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Abstract

One of the main issues in astrophysics is to understand how galaxies form and evolve.

Deep photometric studies help the investigation of the evolution of resolved stellar

contents of nearby systems. Hence the properties of these regions represent an ar-

chaeological record of the processes that shape a galaxy over cosmic time. So one

can interpret from the star formation history the evolution of the star formation rate

throughout the galaxy and the evolution of the mass and metallicity distributions. The

system that has been studied in this project is the nearby galaxy M33, located in the

Local Group. The photometric data was taken in the Canada-France-Hawaii Telescope

with the MegaPrime/MegaCam wide-field mosaic imager and it is available for the

filters g’, r’ and i’. The data analysis is presented in this work with the purpose of

recovering its star formation history. Over one million point sources were identified

in each filter. The program chosen for this process is DAOPHOT (Stetson, 1987).

PSF-fitting photometry was performed using a few hundreds of point sources, selected

from non-crowed areas, to fit the point-spread functions. This process, however, was

repeated a couple of times in order to get a well adjusted point-spread function with the

least residuals possible. The instrumental magnitude was then determined. A selec-

tion cut enabled spurious sources to be discarded based on the photometric errors (σ),

residuals scatter (χ2) and image quality (sharpness). Aperture and offset corrections

were applied in the magnitudes before the transformation to the standard photometric

system. A completeness test to examine the effects of crowding in the images was

conducted in each photometric filter. The bias in the observed magnitudes and in the

stellar counts due to high stellar density affects the final star formation history, result-

ing in the miss-assumption of the stellar age, metallicity and initial mass function. The
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artificial stars test (Williams et al., 2009) is a standard technique used to that end and

consists of inserting synthetic stars in the images, with the routine ADDSTAR (Stet-

son, 1987), and performing again the photometric reductions in those synthetic images

to compare the known inserted brightness with the recovered ones. The completeness

is given by the ratio of the number of retrieved artificial stars over the number of added

ones.

Stars of all evolutionary stages lose mass and the mass recycled in the interstellar

medium will be part of the next generation of stars and planets. The study of mass loss

is quite well understood for metal-rich stars populating the asymptotic giant branch,

though there is still a lot to be understood about the metal-poor stars losing mass dur-

ing the red giant phase. The understanding of the mass loss process that happens in red

giant stars of globular clusters might help us to better estimate the post-main sequence

stellar evolutionary stages and the intra-cluster gas enrichment. Since the 70’s it has

been known that the Galactic globular cluster ω Centauri shows an extremely complex

stellar chemistry, with a wide variation in metallicity, [Fe/H]≈ -2 to [Fe/H]≈ -0.6, and

light elements (like He, C, N...). Indeed, the properties of ω Cen favours the hypothesis

that this is a remnant of a dwarf galaxy orbiting the Milky Way and tidal interactions

partially disrupted it. With observations from the Infra-Red Array Camera aboard of

the Spitzer telescope, investigations on red giant stars in ω Centauri are carried out to

identify infrared colour excess originating from the emission of a circumstellar enve-

lope surrounding the stars (e.g. Frogel & Elias, 1988; Origlia et al., 1996). This study is

based on a proper combination of ground-based and original Spitzer photometric data

as well as results from previous spectroscopic surveys. Prior to the selection of the dust

excess stars, the magnitudes from the SDSS photometric system are converted to the

TCS system based on the colour relations of Carpenter (2001) and Alonso et al. (1998)

as the colour-temperature equations used to calculate the effective temperature are in

different photometric filter systems. Bolometric corrections and the effective tempera-

ture are needed for comparisons between observations and theory and both parameters

were derived according to Alonso et al. (1999). After selection, 34 giant stars presented

colour excess in (K - 8) with metallicities ranging from −1.9 < [Fe/H] < −0.7;
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metallicities that were interpolated from PARSEC isochrones (Bressan et al., 2012).

Field stars were rejected based on the proper motions from GAIA, which reduced to

18 the number of mass-losing candidates. The large amount of field stars excluded

from the sample is due to the difference in spatial coverage from GAIA and Spitzer.

The stellar synthetic spectral distribution of those stars is modelled and used to calcu-

late its mass loss rate, using a modified version (Origlia et al., 2007) of the radiative

transfer code DUSTY (Ivezic et al., 1999; Elitzur & Ivezić, 2001). The mass loss rates

derived from our sample are in the range of 10−8 to 10−7 M� yr
−1, which is slightly

off the values proposed by Origlia et al. (2002) and Boyer et al. (2008). The mass loss

rates seem to increase with increasing luminosities and its dependency with metallicity

is minimal. Only a fraction of red giant stars are losing mass indicating an episodic

mass loss.

JESSICA REIS KITAMURA MAY 2, 2020
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Chapter 1

Introduction

1.1 Star formation history of galaxies

The formation and evolution of galaxies is still one of the most challenging cosmo-

logical problems to be solved. The processes involving the baryonic matter assembly,

i.e. gas shocking and cooling in dark matter haloes, star formation, supernovae and

active galactic nuclei feedback, chemical enrichment, and stellar evolution, are lacking

a full comprehension and are still in need to be investigated (Baugh, 2006). Basically,

there are two main approaches to explore galaxies, observing galaxies over a range of

redshifts (cosmic time) or analysing the past history of star formation of local galaxies

with their current stellar population. For the former though, there are certain limita-

tions, like only being able to observe the galaxies with higher surface brightness at

large distances and to have access only to an integrated spectral energy distribution of

all stellar constituents. The latter, on the other hand, benefits from the possibility to

resolve the stellar content and the results could be used to compare with galaxies at

high redshift.

The star formation history (SFH) of a system denotes the evolution with time of the

star formation rate (SFR; which is the total mass of stars formed in a given period

of time) and the metallicity. The formation of stars can happen by the accretion of

1



1.1. Star formation history of galaxies 2

the gas from other objects or intergalactic medium, onto discs, then this gas is cooled

and form molecular clouds and the cloud fragments are accreted into denser cores,

the contraction of the cores subsequently form stars and planets (Kennicutt & Evans,

2012).

The formation of stars in galaxies could be described in three distinct evolutionary

scenarios (Martı́n-Manjón et al., 2011). In the first scenario, stellar formation happens

as an initial burst at the moment the galaxy was formed. In another scenario, a galaxy

could continuously form stars, but slowly decrease the formation rate since the time of

the galaxy formation. Lastly, an episode of intense star formation could occur some-

time after the galaxy formation epoch and lasts for a short period, when compared to

the galaxy lifetime.

Besides, the star formation occurs differently according to the different morphological

types of galaxies. For instance, luminosity evolution models commonly assume that

most of the elliptical galaxies have undergone starbursts (intense rate of star formation)

at an early epoch and now is quenched (Kitzbichler & White, 2006), conversely spirals

are still forming stars to the present day (Brinchmann et al., 2004).

The SFR is usually related to the surface density of gas, commonly known as Schmidt

Law of star formation (Schmidt, 1959), mathematically presented as a power law re-

lation of the form
∑̇

? ∝
∑N

gas, where
∑̇

? is the star formation rate summed along a

line-of-sight through the galaxy disc, in units of M� pc−2 yr−1, and
∑N

gas is the sum

of the surface densities of atomic and molecular gas, in units of M� pc−2. Kennicutt

(1998) found the best fit of N = 1.4 from a sample of 97 nearby star-forming galaxies.

Chemical evolution is another important ingredient to trace the SFH. There are three

main processes responsible for the formation of chemical elements in the Universe.

The primordial nucleosynthesis that occurred in the first minutes of the formation of

the Universe, when matter was very hot and dense, and formed elements like hydrogen,

helium, their isotopes and lithium. Stellar nucleosynthesis forms elements in the core

of the stars (mainly helium, carbon, nitrogen, oxygen and s-process elements) and in

supernovae explosions (in Type II supernovae is formed mainly α-elements, iron and
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iron-peak elements and in Type Ia supernovae mainly iron-peak elements are formed).

Interstellar nucleosynthesis, that is the interaction between cosmic rays and the inter-

stellar medium (ISM) gas, which produces light elements like lithium and berillium

(Audoze & Mathieu, 1986).

Besides the production site of the chemical elements, one can interpret from the chem-

ical enrichment history the enrichment timescales. For instance, elements originated

from Type II supernovae generally take about∼ 107yr to pollute the ISM (which is the

time massive stars take to reach their final evolutionary stage and explode as Type II

supernovae); on the other hand, the majority of iron produced by Type Ia supernovae

takes longer to pollute the ISM, ∼ 1 Gyr (Greggio, 2005). There are some conditions

to consider during the analysis of the chemical evolution of galaxies: if the first stars

were formed from a primordial gas or from a pre enriched gas, the rate at which stars

were formed and its distribution, the amount of enriched gas ejected by stars, gas in-

flows and outflows, radial flows of gas and stars and accretion of material from other

systems. Therefore, studying the SFH of galaxies is essential to reveal such differ-

ences in the mechanisms and processes that drive the star formation and the chemical

evolution.

To help us unveil the formation and evolution of the Universe, it is important also to

understand the formation and evolution of individual galaxies. Although disc galaxies

are interesting objects for offering a complex varied range of stellar populations dis-

tributed along each of its components (bulge, halo and discs), there exist some uncer-

tainties related to the bulge (e.g. structure, formation, chemical enrichment; Graham,

2001; Robin et al., 2012; Nataf, 2016), and tidal interactions and mergers (Barnes &

Hernquist, 1992).

Interestingly, galaxies like M33 largely overcome these disadvantages; given that, in

the specific case of M33, it apparently had only a few interactions with M31 (Bekki,

2008; McConnachie et al., 2010; Davidge & Puzia, 2011; Wolfe et al., 2013), is bulge-

and barless (Bothun, 1992; Regan & Vogel, 1994), and has weak spiral arms (Dobbs

et al., 2018) that interferes with stellar formation (Seigar & James, 2002; Dobbs, 2011).

Furthermore, the galaxy M33 is also a dwarf spiral which, conveniently, is the ideal
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representative target of the most common type of galaxy in the local universe (Mari-

noni et al., 1999; Brown, 2009), as well as low-mass galaxies are well distributed at

all redshifts (Bauer et al., 2013). Its relatively face-on inclination is advantageous to

determine its metallicity and SFR and to resolve its stellar populations in the disc and

halo on its entirety. Consequently, studying the stars of stellar populations in the spiral

galaxy M33 makes it possible to address some key aspects of galaxy formation, such

as the SFR as a function of metallicity.

1.1.1 Characteristics of the galaxy M33

The nearby galaxy Messier 33 (also known as Triangulum Galaxy or NGC 598) is a

relatively metal-poor, late-type spiral galaxy, located in the Local Group at a distance

of about 850 kpc (Freedman et al., 1991) and its total mass is about 109M� (Corbelli,

2003). The Local Group, which is a non-compact galaxy cluster where our galaxy is

settled in, contains roughly about 50 galaxies where the three most dominant are M31,

the Milky Way and M33 (emitting 90% of the visible light, all together) and the rest of

them are dwarf galaxies (no high masses, no high luminosities).

M33 is an interesting laboratory, since its proximity allows us to resolve the individual

stars and its nearly face-on inclination, projected over a large area on the sky, makes

it an ideal candidate for wide-field CCD mosaic imaging. M33 is one of the very few

galaxies luminous and close enough where this type of study can be done in such de-

tail, and the result could be used as complementary to the ones obtained from galaxies

at high redshift. The fact that M33 has no bulge component may facilitate the under-

standing of disc evolution as thin discs are the product of gas accretion, while thick

discs tend to be built up through merging (Barker et al., 2011). While other studies

have examined the SFH in M33 using resolved stars, none have been as finely resolved

in deep fields as the work proposed here, and most of them have been dedicated to

its outer regions of the disc, as its centre is challengingly presented due to a crowded

stellar core.

Williams et al. (2009) have determined the SFH in the inner and outer disc of M33
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Figure 1.1: Image of the Triangulum galaxy in the g’ filter, with north up and east to the left.
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using deep images from HST/ACS. They found that most of the disc stars outside of

3 kpc were formed in the last 8 Gyr, which differs from what is observed in massive

spiral galaxies that usually had stars formed before that. The authors have analysed

four fields at different radii. Comparing the Colour-Magnitude Diagram (CMD) of

each field, they have noticed that the number of main sequence (MS) to giant stars

increases with radius, and this suggests a decrease of stellar ages with increasing radius

within 8 kpc, but at larger radii the average age increases with radius. The authors state

that this radial age inversion is in agreement with simulations of disc evolution and is

related to the inside-out disc formation theory.

Barker et al. (2011) have studied two fields in the outer disc at 9.1 and 11.6 kpc using

images from HST/ACS and have determined the SFH. In agreement with Williams

et al. (2009), Barker et al. (2011) found that most of the disc stars were formed by 8

Gyr ago. They analysed the colour function of each field, finding that the first field is

mostly populated by 2 to 4 Gyr age range and metallicity range from −0.8 and −0.2

dex, while the second field is older, age range from 4 to 9 Gyr, and more metal-poor,

metallicity range from −1.0 to −0.5 dex. The age gradient could be explained as a

result of radial migration, however they believe this is not likely to be true for M33 for

those two particular fields because of the small percentage of stars (∼ 14%) older than

4.5 Gyr in the first field compared to the inner disc where stars of that age are more

common (> 50%).

Davidge & Puzia (2011) have analysed young stars in the stellar disc of M33 using

five deep wide-field observations from MegaCam on the CFHT. The authors suggest

that star formation has been constant in the inner disc, within the 8 kpc radius, for the

past 250 Myr and SFR decreases with increasing radius. However, their data shows

evidence of young stars in the outskirts of the disc, with similar properties of those

with ages ∼ 100 Myr, suggesting radial migration or star formation that happened in

intermediate epochs in an extended disc.

Beasley et al. (2015) have characterized 77 star clusters using spectroscopic observa-

tions from Gran Telescopio de Canarias and William Herschel Telescope. The star

clusters sample an age distribution from a few ∼ 10 Myr to13 Gyr and metallicity
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range from −1.74 to 0.18 dex; more than half of this sample is younger than 1 Gyr

and more metal rich than [M/H] = −1. They found an age-metallicity relation for

the clusters and evolution of the metallicity gradient was found in the disc, but no evi-

dence was found for a radial age gradient in the disc clusters. In comparison with the

Milky Way, globular clusters (GC) in M33 are more metal rich and the age-velocity

dispersion relation is similar to the clusters in the Milky Way.

McMonigal et al. (2016) have used data from the Pan-Andromeda Archaeological Sur-

vey on the CFHT MegaPrime to detect a halo on M33. Despite the robust statistical

analyses, they were not able to detect a halo component neither in the observations nor

in a synthetic dataset. The authors explain that if there were a halo component it was

completely dominated by every other component in the galaxy.

1.1.2 Methods to derive the SFH

The most common methods developed to determine the SFH of nearby galaxies are

based on matching the density of stars with stellar evolution models. Usually, one

creates synthetic CMDs, that is a theoretical simulation of the observed CMD of a

stellar population, to compare with the observational ones using a merit function or

maximum likelihood technique. Then, the stars are binned in both observed and syn-

thetic CMDs and the number of stars in each bin is compared. However, this binning

scheme limits the resolution of the solution and inserts a subjective element into the

method (Aparicio & Hidalgo, 2009). A synthetic CMD must also include effects of

photometric errors, blending and incompleteness that may affect the observed CMD of

the stellar population in analysis. Generally, this is accomplished accounting for the

results achieved in the artificial star tests in the observational data.

Some widely used synthetic CMD computational codes are starFISH (Harris & Zarit-

sky, 2001), MATCH (Dolphin, 2002), IAC-star (Aparicio & Gallart, 2004) complemen-

tary to the IAC-pop (Aparicio & Hidalgo, 2009), which is a method to solve the SFH,

and Talos (de Boer et al., 2012). These methods have been used in several applications

(i.e. Harris & Zaritsky, 2004; Brown et al., 2006; Barker et al., 2007; Williams et al.,
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2009). Some variants of the method above have been presented by Tolstoy & Saha

(1996), applying a Bayesian probability approach, and Vergely et al. (2002), using an

inverse method to recover the SFR. FIReS (Small et al., 2013) represents a composite

stellar population by a linear combination of isochrones (multiple isochrones, each one

with its own amplitude or weight) instead of binning the CMD. This means that, with

this method, each star is fit to an isochrone.

Synthetic CMDs have been used to examine some massive galaxies (e.g. Hernandez

et al., 2000; Brown et al., 2006; Williams et al., 2009; Bernard et al., 2012, 2015) and to

probe low mass galaxies (e.g. Harris & Zaritsky, 2001, 2004; Cole et al., 2007; Weisz

et al., 2014) since these are the most numerous type of galaxies in the Local Group,

which is one of the few places where low mass galaxies can be well resolved with

the current telescopes. However, they have been limited to small fields or low spatial

resolution. The observations used on this project are from the wide-field camera in

the Canada-France-Hawaii Telescope (CFHT) with high resolution photometry, fully

covering the local galaxy M33.

1.2 Mass Loss

Almost all stars experience mass loss (ML) by stellar winds of various type (e.g.

pressure-, radiation- or wave-driven wind), with the ML increasing drastically during

stellar evolution1. For instance, 1M� stars lose about 10−14M�yr
−1 (Willson et al.,

1987; Lim & White, 1996) during the MS phase; red giant branch (RGB) stars, with

initial masses of about 0.8 − 0.9M�, are expected to lose about 10−8 − 10−6M�yr
−1

(Origlia et al., 2002, 2007; Boyer et al., 2010) and asymptotic giant branch (AGB)

stars, with initial masses of about 0.5− 8M�, lose about 10−8− 10−5M�yr
−1 (Höfner

& Olofsson, 2018); however, the exact amount of mass lost depends essentially on the

stellar initial mass and metallicity. Stellar winds enrich the ISM with metals, possibly

triggering new populations of stars (Tenorio-Tagle et al., 1987; Oey & Massey, 1995).

The pollution of the ISM is either by the material produced through nuclear processes

1A brief explanation of each phase can be found on section 2.4
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in the centre of the former star, which is injected in the ISM through ML mechanisms

in the whole lifetime of the star, or also with heavy elements produced by neutron

captures during the explosion of massive stars.

Mass loss can be traced from the primordial eras of the Universe with the first stars.

The first stars were a population of very massive stars to first form in the early Uni-

verse; they are believed to play a role in the evolution of their environment, enrich-

ing their local surroundings with metals formed during their short life and ejected in

episodes of ML with heavy elements formed during their explosion as supernovae

(Johnson et al., 2008b). The feedback effects of the first stars were paramount for

the formation of next generation of stars and in the formation of the first galaxies

(Johnson et al., 2008a). With regard to the mass lost in the explosive event of a su-

pernova, gamma-ray bursts are produced and they are important tracers of the SFH at

high redshift (Dado & Dar, 2014; Wang & Dai, 2014; Tan et al., 2015; Savaglio, 2015;

Greiner et al., 2016; Wei & Wu, 2017). The ML influences the angular momentum

loss, thus may dictate whether or not the star become such a burster (Petrovic et al.,

2005; Woosley & Heger, 2006). Besides impacting the SFH determination at high

redshift, the modelling of ML for low-mass red giants affects the stellar distributions

used in SFH modelling that incorporates the horizontal branch (HB) morphology into

synthetic CMDs of resolved galaxies in the local Universe (Aparicio & Gallart, 2004;

Savino et al., 2018).

