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Abstract 

Systemic sclerosis (SSc) is a rare rheumatic autoimmune disease, resulting in 

increased collagen production, leading to increased thickness and stiffness of the skin 

and reduced hand function. The hands are a critical contributor to the ability to perform 

activities of daily living (ADL), which is limited in patients with SSc. Therefore hand 

function is commonly assessed in clinics using patient-reported outcome measures 

(PROMs) or single distance measures during static finger flexion. In this thesis a three-

dimensional motion analysis was conducted to assess the magnitude of impairment 

throughout functional tasks, as well as joint specific contributions to overall impairment. 

Study one showed that patients have significant movement impairment throughout the 

entire movement phase of functional tasks. Further impairments were found in all joints 

and movement directions, with no joint being more impaired than others. 

The information was then used to inform a novel rehabilitation programme. 

Conventional programmes focus predominantly on flexion ability and patients show low 

adherence rates. A portable virtual rehabilitation (VR) tool was developed for the 

gamification of hand exercises allowing training of both flexion-extension as well as 

abduction-adduction ranges. The third study, a randomised-controlled trial, evaluated 

the effect of exercises on the VR tool compared to physiotherapy. Ability to perform 

ADLs was not significantly improved after exercises. Finger dexterity and mobility were 

significantly improved in both groups, whereby the VR group showed greater 

improvement across all assessed outcome measured compared to physiotherapy. 

Further, patients in the VR group showed higher levels of motivation and likelihood of 

adherence to the exercises in the future.  

Overall the findings in this thesis highlighted that finger joint movement impairments 

are present in all joints and movement directions, as well as the suitability of virtual 

rehabilitation to improve or maintain hand function in patients with systemic sclerosis.  
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1.1. Background 

Unimpaired hand function is a critical contributor to the performance of activities of 

daily living (ADL). Hand function combines aspects of mobility, finger dexterity and 

strength required to complete tasks. Reduced or lost hand function is related to 

increased depression, anxiety and stress levels, as well as social isolation (Poole et al., 

2013b). It is therefore important to maintain hand function throughout life. Some clinical 

conditions cause a restriction of finger joint mobility, loss of finger dexterity or strength, 

thus reducing the ability to perform ADLs. 

Systemic Sclerosis (SSc) is a rare autoimmune disease affecting the connective 

tissues, leading to inflammation, trauma and fibrosis. An autoimmune disease involves 

the formation of antibodies or lymphocytes against substances which are naturally 

present in the body. In SSc the immune system becomes overactive, causing an 

increased collagen fibre production, which then leads to symptomatic thickening and 

scarring of the affected tissues (Yamamoto, 2009). The symptoms are mostly visible on 

the skin, in particular at the hands and feet, but it may also spread to the connective 

tissues of internal organs and blood vessels.  Systemic Sclerosis affects approximately 

12,000 people in the UK (Scleroderma UK, 2016).   

Initially the condition presents as Raynaud’s syndrome, where the blood vessels are 

sensitive to cold, restricting blood flow to the digits. With progression patients 

experience swelling of the fingers and increased skin thickness and stiffness, resulting 

in reduced movement ability. As these symptoms are evident at the hands and feet, the 

patient’s ability to use their hands during ADLs is limited (Balint et al., 2014). Hand 

involvement for patients with SSc is measured in clinics on routine appointments using 

a range of standardised questionnaires and simple measurements (Lopez Lopez et al., 

2014). The score outcome of any measure can then be related to quality of life (if not 

assessed directly) and inform clinical care. Yet, the scales and questionnaires used do 

not assess movement throughout the range of motion, but rather the ability to recruit 
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hands during ADLs subjectively or measure finger flexion in general, which reduces 

their accuracy and inadequately summarises hand function (Lopez Lopez et al., 2014). 

Three-dimensional (3D) motion capture to analyse human movement has been used 

for several decades to inform clinical decision making, especially in cerebral palsy 

(Simon, 2004). Motion analysis provides a highly accurate and objective mean to 

assess impairments throughout dynamic tasks, rather than just at a single time point. 

While discrete values of movement ability, such as range of motion and maximum 

flexion or extension angles are important, they cannot account for the differences 

between healthy and pathologic movements throughout a dynamic task. For this 

purpose, movement indices have been established that allow the determination of 

deviation from normality of a patient throughout specific movements (Baker et al., 

2009; Barton et al., 2012; Schwartz and Rozumalski, 2008). The calculation of 

movement impairment of the hands in patients with SSc could provide valuable insight 

to the underlying mechanics that cause an inability to perform ADLs and how these 

develop after disease onset. 

Disease progression in SSc is yet to be completely understood and there is currently 

no cure. Management options aim to maintain functionality and reduce symptomatic 

progression of the disease. Most treatment options use pharmaceuticals to target 

biomarkers or tissues to reduce inflammation, fibrosis or oedema (Distler and Cozzio, 

2016). Research further indicates there may be a beneficial effect of hand exercises in 

addition to pharmaceutical treatment (Willems et al., 2015b; Williams et al., 2018b). 

Despite this it has been reported that referral to physiotherapy or occupational therapy 

only occurs in one third of the clinical population, and only 12% actually start and even 

less adhere to any exercise prescription aiming to improve hand function (Bassel et al., 

2012). Further, availability of specialised, targeted exercises is limited (Bassel et al., 

2012). Hand stretches, paraffin baths and tissue massages are the commonly 

suggested interventions (Willems et al., 2015b), but face a low rate of adherence in 
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rheumatology patients (Rannou et al., 2017; Williamson et al., 2017).  Virtual 

rehabilitation (VR) has been used over the past decade to train and improve movement 

in several conditions, including cerebral palsy, stroke and Parkinson’s disease (Barton 

et al., 2013; dos Santos Mendes et al., 2012; Garcia-Bravo et al., 2019; Garcia-

Rudolph et al., 2019; Gumaa and Youssef, 2019). Virtual rehabilitation offers the 

possibility to create a highly targeted training approach using computer applications. 

Research in this area has exponentially increased over the past years (Keshner et al., 

2019) due to advancements in portable technology, and because it can be used inside 

or outside of the laboratory. The gamification of rehabilitation exercises showed higher  

levels of motivation and increased adherence to the intervention across cohorts of 

multiple ages, clinical populations and genders, in addition to improving motion and 

motor control of the extremities (Garcia-Bravo et al., 2019; Garcia-Rudolph et al., 2019; 

Holden, 2005). 

 

1.1. Research purpose 

Only few research groups focus on systemic sclerosis despite the severe impact of the 

disease on the patient’s life. Especially hand mobility is a vital contributor to quality of 

life, and thus any treatment should allow the maintenance or rehabilitation of hand 

function to ensure a normal or close to normal quality of life. Current rehabilitation 

programmes are not used due to limited evidence and patients further report boredom 

and disbelieve of effectiveness of the exercise programmes.  Therefore, the overall aim 

of this thesis was to establish if a new rehabilitation tool, in form of virtual rehabilitation, 

is suitable for use in patients with SSc, as virtual rehabilitation has shown to increase 

motivation in other patient cohorts. This design of the virtual rehabilitation tool was 

determined to be based on objectively measured hand function, rather than the more 

common, subjective, Likert-scale based assessments, which are frequently conducted 

in clinical practice but are influenced by outside factors. For this purpose, a 3D motion 
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analysis of hand mobility during functional tasks was conducted. This identified that 

movement impairments were existent in all joints and all permitted directions of 

movement. Therefore the computer game for virtual rehabilitation was designed to train 

all finger joints and permitted directions of movement dynamically at the same time, 

rather than a stationary stretch of individual fingers as is common in physiotherapy 

exercises. To make the game portable, and ready to be applied in the patient’s home, a 

portable motion sensor, the Leap Motion controller, was used as a primary input source 

to drive the game. Finally, the virtual rehabilitation tool was tested in comparison to a 

conventional physiotherapy approach. While both groups improved in response to 

exercises, the virtual rehabilitation group showed slightly greater improvements on both 

objectively measured as well as patient-reported outcome measures. Further the virtual 

rehabilitation group enjoyed their training programme more compared to the 

physiotherapy group, suggesting a higher likelihood of adherence to the programme, 

which would be vital to ensure successful movement rehabilitation.   
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2.1. Hand and forearm structure and movement 

The hand forms the distal end point of the upper extremity and is considered a highly 

complex anatomical structure. The control of movement is influenced by the 

musculoskeletal system of the hand and forearm, but also by neural pathways from the 

brain (Wilhelm et al., 2014).  

 

2.1.1. The musculoskeletal system 

The five fingers (thumb, index, middle, ring and little) are structurally referred to by 

location from lateral to medial in the anatomical position. The thumb is therefore digit 1, 

the index finger digit 2, the middle finger digit 3, the ring finger digit 4 and the little 

finger digit 5 (American Society for Surgery of the Hand, 2019). The hand has 27 

bones (Figure 1), 134 tendons and ligaments and 17 intrinsic muscles to control fine 

finger movement (Figure 2a). Hand and wrist movements are further controlled by 18 

extrinsic forearm muscles. Nine extensor muscles are located on the posterior aspect 

of the forearm and eight flexor muscles on the anterior aspect (Figure 2b) (American 

Society for Surgery of the Hand, 2019; Maw et al., 2016). The 27 bones form 26 joints 

within the hand, which are split into four categories: intercarpal joints (IC), 

carpometacarpal joints (CMC), metacarpophalangeal joints (MCP) and interphalangeal 

joints (IP) (Maw et al., 2016). Of the seven IC joints, three are between the carpal 

bones of the distal row, three between the carpal bones of the proximal row, while the 

seventh is located between the proximal and distal carpal bone row (the midcarpal 

joint). On the proximal end, the scaphoid and lunate articulate with the distal end of the 

radius to form the radiocarpal joint, which is part of the wrist. The IC joints and CMC 

joints of digits 2-5 are synovial plane joints and only allow minimal sliding movement 

between bones (Maw et al., 2016). The thumb CMC joint (Digit 1) is a bi-axial saddle 

joint between the trapezium and thumb metacarpal. The nature of this joint allows 

extensive thumb movement in both the sagittal and frontal planes, as well as  
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Figure 1: Bone anatomy: the 27 bones of the hand form 26 joints, whereby the 
intercarpal and carpometacarpal joints of digits 2-5 are immobile plane joints. 
Movement of the digits is largely due to rotation of the three most distal joints. Image 
adapted from: Siedlecki (2017). 

 

circumduction. The trapeziometacarpal (TM) joint is therefore structurally and 

functionally highly distinct from the other CMC joints (American Society for Surgery of 

the Hand, 2019; Maw et al., 2016). The MCP joints of digits 2-5 are bi-axial condyloid 

joints supported by palmar and collateral ligaments and allow movement in the sagittal 

and frontal plane as well as minor circumduction (American Society for Surgery of the 

Hand, 2019; Maw et al., 2016). The MCP joint of digit 1 is similar to the IP joints. All IP 

joints and the MCP joint of digit 1 are uni-axial hinge joints and only allow movement in 

the sagittal plane (American Society for Surgery of the Hand, 2019; Maw et al., 2016). 

The IP joints of the same finger are controlled by the same muscles and interlinked 

with ligaments (Figure 3). These anatomical constraints therefore introduce movement 

limitations, and co-dependency of the IP joints on one another. The distal end of the 

distal phalanx forms the fingertip of each digit and the end point of the hand and upper 

extremity (American Society for Surgery of the Hand, 2019). 

Anatomically, there are 29 degrees-of-freedom (DoF) leading to several million 

theoretically possible ways to move our hands. Due to the organisation of muscles, 

tendons and ligaments the number of movements is anatomically reduced (Hepp-

Reymond et al., 1996). Joint capsules and ligaments restrict movement and result in  
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Figure 2: Muscles of the forearm (extrinsic) and in the palm (intrinsic) are activated to 
initiate rotation of finger bones around their joint axis. Intrinsic muscles are mostly, but 
not exclusively, involved with the ab-adduction movement, whereby the forearm 
muscles predominantly control flexion-extension movements as well as all movements 
of the thumb. Tendons of the extrinsic muscles extend into multiple or single fingers, 
crossing multiple joints leading to anatomically induced kinematic synergies of the 
finger joints (Maw et al., 2016). Image from: Betts et al. (2019) 

 
Figure 3: Several ligaments span across the dorsal and palmar aspects of the hand. 
Ligaments and joint capsules stabilise the long fingers and the metacarpophalangeal 
joints. The collateral ligaments encapsulate the tendons of the extrinsic muscles, thus 
contributing to the anatomical constraints of joint movement. Image from: Schorn 
(1900). 

interdependency at the IP joints. The muscles and tendons of the hand further enhance 

the interdependency as both intrinsic and extrinsic muscles control finger movement.  

Every joint movement can be controlled by at least two muscles (American Society for 

Surgery of the Hand, 2019; Maw et al., 2016) and one muscle may control joints of one 

or multiple fingers. The anatomical constrains induce kinematic synergies, which are 

further enhanced by neural control patterns (Hepp-Reymond et al., 1996; Wilhelm et 

a) b) 
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al., 2014). Given the anatomy of the hand, joint interdependency and potentially highly 

individualised motion patters, kinematic models of the hand face several challenges.  

 

2.1.2. Neural control  

All muscles of the hand and forearm are innervated by branches of either the radial, 

ulnar or median nerves extending from the spinal cord (Maw et al., 2016). In the brain, 

hand movements are initiated in the primary motor cortex (PMC), whereby all neural 

extensions in the PMC overlap, leading to a strong neural constraint on finger 

movements (Hepp-Reymond et al., 1996). Lack of selective control over motor unit 

activation during individual finger movements supports this (van Duinen and Gandevia, 

2011) and suggests kinematic and kinetic synergies between fingers (Mirakhorlo et al., 

2017; Mirakhorlo et al., 2018; Van Beek et al., 2019; Wilhelm et al., 2014). The 

dynamic-dominance theory of brain lateralisation, proposes a motor control 

specialisation to enhance dynamic task performance on the dominant hand and 

stabilisation on the non-dominant hand (Wilhelm et al., 2014). No gender differences in 

kinematic measures have been identified for age-matched healthy controls (Coupier et 

al., 2016), but an age-dependent loss of dexterity (Martin et al., 2015) and increase in 

kinetic synergies (Mirakhorlo et al., 2018) has been reported. Therefore, when 

conducting research on kinematic parameters in the hand, age-matched and 

dominance-matched comparisons are valued over gender-matched comparisons.  

 

2.1.3. Hand dexterity and activities of daily living  

Hand dexterity describes the ability to perform and control hand movements, regarding 

speed, accuracy and stability (Martin et al., 2015). Hand dexterity is therefore important 

to maintain the ability to perform ADLs. Range and speed of movement, as well as grip 

strength are the main contributors for hand dexterity, which is known to decline with 

increasing age (Agnew and Maas, 1982; Van Beek et al., 2019) or in the presence of 
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neural conditions. Due to general age-related muscle loss, grip strength decreases in 

the elderly (Van Beek et al., 2019). This loss of muscle mass is correlated with a 

reduced accuracy of movements during reach to grasp and tapping tasks (Hackel et 

al., 1992). Further, the speed of movement is significantly reduced in the elderly, 

leading to a large variability in movement duration (Agnew and Maas, 1982; Hackel et 

al., 1992; Martin et al., 2015). However, the magnitude of dexterity and function loss is 

gender independent, apart from grip strength where males experience a greater 

absolute loss in maximal grip capacity. This is likely to be due to a higher maximal grip 

strength at younger ages, thus the capacity to lose is greater compared to females. On 

relative terms, Auyeang et al. found that over the course of two years, elderly women 

   

Table 1: Eight common grips, defined by Sollerman and Ejeskar (1995), are used to 
execute ADLs. The pulp pinch and lateral pinch are the most commonly used grips, 
whereas the spherical volar grip and extension grip are rather rarely used in daily life. 
The importance of these grips are equal in the maintenance of independence and 
quality of life.  

Grip type Description Example ADL % contribution 

Pulp pinch 
 

Grasping a small object 
between thumb and index 
finger 

Closing buttons 
and zippers 

20 

Lateral 
pinch 

Holding an item between 
thumb and lateral side of 
index finger 

Holding key to 
open an item 

20 

Tripod 
pinch 
 

Holding an item between 
three fingers, mostly the 
thumb, index and middle 
finger 

Holding a pen 10 

Five-Finger 
pinch 

Holding an item between the 
thumb and the other 4 fingers, 
without palm contact 

Lifting a long item 
 

15 

Diagonal 
volar grip 

Axis of the object being held 
is diagonal to the hand 

Holding cutlery 15 

Transverse 
volar grip 

Axis of item being hold is 
perpendicular to the hand  

Carrying a 
shopping bag or a 
hair dryer 

14 

Spherical 
volar grip 

Grasping and holding a 
spherical or round item 

Opening lids 4 

Extension 
grip 

Pinching an item between the 
thumb and the palm, digits 2-
5 are extended 

Holding a sheet of 
paper 

2 
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(64+ years old) lost 10% of their grip strength, while males only showed a reduction by 

3.85%. In summary females show a more rapid decrease in grip strength, in addition to 

a lower absolute strength to begin with (Auyeung et al., 2014).    

Holding items, such as pens or cutlery, dressing yourself or picking up small items are 

tasks that require full range of motion and sufficient grip strength. Analysis of a wide 

range of tasks has identified eight common grips (Table 1) (Sollerman and Ejeskar, 

1995) performed to execute ADLs. A reduced dexterity, due to loss of motor skills, 

range of motion or strength, will impair the ability to control and perform these grip 

types. 

 

2.1. Pathophysiology of systemic sclerosis 

Systemic sclerosis is a rare, chronic, rheumatic autoimmune disease, affecting 

approximately 12,000 people in the UK, whereof 100 are children (Scleroderma UK, 

2016). Initial symptoms of the disease are swelling of the extremities, Raynaud’s 

phenomenon and coldness. The swelling is thought to be due to an increased 

permeability of the vascular tissue due to damaged endothelial cells from overly 

present inflammatory factors. Over time, the skin becomes increasingly sclerotic and 

either hypo- or hyper-pigmented (Yamamoto, 2009). Abnormal peripheral circulation, 

affected by the chronic presence of inflammatory factors and autoantibodies, may lead 

to poor healing and painful digital ulcers, elongated nail folds or pitting (Yamamoto, 

2009; Denton and Black, 2004).  

Clinically there are three types of SSc: limited SSc (lSSc), limited cutaneous SSc 

(lcSSc) and diffuse SSc (dSSc). The classification depends on the skin involvement. If 

the skin involvement is limited to an area above the elbow, the disease is classed as 

lSSc or lcSSc. If more distal involvement of the skin is evident a patient is classified as 
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dSSc. Whilst there is no pattern in disease progression, lSSc and lcSSc patients show 

greater involvement of the vasculature and fibrosis, while dSSc is associated with 

extensive, widespread inflammation and visceral involvement (Yamamoto, 2009; 

Denton and Khanna, 2017).   

While the exact causes for the condition remain unknown, it is hypothesised that the 

interaction between an aetiological factor and certain gene characteristics triggers an 

autoimmune cascade. This cascade leads to the release of inflammatory factors, such 

as cytokines and chemokines. High levels of inflammatory factors lead to activity of the 

immune system, in particular the fibrocytes, T cells and B cells. If cytokines and 

chemokines remain active for a long time, this leads to chronic inflammation and the 

production of autoantibodies, such as anti-nuclear (ANA), anti-topoisomerase Scl-70 

(ATA) and anti-centromere (ACA) autoantibodies (Yamamoto, 2009). Autoantibodies 

are linked to disease classification and level of tissue involvement (Ho and Reveille, 

2003). In addition to inflammatory factors, growth factors, especially the self-regulating 

tumour necrotic factor - beta (TNF-β), is produced in excess (Denton and Black, 2004; 

Yamamoto, 2009). TNF-β interacts with endothelial cells, lymphocytes, macrophages 

and fibroblasts and supports the transformation of fibroblasts into myofibroblasts 

(Yamamoto, 2009; Denton and Black, 2004). Myofibroblasts regulate the production of 

extracellular matrix (ECM) proteins, including collagen type I and type III. Due to an 

increase of active myofibroblasts in SSc, ECM proteins are excessively produced, 

leading to fibrosis of any ECM containing tissue, such as internal organs, muscles and 

the skin (Denton and Black, 2004; Denton and Khanna, 2017; Yamamoto, 2009). 

Fibrosis refers to the thickening and scarring of connective tissues. As collagen is a 

very rigid compound, the stiffness of the ECM containing tissues also increases. 

Fibrosis in SSc is therefore directly linked to breathing and digestive problems, cardiac 

conditions and movement impairments. There is currently no cure for the disease 

(Denton and Black, 2004; Yamamoto, 2009). The American College of Rheumatology 
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(ACR) and the European League Against Rheumatism (EULAR) created criteria to 

diagnose the disease based on the presence of disease related factors. These are skin 

thickening of both hands (score: 9), puffy fingers (score: 2), skin thickening of one 

finger (score: 4), digital ulcers (score: 2), pitting (score: 2), telangiectasia (score: 2), 

abnormal nailfold capillaries (score: 2), pulmonary arterial hypertension and/or 

interstitial lung disease (score: 2), Raynaud’s phenomenon (score: 3) and scleroderma 

related antibodies (ATA, ACA or Scl-70) (score: 3). The scores of the symptoms that 

the patient exhibit are added up and if the sum of scores is greater than or equal to 9 

the patients fulfils the ACR/EULAR criteria for systemic sclerosis (ACR/EULAR, 2013).  

  

2.2.1. Hand involvement in systemic sclerosis 

Fibrosis of the skin leads to flexion contractures and other hand deformities. Patients 

with diffuse SSc (dSSc) experience greater impairments than patients with limited SSc 

(lSSc) (Erol et al., 2018; Sandqvist et al., 2004b). The most reduced movement is the 

flexion and extension range, while pronation is close to normal (Bassel et al., 2011; 

Erol et al., 2018; Sandqvist et al., 2004b). Patients further experience a reduced thumb 

abduction mobility, which, in conjunction with reduced flexion range, impairs 

circumduction (Bassel et al., 2011). Finger abduction and volar flexion was also 

impaired, whereby patients with dSSc experience a greater movement loss than 

patients with lSSc (Sandqvist et al., 2004b). Further, linking to the reduced flexion and 

extension ability, the hand span, measured as the distance between the thumb and 

little fingertips in centimetres during a maximum extension, is significantly reduced in 

patients with SSc (Erol et al., 2018). The length span is not considered in the Duruoz 

Hand Index (DHI) used by Erol et al. (2018), but is evaluated in the Hand Anatomy 

Index (HAI) used by Roberts-Thomson et al. (2006), who found similar values for hand 

span width. Sandqvist et al. (2004b) recruited the Hand Mobility in Scleroderma 

(HAMIS) test for the assessment of movement limitations, a test ranking patient ability 
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based on object size they can manipulate. The HAMIS evaluated flexion, extension and 

thumb abduction movements separately. Bassel et al. (2011) judged the impairment of 

movement based on questionnaire responses. Truly objective measures comparing 

patients with SSc to healthy controls are missing in the current literature, yet objectively 

assessed hand impairment using a goniometer was found to be greater in patients with 

SSc than in other rheumatic conditions (Lopez Lopez et al., 2014; Poole et al., 2013b). 

Movement impairments are frequently reported in conjunction with ability to perform 

ADLs or other clinical parameters associated with SSc.  

 

2.2.2. Patient-reported impact of movement limitations in activities of daily living 

Hand deformities interfere with the performance of ADLs which rely on grasp, pinch, 

and object manipulation. Cinar et al. (2014) evaluated patient ability to perform ADLs 

using the Evaluation of Daily Activity Questionnaire (EDAQ), whereby a healthy person 

would report no problems across all tasks (0 points for all tasks), yet there are no 

concise limits to indicate mild, moderate or strong impairment. The EDAQ evaluates 

multiple domains and tasks commonly perceived as difficult were related to 

eating/drinking or the washing category. Opening cans, bottles, glass jars or medicine 

bottles were among the tasks where patients experienced most limitations. Out of 19 

tested participants at least one could not perform these tasks in addition to at least six 

participants who could only perform the task with much difficulty (Cinar et al., 2014). 

This finding is supported by multiple other studies (Bassel et al., 2011; Poole et al., 

2013b; Sandqvist et al., 2004b; Sandqvist et al., 2014). Opening jars and bottles, as 

well as carrying bowls, involves the spherical volar grip, which is not commonly 

addressed in hand function tests. In the category ‘Eating/Drinking’ patients further 

commonly report struggles with cutting things and holding a knife and fork of normal 

size. A coping mechanism is to use utensils with larger grips (Poole et al., 2013b; 
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Sandqvist et al., 2004b), or to push back the utensils more than usual and use the 

whole hand to apply pressure (Cinar et al., 2014). 

