (IMO, 2003). It encourages all port competent pilotage 

authorities to embrace and implement its principles and requirements. Therefore, to 

ensure safe pilotage operations and manage pilotage related risk, the principles and 

requirements of the IMO’s resolution A960 are considered as one of the most effective 

ways to improve the safety performance of pilotage operations and should be 

embraced and implemented by all pilotage performers. 

6.5.2.2 Model robustness evaluation process/ Sensitivity analysis   

In this study, evaluating the robustness of the model results delivered in the proposed 

model is conducted through sensitivity analysis. A sensitivity analysis is a method for 

verifying the robustness of the model employed and testing the degree of sensitivity 

of a model's variables and deemed by some as necessary for model building in 

diagnostic or prognostic setting (Saltelli, 2002). In MCDM methods, sensitivity 

analysis is a commonly suggested method to validate the feasibility and robustness of 

MCDM methods (Satty and Ergu, 2015).  

A sensitivity analysis is proposed to investigate the influence of different criteria 

weights on selection of risk mitigation measures.  It generates different scenarios that 

may change the ranking of alternatives. If the ranking order is changed by increasing 

or decreasing the importance of the criteria (the identified 11 risk factors), the results 

are expressed to be sensible, otherwise it is robust. In this research, sensitivity analysis 

is implemented to investigate the effect of different criteria weights on the selection 

of risk mitigation measures, to see how sensitively the alternatives change with the 

importance of the criteria (human risk factors). More specifically, each risk’s weights 

value has been exchanged with another risk’s weights.  

The weight matched with one criterion is increased separately by 10, and 20% and for 

each condition, the relative closeness to the ideal solution 𝑅Cⅈ
+was computed. The 

sensitivity of the twenty-one RMMs has been analysed when the most important 

criterion “risk factors” is increased separately by 10, 20% sequentially. It is noted that 

a slight increase in the value of distance separation measure for the PIS, Sⅈ
+for an 

RMM, resulted in a slight change of the relative closeness to an ideal solution  𝑅Cⅈ
+, 
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for a the most of  RMMs. The results of sensitivity analysis are presented in the 

graphical representation of these results in Figure 6.4.   

 

 

 

  

 

 

 

 

 

 

       

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         
         

 Figure 6-4: Sensitivity analysis: computation of the relative closeness to the ideal solution         

                  
 

6.5.2.3 Conclusion 

This chapter presented the last step in the pilotage risk/safety management process, 

i.e. risk mitigation measures identification and evaluation. Selecting the optimal risk 

mitigation measures is considered to be an important step in mitigating maritime 

pilotage related risks. In this research, instead of identifying the relevant mitigation 

measures based on the literature review, the current implemented measures were 

identified through the existing regulation, rules, and recommendations adopted by the 

IMO and other organizations and via experts’ perspectives. And then a risk mitigation 

measures questionnaire survey was used to rank the importance of the identified 

measures.  
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Mitigation of human related risk factor and determining an appropriate selection of 

RMMs in pilotage operations by taking subjective judgments of decision makers into 

consideration, is a complex subject involving vagueness and uncertainty in the 

decision-making process. Therefore, a novel integrated AHP and TOPSIS model is 

proposed to select the optimal mitigation measures in relation to the most significant 

risk factors in this chapter. An AHP method is used to determine the weight of each 

HCF derived from a previous chapter. Then a TOPSIS method is employed to 

determine the ranking of the RMMs. 

 The mechanism of the TOPSIS method was to analyse five experts’ subjective 

judgments. It is an appropriate instrument to help MCDM under uncertain 

environment where the available data is subjective and vague. Moreover, these 

measures consider all potential risks and the effectiveness of individual measures in 

mitigating these risks. It provides a practical decision support tool for taking explicit 

account of multiple types of risk in assisting decision-making and compares as well as 

ranks alternative measures in an indicator basis individually. By using the method 

proposed and presented in this chapter, decision makers can select the ideal solutions 

or alternatives (i.e. mitigation measures).  

The measures A21, A3, A5, A19, A6, A9, A4, A20, A10, A1, A8, and A11 were 

selected according to their overall priorities by experts as the best solutions for 

mitigating the human-related risk factors contributing to pilotage accidents, and the 

most optimal measures for performance improvement of pilotage operations and 

should, therefore, be recommended as the top measures to implement, for improving 

pilotage operations’ safety performance and mitigating the human-related risk factors 

contributing to pilotage accidents. 

The proposed model provides a reliable means of determining an appropriate selection 

of RMMs. Additionally, the innovative proposed model has been demonstrated by a 

case study and partially validated using a sensitivity analysis. The significance of the 

proposed model is that it could assist decision makers to determine an ideal RMMs in 

terms of overcoming the root cause of an incident/accident effectively. As a result, 

preventive measures can be taken to reduce human errors within pilotage 

environments, efficiently preventing or at least mitigating the risk of a similar 

incident/accident occurring in the future.  
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The use of TOPSIS in this Chapter will enable the incorporation of additional criteria 

such as costs of the alternatives into the selection decision in future. The contributions 

made on this thesis and the areas of future work will be discussed in the next chapter. 

 

CHAPTER SEVEN - CONCLUSIONS   

7.1 SUMMARY 

In the previous chapters, the various technical models involved in the development of 

the human error quantification in pilotage operations have been outlined in detail. As 

a whole, the research has provided a comprehensive a new conceptual decision making 

framework in order to provide an effective risk factors assessment tool, and offer a 

diagnostic instrument to reduce the human error, and enhance the maritime pilotage 

safety performance. This concluding chapter briefly summarises overall results and 

the findings of this research, it also introduces the themes for which further efforts are 

required in order to improve the developed subject matter in the research. The chapter 

highlights determined research objectives and research questions, and it is followed 

by a description of the contribution to the established knowledge and its practical 

implications. Finally, this chapter finishes with a discussion of research limitations 

and recommendations for further research. 

7.2 RESEARCH FINDINGS 

In this study to address the gaps, research questions for this study were developed. To 

answer the questions, a multi-methodology approach involving comprehensive 

literature review, questionnaire survey, and semi-structured interviews were adopted. 

Research question 1 was concerned with the developed appropriate frameworks to 

identify and classify the human related risk factors contributing to pilotage accidents, 

research questions 2, and 3 were concerned with a proposed novel conceptual 

framework which presents a mixed methodology (i.e. hybrid approach) that uses 

different decision making approaches for human related risk assessment, whereas 

research question 4 focused on risk mitigation. The proposed models are validated 

using case studies in some of the major ports and pilotage areas of the UK and 

Mediterranean from different marine experts’ perspectives. A summary of the research 

outputs specific to each question are demonstrated as follows:   
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i) The first objective of this study was to develop a comprehensive human factor 

related risk identification and classification model within the context of the maritime 

pilotage operations.  As has been mentioned previously, the procedure for risk factors 

identification is one of the most significant steps in the pilotage safety/risk 

management process. Risk identification enables decision-makers to classify, 

evaluate, and mitigate the contributory causal factors that can lead to maritime 

accidents during pilotage operations. As a result, in this research by using the human 

factor identification process, it was possible to evaluate and mitigate threats that 

influence maritime pilotage operations’ safety performance.  

This research would not be limited only to identifying the root causes of an 

incident/accident that are already known. The investigation provided a complete 

solution for the potential causes which may  lead to accidents in the future but have 

not happened yet, taking into consideration the ones which have previously occurred. 

To ensure that all the risk factors are identified, human related risk factors 

identification was carried out by using more than one method.  In this thesis, the author 

identifies a list of risk factors initially through a literature review. In addition, to 

determine the existing root causes that play a central role in the causal chain of 

maritime pilotage accidents, an analysis of a considerable number of worldwide 

marine accident investigation reports relating to vessels under pilotage operations 

were reviewed and examined.  

 Moreover, an empirical study has been conducted, interviews, and survey 

questionnaires with professional marine experts were carried out through which it was 

be possible to validate the existing risk factors and explore the other potential risk 

factors which may influence operators’ performance and contribute to pilotage 

accidents in the future. The human causal factors (HCFs) are identified and classified 

into five group main factors and each one is divided into sub-factors. An initial 

structural hierarchy risk taxonomic diagram is developed, and then validated by 

experienced experts from the maritime sector.  

ii) In this research a novel technique for HCFs evaluation was introduced. The 

proposed methodology fills the gaps and overcomes the shortcomings of the previous 

traditional assessment methods, which disregard the rank and evaluate the relative 

weight and the causal relationships among the human-related risk factors. As a result, 
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this research adopts a mixed methodology (i.e. hybrid approach) MCDM methods 

AHP and DEMATEL as a data analysis technique. Applying a mixed approach that 

uses different techniques in the same study can offset weaknesses in each. 

 In this research Analytical Hierarchy Process (AHP) is applied to determine the 

relative weights and rank the importance of the human factors that affect pilotage 

operation safety, while the Decision Making Trial and Evaluation Laboratory 

(DEMATEL) method is applied to identify whether there are relationships among 

these factors. By using the hybrid approach of two methodologies AHP and 

DEMATEL methods, it was possible to determine the most significant human factors 

that affect pilotage operation safety, and identify the relationships among these factors 

and determine which factors have influence on the other factors to be managed and 

controlled. 

The empirical results indicate that the hybrid approaches, attempting to use 

quantitative modelling for dealing with the uncertain working environments and 

dependency and interdependency problems for facilitating the quantification analysis 

of human factors in maritime pilotage operations can be successfully fulfilled. The 

hybrid methodology has proven to be a sound approach in dealing with MCDM 

problems under uncertainty which the previous studies have done little with on the 

measurement of maritime pilotage operations human related risk factors.  

iii) In this thesis, after the pilotage related risks factors were identified and assessed in 

order to manage and control these risks factors, a generic framework for determining 

and evaluating the implemented risk mitigation measures is developed. The 

implemented risk mitigation measures (RMMs) are identified by employing multiple 

sources for data collection in order to extract the most appropriate risk mitigation 

measures that can reflect the current situation for further evaluation, including a 

careful literature review, rules and regulations adopted by maritime authorities.  

In addition, in order to explore other mitigation measures that have not been mentioned 

in the literature and other documentation, questionnaire surveys were conducted with 

experienced marine experts from the UK and Mideterainean maritime domain. Finally, 

twenty-one risk mitigation measures (RMMs) were identified. Afterwards, in order to 

obtain feasible alternatives (RMMs/RCOs), the identified risk mitigation measures are 

prioritized and selected over the previous ranked risk factors using an appropriate 
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MCDM tool a TOPSIS method. The proposed model has been demonstrated through 

a case study and validated using a sensitivity analysis. The analysis results indicate 

that measures, A21, A3, A5, A19, A6, A9, A4, A20, A10, A1, A8, and A11 have the 

highest ranking among the alternative mitigation measures and should, therefore, be 

recommended. They are considered as the top risk mitigation measures that can ensure 

optimal operations of the pilotage operations and must be implemented. 

7.3 CONTRIBUTION TO THE FIELD 

According to the literature review, there are a small number of studies specifically 

focused on the human factor risk assessment, especially in pilotage operations. 

