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Deep Learning based Automatic Multi-Class
Wild Pest Monitoring Approach using
Hybrid Global and Local Activated Features
with Stationary Trap Devices

Abstract—Specialized control of pests and diseases have been a
high-priority issue for agriculture industry in many countries.
On account of automation and cost-effectiveness, image analytic
based pest recognition systems are widely utilized in practical
crops prevention applications. But due to powerless handcrafted
features, current image analytic approaches achieve low
accuracy and poor robustness in practical large-scale multi-class
pest detection and recognition. To tackle this problem, this paper
proposes a novel deep learning based automatic approach using
hybrid and local activated features for pest monitoring solution.
In the presented method, we exploit the global information from
feature maps to build our Global activated Feature Pyramid
Network (GaFPN) to extract pests' highly discriminative features
across various scales over both depth and position levels. It
makes changes of depth or spatial sensitive features in pest
images more visible during downsampling. Next, an improved
pest localization module named Local activated Region Proposal
Network (LaRPN) is proposed to find the precise pest objects
positions by augmenting contextualized and attentional
information for feature completion and enhancement in local
level. The approach is evaluated on our 7-year large-scale pest
dataset containing 88.6K images (16 types of pests) with 582.1K
manually labelled pest objects. The experimental results show
that our solution performs over 74.24% mAP in industrial
circumstances, which outweighs two other state-of-the-art
methods: Faster R-CNN [12] with mAP up to 70% and FPN [13]
mAP up to 72%. Our code and dataset will be made publicly
available.

Keywords—Convolutional Neural Network, Pest Monitoring,
Global Activated Feature Pyramid Network, Local Activated
Region Proposal Network

[. INTRODUCTION

pecialized and effective pest control and monitoring in

agricultural is becoming an increasingly serious issue all
around the world. [1]. The urgent demand for efficiently
controlling and inspecting the occurrence of agricultural pests
in fields has driven the rapid development of industrial pest
prevention solutions and intelligent pest monitoring systems,
such as chemical pesticides [2], image analytic systems [3],
automatic adjustable spraying device [4], status estimation of
wheat plants [5], remote sensing [6], etc. On account of
automation and cost-effectiveness, image analytic based pest
recognition and monitoring systems are widely utilized in
practical crops prevention applications. Typically, these
systems install some stationary pest trap devices or facilities in
the wild fields for real-time acquisition and transmission of

trap images, and then employ advanced image analytic
techniques [7-10] into these images for identification and
extraction of pest-associated data in support of intelligent
prediction and prevention.

Above advanced image analytic techniques enable abundant
success in effective pest detection and recognition of certain
types of pest. Yet, utilizing these techniques in designing as
well as developing practically useful and robust pest
monitoring system is still unsatisfied. The first reason for this
problem is that extracted features as pest descriptors are short
of sufficient details for tiny and blurred pest objects in 2D
static images captured by stationary devices. These pose a
fundamental dilemma that it is hard to distinguish small object
from the generic clutter in the background. Also, traditional
approaches have been suffering from many limitations such as
powerless hand-crafted features and the lack of expert
consensus. In addition, most of current systems focus on
whole pest image classification rather than detection, where
the detection aims to localize and identify each pest instance in
the image that is necessary for high-level pest analysis towards
more efficient pest monitoring in the wild. Therefore, towards
more effective large-scale multi-class pest monitoring, it is
highly necessary to develop a novel automatic approach by
mining more valuable information as highly discriminative
features for pest detection.

Recently, advances in deep learning techniques have led to
significantly promising progress in the field of object
detection, like SSD [11], Faster R-CNN [12], Feature Pyramid
Network (FPN) [13] and other extended variants of these
networks [14-15]. Among these approaches, two-stage object
detection frameworks are the most popular in dealing with
practical problems due to higher detection accuracy. In
terms of convolutional neural network (CNN) backbone
for feature extraction, feature pyramid structure has
become a wide selection as it covers low-level object
features and high-level semantic features together. In [12],
Region-of-Interest (Rol) pooling is used to extract features
on a single-scale feature map. But targeting at small object
detection, [13] is a better state-of-the-art technique over
COCO dataset [16] with mAP up to 56.9%. By building up
a multi-scale image pyramid, FPN enables a model to detect
all objects across a large range of scales over both positions
and pyramid levels. This property is particularly useful to
tiny object detection like pest detection.