Another very commonly reported limitation is the use of buttons or zips when getting 

dressed. In the study by Cinar et al. (2014) at least two participants were not able to 

use buttons or zips. Additionally, at least five participants could only use these items 

with much difficulty and additional coping mechanisms. A related movement is picking 

up coins or other small items from a flat surface. Both tasks rely on the pulp pinch. 

Patients further experienced problems turning a Yale-lock key, relying on the lateral 

pinch, and writing (tripod pinch). Patients often struggle to write a long text with an 

ordinary pen and prefer using a thicker pen or an additional sleeve around an ordinary 

pen to increase comfort. The transverse volar grip offers a base of ambiguity. Patients 

report they struggle to carry bags or hold a glass yet holding a hair dryer or moving 

cans is often only mildly impaired (Cinar et al., 2014). 

Cinar et al. (2004) interviewed patients regarding their experiences in everyday life 

following the diagnosis with SSc. Patients described their difficulty to ‘open cans, 

holding the glasses or other utensils’, which led to one patient even finding herself 

unable to drink water on her own. The importance of water consumption throughout the 

day is well known and not being able to perform a crucial task as drinking water bears 

major risks and limitations. Other patients reported the inability to look after their 

appearances by brushing their hair or applying make-up (Cinar et al., 2014). This in 

turn may impact the mental health of patients.  

It is evident that all grip types are impaired in patients with SSc, directly impacting their 

ability to perform ADLs, thus reducing their independence and quality of life.  
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2.2.3. Assessment of hand function in systemic sclerosis 

Clinical assessments of hand function in SSc are conducted during routine clinical 

appointments. Several functional questionnaires and tests have been validated for SSc 

or the related disorder rheumatoid arthritis (RA). These vary in length and may 

therefore not necessarily be useful to apply during a physician appointment, but rather 

when seeing an occupational therapist or nurse or prior to attending a clinic. 

Current measures applied in clinical care are the Finger-to-Palm index (FTP), delta 

Finger-to-Palm index (dFTP) and the Cochin Hand Function Scale (CHFS). The FTP 

and dFTP are distance measures of the middle fingertip to the palm during maximum 

flexion, or the change of distance of the middle fingertip to the palm from maximum 

extension to maximum flexion respectively, whereby a measure of <0.09 cm is 

considered healthy, 0.1 - 2cm minimal impairment, 2 - 3.5 cm moderate impairment, 

3.5 - 5 cm severe impairment and >5 cm as an end stage of SSc, whereby a change of 

0.5 cm is considered clinically relevant (Torok et al., 2010). A healthy magnitude of the 

delta FTP is difficult to provide as the distance between middle finger tip and palm at 

full extension is dependent on the span of the hand. If someone can extend the hand 

into a flat position and flex the fingers to touch the palm this is considered full hand 

function. Flexion-contractures in SSc are not equally developed in all fingers and joints 

of one hand. A patient could potentially touch the palm with the middle finger, but not 

with any other finger, yet still obtain an FTP value of 0, meaning that the patient has the 

full range of motion. The CHFS is a validated 20-item questionnaire where patients are 

asked to rank their perceived difficulty to perform ADLs on a scale from 1-5 (Rannou et 

al., 2007), which also exists as a 6-item short form, CHFS-6. Both tests define a score 

of 0 as healthy and disease severity increases with increasing scores. For the CHFS 

the minimal clinically important improvement (MCII) and minimal clinically important 

difference (MCID) values were determined to be 1.5 and 6.0 respectively (Nguyen et 

al., 2016). Longer, and more complex hand function tests include the Sollerman Hand 
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Function Test (SHFT) (Sollerman and Ejeskar, 1995), Jebsen Hand Function Test 

(JHFT) (Kim et al., 2016), Disorders of the Arm, Shoulder and Hand Test (DASH) 

(Varju et al., 2008), and Michigan Hand Outcomes Questionnaire (MHQ) (Schouffoer et 

al., 2016). All these latter tests involve the participant to answer questions and/or rank 

their ability to perform activities of daily living. Similar, yet not hand specific, is the 

EDAQ (Cinar et al., 2014; Nordenskiold et al., 1998), used to evaluate the ability of RA 

and SSc patients to perform tasks of daily living.  

These tests vary in length, ranging between six (CHFS-6) and 102 (EDAQ) items, 

however there is a great overlap in tasks assessed. For example, every test assesses 

the ability to cut food, whereby the means for this do differ. In the SHFT the subjects 

actually cut dough, in the JHFT the participants only pretend to cut, and in the EDAQ, 

MHQ and CHFS the subjects merely rate their ability to cut food based on memory. 

Five out of six tests also asses the subject’s ability to write (tripod pinch), turn a key in 

a Yale-lock (lateral pinch) and unscrew a lid of a jar (spherical volar grip). The EDAQ 

even evaluates ability to unscrew lids of containers of various sizes, such as jars, 

bottles, juice bottles, milk boxes and medicine bottles. Four out of six tests assess the 

subject’s ability to pick up small items (pulp pinch), such as coins or buttons, from a flat 

surface, and the difficulty experienced when doing up buttons (pulp pinch). Further 

tasks tested may include grasps relating to the remaining four common grip types – 

transverse volar grip (for example: holding a telephone, SHFT), diagonal volar grip (for 

example: turning a screw with a screwdriver, SHFT), five finger pinch (for example: 

picking up a toothbrush, EDAQ) or the extension grip (for example: turning cards, 

JHFT). 

Even though being different in components, tasks in the aforementioned tests can be 

split into categories according to which grip is performed (Sollerman and Ejeskar, 

1995). The pulp pinch and lateral pinch are the most frequently assessed grips in 

conventional hand function tests (Sollerman and Ejeskar, 1995). Out of 71 tasks across 
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five functional tests (SHFT, JHFT, CHFS, CHFS-6, DASH), 20 assess the lateral or 

pulp pinch, 13 times in combination with the lateral pinch. Interestingly, the lateral pinch 

is never tested in isolated movement, but always in combination with the pulp pinch or 

the 5-Finger pinch. The 5-Finger pinch is assessed three times individually and three 

more times in association with the lateral pinch. The tripod pinch is assessed five times 

on its own (all writing associated tasks) and seven times in combination with the 

diagonal grip during tasks using knives and forks to prepare a meal. The diagonal grip 

is further tested four times in isolated condition. The spherical volar grip (seven tasks), 

transverse volar grip (eight tasks) and extension grip (four tasks) are tested in isolation 

only. Ten tasks (DASH 6-9, 11, 17-21) were excluded from this evaluation as they 

referred to tasks that did not target hand mobility and were too vaguely formulated to 

determine which grip type would apply (Varju et al., 2008).  

The EDAQ does not score hand function, but rather ability to perform generic tasks. 

However, due to the importance of the hands in the ability to perform ADLs over 50% 

of the tasks tested the EDAQ could also be allocated to specific grips. The other tasks 

are too vague to be allocated to grips, or are not related to hand mobility. The MHQ 

evaluated patient perception of hand mobility and pain, and the interference of hand 

problems with their work and social life, as well as mental health and sleep. Five ADLs 

are addressed in a short subsection, all of which are also evaluated by any of the 

aforementioned tests.  

In summary, all these tests deliver important information regarding the subjective 

functional impairment perceived by the patient or the person conducting the test. The 

current assessment methods lack an objective, quantitative measure to assess overall 

movement impairments in SSc. The FTP and dFTP are the only objective measures of 

hand function in SSc, but the insight into overall hand impairment is limited in the 

presence of finger specific deformities. Flexion contractures may not be equally 

developed in all the joints of one hand nor are they symmetric between the hands. 
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Therefore overall hand measures might lack important information of hand mobility and 

misinform intervention programmes. While subjective measures are important to 

indicate the patient’s perception of disease progression, the use of quantitative 

measures is vital to the design of rehabilitation programmes. Subjective measures of 

patients suffering from incurable diseases are likely to be affected by psychological 

factors. Once diagnosed with an incurable disease, such as SSc, people will undergo 

several emotional stages, such as outlined by the Kübler-Ross model. A patient’s 

position within the cycle of emotional response will likely influence subjective, 

questionnaire-based data (Bolden, 2007). Therefore, questionnaires only provide 

limited insight into the magnitude of impairment and needs to be supported by objective 

evidence.  

 

2.3. 3D motion analysis 

A widely accepted clinical application of motion capture is gait analysis, which is used 

to enhance the diagnostics from clinical tests, such as body fluid tests, imaging or 

physical exams (Baker et al., 2016; Davis, 1988; Simon, 2004). The information from 

motion analysis is used during clinical decision making and to identify suitable 

treatment options for a patient. Most often, gait analysis is used to assess mobility 

impairments, and the musculoskeletal contribution to these (Simon, 2004). Motion 

capture is not only applicable to the lower extremity but has also found applications for 

clinical analysis of the upper extremity. 

Instrumented 3D motion analysis commonly involves the use of passive or active 

markers, traced by cameras, force plates and EMG electrodes. These systems are 

expensive and require expertise, in addition to being rather stationary (Simon, 2004). 

As a cheaper, more portable alternative, 2D video analysis can be used. This approach 

limits the data to 2D kinematics only (no kinetics), even though movement is three 



36 
 

dimensional. Recent developments have combined artificial neural networks and video 

analysis (Eliason et al., 2019; Kanko et al., 2019) or wearable sensors (Thomsen et al., 

2019), to create markerless motion capture devices, which generate 3D motion 

parameters of the lower extremity. Most approaches are limited to kinematic data, 

therefore kinetics or inverse dynamics which drive movement cannot be assessed. The 

benefit of systems using wearable sensors or video cameras is the accessibility to an 

affordable motion analysis approach outside of the laboratory. This is thought to 

positively affect the use of motion analysis for clinical monitoring and objectively 

supported treatment choices (Simon, 2004).  

 

2.3.1. Marker-based motion analysis of the hand 

Hand motion capture has been conducted in the past using both marker-based 

approaches and inertial sensors. Marker-based motion capture of the hand is 

challenging due to the small size and large number of bone segments to be tracked. 

Several models have been proposed in the literature to calculate joint kinematics and 

kinetics from surface-mounted markers (Lee and Jung, 2015). The suggested models 

were applied in healthy populations to establish finger flexion-extension profiles (Braido 

and Zhang, 2004), assess age-dependent changes of hand mobility and dexterity, and 

to mimic functional tasks using grasping of differently sized cylinders (Coupier et al., 

2014; Coupier et al., 2016). Hand movement studies with patients are rare. Chiu et al. 

(2000) applied motion capture to measure the finger range of motion of various finger 

injuries, ranging from fractures to replantation after total amputation. They 

demonstrated a poor agreement between motion capture and measurements with a 

goniometer, whereby the goniometer was the gold-standard (Chiu et al., 2000). Other 

research groups described movement impairments in Parkinson’s disease (Agostino et 

al., 2003), and the effect of hand dystonia in this cohort (Curra et al., 2004). In addition 

to a reduced speed and range of motion, they also demonstrated a deterioration of 



37 
 

motor skills with increasing task complexity, suggesting underlying involvement of the 

PMC, where fine motor skills of the hands are coordinated (Curra et al., 2004). More 

recently, marker-based motion capture was applied to define the impairments of carpal-

tunnel syndrome on thumb movements (Marquardt et al., 2014), showing that thumb 

opposition and circumduction are impaired while flexion-extension was close to normal. 

Marker-based motion analysis of the hand has further been used in cadaver studies to 

validate kinematic models (Biggs and Horch, 1999; Buczek et al., 2011; Carpinella et 

al., 2006; Cerveri et al., 2007; Kim et al., 2016; Ma'touq et al., 2018), relate muscle 

activity to movement patterns (Yang et al., 2016), and assess the effect of ligament 

resection on carpal tunnel syndrome (Eschweiler et al., 2016).  

 

2.3.2. Hand motion analysis using inertial sensors 

Over the past decade, pathological hand motion analysis has been conducted using 

wearable technologies or video-based analysis. Several studies and companies have 

developed glove-like technologies allowing the assessment of kinematics and kinetics 

from inertial and force sensor data. Some of these technologies further integrate 

pressure sensors or electromyography electrodes. The biggest commercial developer 

for motion capture gloves is CyberGlove Systems LLC (San Jose, CA, USA), who have 

developed gloves for kinematic and kinetic measurements, as well as tactile feedback. 

The latest version of the kinematics measuring CyberGlove III™ can further be 

integrated into virtual reality settings for rehabilitation and measurement purposes. 

While the company promises high accuracy and precision (sensor resolution <1°, 

sensor repeatability 3° (CyberGlove Systems LLC, 2010)) , some research based on 

earlier models demonstrated high error rates in particular at the thumb (Kessler et al., 

1995; Quam et al., 1989). This error could be improved by minimising the sensor-

crosstalk due to sensor placement optimisation (Kim et al., 2016). Another study shows 

a median accuracy of 9° (individual joint accuracy ranged from 1° to 23°), and overall 
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precision of 11° of the CyberGlove™, when compared to computed tomography (Buffi 

et al., 2011; Buffi et al., 2014) . The accepted error of clinical motion data is 5° 

(Gajdosik and Bohannon, 1987; McGinley et al., 2009), making the CyberGlove™ 

insufficient for clinical assessments. The cost of purchasing a CyberGlove™ is 

approximately $30,000. This led to many research groups developing their own 

instrumented glove-like measuring device to assess hand kinematics and kinetics. Park 

et al. created a glove with root mean square error (RMSE) ranging between 0.66° and 

2.55° across the joints of the thumb, index and middle finger (Park et al., 2017) when 

compared to a gold-standard marker-based motion capture approach. 

 

2.3.3. Markerless motion capture of the hand 

In recent years, video-based three-dimensional motion analysis has become popular. 

Relying on video input from commercially available sensors, such as the Microsoft 

Kinect (Microsoft Corporation, Redmond, WA, USA) or the Leap Motion controller (LM) 

(Leap Motion Inc., San Francisco, CA, USA), computer algorithms reconstruct the 

underlying skeleton. The LM was designed for touchless interaction with computers 

and is composed of two video cameras and three infrared LEDs. Based on the video 

images, an integrated algorithm registers the position of the fingertips and the palm 

relative to the device, which allows the construction of a full hand skeleton including 

joint centres. Initial studies determined high accuracy and robustness for the 

registration of a static pointer, fingertip or palm positions relative to the device in both 

static (0.2 mm) and dynamic conditions (1.2 mm) (Guna et al., 2014; Weichert et al., 

2013). Based on the skeleton and joint centres joint angles can be calculated via the 

open software developer kit. As the LM is easy to use, without any preparation, some 

studies investigated the use of the LM as an alternative to goniometers in 

physiotherapy practices. All studies show poor agreement between the manually and 

LM measured joint angles. Nizamis et al. (2016) found only significant agreement for 
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the Index MCP flexion range while across all other joints and directions of movement 

the LM underestimated both flexion (7°-48°) and extension (5°-23°) ranges. They 

therefore conclude that the LM by itself is insufficient for use in clinical practice to 

accurately measure joint kinematics (Coton et al., 2016; Nizamis et al., 2018).  

Hand motion capture remains a challenge, with the gold-standard still being marker-

based motion capture. Portable, markerless approaches using wearable technologies 

or inertial sensors are deemed to be more readily translatable to applied practice and 

the accuracy has improved even for low-budget sensors given the technological 

advancements over the past decades. The trade-off between accuracy and applicability 

needs to be balanced to meet the study-specific demands. For quick application, 

portable sensors are more likely to be used, whereas a study requiring high precision 

and accuracy should be conducted using the opto-electronic motion capture approach.  

 

 

2.4. Assessment of movement impairment using statistical comparison 

and indices 

To assess the level of impairment in patients, a comparison to healthy controls is 

common. The principle thereby is similar compared to other medical tests, such as 

blood sugar tests in Diabetes patients: to evaluate if a patient is hypo- or 

hyperglycaemic a blood sample is taken and compared to a range that is defined as 

normal. This normal range had been determined by testing healthy individuals, and as 

long as the patient’s blood sugar level is within the range, no further action is required, 

whereas, if the blood sugar is too high or low either insulin or glucagon injections or 

sugar intake is required (DiabetesUK).  

When assessing movement impairments in patients the concept remains the same. 

Normal is defined by healthy, impaired people, who perform the same tasks as later the 
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patients during clinical tests. The movement patterns of the patients may then be 

compared to the movement patterns of the healthy controls. Unlike a simple blood 

sugar value, movement is complex as it is time dependent and involves multiple joints 

and directions of movement are permitted. Therefore a comparison of impaired 

movement to healthy movement patterns is challenging. Several methods have been 

comprised over the years, which either use a direct comparison of every assessed 

parameter or summary indices.  

 

2.4.1. Individual comparison and direct comparison 

A direct comparison includes comparing movement curves of patients and a normal 

data set (typically represented as mean of the healthy data base and the standard 

deviation) for every parameter of interest. The movement curves may then be visually 

compared to establish at which point of movement a patient is more impaired and for 

which specific parameter. For example, when a patient exhibits a stiff knee, the 

movement curve for the flexion-extension angle is likely to be close to normal during 

the stance phase but show great differences during the swing phase. This discrepancy 

is then compensated for in the adjacent joint such as an increase in hip flexion and 

change in pelvic obliquity. This type of comparison is frequently applied when 

evaluating gait data in clinical gait reports. A visual comparison can be further 

enhanced using statistical protocols such as statistical parametric mapping (SPM), 

which evaluates if the patient movement data is statistically significantly different from 

the defined normal range for every time point of the movement duration (Donnelly et 

al., 2017; Pataky, 2010; Pataky et al., 2016). This process can help to determine if 

even small differences have a significant impairment. Direct visual comparisons, with 

and without statistical measures, are commonly conducted in gait reports. Gait reports 

commonly address 9 kinematic movement parameters: pelvic tilt, obliquity and rotation, 

hip flexion/extension, abduction/adduction and rotation, knee flexion/extension, ankle 
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plantarflexion/dorsiflexion and foot progression (Baker et al., 2016; Barton et al., 2012; 

Schutte et al., 2000; Schwartz and Rozumalski, 2008). These parameters have been 

identified as most critical contributors to lower extremity impairment. For the upper 

extremity and hand this level of information is missing and a direct comparison of the 

hand would at the moment include all joints and permitted ranges of motion, resulting in 

20 angles, velocities and accelerations (60 curves in total) per hand. This level of detail 

might be incomprehensible and requires a long time to interpret, making this type on 

comparison unsuitable for translation in clinical practice for hand function. 

Direct comparison can further be assessed using statistical tests on discrete values, 

such as range of motion, peak or minimum values. The use of discrete values is a 

widely discussed issue in biomechanics as movement does happen dynamically over 

time and the evaluation of a single value might dismiss other important temporospatial 

characteristics. At level of the hand, it is further important to acknowledge the existence 

of a hierarchical kinetic and kinematic chain, where no finger movement is truly 

independent. As any joint movement affects and is affected by other joints, the use of 

direct comparisons and discrete values might not be necessary. 

 

2.4.2. Movement impairment indices 

Indices aim to summarize the level of impairment into a single value, as a single value 

is comprehensible and easy to understand, thereby allowing the translation of science 

into clinical practice. Multiple indices have been developed using various mathematical 

and biomechanical approaches.  

In the lower extremity the importance of specific discrete values is well known, such as 

the peak knee abduction moment which is link to knee pain and osteoarthritis. This 

knowledge was used by Schutte et al. (2008), who created the Gillette Gait Index (GGI) 

which aimed to summarise movement impairment of the lower extremity based on 16 

discrete values measured during a single gait cycle. The GGI is based on knowledge of 
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established research which addresses how movement impairments in one joint link to 

impairment and compensatory mechanisms in other joints. This type of information is 

currently lacking for the upper extremity and hand. Thus the translation of the GGI to 

the upper extremity will require more research on the impact of the kinetic and 

kinematic chains affecting its movement. While the GGI is based on discrete values, 

which represent a limitation on their own, other movement indices include information 

of the whole movement phase.  

The Gillette Gait Index (GDI) (Schwartz and Rozumalski, 2008) scores the level of 

impairment out of 100, whereby 100 means there is no impairment. The score is 

determined by calculating the Euclidean distance between patient data a healthy 

control mean vectors, which are the result of a singular value decomposition of key 

kinematic variables of gait. Thus, the greater the distance between the vectors, the 

greater the impairment of the patient is. The GDI considers the whole movement curve, 

however, the mathematical concepts underlying it are complex.  Further, similarly to the 

GGI, the GDI relies on established knowledge of the gait impairments in the lower 

extremity.  

While the GDI shows good correlations to the GGI, the complexity limits its translation 

to clinical practice as the meaning of, for example, 2.5 standard deviations from normal 

as well as the underlying mathematical principles can be difficult to understand by 

clinicians. This was addressed by Baker et al. (2009), who developed the Gait Profile 

Score (GPS). For this index the root mean square error, a measurement of distance 

between curves, was used. The distance has the same unit as the original curves, 

therefore the GPS can provide a summary distance value for every curve in, for 

example degree. These units are easy to comprehend, making this tool easier to 

understand for clinicians compared to the GDI. The GPS can be calculated for every 

single curve, followed by the calculation of a mean value to determine the overall level 

of impairment in a single GPS mean value. However, this summary can be challenging 
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if different types of data are used, as for example velocities and angles have very 

different magnitudes. Therefore a change in velocity would have a greater impact than 

a change in angular magnitude.  

The GGI, GDI and GPS (Baker et al., 2009; Schutte et al., 2000; Schwartz and 

Rozumalski, 2008) have two limitations in common. The first one is that they compare 

patient data relative to the healthy control mean. Considering the example of blood 

glucose levels again, abnormal glucose levels are defines as falling outside a range not 

by distance to the middle value of the healthy range. For example, the normal blood 

glucose range is 4.0 to 5.9 mmol/L, with the normal middle value being 4.95 mmol/L 

(DiabetesUK, 2020). If a Diabetic patient has a value of 6.0 mmol/L the blood level is 

close to normal despite being over 1 mmol/L away from the mid value of the healthy 

range. Therefore, when comparing to a middle or mean value, the variation of a healthy 

control population is not taken into consideration, which would overestimate the actual 

level of impairment. The second one is that they sum up curves into a single value, 

thereby making it difficult to understand at which phase of the movement a patient is 

more impaired.  

The movement deviation profile (Barton et al., 2012) recognised these and addressed 

these issues. The movement deviation profile allows the calculation of distance 

between a patients’ movement curve and the closest matching healthy control data 

point. By comparing to the closest matching control data point the patient data is 

effectively compared to the end point of the range of normality rather than the mean, 

reducing the likelihood of overestimating movement impairments. The deviation from 

normality can further be calculated for every time point of a temporospatial movement 

curve, thus showing at which time point patients deviate from normality. The deviation 

from normality can further be summarised in a single value, to ease understanding by a 

clinician.  
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In summary, there are several means to assess the level of impairment in clinical 

cohorts. Currently existing indices have been exclusively developed for the lower 

extremity, yet the importance of the upper extremity in everyday life should give 

enough reason to develop upper extremity indices as well. Direct comparisons might 

be incomprehensible, but also not be required given the hierarchical chains. Therefore 

indices, evaluating multiple joints at once, may offer a good solution. While all 

presented indices are theoretically mathematically translatable to the upper extremity 

there are certain factors that make them unsuitable for the hand. The GGI is based on 

specific discrete values, which have not been established for the hand. The GDI and 

GPS compare patients to a mean value rather than a range of normality, in addition to 

providing no insight into the timing of impairment during dynamic tasks. There is no 

evidence if patients with SSc struggle more during specific movement phases, and this 

needs to be evaluated. This suggests that the MDP might be the most useful tool to 

assess hand movement impairments objectively with an index.  

 

2.5. Hand mobility rehabilitation in rheumatic disorders 

Hand therapy is the non-surgical management of hand conditions, including the training 

of hand and finger mobility and strength. The hands are commonly impaired in 

rheumatoid conditions, including RA and SSc. The conventional approach to hand 

therapy involves a combination of physiotherapy and occupational therapy (The British 

Society for Surgery of the Hand, 2019). While physiotherapy engages in stretching and 

strengthening exercises for joint mobilisations, occupational therapy focusses on ADL 

execution and regaining lost function (The British Society for Surgery of the Hand, 

2019). Information for hand exercises is abundantly available, with condition-specific 

charities and healthcare organisations suggesting disease specific exercises (NHS 

Inform, 2019; Scleroderma and Raynauds UK, 2016; Scleroderma Foundation, 2019). 