Nevertheless, the findings of the literature review reveal that the current human factor 

related risk analysis models are not capable of meeting challenges faced by maritime 

stakeholders.  Findings from the literature have revealed that there are few human-

related risk factors measurement frameworks in the pilotage and port industry. There 

is a distinct need for a new human-related risk factors measurement tool not only to meet the 

need of port stakeholders but also to develop diagnostic instruments to port and pilotage 

systems capable of supporting decision-making in solving complex pilotage operations 

problems in an uncertain environment. 

Thus, this thesis has developed a comprehensive human-related risk factors 

measurement framework, that provides significant insights into how human-related 

risks in the pilotage operations area can be understood and how organizations and 

stakeholders involved in the maritime industry can effectively manage these risks. 

Specifically, this research is the first study to provide an integrated maritime pilotage 

risk management framework, by using both qualitative and quantitative techniques for 

risk factors identification, assessment, and mitigation in the maritime pilotage 

operations area.   

The contribution mentioned above is made by identifying, assessing, and controlling 

the most significant HCFs in maritime pilotage operations. The framework provides 

an integrated approach to increase the safety and reliability of maritime pilotage 

operations. Also, given the dynamic nature of the complex system of pilotage 

operation, it provides an efficient safety prediction tool that can ease all the processes 

in the methods and techniques used with the risk management framework. 
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The proposed innovative framework provides an effective pilotage risk/safety 

assessment tool and offers a diagnostic instrument to help implement effective risk 

reduction strategies, in order to prevent or at least mitigate a human error 

incident/accident from occurring. The research has thus established essential findings 

and suggestions on risk management that will be valuable to the decision-making 

process in the offshore, port, and marine industry. The research has added to the 

frontier of knowledge in a way that has not been done before, by concentrating on the 

maritime pilotage operations to overcome the present limited nature of similar 

research in the maritime industry.  

 The novelty of the proposed framework lies in the fact that it incorporates the AHP, 

DEMATEL model, and TOPSIS as an integrated methodology, enabling the specific 

decision maker’s preferences to be considered in making the strategic decision on a 

human factor related risk and safety basis, linked to pilotage operations. They have 

been developed for academic implications to deal with various problems and issues in 

an uncertain port and pilotage environment. Additionally, this research makes 

practical contributions by conducting empirical studies in important ports and pilotage 

operation areas in both the UK and the Mediterranean, in order to support a resource-

effective and time-efficient decision-making tool for managers. 

Academic implications 

The frameworks use several decision making tools and procedures.  The methods and 

techniques are demonstrated as follows: 

Firstly, a new database of maritime related human factors has been identified. The 

research was not limited to only identifying the root causes of an incident/accident that 

are already known. The investigation provided a complete solution for the potential 

causes which may lead to accidents in the future but have not happened yet, taking 

into consideration the ones which have previously occurred. Therefore, decision-

makers can evaluate the current status of their risk management efforts with the risk 

mitigation measures and practices suggested in this research. The last establishes a 

new database on human causal factors that contribute to maritime pilotage accidents, 

which can assist in implementing effective risk reduction strategies to mitigate 

operator errors during pilotage operations, and can also assist in evaluating and 

determining appropriate preventive measures against future accidents 
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Secondly, the wider scope of pilotage operations human related risks has been 

assessed. The risk assessment step provides a useful tool by developing advanced risk 

assessment based models under high uncertainties for pilotage operations, using both 

quantitative and qualitative data. The research has introduced a new hybrid approach 

to evaluate human related risk factors, using a combined AHP and DEMATEL 

approach, currently lacking in the maritime pilotage operations field. This last also 

assists in overcoming the existing delusion of assuming that the HCFs are all of equal 

importance and independent of each other, which in fact is not the case. The two 

methods with different disciplines represent a new measurement method to address 

the challenges in pilotage risk factor measurement. Also, the framework for modelling 

HCFs dependent of weights and interdependency among factors is a novelty in 

maritime pilotage operations. 

The methodologies above facilitate the decision-making process by identifying the 

importance of the human factors influencing the safety of maritime pilotage 

operations, and provide a comprehensive illustration of relationships among the 

factors and also offer an insightful understanding of the mutual influence among the 

risk factors to be managed. Additionally, the proposed model also facilitates dealing 

with the limitation of the availability of data in the maritime domain, and the 

uncertainty and complexity that exist in the quantitative analysis of human factors.   

The developed hybrid approach could help reduce the existing gap left in human factor 

research studies, in terms of evaluating the relative importance of pilotage human 

related risk factors and determining the causal relationships among them. Furthermore, 

the proposed model can be tailored to recognise and incorporate the relationships and 

interdependencies among human factor variables, involved in other transportation 

systems and industrial fields. 

Thirdly, this research has proposed an innovative TOPSIS model to select an 

appropriate RMMs. The significance of applying TOPSIS method in this research is 

that the approach has carried out an empirical work that has not been done before, and 

during the selecting of the risk mitigations measures (RMMs), the proposed approach 

has looked into the risk factors that researchers in the discipline have not looked at 

before.  
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Fourthly, the proposed framework provides a platform to facilitate a generic risk-based 

method. Furthermore, the methodology is an objective way to handle subjective 

information in establishing a risk analysis to guide the development of risk control 

measures.  

Finally, similar framework can be utilised for transportation systems and other 

industrial fields, by modifying causal diagram and classification schemes of factors to 

suit the industry concerned, and enhance human error and human reliability data in the 

related fields. 

Practical implications 

The application of the frameworks proposed in this study is particular useful in dealing 

with the following issues. 

The empirical investigations in the UK and the Mediterranean ports herein are 

conducted to demonstrate the feasibility of the proposed frameworks. The results 

obtained provide both ships’ operators and port authorities with valuable insights, as 

this framework allows them to: 

1. Recognise the human related risks affecting the safety of port and maritime 

pilotage operations.  

2. Better understand the conditions and status of their operators' performance 

3. Improve competitiveness and customers’ satisfaction by improving the 

operators’ skills and increase the safety and reliability of maritime pilotage 

operations performance. 

4. Find optimal strategies and choose optimal risk mitigation measures, which is 

deemed to be an important and necessary step in the improvement of pilotage 

operations safety performance and maritime accidents mitigation. 

5. The DEMATEL outputs help decision makers to understand how human 

factors affect each other and therefore, how they affect the operator’s ability to 

achieve their tasks effectively. A better understanding of the relationships 

among the human factor variables involved in causing an incident/accident can 

facilitate a reduction in human error. Thus, utilization of AHP and DEMATEL 

methods can help the stakeholders and companies’ management in several 

areas; specifically to know on which factor they need to concentrate the most, 

and also what knowledge/skills have to be improved by the operators. 
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6. This study can help relevant stakeholders, such as port authorities and shipping 

companies, in the development of better policies, safety guidelines, and risk 

control measures to improve performance of operators and improve the safety 

of maritime pilotage operations.  

7. The implemented framework provides a logical and organised procedure to 

guide industrial risk management professionals such as port stakeholders, 

pilotage risk managers, and etcetera, through a series of well-defined 

structured phases and steps necessary to make knowledgeable, reliable, and 

efficient changes to the pilotage operations processes in ports and the marine 

industry. 

 

7.4 RESEARCH LIMITATIONS 

Developing a risk management framework with uncertainty treatment based decision 

making analysis methodology to identify, assess, and mitigate the human related risk 

factors affecting the pilotage operations has achieved the aim of this research. 

Although the research attempts to provide a comprehensive analysis using risk/safety 

management based methodologies including many approaches and techniques to 

facilitate the quantitative and qualitative data in maritime pilotage operations, this 

study has several limitations due to scope and time constraints.  In this regard, the 

aspects that were not covered in detail are part of the suggestions that would be 

desirable for further investigations in future work as follows.   

In this study, the secondary data have been retrieved mainly from little research 

literature and accident investigation reports due to the limited research focused on 

pilotage operation risk management to date. Additionally, the confidential nature of 

the ports and maritime industry when conducting the empirical studies highlights the 

difficulty of gathering primary and secondary data.  

The size of the sample was limited due to the time constraints, and the size of the 

questionnaire survey, which mostly required a pair-wise comparison between each 

factor.  In addition, sample selection is limited to specific professional roles. Most 

participants involved in this research either have abundant knowledge in academia or 

rich practical experience in the field or hold a position at or above the manager level 
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in practitioner fields. Therefore, a further limitation of the research is reflected in the 

size of the sample.   

Furthermore, another factor that needs to be considered is the length of the interview. 

In this study, the interview questions were designed to limit interviews to one hour or 

less (interviewing time), but some participants might have thought that there were too 

many questions and these feelings would have negatively affected their attitudes 

toward the questions.  Moreover, in this study, the empirical investigations were 

conducted only in some major ports in the UK and Mediterranean due to the cost and 

time constraints 

In addition, the proposed integrated model is highly dependent on the respondents’ 

knowledge, experience, and attitude that might lead to the subjective bias. For 

instance, respondents and their attitudes or perceptions might be affected by the 

surrounding environment in which they participated in the survey. The unexpected 

factors, such as personal issues, or other external factors might have impacts on their 

attitudes.  

7.5 RECOMMENDATION AND FUTURE RESEARCH  

Based on the results of this study, some future research directions and areas that can 

be further developed are as follows:  

i). Further studies involving a wider selection of experts from different pilotage 

regions/areas would strengthen the validity of finding. For HCFs weights assignment, 

this study used the judgement of fewer than 10 experts. The weights of HCFs can be 

changed when more experts take part in the judgement, which may lead to a more 

accurate result. In addition, when using more experts from different stakeholders, the 

important difference between different stakeholder groups can be analysed. Hence, a 

future study should gather multiple responses from each stakeholder. Furthermore, 

further empirical study in different regions/areas can be carried out to identify the best 

practices/solutions of the pilotage safety performers.  

ii). Although the most important human causal factors contributing to pilotage 

accidents are determined in this study, more research studies can be carried out to 

develop the present classification schemes, by including organisational factors, policy 
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implications, and natural and political issues that may affect the pilotage operations 

safety.  

iii). As any strategic implementation requires substantial investments, the decision to 

adopt appropriate risk management mitigation measures requires a trade-off between 

the benefits and costs involved. More work can be carried out to develop the present 

TOPSIS method and further research can cover the cost and benefit analysis to support 

significant strategic decisions on pilotage performance safety 

v). This study used the DEMATEL model to evaluate the causal relationships among 

the human causal factors contributing to pilotage accidents, further study to develop 

the proposed approach using a DEMATEL model can be made by incorporating an 

analytic network process (ANP) technique. An ANP can be used to determine 

interdependent weights of the human causal factors that play important roles in 

causing an incident/accident. 

vi). Many types of risk factors and alternatives existing in the pilotage operations, are 

not considered as they are less significant; nonetheless, they should be of concern. 

Therefore, it would be more comprehensive to consider all kinds of risks and 

mitigation measures in the structural model so that more complete results could be 

obtained.   

vii).The development of shipping management resulted in an increased number of 

maritime based training and research simulators. Simulator based studies can be 

conducted to perform qualitative and quantitative analyses of human-related risk 

factors. The proposed framework can be designed as computer software and used in 

maritime simulators for pilotage performance improvement purposes. 
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                                 LIST OF APPENDICES 

Appendix I: QUESTIONNAIR PARTICIPANT CONSENT FORM 

   

 

 

 

Title of Project: The impact of human factors on safety of pilotage operations of 

pilotage operations 

I confirm that I have read and understand the information provided for the above study.  