In this context, this paper targets at finding out a practically
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effective and robust pest monitoring solution by studying the
state-of-the-art deep learning methods to solve the problems in
current large-scale multi-class pest detection task. As shown in
Fig.1, in our presented method, we firstly construct a CNN
based feature pyramid architecture to ensure the pests across
various scales could be found, and then propose a Global
activated Feature Pyramid Network (GaFPN) for retrieving
depth and spatial attention over different levels in the pyramid
network. Compared to [12] and [13], this approach, the
adjusted network will enable variance or changes of spatial or
depth sensitive features in images more visible in the pooling
layers. This property will allow some missing features of tiny
pests in pooling layers in one level to be redetected by many
pyramid levels. Next, an improved pest localization module
named Local activated Region Proposal Network (LaRPN) is
proposed to find the precise pest obects’ positions by
augmenting contextualized and attentional information for
feature completion and enhancement in local level. Following
this idea, we integrate GaFPN and LaRPN into a two-stage
convolutional neural network (CNN) approach. It is evaluated
over our newly published large-scale pest detection specific
image dataset containing 88.6K raw images with 582.1K
manually labelled pest objects. The image data were collected
in the wild field using mobile camera over 7 years. The
experimental results show that our approach achieves over
mAP of 72%, which outweighs two other state-of-the-art
methods [12] with mAP of 70% and [13] mAP of 72%.

The major contributions of this paper are as follows:

1) A novel two-stage CNN based pest monitoring approach
using hybrid global and local activated feature is designed for
large-scale multi-class pest dataset. It is implemented as a
practically automatic pest monitoring system, which enables
accurately and effectively detect 16 types pest in fields.

2) The proposed approach introduces two novel global and
local activation branches: GaFPN and LaRPN for automatic
multi-scale feature extraction and efficient region providing
and fine-tuning respectively. Our approach could help
recognize and extract discriminative features of tiny objects
and accommodate large variations and changes of distribution
of tinny objects over images. It benefits the precise measure
and prediction of pest in complex circumstances with
multi-class insect.

3) A comprehensive and in-depth experimental evaluation
on practical industry level large-scale pest dataset (88.6K
images) is provided for verifying the usefulness and
robustness of proposed system and approaches. The results
show that our approach deliver a mAP of 74.24% over 16
types of pest detection, which outweighs two other
state-of-the-art methods: Faster R-CNN [12] with mAP up to
70% and FPN [13] mAP up to 72%.

The rest of the paper is organized as follows. Section II
presents related work. Section III gives an overview to our pest
monitoring system; and technical details of our system are
introduced in Section IV. Then Section V describes the system
settings and discuss the experimental results. Finally, we
conclude this paper in Section VI.

II. RELATED WORK

Typical image analytics techniques for pest monitoring focus
on the study of object identification, including feature
extraction and model training. Early works on insect
classification include RGB multispectral analysis [8] and
Principle Component Analysis (PCA) algorithm [17]. Then,
more valuable and representative features are mined for
precise pest recognition such as size, color [18], shape and
texture [19]. But these features were too weak to be insensitive
to rotation, scale and translation. Thus, Scale-invariant feature
transform (SIFT) in modern computer vision techniques are
popular to realize rotational variance for pest classification
[20]. On the other hand, classifiers are key to achieve better
model training performance, such as support vector machine
(SVM) [12], k-nearest neighbors (KNN) [21], linear
discriminate analysis (LDA) [22] and Artificial Neural
Network (ANN) [23]. While aforementioned approaches
achieved success to some extent, their results rely too much on
quality of handcrafted features selection. Towards large-scale
multi-class insect dataset, one consequence is that within
species, extracted descriptors show strong similarity to others.
Feature vectors with different species are highly close in
feature space to relative variability of their texture, color,
shape and so on. It is hard to utilize these approaches in
practical pest monitoring applications, since the process of
selecting and designing features is laborious and insufficient to
represent all aspects of the insects.

Fortunately, the emergence of deep learning techniques has
led to significantly promising progress in the field of object
detection. CNN has exhibited superior capacities in learning
invariance in multiple object categories from large amounts of
training data [24]. It enables suggesting object proposal
regions in detection process; and extract more discriminative
features than hand-engineered features. By detecting locations
[14] and fine-tuning [25] general representation to a specific
object category, CNNs perform well in object detection. Some
two-stages approaches [12] utilizes dense sliding window to
find out the possible object regions with low-level cues. They
can detect the better proposals and share the weights of
convolutional layers with other of detectors. They perform
even better than one-stage CNN based approaches with higher
accuracy of object detection. The above deep learning methods
[11-15] have showed great accuracies in many general object
detection applications beyond what can be achieved by
previous methods [21-23], but they are often intractable for
pest monitoring applications.