Yet, rheumatology healthcare professionals are hesitant to provide advice on exercise 
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in rheumatic conditions. This has led to an urge of education for specialist clinicians 

and nurses to provide trivial information to patients (Hurkmans et al., 2011; van Eijk-

Hustings et al., 2012).  

2.5.1. Effectiveness of hand stretches in rheumatic conditions 

The effectiveness of hand exercises and hand therapy in chronic conditions has been 

tested widely in the literature. The Stretching And Strengthening for Rheumatoid 

Arthritis of the Hand (SARAH) exercise programme (Williams et al., 2015; Williamson 

et al., 2017) indicated benefits of hand exercises for patients with RA after 12 months 

(Williams et al., 2015) on finger mobility, self-efficacy and work ability. Measured with 

the MHQ, overall hand function showed an initial improvement after four months of 

7.28 points for the exercise group and 4.34 for the usual care group, which is less than 

the minimal clinically important difference (London et al., 2014; Shauver and Chung, 

2009), whereby the exercise groups almost reaches the MCID threshold of 8. At 12 

months follow-up, these changes compared to baseline measures with 7.59 points for 

the exercise group, and 4.22 for the usual care group, reflecting no further 

improvement on the MHQ scale. This finding was consistent across all sub-categories 

of the MHQ, including ability to perform ADLs, self-efficacy and pain. Compared to 

patients receiving the usual care, patients receiving the exercises showed greater 

improvements in grip strengths at four months (Exercise: 15.55 N; Usual care: 7.35 N). 

Similar to the MHQ scores, these changes were maintained, but not further improved at 

12 months follow-up (Exercise: 15.77 N; Usual care: 9.57 N) (Williams et al., 2015). 

Therefore both groups show changes in grip strength which are below the suggested, 

general MCID of 5 - 6.5 kg (Bohannon, 2019) or 49.03 N – 63.74 N. Finger dexterity, as 

assessed with the nine-hole peg test, did not chance significantly within the groups at 

four months follow-up (Exercise: -1.39 s; Usual care: -0.79 s, whereby a negative score 

reflects improvement, p = 0.07). The normal score is 18 seconds to complete the test, 

and the minimal clinically significant change is high (32.5 seconds), suggesting that 
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neither chance is clinically significant in addition to being statistically insignificant (Chen 

et al., 2009). Again, this was not further enhanced at 12 months follow-up. Range of 

motion, measured with a goniometer, showed similar patterns with initial improvements 

at four months follow-up, which were maintained but not further improved at 12 months 

follow-up (Williams et al., 2015). Upon extended follow-up between 19-40 months, they 

could not report a further improvement, but rather a decline in hand function. They 

associated this with a reduced adherence after the initial 12-month test period 

(Williamson et al., 2017). Short-term improvement in hand function after exercises is 

supported by multiple other studies (Williamson et al., 2015). In addition to several 

original studies, three extensive systematic reviews have evaluated the effectiveness of 

exercises in RA, and concluded that grip strength is most likely to improve after 

exercises, as well as dexterity and to a lesser extent range of motion (Bergstra et al., 

2014; Hammond and Prior, 2016; Wessel, 2004; Williams et al., 2018b), whereby no 

study exceeded the minimal detectable change for finger range of motion, which was 

found to be between 12° - 30° when measured with a goniometer, varying for different 

joints (Reissner et al., 2019).  As MCID are not met the evidence for the beneficial 

results is classed as very low to moderate quality, in addition to low statistical power 

and limited sample sizes or because it is not conducted to the highest qualitative 

standards (Hickey et al., 2015; Williams et al., 2018b). Most studies rely on subjective 

measures. Therefore the integration of objective measures would improve the quality of 

research. None of the aforementioned original studies or reviews report adverse 

events, suggesting that exercise should be researched further as there is most likely no 

harm.  

Despite being closely related to RA, only very few studies have evaluated the 

effectiveness of exercises in SSc. While the first studies suggesting positive effects on 

range of motion, stiffness and grip strength date back several decades (Rudolph et al., 

1974), there is only limited evidence for the effectiveness of SSc specific hand 
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exercises in the current scientific literature. In particular there is a lack of large cohort, 

long-term follow-up studies regarding the effectiveness of exercises in SSc, with only 

one multi-centre RCT available. This study indicates short-term beneficial effects of 

hand exercises at one month, but no prolonged effect at 12-month follow-up (Rannou 

et al., 2017). Similarly, a case study by Carr et al. showed no change in hand function 

after 12 months consistent exercises (Carr et al., 1997). Short-term improvements in 

hand function (Antonioli et al., 2009; Horvath et al., 2017; Piga et al., 2014; Poole et al., 

2013a; Schouffoer et al., 2016), ability to perform ADLs (Horvath et al., 2017; Poole et 

al., 2013a; Schouffoer et al., 2016), ROM  (Horvath et al., 2017; Mugii et al., 2006; 

Mugii et al., 2019) and grip strength (Antonioli et al., 2009; Horvath et al., 2017; 

Schouffoer et al., 2016) were identified in multiple other case studies and small cohort 

studies (between 8-53 participants). Follow-up period for these studies were between 

one to six months. Only Mugii et al. (2019) included a one-year follow-up measurement 

of the passive range of motion and could detect further improvements or maintenance 

of the passive ROM. It is not possible to state if the measured ROM thereby exceeds 

the MCDI of goniometer-based ROM measures as the sum of the range of motion of 

the MCP, DIP and PIP joints is given rather than the individual joint-specific ranges.  

 

2.5.2. Effectiveness of wax baths and manual therapy 

Paraffin wax baths are a common non-pharmacologic intervention for SSc, but the 

literature presents conflicting evidence. An initial study demonstrated instant, positive 

changes in hand function after the application of paraffin wax baths (Askew et al., 

1983). The beneficial effects of paraffin baths on grip strength, range of motion and 

pinch strength have since been reported in many studies, evaluating the efficacy over 

one to three months (Mancuso and Poole, 2009; Pils et al., 1991; Sandqvist et al., 

2004a), in one case in combination with exercises (Sandqvist et al., 2004a). Yet, when 

delivered in conjunction with hand exercises, paraffin baths have no additive, beneficial 
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effect (Gregory et al., 2019) contrasting findings from Sandqvist et al. (2004a). The 

differences in outcome might be explained by the respective study designs. Both 

studies used the same tools (HAMIS, SHAQ and modified Rodnan Skin Score (mRSS)) 

to assess the effectiveness of the intervention. The MCDI for the HAMIS is unknown 

however established for the mRSS (3.2 to 5.3) (Khanna et al., 2019; Khanna et al., 

2006) and SHAQ VAS (0.10-0.14) (Pope, 2011) in the literature. Gregory et al. (2019) 

(SHAQ VAS overall: 0.17 and 0.14, mRSS: no change; (experimental and control 

group change respectively)) and Sandqvist et al. (2004a) (SHAQ VAS overall: 0.26 and 

0.14, mRSS: no change reported; (experimental and control group change 

respectively)), thus both found clinically significant improvements on the SHAQ scale 

but not the mRSS. Sandqvist et al. (2004a) applied the intervention to one hand, using 

the contralateral side as a control, whereas Gregory et al. (2019) used two different 

groups. It is possible that patient responses to treatment are individual, potentially 

making the use of the contralateral hand as a control more suitable for assessing the 

effectiveness of exercises. Further, the exercise programme used by Sandqvist et al. 

(2004a) included more exercises, as well as targeting individual fingers whereas 

Gregory et al. (2019) relied on only three exercises targeting all fingers simultaneously. 

The participants by Sandqvist et al. (2004a) completed the exercises once daily, after 

the wax bath, on both hands, whereas Gregory et al. (2019) instructed their participants 

to complete the exercises 3-10 times a day. The wax bath procedure was the same in 

both studies, but Sandqvist et al. (2004a) used daily wax baths, whereas Gregory et al. 

(2019) instructed their participants to use the wax time at least four times a week. The 

wax bath frequency could potentially influence the skin and enable greater benefits of 

following exercises.  

Manual therapy in the form of tissue massages (Maddali Bongi et al., 2009) or lymph 

drainage (Bongi et al., 2011) have also shown short-term beneficial results at one 

month or five weeks respectively. While the improvement in passive ROM after tissue 
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massages was maintained for 12 months, the overall functional scores assessed with 

the Scleroderma Health Assessment Questionnaire (SHAQ) were not improved.  

 

2.5.3. Rehabilitation programmes: referral, adherence, and intensity  

The lack of high-quality evidence of especially long-term beneficial results of hand 

exercise on functionality might explain the reported low referral rates for patients with 

SSc (Bassel et al., 2012). The cost of supervised rehabilitation is high and thus 

referrals are less likely to happen if no rigid evidence supports the need or benefit of 

exercises. Multiple recent studies have evaluated the use of mail-delivered or self-

managed exercise programmes in rheumatoid patients (Brorsson et al., 2009; Hoenig 

et al., 1993; Lamb et al., 2015; Manning et al., 2014; Mugii et al., 2006; Mugii et al., 

2019; O'Brien et al., 2006; Piga et al., 2014; Poole et al., 2013a; Schouffoer et al., 

2016; Williams et al., 2015). The benefit of these exercises is that they can be often 

performed at home without expensive equipment or supervision, thereby increasing the 

availability of exercises to immobile patients. While the programmes are economic and 

cost-effective (Hammond and Prior, 2016; Manning et al., 2015; Williams et al., 2015), 

the self-directed completion of exercise results in lower adherence rates compared to 

supervised exercises by a healthcare professional. A semi-supervised or remotely 

monitored programme could potentially provide a base for improved adherence, and 

ensure that the patients have regular contact with a clinician. In the SARAH trial, 71% 

of all patients in the exercise group reported to perform exercises at least three times 

per week for the first four months, and only 12% reported they did no exercises. After 

12 months, only 39% completed exercises four times per week, and after an extended 

follow-up period only 31% were still completing the exercises. Simultaneously, at 12 

month 27% reported not to do any exercises, which increased to 38% during the 

extended follow-up (Williamson et al., 2017). The changes in amount of exercise were 

matched with corresponding reductions in hand function as measures with the MHQ. 



50 
 

Similar rates of drop out and low adherence were identified for patients with SSc 

(Rannou et al., 2017), while participants in other self-administered studies reported 

good adherence to their programme (Poole et al., 2013c). As long-term beneficial 

effects can only be established by consistent performance of exercises, adherence to 

the rehabilitation programme is trivial. One research group has established a tele-

monitored exercise programme, combining supervised and non-supervised exercises 

with online monitoring. However, while they list supporting evidence in the protocol 

design, this programme has not been tested yet in patients with SSc (Wolff et al., 

2014). The combined structure could potentially improve adherence.  

At the moment exercise guidelines for hand rehabilitation are drawn from expert 

opinion, rather than a scientific rationale. Current hand specific studies offer either no 

guidelines for time (Landim et al., 2019), or state up to 50 minutes on five days per 

week (Piga et al., 2014). In context of aerobic capacity and strength training in SSc the 

recommendations range twice a week for 30 minutes high-intensity interval training 

(Mitropoulos et al., 2018) to three times a week 80 minutes (combines aerobic and 

strength exercises) (Alexanderson et al., 2014), whereby most studies refer to three 

days per week in patients with SSc (Liem et al., 2019). Studies in rheumatoid arthritis 

have shown that high-intensity exercises (3+ times per week) show better results than 

programmes involving only exercising once a week, yet, too high time demands are a 

reported barrier to adherence. Overcoming the time-commitment barrier for exercises 

is reported not only for SSc but also many other conditions, as well as healthy people 

when attempting to become less sedentary. By identifying more engaging and 

enjoyable activities people report greater motivation to complete the exercises 

regularly, as the perceived time burden is lower. This concept is applied to virtual 

rehabilitation, where the rehabilitation exercises are translated into a playful game 

environment. Therefore, completing virtually based rehabilitation could be a solution to 



51 
 

overcome the time demand motivational barriers that high-intensity rehabilitation 

programmes with three or more sessions a week currently face.  

 

2.6. Gamification of rehabilitation 

The gaming industry is an ever-growing industry expecting to exceed 90 billion net 

worth in 2020. There are over 2.5 billion regular gaming participants world-wide 

(WePC, 2019). Mostly these games are used for entertainment, but since the 1980s 

video games have also been integrated into the treatment or rehabilitation plan of 

patients. One of the earliest studies in this field compared the effects of playing video 

games and playing with regular toys during chemotherapy on nausea levels in 

paediatric cancer patients. The video game group showed less nausea during a 

chemotherapy session compared to the control group playing with regular toys (Redd 

et al., 1987). Clinical treatments, such as chemotherapy, are painful, and can have 

several negative side effects, such as nausea. The ability of video games to distract the 

mind and relax the patient to the extent that they perceive less suffering was used to 

justify further research into virtual concepts during treatment and rehabilitation (Kato, 

2010).  

While initially being played as a distraction, over the past decades the integration of 

movement into the games has changed the concept of gamification of rehabilitation. 

Levering technological advancements, commercially available movement sensors allow 

the integration of motion patterns into games, making virtual rehabilitation (VR) useable 

for physical rehabilitation of motion patterns or movement control. Beneficial effects of 

virtual rehabilitation of movement control and range have been identified for the full 

body in various conditions, such as postural control, balance (Brien and Sveistrup, 

2011), gait characteristics (Cho et al., 2016) and arm function (Chen et al., 2014) in 

children with CP. Other studies have shown faster rates of rehabilitation after total knee 
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arthroplasty, as the HSS knee scores and knee range of motion improved faster over 

time in the VR group compared to conventional physical therapies (Jin et al., 2018). 

One of the first applications of VR in a context of physical therapy was during the 

rehabilitation of arm injuries (Kato, 2010). The upper extremity, including hand function, 

is frequently addressed in VR context, in particular for patients recovering from stroke 

(Cameirao et al., 2016; Laver et al., 2015). In patients with stroke, virtual rehabilitation 

training on a Microsoft Kinect showed significantly greater improvement in dexterity as 

assessed with the Fugl-Meyer Assessment and active ROM as measured with a 

goniometer, compared to physical therapy (Askin et al., 2018).  Other studies found 

improvements in hand strength and function following six weeks of virtual reality-based 

training (Lee et al., 2016). These outcomes were objectively assessed using the Box-

and-Block test for dexterity and strength, as well as the JHFT and grooved Pegboard 

test. Compared to conventional therapy, there was no significant difference for 

effectiveness. This is supported by other randomised controlled trials (Brunner et al., 

2017; Ikbali Afsar et al., 2018), who found improvements in upper extremity function of 

VR groups to be of similar to that of conventional therapy groups, whereby a combined 

approach of VR and therapy has been shown to be the most effective to rehabilitate 

arm movements in stroke patients (Corbetta et al., 2015; Kiper et al., 2018). 

Interestingly, in sum, as described by multiple meta-analysis and systematic reviews, 

virtual rehabilitation does show greater improvements compared to conventional 

therapy for Parkinson’s disease (Triegaardt et al., 2020), stroke (Corbetta et al., 2015), 

spinal cord injury (Abou et al., 2020), multiple sclerosis and cerebral palsy (Cano 

Porras et al., 2018) for various outcome measures (balance, dexterity, range, strength)  

related to movement and motor control.   

Recently the use of VR goggles for a fully immersive experiences have been used, 

while in earlier days a simulated 3D environment presented on a 2D screen was used. 

Yet, despite the various tools and forms or presentation, the concepts of virtual 
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rehabilitation (VR) can be applied to a wide field of conditions. Mostly these are linked 

to motor rehabilitation, whereby a neurologic deficit is retrained during therapy, such as 

in stroke, cerebral palsy or Parkinson’s disease. Systemic sclerosis (SSc) is not 

classified as a neurologic condition, yet several studies have suggested a neurologic 

involvement for the upper extremity due to a reduced use of the arm and hand 

following the onset of symptoms (Amaral et al., 2013).  

As motor learning is forming a common denominator across virtual rehabilitation 

studies for various purposes and conditions, the foundation and scientific rationale for 

virtual rehabilitation studies is based on the same concepts and key domains relevant 

to motor learning: motivation, feedback and repetition (Holden, 2005).  These domains 

are considered vital for the success of virtual rehabilitation concepts.  

 

2.6.1. Adherence to rehabilitation and motivation 

It has been reported that many patients, regardless of age, gender or condition do not 

comply with a prescribed treatment plan. This treatment plan may be linked to 

medication or more physical interventions such as rehabilitation exercise programmes. 

The lack of adherence may be linked to physical signs, such as nausea, pain, or other 

strong side effects or time and planning demand and lack of support. Further the 

psychological aspect, linking to motivation, perceived benefit and enjoyment cannot be 

underestimated (Kato, 2010). People tend to give priority to tasks that they enjoy or are 

motivated to complete. Video games provide enjoyment, entertainment and challenges 

which can potentially be a therapeutic benefit, and also increase adherence to a 

treatment or rehabilitation programme. Given that the changes by the respective 

programmes are similar in magnitude or even greater than in conventional therapy 

(Brunner et al., 2017; Cano Porras et al., 2018; Corbetta et al., 2015; Ikbali Afsar et al., 

2018; Kiper et al., 2018; Triegaardt et al., 2020), the benefit of increased motivation, 
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thus likelihood of adherence, provides a further favourable edge to the concept of 

game-based rehabilitation. 

Motivation is a complex term, and evolves around the reasoning behind human action. 

There are various mechanisms through which human behaviour may be adapted 

through internal, self-regulated or external sources (Souders, 2019). Internal 

mechanisms, such as enjoyment, wanting to achieve a goal, and thrive for 

perfection/excellence are relying on the person’s perception as well as resilience. In 

health rehabilitation these could be associated with wanting to improve their health 

status, movement ability or independency. External factors, such as supervision by an 

instructor, or external sources providing emotional ‘kicks’ on the other hand are not 

self-controlled and may trigger various responses, typically towards an increase in 

willingness to work towards a goal (Souders, 2019). Motivation is vital for adherence to 

exercises, regardless if for sporting excellence, health reasons or rehabilitation 

purposes, or any other non-physical activity in order to achieve a goal. Motivation can 

thereby be seen as a willingness to endure potentially painful practice to see a result 

(Holden, 2005). While pain, discomfort or other negative side-effects may be off-

putting, a high motivational level can overcome these negative emotions to achieve a 

long-term result. It is assumed that motivation and engagement in game-based 

interventions is greater compared to conventional therapy. This is associated with the 

playful environment and instant feedback on ability, when compared to repetitive 

exercises without feedback (Kato, 2010). 

 

2.6.2. Feedback and repetition of virtual rehabilitation instruments 

Feedback and repetition are integral parts to learning and apply to all skill 

developments throughout life (Bruner, 2001). For example, elite athletes practice 

multiple hours a day to achieve their goals or learning a new language requires multiple 

months or years. Skill acquisition, whether it is a physical or mental challenge, requires 
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time, which is linked to repetitions. For example, when learning a language, one 

typically has to repeat vocabulary more than once in order to remember it in the future, 

and a swimmer needs to swim a stroke more than once in order to improve. The 

number of repetitions thus increases the likelihood of acquiring a skill (Bruner, 2001). 

While the amount of practice, thus number of repetitions, is important to improve, 

feedback is essential to ensure that what is practiced actually aids the progression to 

the next level. For example, one could learn a vocabulary but actually pronounce it 

wrong or use it wrong in sentences and a swimmer might be swimming the stroke with 

an inefficient movement pattern. In those cases, all repetition is worthless as the 

learned skill is still incorrect. Feedback, whether it is verbal from an external source or 

intrinsic through our senses, allows the correction of a learned skill to bring one’s skill 

ability to the next level and is therefore central to learning (Sunaryadi, 2016). Yet, too 

much feedback can be detrimental as well, and children are likely to require more 

feedback for skill acquisition compared to adults (Sullivan et al., 2008). Therefore the 

amount and presentation of feedback needs to be tailored to different purposes.  

In rehabilitation exercises the same concepts apply: a goal towards improved control or 

range of motion can only be achieved by frequent repetition of correct movements, 

which are driven by feedback mechanisms. For virtual rehabilitation concepts the 

feedback is typically linked to the senses, such as visual, audio, haptic, 

mechanoreceptive (vibrations) or proprioceptive feedback. Feedback can show a 

patient, in real-time, if their movement is correct or successful, depending on individual 

game design. The real-time bio-feedback thus provides an indication of ability, for 

example an increase in points gained shows a greater ability, or a sound might be 

associated with an error that happened in the game and thus the patient knows they 

made a mistake and will try to avoid this in the future. On a neurological level the 

adaptations to bio-feedback lay in the primary motor cortex, where any movement is 

controlled (Holden, 2005). In response to neuroplastic changes, an alteration in firing 
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pattern from the PMC to the muscles that are trained by a game leads to a tighter 

control of the movement executed, whereby a tighter control relates to more precise 

movement patterns and is linked to successful rehabilitation of movement control 

(Darekar et al., 2015; Holden, 2005).  

Real-time bio-feedback provides direct feedback to the patient, compared to potentially 

long times of waiting to see visible changes in conventional physiotherapy. This type of 

feedback thus can increase the motivation to continue the exercises, which in turn will 

lead to further improvements and more motivation. Therefore repetition, feedback and 

motivation are interlinked, yet separate pillars, for any form of learning, including motor 

learning in rehabilitation settings.  

 

2.6.3. Application of virtual rehabilitation in rheumatic conditions 

Despite the ability to improve hand function using VR concepts, there is currently no 

data in the literature assessing the effectiveness of VR in rheumatoid conditions which 

lead to hand mobility impairments, such as SSc, or the more common rheumatoid 

arthritis. Yet, given the neurologic involvement (Amaral et al., 2013), virtual 

rehabilitation should be considered as a potential rehabilitation approach.  

All the described benefits of VR are only achievable if the intervention programme is 

targeting the correct therapeutic outcome measure. Therefore, commercially available 

games might not be useful unless tailored to a specific task or the integration of other 

components. As every rehabilitation programme, VR requires tailoring to individual 

patients or disease categories (Burdea, 2003; Kato, 2010; Merians et al., 2014; Rogers 

et al., 2019). If applied correctly, VR can be used to train control of movements in a 

particular range and indirectly also functional ability (Rogers et al., 2019), whereby the 

evidence for the latter is limited (Merians et al., 2014). 
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In summary, virtual rehabilitation has been shown to raise levels of adherence to 

treatment plans across a broad range of patient cohorts, by increasing levels of 

motivation and providing feedback, which the patient may experience through their 

senses. Further, VR had greater or similar effects on the range of motion and control of 

movement when compared to conventional therapies, partly by providing a relatively 

high number of repetitions. These effects are only possible if the game applied in the 

VR context targets the correct therapeutic outcome measures.  

 

2.7. Summary 

The highly complex hand is significantly impaired in patients with SSc, leading to 

increased dependency, anxiety, depression, and a reduced quality of life. The 

assessments used in clinical practice are subjective to the patients’ perception of their 

disease, or do not measure all fingers. The assumption of equally developed flexion 

contractures of all joints within a hand makes the only truly numeric measure of hand 

function, the finger to palm index, inadequate. Three-dimensional motion capture is a 

validated tool for clinical assessment, but has not yet been used for hand mobility 

assessments in SSc. Given the importance of the hands in everyday life, a research 

focus has been established to maintain or improve hand mobility in patients with SSc. 

The adherence to the exercises is low, as patients name the common barriers to 

commit to an exercise programme: time demand, feeling no improvement, difficulty to 

prioritise boring exercises. Gamification of exercises using virtual rehabilitation has 

been associated with increased levels of motivation and adherence. A customised 

game for hand mobility training in SSc could therefore potentially overcome some of 

the named barriers of adherence.  
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2.8. Aims and Objectives of the research 

The overall aim of this research thesis was to assess the suitability of virtual 

rehabilitation as an intervention method to reduce hand movement impairments in 

patients with SSc. To address this aim, several smaller aims and their objectives were 

implemented over the course of the research programme:  

1. Assess the hand movement limitations of patients with SSc during functional 

tasks using three-dimensional motion analysis.  

a. Movements of the patients will be compared to healthy controls to 

measure the difference in joint kinematics during dynamic, functional 

tasks. The difference will be assessed using a movement 

impairment index to measure the impairment of the whole hand as 

well as specific joints and movement directions. It is hypothesised 

that patients will show significantly different movement patterns 

compared to healthy controls and that some joints will show a 

greater impairment than others. The impairment, as measured with 

the index, will be correlated to current clinical measures of disease 

progression to devise a simple, translatable measure of mobility 

impairment for clinical practice. It is hypothesised that at least one 

measurement correlates strongly and significantly to the objectively 

quantified level of movement impairment.  

