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Abstract 21 

Building materials such as sand, cement, bricks, and steel are usually the main 22 

components of the construction sector. All these materials are produced from existing 23 

natural resources and they will cause substantial damage to the environment as a result 24 

of their continuous depletion. Moreover, during the manufacture of various building 25 

materials, especially cement, a high concentration of carbon dioxide is constantly 26 

emitted into the atmosphere. Therefore, to reduce this environmental damage as well as 27 

to save natural resources, this study was performed to recycle the wastes of some of 28 

building materials such as marble, granite and porcelain tiles and clay brick through 29 

using them as cement and aggregate replacement materials in cement mortar. Sixteen 30 

mixtures were cast for this study. In addition to the control, the mortar mixes were 31 

divided into five groups, three mixes in each group. In four of the five groups, cement 32 

was replaced in three proportions (5%, 10%, 15% by weight) with each of marble, 33 

granite, porcelain and clay brick waste powders (passing through 150-micron sieve). 34 

The fifth group included 100% replacing (by weight) of the natural sand with the 35 

marble, granite and porcelain tiles wastes (with a comparable gradation). The influence 36 

of these wastes on flow rate, compressive strength, flexural strength, bulk density, 37 

ultrasonic pulse velocity (UPV) and water absorption tests were observed. Results 38 

showed that it is possible to produce an eco-friendly mortar made with 100% recycled 39 

marble or porcelain aggregate with a significant improvement in the mechanical and 40 

durability properties in comparison with natural aggregate mortar. 41 

Keywords: building materials waste, cement replacement, aggregate replacement, eco-42 

friendly mortar. 43 
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1. Introduction 44 

Conventional materials such as clay, sand, gravel, cement, bricks, wood and steel 45 

usually represent the main components of the construction sector. Generally, concrete 46 

that consist of cement and natural fine and coarse aggregate is considered one of the 47 

main consumer of natural resources and will cause substantial damage to the 48 

environment as a result of their continuous depletion [1–3]. For example, the extensive 49 

usage of natural (fine and course) aggregate is one of the main reasons for the scarcity 50 

of natural aggregates in many countries around the world [4]. Furthermore, the cement 51 

industry consumes high energy as well as emits a high amount of CO2 into the 52 

atmosphere [5–10]. The cement industry contributes about 7% of carbon dioxide 53 

production worldwide [11–15]. Moreover, the cement cost represents about 20% of the 54 

concrete cost [16]. Therefore, there has been a need to find alternatives to cement and 55 

natural aggregate from the economical and environmental viewpoint [17,18]. Extensive 56 

research has been done over the past years to find sustainable alternative to natural 57 

aggregate and cement. For example, the coarse aggregate was replaced by lightweight 58 

aggregate that produced from various sources such as palm oil [19], expanded clay [20] 59 

and lava [2,21]. Fine aggregate was replaced by Tyre Rubber [22], Copper Slag [23] 60 

and Mica [24]. One the other hand, the cement was replaced by GGBS [14], CKD [25], 61 

Fly ash [26], rice husk ash [27] and bottom ash [28]. 62 

One of the most used construction materials in Iraq is the clay brick, which is 63 

considered as the main element in the construction of the horizontal housing units. 64 

Additionally, the common materials used for flooring in the Iraqi housing units are 65 

marble, granite and porcelain tiles. Because that the Iraqi people (especially at the 66 

middle and south of Iraq) tend to build their housing units with bearing walls (using 67 

clay bricks) rather than structural construction (concrete beams and columns), thus clay 68 
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bricks are used extensively and will result in large residues that need to be treated. The 69 

situation is similar for floor materials.  70 

The impact of the clay brick, marble, granite and porcelain waste on different concrete 71 

or mortar properties was discussed previously by several studies. 72 

Hasan et al [29] reported that substitution sand with 10% or 20% marble powder had a 73 

negative impact on mortar mechanical properties especially at later ages (56 days). 74 

Bacarji et al [30] found that, when replacing the cement with 5% to 15% of marble 75 

residue, the marble residue might act as a filler in concrete. Tayeh [31] reported that the 76 

compressive strength was reduced after using marble powder (passing through sieve 77 