Undoubtedly, mass loss is an important process to the understanding of many subjects,

from stellar to extragalactic astrophysics. Still, some aspects of the ML mechanisms

need more studying (Goldberg, 1979), such as the stellar angular momentum trans-

ferred to the stellar wind (Lamers & Leitherer, 1993; Allain, 1998), stellar wind theo-

ries (Lucy & Solomon, 1970; Abbott, 1982; Pauldrach et al., 1993; Falceta-Gonçalves

& Jatenco-Pereira, 2002) as well as the impact of the ML on the evolution of stars (e.g.

Chiosi & Maeder, 1986; Jimenez & MacDonald, 1996; Fusi Pecci & Bellazzini, 1997;

Origlia et al., 2007; Salaris et al., 2009; Percival & Salaris, 2011; Salaris et al., 2016),

such as the reduction of the total stellar mass with evolution in the Hertzsprung-Russel

Diagram (HRD), the chemical composition in the stellar surface, the susceptibility to
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undergo physical instabilities, and the final stellar evolutionary stage (Goldberg, 1979).

Although the ML rates on the MS are negligible (in the order of 10−14 M�yr
−1 (Will-

son et al., 1987)), it is extremely significant on the RGB, because the total mass with

which a star leaves the RGB reflects directly in the HB morphology and in the AGB

timescale (Salaris et al., 2016). Also, the period-luminosity relation for RR Lyrae stars

can be explained theoretically if stars lose a considerable amount of mass, not only

in the RR Lyrae pulsation phase itself but also during the giant phase (Christy, 1966;

D’Cruz et al., 1996) and if a RGB star loses its whole envelope rapidly it turns into

a helium white dwarf star (Rood, 1973; D’Cruz et al., 1996). Some studies explain

the temperature and colour distribution of the HB stars (also known as “The second

parameter effect”; D’Cruz et al., 1996; Fusi Pecci & Bellazzini, 1997; Ferraro et al.,

1998; Whitney et al., 1998; Catelan, 2000; Catelan et al., 2001) and the match between

observed and synthetic HB models (Iben & Rood, 1970; Catelan, 1993; di Criscienzo

et al., 2010; Dalessandro et al., 2013; McDonald & Zijlstra, 2015; Salaris et al., 2016)

as a probe of the red giant ML.

1.2.1 Observational evidence of mass loss in globular clusters

Observationally, the evidence that red giant stars lose mass can be obtained by P Cygni

profiles, where emission and absorption lines are both observed in the same spectral

line profile, and molecular lines are redshifted due to the velocity of the outflowing gas

in the stellar envelope; and by circumstellar envelopes, which is the stellar radiation

reemitted by dust grains in cool clouds surrounding the star, at larger distances, causing

an excess emission relative to the stellar flux in the infrared.

A significant ML rate of about 10−8 M�yr
−1 has been calculated based on ultraviolet

absorption lines in spectroscopic observations of a M-type supergiant star, whose cir-

cumstellar envelope has an expansion velocity of 10 kms−1 (Deutsch, 1956). Elitzur

et al. (1976) identified OH maser emission lines from circumstellar envelopes of M-

type stars and from that derived a ML rate of 10−5 M�yr
−1. A ML rate for AGB stars

of about 10−7 - 10−8M�yr
−1 was calculated based on circumstellar CO emission in
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M-type irregular and semi-regular AGB-variables (Olofsson et al., 2002). There was

no correlation between the ML and stellar temperature, while the correlation between

the ML and the gas expansion velocity would indicate a dust-driven wind mechanism.

Origlia et al. (2002) using ISOCAM observations found a mid-IR excess associated

with giants in several GC and attributed it to dusty circumstellar envelopes. The sample

size was for a small region of the core of the clusters, where there are less than 30% of

the brightest giants, so they only found the long period variable star 44262 (V42) and

could not proceed to the ML rate determination.

Also studying the circumstellar envelope of giants, Boyer et al. (2006) detected a pop-

ulation of dusty red giants near the centre of M15. Boyer et al. (2008) characterized

stars observed with SPITZER and selected about 75 dust excess candidates in the GC

ω Centauri. They detected stars with the most significant ML to be near the tip of

RGB and estimated that the total ML is about 2.9-4.2 ×10−7 M�yr
−1, with more than

60% of this total regarding the three brightest M-type stars (LEID 33062, 44262 (V42),

35250). The authors also predicted that if the ML has been constant in the cluster, in

the last 3.4 ×106 years ω Cen has lost about 1-2 M�.

Origlia et al. (2007) identified dusty RGB stars in 47 Tuc and derived an empirical ML

law for Population II stars. Mass loss rates derived from these observations showed

that the ML increases with luminosity and possibly it is episodic.

1.2.2 Characteristics of the Galactic globular cluster ω Centauri

The Galactic GC ω Centauri (NGC 5139) is the most massive (∼ 4.5 × 106M�

(D’Souza & Rix, 2013)) and luminous GC in the Milky Way, with a complex stellar

population sampling probably many different ages, and a large range in iron abundance

spanning from [Fe/H] ∼ −2.0 to [Fe/H] ∼ −0.6 (e.g. Norris & Da Costa, 1995; Pan-

cino et al., 2002; Origlia et al., 2003), and light elements (like He, C, N...). Due to

its properties, it is commonly accepted that this GC is the remnant of a dwarf galaxy

orbiting the Milky Way and was partially disrupted because of tidal interactions (e.g.
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Bekki & Freeman, 2003).

Stellar dynamical models estimate that 9% of ω Cen total mass is attributed to heavy

remnants (black holes and neutron star), 40% to white dwarfs, and the remaining 51%

to non-remnant stars (giants and MS, Meylan, 1987). Giersz & Heggie (2003), on

the other hand, suggest that heavy remnants (in their definition: neutron stars + white

dwarfs) mass represents about 55% of a total mass of 3.6 × 106M�. The dynamical

models of Noyola et al. (2006, 2008) suggest that the presence of a black hole of mass

4 - 5 ×104M� in the cluster core is necessary to match observations.

Later Hubble Space Telescope (HST) data helped in the identification of the MS seg-

regation into two main chemical groups (Anderson, 2002; Bedin et al., 2004; Milone

et al., 2017; Bellini et al., 2018). Pancino et al. (2000) found an extremely metal-

rich anomalous RGB (RGB-a). The population of RGB-a stars is parallel to the giant

branch at much cooler temperatures and lower optical brightness than that of the main

RGB. This anomalous branch has now been traced down to the sub-giant branch, or

SGB-a with metallicity of about [Fe/H] = −1.1 (Villanova et al., 2007).

1.3 Goals

1.3.1 M33

We prepare the ground for investigating the SFH of the nearby galaxy M33, with the

data obtained by the MegaPrime/MegaCam wide-field mosaic imager observations on

the 3.6 m CFHT. To achieve that, firstly the photometry is performed for each fil-

ter to obtain the instrumental magnitudes. The program chosen for this process is

DAOPHOT (Stetson, 1987). The instrumental magnitudes obtained for the optical

data should be calibrated into apparent magnitudes in a standard photometric system,

correcting effects of discrepancies between instrumental and standard systems, atmo-

spheric extinction and colour-correction. Secondly, the effects of crowding on the

photometry are going to be assessed. It is important to quantify this properly because
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the bias in the observed magnitudes and star counts will affect the final SFH. The

standard way of measuring this effect is performing the artificial stars test (Williams

et al., 2009) in order to characterise photometric completeness and to account for the

observational errors that result from crowding.

Chapter 2 presents a literature review that briefly explains two main theories behind

galaxy formation and their evolution and an overview of photometry. Chapter 3 presents

details of the reduction and analysis of the observational dataset and chapter 4 dis-

cusses the method on which the artificial stars were tested and the subsequent results.

Chapter 6 refers to a concise description of all work done and to a recommendation for

a future research.

1.3.2 ω Centauri

This work aims at identifying red giant stars with ML in the Galactic GC ω Centauri.

Observations are performed with the Infra-Red Array Camera on board of the space-

based telescope Spitzer . Mid-infrared photometry with Spitzer Infrared Array Camera

(IRAC; Fazio et al., 2004) assists the detection of the colour-excess that comes from

the emission of a circumstellar envelope around RGB and AGB stars (e.g. Frogel &

Elias, 1988; Origlia et al., 1996). The 8µm IRAC band is especially sensitive to the

warm dust emission (Origlia et al., 2010). After selection of the dust excess stars, their

synthetic spectral distribution will be modelled and used to calculate their ML rate,

using a modified version (Origlia et al., 2007) of the radiative transfer code DUSTY

(Ivezic et al., 1999; Elitzur & Ivezić, 2001). An analysis of the ML rate dependency to

the metallicity is undertaken.

In chapter 2 is presented a literature review that explains the physical processes under-

going in stars and their evolution, the composition of GC and an overview of photom-

etry. Chapter 3 presents details of the observational dataset, its reduction and analysis

and chapter 5 discusses the method on which the stars are selected based on the colour

(K - 8) excess and the results. Lastly, the work is summarised in chapter 6 and sugges-

tions of potential new investigations are discussed.



Chapter 2

Structures and evolution of galaxies

and stars

This section approaches the background in order to understand the physical processes

that happen in galaxies and stars. The most commonly accepted theory of galaxy for-

mation and evolution is the hierarchical model. In this model, galaxies are formed and

evolve through successive mergers of smaller structures. In this way, spiral galaxies

are thought to be formed after only a few interactions with other structures, while el-

liptical galaxies would be formed after several mergers. Galaxies hosts several stellar

clusters, they could be simple stellar populations when composed of stars formed at the

same time and with the same chemical abundance, or they could be composite stellar

populations if one of these two ingredients were different. The chapter also discuss the

evolution of stars: all stars start their journey and spend most of their lifetimes in the

MS where their stellar core burns hydrogen into helium. In all evolutionary stages stars

lose a certain amount of mass through stellar winds, how much mass they lose depends

on their initial mass; however, this ML can affect the evolutionary paths of the stars.

There are several mechanisms that cause stellar ML; and, the three main mechanisms

are described in detail: dust-driven winds, line-driven winds and Alfvén wave-driven

winds. At last, it is discussed how photometry allows us to study the radiative flux

emitted by a celestial body, the different options of photometric filter systems and the

14
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effect of interstellar extinction.

2.1 Galaxies

A galaxy is a dynamically-bound system, containing stellar mass from about 105

(Kirby et al., 2013) to 1011M� (Baldry et al., 2012) and varying in size from 1 to

1000 kpc. For instance, a Milky Way-like galaxy contains about 1010 stars and has a

diameter of about 20kpc. Several parameters characterize a given galaxy: morphology,

luminosity and stellar mass, size and surface brightness, gas-mass fraction (the ratio

of cold gas that is actually turned into stars), colour, environment, nuclear activity and

redshift. There exist two basic types of galaxies, spirals and ellipticals.

Elliptical galaxies, also known as early-type galaxies, have generally redder colours

than spirals, due to the presence of old and/or more metal-rich stellar populations,

stars are usually low-mass and, these galaxies commonly show minimal star formation

activity. Spirals, also known as late-type or disk galaxies, are extremely flattened disks,

which are rotation sustained and are characterized by spiral arms structures. They may

also present other morphological characteristics such as bar-like structures and a bulge

component in their centres. The photometric colours are bluer than an elliptical with

the same luminosity, due to its on average younger stellar content.

The properties of a spiral galaxy’s stellar population (such as mass, metallicity, age,

magnitudes and colours) can provide important hints about the galaxy’s formation and

evolution. However, the broadband colours have to be correct for extinction effects,

as spirals are usually dusty and often inclined with respect to the line-of-sight. It

is also important to carefully consider each component of the spiral galaxy; that is

because they all have different stellar populations, i.e. normally the bulge and halo

are populated by old stars whilst the thin and thick disk components are dominated by

stars with a broad range of age and metallicity (although stars from the thick disk are

older and more metal poor).

The Hubble Sequence (see example in figure 2.1 Hubble, 1926) is a classification sys-
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tem still commonly used to identify the different types of galaxies observed in the

Universe. Yet, not all galaxies appear in this classification; for instance, the faintest

galaxies called dwarf galaxies. Dwarf irregulars present a very irregular structure and

contain a large amount of gas and an active stellar formation activity (see an example

in figure 2.2). Dwarf spheroidals are galaxies with no gas and with no or few young

stars, and typically present a dispersed structure (see example in figure 2.3).

Some galaxies are part of dense clusters, forming a group of several hundreds, while

other are grouped in smaller groups, like the Milky Way, of about a few dozens of

galaxies. Cluster structures are gravitationally bound and may interfere in the for-

mation and evolution of the galaxies within, especially because elliptical galaxies are

mainly found in clusters and spirals are typically isolated, a field galaxy.

2.1.1 Galaxy formation

One of the first ideas to understand the formation and evolution of galaxies was based

on gravitational instability occurring in a large gas cloud, similar to what happens with

stars. A large cloud in rotation collapses, and the gas which is not gravitationally sta-

ble breaks into in smaller clouds and form stars. This top-down theory is called the

monolithic collapse model, and it was first proposed by Eggen et al. (1962). Consid-

ering this scenario for instance, on the one hand elliptical galaxies would have been

formed in a highly dense cloud, with low rotation velocity and high SFR, while on the

other hand spiral galaxies would have been formed in a less dense cloud, with higher

rotation velocity and a lower SFR.

The steady advance of technology has allowed us to observe galaxies at increasingly

larger redshifts, in the earlier stages of evolution of the Universe and to study the local

Universe with a better spatial resolution. Searle & Zinn (1978) studied red giants

of 19 GC in the Galactic halo and derived a wide range of metallicity and ages for

those stars. In a monolithic scenario of formation, however, these GC should have

formed from an early collapse of a gas with low metallicity; which is not the case.

Hence, they concluded that the halo have probably been accreted over a period of time,
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Figure 2.2: Small magellanic cloud. Image credit: APOD/NASA Stephane Guisard.

Figure 2.3: Fornax dwarf galaxy. Image credit: ESO/Digitized Sky Survey 2.
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either by clouds of intergalactic gas or dwarf galaxies that merged with the Milky Way.

Furthermore, studies like the mass modelling of rotation curves and mass-to-light ratios

compared to the expected mass from stellar population syntheses models suggested

the existence of dark matter composing the total mass of galaxies (Faber & Gallagher,

1979; Kent, 1986). That being the case, further studies of galaxy formation suggested a

model that explained best the formation of galaxies composed with dark matter (White

& Rees, 1978). With the new observational evidence gathered, the monolithic scenario

could no longer completely describe all the aspects of the formation of galaxies.

The hierarchical model has been widely accepted (Baugh, 2006) since it was first

debated (Peebles, 1982). Through the perspective of the ΛCDM (cold dark matter)

cosmological model, large structures are built up over time by means of the continu-

ous accretion of smaller structures. It proposes that the dark matter collapses and its

density grows. The dark matter density fluctuations result in dark matter haloes that

are followed by successive merging with much less massive haloes, producing more

massive structures. Eventually, the massive dark matter haloes start accreting baryons

(the visible matter), so galaxies can be interpreted as the product of evolution of bary-

onic matter within a much larger halo of dark matter. The diversified morphological

types of galaxies are the result of different interactions; for instance, spiral galaxies

would have been formed with few interactions, whereas elliptical galaxies would have

been formed with more frequent mergers. In this bottom-up theory, the environment

where the galaxies are settled is an important determining factor; for instance ellipti-

cal galaxies (which, as explained above, would be a result of several interactions) are

predominant in galaxy clusters.

2.2 Stellar Populations

The concept of stellar populations was first introduced by Baade (1944) after observing

two distinct groups of stars in different locations in the galaxy M31. The CMD of

stellar populations can be matched with one or more isochrones. An isochrone at a

given age is a curve that connects the evolutionary tracks of stars with the same initial
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chemical abundance and varied masses at the same age in a HRD1, meaning that whilst

time is constant the distinct points composing the isochrone have a different stellar

initial mass value. Therefore, when one looks at the CMD of a stellar system (say a

GC or a nearby galaxy), there is information about the age and metal content of all the

stars we see. Hence the whole history of the system is encrypted in the CMD. Figure

2.4 shows four examples of isochrones, with same ages 5 Gyr (green and red) or 10

Gyr (black and blue) and with same metallicities Z = 0.0001 (red and blue) or Z = 0.01

(green and black), from the bottom of MS to the end of AGB stage.

Simple stellar populations (SSP) are composed of stars formed at the same time with

the same initial chemical composition. One way to determine the parameters of a stel-

lar population is to compare observed CMD with isochrones. While SSPs represent

star clusters quite well, they are not a good approximation for galaxies, which are much

more complex systems presenting several star formation episodes with different prop-

erties throughout the history of the system. Galaxies are populated by a distribution

of stars that is a complex superposition of numerous isochrones, implying numerous

generations of stars with different metallicities. Therefore, it can be assumed to be a

composite stellar population. The inherent information that characterises a composite

stellar population is the SFH, that is, the evolution with time of the total mass of stars

formed and their initial chemical composition.

2.3 Globular clusters

In the late 17th and early 18th century, astronomers identified the first star clusters,

but because of the low aperture and resolution of their telescopes they thought they

had discovered nebulous stars. It was only with William Herschel in the late 18th

century, possessing a much larger telescope, that it was possible to resolve the stars

in the clusters. In his second catalogue publication (Herschel, 1789), he studied star

clusters in detail and labelled them into separate groups, one of them being called

1A HRD is a plot of luminosity versus temperature of a star. The connection between luminosity and
temperature gives the evolutionary stage of a star.
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Figure 2.4: HRD of four isochrones (Pietrinferni et al., 2004), colours red and blue have same
metallicity, Z = 0.0001, but different ages, 5 and 10 Gyr respectively; while green and black
have metallicity Z = 0.01, but ages 5 and 10 Gyr.
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’globular’. In the early 19th century, the advent of high-resolution spectroscopy and

photometry improved results in the characteristics of the stellar cluster, such as their

distance. Shapley (1918) used RR Lyrae and Cepheid variables to measure the distance

to the known clusters and estimated their location in the Galaxy by calculating their

distance to the Galactic centre.

Stars in GC are gravitationally bound, distributed according to a spherical geometry

with higher stellar densities towards their centre and typically host up to 106 stars

(Benacquista, 2002). Most of the stars in a GC tend to be faint, red stars located near

the lower end of the MS. Because it is possible to fit a single isochrone to the HRD

of a GC, this is evidence that stars within a GC have identical ages. In our galaxy (in

this case we speak of Galactic globular clusters, GGC) about 150 have been identified

(Harris, 1996), which are typically distributed in the halo and bulge. Overall GGC

have ages from 10-13 Gyr (VandenBerg et al., 2013), which means that most stars

have formed in the beginning of the universe and are important tracers of remote ages.

GCs are believed to have been formed by the collapse of a single molecular cloud. In

fact, they are the best-known example of a SSP, formed by coeval stars with the same

chemical composition. Because of their relative simplicity, GCs have historically been

used as to validate stellar evolution models and to understand more complex systems,

such as galaxies. While the definition of SSP can still be considered valid in good

approximation, particularly with differences in the abundance of some metals, in recent

decades the presence of multiple populations has been highlighted. It is possible to find

a few peculiarities: for instance, ω Centauri presents a wide range of metallicities (e.g.