2. Develop a portable method to capture 3D movement of the hand 

a. Identify a cheap sensor or input source to assess hand kinematics, 

particularly angles during dynamic tasks in real-time, which is small 

and easy to deploy outside of the laboratory.  This will be achieved 

by exploring commercially available sensors, where the data stream 

can be accessed by third-party software for further use in external 

programmes. Once in a third-party software, the data can be 
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manipulated to meet the demands of a study or compare to other 

motion capture tools, such as an opto-reflective marker-based 

motion capture approach.  

3. Deploy the portable method into a virtual rehabilitation context 

a. The design of the virtual rehabilitation tool should be informed by the 

outcome of the motion assessment from Aim 1. Following the design 

of the game itself it needs to be adjusted to be driven by the input 

data from the portable motion capture tool. The virtual rehabilitation 

tool should therefore train previously identified movement limitations 

using real-time data from the portable motion capture system. 

4. Examine the effect of the virtual rehabilitation tool in comparison to 

traditional physiotherapy on hand movement limitations.  

a. In a randomised controlled trial with two groups of patients the 

previously designed virtual rehabilitation tool is to be compared to 

already established physiotherapy exercises to determine if there is 

a therapeutically, beneficial effect of the novel intervention compared 

to traditional one. The effectiveness of both exercise interventions is 

assessed using objective motor control and motion analysis as well 

as subjective, patient-reported outcome measures. It is hypothesised 

that both groups will show an improvement in hand function across 

all tests, whereby the virtual rehabilitation group shows a 

significantly greater improvement across all measures as well as 

likelihood of adherence to the exercises.  

 

2.9. Thesis structure 

This thesis combines experimental and technical chapters. The diagram below (Figure 

4) illustrates the structure of the thesis chapters as well as the addressed aims of the 
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individual chapters and specifically which chapters link together. The developmental 

chapters are highlighted in green to set them apart from other literature based and 

experimental chapters. 
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Chapter 3: Describing the development 

of an opto-electronic and a markerless 

motion capture approach for the hand 

and subsequent kinematic modelling 
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3.1. Preface 

Chapter 2 provided an overview of three-dimensional hand movement analysis with 

and without skin-mounted markers. Either method provides an objective evaluation of 

hand mobility, which could enhance knowledge gained from subjective patient-reported 

outcome measures. Both approaches (markerless and marker-based) to motion 

analysis have benefits and limitations which were highlighted in Chapter 2. Markerless 

motion capture is typically faster to apply and analyse, but it is prone to errors in the 

kinematic output variables. Skin mounted marker-based approaches require 

specialised software and cameras, making them typically more stationary and 

expensive, yet this approach is the gold-standard as this type of analysis is highly 

accurate.  

Regardless of the data collection method, to calculate motion parameters, such as 

angles, velocities and accelerations, kinematic modelling is required. The type of model 

is based on the available motion data and can vary in complexity. The study design 

typically indicates the type of model required to fulfil the purpose for a research study. 

While one research study might desire highly accurate data without being concerned 

for time-demand, another one might require more portable methods which can be 

quickly analysed and converted into reports. Therefore, there is no ‘one size fits all’ 

kinematic model.  

With an outlook onto the work presented in this thesis, the aim of this chapter is to 

describe two motion capture approaches and subsequent kinematic models. 
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3.2. Background 

Quantitative, kinematic evaluation of hand movements using motion analysis can 

provide useful information for clinicians to improve diagnostics or assess the 

effectiveness of rehabilitation programmes following traumatic injury (Baker et al., 

2016; Simon, 2004). Skeletal movement is assessed using various techniques. The 

most common method involves the placement of reflective markers on the skin surface. 

Placing reflective markers on each segment is challenging given the size of finger 

bones. To define a three-dimensional segment, three non-collinear markers on 

anatomical landmarks are required. The tracking of these markers in a calibrated space 

allows the determination of location of the markers in a local 3D coordinate system.  

Anatomical segments can then be defined based on a calibration trial. These segments 

are based on marker position in the originally calibrated space. Following calibration, 

each segment will have an orientation and position, which is reflected in the anatomical 

or segment specific coordinate system. In a final step joint centres or joint axis of 

rotation (AoR) are determined as the static point or axis about which rotational 

movement occurs between two adjacent segments. The skin around finger joints is 

very mobile increasing the soft-tissue artefact of markers placed close to the joint and 

thereby potentially inducing measurement errors (Lee and Jung, 2015; Ryu et al., 

2006). Leap Motion Inc., a company to develop touchless interaction devices for 

computer users, created a highly advanced haptic device called the Leap Motion 

controller (LM). The LM includes two cameras capturing fingertip and palm positions 

relative to the device allowing the integrated algorithm to calculate joint centres.  While 

this method can be applied easily, absolute joint centre positions are likely to be 

inaccurate, leading to incorrect joint angle calculations (Nizamis et al., 2018; 

Smeragliuolo et al., 2016).  

The methods chosen to capture movement data is an important aspect to motion 

analysis. Yet the greater challenge is the accurate measurement of joint angles 
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throughout the ROM, which requires a kinematic model. Kinematic hand models 

proposed in the current literature mostly assume the hand is a hierarchical kinematic 

chain of rigid bodies (Cerveri et al., 2007; Degeorges et al., 2005; Lee and Jung, 2015). 

For simplicity, the static IC joints and CMC joints of digits 2-5, are often grouped into a 

single segment (Cerveri et al., 2007; Lee and Jung, 2015). The remaining 15 joints 

(nine IP, five MCP, one TM joint) can then be linked to the rigid palm segment in a 

kinematic chain. None of the finger joints is a 6-Degrees of Freedom (DoF) joint. The 

MCP joints of digits 2-5 are bi-axial condyloid joints allowing movement over the 

flexion-extension (FE) axis and abduction-adduction (AA) axis (2 DoF joints) (Biggs 

and Horch, 1999; Cerveri et al., 2007; Coupier et al., 2016; Leitkam et al., 2015). The 

uni-axial IP joints and the MCP joint of the thumb are restricted to 1 DoF (FE axis) due 

to anatomical (hinge joint) constraints (Braido and Zhang, 2004; Coupier et al., 2016; 

Lee and Jung, 2015). The bi-axial TM saddle (2 DoF) joint allows three functional types 

of movement: flexion-extension, abduction-adduction and their combination termed 

circumduction (Carpinella et al., 2006; Domalain et al., 2011; Giurintano et al., 1995; 

Halilaj et al., 2014; Li and Tang, 2007). Circumduction is possible due to an interaction 

of flexion-extension and abduction-adduction ranges, therefore even bi-axial joints 

allow three functionally different types of movement.  

Surface markers are tracked in a 3D Cartesian coordinate system reflecting their 

position within the capturing volume relative to a defined origin. Motion parameters, 

such as joint kinematics, are typically expressed in a segment specific 3D coordinate 

system as they describe the movement of two adjacent segments relative to one 

another. To define a segment coordinate system the location of the joint centre of 

rotation (CoR) and direction of the axis of rotation (AoR) is required (Wu et al., 2005).  

If surface markers are applied, substantial calculations and mathematical assumptions 

are required to identify both the CoR and AoR of the underlying bone morphology. 

Multiple mathematical models for these calculations have been proposed in the 
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literature (Coupier et al., 2016; Leitkam et al., 2015; Ma'touq et al., 2018; Schwartz and 

Rozumalski, 2005; Zhang et al., 2003). A frequently applied algorithm to calculate the 

CoR (or functional joint centre) is the GILETTE algorithm (Schwartz and Rozumalski, 

2005). This algorithm determines the CoR (for one or more DoF joints) or AoR (one 

DoF joints) by applying kinematic constraints and non-parametric statistics. The 

movement between two segments proximal and distal to a single joint is evaluated to 

determine the AoR. The CoR (only in the presence of movement across at least two 

DoF) can then be determined as the intersection of the AoRs in any position, thus 

reflecting a static point of movement between the two segments (Schwartz and 

Rozumalski, 2005). The LM provides CoRs for all joints, but it remains unknown how 

exactly the integrated algorithm computes the joint centre data from the video images.  

Similar to the different data acquisition methods (marker-based or markerless), 

different approaches to determining AoR or CoRs exist, which presumably rely on 

distinct mathematical assumptions made.  

There is no standardised model for hand movements. All proposed models in the 

literature have advantages and disadvantages linked to the complexity of the marker 

setup, definition of joint coordinate systems or the extend of skin motion artefact. The 

wide range of models enables researchers to choose models based on study needs. 

For highly accurate tracking of bone morphology and joint movements, more complex, 

marker-based motion capture principles with many cameras may be useful. However, 

this approach is unlikely to be translatable into clinical practice or real-time applications 

(Cerveri et al., 2007), which value fast processing methods and user-friendliness even 

at the expense of lower accuracy. To meet the demand of the work conducted for this 

thesis, two motion capture approaches and associated hand models were generated to 

calculate joint kinematics of the TM, MCP and IP joints of all digits during dynamic 

tasks.  
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3.3. Development 

3.3.1. Marker based motion capture 

Non-invasive skin surface marker-based motion capture was used to define 

pathological hand movement limitations in patients with SSc. To accurately determine 

kinematic profiles and their deviations from normality during functional tasks, a complex 

marker model was generated (3 DoF), which allowed the computation of functional joint 

centres using the GILETTE algorithm or, where required, anatomical markers.  

 

3.3.1.1. Marker arrangement and labelling 

Reflective markers where arranged in sixteen clusters with three spherical markers (Ø 

3 mm) each (48 markers in total) (Figure 5a). The clusters were ergonomically shaped 

to match the underlying bone morphology and attached to the dorsum of the hand. 

Four cluster sizes were created with dimensions 10 mm x 8 mm (length x width), 12 

mm x 10 mm, 14 mm x 11 mm and 16 mm x 12 mm. The use of multiple cluster sizes 

enabled the researcher to match the marker setup to individual hand dimensions. The 

marker setup has been used in previous researched published in the literature to 

measure grasping movements (Lee and Jung, 2016). Cluster arrangements enhance 

the ease of application, and are thought to reduce potential measurement errors 

induced by the soft-tissue artefact (Houck et al., 2004). To ease labelling the clusters 

were eventually rotated clockwise 90° for the index finger, 180° for the middle finger 

and 270° for the ring finger. Whilst the use of three markers per segment is 

unnecessary to track motion of the hinge joints (1 DoF), it increases the accuracy of the 

initial functional joint calibration. If movement range was sufficient, a functional 

movement trial was recorded. The movements tracked were: TM joint flexion-

extension, abduction-adduction and circumduction, flexion-extension and abduction-

adduction of the MCP joints of digits 2-5, and flexion-extension of the IP joints and 

thumb MCP joint. If movement limitations were severe in pathologic participants, 30 



67 
 

skin-mounted markers (Ø 2 mm) were applied for a static calibration trial (Figure 5b) 

only. 

 
Figure 5: Reflective markers were applied to the dorsum of the hand to track 
movement of the long finger bones. a) 48 markers arranged in 16 clusters to track the 
16 mobile segments. b) If functional ROM was insufficient in pathological participants, 
30 anatomical markers were applied: one on the fingertip, one dorsal to the MCP joint 
of digits 2-5, one dorsal to the TM joint and one medial and lateral to the IP joints and 
thumb MCP joint.  

 

3.3.1.2. Visual3D modelling 

A calibration model was generated from a static trial. AoR or CoR for each joint were 

computed using the GILETTE algorithm. All 1 DoF joints (IP joints and the thumb MCP 

joint) were computed as functional axis (AoR) with the second landmark offset by 1 cm, 

which reflects the FE axis. The functional axis has no anatomically linked direction and 

could point medially or laterally to the segment, thus affecting the orientation of the 

segment coordinate system and requiring potential manual adjustments. Neither of the 

two axis points calculated by the GILETTE algorithm reflects the joint centre, however, 

the joint centre does lie on the infinite axis passing through these two calculated points. 

Therefore, a joint centre landmark (JC_Finger_Joint) was created if a joint was defined 

as functional axis (Figure 6a). This landmark was created in two steps: First the central 

cluster axis was defined, and a landmark (J_Projection, whereby J was replaced by the 

joint of concern) was projected from the joint axis marker onto the central cluster axis. 

In a second step the joint centre was defined on the functional axis using the  
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Figure 6: Location of CoR and AoR was computed using the GILETTE algorithm. a) 
where computed as an AoR, the joint centre (yellow) was determined at the 
intersection between AoR (blue) and central cluster axis (purple) from the distal 
segment of the joint. b) Segments were created and the segment coordinate system at 
the joint centre proximal to the bone.   

J_Projection defined in a previous step as a lateral object. Therefore, the joint centre 

landmark was on the functional axis calculated by the GILETTE algorithm, at the point 

where the central cluster would cross at an offset. As the cluster was placed centrally 

on each phalanx the central cluster axis should point at the joint centre on the 

functional joint centre axis (Figure 6a). The MCP joints of digits 2-5 and the TM joint 

were computed as a point, or CoR, as these joints allow 2 DoF movement. Accurate 

computation of functional axis or joint centres requires approximately 20° ROM. If the 

movement in a joint was insufficient (less than <20° ROM) to calculate a functional joint 

centre/axis using the GILETTE algorithm anatomical markers were used to determine 

the joint centre for that specific joint. Anatomical markers were placed medially and 

laterally to each joint on the axis of rotation. The CoR was estimated to be the mid-

distance point between the two anatomical joint markers (C-Motion, 2017). 

Following the identification of joint centres, kinematic only segments were created 

using the computed CoRs or AoRs as proximal and distal end points. Sixteen 

segments were defined: the palm (1x), all phalanges (14x) and the thumb metacarpal 

(1x). The segments were defined from proximal to distal joint, with the third marker 

a) b) 
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being the first functional axis marker, and the cluster markers as tracking targets 

(Figure 6b). 

Last, segment constraints were defined using the inverse kinematic model algorithm in 

Visual3D (C-Motion, Germantown, WD, USA).  The palm is free moving relative to the 

lab (6 DoF). Movement across the MCP joints of digits 2-5 and the Thumb TM joint was 

restricted to rotations in the sagittal and frontal plane (2 DoF). The movement of IP 

joints and the thumb MCP joint was restricted to rotation in the sagittal plane (1 DoF). 

 

3.3.2. Markerless motion capture 

The LM with two cameras, three infrared LEDs (Figure 7) and its integrated algorithm 

calculates a hand skeleton including joint centres from fingertip and palm positions 

relative to the device without any marker placement on the skin. Additionally, it is 

portable and easy to use with any laptop. The LM is very user friendly, however for use 

as a motion capture device a link to a third-party software needs to be designed which 

is described below. 

 

 

Figure 7: Technical setup of the Leap Motion controller. The sensor is 7.6  x 3 x  1.3 
cm (length x width x height), weights 45 grams and includes two wide angle cameras 
(yellow), three infrared LEDS (blue) and computing space for the integrated algorithm. 
Image adapted from Leap Motion Inc. (Colgan, 2014). 

\

#

# 
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3.3.2.1. Extracting Joint Centre coordinates and establishing a data stream  

A computer program was written in C# (Visual Studio 2015, Microsoft Corporation, 

Redmond, WA, USA) to extract 3D joint coordinates from the LM sensor and stream 

them into D-Flow (Motekforce Link, Amsterdam, The Netherlands) for data collection. 

Frame number, frames per second, time stamp and hand count were assessed for 

each data frame captured by the LM. If hand count was equal to one, a series of loops 

was initiated. These loops defined the position and direction of the palm, hand and 

finger identity, length and width. The LM software developer kit (SDK) provided insight 

into the definition of the bone segments within the finger. If all five digits were identified 

a nested loop would define individual bone (finger.bone) orientation, which is defined 

by the proximal joint (bone.PrevJoint) and distal joint (bone.NextJoint). The joint 

coordinates of the proximal and distal joints were then stored in a matrix, and plotted 

on a chart (Figure 8a). The loop was inactive if the LM was disconnected or no or more 

than one hand was present above the sensor (hand count ≠ 1). A network data stream 

through the public string IP address was established between the C# program and D-

Flow following company instructions (MotekMedical, 2016). The 3D coordinates of joint 

centres and fingertips were streamed as 75 data points from LM to D-Flow upon 

initiation of the connection. The connection between D-Flow and LM was initiated by 

 

      

Figure 8: Hand movements were recorded using the Leap Motion and streamed to D-
Flow (Motekforce Link) using a the C# program, which was used to visually assess 
quality and to initiate/ terminate the data stream (a). The data was then modelled in 
Visual3D (C-Motion Inc.) to generate segments and kinematic output variables (b). 

a) b) 
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the activation of the Network Module in D-Flow, followed by the activation of the C# 

program. The stream was terminated by either deactivation of the C# program or the 

Network Module in D-Flow. As the LM reports in mm, the integers were divided by 

1000 to scale to D-Flow units (m). The Network Module was set to act as server, with 

two clients (D-Flow and LM), three server channels (default setting), and 75 client 

channels, which is equivalent to 3D coordinates of the 20 joint centres (the TM joint is 

registered twice) and five fingertips extracted from the LM software. The three-

dimensional coordinates were visualised in D-Flow to assess the quality of data 

captured. The recorded 3D coordinate data of the LM joint centres was exported as 

text file. 

 

3.3.2.2. Visual3D modelling 

Extracted data was stored in a tab-delimited text file and converted into a c3d file using 

Visual3D (C-Motion, Inc., Germantown, MD, USA) prior to modelling. A static 

calibration trial was used. As joint centre coordinates are already present, no further 

computation using the GILETTE algorithm is required. Joint centre coordinates for the 

CMC (including the TM), MCP, and IP joints as well as fingertips (24 targets) were 

measured in the local LM coordinate system (attached to the LM device), and 16 

segments (palm (1x), all phalangeal bones (14x), thumb metacarpal (1x)) were defined. 

As the definition of a 3D segment requires the presence of three markers, a landmark 

was generated 1 cm medial to the TM, MCP and IP joints. Therefore, hand position 

was standardised in the lab with the palm parallel to the LM controller. Bone segments 

were defined from proximal to distal joint centre coordinates as measured by the LM, 

whereby the tip reflected the distal end point of the distal phalanx. As a third marker the 

landmark generated medially to the proximal joint of each segment was used. All 

segments were created for kinematics only. The palm was defined using the TM and 

little CMC joint on the proximal end and the index and little MCP joint on the distal end 

(Figure 8b).  
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3.4. Evaluation 

Two models to calculate joint kinematic parameters at the TM, MCP and IP joints of the 

hand were created. Both models include the creation of 16 segments in a kinematic 

rigid-body chain. The palm acts as the root segment for the fingers. The models allow 

the calculation of angular displacement, angular velocity and angular acceleration in 

the constrained planes. Joint kinematics are expressed in the local joint coordinate 

system of the proximal joint. Kinematics are determined by assessing the movement of 

the distal segment in the coordinate system of the proximal segment, effectively 

representing the movement between two adjacent segments. The IP and thumb MCP 

joints are constrained to flexion-extension movement only (X-axis rotation), while the 

MCP joints of digits 2-5 and the TM joint are allowing flexion-extension and abduction-

adduction (X- and Y-axis rotation). The orientation of the joint coordinate systems is 

similar between the models. The X-axis (red) represents the flexion-extension 

movement, while the Y-axis reflects abduction-adduction range (green). The 

longitudinal Z-axis (blue) reflects rotation in the transverse plane, which is irrelevant for 

the hand movements owing to the anatomical constraints of the skeleton. Each model 

can be applied bilaterally by negating abduction-adduction kinematics of one hand 

when comparing left- and right-hand movements. The definition of segments and joint 

centres is individual to each model. The model using skin mounted markers central to 

the segment specified relies on mathematical assumptions from the GILETTE 

algorithm to determine the functional axis. To determine the actual joint centre location, 

the assumption was made that the central cluster axis is pointing to the joint centre 

following accurate marker placement. If clusters were placed inaccurately or by an 

unpractised researcher this may lead to substantial errors, which would lead to 

wrongful definition of segments and thus inaccurate calculations of joint kinematics. 

The LM model, or markerless approach, is based on joint centres determined by the  
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Table 2: Summary of the advantages and disadvantages of the respective motion 
capture approaches and subsequent kinematic modelling outlined in this chapter. The 
benefits and limitations under consideration of a research design influence the model 
type which fulfils the requirement for a specific study.  

 

LM algorithm. While it is likely that the method for this relies on interpolation methods, it 

is not entirely determinable what mathematical assumptions have been made to create 

the algorithm. The creation of landmarks at an offset in Visual3D is based on the 

assumption of a standardised position relative to the device, which was established 

using a wrist support structure. However, small changes in position if a subject would 

not follow instructions, could lead to large errors in the determination of the joint axis 

and therefore kinematics. Both models rely on mathematical assumptions of which 

some can be controlled by the researcher. Given the difficulty to access the algorithm 

which creates the joint centres for the LM, it might be easier to influence and 

manipulate the skin-mounted marker model. Calibration of joint centres from surface 

markers is however time consuming and requires training, whereas the LM model can 

be applied quickly for fast analysis. 

 

  
Leap Motion data acquisition and 
model 

Skin-surface mounted marker data 
acquisition and model 

Pro 

• Portable equipment 
• Cheap 
• Easy to use 
• Fast data collection 
• Short processing time 
• LM software for visualisation of 

data great demo tool when 
showing participants what will 
happen in the study and what 
kind of data is collected. 

• Accurate 
• Responsive to deformities 
• Systems have been validated 

vigorously 
• No standardised position within the 

calibrated 3D space required for 
modelling 

  
  
  

Con 

• Less accurate 
• Relies on mathematical 

assumptions which cannot be 
accessed 

• Offset of horizontal landmark only 
works during standardised 
position 

• Uncertain responsiveness to hand 
deformities 

• Stationary and lab based 
• Expensive 
• Expertise required to use the system 
• Slow processing time 
• Data collection duration is longer 

due to the placing of markers on 
the skin 
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3.5. Application of the methods to research 

The purpose of a research study significantly influences the design of the model used 

to generate the desired output parameters. While both models created in this thesis 

may calculate the same kinematic parameters, there will be differences in magnitude of 

these parameters between the models (Lee and Jung, 2015). As in the lower extremity, 

different models will generate slightly different magnitudes for the same parameter 

(Collins et al., 2009; Houck et al., 2004; Lee and Jung, 2015). Therefore, for one study 

only one model can be applied to compare multiple individuals or change over time.  

The marker-based motion capture model might be the most accurate and most 

responsive to bone deformities (Leijnse et al., 2010), while it is uncertain how 

responsive the LM is to hand deformities. Marker-based motion capture and modelling 

is thought to describe pathological movement more accurately, as it reduces the 

number of mathematical assumptions when compared to an algorithm and subsequent 

modelling.  

The application of markers and processing of the collected data is highly time 

consuming and requires expertise. Accurate marker placement is essential as the 

definition of joint centres relies on the cluster being accurately placed in the centre of 

each segment, and a slight inaccuracy can induce sizeable measurement errors 

(Gorton et al., 2009; Groen et al., 2012; Kadaba et al., 1989; Schwartz et al., 2004). 

Calculating multiple functional joints further increases the time demand. Therefore, 

whilst this model is accurate, it is not readily applied in clinical practice. The LM joint 

centres can be easily extracted once the software is set up, and modelling only 

requires minimal time. Hence this model fulfils the requirements for an easy and quick 

to use model to calculate joint kinematics. However, it is based on data from an 

algorithm, which itself cannot be accessed. The data from the LM is insufficient to 

create a 3D segment, therefore a third, virtual landmark is required as previously 

described. The effect of an inaccurately determined virtual landmark could be 
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detrimental (Groen et al., 2012; Kadaba et al., 1989; Schwartz et al., 2004). However, 

the effect of virtual landmark position relative to the measured joint centres was not 

quantified in this thesis. To minimise the potential error in this research project, the 

hand position was standardised to a parallel position of the palm relative to the LM. 

This position was easy to control using a support structure to guide hand position. 

Given a standardised position the error would have been the same across all 

participants.   

While both models have certain benefits and limitations, it is important to acknowledge 

that none of these models have been validated using MRI or dynamic videogrammetry 

fluoroscopy scans. Modelling of the hand is a challenging task considering the 

anatomical and neural constraints of the joints as well as segment size. When applying 

reflective markers to the dorsum of the hand most movements can be tracked, but 

upon full flexion the camera view of the distal phalangeal bones will be obstructed by 

the hand itself. This limits the use of marker-based motion capture for full flexion tasks. 

The LM does not allow fingers to be completely straight, thus full extension cannot be 

measured in healthy individuals, limiting the LM ability for motion analysis.    