Towards large-scale multi-class pest monitoring, deep
learning methods need to integrate with other techniques like
feature pyramids [13] for improved performance. The
experiment results on the Microsoft COCO dataset [16] shows
that two-stage object detection framework such as Faster
R-CNN is an effective region-based object detector towards
general object detection with a mean Average Precision (mAP)
up to 42.7% because of region proposals are computed at first
stage. But for small object detection, FPN is a better
state-of-the-art technique over COCO dataset with mAP up to
56.9% due to the fused low-level object features and
high-level semantic features. Despite the fact that Faster
RCNN have showed great accuracies in generic object
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detection applications, they are often intractable for use in
practical real-world small object detection. Taking our
targeted pest detection in the wild as an example, designing an
effective deep learning approach is extremely difficult due to
many constraints: 1) The intuitive features of pest like texture,
shape or color, are easily confused with background
information 2). Features of tiny pest like rotation, scale and
translation, are too weak and insensitive to be recognized. 3).
Many deep learning approaches focus on solving classification
of different pests, rather than pest detection (localization and
counting). 4). Large variations of density distribution and sizes
of tiny pests make the activation of some objects even smaller
and insensitive with each pooling layer through a deep
learning architecture. In order to overcome above obstacles,
we attempt to propose a new effective deep learning approach
towards large-scale multi-class pest monitoring by using
hybrid global and local activated features.

III. APPROACH OVERVIEW

Our proposed approach is a two-stage CNN based pest
detection and classification workflow shown in Fig. 1. Two
major stages in this approach are GaFPN for automatic
multi-scale feature extraction and LaRPN for generated boxes
classification and regression. The output of this approach
contains three levels: low-level region features, mid-level pest
detection and high-level sematic analysis.

In the first stage of feature extraction, it relies on traditional
CNN backbone by with a new global activation feature
pyramid network (GaFPN) which is aggregated on each
convolutional block for screening and activating depth and
spatial information from feature maps outputted by each block.
Multi-scale image features extracted from GaFPN are used to
re-build the feature maps. This design has two considerations:
1) Sufficient shallow layers enables mining more valuable
semantic features for classification. 2) The bottom layers with
high spatial information are fully utilized for avoiding some
features vanish in deep block.

In the second stage of pest localization, according to feature
maps extracted from stage one, an improved local activated
region proposal network (LaRPN) is proposed for providing
region proposals and fully connected layers, which are adopted
for pest classification and position regression. Different from
the standard Region Proposal Network (RPN), we augment
local contextualized and attentional information into region
proposals for providing more efficient and precise regions.

Finally, we adopt several fully connected layers for the final
pest localization and classification results including mid-level
pest detection outputs for localization and classification in
addition to high-level sematic analysis outputs for pest
severity estimation including counting and severity prediction.
The entire training and inference phase run automatically to
achieve effective pest recognition and classification without
any human intervention so our method is an end-to-end
system.

IV. MATERIALS AND METHODS

A. Dataset Setup for Large-scale Multi-Class Pest
To our best knowledge, while there exist some open insect
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Fig.1. Workflow of our two-stage CNN based approach

TABLE 1. Statistics on Two Subsets for our dataset with training
subset and validation subset. For each class, the number of images and
objects are shown in this table. Note that because single image may
contain objects of several classes, the totals shown in the ‘#images’
columns are not simply the sum of the corresponding columns. (CM:
Cnaphalocrocis medinalis, CMw: Cnaphalocrocis medinalis (Walker),
MS: Mythimna separate, HA: Helicoverpa armigera, OF: Ostrinia
furnacalis, PL: Proxenus lepigone, SL: Spodoptera litura, SE:
Spodoptera exigua, SI: Sesamia inferens, Al: Agrotis ipsilon, MB:
Mamestra brassicae, HT: Hadula trifolii, HP: Holotrichia parallela,
AC: Anomala corpulenta, GO: Gryllotalpa orientalis, AS:
Agriotes subrittatus)