#200) as cement replacement in proportions of 10% to 30%. However, according to  78 

Ergün [32], replacing cement with 5% waste marble powder improved the flexural and 79 

compressive strength compared to the conventional concrete (without replacement). 80 

Moreover, Ashish [33] found that replacing sand with 15% marble powder increased the 81 

28-days compressive strength by 4.5%. 82 

Li et al [34] used the granite powder as cement replacement to enhance the dimensional 83 

stability and durability of mortar. Results indicated that the compressive strength and 84 

water resistance were improved. Additionally, the cement content was reduced by 25%. 85 

On the other hand, the SP demand was increased. According to Bacarji et al [30], the 86 

granite residue act as a non-reactive material and using it as cement alternative caused a 87 

reduction in compressive strength and increasing in water absorption. 88 

Patel and Shah [35] made an experimental study to investigate the durability and the 89 

mechanical performance of high performance-concrete (HPC) made with porcelain 90 

waste powder as cement replacement. The cement was replaced by 5%, 10%, 15% and 91 

20% of porcelain waste with water/binder ratio of 0.33. Results revealed that 15% 92 



5 
 

porcelain waste folded better performance compared to the control mix in terms of 93 

compressive and flexural strength, sorptivity, corrosion and chloride penetration as well 94 

as achieved major environmental benefits. Similar findings were recorded by Hasan et 95 

al [29] when replacing the sand with 20% porcelain waste. 96 

Aliabdo et al [36] performed a study to explore the effect of the crushed clay brick on 97 

phyisco-mechanical properties of paste, mortar and concrete (concrete masonry units). 98 

The clay brick was crushed and classified as recycled aggregates and powder. Results 99 

indicated that the incorporating of crushed clay powder by 25% reduced the pore size of 100 

the cement paste. The utilizing of the crushed clay brick as recycled aggregate in the 101 

concrete masonry units led to a decrease in the compressive strength, unit weight and 102 

increased the thermal resistance and water absorption related to the reference units. 103 

Additionally, the splitting tensile strength, modulus of elasticity and the porosity of 104 

concrete were affected negatively by the high content of the crushed clay brick. On the 105 

other hand, Olofinnade et al [37] investigated the properties of concrete made from 106 

ground clay brick waste (powder) as a partial replacement of cement in the percentage 107 

10%, 20%, 30% and 40%. Results indicated that the 10% substitution of the powder 108 

caused a significant increase in compressive and splitting tensile strength. After that 109 

percentage, the strength was decreased. It was recommended that the ground clay brick 110 

waste should not be exceeded by 15% in the production of concrete.  111 

Based on the literature above, it is clear that there is no specific pathway for the effect 112 

of building material waste on the properties of concrete or mortar. There are conflicting 113 

results in terms of positive and negative impacts on different characteristics. Moreover, 114 

for marble, porcelain and granite, wastes used in the concrete or mortar production for 115 

most previous works were come from cutting or polishing of these materials (industrial 116 

waste). Limited studies addressed the crushed tiles waste. Additionally, limited studies 117 
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used comparable grading with the natural aggregate. Furthermore, limited studies dealt 118 

with the use of the Iraqi building materials waste as cement or aggregate replacing 119 

materials. Additionally, according to the authors' knowledge, in Iraq, there is no study 120 

found to replace the sand totally by such wastes. Furthermore, it is believed that the 121 

inclusion of building materials waste in the concrete or mortar as cement or aggregate 122 

replacement is a good solution in terms of improving the environment and reducing the 123 

depletion of natural resources. Thus, this study was performed to recycle the wastes of 124 

some of the locally available building materials such as marble, granite, and porcelain 125 

tiles and clay brick through using them as a cement or aggregate replacement in cement 126 

mortar.  127 

2. Research objectives 128 

This study aims to achieve the following objectives: 129 

1. Explore the influence of using locally (produced or available) building materials 130 

(such as marble, granite and porcelain tiles and clay brick) wastes as a substitute for 131 

cement or natural aggregates on some mechanical and durability properties of 132 

cement mortar. 133 

2. Improve the environment by integrating such wastes into the concrete industry in 134 

addition to reducing the depletion of natural resources. 135 

3. Investigate the possibility of producing an eco-friendly mortar using these wastes 136 

without a significant negative effect on its different characteristics. 137 
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3. Experimental work 138 