 

3.6. Summary 

Two models for the calculation of finger joint kinematics were generated. These models 

differ in complexity, accuracy and user-friendliness. This research thesis outlines highly 

technical studies, but also aims to produce translatable research for clinical 

applications, therefore there is a demand for models with different capabilities. The 

developed models were deployed to meet the specific experimental needs of each 

study, to allow the conduction of both technical and translatable hand movement 

research. The marker-based model was applied in laboratory-based test protocols 

(Chapter 4) and as a reference to improve the kinematic data from the markerless 
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motion capture approach (Chapter 6). The LM based model was applied in a home-

based intervention study with patients (Chapter 7).  
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Chapter 4: A comparison of hand 

movements during functional tasks in 

patients with systemic sclerosis and 

age- and hand dominance-matched 

healthy controls 
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4.1. Preface 

Chapter 3 described the design of an accurate reflective marker-based approach to 

hand movement analysis, which can determine hand kinematics in all degrees of 

freedom of a given joint.  

Comparing results of patients against those of healthy controls is common for a wide 

range of clinical tests, such as blood tests, to determine if a patient falls outside of a 

normal range, and by how much. The extent of elevated or reduced level of the 

assessed parameter then influences treatment options. For movement, indices have 

been developed for the lower extremity to determine the difference between impaired 

and non-impaired movement profiles. These indices are mathematically translatable to 

the upper extremity and hand. Hand movements are known to be impaired in patients 

with SSc, yet joint specific impairments have not been assessed, nor have patterns of 

movement limitations been evaluated. 

The aim of this study was to accurately determine hand movement limitations in 

patients with SSc by calculating the deviation from normality as defined by an age- and 

handedness matched healthy control cohort during functional tasks. A second aim was 

to identify the extend of contribution of individual joints or degrees of freedom to the 

overall hand impairment. This is achieved by applying the Movement Deviation Profile 

(MDP) to determine 1) overall movement impairment of the whole hand and 2) joint 

specific contribution to the overall impairment by eliminating a single joint at a time from 

the analysis. It is hypothesised that patients will show a significant overall impairment 

compared to healthy controls throughout the movement phase. Further it is 

hypothesised that some joints will have a greater contribution to the overall impairment 

than other joints, which will be identified by eliminating a single joint at a time from the 

MDP analysis. As the work in this thesis aims to be translatable to clinical practice a 

correlation of the MDPmean to simple clinical measures is will be done to identify a single 

or combination of numerical clinical measures which could be used to predict 
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movement impairment in clinical practice. It is hypothesised that at least one measure 

or combination of measures correlates strongly with the MDPmean. The knowledge 

acquired in this chapter informed the design of a novel intervention tool (Chapter 5).   
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4.2. Introduction 

Hand movements are commonly impaired in SSc patients as an increase of collagen 

fibres in the skin leads to increased thickness and stiffness. This loss in hand mobility, 

amplified by calcium deposits, digital ulceration and Raynaud’s phenomenon 

(Yamamoto, 2009), is associated with a reduced ability to perform ADLs, such as 

getting dressed, eating and drinking, and therefore a reduced quality of life (Maddali-

Bongi et al., 2014; Mao and Sun, 2014; Nguyen et al., 2014).  

As discussed in the literature review (see Chapter 2) the current assessment methods 

for hand mobility are subjective, and thus objective measures are required to inform 

clinical decision making and rehabilitation programmes. Based on subjective, patient 

reported questionnaires it has become apparent that patients with SSc struggle with a 

wide range of tasks, predominantly with picking up small items (pulp pinch) and 

unscrewing lids (extension grip), but these reported problems have yet to be quantified 

objectively.  

Gait analysis is a validated assessment tool to objectively measure lower extremity 

movement impairments in clinical populations. Assessing movement parameters, such 

as kinematics and kinetics, provides new information about a patient’s movement 

impairment to support clinical decision making and treatment options (Konig et al., 

2016; Lofterod et al., 2007). The use of 3D motion analysis is however not limited to 

the lower extremity. In prior research, movement analysis of the hand has been used to 

determine healthy motion patterns of various ages, as well as during functional tasks, 

gestic acts and dexterity skills (Agnew and Maas, 1982; Braido and Zhang, 2004; 

Coupier et al., 2016). A 3D motion analysis of movement limitations in SSc patients 

could therefore provide the objectivity that current assessment tools lack.  

Movement data, in the form of movement curves throughout a specific motion, is multi-

dimensional and difficult to understand. As the hand is a highly complex, kinematic 
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chain, every kinematic measure is simultaneously affected by, and affects itself, the 

movement of the adjacent and even further joints. To aid the understanding of complex 

data discrete values are determined, such as maximum flexion and extension angles, 

and range of motion. However, as movement is continuous, the selective approach to 

evaluate peak and trough values induces bias and ignores potentially important time-

dependent movement impairments (Baker et al., 2009). Currently there is insufficient 

information on hand kinematics to deduce which discrete values are important to 

overall hand function. Given the kinetic and kinematic chains of the hand one impaired 

joint would subsequently affect the recorded impairment in adjacent joints and thereby 

skew the results of a joint-by-joint analysis approach, such as used in statistical 

parametric mapping (SPM) (Pataky, 2010) or when comparing discrete measures using 

an ANOVA or MANCOVA analysis, suggesting that this type of analysis as limited 

potential for hand function. Movement analysis yields a large amount of data. To 

reduce the amount of data while retaining most of the information contained in temporal 

movement curves, indices were developed to summarise the movement impairments of 

patients (Baker et al., 2009; Barton et al., 2012; Schutte et al., 2000; Schwartz and 

Rozumalski, 2008; Wren et al., 2007). The use of indices increases the use of gait 

analysis in clinical applications, but also helps to understand disease progression and 

severity. While several gait indices exist, no index has been used for the evaluation of 

hand movement limitations, despite most being theoretically mathematically 

translatable to the upper extremity. The common indices used in gait analysis are the 

Gillette Gait Index (GGI) (Schutte et al., 2000), Gait Deviation Index (GDI) (Schwartz 

and Rozumalski, 2008) and the Gait Profile Score (GPS) (Baker et al., 2009).  The GDI 

(Schutte et al., 2000) is based on discrete variables, which are known to be linked to 

overall impairment of the lower extremity. Given that this data does not exist for the 

hand, the use of the GDI is inappropriate at the current time. The GDI (Schwartz and 

Rozumalski, 2008) and GPS (Baker et al. 2009) both consider the movement curves of 

established kinematic variables of impairment, and compare the patient to the mean of 
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a healthy control. The resulting data is a single number which indicates average level 

of impairment in relative terms throughout the movement phase. There are however 

two significant issues: firstly, comparing patient data to a mean value could be 

considered incorrect as normal or healthy is typically a range of values. Therefore, 

comparing a patient to a mean value could overestimate the actual level of impairment. 

Comparing to the end points of the range would therefore be a better choice. Secondly, 

the level of impairment is summarised with no indication at which time throughout the 

dynamic task at hand the patient shows greater or lower levels impairment. In the hand 

this would be linked to reaching, grasping or releasing phases of the movement. In the 

current literature it is unknown if patients with SSc are more limited in certain phases of 

movement, which would be vital to know for later rehabilitation and intervention 

protocols. Therefore, both the GDI and GPS, whilst translatable and applicable, do not 

provide the information that would be required for a summative hand index at the 

current state of knowledge of hand function. Another gait index is the movement 

deviation profile (MDP) (Barton et al., 2012), a single curve describing the multi-

dimensional distance between abnormal patient movement and typical, healthy 

movement. The MDP is based on Kohonen’s self-organising map (Kohonen, 1981), a 

form of artificial intelligence. A self-organising map (SOM) is trained using 

unsupervised learning. The process of a SOM consists of two stages: training and 

mapping. The training phase builds the map using input training vectors, for example 

healthy movement data. The training phase relies on vector quantisation. Prior to 

training the neurons of a SOM are arranged in a two-dimensional sheet, with a ‘weight 

vector’ attached to each neuron which determines the connection strength of each 

neuron to the input space. During the training the distance between input vector and 

weight vectors is reduced, thus the neurons form a map space reflecting the range of 

input data that it was given during training. The map is usually defined as a two-

dimensional surface, but it can be trained with multi-dimensional inputs, allowing the 

visualisation of multi-dimensional input data in a 2D map following dimension reduction. 
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Once training has been completed, the mapping stage allows a SOM to evaluate a new 

data vector, for example a vector of pathologically impaired movement, and find the 

neuron with the closest matching weight vector. Therefore subsequent to training a 

SOM with a range of normal movement data, the deviation of abnormal movement from 

normality can be quantified by calculating the distance between the abnormal input 

vector (pathological hand movement) and the closest matching weight vector (based 

on non-pathologic movement data) in the multi-dimensional space (Barton et al., 2006; 

Barton et al., 2012). This calculation is done for every time point of the set of 

movement curves, resulting in a single curve that describes the deviation from 

normality throughout the entire movement phase. The mean of the MDP curve 

(MDPmean) can be calculated to effectively summarise the motion analysis outcome to a 

single value. Whilst originally developed for gait, the MDP method can be used for any 

multi-channel, temporal data set (Barton et al., 2012), including hand kinematics.   

Evidence-based clinical practice requires reliable data, and patient-reported outcome 

measures are known to be influenced by psychological factors, such as outlined in the 

Kübler-Ross model (Bolden, 2007). Further, patient-reported outcome measures do not 

provide a comparison to normal data, yet, normal needs to be defined in order to 

understand and correctly interpret abnormal patient data (Charan and Saxena, 2012; 

Page, 2014). Using normal reference values is common practice in clinical tests, such 

as blood tests, as without the normal range a clinician would not be able to identify if, 

for example, blood sugar or inflammatory factors are too high. The same concept 

applies to movement. No two people will ever move exactly the same, therefore a 

distribution or range of normality needs to be defined to which patients can be 

compared to. The comparison of patients to a spectrum of healthy controls then 

enables clinicians and researchers to intervene with the movement impairments in an 

evidence-based approach. The aim of this study was to objectively quantify overall and 

joint specific contribution to hand movement deviation from normality in patients with 
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SSc during two frequently affected functional tasks and to compare this objective 

measure to current clinical measures of hand function. 

 

4.3. Methods 

Ten patients diagnosed with SSc (ACR/EULAR score >9, without longstanding flexion 

contractures, 61 ± 15.6 yrs, all right-handed females) and eleven healthy controls (58.3 

± 14 yrs, 10 females, 2 males, all right-handed) volunteered to participate in this study. 

The National Health Service Research Ethics Committee and the Health Research 

Authority approved this study (IRAS: 218984, REC reference: 17/LO/0321). All 

participants provided written consent.  

 

4.3.1. Protocol and data processing 

The participants attended the research institute for a single session, where a motion 

analysis was conducted. For patients the time since diagnosis with SSc (disease 

duration) and FTP index were obtained. Reflective markers were placed on the dorsum 

of the dominant hand. Two functional tasks were performed using the dominant hand 

only: opening a 1) zipper (1.8 cm handle) (pulp pinch) and 2) large lid (Ø 10.5 cm) 

(spherical grip). The participants received no instructions how to complete the task, 

therefore every person could use their individual movement pattern. The distance 

between initial hand position and object (reaching distance prior to task execution) was 

standardised to 25 cm and the shoulder flexion angle prior to movement onset was 

standardised to 45° (Figure 9). Movements were captured and processed using 15 

Vicon MX cameras (eight T160 and seven T10) and Vicon Nexus 2.5 software (Vicon 

Motion Systems Ltd, Oxford, UK). Joint angles were computed in Visual3D (C-Motion, 

Inc., Germantown, MD, USA). Owing to the anatomical and neural constraints of the 

hand only flexion-extension movements of all joints and abduction-adduction 

movements of the MCP joints of digits 2-5 and the TM joint (20 angular displacement 
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Figure 9: Lids and zippers were placed in the centre of a camera cube with a wrist 
support 25 cm away to standardise reaching distance from resting position to object. 
Participants sat on a height adjustable swivel chair to ensure a shoulder flexion angle 
of 45° prior to onset of movement. The tasks involved: reaching for the lid/zip, opening 
the lid/zip and closing it again before moving the hand back into a relaxed position with 
the wrist resting on the customised support structure.  

curves) were considered in this analysis. The maximum extension angle (MEA) for all 

joints was determined during a maximum voluntary extension movement. The mean 

MEA (MEAmean) was then calculated as the mean of all previously determined MEAs. 

Further movement time, defined from onset of movement to grasp completion, was 

acquired for every completed trial.  Movement was further observed and described 
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subjectively by the researcher. Inability of a patient to perform either task was notes for 

consideration in the analysis. 

 

4.3.2. Movement Deviation Profile 

A combined database for all healthy participants was generated for both functional 

tasks separately, including 20 angles of 36 recorded movements which were time 

normalised to 100 frames. The MDP and MDPmean were calculated for each patient 

from onset of movement to grasp completion. The MDP is a single curve indicating 

deviation from normality throughout the movement, whereas the MDPmean is the 

average of all points on the MDP curve (Figure 10), therefore summarising the 

deviation from normality into a single value. After initial overall MDP calculation, one 

joint angle at a time was left out to identify the contribution of individual joints to overall 

hand movement impairment (Barton et al., 2019). If the MDPmean increased in the 

absence of a joint, the joint reduced the deviation from normality, making it less 

impaired than other joints. Conversely, if the MDPmean decreased after a joint was 

eliminated from the calculation, indicating less deviation from normality, the eliminated 

joint is thought to have greater impairments leading to on average greater deviations 

from normality. A z-score transformation was performed to allow the determination of 

joint contribution relative to a standardised healthy control mean. For joint specific 

analysis all MDPmean values are therefore expressed as z-scores. 

 

Figure 10: Example of a Movement Deviation Profile curve and MDPmean. The healthy 
control data shows in green against the patient data (purple). The deviation from 
normality is the distance between the purple and green lines. Image generated using 
the Movement Deviation Profile programme by Gabor J. Barton (2009). 
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4.3.4. Statistical analysis 

An independent samples 2-tailed Student’s t-test was performed for the movement 

duration between the control and patient group to test if patients showed a significantly 

longer movement time compared to controls. The overall and joint specific MDPmean 

was tested for significance using Student’s t-test to test if patients showed a significant 

deviation from the normal, healthy movement patterns. Multiple correlations were 

conducted between the MDPmean and clinical data, to identify if the level of impairment 

could be related to simple measures from clinical practice, thereby increasing the 

translatability of the index into clinical practice. Parameters included in this correlation 

were years since diagnosis, movement duration, MEAmean and the FTP. The Pearson’s 

correlation coefficient (r) was tested for significance (p) and the coefficient of 

determination (r2) was calculated. A multiple regression analysis was performed to 

assess the multidimensional interaction between the MDPmean and clinical measures of 

movement impairment, and tested for significance. All significance tests were tested 

against the null hypothesis (no difference between variables/ no interaction between 

variables). At an α-value of less than 0.05 the null hypothesis was rejected, and the 

alternative hypothesis (significant difference between variables/ significant interaction 

between variables) was accepted.  

 

4.4. Results 

Patients with SSc required significantly longer to complete both functional tasks 

compared to healthy controls (Figure 11). While some patients were still able to close 

their hand into a fist (n = 4, FTP = 0), no participant could extend the fingers into a fully 

flat hand, or slightly overextend the MCP joints (all participants MEAmean >0°) (Table 3).  
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Figure 11: Patients with systemic sclerosis (blue) required significantly longer to 
complete both tested ADLs (Zip: p = 0.001; Lid: p = 0.025) than healthy, unimpaired 
individuals (green). Data shown as mean ± 1SD.  

 

Table 3: Finger to palm index (FTP), mean maximum extension angle (MEAmean) and 
disease duration for patients with systemic sclerosis.  

 Mean ± SD Range 

FTP 0.81 cm ± 0.81 0 cm – 2.3 cm 

MEAmean 9.62° ± 7.51 1.97° – 27.36° 

Disease duration 4.94 yrs ± 2.81 1 yrs – 9.5 yrs 

 

 

4.4.1. Observed movement patterns 

All patients were able to unscrew the lid by either using the palm to increase surface 

contact area with the lid to allow greater force production, or by generating a downward 

force on the lid through the fingertips to avoid slipping. No patient was able to stretch 

the fingers around the lid as non-pathologic individuals did. Healthy control participants 

unscrewed the lid by a gentle wrist motion, while patient participants required 

movement of the entire upper extremity to bring about a turning movement. All but one 

patient with systemic sclerosis were able to open the zip using adaptive mechanisms. 

These included a lateral pinch of the zip between thumb and index finger, pulp pinch 

between thumb and middle finger or clenching the entire hand around the zip. All 

healthy control participants pulp pinched the zip between the thumb and index finger 

and opened the zip by extending the wrist. Variations were observed for the movement 
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of the little finger. While some healthy control participants extended the little finger 

when pinching the zip, others kept them in a flexed position. This underlines the large 

movement variability of the hand and the individuality of hand movement. Patient 

participants required movement in the entire upper extremity to open the zip, and 

showed stiff wrists.  

 

4.4.2. Movement deviation profile 

In both tasks, patients showed large and irregular deviations from normality throughout 

the entire movement phase (Figure 12). The differences in movement patterns 

between healthy controls and patients described above (section 4.3.1.) resulted in a 

significant deviation from normality for every patient participant when considering whole 

hand movements (raw MDPmean Zip: Average: 50.3° ± 7.7, Range: 38.1°-65.3°; 

MDPmean Lid: Average: 48.5° ± 8.8, Range: 31.2°-64.9°) (all MDPmean p<0.05) (Figure 

13). When examining the MDP curves of both tasks clusters of patient data can be 

identified. For the zip task, two clusters can be described based on the deviation from 

normality during the first half of the movement. While some patients show a greater 

deviation, others are closer to the healthy control range. Yet, regardless of deviation for 

normality at movement onset, all show a large deviation upon grasp completion. This 

may be linked to the various techniques applied when pinching the zip handle, whereby 

the original deviation during the standardised position shows differences in a relaxed 

state. For the lid MDP curves three clusters can be identified: one group shows 

constant, non-variable deviation from normality, whereas the other two show either an 

increased or a decreased deviation from normality during the finger extension phase of 

the movement, equivalent to the first half of the movement phase. An increased 

deviation indicates greater impairment of extension, whereas a lower deviation during 

extension, with an increase toward the grasp completion indicates more impairment for 

the flexion movement.  
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Figure 12: Movement Deviation Profile (MDP) curves for the zip (a) and lid (b) tasks, 
based on angles of all joints from onset of movement to task completion, showing that 
patient movements (blue, different shades equivalent to different patients) differ 
significantly throughout the entire movement phase from unimpaired healthy controls 
(red ± 1SD (grey)) in both functional tasks. The deviations show no clear pattern for all 
the participants of the patient cohort but clusters of patients for deviations can be 
identified.  

 

 
Figure 13: MDPmean prior to z-score standardisation showed significant deviations of all 
patients (blue) when compared to the healthy control (red) (Healthy control mean ± 1 
SD) for both the a) zip and b) the lid task. All patients showed significant deviations 
from normality (all p < 0.05) across both tasks. In yellow, patient mean ± 1 SD. 

Eliminating specific joints from the MDP analysis did change deviations from normality 

for every joint. The standardised overall patient average of the MDPmean was 

determined (Lid: 7.26 ± 1.80; Zip: 5.57 ± 1.55 (mean ± SD) (Figure 14 1a and 2a) and 

compared to the average MDPmean after a joint was eliminated. The zip task, resulted 

for all joint eliminations in reductions of the MDP mean greater than one standard 

deviation of the task specific overall MDPmean (Figure 14 1b). For the lid task, all joint  

a) b) 

a) b) 
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Figure 14: Movement deviations from normality were assessed for the whole hand (1a 
and 2a), as well as after the elimination of individual finger joints (1b and 2b) for two 
functional tasks: 1) opening a zip and 2) opening a lid. The data was standardised to 
the mean of the healthy controls using the z-score. In a systematic approach the angle 
curve of one joint was eliminated at a time (eliminated joint named on x-axis) to 
determine the impact of specific joints on the overall MDPmean. Individual patient data 
(blue circles) is spread around the patient mean (red triangles). The standard deviation 
of the overall MDPmean of patients was calculated (1a and 2a). In the lid task, all joint 
eliminations resulted in changes of the MDPmean within 1 SD of the overall MDP mean 
(grey shaded area). In the lid task, all joint eliminations resulted in reductions of the 
overall MDPmean that were greater than 1 SD of the over MDPmean, therefore outside the 
grey shaded area. 

 

eliminations resulted in changes of deviation from normality which were within one 

standard deviation of the overall MDPmean (Figure 14 2b). Assessing the z-scores of the 

two tasks, it is apparent that the lid showed higher scores compared to the lid task, 

thus indicating patients struggled more with opening a lid compared to the zip. Further 

1a) 

2b) 2a) 

1b) 
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the patients showed reduced MDPmean z-scores for the zip task after eliminating single 

joints, while the lid z-scores after joint elimination remained the same (within one 

standard deviation). As opening a zip involves flexion only, while opening a lid requires 

extension, it can be suggested that flexion range is less impaired than extension range 

across all joints.  There was no pattern that clearly singled out a single joint or degree if 

freedom which was consistently impaired in all patients or showed greater contributions 

to the deviations from normality for either of the tasks addressed. Instead, it is 

suggested that movements are evenly impaired at all joints and movement deviations 

are highly variable among the patient cohort as shown by the wide spread of data 

around the patient mean.   

 

4.4.3. Relationship of the MDPmean to clinical measures of movement  

When assessing individual correlations between the raw MDPmean and clinical 

measures to identify a clinical measure that could indicate the MDPmean in clinical 

practice, only one moderate, but significant interaction was identified for the lid task 

between the MDPmean and movement time (p = 0.01, R = 0.58). Any combination of two 

clinical measures revealed moderate to strong correlations with the raw MDPmean for 

the lid task, apart from the combination of disease duration and movement time (p = 

0.06). No significant correlations between single clinical outcome measures and the zip 

task raw MDPmean was identified and only the combination of FTP and MEAmean was 

strongly predictive of the raw MDPmean (Table 4). Weak to moderate correlations were 

identified between the MDP and individual clinical outcome measures (Figure 15 a-h) 

whereby the strength of association between the clinical variables and the raw MDPmean 

was consistently stronger for the lid task compared to the zip task. 
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Table 4: Statistical analysis of regression tests to evaluate the strength of association 
between clinical outcome measures and the raw MDPmean. The raw MDPmean was 
correlated to the Finger-to-Palm index (FTP), years since diagnosis with SSc (Disease 
duration), time required to complete the task (movement time) and mean maximum 
extension angle (MEA). Multiple regression analysis was performed to evaluate the 
predictive strength of multiple clinical measures for raw MDPmean outcome. Pearson’s 
correlation coefficient (R) was determined and tested for significance (p) and the 
coefficient of determination was calculated (r2).  

 

 

 

 

 

 

 

R p r² R p r²

MDP + FTP 0.31 0.23 0.10 0.34 0.15 0.12

MDP + Disease duration 0.31 0.25 0.09 0.24 0.32 0.06

MDP + Mov Time 0.04 0.90 0.00 0.58 0.01 * 0.34

MDP + MEA -0.05 0.84 0.00 0.30 0.21 0.09

MDP + FTP + MEA 0.74 0.02 * 0.54 0.72 0.01 * 0.52

MDP + FTP + Disease Duration 0.49 0.33 0.24 0.69 0.02 * 0.47

MDP + FTP + Movetime 0.34 0.67 0.12 0.69 0.02 * 0.48

MDP + MEA + Disease Duration 0.31 0.74 0.10 0.63 0.05 * 0.40

MDP + MEA + MoveTime 0.15 0.96 0.02 0.81 0.00 * 0.66

MDP + DiseaseDuration + MoveTime 0.41 0.52 0.17 0.62 0.06 0.39

Zip Lid
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Figure 15: Correlations between the whole-hand overall raw MDPmean and measures of 
movement (FTP and disease duration, movement duration, MEAmean) were very weak 
to moderate for both tasks. Only the interaction between raw MDPmean and movement 
time when opening a lid was significant (p < 0.05).  

a) b) 

c) 
d) 

e) f) 

g) h) 
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4.5. Discussion 

A comparison of kinematic movement parameters between patients with SSc and a 

healthy age- and dominance-matched control cohort showed that patients present with 

significant movement deviations from normality throughout the entire movement phase. 

Movement is impaired for the whole hand and no individual joint could be identified to 

influence the MDP results significantly more or less than any other joint. Further, 

patients with SSc required significantly longer to complete the functional tasks 

assessed in this study.  