Training Subset Validation Subset

Pest name 1D #images #objects #images #objects

CM 1 6663 11663 768 1332
CMw 2 2956 7548 367 914
MS 3 11280 23055 1222 2471
HA 4 22854 67426 2510 7343
OF 5 17586 39126 1950 4190
PL 6 21675 110309 2366 12200
SL 7 7301 9857 782 1079
SE 8 13212 25589 1403 2544
SI 9 5136 7645 583 830
Al 10 8952 13844 992 1553
MB 11 6389 9345 719 1065
HT 12 11827 21051 1287 2251
HP 13 8905 30792 963 3460

AC 14 13765 108112 1606 12141

GO 15 9632 17432 1038 2056

AS 16 4756 21768 546 2219

total 79800 524562 8870 57648
databases released, no existing large-scale datasets that cover
multiclass pests in the wild or nature environments are
released for study yet. We establish our own dataset for
large-scale multi-class pest monitoring by designing an
industrial pest capture equipment shown in Fig. 2. This device
uses multispectral light trap for attracting various types of
pests, where the wavelengths vary with time according to the
habit of pests in the day. Meanwhile, HD camera above the
tray of this device is set to take pictures at 2592 x 1944
resolution periodically at 15-second intervals. Pests in the
trays were swept away after photographing to avoid images
containing 582,170 pests of 16 different types after manual
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Multispectral
light trap

Fig. 2. Pest monitoring equipment in our work

screening to deleting obscure and over-occulted images are
used to build our dataset.

Hereafter, images are labeled by agricultural experts with
pest categories, localizations and severity. we randomly split
entire collected images into 2 subsets for model training and
validation respectively at ratio of 9:1, in which training subset
could be the ‘gold standard’ to supervise our model because of
labels with expert consensus and validation subset is used to
evaluate our system’s performance. The statistics of our
dataset are provided in Table 1.

B. Convolutional Neural Network (CNN) Framework

The approach built on a standard CNN framework is
composed of three parts: convolutional layer, activation
function and pooling layer. Typically, many combinations of
these layers are adopted to extract 3D image features, in which
images are input into convolutional layers computed with
several convolutional kernels for feature extraction.

Standard convolutional layer takes a set of called
convolutional kernels to the input and the output feature map
in each subsequent layer are regarded as abstract
transformations of image. Generally, for each kernel
convolutional kernel &, the forward propagation process of
convolution in layer / could be represented by:

a,’{ =0'(z,’€)=0'(a’"1*Wkl +0") (D
where the afid @' ' are output of kernel & from layer / and
I-1. o(+)is ReLU function for non-linear transformation in our

approach. * indicate the convolution operation. % and b}

represent the convolution kernel and bias in layer /
respectively. Therefore, the output convolutional layer could
be computed as the sum of outputs from the filterbank:

a'=0()=0QQ z)=0Q (g *W)+b) ()

C. Global activated Feature Pyramid Network (GaFPN)

Based on standard CNN architecture, we design our feature
extraction network named Global Activated Feature Pyramid
Network (GaFPN) whose structure is show in Fig. 3. The
motivation of designing feature pyramid is the observation that
recognizing pests at vastly different scales in images is
challengeable for detectors in single feature map. Thus, we
exploit the inherent multi-scale hierarchy of CNN to achieve
feature map extraction at various scales to ensure that pests
with different sizes are recognized with enough information
and avoid missing features of some tiny pests in
down-sampling operations. In GaFPN, the powerfully
representative information from all convolutional blocks,
including high-resolution levels and high-semantic levels,

could be futurized to produce a multi-scale pest feature
descriptor.

Different from the popular object detection framework FPN
[23], our GaFPN makes full use of global information between
each convolution block to avoid information loss during
downsampling operation. As it is well known, feature maps
outputted from CNN layers could be a result of convolutional
operation with many kernels consisting of set of kernels. The
number of kernels corresponds to be the feature depth and
each kernel is learned to extract the specific type of feature
such as shape and texture. Therefore, we attempt to make the
model to automatically mine the depth activation vector while
ignoring the effect of spatial information that could weigh the
different kernels so influence the weights of feature maps
depth. As for position activation, the motivation is that
limited receptive field of convolution operations lead to
powetrless features in pests positions without appropriate
supervision. So, we propose a novel supervised mask to
learn the spatial activation vector that could activate the
position points of objects. Therefore, our GaFPN is
proposed to achieve depth and spatial activation in global
level that could improve the feature discriminating power
of pest objects.