 

 

 

I have had the opportunity to consider the information, ask questions and have had 

these answered satisfactorily.  

 

 I understand that my participation is voluntary and that I am free to withdraw at any   

time, without giving a reason and that this will not affect my legal rights.    

 I understand that any personal information collected during the study will be 

anonymised and remain confidential. 

 I agree to take part in the above interview study.  

Name of Participant    Date    Signature 

Name of Researcher                Date   Signature 

                                                                                               

 

School of Engineering, Technology and Maritime 

Operations 

 Liverpool John Moores University  

Byrom Street 

 L3 3AF UK 

Questionnaire participant consent form 

 

 

School of Engineering, Technology and Maritime 

Operations 

 Liverpool John Moores University  

Byrom Street 

 L3 3AF UK 

Questionnaire participant consent form 
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Appendix II.1: The Questionnaire used for (HCFs) identification in Chapter 4 

                                        

                                                                       Liverpool John Moores University  

                                                                        School of Engineering, Technology and            

                                                                                          Maritime Operations 

                                                                                             Byrom Street 

                                                                                                 L3 3AF UK 

 

 To: Whom it may concern 

A research project at Liverpool John Moores University is currently being carried out 

with regard to the impact of human factors on maritime pilotage operations. I will be 

most grateful if you could kindly spend your valuable time and take part in this study. 

Your participation in this survey is voluntary and will only take a few minutes.  All 

the information that you provide in the course of your interview, completion of 

questionnaires or in general discussion will be greatly benefit and contribute to achieve 

the aim of this project. The information gathered in this survey will be treated in the 

strictest confidence. 

The questionnaire is anonymous, thus your response can not be attributed to you or 

your organization. Any refusal or incomplete questionnaire will be excluded without 

any responsibility on the participant. Completion of the questionnaire will indicate 

your willingness to participate in this study. If you require additional information or 

have any questions about this study, please feel free to contact me either by email or 

by phone at the addresses listed below. 

Yours faithfully, 

H. Oraith, 

PhD researcher, School of Engineering, Technology and Maritime Operations  
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Tel: + (44)7480120401 

Email: H.M.Oraith@2014.ljmu.ac.uk   

Or: hemz1966@hotmail.com 

Liverpool Logistics Offshore and Marine Research Institute (LOOM) 

Room 121, James Parsons Building 

Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK 

 

Section A: Introduction  

Identification of the relevant pilotage operations related risk factors is the vital step 

for employing efficient risk management in the maritime industry. The objective of 

this study is to identify the human factors contributing to pilotage accidents.  

The analysis of the past marine accident investigation reports showed that the main 

cause of the occurred accidents during pilotage operations were the human factor.  For 

this reason, in this part of questionnaire, questions were designed to verify the extent 

to which of the aforementioned factors contribute to maritime accidents. 

 

Section B: Respondent Profile 

Q1. What is your job title? Please indicate your rank? 

Q2. For how many years have you worked in maritime industry?  

Q3. Please can you outline a bit of your background?        

 

Section: C Identification of human factors influencing the safety of pilotage 

operations.  

Based on the findings of the previous studies, the following human factors shown in 

the below table (table 1) are considered contributory factors leading to pilotage 

accidents. Therefore, these factors need to be evaluated by using a five point Likert 

scale method. 
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Table.1 contributory human factors to maritime pilotage accidents 

 

       Human factors affecting safety performance of pilotage operations 

 

1. Failure to establish a proper manoeuvring plan prior to piloting vessel (RF1) 

2. Stress (RF2)       

3. Failure to exchange the information (RF3) 

4. Lack of situation awareness  (RF4) 

5. Distraction (RF5) 

6. Lack of effective communication and language barriers (RF6) 

7. Lack of bridge navigation equipment knowledge (RF7) 

8. Mental and physical work load (RF8) 

9. Pilot boarding and disembarking too close to breakwater  (RF9) 

10. Piloting ships in poor weather condition or navigating vessels outside published 

guidelines or limits draft (RF10) 

11. Lack of team work (RF11) 

12. Fatigue (RF12) 

 

EXPLANATIONS AND EXAMPLE  

Example 1. How strongly do you agree with the statement that the fatigue is a 

significant factor that contributing to the occurrence of maritime accidents during 

pilotage operations?  

Explanation of the above example 

The procedures and guidelines for answering this set of questionnaires are explained 

as follows: 
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In this part of questionnaire, participants will be asked to answer the statement using 

the following 5 point Likert scale: strongly disagree; disagree; neither agree nor 

disagree; agree; and strongly agree. 

Firstly before to proceed with the evaluating, an expert has to understand the ratio 

scale measurement used in this study. Table 2 below describe the numerical 

assessment together with the linguistic meaning of each rating variable. The grades 

illustrated in Table 2 show the effect or importance value of the risk factors. It is used 

for evaluating and rating of the importance of the risk factors shown in table1. An 

expert is required to look at the measures. Subsequently fill the empty spaces by 

selecting the appropriate grades from Table 2 

         Table 2: Five point Likert scale 

 

An expert is required to give a possible judgment to question based on his/her expertise 

and experience in the shipping industry.  For instance: if the expert believe that the 

fatigue is significant factor and contribute to the occurrence of maritime accidents 

during pilotage operations and strongly agree with this statement then he will tick (/) 

on the given table (see table 3). 

         Table 3. Example for selecting the factors 

 

Questionnaire 

In this part of questionnaire as shown in the below table, questions were designed to 

verify the extent to which of the aforementioned twelve factors contribute to maritime 

accidents.   

Linguistic  

variables 

Strongly 

disagree         

disagree         neither agree 

nor disagree          

agree           Strongly agree          

score 1 2 3 4 5 
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Statements were made and participants are required to answer each statement using 

the 5 point Likert scale as illustrated in the example table (table 3): strongly disagree; 

disagree; neither agree nor disagree; agree; and strongly agree.  

An expert is required to give a possible judgement to all questions based on his/her 

expertise and experience in pilotage operation 

Q1:  Please refer table 1 before answering the questionnaire. For your opinion as an 

expert, how strongly do you agree with the statements shown in the below table? 

Please kindly give your comments and select the appropriate grade from Table 2.  

  Table 4. Potential risk factors affecting safety performance of pilotage operations 

 

 

Q2. Have you had any issues or incidents in the past affected the safety of the ship 

piloting. 

Q3. From your experience do you know any additional causal factors that might affect 

pilotage operations performance? 

THANK YOU ONCE AGAIN FOR YOUR KIND PARTICIPATION IN THIS SURVEY 
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Appendix II.2 List of Semi-structured Interview Questions for the purpose of 

Chapter four                                          

 

The interviewer will ask questions where necessary to help to understand. 

If the interviewer thinks something is particularly important he will ask questions for 

more information.  

Interviewer probes as required. 

Q. What is your job title? Please indicate your rank? 

Q. For how many years have you worked in maritime industry?  

Q. Please can you outline a bit of your background?        

Q. How far do you agree with statements listed in the questionnaire?  

Q. What are your views on human element factors that impact on safety during 

pilotage operations? Is there anything else you would like to add about human element 

factors? 

Q. What kind of mistakes could be made by ship crew members or pilots, and tugs 

assistance during pilotage and ship berthing? 

Q.  Have you had any issues or incidents in the past affected the safety performance 

of the pilotage operations?  

Q. How do you think if someone with less experience (e.g. ship’s crew members, 

pilots, and tugs’ operators? Can you think of any problems that would have happened 

or they might have encountered? 

Q. In your point of view do you think that the good skills in English language is helpful 

during pilotage operations to avoid accidents? 

Q. In your point of view do you think that the new technology is helpful during 

pilotage operations to avoid collisions and grounding? Explain why? 
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Q. Do you think that poor knowledge in the use of navigational aids such as AIS, 

ARPA, and ECDIS effect pilotage operation?  Explain why?   

Q. Do you think IMO regulations are sufficient and has successfully addressed the 

human element and pilotage issues?  

Q. In your opinion what are the reasons that could lead pilots and ships' staff making 

errors in spite of existing the rules and regulations adopted by IMO? 

  

Appendix II.3: Questionnaire used for (HCFs) classification in Chapter 4 

Section A: Introduction 

Based on the research, the purpose categorizing the human factor related risks in 

pilotage operations into five main categories: 1) Bridge team management failure (F1); 

2) Technical skills shortcoming (F2); 3）Instructions and orders failure (F3); 4) Rules 

and regulations noncompliance (F4), and 5) The Individual- task interaction factors 

(F5), and each one is divided into sub-factors. That is, the most contributory causal 

human factors of maritime pilotage accidents. The sub-factors are sub criteria which 

are, F1: (F11, F12, F13, F14 and F15), F2: (F21, F22, F23, and F24), F3: (F31, F32, 

F33, and F34), F4: (F41, F42, F43, and F44), and F5: (F51, F52, F53, and F54). (See 

the table below). 
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The list of causal factors contributing to maritime accidents in pilotage operations 

Main factors Sub-factors 

 

 

 Non-Technical skills (Bridge team 

management failure) (F1) 

 

 

Lack of team work (Poor bridge team-pilot integration, cooperation, and 

coordination,)  (F11) 

 

lack of effective communication and language problems (F12) 

Failure to exchange the information between pilot and ship’s master prior to 

pilotage operation (F13) 

 

Lack of situation  awareness (F14)  

The master’s and pilot’s ineffective monitoring of the  tugboats drivers, mooring 

boats, and shore mooring personnel performance and vessel’s progress (F15) 

 

Technical skills shortcoming(F2) 

 

 

Lack of ship handling skills due to  lack of improper training and experience, 

(F21) 

Lack of familiarity with the electronic navigational equipment knowledge (F22) 

Lack of skills of the crewmember on ship board, tugs, and shore mooring 

personnel (F23) 

Improper/ inadequate use of tugs (F24) 

 

Instructions and orders failure (F3) 

 

Failure of pilot to give precise instructions (F31) 

Failure of the ship’s master to correctly follow the pilot directions (F32). 

Failure of  tug’s masters   to carry out the pilot’s instructions precisely with respect 

to position and towing power (F33) 



277 

 

Orders regarding anchoring,  steering, and engine requests, are not following out 

by ship’s crewmembers correctly(F34) 

Rules and regulations noncompliance 

(F4) 

Failure to establish a proper manoeuvring plan prior to piloting vessel (F41).   

Failure to proceed with safe speed as stipulated in COLREG (F42)  

Piloting ships in bad weather condition or navigating vessels outside published 

guidelines or limits draft due to subject to commercial pressure (F43) 

Poor boarding arrangements (e.g., pilot boarding and disembarking too close to 

breakwater  (F44) 

 

Individual- task interaction factors (F5) 

 

Fatigue (F51)  

Mental and physical work load (F52) 

Distraction and simultaneous tasks during the time of berthing operations  (F53) 

Stress (F54) 

 

Section B: Questionnaire 

The following questions are related to modifying and further validating the identified 

risk factors in the pilotage operations. The main question is to classify the factors 

which can represent their associated main factors (categories) and sub factors and the 

questions are:   Do you think the main group factors (categories) and their sub-factors 

are well classified?”, and if necessary, modification, removal, division and 

combination are allowable 
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1. Risk element category (F1): Bridge team management failure (Lack of non-

Technical skills) 

                               Identified Risk Factors Yes No Any comments 

 Lack of team work (F11)    

lack of effective communication and Language problems (12)    

 Failure to exchange the  information between pilot and ship’s 

master (F13) 

   

 Lack of situation awareness (F14)    

The master’s and pilot’s ineffective monitoring of the tugboats 

drivers, mooring boats and shore mooring personnel 

performance and vessel’s progress (F15) 

   

Any other elements should be considered?  