The significant deviations of the patients from normality throughout the movement 

phase of both functional tasks supports the outcome of qualitative research of hand 

function in SSc (Erol et al., 2018; Sandqvist et al., 2004b). These deviations are not 

due to a joint specific limitation, but rather owing to a combination of joint adaptations in 

all fingers simultaneously, which could explain the overall significant increase of the 

MDPmean in all patient participants for both tasks. The kinematic and kinetic chains of 

the hand mean no finger movement is truly independent (Mirakhorlo et al., 2017; 

Wilhelm et al., 2014). Therefore, motion impairment in one joint will trigger a change in 

movement profile in the neighbouring joints. Patients showed significantly impaired 

movement of all finger joints for both FE and AA movement. The clinical manifestation 

of SSc considers the interphalangeal joints to be predominantly affected by finger 

flexion contractures (Mouthon, 2013; Roberts-Thomson et al., 2006; Williams et al., 

2018a), which contradicts our findings. The MCP and the TM joint are the most 

proximal mobile finger joints and movement limitations in these joints will therefore 

partially impair movement in the IP joints (Coupier et al., 2016) as well as the adjacent 

MCP joints. When assessing individual joints, no single joint showed significantly 

different effects on the MDPmean, but rather an equal level of contribution of all joints to 

the movement impairment.  
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The single value MDPmean provides a summary measure of the multi-joint deviation of 

movement from normality assessed in the single MDP curve. The FTP assumes 

intrinsic symmetry of hand impairment, meaning that all finger joints are equally 

affected. The findings of this study show that all finger joints are impaired evenly on 

average across multiple participants, which supports the reasoning of the FTP.  This is 

further supported by moderate correlations between FTP and full hand MDPmean of both 

functional tasks. While single clinical measures failed to predict the MDPmean, the 

combination of multiple clinical measures showed significant interactions with the 

MDPmean. In particular the combination of FTP and MEAmean showed strong interactions 

with the MDPmean for both tasks providing empirical evidence that movement limitations 

in SSc need to be assessed by considering multiple directions of movements rather 

than a single outcome measure. The MDPmean could be used as a measure of cross-

sectional movement deviations to evaluate the dynamic movement impairment, but 

also longitudinally as a measure of disease status and progression. Therefore, the 

MDPmean could be the objective tool for overall hand function assessment in patients 

with SSc that is currently lacking in clinical practice. A 3D motion analysis, as essential 

for the MDP, is however cost and time intensive, thereby reducing the chances of the 

MDP being translated into clinical practice. A multidimensional analysis combining all 

clinical factors to predict the MDPmean, without the use of motion analysis would 

therefore be ideal and should be evaluated in the future. 

Patients were not able to extend their finger into a flat position, despite some being 

able to achieve a finger-to-palm distance (FTP) of zero, which would be interpreted as 

no impairment. This finding suggests that extension range is impaired prior to flexion 

and cannot be detected by the FTP test. Therefore, especially during early disease 

stages the extension of fingers (MEAmean) provides valuable information regarding 

disease progression. Here the MEAmean was acquired using motion analysis, which 

correlates well to the MDPmean when combined with the FTP. Given the high cost of 3D 
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motion analysis using reflective markers, in clinical practice the MEA could be 

assessed by a finger extension test, such as the positive prayer sign test. The positive 

prayer sign test is not validated in SSc, but has been used to measure hand movement 

impairment in Type I diabetes and cardiac conditions (Duffin et al., 1999; Kundra et al., 

2017). To the author’s knowledge, no other study has evaluated extension range of 

motion as a separate outcome measure in patients with SSc. Further, abduction-

adduction is limited in the MCP joints of digits 2-5 and the TM joint. While not as critical 

as the FE range, the ability to spread out the fingers does contribute to ability to 

perform ADLs independently and without the need of specially adapted utensils (Cinar 

et al., 2014). In clinical practice AA ROM could be assessed using a finger spread test, 

measuring the distance between fingertips or side-to-side hand span during a 

maximum abduction in clinical practice. Simple methods to assess range of motion in 

all directions and fingers should then in future research be correlated to the MDPmean in 

an attempt to overcome the cost barrier and generate a tool to translate simple 

outcome measures into clinically useful information. 

Improving or at least maintaining mobility levels of the hand is the aim of both 

pharmaceutical and non-pharmaceutical interventions (Piga et al., 2014; Poole et al., 

2013c; Rannou et al., 2016; Stefanantoni et al., 2016; Willems et al., 2015b; Williams et 

al., 2018a). Improved flexibility of the affected connective tissue should thereby lead to 

increased joint range of motion, and potentially reduced deviation from normality and 

irregularities in temporal movement curves and ultimately a reduced burden of disease 

during daily activities. Data presented in this study indicates that movement impairment 

are affecting all joints evenly, however, it is possible that more proximal joints 

exaggerate the measured impaired of more distal joints through the kinematic and 

kinetic chains. Multi-joint exercises training all joints within the patient’s ability should 

therefore be preferred over single-joint or single finger exercises. Additionally, 
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intervention programmes need to address not only flexion movements, but also train 

extension, abduction and adduction ability.  

Only two functional tasks were evaluated in this study, the lid task requiring extension 

and abduction of all fingers into a spherical grip, while the zip task required a pulp 

pinch grip. There are six other functional grip types involved in the execution of ADLs. 

These are the diagonal and transverse volar grip, lateral, tripod and five-finger pinch as 

well as the extension grip (Sollerman and Ejeskar, 1995). Patients with SSc frequently 

report to struggle with any of the aforementioned grips (Cinar et al., 2012; Freire et al., 

2013; Poole et al., 2013b) and these should be evaluated in future research. Further 

only the dominant hand was tested, despite some tasks often requiring the use of both 

hands.  

 

4.6. Conclusion 

Finger joint movement is significantly impaired in patients with SSc and each 

participant showed unique adaptations to the movement restrictions around the joints. 

Extension range is impaired prior to flexion in patients with SSc suggesting that 

rehabilitation programmes should focus on extension at the first instance rather than 

flexion. No single clinical outcome measure correlated to the MDPmean, indicating that 

movement limitations cannot be quantified by a single outcome measure but require 

the multidimensional evaluation of various parameters. The combination of FTP and 

MEAmean showed strong predictive strength for the MDPmean in both functional tasks. 

Therefore, a simple test for finger extension ability, such as the positive prayer sign 

test, should be included in clinical practice in addition to the FTP. Abduction range 

impairments could be assessed using a finger spread test, further enhancing the 

understanding of multidimensional movement impairments in patients with SSc. This 

needs to be addressed in future research. This objective assessment can inform future 
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rehabilitation programmes with the goal to reduce the magnitude of movement 

deviations from normality. 
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5.1. Preface 

The objective assessment of hand movements in patients with SSc revealed 

impairments in flexion, extension, abduction and adduction ranges in all the applicable 

joints. There was no pattern to the degree of joint specific involvement contributing to 

the overall impairment. Chapter 2 outlined the impact of impairment on the patients’ 

quality of life, and conventional approaches to reduce the disease burden at the hands. 

The conventional approaches do not target specific joints and mostly aim to improve 

finger flexion ability, which is insufficient based on data presented in Chapter 4. 

Further, conventional therapies are facing high drop-out rates, yet exercises are known 

to be most efficient when done regularly and long-term. A new intervention approach 

should therefore target all finger joints in all directions of movements and aim to 

overcome adherence barriers by increasing the patients’ motivation and enjoyment 

during exercises.  

The aim of this chapter was to create a novel virtual rehabilitation tool for patients with 

SSc, informed by the objective analysis of hand mobility conducted before. To achieve 

this, a game is designed in D-Flow, a software specifically for the design of virtual 

environments for rehabilitation purposes. The game will be driven by hand movements, 

which will be recorded by the Leap Motion controller. The Leap Motion generates a 

real-time data stream to the game, thus it will respond to hand movements which are 

specified in the game settings and informed by limitations as identified in the previous 

chapter (Chapter 4). The process is considered complete when the game is responsive 

to movement, and allows the adjustment of difficulty levels.  
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5.2. Background 

Hand movement limitations in patients with SSc have been frequently reported over the 

past decades (Cinar et al., 2012; Poole et al., 2013b; Poole et al., 2013c) and are 

associated with increased anxiety and depression, and combined with reduced ability 

to perform ADLs and reduced quality of life. Further, in previous research (Chapter 4) a 

3D motion analysis during functional tasks revealed that movement impairments are 

present in all joints and their respective movement directions (flexion, extension, 

abduction and adduction). Yet, traditional interventions focus on the FE range (NHS 

Inform, 2019; Scleroderma and Raynauds UK, 2016; Scleroderma Foundation, 2019; 

Willems et al., 2015a). A new rehabilitation approach should therefore target all joints, 

in all four directions of movement (flexion, extension, abduction and adduction). 

Physical therapy was found to be an effective intervention to reduce hand involvement 

and increase the ability to perform ADLs short-term (Antonioli et al., 2009; Askew et al., 

1983; Poole et al., 2013a; Rannou et al., 2017). Only 12% of patients who are referred 

to occupational or physical therapists actually start on a rehabilitation programme 

(Bassel et al., 2012) and most of these patients report a short adherence to the 

programme. Therefore an intervention method to improve adherence is desirable. 

Virtual rehabilitation was shown to be successful in the past for several conditions 

including cerebral palsy, stroke and Parkinson’s disease (Barton et al., 2013; Bryanton 

et al., 2006; dos Santos Mendes et al., 2012). Virtual rehabilitation uses computer 

games, which are played using body movement of a patient. Studies reported an 

increased motivation to follow the training programme owing to the playful environment. 

Virtual rehabilitation was considered more enjoyable and convenient compared to 

traditional approaches. Besides the playful environment, patients also value the 

immediate feedback of a bio-feedback computer game and the ability to learn about 

their movement impairments and improvements thereof immediately. Changes in 

performance are instantaneously visible making the training intervention more 
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interesting and motivating (Bryanton et al., 2006). Virtual rehabilitation may therefore 

have some benefit over traditional physiotherapy for SSc by providing a potential 

solution to the adherence barrier. A suitable game for patients with SSc needs to be 

created and tested in comparison to conventional therapies to determine the suitability 

of VR for patients with SSc in real-life as such data is currently lacking in the literature. 

As physiotherapy exercises can be done at home without supervision, the VR tool 

should also fulfil this requirement.  

The aim of this study was to create a portable, virtual rehabilitation tool for patients with 

SSc to train finger mobility in all permitted directions of movement. For the design of 

this tool the domains of the Template for Intervention Description and Replication 

(TIDieR) (Hoffmann et al., 2014) checklist should be considered. While the second 

domain, focussing on the reasoning for the intervention design, has been addressed in 

this introduction, the remaining, planning related aspects of the TIDieR checklist are 

addressed throughout this chapter, as well as Chapter 7 of this thesis, and highlighted 

appropriately. 

 

5.3. Development 

The customised computer game for this study was created in D-Flow 3.28.0 

(Motekforce Link, Amsterdam, The Netherlands), a program forming part of the 

Computer Assisted Rehabilitation Environment (CAREN) system. The software allows 

design of virtual environments used for rehabilitation and training purposes. For this 

project the usually inactive Network module was enabled which allowed the link of the 

LM to the CAREN system, using a customised computer program (see Chapter 3) 

(TIDieR Domain 3: Materials required for the intervention).  

 



104 
 

5.3.1. Leap Motion 

The LM can be used to measure hand movements by extracting joint centres from the 

integrated algorithm (for details see Chapter 3). The device is small and portable, and 

can be used on any computer or laptop by connecting via a USB cable. Therefore, the 

LM fulfilled the requirements to make this virtual rehabilitation program portable.  

5.3.2. Game design overview 

The design of this virtual rehabilitation tool was inspired by the game Flappy Bird, a 

huge gaming success in 2014. Flappy bird was a two-dimensional game, with the 

objective being to direct a flying bird between obstacles. The bird, which appeared to 

move towards the right, should not touch the obstacles that were moving past. If the 

obstacles were touched the player lost. To keep the bird flying, and preventing it from 

touching the obstacles, the player tapped the screen of a smartphone or the spacebar, 

if on a computer. Without tapping the bird fell to the ground due to gravity. The game 

speed, gap size between obstacles, fly/fall velocity of the bird were fixed, thus the 

game was unresponsive to the player’s level of ability or progress (Igenito, 2014). A 

flappy bird replica was deemed a good option for a VR game for patients with SSc due 

to the simplicity of the task and ability to easily manipulate game parameters to create 

a difficulty-ability match between the game and the person playing.  

The flappy bird replica in this study, from here on referred to as FlappyBall, was 

created to train finger mobility of all joints in their available degrees of freedom. A 

subjects’ finger movement drove the game, which was achieved via a real-time data 

stream from the LM to D-Flow.  The movement of all finger joints in 3D space was 

recorded, however, only a few data points were actually used to drive the game mode. 

The game could be played using two ranges of movement, which were shown to be 

impaired in patients with SSc (Chapter 4): Flexion-Extension range (FE) or Abduction-

Adduction range (AA). The direction of movement was determined by a setting in the 

game prior to starting the game: If the parameter was set to 0, the FE range was used 
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to play the game. If the parameter was set to 1, the AA range was determined and 

used to drive the game play.  

A calibration and a game mode were designed. The calibration mode measured the 

range of motion of the subject in the specified direction (FE or AA). The measured 

ROM was then used to play the game in play mode. The next two sections highlight the 

exact processes of the game and the responsiveness to finger movements driving the 

game, which were previously identified as impaired. Given the separate modes both 

sections are relevant to the fourth domain of the TIDieR checklist as they describe the 

processes of the game that the participant would experience.  

 

5.3.2.1. Calibration 

The calibration mode was used to measure the ROM prior to playing the game. Three-

dimensional data of 19 finger joints and five fingertips (72 data points per frame) were 

streamed from the LM to D-Flow through the custom-made C# program. The 3D 

position of the joints and tips relative to one-another allowed the calculation of the ROM 

during specific tasks at each joint as described below. The 3D position of the finger 

within the FE or AA ROM of the specific subject was used to drive the game.  

While several ROMs could be calculated based on LM data, for this project simply the 

distance between two points was used. An indirect measure of the FE ROM was 

calculated as the difference between the maximum and minimum distance between the 

index fingertip and index CMCJ during a maximum voluntary flexion-extension task 

during calibration. The AA ROM was calculated as the difference between the index 

and middle fingertips during a maximum voluntary abduction and adduction task during 

calibration.  Finger flexion is a multi-joint task and calculating the range as the 

difference between maximum flexion and extension angle of a single joint would not 

appropriately reflect the movement of the whole finger or hand. If a subject were to 

understand which joint was used to drive the game, they could simply move that 

particular joint (e.g. the TM joint), thereby reducing the potential effects of training on  



106 
 

 
Figure 16: Calibration mode of FlappyBall. The boxes reflected position of the finger 
during maximum flexion or adduction (dark grey) and maximum extension or abduction 
(light grey). The blue ball indicated the position of the finger within the ROM. 

the other adjacent finger joints. To determine the range as a mean angular 

displacement of several joints would be difficult in pathologic subjects, such as patients 

with SSc. If movement of several joints was impaired, the overall range of motion to 

drive the game was reduced, thereby diminishing the training effect of the game on 

slightly less impaired joints. By using the change in distance between two points, all 

finger joints had to be maximally used in the specified direction, which also prevented 

possible adaptive mechanisms to successfully play the game. For visualisation (Figure 

16), a cyan coloured sphere was shown, representing the distance between two points 

(either the index fingertip and Index CMC joint or index fingertip and middle fingertip) in 

real-time. The maximum flexion or adduction position and maximum extension or 

abduction position were determined by attaching cube-shaped objects to the sphere 

representing the finger when the endpoints of movement were reached. This was 

achieved by generating buttons on the D-Flow console, which generated global events 

in D-Flow when clicked. One button, called ‘Snap to Max’, triggered an event which 

was used to attach an object to the 3D coordinates of the position of the sphere, thus 

finger position, at the time of activation. The ‘Snap to Max’ clicked by the operator of 

the game upon the participant reaching maximum extension or adduction. A second 
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button, ‘Snap to Default’, was created, which was linked to a separate event to attach a 

second cube to the position of the finger at the time of activation. The ‘Snap to Default’ 

button was clicked upon maximal finger flexion or abduction depending on the range 

which was calibrated. Therefore the distance between the two cube-shaped objects 

was a relative representation of the ROM used to drive the game. The subjects could 

familiarise themselves with their range by moving the cyan coloured ball between the 

boxes. The position of the finger within the range was the determining factor of success 

in the game.  

From the calibration mode two values were extracted into a text file: the ROM measure 

and the marker position when fully flexed or adducted. This text file was then used in 

the play mode to calculate the finger position within the range at a given time. Even 

though the FE and AA ranges were only calculated between two points, this was not 

relayed to the subject playing the game. During the calibration mode, the subject was 

instructed to flex all fingers maximally, followed by a maximal extension of all fingers 

simultaneously. Similarly, during the AA calibration the subjects were instructed to 

squeeze all fingers together, followed by a maximum abduction of all fingers 

simultaneously. Hence the subject had no knowledge of the actual computation of the 

ROM used for the game play.  

 

5.3.2.2. Game mode 

Five obstacles were created for this game. Each obstacle involved a lower and upper 

element with a vertical gap in between. The combined height of each obstacle was ten 

metres. The gap height was adjustable, to increase or decrease difficulty. The 

maximum gap height, thus easiest setting, was nine metres, leaving only one metre of 

obstacle at the top or bottom. The smallest gap height was one metre. The location of 

the vertical gap was randomised. At the start of the obstacle a new number was 

generated by a randomiser, shifting the vertical gap location upwards or downwards  



108 
 

 
Figure 17: Game mode appearance of FlappyBall with default settings.  The 
red ball was directed through an obstacle course by moving the finger through 
the ROM. The ball jumped once the finger entered the last 20% of the ROM. An 
error score was displayed (yellow number, top right corner). This number 
increased in single step increments if an obstacle was touched. Time is 
presented in the top left corner.  

relative to the previous gap location. The random number reflected the vertical scaling 

factor of the bottom part of the barrier. Taking into consideration the pre-defined gap 

height and lower element scaling factor, the vertical scaling of the upper element can 

be calculated to not exceed 10 m. Consequently both vertical gap location and upper 

element vertical scaling depended on the vertical scaling factor of the lower elements 

determined by the randomiser. The horizontal distances between the obstacles was 

defined by a second game parameter, called gap size. The gap size between the 

obstacles was defined as 4.67 m, which reflects the horizontal distance between 

objects at which the gap size between the looped obstacles is always constant (Figure 

17). The obstacles moved from right to left. The movement and order to these 

obstacles was programmed using mathematical equations, based on time, horizontal 

gap size and game speed.  The position of each obstacle was calculated by multiplying  

time with game speed (manually adjusted parameter, between 0.1 and 10) and 

subtracting the product of gap size times obstacles number, whereby the first obstacle 

was 0 and the last one 4. As time changed continuously, the obstacle moved across 

the screen from right to left. Gap size was multiplied by obstacle number, therefore the 
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obstacles appeared in the same distance relative to each other. The five obstacles 

were looped. If the position formula exceeded -11 on the x-axis (outside of the visual 

field of the game mode), the obstacle was reinitiated at the original position (+11 on the 

x-axis, outside of the visual field of the game mode). 

A ball (Ø 0.75 m) was created, which needed to be directed through the obstacle 

course during game play. The ball movement was limited to the vertical axis, and the 

starting position was set to 6 m vertical distance to the bottom. During game play, the 

ball position was defined in a script using multiple input sources. The position of the 

finger within the ROM, as determined during the calibration trial, was calculated as a 

ratio, whereby 0 indicated the finger was maximally flexed/adducted and 1 indicated 

maximum extension/abduction. The position of the finger within the range was linked to 

the movement of the ball. Instead of tapping a screen or spacebar, in FlappyBall a 

jump of the ball was achieved by moving the fingers towards the maximum extension 

(for FE range) or maximum abduction (for AA range) position. A single upward 

acceleration of the ball, or bounce, was achieved by moving the finger into the last 20% 

or the extension range (FE range) thus exceeding the ratio value of 0.8 (AA range: last 

10%, exceed ratio 0.9). When the threshold was exceeded, the velocity of the ball was 

made equal to the jump speed, hence the ball direction would change and result in an 

upwards motion of the ball.  

Two additional parameters affected the falling and jumping of the ball: the gravity 

multiplier and jump speed.  The script (Appendix 1) defined gravity as 9.81 m.s-2 

(gravitational constant) multiplied by the manually adjustable value of the gravity 

multiplier. Gravity was acting on the ball, which at start of the game, was thought to 

have no velocity at the beginning of the game (v = 0). The ball was further offset 

vertically by four units (s = 4). For every frame velocity (v) and position (s) of the sphere 

were re-calculated relative to the previous frame. Therefore, the ball would fall to the 

ground in the absence of sufficient finger movement. Manipulating the gravity multiplier 

would increase or reduce the rate of falling, thereby allowing adjustment of game  
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Figure 18: FlappyBall play mode stopped automatically after one minute (timer in top 
left corner). The ball stopped moving and the final number of errors made in one 
minute (top right corner) was saved. 

difficulty to the player’s ability. The jump speed, which determined the upward velocity 

of the ball in the presence of sufficient finger movement, was also adjustable. The 

higher the jump speed value, the longer the upward jump of the ball lasted, thus 

reducing the difficulty of the game. 

The task of the game was to direct a ball through the gaps in obstacles without 

touching said obstacles. In the original Flappy Bird game, the touching of pipes by the 

bird would result in the ‘death’ of the bird and one had to start over. In this game, the 

collision between ball and obstacle did not stop the game. Instead, an error point was 

awarded. The error points were accumulated until the end of a trial, and provided 

feedback to the player. A lower score thereby reflected a greater success rate at the 

game. The game was played for one minute (Figure 18). After one minute the game 

automatically stopped and reset itself ready for the next trial. At this stage, a one 

minute limit per set included approximately 29 repetitions at default settings. The 

intensity (number of sets and sessions per week) of an intervention needs to be 

tailored to a specific disease (Domain 8 of the TIDieR checklist).  

At the end of each trial a text file was generated, containing the ROM, absolute 

maximum and minimum distance between the defined two points of the hand, game 
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parameter settings used to play the game, repetitions made (counted as number of 

times the threshold to initiate a jump was crossed) and the error score.  

 

5.3.2.3. Difficulty settings and individualisation   

In addition to mapping the individual’s available range of motion, three key parameters 

could be manually adjusted in the console (Figure 19) to increase or decrease the 

difficulty of the game to match the ability of the subjects, which also addressed the 

tailoring domain of the TIDieR checklist (Domain 9). Matching ability and difficulty of 

games is deemed important to ensure the player can have fun exercising rather than 

getting frustrated because the game is too difficult, or bored because the game is not 

challenging their skills. Initially each participant started with the default settings. These 

were determined by qualitative, verbal feedback of healthy volunteers commenting on 

the perceived difficulty of the game (Appendix 8).  

 
Figure 19: FlappyBall game settings could be adjusted manually. The rate of falling of 
the ball was regulated by the ‘Gravity multiplier’, the rate of the ball jumping by 
‘JumpSpeed’, horizontal gap size between obstacles by ‘GapSize’, and vertical gap 
size within an obstacle by 'Gap height'. The switch between calibration and play mode 
was determined by ‘Mode’. The ‘Snap to default’ was activated upon maximum flexion 
or adduction, and the ‘Snap to Max’ was applied upon maximum extension or 
abduction. The movement used to drive the game was determined in ‘Inputs’. 
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The gap height was the primary parameter used to adjust game difficulty. The 

reduction in gap size required the subject to improve the timing of the finger crossing 

the threshold. A crossing of the threshold too early or too late would result in a collision  

with an obstacle. The default setting was 8 m. In this condition, the obstacles are very 

short, allowing the subjects to familiarise themselves with the movement that drives the 

game as well as the game itself. The gap height was adjusted in 1 m increments. The 

gravity multiplier and the jump speed were adjusted to make the ball fall faster and 

bounce less, respectively. If the ball fell faster or jumped less the subjects had to move 

their fingers faster through the range that drove the game to prevent the ball from 

falling to the ground or touch obstacles. Changes in these parameters would also 

increase the overall number of repetitions made during one minute of game play. The 

jump speed was adjusted prior to the gravity multiplier. Both parameters were adjusted 

in 0.1 increments.  

A single increment change in one parameter was followed by an adjustment in another 

parameter. Effectively, if the gap height was changed by 1 m, the next adjustment 

could not be a further decrease/increase in gap height. Instead the next adjustment 

had to be for jump speed, then gravity multiplier.  This pattern also helped to address 

and record modifications when applying this game in an intervention study and thus 

addressed the modification domain of the TiDieR checklist (Domain 10).  