Norris & Da Costa, 1995; Pancino et al., 2002; Origlia et al., 2003), showing up to

eight populations with varied Fe abundances (∆ [ Fe / H] ≈ 1.5 dex) and other heavy

elements. The reader is refereed to Bastian & Lardo (2018) for a broader discussion

about multiple populations in other various GGCs.
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2.4 Stellar evolution

The HRD describes the relation between the luminosity of a star and its effective tem-

perature. The connection between luminosity and temperature gives the evolutionary

stage of a star. GCs are examples of simple stellar populations and thus allow the study

of different evolutionary phases of a population with fixed age and chemical composi-

tion. The ideal tool for this type of study is the CMD, the observational counterpart of

the HRD. In a CMD, each star is defined by a color and a magnitude, corresponding

respectively to the effective temperature and brightness. In the CMD of a GC, a star

belongs to a certain sequence depending on the type of nuclear combustion that occurs

in its core. Below are the main evolutionary phases that will be addressed in the next

chapters.

2.4.1 Main Sequence

MS is the evolutionary stage where stars spend most of their lifetimes, and therefore

the number of stars observed in this phase is considerably higher than in any other

phase. The MS corresponds to the nuclear fusion of hydrogen in the core through the

process called proton-proton chain (or simply pp chain), more effective for low mass

stars, and CNO (carbon-nitrogen-oxygen) cycle, dominant in more massive stars. The

increase of molecular weight in the core also increases the density and temperature, so

that the star becomes somewhat more luminous and the outer envelope expands and

cools down slightly. The position in the HRD moves towards the turn-off (TO) point.

The MS ends with the exhaustion of hydrogen in the core, the contraction of the core

and the expansion of the envelope. The timescale and how a star evolves depends on

its initial mass and the kind of nuclear reaction that converts hydrogen to helium. In

fact, each initial mass corresponds to a different central temperature, which favours

different burning cycles. In particular:

• M ≤ 1.3 M�2: the hydrogen combustion occurs through the pp chain reaction

2All the mass range suggested in this section depends critically on the initial chemical composition
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and the star core is radiative, whilst the stellar envelope is convective.

• M > 1.3 M�: the hydrogen burning occurs mainly through the CNO cycle and

the core is convective surrounded by a radiative envelope.

The moment a star moves from the MS to the next evolutionary stage (subgiant branch)

corresponds in the CMD to the TO point, which is equivalent to the brightest and

warmest point of the MS in the HRD. Figures 2.5 and 2.6 show the evolutionary track

of stars with 1 and 5 M�, respectively.

2.4.2 Sub-giant branch

This evolutionary phase (SGB) is characterized by the contraction of the core and the

transition from core to shell combustion, through the CNO cycle. The luminosity of

the stars during the SGB remains approximately constant. The temperature will rise

in the core but not enough to trigger the helium nuclear fusion, though a thick hydro-

gen shell surrounding the core will start burning the hydrogen into helium. The shell

will become thinner with the hydrogen depletion. The radiation emitted from the core

and the shell during the rise of the core temperature causes a thermal expansion in the

stellar envelope and the surface cools down. With the surface expanded and cooled,

the formation of molecules and grains is more effective causing a rise in the opacity.

Eventually, the core of low-mass stars will get dense enough to develop electron de-

generacy and will stop contracting. In this phase the star moves towards the red part of

the CMD. The timescale in the SGB is approximately a few Myr, nuclear timescales3

for stars with core degeneration, and it tends to be shorter for stars with non-degenerate

cores, which follows Kelvin-Helmholtz timescales4. Therefore the chance of a massive

of the stars.
3The nuclear timescale is given by the equation: tnuc =

0.007Mc2

L
, where M is the mass of the

star, c is the speed of light and L is the stellar luminosity. 0.007 stems from the fact that fusing hydrogen
to helium liberates roughly 0.7% of the available mass energy.

4Or thermal timescale, given by the equation: tKH ∝
GM2

RL
, where G is the gravitation constant

and R is the stellar radius.
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Figure 2.5: HRD of a 1 M� star’s evolutionary track, considering metallicity Z = 0.02.
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Figure 2.6: HRD of a 5 M� star’s evolutionary track, considering metallicity Z = 0.02
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star being observed during its SGB phase is practically null, resulting in a lack of stars

in the HRD, called Hertzsprung Gap.

2.4.3 Red giant branch

This phase is characterized by the burning of hydrogen into helium in a thin shell. In

the HRD (or CMD), RGB stars follow an evolutionary path in a nearly vertical line.

The way the RGB phase develops depends on the mass:

• M ≤ 2.3 M�: the core is in degenerate conditions, so that the pressure does

not depend on temperature. All the stellar luminosity is sustained by the radia-

tion produced by a thin hydrogen burning shell. The convective zone penetrates

deeply into the star, bringing up some of the helium produced by the core dur-

ing the MS phase to the surface, enriching the chemical content of the stellar

atmosphere with helium. This process is known as first dredge-up. By the time

the core reaches T ≈ 108 K, a thermal instability happens, causing the helium

ignition to burn explosively (He-flash), whose energy removes degeneracy. This

trigger usually occurs when the core mass is ∼ 0.5M�, regardless of the star’s

initial mass. This implies that the corresponding terminal region of the RGB,

the RGB tip, has the same bolometric luminosity for all stars in this mass range.

This, therefore, makes possible the use of this point as a standard candle to de-

termine distances;

• M > 2.3 M�: in these stars the core is not degenerate, but in a perfect gas

regime. For this reason, the ignition of the helium burn occurs in a thermo-

regulated regime when the core reaches the required temperature and density (T

≈ 108 K and ρ ≈ 104 g cm−3).

A star with initial mass around 0.8 M� will typically lose about 0.2 M� during the

RGB phase (Schatzman et al., 1993).
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2.4.4 Horizontal branch

During the HB phase, the stable combustion of helium occurs in the core accompanied

by the hydrogen burning in the shell. In all stars with core mass (Mc) greater than

∼ 0. 5 M�, helium burning in carbon and oxygen occurs independently of the value of

the mass, through the 3α process. The placement of HB stars in the HRD depends on

its initial mass:

• M ≤ 2.3 M�: stars within this mass range have experienced helium flash and

therefore all have Mc ∼ 0.5 M�. A star’s position in HB depends on the ratio

of core mass to total mass, hence essentially the amount of residual envelope. A

thin envelope implies higher effective temperatures, so the star is positioned in

the warmer zone of the HRD (in the blue part of the CMD), forming an extended

horizontal arm. If, on the other hand, the amount of residual envelope is greater,

the effective temperature is lower so the stars accumulate near the RGB, in the

red side.

• M> 2.3 M�: as already mentioned, in this mass range the ignition of the burning

of the helium takes place under non-degenerate conditions, when the appropriate

conditions of temperature and density are verified. In this case, the increasing

efficiency in energy production by the hydrogen envelope moves the star to the

hot part of the HRD. The star reaches the bluest part of the HRD when the He

abundance in the core reaches about 50% then moves back to the red.

After spending a few dozens mega years in the HB, the star has now a core made

of degenerate carbon and oxygen (for stars more massive than 8-10 M� the carbon-

oxygen core is not degenerate), surrounded by a helium-burning shell and on top of

that a hydrogen-burning shell. The helium-burning shell releases a large amount of

energy, causing the stellar envelope to expand and cool down.
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2.4.5 Asymptotic giant branch

The AGB phase is characterized by hydrogen-burning shell on top of a helium-burning

shell, while the carbon-oxygen core is inert. Similarly to the RGB phase, the stars in

the AGB follow a basically vertical line in the CMD. In the end, AGB stars evolve to

white dwarfs.

• M ≤ 6 - 8 M�: the carbon-oxygen core is degenerate, in which the necessary

conditions for the beginning of further nuclear reactions are never reached. The

start of the helium nuclear reactions in the shell leads to a few consequences: the

stellar surface luminosity drops, the hydrogen envelope expands and cools and

the hydrogen burning turns off. Following that, the convection in the hydrogen

envelope deepens carrying the elements processed by the CNO cycle and helium

to the surface. This is the second dredge-up, which occurs only in stars with ∼

3 - 5 M�.

After a first phase in which only the helium shell is active (early AGB), now the

helium shell is turned off and the hydrogen shell reignites, accumulating helium

in the layer between these two shells. The alternating ignition between the two

shells defines the so-called thermal pulsing AGB (TPAGB) phase, which is a

sudden increase of the luminosity repeatedly in a period of time (Schwarzschild

& Härm, 1965; Weigert, 1965). During the TPAGB for stars with initial mass

≥ 1.5M�, the convective envelope moves inwards, causing the third dredge-up,

due to the envelope expansion and cooling caused by the thermal pulses. Carbon

enriched stars, and hence carbon-rich dust, are the result of the third dredge-up

episodes.

At the end of the TPAGB, the total ejection of the envelope around the degenerate

core and contraction of the degenerate core occurs, until what remains of the star

is the central core surrounded by the ejected dusty, cool cloud. The central source

is observed in UV spectra whilst the dust cloud emits radiation in IR. The dust

shell ionises the radiation and re-emits in the optical, producing the so-called

planetary nebulae, and the central object is now a white dwarf.
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For stars with initial mass M > 8 M�, the core contracts and the temperature in the

non-degenerate core is reached for the beginning of the carbon burning and the sub-

sequent thermonuclear reactions until the synthesis of the elements of the iron group.

The iron core determines the end of the evolution of massive stars. When the iron

core mass approaches Mc ∼ 1.4M�, the pressure of the degenerate electrons is no

longer sufficient to sustain the structure; therefore the core collapses, causing the star

to explode like a Type II supernova. The supernova explosion leaves a neutron star as

a remnant if the stellar initial mass is less than ≈ 25M� or, a black hole for larger

masses.

2.5 Mass loss mechanisms

Stellar winds can be triggered by miscellaneous mechanisms, for instance coronal

winds (driven by gas pressure; the ML here can be enhanced by associated magnetic

winds), sound wave winds (driven by acoustic wave pressure), dust (or continuum)

winds and line winds (both driven by radiation pressure), magnetic rotator wind and

Alfvén wave winds (both driven by a magnetic field with and without rotation, respec-

tively). The most efficient ML mechanisms, radiation-driven winds and Alfvén wave-

driven winds, are described below (for a thorough review, see Lamers & Cassinelli,

1999).

2.5.1 Dust driven winds

Cool, luminous red super-giants and AGB stars are prone to undergo dust-driven winds.

The effective temperature and the luminosity vary respectively from 2000 to 3000 K

and from L ≥ 104 L� (for AGB) to L ≥ 105 L� (for super-giants). The stellar at-

mosphere is extended, lifting the gas to a certain distance from the photosphere. The

low temperature allows grain formation and growth in the atmosphere forming a dust

shell. The opacity blocking the radiation flux increases. The grain particles absorb

and scatter the stellar radiation, momentum is transferred from the radiation to the gas
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resulting in an acceleration of the dust in an outwards direction. Grain acceleration is

increased to over the sound speed and a drag force on the gas molecules is produced by

their collision and coupling with the dust, triggering a stellar wind. Photon absorption

by dust and grains happens in a wide wavelength range; that is why the outflow of cool

giant stars in this process is also called continuum-driven wind.

The minimum ML rate for dust-driven winds is usually about 10−7 M� yr−1 and the

maximum is about 10−5 M� yr−1 (when taking into account thermal pulsations) and

the wind terminal speed is slow, about 10 to 30 km s−1. The grain size is typically be-

tween 0.05µm and 0.1µm. O-rich stars with C/O < 1 produce silicate grains (common

composition: Mg2SiO4 or MgSiO3) and C-rich stars with C/O > 1 produce carbona-

ceous grains (common composition: SiC, MgS or Fe). Stars with a normal atmospheric

abundance, like M super-giants, usually have silicates winds. Both C-rich and O-rich

atmospheres with carbon or silicate grains ignite grain condensation at a temperature

of about 1500 K. The radiation by dust in the winds is observed at long wavelengths.

Dust emission produces a peculiar energy distribution, forming like a bump in the IR,

similar to a Planck Function with T ≈ 102 to 103 K. The bump wavelength is related

to the dust average temperature.

2.5.2 Line-driven winds

Hot, luminous stars have a great amount of absorption lines, particularly in the ultravi-

olet where most of their radiation is emitted. The stellar atmosphere of these massive

stars is no longer in hydrodynamic equilibrium, consequently the radiation and gas

pressure take over the gravity, pushing the mass outwards (Lucy & Solomon, 1970).

All the stellar photosphere radiation at the exact excitation frequency would be ab-

sorbed or scattered in the inner layers of the atmosphere in a static system and the

outer layers would not interact directly with the radiation; thus reducing the radiation

velocity. However, if the gas is accelerating, the ions will then absorb photons that are

red-shifted in regards to the photons absorbed in the layers downward; which means

that the interaction of the gas, that is moving outwards, with the radiation coming
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from the photosphere results in a even more accelerated gas. The efficiency of this

process depends on the amount of exciting or ionising radiation. Stars from different

evolutionary stages can experience this ML mechanism (MS, giants and O, B and A

super-giants, planetary nebulae central stars and white dwarfs). The ML rate for line

driven winds is usually about 10−5 M� yr−1 and the wind terminal speed is larger than

103 km s−1.

2.5.3 Alfvén wave driven winds

Alfvén wave is a low-frequency hydromagnetic wave, which results from electromag-

netic oscillations. Alfvén waves are transverse waves, which means that the particle

oscillation is perpendicular to the direction of the wave propagation. In stars, the wind

driven by Alfvén waves is a consequence of an acceleration in the photosphere caused

by the energy and momentum dissipation from the charged particles carried by the

wave. The outflow velocity varies accordingly to the magnetic field and the particle

densities and is typically high, reaching up to 700 km s−1 for Sun-like stars. This

process along with the two radiative processes described above are the most effective

ML mechanisms. Stars that may present Alfvén wave winds are: MS stars of spectral

type B, low mass pre-MS, giants and super-giants with effective temperatures between

3000 K and 15000 K.

2.6 Photometry

In order to study any celestial body one needs to acquire information about it by ob-

serving and accounting for the amount of light arriving at the detectors from a specific

object, for instance through the method called photometry. Therefore, photometry can

be defined as the measurement of the electromagnetic radiation distribution coming

from an object. The telescope collects the radiation from a celestial source, but detect-

ing devices are the ones responsible for detecting, recording and measuring the amount

of light.
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In the past, photographic plates were used to capture the flux emitted by celestial bod-

ies and the magnitudes were calculated visually. Photographic plates were ideal to si-

multaneously observe multiple objects, but the measurement accuracy was limited and

with low quantum efficiency. Quantum efficiency is a measure of how many incom-

ing photons are counted by the detector, as some are always lost. Nowadays, charge

coupled devices (CCD) are used to electronically record the electromagnetic radiation.

CCD is a silicon chip, divided into smaller individual pieces called pixels. A photon is

detected after colliding with the semi-conductor material and exciting an electron from

the valence band to the conduction band, then being captured by an electrode. During

the reading, the electrons are transported to an analogue to digital converter, that trans-

forms the charge into a number which is proportional to the number of photons fallen

in each pixel. The output afterwards is a digital image.

2.6.1 Photometric filter systems

Observations must be limited to certain wavelengths regions, either by the atmosphere,

or by the detectors used. To standardize and compare observations of different objects,

and also to get information about some stellar properties, sets of photometric filters

are used. The sensitivity to the radiation depends on the spectral efficiency of the

telescope, the detector and the passband. There are several photometric systems with

a variety of filters to choose from. Each photometric system has a set of standard stars

with known apparent magnitude measured at a specific filter. Photometric systems are

divided in three categories, according to their bandwidths; broadband filters are usually

wider than 40 µm, intermediate band are between 7 and 40 µm wide and narrow band

are narrower than 7 µm. Figures 2.7 and 2.8 show the comparison of a few broadband

systems in the optical and infrared, respectively, by Bessell (2005).
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Figure 2.7: Passband comparison of optical broadband systems by Bessell (2005).
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Figure 2.8: Passband comparison of infrared broadband systems by Bessell (2005).
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2.6.2 Interstellar extinction

The interstellar medium is composed of dust and gas and they interact with the stellar

radiation. The dust grains absorb and isotropically scatter the starlight, resulting in

the so called extinction. The amount of extinction can be different from galaxy to

galaxy and from direction to direction within the same galaxy, because variations in

sizes and chemical composition of the dust grains affect the interactions with photons.

The extinction caused by dust grains is stronger at short wavelengths, resulting in the

so called interstellar reddening.

Extinction Aλ can be defined in terms of the reduction of intensity by the presence of

dust: Aλ = −2.5 log
(
Iλ
Iλ0

)
≡ −2.5 log(e−τλ), where Iλ is the observed intensity and

Iλ0 is the intensity at the wavelength λ that would be observed if there was no extinction

and τλ is the optical depth. Should the distance and luminosity of the source be known,

the extinction can be written in terms of the magnitude: mλ = Mλ − 5 log(d) + 5 +

Aλ, where mλ is the apparent magnitude, Mλ is the absolute magnitude and d is the

distance. Colour excess is other measure of extinction: E(B − V) = AB − AV =

(B− V)− (B− V)0, in the photometric B and V bands.

The extinction law describes the dependence of extinction with wavelength and is com-

monly expressed in the form of a ratio of colour excesses:
E(λ− V )

E(B − V )
or like

Aλ
AV

. The

extinction ratio RV =
AV

E(B − V )
characterizes the steepness of the extinction curve.

The extinction curve is usually determined by comparing a reddened stars flux distri-

bution with a dereddened one (with same spectral type and luminosity). RV is 3.1 for

the Galactic average extinction curve, reaching up to∼ 5.5 in dark clouds (Fitzpatrick,

1999). Figure 2.9 is an example of an extinction curve for RV = 3.1 from the far-IR

through the UV derived by Fitzpatrick (1999).
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Figure 2.9: Normalized interstellar extinction curves from the far-IR through the UV. Solid
curve is derived by Fitzpatrick (1999) based on R ≡ AV /E(B − V ) = 3.1, further curves
were plotted for comparison by the author.



Chapter 3

Photometric observations

In this chapter is presented a description of the photometry performed for both data

sets, for M33 and ω Cen. The softwares used for this task were DAOPHOT and IRAF.

The observational data taken from Spitzer-IRAC for the GC ω Centauri are in the

following channels: 3.6, 4.5, 5.8 and 8 µm. The final catalogue assembles about 4000

stars. Our observations for the galaxy M33 come from the CFHT in the filters g’, r’

and i’. The final catalogue accumulates about a million stars.

3.1 Data reduction and analysis

Photometry is the technique of measuring the amount of radiation emitted from a ce-

lestial object. To interpret the observed flux from a point source, all the recorded light

is summed and the sky background is subtracted. Point spread function (PSF)-fitting

photometry considers individual stellar profile, and it is the technique applied for this

data, since it may disentangle fluxes that could overlap due to the high stellar den-

sity. Aperture photometry is also applied later on to compensate any “lost” flux due a

smaller aperture radius chosen in the PSF-fitting to not include any neighbour star.

The photometric analysis was performed using the software DAOPHOT (Stetson, 1987),

a program specially designed to obtain the positions of stars and magnitudes in digital

38
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two-dimensional images, and particularly efficient in conditions of high stellar den-

sity. The software needs some input information about the images. In particular, the

gain and readout noise must be known. These two values are listed in the header of

the images used and, in each case, their values are respectively equal to 22 e−/ADU

(analogue-to-digital unit) and 0.8 ADU for the CFHT/gri and 3.3 e−/ADU and 0.5

ADU for the IRAC/filters 3.6, 4.5, 5.8, 8µm.