3.1 Materials 139 

The materials used in this study to manufacture the cement mortar were cement, natural 140 

sand, building material wastes, superplasticizer and water. Lime cement (CEM II 42.5R 141 

L-A) conforms to the Iraqi specification IQS No. 5 [38] was used. The chemical 142 

composition of cement is shown in Table 1. The natural sand was graduated according 143 

to the Iraqi specification IQS No. 45 [39], as shown in Figure 1. To investigate their 144 

effect on different mortar properties, building material (such as marble, granite, and 145 

porcelain tiles and yellow-clay brick) wastes were utilized as cement or aggregate 146 

replacement (see Figure 2). These wastes were obtained by crushing of large broken 147 

portions of tiles into small particles, then they were either ground to a powder to be used 148 

as cement replacing material or graduated to be used as an alternative to the natural 149 

aggregate. The granite, marble and bricks wastes that were used as aggregate replacing 150 

materials were crushed to small particles using hand crusher then they sieved on sieves 151 

ranged between 1.18 to 0.15 mm. Then the retained materials on each sieve were 152 

separated and weighed. To achieve comparable grading, the crushed materials were 153 

proportioned as that for the natural sand used which is tested previously (conformed to 154 

the Iraqi specification IQS No. 45 [39]). Thereafter, the proportioned materials for each 155 

granite, marble and bricks were mixed together using a mechanical mixer to ensure 156 

homogeneity. Thus, the adopted particle size was similar to that for the natural sand 157 

used which is originally conformed to the Iraqi specification IQS No. 45 [39]. The 158 

powder which was passed through 150-micron sieve was used as cement replacement. 159 

The chemical composition of these waste is presented in Table 1. To make a good 160 

comparison between them, the materials wastes that used as an aggregate replacement 161 

were graduated as for natural aggregate (0.15 – 1.18 mm in size), see Figure 1. Glenium 162 
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54 superplasticizer, which conforms to ASTM C494 Type A and F [40], was added to 163 

the mixing water to adjust the workability of the mortar mixtures. Tap water was used 164 

as mixing water for all mixtures. 165 

Table 1: The chemical composition of cement and building materials waste. 166 

Oxides Cement  Marble Granite Porcelain Clay brick 

CaO 62.1 51.82 1.46 3.4 28.11 

SiO2 22.1 1.97 72.37 65.49 40.59 

Al2O3 4.2 0.38 8.1 19.38 12.01 

Fe2O3 3.9 0.55 1.94 2.71 4.92 

MgO 3.3 1.69 0.38 1.93 5.15 

SO3 1.9 0.22 --- --- 5.3 

Na2O --- 0.11 3.65 1.94 1.29 

K2O --- 0.05 3.91 2.37 0.86 

Free lime 0.7 --- --- --- --- 

L.S.F. 0.86 --- --- --- --- 

Insoluble residue 1.1 --- --- --- --- 

 167 
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 179 

Figure 1: The grading of the sand and its replacing materials (marble, granite, and 180 

porcelain tiles waste). 181 

3.2 Mortar mixtures 182 

Sixteen mixtures were carried out in this study. One reference mix (without addition), 183 

twelve mixes containing a weighed replacement of cement with marble (M), granite 184 

(G), porcelain (P) and clay brick (B) powders (three substitutions: 5%, 10% and 15% 185 

for each material) and three mixtures included full replacing (100% by weight) of 186 

natural aggregate with marble, granite and porcelain tiles waste. The adopted mix 187 

proportions for all mixes were 1:2.75 (binder: sand). In order to observe the influence of 188 

the used materials on fresh mortar flow, the superplasticizer and water/ binder ratio 189 

were fixed for all mixes as 0.4% (by weight of cement) and 0.485, respectively. The 190 

mix proportion details for mortar mixes are illustrated in Table 2.  191 

 192 

 193 
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Figure 2: Materials used in this study. 200 
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Table 2: Mix proportion details for the mortar mixes (as a part of the binder weight).* 213 

Mix 

No. 