 

Considering the above structure, elements contributing to risks associated with Lack 

of non-technical skills (Bridge team management failure) (F1) are categorized into 

“Lack of team work”, “Language problems and lack of effective communication”, 

“Failure to exchange the information between pilot and ship’s master”, “Lack of 

situation awareness”, and “The master’s and pilot’s ineffective monitoring of the 

tugboats drivers, mooring boats, and shore mooring personnel performance and 

vessel’s progress”. Do you think this categorization is appropriate? 
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2. Risk element category (F2): Technical skills shortcoming  

                                      Sub-factors Yes No Any comments 

 Lack of ship handling skills due to  lack of experience, 

improper training, and attitude (F21) 

   

Lack of familiarity with the electronic navigational equipment 

knowledge (F22) 

   

 Lack of skills of the crewmember on ship board, tugs, and 

shore mooring personnel (F23) 

   

 Improper/ inadequate use of tugs (F24)    

Any other elements should be considered?  

 

Considering the above structure, elements contributing to risks associated with 

Technical skills shortcoming (F2) are categorized into “Lack of ship handling skills 

due to lack of experience, improper training, and attitude”, “Lack of familiarity with 

the electronic navigational equipment knowledge”, “Lack of skills of the crewmember 

on ship board, tugs, and shore mooring personnel”, and “Improper/ inadequate use of 

tugs”,. Do you think this categorization is appropriate? 
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3. Risk element category (F3): Instructions and orders failure  

Sub-factors Yes No Any comments 

Failure of pilot to give precise instructions (F31)    

Failure of the ship’s master to correctly follow the pilot directions 

(F32). 

   

Failure of  tug’s masters   to carry out the pilot’s instructions 

precisely with respect to position and towing power (F33) 

   

Orders regarding anchoring,  steering, and engine requests, are not 

following out by ship’s crewmembers correctly (F34) 

   

Any other elements should be considered?  

 

Considering the above structure, elements contributing to risks associated with 

Instructions and orders failure (F3) are categorized into “Failure of pilot to give precise 

instructions, Failure of the ship’s master to correctly follow the pilot directions”, 

“Failure of tug’s masters   to carry out the pilot’s instructions precisely with respect to 

position and towing power”, “Orders regarding anchoring, steering, and engine 

requests, are not following out by ship’s crewmembers correctly”. Do you think this 

categorization is appropriate? 
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4. Risk element category (F4): Rules and regulations noncompliance  

                                           Sub-factors Yes No Any comments 

Failure to establish a proper manoeuvring plan prior to 

piloting vessel (F41).   

   

Failure to proceed with safe speed as stipulated in COLREG 

(F42)  

   

Piloting ships in bad weather condition or navigating vessels 

outside published guidelines or limits draft due to subject to 

commercial pressure (F43) 

   

Poor boarding arrangements (e.g., pilot boarding and 

disembarking too close to breakwater  (F44) 

   

Any other elements should be considered?  

 

Considering the above structure, elements contributing to risks associated with Rules 

and regulations noncompliance (F4) are categorized into “Failure to establish a proper 

manoeuvring plan prior to piloting vessel”, “Failure to proceed with safe speed as 

stipulated in COLREG”, “Piloting ships in bad weather condition or navigating vessels 

outside published guidelines or limits draft due to subject to commercial pressure”, 

and “Poor boarding arrangements (e.g., pilot boarding and disembarking too close to 

breakwater  ”. Do you think this categorization is appropriate? 
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5. Risk element category (F5): Individual- task interaction factors 

Sub-factors Yes No Any comments 

Fatigue (F51)     

Mental and physical work load (F52)    

Distraction and simultaneous tasks during the time of 

berthing operations  (F53) 

   

Stress (F54)    

Any other elements should be considered?  

 

Considering the above structure, elements contributing to risks associated with 

Individual- task interaction factors (F5) are categorized into “Fatigue”, “Mental and 

physical work load”, “Distraction and simultaneous tasks during the time of berthing 

operations  ”, and “Stress”. Do you think this categorization is appropriate? 
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Appendix III-1: The Questionnaire used for AHP Technique in Chapter 5   

                                        

                                                                       Liverpool John Moores University  

                                                                        School of Engineering, Technology and            

                                                                                          Maritime Operations 

                                                                                             Byrom Street 

                                                                                                 L3 3AF UK 

                    

To: Whom it may concern 

A research project at Liverpool John Moores University is currently being carried out 

with regard to the impact of human factors on maritime pilotage operations. I will be 

most grateful if you could kindly spend your valuable time and take part in this study. 

Your participation in this survey is voluntary and will only take a few minutes.  All 

the information that you provide in the course of your interview, completion of 

questionnaires or in general discussion will be greatly benefit and contribute to achieve 

the aim of this project. The information gathered in this survey will be treated in the 

strictest confidence. 

The questionnaire is anonymous, thus your response can not be attributed to you or 

your organization. Any refusal or incomplete questionnaire will be excluded without 

any responsibility on the participant. Completion of the questionnaire will indicate 

your willingness to participate in this study. If you require additional information or 

have any questions about this study, please feel free to contact me either by email or 

by phone at the addresses listed below. 

Yours faithfully, 

H. Oraith, 

PhD researcher, School of Engineering, Technology and Maritime Operations  
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Tel: + (44)7480120401 

Email: H.M.Oraith@2014.ljmu.ac.uk   

Or: hemz1966@hotmail.com 

Liverpool Logistics Offshore and Marine Research Institute (LOOM) 

Room 121, James Parsons Building 

Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK 

 

Introduction                                  

Based on literature review and accident investigation reports, taxonomy including the 

factors influencing marine pilotage operations safety and causing accidents as shown 

in table1. 1, are illustrated. The goal of this study is to select the most important factor 

that contributing to the occurrence of maritime accidents during pilotage operations. 

These factors are considered to affecting the safety of the pilotage operations.  

Therefore, the factors and sub-factors listed in Table1.1 are the parameters that need 

to be evaluated by using a “Pair-wise Comparisons” technique. The pairwise 

comparison between the factors will be conducted using the Analytical Hierarchy 

Process (AHP) approach to analyse the relative importance for each different factor.  
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Table 1. 1: The hierarchy for the contributory causal factors of pilotage accidents 

(HCFs) 

Factors Sub-factors  

1 F1 

Bridge team management 

failure 

(Non-technical skills 

shortcoming) 

 

 

F11 Lack of team work (F11) 1 

F12 Lack of effective communication and language barriers 2 

F13 Failure to exchange the information 3 

F14 Lack of situation awareness 4 

F15 

The master’s and pilot’s ineffective monitoring of the  

tugboats drivers, mooring boats, and shore mooring 

personnel performance and vessel’s progress 

5 

2 F2 
(Technical skills 

shortcoming) 

F21 

Lack of ship handling skills due to improper training and 

lack of experience. 

6 

F22 

Lack of familiarity with the electronic navigational 

equipment knowledge 

7 

F23 

Lack of skills of the crewmember onboard ship, tugs, and 

shore mooring personnel. 

8 

F24 Improper/ inadequate use of tugs. 9 

3 F3 

Instructions and  

orders failure 

F31 Failure of pilot to give precise instructions. 10 

F32 

Failure of the ship’s master to correctly follow the pilot 

directions. 

11 
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F33 

Failure of tug’s masters to carry out the pilot’s 

instructions precisely. 

12 

F34 

Orders regarding anchoring, steering, and engine 

requests, are not following out by ship’s crewmembers 

correctly. 

13 

4 F4 
Rules and regulations 

noncompliance 

   F41 

Failure to establish a proper manoeuvring plan prior to 

piloting vessel. 

14 

F42 

Failure to proceed with safe speed as stipulated in 

COLREG 

15 

F43 

Piloting ships in bad weather condition or navigating 

vessels outside published guidelines or draft limits. 

16 

F44 

Poor boarding arrangements (e.g., pilot boarding and 

disembarking too close to breakwater) 

17 

5 F5 
Individual- task 

interaction factors 

F51 Fatigue. 18 

F52 Mental and physical workload. 29 

F53 Distraction during the time of berthing operations 20 

F54 Stress 21 

 

 The procedures and guidelines for answering this set of questionnaires are 

explained as follows: 

1. Pair-wise comparison 
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In this questionnaire there will be two type of pair-wise comparison. 

There will be an example at the beginning of the questionnaire showing how the 

questionnaire must be filled. There will also be a scale of importance at the beginning 

of each questionnaire. 

The first questionnaire is:  Pair-wise comparison between the main five factors (F1, 

F2, F3, F4, and F5).  Then the second questionnaire is:  Pair-wise comparison between 

the sub-factors, which are, F1: (F11, F12, F13, F14 and F15), F2: (F21, F22, F23, and 

F24), F3: (F31, F32, F33, and F34), F4: (F41, F42, F43, and F44), and F5: (F51, F52, 

F53, and F54). 

Before proceeding with the “Pair-wise Comparisons” technique, an expert has to 

understand the ratio scale measurement used in this study. The table 1.2 below 

describe the numerical assessment together with the linguistic meaning of each 

number. It’s used for comparing factors with each other.  Importance is rated from 1 

to 9, the fundamental scale of values (Saaty 2001). 
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                                         Table 1. 2 Scale of importance 

 

 

 

 

 

 

 

 

An expert is required to give a possible judgment to all questions based on his/her 

expertise and experience in the shipping industry.  

To select the most important factor that contributing to the occurrence of maritime 

accidents during pilotage operations. The expert will be asked to underline accordingly 

the rate of importance of each factor and sub-factor in the given column. For instance:  

only one number either on the right or the left of the scale for every comparison as 

shown in the example at the beginning of questionnaire survey. 

 

1.1 Example of pair-wise comparison of the main factors.  

Please refer table1.1 before answering the questionnaire, in order to evaluate the 

importance of each factor. For instances to compare between the (bridge team 

management factor), and the factor of (technical skills) you should see to the table 1.2 

before you judge and evaluate the rate of importance.  

Intensity of importance   Definition 

1  Same importance 

2  Slightly more important 

3  Weakly more important 

4  Weakly to moderately more important 

5  Moderately more important 

6  Moderately to strongly more important 

7  Strongly more important 

8  Greatly more important 

9  Absolutely more important 
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The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations.  

 To achieve the above goal, how important is the factor of the bridge team management 

(F1) compared to technical skills shortcoming factor (F2)?  

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number refer to the factors in table1. 1, and to the scale of importance table1. 2, before 

answering the questionnaire 

If you think bridge team management failure factor (F1) is moderately more 

important than technical skills shortcoming factor (F2) in contributing to the 

occurrence of maritime accidents during pilotage operations, then please underline 

as follows:  

Factor  Intensity of relative importance Factor  

Bridge team management (F1) 9 

 

8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Technical skills (F2) 

 

If you think technical skills shortcoming factor (F2) is moderately more important 

than bridge team management failure factor (F1) in contributing to the occurrence of 

maritime accidents during pilotage operations, then please underline as follows:  

Factor Intensity of relative importance  Factor 

Bridge team management failure 

(F1) 

9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Technical skills 

shortcoming  (F2) 
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If you think bridge team management failure factor (F1) and technical skills 

shortcoming factor (F2) are the same important in contributing to the occurrence of 

maritime accidents during pilotage operations, then please underline as follows:  

 

Factor Intensity of relative importance Factor 

Bridge team management failure (F1) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Technical skills 

shortcoming (F2) 

 

1.2 The first part of the questionnaire is:  Pair-wise comparison between the main 

five factors (F1, F2, F3, F4, and F5).   