Also, the full width at half maximum (FWHM) for the PSF of the stars in the field

should be calculated. PSF are expected to be circularly symmetric. The angular size

of a PSF can be measured by a FWHM which is the diameter where the flux falls to

half its central value. The FWHM was estimated using the IRAF/DAOEDIT task; a

sample of≈ 40 isolated and bright stars for ω Cen, and for M33 there were two distinct

samples: a mixture of 200 bright and 600 faint stars for the crowded regions and 80

bright and 50 faint stars for the uncrowded regions. On average, the FWHM was about

5 pixels (1”) for the CFHT/gri and about 2 pixels (2.4”) for the IRAC/filters 3.6, 4.5,

5.8, 8µm.

Another parameter that must be known a priori is the saturation level of the image.

Saturation is determined essentially by the maximum pixel value at which the detector

becomes saturated. In the case of CFHT/gri, this level is about 4000, 5000, 6000 ADU

(g’, r’, i’) and for the IRAC/filters 3.6, 4.5, 5.8, 8µm this level is about 2000 ADU.

The first step of the reduction is to identify the stellar objects present in the image.

This step is performed by the DAOPHOT/FIND task. For this purpose, a threshold

level is defined, measured in units of standard deviations from the background value

of the image, above which stellar sources are identified. The latter is determined in

a circular area at a fixed distance from the star’s source. To detect weak sources one

should reduce the threshold value. The threshold values assumed for the CFHT/gri are

2, 3, 4 σ and 1 σ for the IRAC/filters 3.6, 4.5, 5.8, 8µm. The output of the procedure

is a text file, with the .coo extension, which contains for each detected object: an

identification number, the x- and y-coordinates of the centroid, a magnitude measured

from the assumed threshold level, and the roundness and ellipticity indexes of the star.

These latter two parameters are useful for evaluating whether the detected object is
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actually a star, by avoiding in this passage the inclusion of objects having a particularly

elongated shape, very bright single pixels (so-called hot pixels) or cosmic rays.

The derivation of an appropriate PSF model is essential for accurate and reliable mag-

nitude measurements. DAOPHOT has four options of PSF analytical models, among

which the one that best represents the data is chosen. The analytical models available

are, in particular, the functions of Gauss, Lorentz, Moffat and Penny.

The Gaussian function has two free parameters, namely the half-width at half-maximum

in x and y. It may therefore have an elliptical shape, but the ellipse orientation is re-

stricted, to make the calculation faster. The Lorentzian function has three parameters:

the half-width at half-maximum in x and y and the angle with which the major axis

of the ellipse is described. The Moffat function has the same free parameters as the

Lorentzian.

The Penny function consists of the sum of a Gaussian function and a Lorentzian func-

tion, which may have an elliptical shape and be tilted relative to the x and y directions

of the image. Two versions of the Penny function are available. In the first case, the

orientation of the ellipse representing the Lorentzian is limited, while the Gaussian

orientation is free. Therefore, there are four free parameters: the half-width at half-

maximum in x and y, the fractional amplitude of the Gaussian function at the peak of

the stellar profile and the angle of rotation of the major axis of the ellipse representing

the last one. In the second case, both the ellipses representing the Gaussian and the

representative of the Lorentzian can rotate. The free parameters are the same as in

the first Penny function plus the angle of rotation of the major axis of the two ellipses

representing the Lorentzian function.

The PSF model is calculated by comparing the possible analytical models, with the

profile of a sample of stars, appropriately selected (i.e., the most isolated and bright,

but not saturated) by the PSF task. This task calculates the best fit of one or more

analytical functions in relation to the data and determines the value of the residuals

(by a χ2 test). It is at the discretion of the user to choose whether the program should

use a particular analytical function, or whether the residuals should be calculated for
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each of the available functions, only by choosing the best case (for this work, the latter

option was chosen). Another parameter set by the user is the degree of variability of the

PSF as a function of the instrumental coordinates. Given the significant deformation,

depending on the position, the variability was set to return the best function during the

calculations.

The best PSF template for each image in the dataset is applied to the entire list of stars

through the ALLSTAR program. The output consists of: magnitude, error, χ2 and

sharpness based on the PSF model obtained in the previous step; all this information is

saved in a text file with the .als extension. When ALLSTAR outputs are available for

all available images, they must be combined for a preliminary catalogue of the dataset.

3.1.1 M33

The photometric data used in this work were obtained with the Queue Service Ob-

serving mode using the MegaPrime/MegaCam wide-field mosaic imager on the 3.6 m

CFHT. The observations were taken on 27 distinct nights between August 2003 and

January 2005, for the g’, r’ and i’ band filters with exposure times ranging from 8 to

11 minutes. The MegaPrime/MegaCam instrument has 36 individual CCDs of 2048 ×

4612 pixels2, 1 degree× 1 degree field of view and a high angular resolution of 0”.187

per pixel. The seeing values of all analysed images are from 0.6 - 1”. All the images

were pre-processed by the CFHT’s Elixir pipeline, which performs dark and bias and

sky subtraction, flat-fielding and fringe corrections and merge amplifiers. More details

about the observations and the data reduction can be found in Hartman et al. (2006).

The master image, of size 20220 × 20531 pixels2, which is a composition of at least

33 images for each separate filter as a result of the pipeline mentioned above, was

trimmed and split in smaller sub-images of 2048 × 2048 pixels2 in order to facilitate

the image manipulation. All sub-images were trimmed leaving an overlapping area,

with respect to its neighbour sub-image, of 300 pixels between each sub-image. These

overlapping regions are necessary to not lose any star in the cutting-line and also to

estimate the uncertainty in the magnitude measurement. Figure 3.1 exemplifies the



3.1. Data reduction and analysis 42

trimming and the sub-images overlapping; where the black lines are the edges of each

sub-image and the blue rectangles represents the spatial location of each chip over the

sub-images used for the magnitude calibration, that will be described in 3.1.1.

Photometry was performed according to the description in section 3.1. To improve

the photometric results, the photometry was performed again in the subtracted image

of the first pass, obtaining an improved second-generation PSF1 over this subtracted

image. An aperture radius of 4 pixels was adopted for the magnitude measurements

and the background sky was determined in an annulus with inner radius of 16 pixels

and an outer radius of 32 pixels.

A good PSF is adjusted ideally for a bright, non-saturated and isolated star. In a

crowded field it is really difficult to pick such a candidate, so the use of as many

PSF stars as possible in the fitting process is important to improve the signal-to-noise

ratio of the PSF. What the fitting routine does is that every time a star is added, the

position is shifted and the brightness is scaled to guarantee that the centroid of each

star added matches with the previous one as precisely as possible. The script allows us

to determine the number of bright and faint stars that will be picked to be fitted by the

PSF, as it is important to consider some faint stars for crowded fields. The number of

PSF stars vary for each sub-image, especially for crowded regions because extremely

crowded regions make the constructions of point-spread functions quite challenging.

An example of the PSF fitting performed in an uncrowded and in a crowded field is

shown in Figure 3.2.

Selection cuts were applied on the final catalogue based on the DAOPHOT parameters

σ (photometric errors from DAOPHOT), χ2 and sharpness to try determining, from

all sources obtained with the photometry, which ones were most likely to be stars and

exclude any spurious sources. The range of values of each parameter varies according

to the sample of each sub-image. A visual inspection of the images of the rejected

sources was done to guarantee they were correctly discarded.

χ2 is the goodness of fit parameter, relative to the profile star fit quality in relation to

1The two-dimensional brightness distribution produced in the detector by the image of an unresolved
source.



3.1. Data reduction and analysis 43

Fi
gu

re
3.

1:
Su

b-
im

ag
e

vs
ch

ip
po

si
tio

ns
.T

he
bl

ac
k

lin
es

ar
e

th
e

bo
un

da
ri

es
be

tw
ee

n
ea

ch
su

b-
im

ag
e

an
d

th
e

bl
ue

re
ct

an
gl

es
ar

e
th

e
po

si
tio

n
of

th
e

ch
ip

s
us

ed
fo

rt
he

m
ag

ni
tu

de
ca

lib
ra

tio
n.



3.1. Data reduction and analysis 44

Figure 3.2: Illustration of the PSF subtraction. First column corresponds to the original images
while the second column corresponds to the residual images after PSF subtraction. First row
corresponds to a single star of a non-crowded field and second row corresponds to a crowded
field. Each image is shown with the same grey-scale intensity and same pixel size, with north
up and east to the left.

the assumed model. A large value of χ is likely to be a non-stellar object. Sharpness is

a parameter to establish the image quality, an index that measures how much the profile

detected is broader or narrower. For a single, isolated, resolved star its value should

be around zero, whereas large positive values of this parameter, containing hot pix-

els, usually indicate that the object is, for instance, resolved galaxies or unrecognised

blended double stars. Large negative values, on the other hand, could be from bad

pixels, cosmic rays or blemishes. Figure 3.3 illustrates the behaviour of the described

parameters in a somewhat crowded image portion.

In the overlap region between sub-images, each star had the magnitude measured from

each individual sub-image. This allows a comparison of the photometry done in dif-

ferent sub-images. A best match in the coordinates of the overlapping areas was done

applying a matching radius of 1 pixel. After this, the photometric measurements of

the stars that were located in the regions of overlap between different sub-images were

compared. If the method was perfect, the magnitude difference would be expected to

be around zero and the dispersion should increase, as the magnitude gets fainter where

the photometric error (σ) is higher. However, for a few cases, as examples seen in

Figure 3.4 there was a slight trend.

To understand the reason for the slope in the magnitude differences among a few sub-



3.1. Data reduction and analysis 45

Figure 3.3: Top panel is σ, increasing as the magnitudes get fainter expectedly due to a higher
uncertainty in the photometric magnitude determination of faint sources. Middle panel is χ2

and bottom panel is sharpness.
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Figure 3.4: Comparison between the output magnitudes taken from an overlap region of sub-
images 52 and 53. The black dots represent differences with dispersion below 3σ while red
dots represent differences with dispersion above 3σ. To quantify how many stars are scattered
by more than 3σ, the magnitudes were averaged in five magnitude bins.
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Figure 3.5: Same as 3.4 but the photometry performed for this set considered a higher sky
background, eliminating the slope affecting the faint magnitudes seen in 3.4.

images, the number of PSF stars and gain and readout noise (RON) values were tested.

Somehow, the noise statistics of the image were miscalculated after the stacking and

the sky removal in the course of data reduction. This means that pixels that would be

considered too noisy to be part of the PSF calculation suddenly become good when

the RON is low. Adding an artificial sky background equivalent to the subtracted sky

and rerunning the photometry with higher RON and saturation level values seemed to

overcome this issue. DAOPHOT should consider a much higher noise in this way and

get less stars for the PSF fitting. Therefore, sky background of about 800 (g’), 1500

(r’) and 2000 (i’) was added to each sub-image of all three filters and the photometry

was redone. Figure 3.5 shows the improvement after adding the sky background.
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Photometric corrections

Aperture photometry consists essentially of calculating the brightness of each star

within an area, generally of a circular shape, for each star identified in the previous

passage. The value of the sky, also in this case, is determined in a concentric ring

outside the area used to obtain the magnitude of the star. Although this approach

is extremely simple, it is not capable of disentangling the contributions of individual

components; therefore, it is unsuitable for accurate photometry in dense stellar sys-

tems, such as GC. However, aperture photometry provides a relative ranking in terms

of brightness, between identified sources, which is useful for subsequent steps in the

analysis. The calculation is performed by the IRAF/PHOT task, which uses the yields

of the input file .coo from FIND, a list of diverse aperture radii (up to 20) provided by

the user, and the internal radius of the outer ring in which the sky is calculated. The

output result is a text file, with .ap extension, in which identifier and pixel coordinates

of the star (same as the previous coordinate file) are reported, instrumental magnitudes

detected in each of the apertures used and related errors, and the value of the sky is

determined with relative errors.

When doing PSF-fitting photometry the larger the aperture, the more of the star’s flux

is within the radius, though the larger the sky error from the sky noise will be. That

is why it is important to do an aperture correction, to correct the limited size of the

aperture radius and guarantee that the aperture is large enough to contain most of the

star flux with the minimum sky noise.

The task IRAF/MKAPFILE was used to compute a growth curve of the magnitude

in a given aperture versus the aperture radius. The aperture correction was calculated

separately for each sub-image. Firstly, subtracted images were generated with the PSF

stars on it, then the task IRAF/PHOT was run again to measure the flux of the isolated

stars considering radii range from 15 (the aperture radius used in the first photometry)

to 20 pixels. Then, IRAF/MKAPFILE integrates the adopted curve of growth between

the smallest and the largest aperture. The observed curve is weighted to favour the

small aperture radius whilst the theoretical curve favours the largest radius. The al-
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Figure 3.6: Plot of the flux versus the radius (in units of pixels) for the PSF stars of a given
sub-image. The solid red line is the average flux.

gorithm used in IRAF/MKAPFILE is called DAOGROW (Stetson, 1990). Aperture

growth-curve correction to all photometric measurements were applied correcting all

stars with respect to their sub-image correction values. Each sub-image had its aper-

ture correction value determined (see table A.1) and applied to the magnitudes of all

stars within it. Figure 3.6 shows an example of the fluxes measured in a given radius

for several PSF stars of a given image. The solid line represents the average curve of

growth.

An offset correction was also applied in the magnitudes to correct for a zero point

among the sub-images. A “reference” sub-image was selected for each filter as a zero

point. The criteria for this selection were a sub-image with high star density and with

the least magnitude dispersion. Thus, the average of the magnitude difference between

the reference sub-image and its neighbour was calculated:

offsetfactor =
1

n

n∑
i=1

µimg1 − µimg2 (3.1)
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where µimg1 is the magnitude from sub-image 1 and µimg2 is the magnitude from sub-

image 2. The error associated to this offset factor was calculated according to the

following:

σoffset =

√√√√√ 1∑n
i=1

( 1

σ2
i

) (3.2)

where σ2
i = σ2

img1 + σ2
img2.

The offset factor was subtracted from all the stars of the reference sub-image neigh-

bour related to those offset, and from the corrected sub-image a new offset factor was

determined, to be applied to a new sub-image neighbour. For each new correction a

new offset was generated to keep correcting all the sub-images of the mosaic. The

final magnitude error of an individual star accounting for the offset correction was

determined as follows:

σmag =
√
σ2
apc + σ2

offset (3.3)

where σapc is the magnitude error after the aperture correction and σoffset is the er-

ror associated to the offset correction factor. To see the offset values applied to each

individual sub-image refer to the table A.2.

The r’, g’-r’ and i’, g’-i’ CMDs for M33 are shown in figures 3.7 and 3.8. MS stars are

around the colour −0.2, red super-giant stars are in the upper-right around 1.1, RGB

stars around 1.3 and the AGB stars are in a slightly horizontal around 2.0. There is also

a foreground contamination of Galactic stars around the colour 0.5.

Photometric calibration

Instrumental magnitudes should be transformed into magnitudes in a standard photo-

metric system2, such as SDSS system. The final magnitudes were calibrated based on

2A standard photometric system is defined by a list of magnitudes and colours for standard stars,
well distributed over the whole sky, for a set of specific filters.
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Figure 3.7: Colour-Magnitude Diagram, g’-r’ versus r’.

Figure 3.8: Colour-Magnitude Diagram, g’-i’ versus i’.
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Table 3.1: Average of the chip’s photometric solutions for zero point, colour term and coeffi-
cients A∗ in g’, r’ and i’ filters. For a full table, with individual chip solutions fitted by KT,
please refer to A.3.

filter Z C A1 A2

g’ −29.656 −0.177 −1.605e− 5 −5.437e− 6
r’ −29.736 −0.020 −2.418e− 5 4.129e− 6
i’ −30.233 −0.069 −1.174e− 7 2.044e− 6

the transformation equations and solutions that a fellow student, Kevin Tsang (here-

after KT), determined from the photometric catalogues of Isaac Newton Telescope

(INT) and CFHT observations. The stacked images are composed of 36 chips, from

which result independent colour terms. IRAF/FITPARAMS is the task that transforms

the magnitudes, by fitting the equation to a set data points, and once the coefficients

are determined they can be used to calibrate the final magnitudes. The adopted trans-

formation equation by KT is:

minst = mstand + Z + C × (colour)stand + A1 × xm + A2 × ym (3.4)

where minst is the instrumental magnitude from CFHT, mstand is the magnitude from

the INT standard stars, Z is the zero point between the standard and instrumental sys-

tems, C is the colour correction terms, colourstand is the standard colours (g’ - r’) to

calibrate g’ and r’ magnitudes and (r’ - i’) to calibrate i’ magnitudes, A∗ are additional

coefficients, which are used to improve accuracy. See the average of all chips for each

parameter in table 3.1. The axial coordinates were included in the calibration equa-

tion for the purpose of accounting for any possible existing radial distortion since the

CFHT covers a large region of the sky.

Usually, the use of colour terms in calibrations is appropriate when there is an un-

certainty in the match between the instrumental and standard system or when a high

precision photometry is aimed so any tiny discrepancy between instrumental and stan-

dard system must be corrected for. To obtain a more accurate result, more complex

equations should be used by introducing additional terms.

Prior to applying the solutions in the dataset of this work and have the instrumental



3.1. Data reduction and analysis 53

magnitudes properly standardized, it was necessary to relate the fields from the sub-

images to the field in each separate chip. Figure 3.1 shows the sub-images labelled

from 1 to 131 and the chips over the sub-images numbered from 0 to 35. As per say,

sub-images 10 and 11 relate to the chip 0, sub-images 22, 23, 34 and 35 relate to the

chip 1, and so on. The correlation between the two dataset was done visually.

The zero-point offset between this work’s dataset and KT’s dataset had to be corrected

beforehand. This was done considering the offset per chip, per filter, in order to max-

imize the accuracy. The matching radius applied in the cross-match between the two

dataset was 1 pixel. Then, all stars with instrumental magnitude lower than 17 in this

work’s dataset were selected and the average of the difference between those mag-

nitudes and KT’s magnitudes were defined. The standard error for this average was

calculated according to
σmag<17√

N∗
where σmag<17 is the standard deviation and N∗ is the

total number of stars in the sample. Each chip were treated individually and the aver-

age offset corrections applied was about 24.930 ± 0.003, 24.880 ± 0.002 and 24.901

± 0.003 for g’, r’ and i’ respectively.

Once the two catalogues were on the same zero-point, it was possible to apply the

calibration transformation using an IRAF task. IRAF/INVERTFIT is the task that in-

verts the transformation equations using the values produced by IRAF/FITPARAMS

to compute magnitudes and colours. As chip 8 does not present a photometric solution,

for all the stars that have fallen in that particular field it was considered the coefficients

found for the neighbour field, chip 7. The final catalogue with g’, r’ and i’ magni-

tudes contains about 400000 stars. Figures 3.9, 3.10 and 3.11 show the comparison

between the calibrated magnitudes from this work’s dataset and KT’s dataset. The

large dispersion for g’ and i’ filters is probably due to cross-correlation between the

two catalogues, as the axial coordinates present in KT’s catalogue refers to the r’ filter.

Cleaning the catalogue from repeated stars

When the master image of M33 were trimmed into smaller images to facilitate the

handling to perform the photometry, an overlap between each sub-image were allowed
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Figure 3.9: Comparison between the calibrated magnitudes from this current work (CW)
dataset and KT’s dataset for g’ filter.