Replacement 

type 

Mix 

designation 
Cement MP GP PP BP Sa Ma Ga Pa WW SP 

1 None  Con 1 0 0 0 0 2.75 0 0 0 

0.485 0.004 

2 

Cement 

replacing 

mixtures 

M5 0.95 0.05 0 0 0 2.75 0 0 0 

3 M10 0.9 0.1 0 0 0 2.75 0 0 0 

4 M15 0.85 0.15 0 0 0 2.75 0 0 0 

5 G5 0.95 0 0.05 0 0 2.75 0 0 0 

6 G10 0.9 0 0.1 0 0 2.75 0 0 0 

7 G15 0.85 0 0.15 0 0 2.75 0 0 0 

8 P5 0.95 0 0 0.05 0 2.75 0 0 0 

9 P10 0.9 0 0 0.1 0 2.75 0 0 0 

10 P15 0.85 0 0 0.15 0 2.75 0 0 0 

11 B5 0.95 0 0 0 0.05 2.75 0 0 0 

12 B10 0.9 0 0 0 0.1 2.75 0 0 0 

13 B15 0.85 0 0 0 0.15 2.75 0 0 0 

14 Sand 

replacing 

mixtures 

MA 1 0 0 0 0 0 2.75 0 0 

15 GA 1 0 0 0 0 0 0 2.75 0 

16 PA 1 0 0 0 0 0 0 0 2.75 

* MP: marble powder; GP: granite powder; PP: porcelain powder; BP: brick powder; Sa: sand aggregate; Ma: marble aggregate; Ga : 

granite aggregate; Pa: porcelain aggregate; WW: water; SP: superplasticizer 

 214 



3.3 Mixing 215 

The mixing process was done using a mechanical mixer according to the following 216 

procedure: 217 

- All dry materials were placed in the mixer and mixed for 1 min at a slow speed 218 

(140 rpm). 219 

- The mixer was stopped and the water and the superplasticizer (which were mixed 220 

previously) were added to the dry materials and the mixer was operated for 1 min at 221 

a slow speed. 222 

- The mixer was stopped for 1 minute during which the speed was converted to the 223 

medium speed (285 rpm). 224 

- Then all materials were mixed final mixing for 2 minutes. 225 

3.4 Casting and curing 226 

Before casting, molds were cleaned and lubricated with a light layer of oil to facilitate 227 

their lifting after hardening. After mixing, the flesh mortar was poured in standard cubic 228 

(50×50×50 mm) and prismatic (40×40×160 mm) molds and compacted using an 229 

electrical vibrator. After about 20 to 24 hours of casting, the specimens were de-molded 230 

and immersed in water at a temperature of 20± 2 °C until the time of the test. 231 

3.5 Tests 232 

Different tests were carried out to monitor the effect of the used materials on the 233 

properties of the fresh and hardened mortar. Flow test according to ASTM C1437 [41] 234 

was performed for fresh mortar. For hardened mortar, compressive strength, flexural 235 

strength, ultrasonic pulse velocity (UPV) and water absorption tests were executed. One 236 

test age (at 28 days) was depended for all hardened tests. Cubic 50 mm specimens were 237 
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used for compressive and UPV tests, while 40×40×160 mm prisms were accounted for 238 

the flexural strength test. The latter was calculated using the following equation [42]: 239 

𝐹 =
1.5 𝑃 𝐿

𝑏3           (1) 240 

Where; F is the flexural strength (MPa), P is the ultimate load (N), L is the distance 241 

between supports (mm) and b is the cross-section dimension of the prism. 242 

After breaking the flexural strength prisms in the machine into two halves, the prisms 243 

portions (the two halves) were used to perform the water absorption test. The procedure 244 

described in ASTM C642 [43] was followed for determining the water absorption of 245 

hardened mortar. The method included drying the samples in the oven at 100-110 ºC 246 

and weighing them every 24 hours until the constant mass (the mass difference between 247 

any two successive values is ≤ 0.5%). After cooling, the specimens were immersed in 248 

water and weighed every 24 hours until the constant mass. Then the water absorption 249 

can be calculated using the following equation: 250 

𝑊 =
𝐴−𝐵

𝐵
 × 100          (2) 251 

Where; W is the water absorption (%), A is the mass of the wet specimens and B is the 252 

mass of the oven-dried specimens. 253 

The dry bulk density was determined by dividing the measured mass (oven-dried) of the 254 

prismatic specimens (40×40×160 mm) by their volume [44]. Average of three readings 255 

were considered for each of the compressive and flexural strengths and bulk density 256 

tests, while an average of six readings was taken into account for UPV (two readings 257 

from each cube) and water absorption (two readings from each broken prism) tests.  258 
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4. Results and discussions 259 