Fig. 4 shows our intuitive overview of GaFPN structure, in
which Global Activation Module (GAM) contains two
branches for depth and spatial activation respectively. In the
upper branck ofdepth activation, the 3D feature map with
shape of W H C output from corresponding CNN block is
firstly processed by a global pooling layer that averages all the
pixels in each channel (depth) an& generates a lower
dimensional (1D) feature vector (1 1 C) so the effect of
spatial information is eliminated. By taking global pooling, the
averaged feature vector describes the global feature in depth
level. Next, we apply two sets of fully connected layers with
non-linear activation ReLU [26] and Sigmoid following
respectively, in which the latter aims to map the feature vector
into (0,1). So, the output 1D vector could be learned as depth
activation factor in training phase and the final output of depth
activation module is the brosdcast element-wise product of the
input 3Dxfeature maps (W H C) and 1D depth activation
factor (1 1 C). In this way, the feature maps are activated in
depth.

The second branch of GAM in Fig. 4 is used for activating
spatial position that introduces a novel supervised mask to
learn a spatial activation vector. Specifically, the spatial
activation branch is a segmentation-like branch, in which the
supervised mask is obtained by fulfilling 1 into the ground
truth positions and O into the backgreundcareas. In this part,
the input feature thap with shape of W H C is input
into a X X
global convolution operation that takes 1 1kernel to reduce
the number of channels to 1 so the output is a W H 1
feature vector, which could ensure the spatial activation vector
is learned in spatial level by supervised attention loss. In this
method, we adopt pixel-wise sigmoid across entropy ax the
attention loss. Next, we employ two set of dilated convolution
operations [27] with various kernel sizes (i.e. 5 Sand7 7)
that could relieve the drawback of limited receptive field.
Similar to depth activation branch, the ReLU and Sigmoid are
followed and the output spatial activation factor is learned to

http:/ /www.ieelégiéggév?amre vector whose values are in (0,1). At last, the
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learned spatial activation factor is fed into exponential
operation and then dot with the input 3D feature maps in each
position rather than naive multiplication. In this way, it could
maintain more context information while highlight the object
information. Thus, our spatial activation could enhance the
feature maps in pest objects area and diminish the opposition.
Finally, the output of each block in GaFPN is the sum of two
activated feature maps and all of the outputs from blocks will
be processed by LaRPN for pest region searching.

D. Local activated Region Proposal Network (LaRPN)

Our proposed system is an improvement on the Region
Proposal Network by enhancing the region information in
local level during box fine-tuning phase. We called our
approach Local activated Region Proposal Network (LaRPN).
The first motivation of 1ocal activated is that part of region
proposals provided by standard RPN might not cover complete
information of target objects. This would result in inaccurate
box regression with insufficient features because Rol Align
[28] is used to ‘crop’ the regions into local level from feature
maps. To solve this problem, we augment some extra
contextual information [15] to ensure enough object features
could be considered into box regression. Secondly, the local
spatial positions contribute to the pest regions classification
because the key feature for precise region might be the
fine-grained characteristics such as colors or shapes of pests’
wings. Besides, rotational invariance should be ensured when
our model is able to be sensitive to local spatial positions of
pests.

Motivated by these observations, we propose an
improvement of standard RPN named LaRPN to take
contextual and attentional information into consideration to
locally activate region proposals derived from RPN, whose
structure is shown in Fig.4. There are three steps in our
LaRPN. Firstly, apply the standard RPN referenced by [12]
in each output from GAM in GaFPN with our assigned
anchors associated with every specific scale of feature
pyramid structure. The aspect ratio for our anchors is set to
be 1:1.5 because most of pests in our dataset are
approximately square. During training phase, the
anchors with

Intersection-over-Union (IoU) to ground truth more than 0.7
are regarded as preliminary pest regions. Next, we expand
these positive regions to be 1.5 times larger in four different
directions to ensure the contextual regions could cover more
complete information. And the enriched pest regions are
mapped to feature maps and processed by Rol Align to be
3 x3 features. Thirdly, we introduce self-attention mechanism
[29] with softmax activation function to obtain the local
attention vector in spatial level. Therefore, the relationships
among different positions of pests could be learned and the
output is multiplication of regions and spatial activated map.
Finally, the output is used for pest classification and box
fine-tuning.