Figure 3.10: Comparison between the calibrated magnitudes from this current work (CW)
dataset and KT’s dataset for r’ filter.
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Figure 3.11: Comparison between the calibrated magnitudes from this current work (CW)
dataset and KT’s dataset for i’ filter.

to guarantee that all stars were accounted for and to ensure the comparison between

images. Basically, an overlap area of 1748 x 300 pixels2 exits in each image, which

means that stars falling in that region may appear twice in the catalogue, or up to 4

times in an overlap area of 300 x 300 pixels2 for regions that overlap in 4 sub-images.

To reduce the appearance of an individual star to a single event, the photometric errors

of the recurrent stars were compared and the one with the smaller error were chosen

to remain in the catalogue. The match amongst the sub-images considered a 2 pixels

matching radius. Overall, 26% of the stars in each filter were redundant and, therefore,

eliminated from the final catalogue.

3.1.2 ω Cen

Photometric observations were taken on Spitzer Space Telescope with IRAC between

September 2005 and July 2006. Images were observed in the channels 3.6, 4.5, 5.8 and
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Figure 3.12: Three colour image of ω Cen. Red is 8 µm, green is 5.8 µm and blue is 3.6 µm.

8 µm in short- and long-exposure times, covering a 5′× 5′ field of view (Origlia et al.,

2007, 2014). Figure 3.12 shows the three colour (3.6, 5.8 and 8 µm) image of ω Cen.

The PSF was set to vary linearly with position in the frame and was constructed from

about 40 bright, relatively isolated stars widely spread throughout the entire image,

except that the cluster core was avoided due to crowding. Specific details about PSF-

fitting and data reduction have already been explained previously on section 3.1. The

instrumental magnitude error was averaged in magnitude bins, and all objects falling

above 1σ limit were rejected to refine the photometric results.

A few hundredths of magnitude offset in colour were detected between the short- and

long-exposure frames. To account for this offset we have taken an average of the mag-

nitude difference (between the long- and short-exposures) within a 2.0 dex magnitude

bin, and added it to the magnitude of the short-exposure frames. Then, the short-

and long-exposure photometry lists were merged. Stars brighter than the instrumental

magnitude 19.5 (where there was no saturation level) in 8µm were selected from the

short-exposure while fainter ones were selected from the long-exposure photometry.

The match between the stellar positions for common stars in all channels and the final

mid-IR catalogue compilation was done using DAOMATCH/DAOMASTER. DAO-

MATCH does a first approximation match for the stars based on the .als files and

produces a .mch file with the coordinate transformations, rotation in degrees and pixel

offsets. DAOMASTER is run to the catalogues of all images related to the same filter
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based on the .mch and finds a more accurate match: the resulting magnitudes are the

weighted average of the individual exposures and the error is the standard deviation,

based on the error values of the individual exposures. At the end of this step, therefore,

there are four .mag files, corresponding to each of the four filters 3.6, 4.5, 5.8 and 8

µm, and containing the identifier of each star, mean position in x and y, magnitude and

error, mean value of χ2 and sharpness.

After obtaining the catalogues of the individual photometric bands, they can be com-

bined into a catalogue containing the four magnitudes of each star. This step is an im-

portant check of the validity of the reduction procedure carried out up to this point. The

procedure again uses DAOMATCH and DAOMASTER. With the former one obtains

the transformations between the reference images of each photometric band, which are

then improved by the second one when generating the common catalogue. In this case,

it was required that the stars in the catalogue to be detected in at least two filters of

which the data set is composed. The information contained in the output file of this

procedure (.raw extension) is the same as in .mag files, with the only difference being

that there are as many columns containing the magnitude and relative error as many

photometric bands are used.

The instrumental magnitude of each star was converted into the Vega magnitude sys-

tem by using the zero-magnitude flux densities of Reach et al. (2005). The following

equation was used to calibrate the magnitudes:

M = Minst + 2.5log(Fdens)− 2.5log(C)− 2.5log(Ω2) (3.5)

where Minst is the instrumental magnitude, Fdens and C are the flux densities and the

absolute calibrator factors (see values for each band in the table 3.2) and Ω is the pixel

solid angle3. The terms of the aperture correction and the position dependency are

corrections used to reach higher accuracy, as it accounts for the detector responses in

the different bands.

The multi-band photometric combination allows for the characterization of the stars in

3The side of a pixel is equivalent to 1”.22.
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Table 3.2: Flux densities and absolute calibrator factors for the channels 3.6, 4.5, 5.8 and 8 µm
derived by Reach et al. (2005).

Channel Fdens (Jy) C (MJy sr−1/DN s−1)a

1 280.9± 4.1 0.1088± 0.0022
2 179.7± 2.6 0.1388± 0.0027
3 115.0± 1.7 0.5952± 0.0121
4 64.13± 0.94 0.2021± 0.0041

awhere DN refers to data numbers

the CMD and the identification of stars with colour excess. The mid-IR photometry

has been cross-correlated with a complementary ground-based near-IR catalogue. The

following catalogues SOFI 4 and 2MASS 5 were used for the central region, approx-

imately 300 pixels radius from the centre of the cluster, and for the external region

respectively. The catalogues from Marino et al. (2011) and Johnson & Pilachowski

(2010) in the optical band have been cross-correlated with the mid- and near-IR pho-

tometry list. In particular, cross-correlation was done using CataXCorr6 software.

Once the final, calibrated and astrometric catalogues have been obtained, the last step

is to assign a flag or a label indicating each quality to each star. Particularly, each star,

for each filter, has been assigned an integer equal to 1 in the case of stars considered

of excellent quality or equal to 0 in case of lower quality. The assignment was made

based on the photometric error associated with the magnitude in each filter, following

the approach described below. The magnitude distribution was binned; for each bin

the average of the photometric error and the standard deviation associated with it were

calculated. The obtained values were interpolated by a spline to fit a curve representing

the location where the average deviation is equal to 1σ. The assignment of the flags

was done using this curve as a reference: in particular, the stars positioned above the

curve were marked with flags equal to 0, those below it with flags equal to 1. The final

catalogue contains about 4000 stars. Figure 3.13 shows CMDs in the colours: (K -

4SOFI is an infrared spectrograph and imaging camera at the New Technology Telescope of the
European Southern Observatory (Sollima et al., 2004)

5Two Micron All Sky Survey
6CataXCorr is a software dedicated to cross-correlation of stellar catalogues designed specifically

for accurate astrometric solutions. It was developed by Paolo Montegriffo at the INAF - Bologna
Astronomical Observatory. The CataPack package, of which CataXCorr is part, is available in
http://davide2.bo.astro.it/∼paolo/Main/CataPack.html
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3.6), (K - 4.5), (K - 5.8) and (K - 8).



3.1. Data reduction and analysis 60

Figure 3.13: (K - 3.6) (top-left) vs. K, (K - 4.5) (top-right), (K - 5.8) (bottom-left), (K - 8)
(bottom-right) CMDs for ω Cen.



Chapter 4

M33 - Artificial stars test

Environments with high stellar density may cause star blending, which biases colour

and magnitudes (e.g. Davidge & Puzia, 2011; Olsen et al., 1998; Rowe et al., 2005;

Stephens et al., 2001), and star loss, which affects mostly faint stars (Gallart et al.,

2005). Therefore, it is crucial to assess the impact of the crowding on the magnitudes

and any systematic effect in the photometry, once the method to determine the SFH

fits isochrones over the CMD. For instance, if the stars are shifted due to the crowding

we can wrongly assume the stellar age, metallicity and mass (Tolstoy et al., 2009).

Not taking into account the crowding effect, the real brightness of the stars would

be overestimated, that would mean that the age estimate would be wrong, those stars

would be considered younger than they really are. Also, the blending effect tend to

return blue stars redder and red stars bluer (Aparicio & Gallart, 1995; Gallart et al.,

1996), resulting in a mismatch of the isochrones. Incompleteness, on the other hand,

would affect the star count inducing us to assume a wrong IMF (Dolphin & Hunter,

1998), hence a wrong SFH. For that reason, an artificial stars test was performed to

quantify the impact of the crowding in the magnitudes. A good understanding of the

crowding effects and completeness can help us to select the finest stars with most

reliable photometry to conduct our analysis of the CMDs. In a nutshell, the test consists

in adding fake stars, with known position and magnitude, in the real images and re-

measuring the magnitude and compare the input and output quantities. In the end, it is

61
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possible to evaluate the magnitude gradient and number of stars lost in the process.

4.1 Monte Carlo test

The traditional artificial stars test (AST, Stetson & Harris, 1988) consists of inserting

into the images artificial stars with known positions and magnitudes. Then the photom-

etry is run in the synthetic image using the standard data reduction used in the observed

frames. When performing the AST it is important to respect the initial stellar density

conditions of the frame, not adding too many stars at time, so the true completeness

can be reproduced and the result be a valid estimation.

As one expects the crowding and completeness effect to be functions of magnitude,

the magnitudes were randomly distributed similarly to those found in our observed

images, sampling the luminosity function of each sub-image (which is a trimmed im-

age from the galaxy master-image, with size of 2048 vs 2048 pixels2) for each filter.

The positions were randomly created but respecting a distance of 10 pixels between

two points to avoid self-crowding. Colours were not attributed for the fake stars, as

the photometric errors and the completeness are almost entirely functions only of the

magnitude. ADDSTAR (Stetson, 1987) is a Monte Carlo method that inserts in the raw

images the fictitious stars and creates a synthetic frame with the new stars. To construct

the artificial stars as realistically as the observed stars in the images, the same PSF star

lists (the ones used to perform the photometry of the real stars) and the same PSF were

used in the AST.

After all fake stars had been inserted in all sub-images, the PSF-fitting reduction was

performed as described in section 3.1.1. In each filter, a total of 4.8 × 106 stars was

added in order to minimize statistical uncertainties; 40 stars were added in an individ-

ual sub-image at a time, to not excessively increase the stellar density in that particular

sub-image. Every single sub-image had repeatedly added 40 stars and remeasured their

magnitudes on one thousand iterations. This is a very time consuming task. To com-

pare the magnitudes of the inserted stars to the retrieved ones, the axial coordinates
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of the stars were matched considering a matching radius of 1 pixel. The completeness

was computed as the ratio of the number of recovered stars over the number of inserted

artificial stars.

Figure 4.1 presents the completeness, magnitude and position bias as a function of

magnitude for a subregion in r’ filter. The fraction of recovered stars over the input

accounts only for the brightness regardless of the position, which means that a star

could be in a magnitude bin in the input but recovered in another, usually brighter.

4.2 AST results

The completeness was calculated in bins of 0.5 dex. To determine the ratio where

50% of the stars were recovered, the last ratio above (rata) and the first ratio below

(ratb) 0.5 was stored, as 0.5 will be somewhere between them. Therefore, there are

two regimes to determine the magnitude at 50% (mag50) recovery. If maga is nearer to

0.5, so is mag50, then:

mag50 = maga +
binwidth

2
× | 0.5− rata |

0.5
(4.1)

For the opposite situation, where magb is nearer, one can say:

mag50 = magb −
binwidth

2
× | 0.5− ratb |

0.5
(4.2)

The error (e) bars are equivalent to the bin width, 0.5 dex. However, they were

weighted according to the position of mag50 between maga and magb , which means

that emin = mag50 − maga and emax = magb − mag50 . Figure 4.2 shows the com-

pleteness curves of 6 different areas of the galaxy. The left column locates crowded

area and the right column an uncrowded area.

These regions are the same in the filters g’ (on top), r’ (in the middle) and i’ (at

the bottom). The recovery ratio becomes brighter towards the centre of the galaxy

due to extreme stellar crowding in there. The difference of magnitude (∆mag) of
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Figure 4.1: Top-left: plot of the ratio between the recovered and the injected artificial stars;
Middle-left: comparison of the observed, injected and recovered stars; Bottom-left: blue dots
are the magnitude difference; Top-right: the dispersion in position (x and y); Middle- and
Bottom-right: histograms of the dispersion in x and y respectively.
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Figure 4.2: Completeness (the ratio of the number of recovered stars over the number of in-
serted artificial stars) by instrumental magnitude. Red dot is the magnitude where 50% of stars
were recovered and the total length of the error bar is 0.5 dex (equivalent to the bin-width at
which the ratio was calculated). Multiple columns are located in the outskirts of the galaxy and
opposite to each other whilst the middle column is in the centre of the galaxy. Top row is g’
filter, middle row is r’ filter and bottom is i’ filter.
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each sub-image were fitted by two functions: an exponential function of the form

f(x) = ae(x/b) + c, and a polynomial function of the form ax4 + bx3 + cx2 + dx + e.

The distributions were binned in 0.1 dex, then some cutting parameters were applied

according to standard deviation in colour and star count inside the bins to improve the

fitting and, after that each bin was averaged. Therefore, the functions fit the averages.

The best fit was decided according to χ2 =
∑

(observed−expected)2 where observed

is the mean value of the bins and expected is the fitted value in the bins. Most of the

sub-images were better fitted by the exponential function, whilst only about 12% of the

images were better fitted by the polynomial function. There is no correlation between

the fitted functions and the stellar density or magnitude. One can see in figures 4.3, 4.4

and 4.5, the magnitude distribution of the difference between the added and retrieved

stars, plots from crowded and uncrowded areas, representing the same region in the

filters g’, r’ and i’. Each plot presents also solid red lines that are the average and 1σ

deviation, dash-dot magenta line is the exponential fitting and dashed yellow line is the

polynomial fitting.
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The stellar density in an image was calculated according to

N∗ × PSF 2π

Nx ×Ny

(4.3)

where N∗ is the total number of stars in the image, PSF is the FWHM in pixels units

and Nx andNy are the number of pixels in x and y coordinates, respectively. The

FWHM was added to the equation with the purpose of considering the crowding in

the PSF cells, divided by the sub-image area. Figure 4.6 shows how the parameter b

(responsible for the slower or faster function growth) from the exponential function

increases with increasing stellar density. Figure 4.7 shows that the magnitude at 50%

recovery also depends on stellar density. Figures 4.8, 4.9 and 4.10 display a colour

map for the filters g’, r’ and i’, respectively, based on the stellar densities calculated

for each sub-image. The numbers printed inside each region is the magnitude where

50% of stars were recovered, x and y are spatial coordinates in pixels. For the thorough

list of AST result see table A.4.
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Figure 4.6: Parameter b, from the exponential function f(x) = ae(x/b)+c, versus stellar density.
Top plot is result for g’ filter, middle plot refers to r’ filter and bottom plot is i’ filter.
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Figure 4.7: Magnitude at 50% recovery rate versus stellar density. Top plot is result for g’ filter,
middle plot is referent to r’ filter and bottom plot is i’ filter.
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Figure 4.8: Stellar density
(
N∗ × PSF 2π

Nx ×Ny

)
for the sub-images of the g’ filter. The axes are

the spatial position xy in pixels and the number written inside each square is the instrumental
magnitude at which 50% of the stars were recovered.
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Figure 4.9: Same as figure 4.8, but for the r’ filter.
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Figure 4.10: Same as figure 4.8, but for the i’ filter.



Chapter 5

Mass-loss in ω Cen

This chapter describes, firstly, how all photometric magnitudes derived in the chapter 3

were converted from the SDSS photometric system to the TCS system. Effective tem-

peratures and bolometric corrections are needed to the comparison between theory and

observations and were derived for all stars based on the empirical colour-temperature

relation from Alonso et al. (1999). Then, mass-losing candidate stars were selected

according to the (K - 8) colour excess. The evolutionary stage of the mass-losing stars

was identified after a visual inspection of the CMD, for the RGB and AGB stars, and

LPV stars were identified after a cross-correlation with some LPV catalogues. Metal-

licity was attributed to the stars after isochrone interpolation. Field stars were removed

from our sample based on GAIA proper motions. Ultimately, the ML rates are derived

for those RGB stars for the GC ω Cen in a modified version of the radiative transfer

code DUSTY.

5.1 Physical parameters

One of the physical parameters needed to generate the spectral energy distributions

used in the radiative transfer code is the effective temperature (Teff) of the stars. The

colour-temperature equations used to calculate the Teff were derived based on mag-

nitudes and colours from a photometric system different of the ones reduced in this

76
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work. The transmission profiles and effective wavelengths for each photometric sys-

tem are different from each other. These variations causes a mismatch in the observed

magnitudes and colours when two photometric systems are compared. A precise com-

parison between observations made in different telescopes requires that those datasets

are converted to the same photometric system. Which is why the K magnitudes, that

are in the 2MASS photometric system, were transformed to the Telescopio Carlos

Sanches (TCS) photometric system, which is the standard photometric system used in

the colour-temperature equations by Alonso et al. (1999). Firstly, the K2MASS were

transformed into the Caltech (CIT) system according to the transformation equations

provided by Carpenter (2001), as shown below:

(J −K)2MASS = (1.056± 0.006)(J −K)CIT + (−0.013± 0.005) (5.1)

and

(K)2MASS = KCIT + (0.000± 0.005)(J −K)CIT + (−0.024± 0.003) (5.2)

Then, the KCIT was converted into the KTCS following the transformation equations

present in Alonso et al. (1998), see below:

JTCS = JCIT − 0.035 + 0.019(J −K)CIT (5.3)

and

KTCS = KCIT − 0.022 + 0.006(J −K)CIT (5.4)

Once the apparent magnitudes were in the same photometric system as in Alonso et al.

(1999), the absolute magnitudes, which are the intrinsic brightness of the stars in a

given wavelength range, were determined. The distance modulus used to determine

the absolute magnitudes is (m−M)V = 14.04 and a reddening of E(B − V ) = 0.11

(Bellazzini et al., 2004) was assumed. Teff was obtained through the empirical (V −K)
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Table 5.1: Coefficients from the colour-temperature relation of Alonso et al. (1999).

coeff (V −K)2.0
1.2 (V −K)3.4

2.0

a0 0.555800 0.377000
a1 0.210500 0.366000
a2 1.981× 10−3 −3.170× 10−2

a3 −9.965× 10−3 −3.074× 10−3

a4 1.325× 10−2 −2.765× 10−3

a5 −2.726× 10−3 −2.973× 10−3

colour-temperature relation using the calibrations by Alonso et al. (1999, 2001):

θeff = a0 + a1X + a2X
2 + a3X[Fe/H] + a4[Fe/H] + a5[Fe/H]2 (5.5)

where θeff = 5040/Teff , X represents the colour term (V −K), the coefficients a∗ are

specified in table 5.1 and it was assumed a [Fe/H] = −1.7 (Bellazzini et al., 2004),

which is the metallicity main peak for ω Cen in its wide metallicity distribution.

The colour-temperature relation is applicable depending on certain colour and metal-

licity ranges. Since the metallicity is assumed to be [Fe/H] = −1.7, the colour ranges

should be between 1.2 and 2.0, for the colour (V-K)2.0
1.2 and to satisfy (V-K)3.4

2.0 the colour

range should be between 2.0 and 3.4. The bolometric magnitude Mbol was derived

from the bolometric corrections (BC)-Teff relation presented by Alonso et al. (1999):

(5.6)BCV =
−5.531× 10−2

X
− 0.6177 + 4.420X − 2.669X2

+ 0.6943X[Fe/H]− 0.1071[Fe/H]− 8.612× 10−3[Fe/H]2

if 3.58 ≤ log(Teff) ≤ 3.65 for metallicity [Fe/H] = −1.7 or,

(5.7)BCV =
−9.930× 10−2

X
+ 2.887× 10−2 + 2.275X − 4.425X2

+ 0.3505X[Fe/H]− 5.558× 10−2[Fe/H]− 5.375× 10−3[Fe/H]2

if 3.65 ≤ log(Teff) ≤ 3.80 for metallicity [Fe/H] = −1.7. For both situations X =

log(Teff)− 3.52.
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Figure 5.1: Hertzsprung-Russel Diagram for ω Cen.