4.1 Flow test results 260 

The flow test results of all mixtures are presented in Figure 3. For cement replacement 261 

mixes, results indicated that marble mixes showed comparable flow at 5% and 10% 262 

substitution related to the control sample. However, the flow rate was increased at 15% 263 

substitution. The lower specific gravity of marble powder than the cement resulting in 264 

increasing the volume of paste compared to Portland cement and leading to enhance the 265 

flowability which is more pronounced at 15% content of marble powder [45]. 266 

Moreover, the flow rate of granite mixes was equal to that for the control mixture. On 267 

the other hand, clay brick powder decreased the flow rate. The higher the substitution of 268 

the clay brick powder, the lower was the flow rate. These results differed from what 269 

Tayeh et al [28] found, as they reported that using pottery powder as a partial substitute 270 

for cement improved the workability of mortar. The reason for this difference may be 271 

due to the fact that the method of production of pottery and the degree of its burning in 272 

addition to surface characteristics of its particles might differ from that for building 273 

bricks, and therefore these properties can affect its water demand. The reduction in flow 274 

rate can be attributed to the ability of the clay brick powder to absorb water, the 275 

roughness of its surface and the angularity [46] which led to the loss of a part of the 276 

mixing water and thus reduced the flow rate. For porcelain powder mixtures, the results 277 

showed a slight improvement in flow rate for all used ratios in comparison with the 278 

control mix. Furthermore, for aggregate replacement mixes, results revealed that the 279 

flow rate was enhanced in the presence of marble aggregate by about 5% which can be 280 

interpreted by the favoring the rheology of mortar as a result of the low porosity and 281 

water absorption of crushed marble waste [47–49]. However, it was reduced for granite 282 

and porcelain aggregate by 13% and 49% respectively.  283 
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 290 

Figure 3: Flow rate results of fresh mortars. 291 

4.2 Compressive strength results 292 

Results of the compressive strength test for mortar mixes are illuminated in Figure 4. 293 

Results indicated that all mixes containing building materials waste as cement 294 

replacement reduced the compressive strength in comparison to the reference mixture. 295 

For marble, granite and porcelain mixes, the reduction rate was increased with the 296 

increase of the powder substitution. The reduction rates for clay brick mixes were 18%, 297 

29% and 23% respectively. These results are in agreement with previous work [36]. 298 

Compared to the control sample, the minimizing rate (62%) was obtained for 15% 299 

substitution of granite powder. This reduction in compressive strength regardless of 300 

waste type can be attributed to the low reactivity of these waste [46] and the dilution of 301 

the silicates (C3S and C2S) which represent the main components for hydration process 302 

and in charge of concrete strength [50–52] as well as the decrease in C3A content [53]. 303 

For aggregate replacing mixes, it was found that the replacement of sand with marble 304 

and porcelain tiles waste improved the compressive strength by 4% (for both) compared 305 
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to the reference mix. This increment is a result of aggregate characteristics such as good 306 

granulometric distribution, surface texture that leads to enhance the composite quality 307 

[47,54–56]. Contrary, the granite aggregate reduced the compressive strength by 16%. 308 

This reduction in compressive strength of granite aggregate can be interpreted according 309 

to Jain et al [57] who reported that the replacing of fine aggregate with high level (more 310 

than 60%) of granite cutting waste reduced the compressive strength of concrete due to 311 

the increase in the porosity causing revoking in the pore filling effect. The UPV results 312 

(as presented in the following sections) support this claim. 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