E. Training and Evaluation

We use large-scale pest dataset for training and validating
our proposed approach. Different loss functions are selected as
supervisory indicators for pest localization, classification and
estimation training. A number of evaluation metrics were built
to access performance of our system on these tasks.

Pest Localization: Pest localization is a task to predict
bounding boxes for each input image. To measure the
performance of localization, we pay more attention on the
positioning accuracy rather than categories of boxes.
Therefore, we employ box regression loss as the
criterion for pest localization task during training phase.
Among various regression losses, we select smooth L1 loss as
the loss function which is the combination of L1 and L2 norm
so the gradient near 0 is smoother:

Z'(l‘l. —tA,-)z, lf 2 _;i s7
Loss, = z,-e(x,y,w,m | | ®

|t,. -, | , otherwise

Where 7 is usually set to 0.5. In this loss function, a region
could be characterized by {7,,7,.7,.¢,} in which {7 ,7 } are the

t,} are the width and

upper-left coordinates of boxes and {z

height. Thus, ¢, and 7, represent the ground truth and
localized bounding boxes respectively.
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In terms of metrics, binary precision and recall are chosen to
evaluate the pest localization performance. During testing
phase, the regions are predicted into two categories:
non-background and background, in which non-background
(positive) samples are the regions with overlap more than 0.7
with the ground truth bounding boxes while the other regions
are background (negative). The Precision and Recall are
calculated by:

#TP(c)
#TP(c) +#FP(c)’

#TP(c)

Precision(c) = RO
recision(c) HTP(c)+ #FN(c)

Recall(c) = “4)

in which 7P, FP and FN represent True Positive, False
Positive and False Negative samples respectively so the
Precision measures the samples that are incorrectly detected
while higher Recall indicates the lower misdetection rate.

Furthermore, Average Precision (AP) for binary pest
localization is applied as a comprehensive evaluation metric to
fuse the Precision and Recall together. In localization task, the
AP is computed by the integration of Precision-Recall (PR)
curve:

AP, = J: Precision d Recall %)

Pest Classification: while localizing pest objects in images,
we classify each bounding box into the corresponding
category. Different from binary -classification in LaRPN
(foreground or background), the bounding boxes are classified
into 16 types that are the major categories of pests we target
to monitor in our approach. In this task, we use multi-class
cross-entropy loss for this pest classification problem:

Loss. =Y. ~y,log(3) (6)

Where y, and J, indicate the truth label and predicted
category respectively. From the perspective of evaluation
metrics for pest classification, AP value [16] is updated for
different categories and we combine localization and
classification validation methods together. Thus, in our system,
we calculate APs for 16 categories based on the corresponding
PR curve as:

AP(c) = J.Ol Prcision(c) d Recall(c) @)

In addition, the final metric for pest classification task, mAP
is obtained by taking the mean of APs with all the classes:

mAP = NLZ AP(©) )

cls

where Ns represents the number of pest categories (in our task,
Neis = 16).

Pest severity estimation: the high-level task, pest severity
estimation targets at predicting the severity of pest occurrence
from the input image. According to agricultural experts’
consensus, the severities are divided into 5 levels from
‘general’ to ‘serious that describes the occurrence of pests in
the field, so the images are labeled to I-V by experts after
image acquisition. In the process of pest severity prediction,

the input features are the combined results from localization
and classification tasks above. In terms of encoding method,
we adopt a variant of one-hot encoder to transform the pest
detection results into Ngs-dimensional vector, where each
element in this vector indicates the number of detected pests
with corresponding category. In this input vector, we only
focus on the quantity of detected pests from each category
rather than their positions.

In pest severity estimation task, we build consequent two FC
layers for feature extraction and softmax predictor for severity
estimation. As criterion, we employ a weighted multi-class
cross-entropy loss defined as:

Loss, = le -4y, log(,) )]

where A is parameter to weight the loss function which

measures the risk of different, misclassification samples. We
define the risk parameter as the difference between
predicted severity and truth severity. As for evaluation, we
consider total accuracy as evaluation metric for pest estimation
task.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We use Inception [30] and ResNet50 [31] as CNN
backbones to train our pest monitoring model and also build
some experiments to evaluate the performance of our system.
During the training phase, we set the SGD gradient descent
with momentum 0.9 [32] and initialize learning rate to 0.001
that will be dropped by 10 at 80k and 160k iterations. In terms
of weight initialization, we adopt transfer learning that copy
the CNN backbones weights pre-trained on ImageNet dataset.
In order to avoid over-fitting problem, we utilize
early-stopping strategy [33] to select the best training iteration.
The performance of our approach is evaluated on our built
dataset across multiple tasks: pest localization, classification
angl SpEEY SN Tusk