 1. Bridge team management failure (F1)  

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and table1.2, scale of 

importance before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the factor bridge team management 

failure (F1), compared to the other group factors? 
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Factor Intensity of relative importance  Factor 

(F1) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F2) 

(F2) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F3) 

(F3) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F4) 

(F4) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F5) 

 

 

2. Technical skills shortcoming (F2)  

Could you please fill the questionnaire/ table hereunder by underlining the appropriate 

number (See exampl1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the factor of the technical skills 

shortcoming (F2), compared to the other factors? 

Factor Intensity of relative importance Factor 

(F2) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F3) 

(F2) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F4) 

(F2) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F5) 
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3.  Instructions and orders failure (F3) 

Could you please fill the questionnaire/ table hereunder by underlining the appropriate 

number (See table 1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. To select the most important 

factor that influence the safety of pilotage operations  

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the factor of the Instructions and orders 

failure (F3), compared to the other factors? 

 

Factor Intensity of relative importance Factor 

(F3) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 ((F4) 

(F3) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F5) 

 

4.  Rules and regulations noncompliance (F4) 

Could you please fill the questionnaire/ table hereunder by underlining the appropriate 

number (See table 1.1), and refer to the factors in table1.1, and table1.2, scale of 

importance before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations.  
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To achieve the above goal, how important is the factor of the rules and regulations 

noncompliance (F4) compared to the other factor? 

 

Factor Intensity of relative importance  Factor 

(F4) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F5) 

 

1.3 The second part of the questionnaire is:  Pair-wise comparison between the sub-

factors, which are: F1: (F11, F12, F13, F14 and F15), F2: (F21, F22, F23, and F24), 

F3: (F31, F32, F33, and F34), F4: (F41, F42, F43, and F44), and F5: (F51, F52, F53, 

and F54). 

 Group1. Bridge team management failure (Non-technical skills shortcoming) (F1) 

1. Lack of team work (Poor bridge team-pilot integration, cooperation, coordination, 

and close loop) (F11) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See table1.1), and refer to the table1.2, scale of importance before answering 

the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the factor lack of team work (Poor bridge 

team-pilot integration, cooperation, coordination, and close loop) (F11), compared to 

the other factors? 
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Sub-factor Intensity of relative importance  Sub-factor 

(F11) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F12) 

(F11)) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F13) 

(F11) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F14) 

(F11) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F15) 

 

2. Lack of effective communication and Language barriers (F12) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations.  

To achieve the above goal, how important is the Lack of effective communication and 

language barriers (F12), compared to the other factors? 

Sub-factor Intensity of relative importance  Sub-factor 

(F12) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F13) 

(F12) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F14) 

(F12) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F15) 
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3. Failure to exchange the information between pilot and ship’s master prior to 

pilotage operation (F13).  

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the failure to exchange the information 

between pilot and ship’s master (F13), compared to the other factor? 

 

 

Sub-factor Intensity of relative importance Sub-factor 

(F13) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F14) 

     (F13) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F15) 

 

4. Lack of situation awareness in the bridge team (F14)   

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 
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The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the Poor shared situation awareness in 

the bridge team (CFA4) compared to the other factor? 

Sub-factor Intensity of relative importance Sub-factor 

(F14) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F15) 

 

Group 2. Technical skills shortcoming (F2) 

1. Lack of ship handling skills due to lack of experience, improper training, and 

attitude (F21) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the lack of ship handling skills due to 

Lack of experience, improper training, and attitude (F21), compared to the other 

factors? 
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Sub-factor Intensity of relative importance Sub-factor 

(F21) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F22) 

F21) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F23) 

(F21) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F24) 

 

2. Lack of technical knowledge and failure to use the bridge navigation 

equipment such as (RADAR, ECDIS) (the lack of familiarity with the 

navigational systems) (F22) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the table1.2, scale of importance before 

answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the lack of familiarity with the electronic 

navigational equipment knowledge (F22), compared to the other factors? 

Sub-factor Intensity of relative importance Sub-factor 

(F22) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F23) 

(F22) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F24) 
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3. Lack of skills of the crewmember on ship board, tugs, and shore mooring 

personnel (F23) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the lack of skills of the crewmember on 

ship board, tugs, and shore mooring personnel (F23), compared to the other factor? 

Sub-factor Intensity of relative importance  Sub-factor 

(F23) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F24) 

 

Group 3. Instructions and orders failure (F3) 

1. Failure of pilot to give precise instructions (F31) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 
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To achieve the above goal, how important is the failure of pilot to give precise 

instructions (F31), compared to the other factors? 

Sub-factor Intensity of relative importance  Sub-factor 

(F31) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F32). 

(F31) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F33) 

(F31) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F34) 

 

2. Failure of the ship’s master, and/or personnel to correctly follow the pilot 

directions (e.g. refusal, rejection, intervention by master) (F32) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the failure of the ship’s master to correctly 

follow the pilot directions (e.g. incorrect interpretations, refusal, rejection, 

intervention by master, etc.) (F32), compared to the other factors? 

Sub-factor Intensity of relative importance  Sub-factor 

 (F32). 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F33) 

 (F32). 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F34) 
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3. Failure of tug’s masters   to carry out the pilot’s instructions precisely with 

respect to position and towing power (F33) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the failure of tug’s masters   to carry out 

the pilot’s instructions precisely with respect to position and towing power (F33), 

compared to the other factor? 

Sub-factor Intensity of relative importance  Sub-factor 

 (F33) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F34) 

 

Group 4. Rules and regulations noncompliance (F4) 

1. Failure to establish a proper manoeuvring plan prior to piloting vessel (F41) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 
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To achieve the above goal, how important is the failure to establish a proper 

manoeuvring plan prior to piloting vessel (F41), compared to the other factors? 

Sub-factor Intensity of relative importance  Sub-factor 

(F41) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F42) 

(F41) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F43) 

(F41) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F44) 

 

2. Failure to proceed with safe speed as stipulated in COLREG (F42) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the failure to proceed with safe speed as 

stipulated in COLREG (F42), compared to the other factors? 

Sub-factor Intensity of relative importance  Sub-factor 

 (F42) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F43) 

 (F42)                   (F44) 
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2. Piloting ships in bad weather condition or navigating vessels outside published 

guidelines or limits draft due to subject to commercial pressure (F43) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the Piloting ships in bad weather 

condition or navigating vessels outside published guidelines or limits draft due to 

subject to commercial pressure (F43) compared to the other factor? 

Sub-factor Intensity of relative importance  Sub-factor 

 (F43) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9  (F44) 

 

Group 5. Individual- task interaction factors (F5) 

1. Fatigue (F51) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 
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To achieve the above goal, how important is the Fatigue (F51), compared to the other 

factors? 

Sub-factor Intensity of relative importance  Sub-factor 

(F51) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F52) 

(F51) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F53) 

(F51) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F54) 

  

 

2. Mental and physical work load (F52) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the mental and physical work load 

(CFE2), compared to the other factors? 

Sub-factor Intensity of relative importance Sub-factor 

 (F52) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F53) 

 (F52) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 (F54) 
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3. Distraction during the time of berthing operations (F53) 

Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (See example1.1), and refer to the factors in table1.1, and to the scale of 

importance table1.2, before answering the questionnaire. 

The goal is to compare between them and select the most important factor that could 

have negative impact on pilotage safety and contributing to the occurrence of maritime 

accidents during pilotage operations. 

To achieve the above goal, how important is the Distraction during the time of berthing 

operations (F53), compared to the other factor? 

Sub-factor Intensity of relative importance  Sub-factor 

 (F53) 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Stress (F54) 

 

      THANK YOU ONCE AGAIN FOR YOUR KIND PARTICIPATION IN THIS SURVEY 
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Appendix III-2: The Questionnaire used for DEMATEL method in chapter 5 

                                        

                                                                       Liverpool John Moores University  

                                                                        School of Engineering, Technology and            

                                                                                          Maritime Operations 

                                                                                             Byrom Street 

                                                                                                 L3 3AF UK 

                                                                       

To: Whom it may concern 

A research project at Liverpool John Moores University is currently being carried out 

with regard to the impact of human factors on maritime pilotage operations. I will be 

most grateful if you could kindly spend your valuable time and take part in this study. 

Your participation in this survey is voluntary and will only take a few minutes.  All 

the information that you provide in the course of your interview, completion of 

questionnaires or in general discussion will be greatly benefit and contribute to achieve 

the aim of this project. The information gathered in this survey will be treated in the 

strictest confidence. 

The questionnaire is anonymous, thus your response can not be attributed to you or 

your organization. Any refusal or incomplete questionnaire will be excluded without 

any responsibility on the participant. Completion of the questionnaire will indicate 

your willingness to participate in this study. If you require additional information or 

have any questions about this study, please feel free to contact me either by email or 

by phone at the addresses listed below. 

Yours faithfully, 

H. Oraith, 

PhD researcher, School of Engineering, Technology and Maritime Operations  
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Tel: + (44)7480120401 

Email: H.M.Oraith@2014.ljmu.ac.uk   

Or: hemz1966@hotmail.com 

Liverpool Logistics Offshore and Marine Research Institute (LOOM) 

Room 121, James Parsons Building 

Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK 

 

1. Introduction  

Previous efforts to evaluate human error have assumed that accidents causal factors 

are independent, but reality proves otherwise. In fact, maritime accidents occurring in 

the pilotage area are caused by a combinations of risk factors and these risk factors are 

correlated to each other. Here in, the DEMATEL method is applied to assess the 

relationships among the causal factors and assess the cause–effect relations and the 

degrees of influence.  This survey aims to evaluate the relationships among the causal 

factors of the pilotage accidents. There will be an example at the beginning of the 

questionnaire showing how the questionnaire must be filled. The procedures and 

guidelines for answering this set of questionnaires are explained as follows: 

 

2. Pair-wise comparison 

The questionnaire is:  Pair-wise comparison among the accident causal factors shown 

in table 1, which are, F1: (F11, F12, F13, CF14, and F15), F2: (F21, F22, F23, and 

F24), F3: (F31, F32, F33, and F34), F4: (F41, F42, F43, and F44), and F5: (F51, F52, 

F53, and F54). 

 

 

 

mailto:H.M.Oraith@2014.ljmu.ac.uk
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Table 1: The list of causal factors contributing to maritime accidents in pilotage 

operations 

causal factors contributing to maritime accidents  

 

Lack of team work  (F11) 

Lack of effective communication and Language problems (F12) 

Failure to exchange the information between pilot and ship’s master (F13) 

Lack of situation  awareness (F14) 

The master’s and pilot’s ineffective monitoring of the  tugboats drivers, mooring boats, and shore mooring 

personnel performance and vessel’s progress (F15) 

Lack of ship handling skills due to  lack of experience, improper training, and attitude (F21) 

Lack of technical knowledge and failure to use the bridge navigation equipment (F22) 

Lack of skills of the crewmember onboard ship, tugs, and shore mooring personnel (F23) 

Improper/ inadequate use of tugs (F24)  

Failure of pilot to give precise instructions (F31) 

Failure of the ship’s master to correctly follow the pilot directions (F32). 