Figure 4: Compressive strength results of the mortar mixtures. 321 

4.3 Flexural strength results 322 

Figure 5 shows the results of the flexural strength test. As in compressive strength, all 323 

cement substitution mixtures showed lesser flexural strength values than the reference 324 

mixture. Additionally, the higher the substitution percent, the higher the reduction rate 325 

for marble, granite and porcelain mixes were recorded. The possible reason for that is 326 

the poor interlocking between the waste powder and aggregate [58]. The greatest 327 
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reduction in flexural strength (67%) was given by 15% substitution of granite powder, 328 

however, the least reduction (11%) was found at 5% replacement with marble powder. 329 

The reduction rates of clay brick powder mixtures were 17%, 36% and 25% for B5, B10 330 

and B15 respectively. Similar findings for clay brick were recorded by Zhu et al [59]  331 

who reported that the flexural strength was reduced at 3 days and 28 days, respectively, 332 

by 27% and 18% when the powder increased from 9% to 27%. The authors attributed 333 

that reduction to the lower pozzolanic activity of clay brick powder compared to 334 

cement. For natural sand replacement mixes, a significant improvement was observed 335 

for marble aggregate (about 7%) compared to the natural sand. The highest 336 

enhancement was recorded for the porcelain aggregate mix, about 156%. The 337 

enhancement in flexural strength for porcelain aggregate was more pronounced than 338 

that in compressive strength. The reason for that may be returned to that flexural 339 

strength is affected by the pore structure and the interfacial transition zone (ITZ) 340 

between the aggregate and cement more than the compressive strength [60]. In contrast, 341 

the flexural strength was reduced by about 6% for the granite aggregate mix. As 342 

explained in compressive strength, the increase of voids within the mortar matrix may 343 

cause the flexural strength to be decreased. Similar results for the high replacement 344 

levels (> 40%) of aggregate with granite waste were recorded by Singh et al [61]. 345 

 346 

 347 

 348 

 349 

 350 
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 356 

 357 

Figure 5: Flexural strength results of the mortar mixtures. 358 

4.4 Water absorption results 359 

Figure 6 displays the results of the absorption test for all mixtures used in this study. 360 

The results showed that all mixtures containing building material wastes as substitutes 361 

of cement in different percentages gave higher absorption values than the reference mix, 362 

except for the 5% clay brick mix, which showed equal absorption to the reference 363 

sample. The 5% marble powder showed a negligible increase in the absorption rate, 364 

about 1% related to the control specimen. The absorption rate ranges were (11.55 to 365 

18.22%), (11.86 to 12.52%), (11.45 to 12.32%) and (11.99 to 12.31%) for marble, 366 

granite, clay brick and porcelain powder-based mixtures, respectively compared to 367 

11.45% for control mixture. This increase in water absorption rates of waste powder 368 

mixtures refers to the increase in the porous volume of mortar mixtures [62]. These 369 

findings are in agreement with what was reported in previous works [62,63]. 370 

Conversely, all aggregate substitution mixtures showed lower absorption rates than the 371 

reference mix. Maximum enhancement in absorption rate (17%) compared to the 372 
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reference mixture was given by the marble aggregate mixture. The water absorption of 373 

granite and porcelain was lower than that for the control mix by 4% and 9%, 374 

respectively. This improvement in water absorption resistance might be due to better 375 

packing (which results from the good interlocking with the cement paste) between the 376 

cement matrix and the recycled aggregate [57]. 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

Figure 6: Water absorption results of the mortar mixtures. 385 

4.5 Ultrasonic pulse velocity results 386 

The results of the ultrasonic pulse velocity values of mortar mixtures are shown in 387 

Figure 7. Ultrasonic pulse velocity test is used to evaluate the quality of concrete, the 388 

existence of voids, and to assess the effectiveness of cracks repair [64]. This 389 

examination has also been extended to include a large range of concrete properties, 390 

including durability [65]. For this study, it was revealed that the cement substitution 391 

mixtures with building material wastes as cement replacement resulted in a reduction in 392 

the ultrasonic velocity values in comparison to the control mixture. In general, the UPV 393 

values of all mortars ranged between 3420 km/s (for G15 mixture) and 4080 km/s (for 394 
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control mixture). The highest reduction in the velocity (16%) was found when the 395 

cement was replaced with 15% granite powder. For aggregate substitution mixtures, it 396 

was noticed that the marble aggregate improved the velocity by about 3% while the 397 

granite reduced it by 2%. The porcelain aggregate showed a pulse velocity equal to that 398 

for natural sand. Except for G15 mix, it can be observed that there is no significant 399 

change in UPV results after replacing cement or sand with building materials waste. 400 