 

 

5.4. Evaluation and application to the research studies 

A game was created to train multi-joint finger mobility in FE and AA range. The game 

includes a calibration mode, which measures an individual’s range of motion in either 

the FE or AA range, and the game play mode to train finger mobility. The calibration 

mode also allows the familiarisation to the ROM and movement required to play the 

game. Once switched into game play mode the ball was directed through the obstacle 
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course by moving all fingers at the same time through the calibrated range (FE or AA), 

thus making this game a tool for multi-joint exercises. In play mode the game stopped 

after one minute to allow a short break between repeated games for the person 

playing. The game difficulty can be adjusted to match the player’s ability level. FE 

range was targeted in most conventional therapies reported the in the literature, while 

AA range was rarely addressed in hand exercises for SSc patients. Most range of 

motion exercises address FE range in a single passive or active stretch, while holding 

the position for a specified period of time. Only Wolff et al. (2014) and Piga et al. (2014) 

included one exercise specifically for finger abduction in their training programmes. 

FlappyBall provides the option to dynamically train both finger flexion-extension and 

abduction-adduction movements, making this VR tool unique in the rehabilitation of 

hand movements in SSc. As FlappyBall targets all joints of the hand simultaneously in 

a dynamic task requiring the full active range of motion, the time demand for the 

FlappyBall exercise is low compared to the typically advised hand stretches and 

additional manual therapies. This could positively influence adherence to exercises as  
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Figure 20: FlappyBall was played on a Laptop using the LM as input device for hand 
movements. The system was portable and could be deployed in many locations. 

the competition of training with other responsibilities is diminished.  The game uses 

motion data measured with the Leap Motion controller as input source (Figure 20), 

making the created VR game portable and useable at the patient’s home, although at 

this stage, the VR tool can only be used partly-supervised for initial studies examining 

the effectiveness of VR on hand movement limitations in SSc and motivation to 

complete VR based exercises. Once proof-of-concept is delivered this tool can be 

enhanced further, for example by playing the game with both hands at a time or in a 

multi-player setting to enhance competitiveness and increase motivation. For use in 

non-supervised, remotely monitored research, the game needs a simplified start-up, 

including a more automated calibration of the ROM, possibly using threshold 

calculations. Secondly, the adjustment of parameters to match difficulty to the patient’s 

ability level would need to be either simplified, or best automatically adjusted based on 

the performance of a participant in the previous trial or over time within a trial. 

Automatic storage of training data to a cloud-based system, which can be accessed 
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remotely by researchers or healthcare professionals could be implemented for data 

collection purposes and to evaluate progress over time, which can be addressed during 

routine clinical appointments.  

 

5.5. Summary 

A virtual rehabilitation tool to train finger extension, flexion, abduction and adduction in 

a multi-joint approach was created. The game uses interactive bio-feedback to train the 

active range of motion across all joints and fingers. The movements which drive the 

game were identified to be impaired in patients with SSc. Therefore, this virtual 

rehabilitation tool can be used to actively train the identified movement limitations, 

aiming to reduce the extent of the deviations from normality which were identified in a 

previous study (see Chapter 4). The tool is ready to support pilot studies on the effect 

or virtual rehabilitation on finger movement limitations in SSc.   
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6.1. Preface  

Chapters 2 and 3 reflected on differences in kinematic parameters if using different 

types of models or motion analysis approaches. In Chapter 3 two approaches to hand 

motion analysis and their kinematic models have been described, which have been/will 

be applied to quantify movement in patients (Chapter 4 and Chapter 7 respectively). 

However, the agreement between these two methods is not good. While a game 

(Chapter 5) does not rely on accurate kinematics and can be played with 

unmanipulated Leap Motion data, a motion analysis to determine effectiveness of a 

game later on (Chapter 7) does require accurate data. A marker-based opto-electronic 

approach is thought to be more suitable for research than the portable Leap Motion 

controller, due to higher accuracy. Yet the Leap Motion has the benefits to be portable 

and affordable. An ideal solution would therefore be a compromise of the two systems, 

taking the benefits of the two systems and combine them into a new approach to 

motion capture. This outcome could be achieved by improving the data accuracy of the 

Leap Motion controller. Artificial neural networks (NN), a form of artificial intelligence, 

have the ability to learn multi-dimensional relationships between low-quality data (such 

as the LM data) and high-quality data (such as from the Vicon system) during a training 

phase. Following successful training, the NN can then generate predictions of Vicon 

data in the presence of new low-quality data, effectively transforming the low-quality 

data from the cheap and portable LM into high quality, Vicon equivalent data.  

The aim of this chapter was to evaluate the use of an artificial neural network (a form of 

artificial intelligence) to improve the accuracy of the Leap Motion when compared to a 

gold-standard opto-electronic motion capture system. To achieve this, movement was 

captured simultaneously with the Leap Motion controller and Vicon system and used to 

train and test an artificial neural network. Joint kinematics were determined for all three 

devices and the difference of the neural network output and Leap Motion data relative 
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to the Vicon kinematics was analysed and tested for significance. The hypothesis is 

that the neural network approach significantly reduces the error of the Leap Motion. 
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6.2. Introduction 

Opto-electronic marker-based motion capture is considered to be the gold-standard 

approach for movement analysis. The methods and systems have been validated 

multiple times using bone pin methods or MRI imaging (Benoit et al., 2006; Dzialo et 

al., 2018; Reinschmidt et al., 1997; Sandau et al., 2015), but marker-based motion 

capture has several limitations. The soft tissue artefact causes slight vibrations in 

surface mounted markers, leading to inaccurate motion capture results, especially 

around the joints or in the presence of adipose tissue. The systems required for 

tracking and analysis of skin-mounted markers are further expensive and expertise is 

required to use these systems. Last, motion capture using cameras are often rather 

stationary and lab-based, prohibiting the ability to make scientifically rigid assumptions 

about the translation from lab-based environment to real-world applications. In recent 

years the interest in markerless, portable devices has increased, to allow research in 

the field without the restrictions of markers or lab spaces (Simon, 2004).  

The Leap Motion controller (LeapMotion Inc.) (LM) was designed for touchless 

interaction with computers. Using gesture recognition, the device can be recruited to 

perform any task on your computer or laptop. For this purpose the LM has two wide-

angle cameras and three infra-red LEDs, to enhance hand recognition (Colgan, 2014). 

When holding a hand above the sensor, the device registers the position of the 

fingertips and palm relative to the device, and then reconstructs the hand skeleton in 

real-time in 3D (Colgan, 2014). Very little is known about the nature of the integrated 

algorithm. It is public knowledge that the skeleton is generated based on mathematical 

assumptions and the position of the centre of the palm and the fingertips relative to the 

device as recognised on video images (Colgan, 2014). The measurement of fingertip 

and palm position relative to the device is highly accurate under both static and 

dynamic conditions (Smeragliuolo et al., 2016; Weichert et al., 2013). The ability to 

accurately identify hand position is essential for the gesture recognition it was originally 
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designed for. Yet, due to the calculation of joint centre locations in 3D space, the LM 

has greater potential for motion analysis of the hand. Nizamis et al. (2018) compared 

hand and wrist angles measured with the LM and a goniometer and found poor 

agreements between the methods showing that the LM is inaccurate to measure the 

exact ROM. However, this study only evaluated the ROM not the temporal-spatial 

accuracy throughout dynamic movements, which is typically assessed using opto-

electronic motion capture. In a pilot study with a single subject (Appendix 7) an error of 

up to 36° RMSE for the flexion-extension angles of an index finger joints was identified 

supporting the findings of Nizamis et al. (2018). 

Artificial Neural Networks (NN) are mathematical models, inspired by the structure of 

the biological brain. In the presence of input data and target data, a layer of neurons 

integral to the NN learns the non-linear, multi-dimensional relationship between two 

data sets and generates an equation that reflects this relationship. This process is 

called the training phase. The success of training to develop a sturdy and precise NN is 

linked to the quality and quantity of data inputs. Following successful training, a NN 

generates an accurate prediction of theoretical target data when provides with 

previously unseen input data. In theory, a trained artificial neural network should be 

able to accurately predict high quality motion data from low-quality input data, such as 

from the Leap Motion, thereby turning the LM into a cheap, portable and easy to use 

system for motion analysis. In recent years, NNs have been applied in motion analysis, 

and several research groups have very recently applied deep-learning artificial neural 

networks to test markerless motion capture approaches of the lower extremity (Eliason 

et al., 2019; Kanko et al., 2019). The design of an accurate, portable and cheap motion 

capture device will enable researchers to conduct field testing outside of the laboratory, 

and for this thesis, to conduct an entirely home-based intervention study with patients 

including pre- and post-intervention assessments of hand mobility. 
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The aim was to improve the accuracy of the Leap Motion using artificial neural 

networks and the marker-based motion capture data as gold-standard target data, as 

previous research suggests LM inaccuracies for assessing dynamic movement and 

range of motion. 

 

6.3. Methods 

This study was conducted in two parts, whereby the second part was informed by the 

outcome of part one. The first part was to improve the accuracy of the LM during 

random hand movements using artificial neural networks. Artificial neural networks 

require substantial data input and multiple data points for all types of movement. 

Therefore, in the second stage we then aimed to generate task specific neural 

networks, which reflect the movement of fingers through the ROM in specific directions. 

This study was approved by the University Research Ethics Committee (17SPS/027).  

 

6.3.1. Participants 

For both parts of the study 15 young healthy adults were recruited. All participants had 

no history of surgery or illnesses of the hand, and were injury free for at least six 

months. All subjects provided written consent to participate in this study.  

 

6.3.2. Data collection 

LM and 3D motion capture data were captured synchronously. Participants were fitted 

with a 48 marker setup on the dorsum of the hand (see Chapter 2). The markers were 

tracked using 15 MX (eight T160 and seven T10) Vicon cameras (Vicon Inc., Oxford, 

UK), mounted on a customised 1.5 m x 1.5 m x 1.5 m cube-shaped frame. The volume 

was calibrated using a custom-made calibration tool, and the origin was set at the 
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centre of the cube. The LM was placed at 40 cm height above the ground slightly below 

the centre of the camera volume.  

Once fitted with the markers, subjects were seated on a height adjustable stool. The 

subjects were positioned to hold their hand in the centre of the camera volume, with a 

shoulder flexion angle of 45° and 20-25 cm vertical distance to the LM. The wrist was 

supported during this data collection to maintain the same position relative to the 

device. The literature identified this distance between hand and sensor to be most 

accurate (Weichert et al., 2013).  

The marker data was tracked in Vicon Nexus 2.5 (Vicon Motion Systems Ltd., Oxford 

UK) and transferred to D-Flow (Motekforce Link, Amsterdam, The Netherlands) via the 

local PC network and Markermatcher module. Joint coordinates from the LM were 

streamed across to D-Flow via the Network module and the C# program (see Chapter 

2 for details). As both methods recorded the movements simultaneously, and in real-

time, the devices were synchronised for sampling. The 3D coordinates of markers and 

joint centres were recorded at 300 Hz in tab-separated text files by two Record 

modules.  

In the first part, all participants performed 15 x 20 seconds of self-selected hand 

movements with their left hand only. Participants were instructed to only move the 

fingers, maintain a parallel position of the palm relative to the LM and not move the 

wrist or shoulder. The direction, range and speed of finger movements were chosen by 

the participant. After each trial the subjects were given a short recovery period, to relax 

their shoulder, elbow and wrist.  

In the second part of this study, all participants performed 5 x 15 seconds of structured 

hand movements of three tasks with both the left and right hand separately. The tasks 

were:   
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1) Flexion-extension movements: Participants were moving their fingers from 

maximum, active extension, until ~75% of maximum flexion. The thumb was 

also included, and participants were instructed to place the thumb next to the 

index finger during flexion, instead of moving it diagonally across the palm.  The 

palm was parallel to the LM. The flexion range was limited due to the technical 

limitations of the motion capture system.   

2) Abduction-Adduction movements: Participants were instructed to hold their 

hand flat and parallel to the LM. The participants were instructed to maximally 

abduct the fingers, followed by an adduction movement with the fingers just 

loosely touching. The thumb was not included in this part, as participants found 

simultaneous abduction movements of the TM joint and MCPJ joints of digits 2-

5 challenging and thumb AA range was included in the third movement. 

3) Thumb circumduction: As in previous tasks, the hand was held parallel to the 

LM with all fingers in a flat position. In this task, only the thumb was mobile and 

digits 2-5 were held in a static position. Participants were instructed to draw a 

circle in the air with the thumb tip.  

 

6.3.3. Data processing 

Motion data acquired with the LM and Vicon systems was processed separately before 

analysis. 

 

6.3.3.1. Marker based data 

The Vicon marker data text file was formatted, imported into Visual3D (C-Motion, 

Germantown, WA, USA) and from there exported as c3D file. The c3D file was then 

loaded into Vicon Nexus 2.5 (Vicon Motion Systems Ltd., Oxford UK) for labelling and 

gap filling. The correctly labelled and gap filled file was then re-imported into Visual3D 

for modelling. A marker-based motion capture model was applied for this data set, 

including the calculation of functional joint centres from a static and a functional trial 
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(see Chapter 2 for details). Following kinematic modelling and applying a 6Hz low-pass 

filter of the fourth order the three-dimensional coordinates of the calculated joint 

centres, fingertip and the three markers on the palm data were exported. All files were 

saved according to the initial subject and trial number from the original recording with 

the extension _JCTP (Joint centre, Tip, Palm) to be linked to the LM data recorded 

simultaneously.  

 

6.3.3.2. LM data 

Joint centre data was formatted for import into Visual3D (C-Motion Inc, Germantown, 

MD, USA). The movement of each trial was carefully analysed for glitches, which can 

irregularly occur with the LM and are linked to light reflections from the video 

background. If problems were identified the according frames were removed from both 

the LM and the corresponding Vicon text file prior to neural network analysis in Matlab. 

The LM algorithm applied an integrated filter to smoothen the data (Colgan, 2014), 

therefore no further filtering was applied on the LM data. The details of the filter applied 

to the LM raw data within the scope of the LM algorithm are unknown. All files were 

saved according to the initial subject and trial number from the initial recording with the 

extension _LM (Leap Motion). Therefore, all data could be linked to simultaneously 

recorded marker-based data.  

 

6.3.4. Neural network analysis 

The LM joint centre files and Vicon joint centre files were loaded into Matlab 

(MathWorks, Natick, MA, USA) into 3D matrices. The first dimension reflected frame 

numbers, the second dimension was linked to the 3D coordinates of joint centres, and 

the third dimension reflected individual trials. The LM and corresponding Vicon trials 

were loaded into their respective matrices in the same sequence.  
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The LM sampled at a variable rate of 30-60 Hz, thus at a lower rate than the Vicon 

system (120 Hz) and D-Flow (300 Hz). Therefore, the LM data changed only around 

every five to ten frames, yet the Vicon data would change every third frame recorded in 

D-Flow. The neural network learns relationships between data points, and therefore the 

same value recorded with the LM would correspond to three different data values 

acquired with the Vicon system, which would reduce the ability of the NN to accurately 

predict Vicon data. Therefore, the data was re-sampled to the lowest common 

frequency, i.e. the frequency of the LM. This was achieved by identifying the frames 

with a change in value relative to the prior frame in the LM matrix. Frames where no 

change relative to the prior one was identified were then removed from both the LM 

and the Vicon matrices.  

LM and Vicon operate on different Cartesian coordinate systems. To bring the hands 

closer together and offset any differences in hand position within the capturing 

volumes, the hand position was standardised for the TM joint of both hands to be 

located in the origin throughout the movement phase.  

Following the translation of the hands so that the TM joints were in the origin the 3D 

matrices were merged into 2D matrices by appending the trails below one another to 

create one matrix for the training of the neural network. Prior to training of the neutral 

network, a z-score was performed to standardise the data points to the mean of the 

whole data set. This was done to reduce the effect of hand and segment sizes. The z-

score was followed by a principles component analysis (PCA) for dimension reduction. 

The original data sets had 69 (Vicon) and 72 (LM) dimensions, which is difficult for the 

NN to process, depending on computing power even impossible. The PCA also 

calculates a percentage of the total variance explained by each principal component 

(PC) within the data set. Based on this, a new matrix for LM and Vicon data was 

created: these matrices included the PC scores of the first n components, whereby n 

was determined to be the number of principle components explaining 95% of the 
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variance in the original data set. The new matrices were then used to train the artificial 

neural network.  

 

6.3.4.1. Neural network configuration 

A shallow neural network for pattern recognition was configured in MatlabR2018a using 

the Neural Network toolbox (Version 11.1). As inputs to the neural network (NN) the LM 

PC score matrix was used, and the Vicon PC matrix as target data. The number of 

hidden nodes in the single hidden layer was determined as the average between input 

and target nodes to avoid overfitting or underperformance. The weights and biases of 

the neurons in the hidden layer, which can influence the NNs ability to predict data, are 

initialised using the random number generator (RNG), which generates a different 

random number every time the neural network is created. To control the weights and 

biases of the NN neurons, the RNG was controlled. At creation of any NN a random 

number is chosen by the computer, which sets the weights and biases of the neurons 

in the hidden layer. Further, if not controlled, the weights and biases change for every 

network initialised, thus reducing the replicability of the work. For this study the RNG 

was controlled using the value 19, which showed the best result when testing the effect 

of the RNG on the neural network (NN) output over a range from 1-1000. Although the 

effect of the RNG on NN output was negligible (range: 0.0035; Appendix 2).  

The data sets were split up into 80% training, 10% validation and 10% test data, prior 

to training of the NN. A 10-fold validation was applied to circle through the data set to 

use each data point once for testing and validation (Seiff, 2019). K-fold cross-validation 

is a commonly applied statistical method in machine learning to estimate the power of a 

model and make an informed decision for a model based on predictive strength and 

reduced biases. Effectively the full data set is split into three sections (training, 

validation and test) in the first instance, such as 0-80% for training, 80-90% for 

validation and the last 10% of the data for testing. In the subsequent 10-fold validation 
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the same original data set is split up again into training, validation and test sets, but 

every time a new data block is used for testing and validation of the NN (Figure 19). 

Subsequently 10 NNs were trained, validated and tested.  

Following successful training the test data output, input and target data were 

reconstructed. In an initial step the PCA was reversed, by multiplying the test data with 

the PC coefficient and adding the mean. For the input data the LM PC coefficient and 

mean was used, whereas the output and target data was reversed using the Vicon PC 

coefficient and mean. Following successful reversal of the PCA all test matrices of 

input, output and target were merged into three accumulated matrices (T_Output, 

T_Input and T_Target). On the accumulated matrices the z-score was reversed. The 

accumulated matrix was essential as the reversal of the z-score can only be done on 

matrices of the same dimensions as the original matrix. Following reversal of the z-

score, the T_ matrices were split up again into the 10 original test matrices to allow a 

performance analysis of every NN from the 10-fold validation separately. The 

reconstructed data is representative of the LM joint centre data (T_Input 1-10), 

measured Vicon joint centre data (T_Target 1-10) and NN prediction of joint centre 

data (T_Output 1-10). The data was exported for further processing and analysis in 

Visual3D.  

 

6.3.5. Output analysis 

The reconstructed data was imported into Visual3D where joint angles were calculated 

and exported for analysis. The joint angles included in the analysis were sagittal plane 

angles (flexion-extension) of nine IP, five MCP and the TM joint and frontal plane 

angles (abduction-adduction) of the digits 2-5 MCP and the TM joint (Table 4). The 

RMSE between the T_Input and T_Target, as well as T_Output and T_Target was 

calculated for each NN. The change in RMSE before and after applying the NN was 

calculated in percent to estimate the error reduction due to the NN correction. A  



128 
 

Table 5: 20 joint angles were analysed to assess the effectiveness of the NN to predict 
the target data. 15 flexion extension (FE) angles from all five finger (1-15) and five 
abduction-adduction (AA) angles (16-20) were examined. 

Angle number Joint Direction Angle number Joint Direction 

1 TM FE 11 Ring PIP FE 

2 Thumb 

MCP 

FE 12 Ring DIP FE 

3 Thumb IP FE 13 Little MCP FE 

4 Index MCP FE 14 Little PIP FE 

5 Index PIP FE 15 Little DIP FE 

6 Index DIP FE 16 TM AA 

7 Middle MCP FE 17 Index MCP AA 

8 Middle PIP FE 18 Middle MCP AA 

9 Middle DIP FE 19 Ring MCP AA 

10 Ring MCP FE 20 Little MCP AA 

 

correlation analysis between T_Target to T_Input and T_Output to T_Target was 

conducted to test if a linear relationship between the magnitude of angles as calculated 

based on the three methods was present. A strong correlation should therefore indicate 

substantial agreement of the angular profile over time. The correlation was tested for 

significance and the correlation coefficient (R), indicating the strength of relationship. 

The resulting p-values and R values were mapped using a colourmap. Additionally, the 

angles were plotted to visually compare the angles calculated for T_Input, T_Output 

and T_Target curves. All mathematical and statistical analysis was conducted in 

MatlabR2018a (MathWorks, Natick, MA, USA). The respective test results for T_Input 

and T_Output to T_Target were compared to quantify if the neural network could 

improve the kinematic profiling generated by the LM originally. The steps described 

above were repeated for all seven data sets (1. Random hand movements left hand, 2. 

Flexion-Extension left hand, 3. Flexion-Extension right hand, 4. Abduction-Adduction 

left hand, 5. Abduction-Adduction right hand, 6. Thumb circumduction left hand, 7. 

Thumb circumduction right hand). In the following results section only figures of the first 

attempt (random hand movements) are shown. All figures of the second to seventh 
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data set are in Appendices 3-5 of this thesis. For all movements, 20 angles (Table 4) 

were assessed as these cover all movement degrees of freedom of the hand. All charts 

evaluate angles in the order outlined in Table 4.  

 

6.3.6. Workflow summary 

 

Figure 21: A schematic representing the stages of data acquisition, processing, neural 
network stage, and subsequent data analysis. See further details described in the main 
text. 
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6.4. Results 

The application of the artificial neural network reduced the error of the LM when 

compared to the gold-standard opto-electronic Vicon measurements, however several 

discrepancies between both LM to Vicon and NN to Vicon were identified.  

 

6.4.1. Correlation analysis 

For the random hand movement analysis, correlations between the NN prediction and 

Vicon data (output and target respectively) were stronger and more frequently 

significant than the correlations between LM and Vicon data (input and target 

respectively) across all 10-folds of all NNs, apart from NN4 (Figure 22 and 23). In 

general, this reflects a greater linear agreement of the angles calculated from NN 

prediction and Vicon data, when compared to angles calculated from LM and Vicon 

data.  

Most correlations between both LM and Vicon and NN output and Vicon were identified 

to be significant for the random hand movements as indicated by the p-value (Figure 

22). The task and hand specific neural network analysis (Appendices 3-5) are also 

largely significant, with most insignificant correlations found for thumb circumduction of 

the left and right hand. Most significant correlations are marked ‘0’ in the table 

indicating a p-value < 0.01. As significance of correlation does not indicate the strength 

or direction the R value were examined.  

Despite the correlations between the data sets being significant, the strength of the 

correlations (for random hand movements) between the LM and Vicon data prior to NN 

application shows a large range from strong negative (R = -0.88) to strong positive (R = 

0.95), with the majority of angles showing a moderate to strong positive correlation 

(mean R value: 0.58) (Figure 23 a). The correlations between the NN output and Vicon 

data is slightly stronger on average (mean R value: 0.60), as indicated by the change in  
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Figure 22: p-values for the correlation between (a) LM and Vicon data and (b) NN 
output and Vicon was significant for most angles (y-axis, angles labelled using 
numbers outlined in table 4) and 10-fold validation sets (x-axis) for the random hand 
movement analysis. The NN output (b) showed significant correlations with the Vicon 
data across all joints and NNs apart from NN4 which was the weakest NN of the 10-
fold validation. 