Failure of  tug’s masters   to carry out the pilot’s instructions precisely with respect to position and towing 

power (F33) 

Orders regarding anchoring,  steering, and engine requests, are not following out by ship’s crewmembers 

correctly(F34) 

Failure to establish a proper manoeuvring plan prior to piloting vessel (F41). 

Failure to proceed with safe speed as stipulated in COLREG (F42) 

Piloting ships in bad weather condition or navigating vessels outside published guidelines or limits draft 

due to subject to commercial pressure (F43) 

Pilot boarding and disembarking too close to breakwater  (F44) 

Fatigue (F51) 

Mental and physical work load (F52) 
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Distraction and simultaneous tasks during the time of berthing operations  (F53) 

Stress (F54) 

 

3. Description on how to fill up the Questionnaire  

Before proceeding with the “Pair-wise Comparisons” technique, an expert has to 

understand the ratio scale measurement used in this study. Table 2 below describes the 

numerical assessment together with the linguistic meaning of each number. It is used 

for evaluating the influence level between the factors.  

The expert is required to give a possible judgment and to evaluate the influence level 

among the factor based on his/her expertise and experience. The expert will be asked 

to score the level of the influence with ‘‘no influence (0),’’or ‘‘low influence (1),’’ 

‘‘medium influence (2),’’ ‘‘high influence (3),’’ and ‘‘very high influence (4),’’ 

respectively.  

The evaluation scale of the relationships between factors ranges from 0 to 4 as show 

in the table below. 

                        Table 2 Evaluation scale  

                     

 

Example - The following shows how to evaluate the relationships and the 

interdependency among the factors and how to fill the blanks of the evaluation forms 

for the accidents contributing factors. 
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Please answer the following questions based on pairwise comparisons, based on your 

experience, and judging the rate of influence of the factors by using the scale shown 

in Table 2 to estimate to what extent each left-side factor affects the opposite factor. 

For instances, among the two factors, if you think that, lack of effective 

communication and language problems has high influence on the lack of exchange the 

information between pilot and ship’s master and might play role in the occurrence of 

maritime accidents during pilotage operations, your evaluation scale is “3” so that you 

should underline “X” on the evaluation form as shown in the example below.  

Sample Form: 

                                                                          Pairwise comparisons 

                           Factors    Degree of   

   Influencing 

                            Sub-Factors 

0 1 2 3 4 

language problems and lack of effective 

communication (F12)                                            

 

 

  X  Failure to exchange the information between pilot 

and ship’s master (F13)                                                                      

 

However, if you believe that the language problems and lack of effective 

communication has no influence on the exchange the information between pilot and 

ship’s master in contributing to the occurrence of maritime accidents during pilotage 

operations your evaluation scale is “0” so that you should underline “X” on the 

evaluation form as shown in the example below.  

 

                                                                          Pairwise comparisons 

                        Main factors    Degree of   

   Influencing 

                              Sub-factors 

0 1 2 3 4 

Lack of team work  (F11)  

X 

    Lack of ship handling skills due to  lack of 

experience, improper training, and attitude (F21) 

 

Pairwise comparison to evaluate the rate of influence among the factors 
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Could you please fill the questionnaire/ table here under by underlining the appropriate 

number (see examples above), and refer to the table1 and scale in Table2, before 

answering the questionnaire. 

The following questions based on pairwise comparisons, could you please, based on 

your experience, use the 5-scale to estimate to what extent each left-side factor affect 

the opposite factor; where: 

0- No Influence, 1- Very Low Influence, 2- Low Influence, 3- High Influence, 4-Very 

High Influence  

                  Pairwise comparisons between factors 

 

 Factors      Degree of   

   influencing 

Factors 

0 1 2 3 4 

 

(F11)      (F12) 

(F11)      (F13) 

(F11)      (F14) 

(F11)      (F15) 

(F11)      (F21) 

(F11)      (F22) 

(F11)      (F23) 

(F11)      (F24) 

(F11)      (F31) 

(F11)      (F32). 

(F11)      (F33) 

(F11)      (F34) 

(F11)      (F41). 

(F11)      (F42) 
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(F11)      (F43) 

(F11)      (F44) 

(F11)      (F51) 

(F11)      (F52) 

(F11)      (F53) 

(F11)      (F54) 

 

 

 

 

Pairwise comparisons between factors  

         Factors Degree of 

Influencing 

 

Factors 

0 1 2 3 4 

 

(F12)      (F11) 

(F12)      (F13) 

(F12)      (F14) 

(F12)      (F15) 

(F12)      (F21) 

(F12)      (F22) 

(F12)      (F23) 

(F12)      (F24) 

(F12)      (F31) 

(F12)      (F32). 

(F12)      (F33) 

(F12)      (F34) 
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(F12)      (F41). 

(F12)      (F42) 

(F12)      (F43) 

(F12)      (F44) 

(F12)      (F51) 

(F12)      (F52) 

(F12)      (F53) 

(F12)      (F54) 

 

 

Pairwise comparisons between factors 

Factors      Degree of   

   Influencing 

 

   Factors 

0 1 2 3 4 

 

(F13)      (F11) 

(F13)      (F12) 

(F13)      (F14) 

(F13)      (F15) 

(F13)      (F21) 

(F13)      (F22) 

(F13)      (F23) 

(F13)      (F24) 

(F13)      (F31) 

(F13)      (F32). 

(F13)      (F33) 

(F13)      (F34) 

(F13)      (F41). 
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(F13)      (F42) 

(F13)      (F43) 

(F13)      (F44) 

(F13)      (F51) 

(F13)      (F52) 

(F13)      (F53) 

(F13)      (F54) 

 

 

         Pairwise comparisons between factors  

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F14)      (F11) 

(F14)      (F12) 

(F14)      (F13) 

(F14)      (F15) 

(F14)      (F21) 

(F14)      (F22) 

(F14)      (F23) 

(F14)      (F24) 

(F14)      (F31) 

(F14)      (F32). 

. (F14)      (F33) 

(F14)      (F34) 

(F14)      (F41). 
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(F14)      (F42) 

(F14)      (F43) 

(F14)      (F44) 

(F14)      (F51) 

(F14)      (F52) 

(F14)      (F53) 

(F14)      (F54) 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F15)      (F11) 

(F15)      (F12) 

(F15)      (F13) 

(F15)      (F14) 

(F15)      (F21) 

(F15)      (F22) 

(F15)      (F23) 

(F15)      (F24) 

(F15)      (F31) 

(F15)      (F32). 

(F15)      (F33) 

(F15)      (F34) 

(F15)      (F41). 
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(F15)      (F42) 

(F15)      (F43) 

(F15)      (F44) 

(F15)      (F51) 

(F15)      (F52) 

(F15)      (F53) 

(F15)      (F54) 

 

 

 

 

 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F21)      (F11) 

(F21)      (F12) 

(F21)      (F13) 

(F21)      (F14) 

(F21)      (F21) 

(F21)      (F22) 
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(F21)      (F23) 

(F21)      (F24) 

(F21)      (F31) 

(F15)      (F32). 

(F21)      (F33) 

(F21)      (F34) 

(F21)      (F41). 

(F21)      (F42) 

(F21)      (F43) 

(F21)      (F44) 

(F21)      (F51) 

(F21)      (F52) 

(F21)      (F53) 

(F21)      (F54) 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F22)      (F11) 

(F22)      (F12) 

(F22)      (F13) 

(F22)      (F14) 

(F22)      (F21) 

(F22)      (F22) 
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(F22)      (F23) 

(F22)      (F24) 

(F22)      (F31) 

(F22)      (F32). 

(F22)      (F33) 

(F22)      (F34) 

(F22)      (F41). 

(F22)      (F42) 

(F22)      (F43) 

(F22)      (F44) 

(F22)      (F51) 

(F22)      (F52) 

(F22)      (F53) 

(F22)      (F54) 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F23)      (F11) 

(F23)      (F12) 

(F23)      (F13) 

(F23)      (F14) 

(F23)      (F21) 

(F23)      (F22) 
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(F23)      (F23) 

(F23)      (F24) 

(F23)      (F31) 

(F13)      (F32). 

(F23)      (F33) 

(F23)      (F34) 

(F23)      (F41). 

(F23)      (F42) 

(F23)      (F43) 

(F23)      (F44) 

(F23)      (F51) 

(F23)      (F52) 

(F23)      (F53) 

(F23)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F24)      (F11) 

(F24)      (F12) 

(F24)      (F13) 

(F24)      (F14) 

(F24)      (F21) 

(F24)      (F22) 

(F24)      (F23) 
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(F24)      (F24) 

(F24)      (F31) 

(F24)      (F32). 

(F24)      (F33) 

(F24)      (F34) 

(F24)      (F41). 

(F24)      (F42) 

(F24)      (F43) 

(F24)      (F44) 

(F24)      (F51) 

(F24)      (F52) 

(F24)      (F53) 

(F24)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F31)      (F11) 

(F31)      (F12) 

(F31)      (F13) 

(F31)      (F14) 

(F31)      (F21) 

(F31)      (F22) 

(F31)      (F23) 

(F31)      (F24) 
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(F31)      (F31) 

(F31)      (F32). 

(F31)      (F33) 

(F31)      (F34) 

(F31)      (F41). 

(F31)      (F42) 

(F31)      (F43) 

(F31)      (F44) 

(F31)      (F51) 

(F31)      (F52) 

(F31)      (F53) 

(F31)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F32)      (F11) 

(F32)      (F12) 

(F32)      (F13) 

(F32)      (F14) 

(F32)      (F21) 

(F32)      (F22) 

(F32)      (F23) 

(F32)      (F24) 

(F32)      (F31) 
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(F32)      (F32). 

(F32)      (F33) 

(F32)      (F34) 

(F32)      (F41). 

(F32)      (F42) 

(F32)      (F43) 

(F32)      (F44) 

(F32)      (F51) 

(F32)      (F52) 

(F32)      (F53) 

(F32)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F33)      (F11) 

(F33)      (F12) 

(F33)      (F13) 

(F33)      (F14) 

(F33)      (F21) 

(F33)      (F22) 

(F33)      (F23) 

(F33)      (F24) 

(F33)      (F31) 

(F33)      (F32). 
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(F33)      (F33) 

(F33)      (F34) 

(F33)      (F41). 

(F33)      (F42) 

(F33)      (F43) 

(F33)      (F44) 

(F33)      (F51) 

(F33)      (F52) 

(F33)      (F53) 

(F33)      (F54) 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F34)      (F11) 

(F34)      (F12) 

(F34)      (F13) 

(F34)      (F14) 

(F34)      (F21) 

(F34)      (F22) 

(F34)      (F23) 

(F34)      (F24) 

(F34)      (F31) 

(F34)      (F32). 
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(F34)      (F33) 

(F34)      (F34) 

(F34)      (F41). 