For pest localization task, we present the experimental
results in Table 2, in which we compare our method with two
state-of-the-art approaches Faster RCNN [12] and FPN [13]
that are the base detectors we attempt to improve using our
proposed techniques. Because localization task is evaluated on
regions accuracy alone, the AP. does not take categories into
consideration. As it can be observed, our proposed method
could dramatically surpass the localization performance of
Faster RCNN using different CNN backbones for feature
extraction, which achieves 4.35% and 3.93% AP
improvement. Besides, compared with another feature
pyramid method FPN, our system could also obtain a slight
improvement in pest localization task. Among these results of
our method, the best performance occurs in ResNet50
backbone which achieves localization accuracy with 82.67%
APy.

It is interesting to note the detailed pest localization
performance between our approach and other state-of-the-art
methods in Fig. 5 which shows the PR curve of various
networks. Obviously, our proposed global and local activated

http://www.ieee-ies.org/

Page 6 of 19



Page 7 of 19

oNOUV A~ WN =

TABLE 2. Pest Localization Results AP,

CNN Backbone | Method APL
Inception Faster RCNN 74.99%
FPN 76.65%
Ours 79.34%
ResNet50 Faster RCNN 78.74%
FPN 80.29%
Ours 82.67%
1.0 4

0.8 1

o
o

Precision

o
IS

—— ResNet50-Faster RCNN
ResNet50-FPN

—— ResNet50-Ours

— Inception-Faster RCNN
Inception-FPN

—— Inception-Ours

0.2 4

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 5. Precision-Recall curve for pest localization

approach outperforms Faster RCNN by a large margin and
improves FPN slightly. This improvement could be
contributed to two reasons. Firstly, our method with GaFPN
applies a pyramid feature extraction architecture and localize
pests’ regions on multi-level feature maps that could help
precisely find pests positions on various scales, which is also
evidence from APy values of our method in Fig. 6. Secondly,
holding global activation factors by our presented global
activated features for enhancing the depth and spatial
information in global level makes it easier to localize pests
positions because of much more remarkable features between
foreground and background.

B. Pest Classification Task

For pest classification task, we show the experimental
results in Table 3 that presents the AP for 16 pest categories
performed by our method and other state-of-the-art models.
Observed from Table 3, having pest localization information
associated with the predicted bounding boxes to pests, our
method could achieve more accurate pest recognition on these
classes. It is obvious that our approach could significantly
outperform Faster RCNN in pest classification over almost all
the pest categories under Inception as CNN backbone. The
homologous phenomenon occurs in that using ResNet50
network with 3.28% mAP improvement. In addition, our
approach could also largely improve mAP compared to
another feature pyramid object detection structure FPN. This
gain is largely due to our LARPN s ability to introduce the
contextual and local activated information before fully
connected layers for pest classification, which is helpful to
sufficiently learn the features of pests in local level.

Apart from mAP results, there are obvious differences
within classes that can be seen in Table 3. Specifically, pest #8
seems to be the most difficult to be categorized on these
pre-calculated regions with lowest AP value while almost all
the models could classify pest #15 well even using shallow
CNN backbone. This can be explained by that the pests in the
‘easy’ class hold up a large number of training examples,

Industrial Electronics Society

TABLE 3. Pest Classification Task Results AP value (%)

Inception ResNet50

Pest Faster Faster

1D RCNN FPN Ours RCNN FPN Ours
1 51.62 60.24 61.41 57.12 62.13 64.60
2 56.26 61.00 63.15 59.70 62.96 66.01
3 64.27 67.33 68.22 69.75 70.16 71.74
4 80.74 82.10 83.48 83.73 82.82 84.97
5 65.65 69.73 71.44 70.17 71.22 72.07
6 65.36 68.45 71.61 68.60 68.98 72.07
7 63.09 63.30 67.35 68.39 69.46 71.25
8 45.31 49.70 51.04 48.57 53.47 54.50
9 69.93 71.17 73.36 72.56 7291 76.32