5.2 Colour excess selection

The spectral range from 3 to 5 µm is dominated by photospheric emission in cool and

luminous giant stars, and it has also contribution of the circumstellar dust emission. In

fact, for relatively warm and low luminosity giants, such as low-mass RGB stars, the

fraction of warm and optically-thin dust emission from a circumstellar envelope that

contributes in the 3-5 µm spectral range is significant. For that, the near- and mid-IR

colours like (K−5.8) and (K−8) are more effective in detecting the presence of small

amounts of warm dust around low-mass RGB (Origlia et al., 2010), whilst the use of

only Spitzer-IRAC colours, for instance (3.6 - 8), is mostly sensitive to tracing larger

amounts of cold dust around cooler and more luminous giants. With all that in mind,

the use of the (K − 8) colour as the first method to select stars with a possible dust

excess seems to be reasonable.

Firstly, a CMD (K− 8) vs. Mbol is constructed as shown in figure 5.2. The mean ridge
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line was established and the standard deviation of the colour was calculated in different

magnitude bins for the stars in the blue side of the line, because those stars are certain

to have only photospheric emission. Stars in the red side of the line were then flagged

as dusty when they presented a colour excess ≥ +2.0σ from the mean ridge line.

Figure 5.2: (K − 8) colour vs. Mbol CMD for ω Cen. Stars with IR colour excess are
marked with red circles, green squares are ML candidate stars from Boyer et al. (2008). 44262
(V42), 52030 and 43105 (V29) are stars identified also by Woolley (1966); Clement (1997);
van Leeuwen et al. (2000); Kaluzny et al. (2004); McDonald et al. (2011).

The (K−5.8) vs. (K−8) colour-colour diagram is used to confirm the selection of the

dust excess candidates, as those stars are expected to be redder in other IRAC bands.

Figure 5.3 shows the colour-colour diagram for ω Cen, note that the final 34 giants

with dust excess are marked with red circles.
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Figure 5.3: (K − 5.8) vs. (K − 8) colour-colour diagram for ω Cen. Stars with IR colour
excess are marked with red circles.

5.3 Dust excess sample

A visual inspection, examining the position of the stars, in optical ((B - I), B and (B -

V), V) CMDs allowed us to classify RGB and AGB stars. AGB stars were considered

to be those stars in a well-defined sequence falling close to a parallel track in the

bluest part of the main body of the RGB. Stars brighter than the tip of RGB, MK =

−6.04 ± 0.16 (Bellazzini et al., 2004), were also considered to be AGB stars. LPV

stars were classified from the van Leeuwen et al. (2000), Lebzelter & Wood (2016),

and Mowlavi et al. (2018) catalogues. The total count of AGB stars in our sample is

191. Figure 5.4 shows in red our AGB selection and in blue the LPV present in our

field of view.
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Figure 5.4: (B - I) colour vs. B for stars in ω Cen. Optical CMD used to select AGB stars (red
circles). Blue circles are LPV stars from van Leeuwen et al. (2000); Lebzelter & Wood (2016);
Mowlavi et al. (2018).

To determine the metallicities of the mass-losing candidates, a collection of isochrones

were taken into account. The isochrone interpolation involves to estimate the distance

from the Teff and luminosity of the star to each isochrone. The metallicity of the

closest isochrone to the Teff and luminosity of a given star is attributed as the metallicity

of that particular star. PARSEC (Bressan et al., 2012) isochrones are used for the

interpolation with the age of 10 Gyr. Figure 5.5 shows isochrones of metallicities

[Fe/H] = −0.7,−1.0,−1.3,−1.6 and− 1.9 plotted in the (V - K) colour vs. V CMD.

A total of 34 stars was identified with IR colour excess within 2.0σ. 12 stars of those

stars in our sample were also identified as mass-losing candidates by Boyer et al.

(2008). The reddest star is LEID 44262 with [Fe/H] = −0.7 (whilst optical spec-
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Figure 5.5: PARSEC (Bressan et al., 2012) theoretical isochrones, assuming [Fe/H] =
−0.7,−1.0,−1.3,−1.6 and− 1.9 and age 10 Gyr.
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troscopy measurements is [Fe/H] = −1.25 by van Loon et al. (2008)) and it is also the

coolest (3452 K). Boyer et al. (2008) found [Fe/H] = −1.5 for their reddest star. Stars

with possible ML in our sample cover a range of 1.2 dex in metallicity, according to

the metallicities interpolated from theoretical isochrones as shown in figure 5.5. The

brightest stars (LEID 44420, 44262, 45232, 48060, 48150, 49123, 52030) show metal-

licity ranging from −1.9 < [Fe/H] < −0.7, while Boyer et al. (2008)’s sample ranges

from −2.25 < [Fe/H] < −1.25. Table 5.2 presents the dusty stars and their IRAC

fluxes, the derived Teff and luminosity (log( L
L�

)), the metallicity ([Fe/H]) interpolated

from theoretical isochrones and the evolutionary stage of the stars.

Figure 5.6: (K − 8) colour vs. [Fe/H] for the dusty stars in ω Cen. The colour is an average
of all stars with that particular metallicity. Metallicities were interpolated from theoretical
isochrones. Stars with low metallicity does not seem to restrict dust production.

Table 5.2: Stars with IR-excess.

R.A. DEC. 3µm 4.5µm 5.8µm 8µm Teff(K) log( L
L�

) [Fe/H] Type

1201.69308 −47.49171 7.10 6.89 6.80 6.55 3452 3.59 −0.7 LPV2

201.77199 −47.48466 6.65 6.84 6.75 6.67 3460 3.65 −1.0 LPV23

Continue on next page...

1Notes: Stars marked in bold are cluster members stars based on GAIA proper motions.
2Lebzelter & Wood (2016)
3Mowlavi et al. (2018)
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Table 5.2 – Continued from previous page

R.A. DEC. 3µm 4.5µm 5.8µm 8µm Teff(K) log( L
L�

) [Fe/H] Type

201.49471 −47.60263 − 8.07 − 7.97 3837 3.25 −1.0 LPV4

201.81588 −47.46506 − 7.77 − 7.57 3892 3.36 −1.3 LPV4

201.65332 −47.51379 7.99 8.04 7.99 7.95 3925 3.27 −1.3 LPV4

201.53178 −47.54827 − 8.00 − 7.98 3929 3.28 −1.3 LPV2

201.72909 −47.47941 8.07 8.13 8.10 8.06 4033 3.27 −1.6 LPV2

201.68166 −47.49388 7.58 7.57 7.63 7.54 3932 3.45 −1.6 LPV2

201.64748 −47.53004 7.84 7.82 7.75 7.64 4068 3.41 −1.9 LPV2

201.65008 −47.44829 8.27 8.32 8.30 8.26 4229 3.26 −1.9 LPV2

201.66591 −47.51851 7.47 7.58 7.51 7.40 3735 3.45 −1.3 AGB

201.78760 −47.39388 7.73 7.77 7.70 7.69 3968 3.40 −1.6 AGB

201.56731 −47.51548 7.63 7.64 7.64 7.58 3920 3.42 −1.6 AGB

201.50664 −47.55156 − 7.51 − 7.44 3874 3.46 −1.6 AGB

201.61340 −47.47976 9.52 9.49 9.39 9.46 6034 3.03 −1.9 post-AGB

201.63629 −47.51306 11.20 11.18 11.10 11.03 5079 2.27 −1.9 AGB

201.68593 −47.49855 10.80 10.73 10.83 10.72 4807 2.42 −1.9 AGB

201.72547 −47.48193 11.21 11.19 11.16 11.27 4955 2.25 −1.9 AGB

201.71746 −47.43528 8.46 8.54 8.47 8.44 3948 3.09 −1.0 RGB

201.66025 −47.48216 10.42 10.42 10.40 10.32 4415 2.47 −1.0 RGB

201.69620 −47.49370 10.14 10.23 10.14 10.10 4381 2.53 −1.3 RGB

201.66857 −47.47679 8.18 8.20 8.20 8.14 3945 3.22 −1.3 RGB

201.60159 −47.48298 9.50 9.53 9.41 9.49 4293 2.79 −1.3 RGB

201.45634 −47.63360 − 10.23 − 10.18 4442 2.57 −1.3 RGB

201.70383 −47.49686 10.88 10.85 10.96 10.86 4609 2.33 −1.3 RGB

201.54340 −47.51959 11.18 11.31 11.23 11.22 4724 2.20 −1.3 RGB

201.62858 −47.49146 11.19 11.38 11.17 11.24 4721 2.20 −1.3 RGB

201.70070 −47.48011 11.34 11.35 11.34 11.42 4733 2.11 −1.3 RGB

201.66968 −47.54969 − 10.45 11.82 10.27 4595 2.48 −1.6 RGB

201.69797 −47.48715 11.40 11.43 11.38 11.41 4807 2.11 −1.6 RGB

201.70175 −47.49631 10.78 10.72 10.82 10.80 4687 2.37 −1.6 RGB

201.74358 −47.47208 11.40 11.31 11.27 11.30 4806 2.17 −1.6 RGB

201.64288 −47.51644 11.45 11.46 11.35 11.32 4935 2.17 −1.9 RGB

201.69099 −47.51343 11.32 11.25 11.39 11.34 4902 2.20 −1.9 RGB

4van Leeuwen et al. (2000)
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The fractional number fnum, which is the number of candidate dusty stars divided by

the total number of stars in the mid-IR sample, was accounted in two suitable [Fe/H]

intervals, [Fe/H] < −1.3 and [Fe/H] ≥ −1.3. Photometric incompleteness was not

considered for this analysis. The final observed numbers of dusty RGB and AGB stars

for the GC ω Cen are reported in table 5.3.

Table 5.3: Counts for red giant stars in ω Cen.

Type ndusty [Fe/H] [Fe/H] ≥ −1.3 [Fe/H] < −1.3
AGB 18 0.11 0.040 0.070
RGB 16 0.02 0.013 0.008

To refine our selection, the observed catalogue is cleaned from field stars based on

proper motions dataset from the Gaia5 Data Release 2 (Gaia Collaboration et al., 2016,

2018). Gaia DR2 has determined proper motion for over 1 billion stars in the Galaxy,

with uncertainties ranging from 0.1 to 1 mas yr−1. Gaia DR2 positions were cross-

correlated against ω Cen catalogue and there exist 1684 stars with proper motion in-

formation available in the same field of view of our catalogue. Then, stars within an

angular distance of 2.5 arcminutes around the cluster centre were selected as cluster

members. With that, the number of dusty candidates were reduced to 18 stars. Table

5.2 shows those stars marked in bold.

5.4 Mass-loss rate derivation

5.4.1 DUSTY

The radiation emitted by a star surrounded by a spherical dust shell is absorbed and

re-emitted in mid-IR wavelengths by circumstellar dust. The profile and features of

that output spectrum can be identified by the radiative transfer code DUSTY (Ivezic

et al., 1999; Elitzur & Ivezić, 2001). DUSTY solves the radiative transfer equation for
5This work has made use of data from the European Space Agency (ESA) mission Gaia (https://

www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium
(DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the
DPAC has been provided by national institutions, in particular the institutions participating in the Gaia
Multilateral Agreement.
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an object in a dusty environment, computing an emerging spectrum, the dust emission

and temperature distribution. A modified version (Origlia et al., 2007) of the radiative

transfer code DUSTY was used to estimate the ML rate at the IRAC wavelengths. A

Kurucz stellar atmosphere model was adopted to create the spectral energy distribution

of the stars. The dust is assumed to be a mixture of warm silicates. Origlia et al. (2007,

2010) have tested slight differences in the dust properties with no significant impact in

the IRAC colours and ML rates. Radiation pressure is neglected as it does not affect the

stars. The following are the input parameters needed to be set before running DUSTY:

• optical depth of the circumstellar dust τ = 10−5 − 10−1µm

• grain radius a = 0.1µm

• grain density ρg = 3 g cm−3

• density profile η ∝ r−2

• inner dust temperature Tin = 1000K

• dust radius in the inner shell rin = 1014cm

• dust radius in the outer shell rout = 1000 rin

• dust-to-gas ratio δ0 = 200

• expansion velocity v0
exp = 10 kms−1

A grid of DUSTY models with empirical stellar temperature (the temperature derived

from the (V − K) colour, see 5.1) and (K-IRAC) colours of each dust excess candi-

date star was created. DUSTY output is the predictions of the dust optical depth, the

emerging flux and the envelope radius. To derive the ML rate, the following formula

(Origlia et al., 2007) is considered:

dM /dt = 4πr2
out × ρdust × vexp × δ (5.8)

where ρdust ∝ ρgτ8F8(obs)/F8(mod)D2/r2
out is the dust density, F8(obs) and F8(mod)

are the observed and model dust emission for 8µm and D is the distance to the cluster.
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The gas-to-dust ratio has a lower limit of 1/Z, where Z is the metallicity. The gen-

eral assumptions are that the vexp of the envelope is constant, which means that vexp

depends only on δ and not on the metallicity, and should scale like δ−0.5.

5.4.2 Results

Mass loss rates have been computed for the RGB stars with measured dust excess,

using the radiative transfer code DUSTY (Ivezic et al., 1999; Elitzur & Ivezić, 2001)

in its modified version by Origlia et al. (2007) to model the circumstellar dust emission

and the emerging spectrum at the IRAC wavelengths. The total ML for the metal-poor

and metal-rich RGB sub-populations at a given metallicity (i) has been computed by

using the equation:

∆M =
∑
i

(
dM

dti
×∆tML

i

)
(5.9)

where
dM

dti
is the average ML rate and ∆tML = ∆t × fnum is the ML timescale and

fnum is the fractional number. The evolutionary time ∆t for the RGB considered for

the derivation of the ML timescale is 14 ± 1Myr, according to the ∆t adopted by

Origlia et al. (2014). Average ML rates are computed by averaging the values obtained

for the individual stars.

Top panel in figure 5.7 shows the inferred values for the metal-poor (green dots) and

metal-rich (red dots) RGB stars. Bottom panel in figure 5.7 shows the average total

ML of RGB as a function of metallicity. Solid line is the fitting relation MLRGB =

0.08× [Fe/H] + 0.24 ± 0.03 (rms), in units of M�, derived by Origlia et al. (2014).

ML rates in our sample are in the range of 1.27× 10−8 to 1.80× 10−7 M�yr
−1, which

is somewhat below the rates found by Boyer et al. (2008), 2.9 to 4.2× 10−7 M�yr
−1,

and Origlia et al. (2002), 10−7 to 10−6 M�yr
−1. Mbol varies from -1.4 to -3.9, but most

stars have Mbol < −3.0; ML increases with brighter luminosities.

The fact that only a fraction of RGB stars are losing mass means that ML is episodic.
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Figure 5.7: Top panel: ML rate as a function of the bolometric magnitude for the metal-poor
(green) and metal-rich (red) RGB stars of ω Cen with dust excess. Bottom panel: Average total
mass lost by the metal-poor (green) and metal-rich (red) RGB sub-populations of ω Cen. The
error bars are the 1σ uncertainty in the average total ML. The solid line is the fitting relation
±0.03 rms (dotted lines) for the GGCs studied by Origlia et al. (2014), which is only shown
for reference.
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At a given luminosity, metal-poor stars have systematically slightly higher rates than

metal-rich stars. Considering the 1σ uncertainty of the average total ML, the results

seem in agreement with the finding of Origlia et al. (2014) in their study of GGCs. ML

depends minimally on metallicity, still it is possible to notice in the bottom panel of

figure 5.7 that the steepness increases towards higher metallicities.



Chapter 6

Summary and Future work

6.1 Summary

The first chapter introduces the importance of closely scrutinising the SFH of low-

mass spirals, taking advantage of the proximity of nearby systems to resolve its stellar

population, as well as the importance of studying the process of ML of red giant stars

in GC. The evolution with time of the SFR and the metallicity of a galaxy represents

the SFH of that system, which is a necessary tool on the investigation of the formation

and evolution of the Universe. M33 is one of the brightest spiral galaxies in the Local

Group. Its vicinity allows us to observe and resolve its stellar populations. Past studies

have suggested that M33 presents tidal interaction features, possibly from previous

interactions with M31. Some studies have found age and metallicity gradient in the

disc. Thereby, we provide the basis for pursuing the understanding of the SFH of star

clusters in M33. Mass loss affects stellar evolution by altering evolutionary timescales,

the chemical abundance in the stellar surface, and stellar luminosities. ω Cen is a

peculiar GC, exhibiting stellar populations with a vast range of ages and metallicities.

Some studies have found ML occurring in stars near the TRGB. The objective of the

study is to as accurately as possible determine the amount of mass that is lost by red

giant stars and the ML dependence to the stellar metallicity for the GGC ω Cen.
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Chapter 2 briefly outlines the historical aspects that describes galaxy formation and

evolution. By the hierarchical model point of view, the consecutive merger of small

structures results in galaxies as we know them, implying that spiral galaxies are formed

after only a few interactions. A general description of stellar evolution is given, includ-

ing the transition from MS to giant branches, which is the starting point of one of the

projects approached in this thesis. Stellar winds remove mass from stars at all evo-

lutionary stages. The main mechanisms that drive the ML undergone on stars is also

discussed. Chapter 2 closes with a succinct explanation of how the stellar radiation

is captured by a telescope, the different photometric systems there exists to show the

stellar flux in function of wavelength and how interstellar extinction affects the stellar

brightness we see.

Chapter 3 gives some details of the photometry reductions and analyses carried out

for the GGC ω Cen and nearby galaxy M33. The former was observed with Spitzer

telescope, in four different infrared channels, 3.6, 4.5, 5.8 and 8 µm. The latter was

observed in three optical filters, g’, r’ and i’, in the CFH telescope. Photometry was

performed using DAOPHOT and IRAF softwares (Stetson, 1987) through the method

of PFS-fitting. ω Cen final catalogue sums about 4000 stars and the final catalogue for

M33 adds up to a million stars.

Chapter 4 contains the characterization of the AST performed for M33 dataset. The

purpose of the AST is to understand the impact of crowding on the stellar magnitudes

and systematic effects in the photometry across the galaxy. In the one hand, crowd-

ing overestimates the real stellar brightness, leading to the wrong assumption of age,

metallicity and mass of stars; on the other hand, the incompleteness interferes the

stellar count, resulting in the wrong assumption of the IMF. The main concept of the

method is to measure the input and output magnitude of fake stars added to the real

image using the code ADDSTAR (Stetson, 1987), and asses the magnitude gradient

and the number of stars lost during the photometric reductions.

In chapter 5 is presented the conversion of the magnitudes from the SDSS photomet-

ric system to the TCS system based on the colour relations of Carpenter (2001) and

Alonso et al. (1998). The magnitude conversion is due to the colour-temperature equa-
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tions used to calculate the Teff , needed to generate the spectral energy distributions

used in the radiative transfer code, being in different photometric filter systems. Fol-

lowing up, bolometric corrections and the effective temperature were derived accord-

ing to Alonso et al. (1999). The selection of mass-losing stars candidate relies on (K

- 8) colour excess method, 34 stars above ≥ +2.0σ in colour on the red side of the

CMD were flagged as dusty. A visual inspection of the CMD allowed us to segregate

RGB from AGB, and a cross-correlation with a few LPV catalogues identified the LPV

stars in the sample. PARSEC isochrones (Bressan et al., 2012) suitably interpolated

were matched to individual stars to estimate their metallicity. Based on the proper mo-

tions from GAIA, field stars were discarded from the mass-losing candidate sample.