(F34)      (F42) 

(F34)      (F43) 

(F34)      (F44) 

(F34)      (F51) 

(F34)      (F52) 

(F34)      (F53) 

(F34)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F41)      (F11) 

(F41)      (F12) 

(F41)      (F13) 

(F41)      (F14) 

(F41)      (F21) 

(F41)      (F22) 

(F41)      (F23) 

(F41)      (F24) 

(F41)      (F31) 

(F41)      (F32). 

(F41)      (F33) 
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(F41)      (F34) 

(F41)      (F41). 

(F41)      (F42) 

(F41)      (F43) 

(F41)      (F44) 

(F41)      (F51) 

(F41)      (F52) 

(F41)      (F53) 

(F41)      (F54) 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F42)      (F11) 

(F42)      (F12) 

(F42)      (F13) 

(F42)      (F14) 

(F42)      (F21) 

(F42)      (F22) 

(F42)      (F23) 

(F42)      (F24) 

(F42)      (F31) 

(F42)      (F32). 

(F42)      (F33) 
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(F42)      (F34) 

(F42)      (F41). 

(F42)      (F42) 

(F42)      (F43) 

(F42)      (F44) 

(F42)      (F51) 

(F42)      (F52) 

(F42)      (F53) 

(F42)      (F54) 

 

 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F43)      (F11) 

(F43)      (F12) 

(F43)      (F13) 

(F43)      (F14) 

(F43)      (F21) 

(F43)      (F22) 

(F43)      (F23) 

(F43)      (F24) 
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(F43)      (F31) 

(F43)      (F32). 

(F43)      (F33) 

(F43)      (F34) 

(F43)      (F41). 

(F43)      (F42) 

(F43)      (F43) 

(F43)      (F44) 

(F43)      (F51) 

(F43)      (F52) 

(F43)      (F53) 

(F43)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F44)      (F11) 

(F44)      (F12) 

(F44)      (F13) 

(F44)      (F14) 

(F44)      (F21) 

(F44)      (F22) 

(F44)      (F23) 

(F44)      (F24) 

(F44)      (F31) 
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(F44)      (F32). 

(F44)      (F33) 

(F44)      (F34) 

(F44)      (F41). 

(F44)      (F42) 

(F44)      (F43) 

(F44)      (F44) 

(F44)      (F51) 

(F44)      (F52) 

(F44)      (F53) 

(F44)      (F54) 

 

 

 

 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F51)      (F11) 

(F51)      (F12) 

(F51)      (F13) 

(F51)      (F14) 
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(F51)      (F21) 

(F51)      (F22) 

(F51)      (F23) 

(F51)      (F24) 

(F51)      (F31) 

(F51)      (F32). 

(F51)      (F33) 

(F51)      (F34) 

(F51)      (F41). 

(F51)      (F42) 

(F51)      (F43) 

(F51)      (F44) 

(F51)      (F51) 

(F51)      (F52) 

(F51)      (F53) 

(F51)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F52)      (F11) 

(F52)      (F12) 

(F52)      (F13) 

(F52)      (F14) 

(F52)      (F21) 
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(F52)      (F22) 

(F52)      (F23) 

(F52)      (F24) 

(F52)      (F31) 

(F52)      (F32). 

(F52)      (F33) 

(F52)      (F34) 

(F52)      (F41). 

(F52)      (F42) 

(F52)      (F43) 

(F52)      (F44) 

(F52)      (F51) 

(F52)      (F52) 

(F52)      (F53) 

(F52)      (F54) 

 

 

 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F53)      (F11) 

(F53)      (F12) 



330 

 

(F53)      (F13) 

(F53)      (F14) 

(F53)      (F21) 

(F53)      (F22) 

(F53)      (F23) 

(F53)      (F24) 

(F53)      (F31) 

(F53)      (F32). 

(F53)      (F33) 

(F53)      (F34) 

(F53)      (F41). 

(F53)      (F42) 

(F53)      (F43) 

(F53)      (F44) 

(F53)      (F51) 

(F53)      (F52) 

(F53)      (F53) 

(F53)      (F54) 

 

Pairwise comparisons between factors 

 

Factors      Degree of   

   Influencing 

 

Factors 

0 1 2 3 4 

 

(F54)      (F11) 

(F54)      (F12) 

(F54)      (F13) 
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(F54)      (F14) 

(F54)      (F21) 

(F54)      (F22) 

(F54)      (F23) 

(F54)      (F24) 

(F54)      (F31) 

(F54)      (F32). 

(F54)      (F33) 

(F54)      (F34) 

(F54)      (F41). 

(F54)      (F42) 

(F54)      (F43) 

(F54)      (F44) 

(F54)      (F51) 

(F54)      (F52) 

(F54)      (F53) 

(F54)      (F54) 

 

Q.1 please write your company name? 

Q.2 please indicate your rank? 

Q. 3 How much time have you spent at sea?   Please can you outline a bit of your 

background? 

 THANK YOU ONCE AGAIN FOR YOUR KIND PARTICIPATION IN THIS 

SURVEY 
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Appendix IIII-1: The Questionnaire used for identifying risk mitigation 

measures in chapter 6 

 

 

 

                                        

                                                                       Liverpool John Moores University  

                                                                        School of Engineering, Technology and            

                                                                                          Maritime Operations 

                                                                                             Byrom Street 

                                                                                                 L3 3AF UK 

 

To: Whom it may concern 

A research project at Liverpool John Moores University is currently being carried out 

with regard to the impact of human factors on maritime pilotage operations. I will be 

most grateful if you could kindly spend your valuable time and take part in this study. 

Your participation in this survey is voluntary and will only take a few minutes.  All 

the information that you provide in the course of your interview, completion of 

questionnaires or in general discussion will be greatly benefit and contribute to achieve 

the aim of this project. The information gathered in this survey will be treated in the 

strictest confidence. 

The questionnaire is anonymous, thus your response can not be attributed to you or 

your organization. Any refusal or incomplete questionnaire will be excluded without 

any responsibility on the participant. Completion of the questionnaire will indicate 
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your willingness to participate in this study. If you require additional information or 

have any questions about this study, please feel free to contact me either by email or 

by phone at the addresses listed below. 

Yours faithfully, 

H. Oraith, 

PhD researcher, School of Engineering, Technology and Maritime Operations  

Tel: + (44)7480120401 

Email: H.M.Oraith@2014.ljmu.ac.uk   

Or: hemz1966@hotmail.com 

Liverpool Logistics Offshore and Marine Research Institute (LOOM) 

Room 121, James Parsons Building 

Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK 

 

Section A: Introduction 

This research proposed a novel risk assessment methodology for identifying, 

evaluating and mitigating the risk factors that contribute to maritime pilotage 

accidents. Based on the findings from the previous survey, the following risk factors 

shown in the below table (table 2) have been weighted by the experts as the most 

significant contributory factors leading to pilotage accidents.  

We further need to determine the relevant risk mitigation measures for each causal 

factor.  

Section B: Example 

 For your opinion as an expert, please kindly give your comments and identify the 

optimal measure and best solutions for mitigating the risk factors shown in the below 

table (table 1) 

 

 

mailto:H.M.Oraith@2014.ljmu.ac.uk
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Table.1 Example for selection of mitigation measures (RMMs) for reducing the risk 

of lack of communication and language barriers. 

S/N                            

The most contributory factors to maritime pilotage accidents 

(HCFs) 

 

Risk mitigation measures (RMMs)? 

RF1 Lack of  communication and language barriers (1) Improving the pilotage operators’ 

English language skills. 

(2) A standard marine vocabulary 

should be used during the 

manoeuvring. 

(3) Providing an adequate and a high 

standard of theoretical and practical 

training courses with regular renewal 

training including, bridge resource 

management (BRM), 

 

 

Section B: Questionnaire 

 For your opinion as an expert, please kindly give your comments and identify the 

optimal measure and best solutions for mitigating the following risk factors shown in 

the below table (table 2) 
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Table.2 Selection of risk mitigation measures (RMMs) for reducing maritime pilotage 

related accidents 

S/N The most contributory factors to 

maritime pilotage accidents (HCFs) 

Risk mitigation measures (RMMs)? 

RF1 Lack of ship handling skills. (1) 

(2) 

(3) 

(4) 

 

RF2 Lack of communication and language 

barriers. 

 

(1) 

(2) 

(3) 

(4) 

RF3 Failure to exchange the information 

between pilot and ship’s master prior to 

pilotage operation 

(1)  

(2)  

(3) 

(4) 

RF4 Lack of bridge navigation equipment 

knowledge and failure to use the 

electronic navigational systems properly 

(Lack of familiarity with the 

navigational systems) 

(1)  

(2)  

(3) 

(4) 

RF5 Lack of team work (1)  

(2)  

(3) 

(4) 
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RF6 Lack of situation awareness 

 

(1)  

(2)  

(3) 

(4) 

RF7 Fatigue 

 

(1)  

(2)  

(3) 

(4) 

RF8 

 

Lack of skills of the crewmember on 

ship board, tugboat crews, and shore 

mooring personnel (linesmen) 

 

(1)  

(2)  

(3) 

(4) 

RF9 

 

Improper/ inadequate use of tugs 

 

(1)  

(2)  

(3) 

(4) 

RF10 

 

Failure of pilot to give precise or correct 

instructions 

 

(1)  

(2)  

(3) 

(4) 

RF11 Failure of pilot and ship’s master to 

establish a proper passage and berthing 

plan prior to piloting vessel 

(1)  

(2)  

(3) 

(4) 
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Q. Please indicate your profession and rank?  

Q. Please can you outline a bit of your working experience background (time period 

you have spent at sea or as pilot so far)?        

 

This is the end of the questionnaire. Thank you very much for your help. 

 

     Appendix IIII: 2 The Questionnaire used for TOPSIS method in chapter 6 

 

 

                                                      Liverpool John Moores University  

                                                                        School of Engineering, Technology and            

                                                                                          Maritime Operations 

                                                                                             Byrom Street 

                                                                                                 L3 3AF UK 

 

To: Whom it may concern 

A research project at Liverpool John Moores University is currently being carried out 

with regard to the impact of human factors on maritime pilotage operations. I will be 

most grateful if you could kindly spend your valuable time and take part in this study. 

Your participation in this survey is voluntary and will only take a few minutes.  All 

the information that you provide in the course of your interview, completion of 
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questionnaires or in general discussion will be greatly benefit and contribute to achieve 

the aim of this project. The information gathered in this survey will be treated in the 

strictest confidence. 

The questionnaire is anonymous, thus your response can not be attributed to you or 

your organization. Any refusal or incomplete questionnaire will be excluded without 

any responsibility on the participant. Completion of the questionnaire will indicate 

your willingness to participate in this study. If you require additional information or 

have any questions about this study, please feel free to contact me either by email or 

by phone at the addresses listed below. 

Yours faithfully, 

H. Oraith, 

PhD researcher, School of Engineering, Technology and Maritime Operations  

Tel: + (44)7480120401 

Email: H.M.Oraith@2014.ljmu.ac.uk   

Or: hemz1966@hotmail.com 

Liverpool Logistics Offshore and Marine Research Institute (LOOM) 

Room 121, James Parsons Building 

Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK 

 

 

 

Section A: Introduction and Explanation 

This research proposed a novel risk assessment methodology for identifying, 

evaluating and mitigating the risk factors that contribute to maritime pilotage 

accidents. Based on the findings from the previous survey, the following risk factors 

shown in the below table (table 1) have been weighted by the experts as the most 

significant contributory factors leading to pilotage accidents. We further need to 

determine which relevant risk mitigation measures for each causal factor has become 

the key strategic consideration. 