10 75.55 76.27 78.73 79.92 80.58 80.65
11 50.71 51.74 54.28 54.45 57.35 62.36
12 63.17 66.78 69.06 66.26 69.20 72.03
13 77.48 83.31 85.45 84.94 85.18 85.95
14 79.43 86.93 88.21 87.86 88.03 88.08
15 89.81 89.77 89.82 89.93 89.97 90.21
16 69.13 72.51 75.09 73.38 74.37 75.05

mean 66.72 70.02 71.98 70.96 72.42 74.24

10 00 02 04 06 08 10

(b) PR Curve for class 16

Rex

(a) PR Curve for class 9
Fig. 6 illustrates some of PR curves in our experiments.

which help reduce difficulty to classify them comparing Table
3 and Table 1. Even though, the amount of data might not be
the main factor affecting performance of our approach, where
pest #16 still could be categorized with a large AP value (more
than 80%) even if there are only 4756 training images
containing pests of this class. Therefore, our method could
largely overcome the sample limitation and imbalance
problem with a great improvement.

Fig. 6 illustrates some of PR curves in our experiments.
Note that only four classes PR curves are shown here due to
the space limitation. As it is shown, precision could keep a
high value with the recall increasing in various models.
Especially, our approach using different CNN backbones
could obtain a larger precision and recall compared to Faster
RCNN, which indicates that it could effectively reduce false
positive rate as well as misdetections rate. Concretely speaking,
pest #2 is relatively difficult to classify so the PR curve for this
class is further away from the point (1,1). In addition, PR curve
for pest # 16 represents that it is hard to obtain a high recall
value but could get satisfied precision value so this curve
signifies that our system could make sure that almost all the
detected insects of this class are correct but might not detect all

http://www.ieee-ies.org/
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of the insects. Furthermore, among these illustrated PR curves,
our system performs best on class #3 that maintains high
precision in addition to recall simultaneously.

C. Pest severity estimation Task

For pest severity estimation, our method regards this task as
a classification problem so we achieve severity estimation
based on the encoded results outputted from previous pest
localization and classification tasks. So we compare our
severity estimation predictor with the state-of-the-art CNN
based models that estimate severity by softmax classifier using
the whole image as input. Table 4 illustrates the comparable
results in our experiments. As it is shown, our method could
beat theses CNN approaches with approximately 2%
classification accuracy improvement due to the prior
information from detected pests.

TABLE 4. Pest severity estimation Task Results Accuracy

CNN Backbone Method Accuracy

Inception Softmax 80.5%
Ours 82.8%

ResNet50 Softmax 84.9%
Ours 86.6%

D. Result Visualization

We visualize part of the pest monitoring results in Fig. 7
that fuses localization, recognition and severity estimation
tasks together. These results are outputted by our system
based on ResNet50 backbone. The environments of input
images from top to bottom are more and more complicated.
As it can be seen, our method could achieve multi-class
pest localization and recognition under both simple
and complicated environments and provide the predicted
severity estimation, despite the intractable challenges such as
noisy image and tiny objects. Some feature maps outputted
from 2 middle blocks with FPN (left) and our method
(right) using ResNet50 are visualized in Fig. 8. It is found
that, the feature maps in our system diminish the highlights
of non-objects and focus more attention on pest regions
with lighter activation points. Therefore, our method could
perform better on pest detection and progressively learn the
pests' features well.

VI. CONCLUSION

This paper proposes a novel deep learning approach using
hybrid global and local activated features for automatic pest
monitoring in industrial equipment to simultaneously perform
three key tasks: localization, classification and severity
estimation. Our method successfully realizes efficient and
automatic feature extraction with global activated feature
pyramid GaFPN structure. Furthermore, we present local
activation to enhance position-sensitive features of pest boxes
by LaRPN for powerful regions proposal. Under our enriched
stationary pest dataset captured by our designed pest
monitoring equipment, our method has outperformed the
state-of-the-art methods in pest localization, classification and
severity estimation tasks. Future work will consider
developing more efficient deep learning architecture for
real-time pest monitoring.

Fig. 7. Examples of pest monitoring results demonstration

a) feature maps from shallow convolutional block

(b) feature maps from deep convolutional block

Fig. 8. Part of feature maps generated by FPN (left) and our method (right)
using ResNet50 backbone extracted from shallow to deep block.
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