To conclude, ML rates are derived for 18 RGB stars through the modelling of the cir-

cumstellar dust emission and the emerging spectrum at the IRAC wavelengths using

the radiative transfer code DUSTY (Ivezic et al., 1999; Elitzur & Ivezić, 2001) in its

modified version by Origlia et al. (2007).

6.2 Future work

6.2.1 M33

The adaptation of the code FIReS to use more than two photometric filters, as well

as the SFH determination and tests with the results have been left for the future due

to lack of time (i.e. the manipulation of large datasets are usually very time consum-

ing, requiring even days to finish a single run). Future work concerns the use of the

photometry and the AST previously obtained to determine the SFH.

The FIReS code has been developed to do this in a robust, objective, and autonomous

way. The output of the code is the SFR and metallicity as function of age, which is

all we need to describe the evolution of a galaxy baryonic component. To better un-

derstand how the galaxy formed and evolved, it will be interesting to first compare

CMDs from small sub-regions located in different parts of the galaxy. This already

contains information about qualitative differences in the underlying SFH of these dif-
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ferent regions. This can be used as a guide for the quantitative exploration, across the

whole system, of the SFH using the code FIReS. The only inputs of the code are the

magnitudes and the isochrones already calculated. It uses a generic algorithm to find

the SFH model with the maximum likelihood of representing the observed data. This

is a computer-intensive process and the results will need to be analysed in detail for

the whole galaxy and for each sub-region explored.

Another important test to perform is deeper analysis of the sensitivity of the method to

the magnitude limit of the dataset. To accomplish this, synthetic CMDs need to be cre-

ated based on a chosen SFH, and then the output SFH from the code can be compared

with the chosen input. This can be repeated several times, each time considering a dif-

ferent magnitude limit of the synthetic data. In particular, it is also possible to explore

the robustness of the method when the turn-off of the oldest population is not sampled.

At this point, a SFH for many different regions of the galaxy will be available, and it

will be possible to reconstruct its large scale evolution.

Regarding the AST, one could add fake stars near known Cepheid stars to understand

how the magnitude of the Cepheids would be affected. Cepheids are important dis-

tance calibrators and an inaccurate measurement of their magnitudes would necessar-

ily result in a systematic uncertainty in the distance estimate of other objects. Another

possible investigation worth checking would be to include colour to the AST and anal-

yse the impact of crowding on them. This is because other SFH methods (i.e. Harris

& Zaritsky, 2001; Aparicio & Hidalgo, 2009; de Boer et al., 2012) are sensitive to

colours.

6.2.2 ω Cen

Analysis of molecular lines and radial velocity of the mass-losing stars can help us to

investigate deeply the mass motion from stellar winds and the origin of their emission.

Emission detected in the wings of Hα lines in the spectra of GC red giants is an efficient

way to probe the direct detection of mass outflow of those stars. One can make use

of high resolution and high signal-to-noise spectroscopy to examine individual spectral
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lines, such as Hα and CaII K lines, and their asymmetries that characterize gas motions

in the stellar atmosphere, in the optical in order to measure the mass outflow velocities.

Mg II lines are also worth checking as they form higher in the atmosphere, when

compared to Hα and CaII K lines, suggesting that the stellar winds become more

noticeable near the top of the chromosphere.

The same science could be reapplied for data with better spatial resolution. The James

Webb Space Telescope facility will provide state-of-art spectrophotometric data that

will enable the continuous investigation of the mass ejection of GC red giants. The

NIR camera aboard of the James Webb Space Telescope has a field of view of 2.2’ ×

2.2’ with an angular resolution of 0.07” at 2µ.



Appendix A

Complementary tables

Table A.1 presents the aperture correction and error for each subimage in the three

CFHT filters:

Table A.1: Aperture correction and error for the subimages of g’, r’ and i’ filters.

img ap corr error img ap corr error img ap corr error

1g −0.785 0.0376 1r −0.738 0.0349 1i −0.604 0.0286

2g −0.768 0.0373 2r −0.727 0.0344 2i −0.584 0.0279

3g −0.783 0.0374 3r −0.723 0.0343 3i −0.585 0.0277

4g −0.758 0.0364 4r −0.683 0.0322 4i −0.546 0.0262

5g −0.729 0.0358 5r −0.660 0.0315 5i −0.538 0.0258

6g −0.743 0.0358 6r −0.657 0.0315 6i −0.540 0.0256

7g −0.756 0.0362 7r −0.682 0.0318 7i −0.565 0.0261

8g −0.745 0.0360 8r −0.678 0.0316 8i −0.539 0.0254

9g −0.750 0.0364 9r −0.691 0.0324 9i −0.552 0.0258

10g −0.738 0.0358 10r −0.696 0.0326 10i −0.547 0.0260

11g −0.713 0.0352 11r −0.719 0.0342 11i −0.566 0.0269

13g −0.788 0.0372 13r −0.737 0.0342 13i −0.585 0.0273

14g −0.763 0.0367 14r −0.691 0.0331 14i −0.555 0.0266

15g −0.749 0.0361 15r −0.663 0.0316 15i −0.564 0.0264

16g −0.711 0.0349 16r −0.640 0.0308 16i −0.520 0.0249

17g −0.700 0.0346 17r −0.639 0.0304 17i −0.517 0.0247

18g −0.711 0.0348 18r −0.647 0.0307 18i −0.515 0.0245

19g −0.726 0.0349 19r −0.656 0.0305 19i −0.519 0.0242

Continue on next page...
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img ap corr error img ap corr error img ap corr error

20g −0.707 0.0344 20r −0.647 0.0303 20i −0.521 0.0244

21g −0.721 0.0344 21r −0.684 0.0310 21i −0.542 0.0247

22g −0.725 0.0353 22r −0.663 0.0316 22i −0.534 0.0254

23g −0.708 0.0351 23r −0.693 0.0330 23i −0.546 0.0262

25g −0.759 0.0357 25r −0.691 0.0323 25i −0.549 0.0256

26g −0.715 0.0348 26r −0.668 0.0313 26i −0.536 0.0249

27g −0.737 0.0352 27r −0.660 0.0309 27i −0.520 0.0245

28g −0.708 0.0338 28r −0.640 0.0297 28i −0.513 0.0236

29g −0.684 0.0330 29r −0.814 0.0311 29i −0.536 0.0236

30g −0.716 0.0332 30r −0.653 0.0292 30i −0.547 0.0234

31g −0.740 0.0335 31r −0.699 0.0295 31i −0.574 0.0235

32g −0.727 0.0335 32r −0.682 0.0297 32i −0.558 0.0234

33g −0.703 0.0335 33r −0.683 0.0304 33i −0.564 0.0242

34g −0.726 0.0343 34r −0.690 0.0311 34i −0.558 0.0246

35g −0.705 0.0346 35r −0.669 0.0318 35i −0.558 0.0255

37g −0.716 0.0347 37r −0.658 0.0314 37i −0.519 0.0246

38g −0.700 0.0341 38r −0.636 0.0304 38i −0.522 0.0241

39g −0.705 0.0337 39r −0.649 0.0301 39i −0.537 0.0239

40g −0.717 0.0324 40r −0.671 0.0287 40i −0.576 0.0231

41g −0.735 0.0322 41r −0.702 0.0288 41i −0.592 0.0229

42g −0.797 0.0326 42r −0.750 0.0293 42i −0.632 0.0233

43g −0.840 0.0327 43r −0.812 0.0300 43i −0.719 0.0244

44g −0.748 0.0319 44r −0.958 0.0324 44i −0.671 0.0239

45g −0.768 0.0334 45r −0.757 0.0304 45i −0.655 0.0242

46g −0.742 0.0340 46r −0.700 0.0306 46i −0.597 0.0244

47g −0.748 0.0347 47r −0.717 0.0318 47i −0.597 0.0255

49g −0.718 0.0343 49r −0.686 0.0312 49i −0.540 0.0245

50g −0.699 0.0332 50r −0.727 0.0304 50i −0.544 0.0238

51g −0.724 0.0331 51r −0.790 0.0307 51i −0.618 0.0241

52g −0.771 0.0319 52r −0.839 0.0301 52i −0.658 0.0237

53g −0.802 0.0313 53r −0.820 0.0299 53i −0.732 0.0246

54g −0.821 0.0316 54r −0.859 0.0306 54i −0.770 0.0255

55g −0.808 0.0315 55r −0.866 0.0307 55i −0.778 0.0256

56g −0.820 0.0319 56r −0.841 0.0305 56i −0.740 0.0248

Continue on next page...
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img ap corr error img ap corr error img ap corr error

57g −0.839 0.0339 57r −0.803 0.0311 57i −0.770 0.0261

58g −0.775 0.0342 58r −0.757 0.0312 58i −0.638 0.0249

59g −0.800 0.0356 59r −0.751 0.0323 59i −0.633 0.0258

61g −0.700 0.0334 61r −0.695 0.0309 61i −0.565 0.0244

62g −0.742 0.0330 62r −0.704 0.0299 62i −0.604 0.0241

63g −0.827 0.0333 63r −0.827 0.0303 63i −0.694 0.0245

64g −0.793 0.0316 64r −0.874 0.0306 64i −0.764 0.0251

65g −0.807 0.0312 65r −0.898 0.0310 65i −0.799 0.0260

66g −0.796 0.0310 66r −0.903 0.0315 66i −0.828 0.0277

67g −0.803 0.0312 67r −0.891 0.0315 67i −0.803 0.0266

68g −0.811 0.0314 68r −0.866 0.0309 68i −0.762 0.0254

69g −0.807 0.0324 69r −0.798 0.0307 69i −0.724 0.0253

70g −0.774 0.0332 70r −0.742 0.0303 70i −0.649 0.0244

71g −0.732 0.0341 71r −0.694 0.0313 71i −0.585 0.0250

73g −0.712 0.0331 73r −0.681 0.0305 73i −0.538 0.0239

74g −0.747 0.0322 74r −0.707 0.0295 74i −0.567 0.0234

75g −0.835 0.0329 75r −0.782 0.0301 75i −0.604 0.0235

76g −0.797 0.0314 76r −0.851 0.0305 76i −0.804 0.0261

77g −0.812 0.0309 77r −0.878 0.0307 77i −0.772 0.0252

78g −0.781 0.0305 78r −0.874 0.0311 78i −0.766 0.0255

79g −0.804 0.0306 79r −0.857 0.0308 79i −0.754 0.0252

80g −0.742 0.0303 80r −0.779 0.0301 80i −0.709 0.0245

81g −0.729 0.0312 81r −0.719 0.0300 81i −0.617 0.0238

82g −0.704 0.0320 82r −0.679 0.0300 82i −0.564 0.0236

83g −0.685 0.0332 83r −0.652 0.0308 83i −0.530 0.0246

85g −0.722 0.0332 85r −0.711 0.0309 85i −0.565 0.0242

86g −0.723 0.0323 86r −0.704 0.0298 86i −0.575 0.0236

87g −0.770 0.0320 87r −0.756 0.0297 87i −0.578 0.0231

88g −0.793 0.0317 88r −0.769 0.0297 88i −0.603 0.0232

89g −0.785 0.0307 89r −0.815 0.0298 89i −0.564 0.0222

90g −0.775 0.0305 90r −0.778 0.0297 90i −0.691 0.0238

91g −0.716 0.0296 91r −0.726 0.0291 91i −0.643 0.0232

92g −0.730 0.0304 92r −0.718 0.0295 92i −0.618 0.0231

93g −0.696 0.0311 93r −0.695 0.0298 93i −0.570 0.0234

Continue on next page...
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img ap corr error img ap corr error img ap corr error

94g −0.675 0.0318 94r −0.659 0.0303 94i −0.523 0.0236

95g −0.680 0.0326 95r −0.649 0.0311 95i −0.516 0.0243

97g −0.675 0.0322 97r −0.686 0.0315 97i −0.535 0.0245

98g −0.709 0.0323 98r −0.675 0.0302 98i −0.538 0.0237

99g −0.745 0.0319 99r −0.716 0.0299 99i −0.567 0.0232

100g −0.739 0.0315 100r −0.707 0.0295 100i −0.550 0.0229

101g −0.733 0.0306 101r −0.720 0.0292 101i −0.620 0.0232

102g −0.739 0.0303 102r −0.737 0.0294 102i −0.622 0.0230

103g −0.665 0.0297 103r −0.639 0.0287 103i −0.566 0.0227

104g −0.673 0.0303 104r −0.657 0.0293 104i −0.528 0.0226

105g −0.655 0.0308 105r −0.657 0.0301 105i −0.520 0.0236

106g −0.676 0.0324 106r −0.664 0.0313 106i −0.529 0.0245

107g −0.689 0.0334 107r −0.663 0.0322 107i −0.524 0.0256

109g −0.702 0.0338 109r −0.711 0.0328 109i −0.542 0.0253

110g −0.685 0.0328 110r −0.662 0.0313 110i −0.530 0.0245

111g −0.694 0.0324 111r −0.668 0.0308 111i −0.523 0.0238

112g −0.653 0.0310 112r −0.635 0.0296 112i −0.505 0.0227

113g −0.683 0.0309 113r −0.639 0.0292 113i −0.524 0.0227

114g −0.657 0.0305 114r −0.664 0.0297 114i −0.516 0.0228

115g −0.644 0.0306 115r −0.650 0.0299 115i −0.511 0.0230

116g −0.646 0.0308 116r −0.643 0.0302 116i −0.503 0.0233

117g −0.683 0.0322 117r −0.668 0.0310 117i −0.517 0.0243

118g −0.681 0.0333 118r −0.666 0.0325 118i −0.529 0.0255

119g −0.705 0.0344 119r −0.709 0.0345 119i −0.564 0.0274

121g −0.710 0.0349 121r −0.715 0.0348 121i −0.576 0.0278

122g −0.710 0.0343 122r −0.720 0.0341 122i −0.554 0.0264

123g −0.723 0.0342 123r −0.698 0.0330 123i −0.531 0.0255

124g −0.693 0.0326 124r −0.672 0.0311 124i −0.515 0.0243

125g −0.652 0.0319 125r −0.656 0.0310 125i −0.512 0.0241

126g −0.668 0.0325 126r −0.651 0.0312 126i −0.515 0.0241

127g −0.662 0.0319 127r −0.647 0.0312 127i −0.495 0.0239

128g −0.670 0.0323 128r −0.658 0.0313 128i −0.534 0.0249

129g −0.676 0.0329 129r −0.690 0.0325 129i −0.552 0.0258

130g −0.691 0.0339 130r −0.696 0.0340 130i −0.554 0.0273

Continue on next page...
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img ap corr error img ap corr error img ap corr error

131g −0.727 0.0355 131r −0.734 0.0361 131i −0.588 0.0292

Table A.2 presents the offset correction and error between each subimage in the three

CFHT filters:

Table A.2: Offset correction and error for the subimages of g’, r’ and i’ filters.

img˙1 img˙2 offset error img˙1 img˙2 offset error img˙1 img˙2 offset error

1 13g −0.03 0.0037 1 13r 0.033 0.0030 1 13i 0.045 0.0023

2 14g 0.073 0.0023 2 14r 0.108 0.0017 2 14i 0.066 0.0014

3 15g 0.082 0.0027 3 15r 0.102 0.0023 3 15i 0.084 0.0021

4 16g 0.085 0.0014 4 16r 0.091 0.0013 4 16i 0.110 0.0015

5 17g 0.051 0.0016 5 17r 0.083 0.0012 5 17i 0.063 0.0013

6 18g 0.094 0.0023 6 18r 0.047 0.0017 6 18i 0.107 0.0019

7 19g 0.162 0.0019 7 19r 0.050 0.0013 7 19i 0.137 0.0017

8 20g 0.082 0.0024 8 20r 0.096 0.0016 8 20i 0.111 0.0012

9 21g 0.037 0.0026 9 21r 0.126 0.0026 9 21i 0.146 0.0017

10 22g 0.069 0.0016 10 22r 0.048 0.0013 10 22i 0.063 0.0013

11 23g 0.100 0.0016 11 23r 0.007 0.0011 11 23i 0.020 0.0012

13 25g 0.038 0.0102 13 25r 0.055 0.0090 13 25i 0.083 0.0048

14 26g 0.069 0.0056 14 26r 0.102 0.0040 14 26i 0.074 0.0024

15 27g 0.069 0.0015 15 27r 0.099 0.0015 15 27i 0.068 0.0020

16 28g 0.084 0.0016 16 28r 0.117 0.0015 16 28i 0.086 0.0014

17 29g 0.058 0.0012 17 29r 0.074 0.0016 17 29i 0.065 0.0012

18 30g 0.082 0.0016 18 30r 0.060 0.0011 18 30i 0.096 0.0009

19 31g 0.143 0.0017 19 31r 0.022 0.0012 19 31i 0.077 0.0009

20 32g 0.057 0.0015 20 32r 0.052 0.0012 20 32i 0.112 0.0009

21 33g 0.054 0.0012 21 33r 0.107 0.0011 21 33i 0.130 0.0009

22 34g 0.064 0.0020 22 34r 0.068 0.0013 22 34i 0.048 0.0009

23 35g 0.075 0.0013 23 35r 0.024 0.0010 23 35i 0.044 0.0009

25 37g 0.041 0.0018 25 37r 0.040 0.0015 25 37i 0.069 0.0019

26 38g 0.061 0.0014 26 38r 0.080 0.0012 26 38i 0.069 0.0012

27 39g 0.061 0.0015 27 39r 0.119 0.0017 27 39i 0.077 0.0014

28 40g 0.056 0.0016 28 40r 0.083 0.0012 28 40i 0.069 0.0009

Continue on next page...
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img˙1 img˙2 offset error img˙1 img˙2 offset error img˙1 img˙2 offset error