 

mailto:H.M.Oraith@2014.ljmu.ac.uk
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  Table.1 the most contributory factors to maritime pilotage accidents (HCFs) 

S/N Contributory factors to maritime pilotage accidents (Criteria) 

RF1 Lack of ship handling skills. 

RF2 Lack of communication and language barriers. 

RF3 Failure to exchange the information between pilot and ship’s master prior 

to pilotage operation 

RF4 Lack of bridge navigation equipment knowledge and failure to use the 

electronic navigational systems properly (Lack of familiarity with the 

navigational systems) 

RF5 Lack of team work 

RF6  Lack of situation awareness 

RF7 Fatigue as result of mental and physical work load 

RF8 

 

Lack of skills of the crewmember on ship board, tugboat crews, and shore 

mooring personnel (linesmen) 

RF9 Improper/ inadequate use of tugs 

RF10 Failure of pilot to give precise or correct instructions 

RF11 Failure of pilot and ship’s master to establish a proper passage and berthing 

plan prior to piloting vessel 
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SECTION B: EXPLANATIONS AND EXAMPLES 

Questionnaire for selection of the best measures (Risk mitigation measures) (RMMs) 

for eliminating and/or mitigating the identified risk factors affecting the safety of 

pilotage operations is developed. The purpose of this questionnaire is to select the 

optimal measures and ideal solutions for mitigating the 11 risk factors illustrated in 

the table (table 1). 

 

The following 21risk mitigation measures (RMMs) for reducing maritime pilotage 

related accidents have been determined in this research. All these risk mitigation 

measures are shown in the below tables (table 2), and need to be evaluated by using 

TOPSIS technique. This process is required to provide reliable data by identifying an 

expert opinion of each evaluation parameter.  

       Table for Risk mitigation measures (RMMs) for improving pilotage safety 

performance 

S/N                                       Risk mitigation measures (RMMs) 

A1 Pilots should have an appropriate experience as a ship master before becoming a pilot.  

A2 Implement safety management system (SMS) for pilotage operations 

A3 Providing an adequate and a high standard of theoretical and practical training courses with 

regular renewal training including ship handling, bridge simulator training, bridge resource 

management (BRM), ECDIS, and NAEST generic training courses.  

A4 Using common communication language on board. 

A5 Improving the pilotage operators’ English language skills. 

A6 Ship’s staff, pilot, and assisting parties should maintain an effective communication, 

corporation, an effective co-ordination, and an effective exchange of information.  
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A7 A standard marine vocabulary should be used during the maneuvering.  

A8 Compliance with resolution A.893 (21) on Guidelines for voyage planning.  

A9 An effective working environment and Close working relationship on the bridge of a ship 

between pilot and ship’s captain should be created.  

A10 Provide an adequate number of qualified, experienced, and well trained ship’s crew 

members, pilots and tugs operators working on shift (adherence to MLC rest hour maritime 

regulations) 

A11 Tasks and responsibilities should be understood and distributed properly among the bridge 

team members.   

A12  Providing training courses in safety and cultural awareness 

A13 Keeping high level of alertness and avoid distractions elements 

A14 All pilotage performers should be in good physical and mental fitness and not under the 

effect of drugs or alcohol 

A15 Implement  standard operating procedures (SOP’s)  for ship board operations 

A16 Pilot boarding point should be at a sufficient distance from the commencement of the act 

of pilotage.  

A17 During pilotage operations distractions elements should be avoided. 

A18 Not to squeeze pilots or ship's captains for working outside established rules or piloting 

ships in poor weather condition situations due to commercial pressure.  

A19 Maintaining continuous watchkeeping and keeping a high level of alertness (the 

surrounding area, tug’s, and piloted ship’s performance and progress should be monitored 

effectively and continuously to be aware of the whole situation properly). 
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A20 Provide sufficient and the required number of powerful tugboats which are necessary for 

all kind of ships manoeuvers. 

A21 Compliance with the principals and the requirements of IMO resolution A960  

 

The procedures and guidelines for answering this set of questionnaires are 

explained as follows:  

The linguistic meaning of the measurement scale 

To proceed with the evaluating, an expert has to understand the ratio scale 

measurement used in this study. Table 3 below describe the numerical assessment 

together with the linguistic meaning of each rating variable. The grades illustrated in 

Table 3 show the effect or importance value of the mitigation or control options. It is 

used for evaluating and rating of the measures (alternatives) for mitigating the risk 

factors shown in table1. 

         

                      Table 3: Evaluation scale for the alternatives rating 

Linguistic  variables Very low Low Medium High Very high 

Grade 1 2 3 4 5 

 

                

Example of answered questionnaire 

With respect to manage “Lack of ship handling skills”, please evaluate how effective 

each risk control measure is in terms of risk reduction. What would be the risk 

reduction if you decide to apply the following alternatives or risk mitigation measures? 
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Table.4 Measures for mitigating the risks due to the lack of ship handling skills 

    

 Explanation of the above example 

An expert is required to give a possible judgement to all questions based on his/her 

expertise and experience in pilotage operation. In the above example, the goal is to 

evaluate how effective each risk control measure is in terms of risk reduction. The 

description of the qualitative judgement "very Low", "Low", "Medium", "High" and 

"very high" is explained above. 

Firstly an expert is required to look at the mitigation measures. Subsequently fill the 

empty spaces by selecting the appropriate grades from Table 3 the evaluation scale 

used for rating of the best measures (alternatives) for mitigating the risk factors 

 Pilots should have an appropriate experience as a ship master before becoming a pilot 

(A1). 

Answer: Very High - Grade (5) 

 Improving skills and knowledge by providing theoretical and practical of advanced 

ship-handling training courses under close supervision of an experienced pilots (A2). 

         

                       Risk mitigation measures   

 

 

Very  

low 

 

Low 

 

Medium 

 

High 

 

Very 

High 

Employ qualified, experienced, and well trained personnel 

(A1) 

☐ ☐ ☐ ☐ ☒ 

Improving skills and knowledge by Providing theoretical 

and practical of advanced  ship-handling training courses 

under close supervision of an experienced pilots (A2) 

☐ ☒ ☐ ☒ ☐ 

The level and quality of training for certification or licensing 

should be adequate and higher standard (A3) 

☐ ☐ ☒ ☒ ☐ 
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Answer: Low - Grade (2) 

The level and quality of training for certification or licensing should be adequate and 

higher standard (A3) 

Answer: Medium- Grade (3) 

 

SECTION C: QUESTIONNAIRS 

 For your opinion as an expert, please kindly give your comments and select the 

optimal (best solutions) for mitigating the following risk factors. 

Q1. With respect to manage “Lack of ship handling skills”, please evaluate how 

effective each risk control measure is in terms of risk reduction. What would be the 

risk reduction if you decide to apply the following risk mitigation measures? 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 
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Q2. With respect to manage “Lack of effective communication and 

misunderstanding due to language barriers”, please  refer to the risk mitigation 

measures  in table1.2 and evaluate how effective each risk control measure is in terms 

of risk reduction? What would be the risk reduction if you decide to apply the 

following alternatives or risk mitigation measures? 

 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 
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Q3. With respect to manage “Failure to exchange the information between pilot 

and ship’s master prior to pilotage operation.” please refer to risk mitigation 

measures in table 2 and evaluate how effective each risk control measure is in terms 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 
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of risk reduction? What would be the risk reduction if you decide to apply the 

following alternatives or risk mitigation measures? 

 

 

 

 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 
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Q4. With respect to manage “Lack of bridge navigation equipment knowledge and 

failure to use the electronic navigational systems properly.”  please refer to risk 

mitigation measures in table 2 and evaluate how effective each risk control measure is 

in terms of risk reduction? What would be the risk reduction if you decide to apply the 

following alternatives or risk mitigation measures? 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 



349 

 

 

Q5. With respect to manage “Lack of team work.” please evaluate how effective 

each risk control measure is in terms of risk reduction? What would be the risk 

reduction if you decide to apply the following alternatives or risk mitigation measures? 

 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 
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Q6. With respect to manage “Lack of situation awareness.” please evaluate how 

effective each risk control measure is in terms of risk reduction? What would be the 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 
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risk reduction if you decide to apply the following alternatives or risk mitigation 

measures? 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 
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Q7. With respect to manage “Fatigue” please evaluate how effective each risk control 

measure is in terms of risk reduction? What would be the risk reduction if you decide 

to apply the following alternatives or risk mitigation measures? 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 
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Q8. With respect to manage “Lack of skills of the crewmember on ship board, 

tugboat crews, and shore mooring personnel”, please evaluate how effective each 

risk control measure is in terms of risk reduction? What would be the risk reduction if 

you decide to apply the following alternatives or risk mitigation measures? 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 
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Q9. With respect to manage “Improper/ inadequate use of tugs”, please evaluate 

how effective each risk control measure is in terms of risk reduction? What would be 

the risk reduction if you decide to apply the following alternatives or risk mitigation 

measures? 

 

 

 

 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 
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Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 
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Q10. With respect to manage ““Failure of pilot to give correct and precise 

instructions”, please evaluate how effective each risk control measure is in terms of 

risk reduction? What would be the risk reduction if you decide to apply the following 

alternatives or risk mitigation measures? 

 

 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 
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Q11. With respect to manage Failure to establish a proper passage and berthing 

plan prior to piloting vessel”, please evaluate how effective each risk control 

measure is in terms of risk reduction? What would be the risk reduction if you decide 

to apply the following alternatives or risk mitigation measures? 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☐ ☐ ☐ ☐ ☐ 

 

Risk mitigation measures   

 

Very low 

 

 

Low 

 

Medium 

 

High 

 

Very 

High 

A1 ☐ ☐ ☐ ☐  ☐ 

A2 ☐ ☐ ☐ ☐ ☐ 

A3 ☐ ☐ ☐ ☐ ☐ 

A4 ☐ ☐ ☐ ☐ ☐ 
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Q. Please indicate your profession and rank?  

Q. Please can you outline a bit of your working experience background (time period 

you have spent at sea or as pilot so far)?        

   

   THANK YOU ONCE AGAIN FOR YOUR KIND PARTICIPATION IN THIS SURVEY 

A5 ☐ ☐ ☐ ☐ ☐ 

A6 ☐ ☐ ☐ ☐ ☐ 

A7 ☐ ☐ ☐ ☐ ☐ 

A8 ☐ ☐ ☐ ☐ ☐ 

A9 ☐ ☐ ☐ ☐ ☐ 

A10 ☐ ☐ ☐ ☐ ☐ 

A11 ☐ ☐ ☐ ☐ ☐ 

A12 ☐ ☐ ☐ ☐ ☐ 

A13 ☐ ☐ ☐ ☐ ☐ 

A14 ☐ ☐ ☐ ☐ ☐ 

A15 ☐ ☐ ☐ ☐ ☐ 

A16 ☐ ☐ ☐ ☐ ☐ 

A17 ☐ ☐ ☐ ☐ ☐ 

A18 ☐ ☐ ☐ ☐ ☐ 

A19 ☐ ☐ ☐ ☐ ☐ 

A20 ☐ ☐ ☐ ☐ ☐ 

A21 ☒ ☐ ☐ ☐ ☐ 
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