This behavior is owing to that the UPV is proportioned to the fourth root of compressive 401 

strength [52,66,67]. 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

Figure 7: Ultrasonic pulse velocity results of the mortar mixtures. 410 

4.6 Bulk density results 411 

The results of the dry bulk density of the hardened mortars are shown in Figure 8. In 412 

general, the density values for all mixtures containing building waste materials as 413 

cement or fine aggregate replacements indicated lower values than the control sample 414 

except for M5 mixture which folded approximately comparable density (the reduction 415 
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rate was less than 1%) to that for the reference mix. Moreover, for cement replacement 416 

mixtures, in most replacement types, the higher the replacement rate the lower density 417 

values were recorded. This can be attributed to the increase of the porosity of the 418 

mortars as a result of increasing the water to cement ratio [68] as well as to the lower 419 

specific gravity of these waste compared to the cement [69]. The reduction rates were 420 

(0.3 to 3.8%), (7 to 17.1%), (2.4 to 5%), (10.3 to 15%) for marble, granite, clay brick 421 

and porcelain powder containing mixtures respectively. Results of sand-replacing 422 

mixtures indicated that the dry bulk density was declined by 7.9% for marble, 13.3% for 423 

granite and 8.9% for porcelain mixtures in comparison to the control specimen. This 424 

reduction in bulk density is owing to the lower density of these waste compared to the 425 

natural fine aggregate (sand) [44]. Similar trends were recorded by Gameiro et al [70]. 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

Figure 8: Bulk density results of the mortar mixtures. 434 

5. Conclusion 435 

According to the findings obtained in this study, the following points can be deduced: 436 
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1. Replacing the cement with marble and porcelain powder can enhance the flow rate 437 

of the cement mortar, while the clay brick powder reduces it compared to the control 438 

sample. Using marble wastes as aggregate increases the mortar flow by about 5%, 439 

however, the granite and porcelain aggregate reduces the flow by 13% and 49%, 440 

respectively in comparison to the natural sand. 441 

2. Using marble, granite, porcelain and clay brick wastes as cement replacement have a 442 

negative impact on the mechanical properties of the cement mortar. The maximum 443 

reduction percentages in compressive and flexural strength (62% and 67% 444 

respectively) were obtained at 15% substitution of granite powder.  445 

3. The replacing of natural aggregate with marble and porcelain wastes improves the 446 

compressive strength (by 4% for both) and flexural strength (by 7% and 56%, 447 

respectively) of the cement mortar. On the other hand, for granite aggregate mortar, 448 

compressive and flexural strengths are reduced by 16% and 6% respectively. 449 

4. For water absorption, all cement replacement mixtures show higher absorption rates, 450 

except for 5% substitution of clay brick powder which indicates a comparable 451 

absorption rate, related to the control mix. For aggregate replacing mixes, using 452 

marble, granite and porcelain enhance the water absorption resistance by 17%, 4% 453 

and 9%, respectively. 454 

5. The ultrasonic pulse velocity values are reduced in different rates for cement 455 

replacement mixtures. The substitution of cement with 15% granite powder wastes 456 

reduces the UPV by 16%, which represents the maximum reduction rate, compared 457 

to the reference sample. For aggregate replacement mixtures, the velocity is 458 

increased by 3% for marble mortar, while it decreases by 2% for granite. The 459 

porcelain aggregate mortar reveals comparable velocity values with the control 460 

specimens. 461 
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6. Using building materials waste as cement or aggregate replacement reduces the bulk 462 

density of the hardened mortars. The decreasing rates increased as the replacement 463 

level was increased for cement substitution mixtures. 464 

7. It can be concluded from this study that it is possible to produce an eco-friendly 465 

cement mortar made with 100% of recycled marble or porcelain tiles as fine 466 

aggregate with a significant improvement in mechanical and durability properties 467 

compared to the mortar made with the natural aggregate. Moreover, among all 468 

mixtures performed in the current study, the best performance was achieved for 469 

mixture contained 100% recycled marble as fine aggregate. 470 
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