29 41g 0.057 0.0008 29 41r −0.02 0.0010 29 41i 0.048 0.0007

30 42g 0.071 0.0009 30 42r 0.035 0.0008 30 42i 0.082 0.0006

31 43g 0.044 0.0007 31 43r −0.00 0.0007 31 43i 0.044 0.0006

32 44g 0.023 0.0011 32 44r 0.022 0.0010 32 44i 0.077 0.0006

33 45g 0.055 0.0011 33 45r 0.101 0.0010 33 45i 0.122 0.0008

34 46g 0.042 0.0013 34 46r 0.039 0.0011 34 46i 0.048 0.0008

35 47g 0.067 0.0009 35 47r 0.032 0.0008 35 47i 0.034 0.0006

37 49g 0.050 0.0017 37 49r 0.046 0.0014 37 49i 0.047 0.0017

38 50g 0.079 0.0015 38 50r 0.074 0.0013 38 50i 0.076 0.0009

39 51g 0.049 0.0011 39 51r 0.082 0.0010 39 51i 0.060 0.0008

40 52g 0.035 0.0008 40 52r 0.054 0.0008 40 52i 0.031 0.0007

41 53g 0.067 0.0008 41 53r 0.018 0.0008 41 53i 0.023 0.0006

42 54g 0.025 0.0006 42 54r −0.01 0.0006 42 54i 0.025 0.0005

43 55g −0.01 0.0005 43 55r −0.02 0.0005 43 55i 0.001 0.0005

44 56g 0.022 0.0006 44 56r −0.05 0.0007 44 56i 0.043 0.0005

45 57g −0.00 0.0008 45 57r 0.067 0.0008 45 57i 0.080 0.0006

46 58g 0.033 0.0007 46 58r 0.024 0.0008 46 58i 0.015 0.0006

47 59g 0.037 0.0009 47 59r 0.004 0.0008 47 59i 0.024 0.0007

49 61g 0.057 0.0021 49 61r 0.047 0.0014 49 61i 0.060 0.0013

50 62g 0.060 0.0013 50 62r 0.025 0.0011 50 62i 0.055 0.0008

51 63g 0.045 0.0009 51 63r 0.025 0.0010 51 63i −0.00 0.0007

52 64g 0.011 0.0007 52 64r −0.00 0.0007 52 64i 0.004 0.0006

53 65g −0.00 0.0006 53 65r 0.005 0.0007 53 65i −0.04 0.0005

54 66g −0.00 0.0005 54 66r −0.02 0.0005 54 66i −0.05 0.0005

55 67g −0.00 0.0005 55 67r −0.06 0.0006 55 67i −0.03 0.0004

56 68g 0.012 0.0005 56 68r −0.01 0.0005 56 68i −0.01 0.0005

57 69g −0.01 0.0007 57 69r −0.00 0.0007 57 69i −0.02 0.0006

58 70g 0.024 0.0008 58 70r −0.01 0.0008 58 70i −0.00 0.0006

59 71g 0.027 0.0007 59 71r −0.01 0.0007 59 71i −0.01 0.0006

61
62g 0.055 0.0011

61
62r 0.057 0.0010

61
62i 0.052 0.0008

73g −0.06 0.0015 73r −0.04 0.0012 73i −0.06 0.0011

62
63g 0.033 0.0008

62
63r 0.032 0.0008

62
63i 0.017 0.0006

74g −0.00 0.0010 74r 0.004 0.0008 74i −0.02 0.0007

63
64g −0.00 0.0008

63
64r −0.03 0.0002

63
64i 0.021 0.0007

Continue on next page...
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img˙1 img˙2 offset error img˙1 img˙2 offset error img˙1 img˙2 offset error

75g −0.00 0.0005 75r −0.02 0.0006 75i −0.03 0.0005

64
65g −0.03 0.0006

64
65r −0.01 0.0007

64
65i 0.016 0.0005

76g 0.032 0.0007 76r 0.020 0.0007 76i 0.028 0.0005

65
66g −0.03 0.0004

65
66r −0.08 0.0005

65
66i 0.046 0.0004

77g −0.03 0.0004 77r 0.002 0.0005 77i 0.032 0.0004

66
67g 0.007 0.0005

66
67r −0.02 0.0005

66
67i 0.032 0.0005

78g −0.01 0.0004 78r 0.068 0.0005 78i 0.021 0.0005

67
68g −0.02 0.0005

67
68r −0.09 0.0006

67
68i 0.033 0.0005

79g −0.02 0.0005 79r −0.00 0.0005 79i −0.02 0.0005

68
69g −0.02 0.0005

68
69r −0.01 0.0005

68
69i 0.026 0.0005

80g −0.02 0.0007 80r 0.001 0.0007 80i 0.026 0.0005

69
70g −0.01 0.0008

69
70r 0.004 0.0008

69
70i 0.022 0.0006

81g −0.10 0.0008 81r −0.01 0.0008 81i −0.02 0.0006

70
71g −0.05 0.0008

70
71r −0.00 0.0008

70
71i −0.01 0.0007

82g −0.05 0.0008 82r −0.05 0.0008 82i −0.04 0.0006

71 83g −0.07 0.0008 71 83r −0.02 0.0008 71 83i −0.04 0.0007

73 85g −0.04 0.0013 73 85r −0.03 0.0011 73 85i −0.04 0.0009

74 86g −0.01 0.0008 74 86r −0.00 0.0008 74 86i −0.02 0.0006

75 87g 0.002 0.0009 75 87r 0.000 0.0009 75 87i −0.02 0.0006

76 88g 0.005 0.0006 76 88r 0.061 0.0007 76 88i −0.05 0.0005

77 89g −0.01 0.0005 77 89r 0.010 0.0006 77 89i −0.07 0.0004

78 90g −0.03 0.0006 78 90r −0.01 0.0006 78 90i 0.051 0.0005

79 91g −0.04 0.0007 79 91r −0.02 0.0007 79 91i −0.03 0.0005

80 92g −0.04 0.0007 80 92r −0.01 0.0007 80 92i −0.01 0.0006

81 93g −0.05 0.0006 81 93r −0.02 0.0007 81 93i −0.05 0.0006

82 94g −0.08 0.0012 82 94r −0.07 0.0011 82 94i −0.07 0.0008

83 95g −0.05 0.0020 83 95r −0.04 0.0017 83 95i −0.04 0.0012

85 97g −0.03 0.0014 85 97r −0.01 0.0015 85 97i −0.09 0.0010

86 98g −0.02 0.0010 86 98r −0.01 0.0009 86 98i −0.02 0.0007

87 99g 0.012 0.0008 87 99r −0.00 0.0008 87 99i −0.02 0.0006

88 100g 0.012 0.0008 88 100r 0.015 0.0008 88 100i −0.03 0.0006

89 101g −0.04 0.0005 89 101r −0.04 0.0006 89 101i −0.05 0.0005

90 102g −0.03 0.0005 90 102r −0.02 0.0005 90 102i 0.013 0.0005

91 103g −0.04 0.0008 91 103r −0.07 0.0008 91 103i −0.05 0.0006

Continue on next page...
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img˙1 img˙2 offset error img˙1 img˙2 offset error img˙1 img˙2 offset error

92 104g −0.06 0.0008 92 104r −0.06 0.0009 92 104i −0.05 0.0007

93 105g −0.06 0.0014 93 105r −0.06 0.0012 93 105i −0.09 0.0010

94 106g −0.09 0.0013 94 106r −0.09 0.0013 94 106i −0.08 0.0009

95 107g −0.09 0.0015 95 107r −0.03 0.0012 95 107i −0.05 0.0010

97 109g −0.06 0.0019 97 109r −0.04 0.0016 97 109i −0.12 0.0016

98 110g −0.02 0.0016 98 110r −0.01 0.0013 98 110i −0.02 0.0010

99 111g −0.00 0.0012 99 111r −0.03 0.0011 99 111i −0.05 0.0008

100 112g −0.04 0.0009 100 112r −0.03 0.0009 100 112i −0.04 0.0007

101 113g −0.07 0.0007 101 113r −0.08 0.0007 101 113i −0.07 0.0006

102 114g −0.09 0.0011 102 114r −0.06 0.0010 102 114i −0.04 0.0008

103 115g −0.07 0.0015 103 115r −0.09 0.0011 103 115i −0.11 0.0008

104 116g −0.12 0.0021 104 116r −0.11 0.0015 104 116i −0.07 0.0013

105 117g −0.09 0.0020 105 117r −0.09 0.0014 105 117i −0.10 0.0014

106 118g −0.09 0.0021 106 118r −0.09 0.0016 106 118i −0.08 0.0012

107 119g −0.07 0.0022 107 119r −0.06 0.0016 107 119i −0.09 0.0016

109 121g −0.03 0.0019 109 121r −0.05 0.0021 109 121i −0.08 0.0020

110 122g −0.04 0.0020 110 122r −0.01 0.0030 110 122i −0.03 0.0018

111 123g 0.017 0.0025 111 123r 0.004 0.0019 111 123i −0.07 0.0018

112 124g −0.06 0.0024 112 124r −0.06 0.0015 112 124i −0.05 0.0020

113 125g −0.08 0.0021 113 125r −0.11 0.0016 113 125i −0.08 0.0017

114 126g −0.07 0.0027 114 126r −0.07 0.0020 114 126i −0.03 0.0016

115 127g −0.05 0.0015 115 127r −0.07 0.0024 115 127i −0.12 0.0020

116 128g −0.11 0.0019 116 128r −0.10 0.0013 116 128i −0.07 0.0020

117 129g −0.09 0.0035 117 129r −0.06 0.0024 117 129i −0.09 0.0019

118 130g −0.07 0.0024 118 130r −0.08 0.0024 118 130i −0.07 0.0022

119 131g −0.05 0.0021 119 131r −0.03 0.0017 119 131i −0.08 0.0018

Table A.3 presents the coefficients zero point, colour term and A∗ for the transforma-

tion equation of each chip reached by KT:

Table A.3: Photometric solutions for the coefficients zero point, colour term and A∗ by KT.

chip Z C A1 A2

Continue on next page...
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chip Z C A1 A2

g’

0 −30.193 −0.173 4.372e− 5 1.175e− 5

1 −30.092 −0.167 −1.962e− 5 1.723e− 5

2 −29.674 −0.175 4.834e− 5 −2.755e− 5

3 −27.965 −0.137 −9.068e− 5 −7.569e− 5

4 −30.120 −0.159 1.250e− 5 2.047e− 6

5 −29.605 −0.128 −2.718e− 5 −1.617e− 6

6 −30.576 −0.216 2.818e− 5 1.564e− 5

7 −23.855 −0.135 −2.560e− 4 −1.205e− 4

81 − − − −

9 −29.564 −0.214 −2.395e− 5 −7.504e− 6

10 −29.426 −0.154 −1.462e− 4 1.244e− 5

11 −29.869 −0.173 −2.172e− 5 4.956e− 6

12 −29.990 −0.167 1.940e− 5 −1.081e− 5

13 −29.791 −0.182 −9.038e− 6 −4.858e− 6

14 −29.378 −0.154 −9.098e− 6 −3.260e− 5

15 −30.567 −0.155 3.859e− 5 3.482e− 6

16 −30.733 −0.179 2.684e− 5 2.698e− 5

17 −30.506 −0.182 −3.314e− 7 4.883e− 5

18 −29.570 −0.211 −1.305e− 5 −2.268e− 5

19 −29.488 −0.204 −6.806e− 5 −1.434e− 5

20 −29.689 −0.288 −2.387e− 5 1.165e− 5

21 −29.263 −0.158 −8.098e− 6 −7.215e− 5

22 −29.669 −0.197 −1.115e− 5 −2.272e− 5

23 −30.040 −0.159 1.486e− 6 4.744e− 6

24 −30.573 −0.171 5.133e− 5 −1.601e− 5

25 −30.572 −0.149 3.879e− 5 1.209e− 5

26 −29.181 −0.175 −2.174e− 5 −4.541e− 5

27 −29.796 −0.216 −6.946e− 6 2.493e− 5

28 −29.655 −0.196 −5.228e− 5 3.225e− 6

29 −30.046 −0.220 4.277e− 5 −1.148e− 6

30 −29.615 −0.183 −2.807e− 5 −1.016e− 5

Continue on next page...

1There is no solution for CFHT chip 8 as there are too few stars in that region in the INT data for
calibration.
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chip Z C A1 A2

31 −29.744 −0.158 −2.127e− 5 1.256e− 5

32 −29.740 −0.169 −1.648e− 5 1.665e− 5

33 −30.059 −0.166 5.924e− 6 1.755e− 5

34 −29.127 −0.161 −5.716e− 5 3.171e− 5

35 −30.238 −0.171 1.222e− 5 1.700e− 5

r’

0 −29.897 −0.008 −3.660e− 5 4.104e− 6

1 −30.111 −0.013 −1.244e− 5 1.432e− 5

2 −30.456 −0.015 9.308e− 6 2.904e− 5

3 −28.482 −0.005 −2.734e− 4 3.355e− 5

4 −29.669 −0.023 −1.442e− 5 −5.461e− 6

5 −29.989 −0.017 −1.627e− 5 1.427e− 5

6 −31.137 −0.026 3.150e− 5 4.310e− 5

7 −27.159 0.029 −2.069e− 4 2.545e− 5

82 − − − −

9 −29.805 −0.007 −1.766e− 5 −6.846e− 6

10 −29.441 −0.027 −4.051e− 5 −2.658e− 5

11 −29.945 −0.033 1.242e− 5 −1.612e− 6

12 −29.877 −0.058 2.378e− 6 −3.882e− 6

13 −29.654 −0.021 −2.726e− 5 3.489e− 6

14 −29.219 −0.029 −2.810e− 5 −2.193e− 5

15 −30.010 −0.014 1.363e− 5 −8.222e− 6

16 −30.362 −1.256e− 4 1.716e− 5 1.179e− 5

17 −29.877 −0.019 −1.048e− 5 1.166e− 5

18 −29.794 −0.007 −4.478e− 5 −8.475e− 6

19 −30.040 −0.011 −2.292e− 6 1.028e− 5

20 −29.950 −0.020 4.017e− 7 2.051e− 6

21 −30.610 0.003 7.964e− 5 4.416e− 6

22 −29.923 −0.041 −1.747e− 5 2.805e− 5

23 −29.902 −0.034 −1.699e− 5 2.607e− 5

24 −30.146 −0.022 1.785e− 5 −4.174e− 6

25 −29.080 −0.011 −5.020e− 5 3.698e− 6

Continue on next page...

2There is no solution for CFHT chip 8 as there are too few stars in that region in the INT data for
calibration.
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chip Z C A1 A2

26 −29.125 −0.083 −2.082e− 5 −4.771e− 5

27 −29.630 −0.009 −6.141e− 5 1.540e− 5

28 −29.488 −0.019 −7.698e− 5 −4.148e− 5

29 −29.878 −0.039 2.227e− 5 −4.705e− 5

30 −29.969 −0.024 1.251e− 5 −1.239e− 5

31 −29.472 −0.014 −4.359e− 5 1.617e− 5

32 −29.836 −0.028 −9.852e− 6 4.171e− 5

33 −29.913 −0.017 −2.361e− 6 3.894e− 5

34 −29.328 0.005 −3.788e− 5 1.705e− 5

35 −29.582 −0.028 3.337e− 6 −1.427e− 5

i’

0 −30.098 −0.061 2.726e− 6 5.277e− 6

1 −30.583 −0.062 −1.831e− 5 3.818e− 5

2 −30.717 −0.080 −8.250e− 6 4.375e− 5

3 −30.791 −0.092 1.953e− 5 3.836e− 5

4 −30.106 −0.070 −1.758e− 6 7.302e− 6

5 −30.119 −0.074 −1.170e− 5 1.397e− 5

6 −31.328 −0.097 4.463e− 5 4.102e− 5

7 −35.213 −0.034 2.333e− 4 8.771e− 5

83 − − − −

9 −30.046 −0.028 −5.094e− 5 4.181e− 5

10 −29.658 −0.071 −4.371e− 5 −1.473e− 5

11 −29.852 −0.077 −7.672e− 6 −7.916e− 6

12 −30.246 −0.081 2.195e− 5 2.769e− 6

13 −29.945 −0.072 −1.696e− 5 1.213e− 5

14 −29.123 −0.088 −3.450e− 5 −2.829e− 5

15 −30.060 −0.067 1.905e− 5 −1.644e− 5

16 −30.019 −0.048 −7.689e− 6 9.734e− 6

17 −30.526 −0.085 1.704e− 5 1.756e− 5

18 −29.611 −0.028 −8.737e− 5 9.748e− 7

19 −29.163 −0.045 −1.437e− 4 −3.034e− 5

20 −29.660 −0.080 −3.970e− 5 −1.475e− 5

Continue on next page...

3There is no solution for CFHT chip 8 as there are too few stars in that region in the INT data for
calibration.
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chip Z C A1 A2

21 −30.214 −0.073 7.239e− 5 −4.086e− 5

22 −29.731 −0.100 −2.794e− 5 5.699e− 6

23 −29.933 −0.086 −1.057e− 5 7.276e− 6

24 −29.922 −0.066 −1.148e− 6 −1.231e− 5

25 −30.015 −0.072 2.093e− 5 −3.398e− 5

26 −33.833 −0.108 2.313e− 4 −3.864e− 5

27 −29.684 −0.020 −7.320e− 5 −2.785e− 6

28 −29.704 −0.060 −7.255e− 5 5.786e− 6

29 −30.145 −0.107 4.388e− 5 −1.360e− 5

30 −29.997 −0.085 1.016e− 5 −1.890e− 5

31 −29.750 −0.073 −2.474e− 5 1.253e− 5

32 −29.830 −0.062 −1.755e− 5 1.564e− 5

33 −30.174 −0.067 1.008e− 5 1.996e− 5

34 −29.281 −0.045 −1.858e− 5 −1.032e− 4

35 −29.065 −0.069 −3.254e− 5 2.084e− 5

Table A.4 shows the results of the density, completeness and completeness errors, fit-

ting functions and its parameters. The exponential function is: f(x) = ae(x/b) + c,

when presents the lowest χ2 sets the number 2 as best fit, and the polynomial function

is: ax4 + bx3 + cx2 + dx + e, when presents the lowest χ2 sets the number 4 as best fit.
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Appendix B

List of Abbreviations

AGB Asymptotic Giant Branch

AST Artificial Stars Test

CCD Charge Coupled Device

CFHT Canada France Hawaii Telescope

CIT Caltech System

CMD Colour Magnitude Diagram

FWHM Full Width at Half Maximum

GC Globular Cluster

GGC Galactic Globular Cluster

HB Horizontal Branch

HRD Hertzprung- Russel Diagram

IMF Initial Mass Function

IRAC Infra red Array Camera

Mbol bolometric Magnitude

ML Mass Loss

MS Main Sequence

LPV Long Period Variable

PSF Point Spread Function

RGB Red Giant Branch
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RGB-a anomalous Red Giant Branch

SDSS Sloan Digital Sky Survey

SGB Sub Giant Branch

SFH Star Formation History

SFR Star Formation Rate

SSP Simple Stellar Population

Teff effective Temperature

TPAGB Thermal Pulsing Asymptotic Giant Branch

TCS Telescopio Carlos Sanches

TO Turn Off

TRGB Tip of Red Giant Branch

2MASS Two Micron All Sky Survey
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Martı́n-Manjón, M. L., Mollá, M., Dı́az, A. I., & Terlevich, R. 2011, Monthly Notices

of the Royal Astronomical Society, 420, 1294–1308

McConnachie, A. W., Ferguson, A. M. N., Irwin, M. J., et al. 2010, ApJ, 723, 1038

McDonald, I., van Loon, J. T., Sloan, G. C., et al. 2011, MNRAS, 417, 20

McDonald, I. & Zijlstra, A. A. 2015, MNRAS, 448, 502

McMonigal, B., Lewis, G. F., Brewer, B. J., et al. 2016, MNRAS, 461, 4374



Bibliography 136

Meylan, G. 1987, A&A, 184, 144

Milone, A. P., Marino, A. F., Bedin, L. R., et al. 2017, MNRAS, 469, 800

Mowlavi, N., Lecoeur-Taı̈bi, I., Lebzelter, T., et al. 2018, ArXiv e-prints

[[arXiv]1805.02035]

Nataf, D. M. 2016, , 33, e023

Norris, J. E. & Da Costa, G. S. 1995, ApJ, 447, 680

Noyola, E., Gebhardt, K., & Bergmann, M. 2006, in Astronomical Society of the Pa-

cific Conference Series, Vol. 352, New Horizons in Astronomy: Frank N. Bash

Symposium, ed. S. J. Kannappan, S. Redfield, J. E. Kessler-Silacci, M. Landriau, &

N. Drory, 269

Noyola, E., Gebhardt, K., & Bergmann, M. 2008, in IAU Symposium, Vol. 246, Dy-

namical Evolution of Dense Stellar Systems, ed. E. Vesperini, M. Giersz, & A. Sills,

341–345

Oey, M. S. & Massey, P. 1995, ApJ, 452, 210
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