 

     

Figure 23: The correlation coefficient (R) for the random hand movement analysis 
showed very variable correlations between the LM and Vicon (a), ranging from -0.88 to 
0.95. On average the correlations are moderate to strong for the LM and Vicon 
comparison (144 (out of 200) R > 0.30 (moderate) and 45 R > 0.7 (strong)). The NN 
output to Vicon correlation (b) showed perfect or almost perfect agreement for the 
second data fold (x-axis) (R = 1), and no to weak correlation for the fourth data set. In 
general, as indicated by the change of shading, the NN was able to increase the R 
value compared to the LM to Vicon correlation (more yellow in b) compared to a)).   

shading of the colourmap (Figure 23 b).  This trend of stronger, positive correlations 

between NN output and Vicon data compared to LM and Vicon data is consistent 

across the additional task specific movements for both hands apart from the thumb 

(Appendices 3-5). The LM to Vicon correlations are typically weaker, but also more 

consistent between the 10-fold data splits (1-10) than the NN prediction to Vicon 

correlations. Not all NN models are equally good at predicting target data confirmed by 

a) b) 

b) a) 
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the differences in p-values and correlation coefficients across the 10 folds. For random 

hand movements, the second data set (NN2 on x-axis of Figures 22-23) shows highly 

significant (all p < 0.01) and perfect (R = 0.98-1) correlations. For the same analysis, 

the fourth data split (4 on x-axis of Figures 22-23) shows several insignificant (p > 0.05) 

and weak (R = -0.33-0.7) correlations. Similar differences were identified for the task 

and hand specific NNs (Appendices 3-5). The flexion-extension tasks (Appendix 3) 

showed bilaterally good correlations between for flexion-extension angles (rows 1-15) 

and weaker correlation for the abduction-adduction angles (row 16-20). Similarly, the 

abduction-adduction tasks (Appendix 4) showed strong correlation for the abduction-

adduction angles (row 16-20), but generally poorer agreements for the flexion-

extension angles (rows 1-15). The thumb circumduction tasks (Appendix 5) showed 

bilaterally the most insignificant and poor correlations, including the primarily moving 

joints of the thumb, thus contradicting findings of the other task specific assessments.  

 

6.4.2. Root Mean Square Error 

The correlation analysis explores linear relationships, yet that does not essentially 

mean a perfect agreement of the magnitude of data points. Therefore, the root mean 

square error (RMSE), reflecting the mean difference of the amplitude between the LM 

and Vicon curves (Figure 24 a) and NN prediction and Vicon (Figure 24 b) were 

examined. An RMSE of zero would reflect a perfect overlap between the two data 

curves and the greater the RMSE, the greater the distance between the values. 

For the random hand movement analysis (Figure 24 a+b), the RMSE is on average 

greater for the LM to Vicon data (18.99° ± 8.45), compared to the NN prediction to 

Vicon data set (7.72° ± 4.48). Therefore, the percentage change (Figure 25) is found to 

be negative for most angles and data splits. However, in some cases the NN method 

led to higher RMSE values compared to the LM data (Figure 25 positive percentage 

change reflecting an increase in RMSE). The changes in RMSE support previous 
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Figure 24 : The RMSE was calculated for each joint angle between (a) LM and Vicon 
and (b) NN output and Vicon across all 10 folds for the random hand movement 
analysis. As indicated by the change in colour, the RMSE was reduced by the NN 
method when comparing RMSE values of the (a) LM to Vicon and (b) NN and Vicon.  

 
Figure 25: The table shows the percentage change between the LM to Vicon RMSE 
and the NN Output to Vicon RMSE for random hand movements. The NN was able to 
reduce the RMSE in most joints as indicated by a negative number, but in some cases 
the NN induced greater errors compared to the LM (positive number). No pattern was 
identified that could predict the overestimation of angles by the NN.  

 

findings of changes in strength of correlation, as assessed with the correlation 

coefficient (Section 6.4.1.), and again show differences between the ten data sets used 

during the 10-fold validation. All original data was checked carefully for quality, 

however, slight rotation of the wrist of scaling of the skeletons (hand dimensions did 

differ between participants) could have influenced these results. In general, the pattern 

identified for the random hand movements presented here was similar to the patterns 

identified for the task and hand specific hand movements (Appendices 3-5). The 

flexion-extension and abduction adduction tasks showed stronger correlations for the  
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Figure 26: The average RMSE was significantly reduced between NN output and 
Vicon compared to LM and Vicon (TI) for random hand movements (random) and 
abduction-adduction (AA), flexion-extension (FE) and thumb circumduction (TC) of the 
left (L) and right (R) hands. The average error reduction across all joints and 10-folds 
was calculated. The TO RMSE was found to be significantly lower than the TI RMSE of 
each analysis. Data shows as mean ± the range.  

 

predominantly moving joints through the respective directions (flexion-extension angles 

(row 1-15) and abduction-adduction angles (row 16-20) respectively) and worse 

predictions for the non-targeted directions, suggesting that NNs are more able to 

predict one movement direction at a time. This is further supported by low RMSE 

values for those angles across all then data splits (Appendices 3-5). The thumb 

circumduction analysis resulted in similarly varied results as the random hand 

movement analysis for the RMSE and subsequent reduction or increases in RMSE 

when comparing the two approaches.  

On average the NN significantly (p<0.001, Figure 26) reduced the RMSE for random 

hand movements as well as all task and hand specific movements between 31-75% 

(Random: 58.52%; FE_L: 31.19%; FE_ R: 53.74%; AA_L: 67.35%; AA_R: 54.84%; 

TC_L: 54.64%; TC_R: 75.29%)  and thus the NN improved the agreement between the 

LM and Vicon angles. However, the angular kinematics predicted by the NN are not 

entirely in agreement with the gold-standard Vicon data. Further, not only the overall 

RMSE was reduced but also the range and SD, suggesting the LM data corrected by 
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the NN to be more consistent than the LM on its own. It appears that movement 

specific tasks are more accurate at assessing the movement range of the primarily 

moving joints. 

 

6.4.3. Angular magnitudes 

The correlation and RMSE analysis was used to assess the overall quality of the 

methods. In a final step the angles calculated from the LM, Vicon and NN output data 

were plotted against each other to visualise the difference over time. Given the large 

data set, only a subset of data is shown in this thesis. For random hand movements, it 

was previously shown that not all neural network models were equally able to predict 

Vicon data. While the second one shows perfect correlation, the fourth is a lot weaker. 

This is possibly linked to the input data, as the movements might be unique in range 

and orientation (NN4) or show only small ranges with a highly repetitive movement 

pattern (NN2). The remaining eight NNs demonstrate the anticipated pattern of NN 

quality. Examination of sample frames of the eighth data split of the random hand 

movement assessment (Figure 27) regarding the angular output shows poorer 

agreements between the LM and Vicon curve compared to NN predicted and Vicon 

angle curves. The LM curves do show only a slightly different pattern than the Vicon 

curves, but at a greater offset, which explains the greater RMSE values despite similar 

mean R values across all 200 comparisons. Interestingly, this pattern was also 

frequently observed during the task and hand specific assessments (Appendices 3-5). 

The only slightly different pattern of the LM angles compared to the Vicon data explains 

the largely significant and moderate to strong correlation. The offset explains the higher 

RMSE values. The NN prediction is a bit more irregular, as for some occasions the NN 

prediction highly accurately matches the Vicon data, whereas irregularly it 

overestimates the magnitude leading to large errors despite regular patterns in the 

Vicon and LM data. Overestimating angular magnitudes increases the error relative to 
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the LM. The reasons for these irregular predictions cannot be explained at this stage, 

which would be critical to establish a consistent and reliable neural network model. 
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6.5. Discussion 

The results indicate a 31-75% error reduction on average for the individual tasks 

assessed as validated by a 10-fold cross-validation. Yet large, irregularly occurring 

discrepancies between the NN prediction and Vicon target data were identified. The LM 

data showed worse results for the correlation and RMSE, yet the curves look relatively 

similar in shape, but are offset by multiple degrees.  

The LM alone is inaccurate when measuring dynamic hand movements using angular 

kinematic profiles. While it was known that the ROM measurements are inaccurate 

(Nizamis et al., 2018), this study measured dynamic movements. Our findings therefore 

enhance and support current literature findings regarding the LM accuracy. It appears 

though that the LM has a large systematic error, which would explain the offset relative 

to the Vicon curve. A simple offset calculation (Ferrari et al., 2014) would already 

reduce the error between LM and Vicon data, which in turn is in agreement with the 

finding of the original pilot work (Appendix 7).   

Most correlations, for both LM to Vicon and NN prediction to Vicon, were significant at 

a level of p<0.01. Yet the correlation coefficients showed often weak or moderate 

correlations despite significant interactions. If plotted, the correlations show a 

heteroscedastic spread. Heteroscedasticity tends to lead to small p-values (smaller 

than under homoscedastic spreads), because heteroscedasticity means higher 

variance of the correlation coefficient. This could also explain the ceiling effect 

observed for the p-values in all seven neural network assessments. Simultaneously the 

heteroscedastic spread of data explains the highly variable correlation coefficients 

observed in this study. Heteroscedasticity is typically associated with outliers in the 

variables, yet no outliers were identified in the original data set. It is important to 

acknowledge that based on the visually assessed angle data, the LM does collect data 

at an offset, yet in particular at the end points of the range errors are more likely. 

Correlations assess linear agreement, yet the LM does show a non-linear error, which 
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was partially reduced by the NN application. Therefore, the NN to Vicon comparison 

showed improved correlations compared to LM to Vicon, despite a heteroscedastic 

spread observed for the correlations between the NN prediction and Vicon target data.  

The NN was able to partially correct the non-linear error of the LM, yet often also 

increased the RMSE. Based on the data presented in this study, the reasons for this 

are unclear as sudden changes in the NN prediction also appear when the original 

input (LM) or target (Vicon) data lack steep changes in the data. Further the ability of 

accurately predict Vicon data varied greatly among the 10 folds. The inconsistencies of 

the current artificial neural network may suggest unreliable results if these models are 

applied to data from new subjects such as patients.  

The thought that a movement and hand specific NN model could improve the NN ability 

to predict Vicon data accurately was only partially accepted. Whole hand movements 

were not well predicted, however, the angles of movements (FE angles during flexion-

extension movements and AA angles during abduction-adduction movements) were 

measured well with the LM and showed strong correlations and low RMSE when 

compared to Vicon data. These were further improved by the NN approach. 

Unfortunately, this finding was not supported by the thumb circumduction trials, which 

might indicate some more fundamental issues with thumb movement data in either the 

LM or Vicon motion tracking.  

There were fewer data points available for the NNs trained for specific movements and 

tasks compared to the random hand movements, which might have skewed the results. 

The quantity of data points is a critical factor when designing neural networks. While 

there is no ‘one size fits all’ answer to the quantity of data required it is suggested that 

a neural network predicting complex patterns requires more training data than a simple 

task. Hand movements are very complex, therefore larger data sets for training, 

including data from a wider age-range given that hand movements change with age 

would be useful and could possibly improve the results of this study.  
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The use of the LM for motion analysis provides a portable, easy to use alternative to a 

marker-based motion capture approach, such as the Vicon system, therefore allowing 

the assessment of movement impairments of clinical cohorts, such as patients with 

SSc, in the field, or the patient’s home (Chapter 7). The LM could further aid the 

translation of research into clinical practice to measure the progression of the disease 

over time for example by using the MDP and MDPmean (Chapter 4). Further, given the 

good correlations between LM and Vicon data, despite large RMSE values, the LM 

could be used to play VR games, such as the FlappyBall game (Chapter 5), which is 

driven by the range and position of fingers within the measured range rather than 

absolute angle data. Further, the strong correlations allow the LM to be used to 

determine changes over time. While the absolute measures might be at a distance the 

gold-standard measure, it is thought that this is linked to a systematic error. Thus the 

change over time, if measured with the LM at both occasions, can still be assessed. 

The NN approach shows some promising results, however is at this stage not ready for 

application. Once the reason for inconsistent predictions has been identified and a 

solution has been provided, the NN approach could aid the accurate assessment of 

motion to gold-standard levels. Yet, absolute angles to gold-standard levels are not 

always required, depending on the study design.   

For this study, 15 young, healthy adults were recruited for each of the two parts. The 

responsiveness of the LM and developed NNs to hand deformities or movement 

limitations is unknown. It is possible that hand deformities and movement impairments 

are not correctly predicted by this method. Therefore, this protocol and the current NN 

training database needs to be applied to and enhanced with patient data. 

Future research should first of all identify the reasons for the mixed predictions of the 

neural network and how to overcome these. Further the use of deep-layer artificial 

neural networks in addition to time-series machine learning protocols could be 

considered given the time-series data and unequal sampling methods. More complex 
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NNs could potentially improve the prediction of complex hand movements in all 

dimensions due to the increased number of neurons and could potentially avoid 

overestimation of joint parameters. Further, more data should be acquired to enhance 

the data set as increasing the quantity of data points for NN training improves the 

rigidity of the NN approach. Measuring full flexion range with the marker-based 

approach was not possible, therefore only 75% of the flexion range was measured. It is 

uncertain how the NN would perform upon fist closure.  

 

6.6. Conclusion 

The error of the kinematic movement data generated with the LM was significantly 

reduced on average after the application of the NN. While this is a positive indicator of 

the NN approach to reduce the error, the NN predictions were largely inconsistent 

among the 10 folds and showed several large, sharp changes in the angle data. 

Therefore, at this stage the NN approach shows some very positive results but due to 

the inconsistent ability to predict data it cannot be used for clinical applications. On the 

other hand, the LM was considered to be inaccurate. While this is true when assessing 

absolute differences between Vicon and LM angle curves, the shape of the curves was 

similar but at an offset, and the correlations where found to be frequently between 

moderate to strong. Especially for movement specific tasks the LM showed very good 

agreement for the primarily moving joints, suggesting that the LM can be used for 

research, but only if clear movements in one direction are performed, such as when 

playing the FlappyBall game (Chapter 5). Further the RMSE between LM and Vicon is 

largely affected by the offset which is due to a systematic error. Therefore, the LM can 

be used as a standalone tool for motion analysis, but the generated data cannot be 

directly compared to marker-based motion capture approaches and needs to be 

interpreted with caution.   
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7.1. Preface 

Chapter 4 assessed movement impairments in patients with SSc using a gold-standard 

motion capture approach. It was identified that impairments are evident at all joints and 

directions of movement. This information was then translated into a virtual rehabilitation 

game (Chapter 5), which allows for the training of flexion-extension and abduction-

adduction mobility in a dynamic, active range of motion, multi-joint approach. 

Conventional therapy typically involves passive hand stretches and grip strength 

exercises, largely focussing on finger flexion. Whilst these exercises show beneficial 

effects for hand function, they are perceived as boring and adherence to these 

programmes is low. Virtual rehabilitation could possibly increase adherence, however, 

there is currently no evidence of the beneficial effects of virtual hand exercises in 

patients with SSc. Therefore, the aim of this chapter was to assess the effects of 

game-based virtual rehabilitation exercises on finger mobility, finger dexterity and 

ability to perform ADLs independently in comparison to the conventional physiotherapy 

approach. To measure the effect of the exercises a motion analysis, motor control test 

and Finger-to-Palm index in addition to patient-reported outcome measures was taken 

before and after exercises as well as after four weeks without exercises. The changes 

across all tests were then compared before and after the intervention and between 

groups to determine if one intervention showed a greater effect than the other. It is 

hypothesised that both exercises show positive changes across all measures, whereby 

the virtual rehabilitation group is expected to show greater beneficial effects and higher 

levels of enjoyment.  
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7.2. Introduction 

The hands are integral to our daily lives as we use them for daily leisure and work 

activities. In the presence of hand impairments, the ability to perform ADLs is reduced, 

leading to social isolation, depression and anxiety. The psychosocial effects enhance 

the physical effect of reduced hand mobility, leading to a reduced level of 

independence and quality of life (Maddali-Bongi et al., 2014; Mao and Sun, 2014; 

Nguyen et al., 2014; Rannou et al., 2007). Patients with SSc present with impaired 

hand function, and they frequently report poor mental health, as well as feeling 

uncomfortable in public and dependent on help from others. The disease burden 

therefore is not only of physical nature but also involves a psychological component. 

Negative attitude or grief due to the knowledge of having an uncurable disease can 

influence physical factors and tendency to socially isolate and depend more on others 

than needed (Bolden, 2010). Effectively the interplay between psychosocial and 

physical factors can lead to a downward spiral, which could be prevented by an 

effective rehabilitation programme for the hand. The aim of rehabilitation programmes 

is typically to increase the range of movement, which is associated with an increase in 

ability to perform ADLs, independence and reduced movement-induced pain (Rannou 

et al., 2017).  

Traditional interventions, including hand stretches and strength exercises are 

recommended by healthcare professionals as well as systemic sclerosis societies 

(Scleroderma and Raynauds UK, Scleroderma Foundation (USA), Scleroderma 

Australia, DNSS (Germany)). Several studies reported an improved hand function after 

a prescribed exercise programme in regards to movement range and patient-reported 

improved ability to perform ADLs (Antonioli et al., 2009; Horvath et al., 2017; Maddali 

Bongi et al., 2009; Poole et al., 2013a; Poole et al., 2013c; Rannou et al., 2017; 

Stefanantoni et al., 2016). To the author’s knowledge, no study measured joint specific 
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range of motion of each finger joint to objectively assess the mobility changes induced 

by an intervention programme.  

Despite promising results from the literature regarding the effectiveness of exercises, 

referral to exercise schemes is only done for less than half of the patients, and only 

approximately 12% of the referred patients enrol in a programme (Bassel et al., 2012; 

Willems et al., 2015a). Adherence barriers, as described by patients with SSc are 

similar to barriers described by sedentary healthy individuals to physical activity. Most 

patients state a lack of time, difficulty to prioritise and a disbelief of the beneficial effect 

of hand exercises. While the first two barriers are linked to personal commitment and 

motivation, the latter can be addressed through education and possibly experience 

after engaging in exercises in the first place.  

For this to happen, a rehabilitation approach which minimises the burden, and 

improves adherence is required. A virtual rehabilitation tool was created in previous 

work (Chapter 5), which could potentially raise motivation to complete exercises in a 

playful environment, thus mimicking a reduced burden of the exercises. The beneficial 

effects or virtual rehabilitations has been demonstrated in several conditions and 

research studies (Barton et al., 2013; Bryanton et al., 2006; dos Santos Mendes et al., 

2012). Virtual rehabilitation was applied in mostly neurologically impaired patients. 

Following a training phase, range of motion as well as motor control was improved as 

the participant learned to control their movements. Patients with SSc are considered to 

be neurologically unimpaired, but it is known that the neural control over movement is 

gradually lost if the musculoskeletal system is not actively used, yet can be re-gained 

with training (Gabriel et al., 2006; Nordin et al., 2017). In a previous study, we further 

suggested that finger dexterity could be reduced in patients as they required a 

significantly longer time to complete functional tasks (see chapter 4). To the best of the 

author’s knowledge, no study has yet examined finger dexterity in patients with SSc. 

Finger dexterity and ability to perform ADLs was found to be positively correlated, and 
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an improvement of dexterity has a larger impact on the quality of life than the range of 

motion. We therefore hypothesize that, if SSc patients do experience a loss in 

dexterity, training on a virtual rehabilitation game which trains range and dexterity, will 

have a greater beneficial effect compared to conventional therapy in form of hand 

stretches.  

The aim of this study was to evaluate the effectiveness of virtual rehabilitation 

compared to standard physiotherapy exercises on patient-perceived functionality of the 

hands, objectively measured hand mobility as well as finger dexterity. Secondly, we 

evaluated the level of engagement and likelihood of adherence to the prescribed 

programme.  

 

7.3. Methods 

This study was designed as a randomised control trial to assess the effect of virtual 

rehabilitation (VR) on hand function in patients with SSc. This study was approved by 

the National Health Service Research Ethics Committee and Health Research 

Authority (IRAS: 248310; REC reference: 18/NW/0659). 

 

7.3.1. Participants 

Twenty participants diagnosed with SSc (EULAR/ACR score >9, without longstanding 

flexion contractures, 54.8 ± 23.1 years; female: n = 19, male: n = 1) were recruited from 

the rheumatology department of a local hospital.  The presence of active ulcers or 

calcinosis at approach or upon enrolment led to exclusion from the study. Participants 

were not enrolled in any other intervention study (neither pharmacological, nor non-

pharmacological), nor did they receive any other physical or occupational therapy 

treatments for the duration of this study and at least eight weeks prior to enrolment. Out 

of 20 enrolled patients, 18 completed the study (dropout: n = 2), whereby one 
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participant of the intervention and control group each did not complete the training and 

follow-up test protocols.  

Following block-randomisation (block size: 5), the VR group was composed of nine 

females and one male and included three dominant left-handed and seven right-

handed patients. Half the participants were diagnosed with dSSc, the other with lSSc. 

Out of the ten patients nine were tested positive for ANA autoantibodies, two for anti-

topoisomerase, and six for anti-centromere. On average this group was 53.4 ± 11.6 

years old, had a mean time since diagnosis of 14.3 ± 5.7 years, and a modified Rodnan 

Skin Score (mRSS) of 9.5 ± 5.5.  

The physiotherapy group included ten females, whereof two were dominant left-handed 

and eight right-handed. Half the patients were diagnosed with dSSc and the other half 

with lSSc. Nine patients are ANA positive, three anti-topoisomerase positive and four 

showed anti-centromere autoantibodies. On average this group was 58.6 ± 9.8 years 

old, had a mean time since diagnosis of 10.1 ± 5.0 years, and a mRSS of 9.3 ± 6.6. 

As both classification of the disease as well as antibody status are linked to movement 

impairment it is important to note that both lSSc and dSSc, as well as the antibody 

types present in the patients were balanced and comparable between the groups. 

Further the mRSS, indicating skin stiffness on the whole body was comparable 

between the groups.  

 

7.3.2. Trial design 

The trial design, as well as design of intervention tools, followed the TIDieR checklist 

(Hoffmann et al., 2014), and the domains are appropriately highlighted throughout this 

chapter. The physiotherapy group followed a conventional exercise programme based 

on hand stretches. Both groups spent the same amount of time (90 minutes per week) 

on their exercise programme, which was conducted entirely at the patient’s home for 
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both groups typically on the kitchen table or office desk (TIDieR Domain 7).  The study 

duration was eight weeks, split into two four-week blocks: in the first four weeks 

participants performed exercises, whereas in the second four-week block exercises 

were discontinued to quantify the retention of changes in functionality (TIDieR Domain 

8). This level of intensity and duration is consistent with several exercise studies in 

systemic sclerosis. Objectively measured range of motion, patient-reported ADL 

performance and hand function, as well as dexterity were assessed at baseline, after 

four weeks of exercises (Day 28) and further four weeks without exercises (Day 56) 

(Figure 28). Participants were randomly allocated to the intervention or control group 

using block-randomisation (block size: 5). Participants were informed that we were 

comparing two rehabilitation programmes without any clear hypothesis or expectation 

for the result in an attempt to blind the study, reduce bias and the Hawthorne effect.  

 

Figure 28: Trial structure. Of all participants baseline data was collected upon 
enrolment (Day 1), which was followed by a four-week exercise block. The participants 
were allocated to one of the two groups and completed their respective exercises three 
times per week. After four weeks of training all test protocols were repeated (Day 28). 
The second test session was followed by a second four-week block, and this time 
participants from both groups were instructed to not perform any exercises. On day 56 
all measurements taken at baseline were repeated again. 

 

 

7.3.3. Rehabilitation programmes 

Two programmes for hand rehabilitation in patients with SSc were designed for this 

study for comparison. The VR programme is a novel approach for joint stiffness in SSc, 
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and is compared to conventional exercises which are frequently suggested by charities, 

health bodies and hand therapists.  

 

7.3.3.1. Virtual rehabilitation 

Participants of the intervention group played a customised computer game (for details 

see: Chapter 5) three times a week for 28 minutes (14 minutes for each hand). The 

participants played the game for seven minutes, split up into 7 x 1 min bursts, using 

their flexion-extension range, followed by seven minutes to train abduction-adduction 

movements.  When playing the game, participants were in seated position, holding 

their hand approximately 25 cm over the controller, with the shoulder flexed at 

approximately 45°. A wrist support was provided to standardise the distance and for 

comfort of the participants. The training sessions were supervised by a skilled 

researcher, which also aided the monitoring of adherence to exercise programme as 

well as the monitoring of performance of the correct movement throughout the training 

phase (TIDieR Domain 11). The researcher would correct the participants movement 

using verbal feedback to ensure the movement which was targeted was correctly 

performed and therefore allow the game to respond accordingly. This was mostly to 

provide the equipment and operate the game. The game was introduced and briefly 

verbally explained to the participant prior to the first trial. During the verbal explanation 

the goal of the game and movements to drive the game were explained. The 

participants then actively tried the game and learned from the visual feedback in the 

game how to control movements of the ball through the obstacle course. After the first 

trial, the participant could ask any questions, and the researcher explained the error 

scoring, timing and movement to drive the game. Throughout all sessions, verbal 

encouragement from the researcher was kept to a minimum. The computer game 

settings were set to match the patient’s ability at the beginning of each session. All 

participants started their first training session with the default settings described in 

Chapter 5. Settings were never changed in the course of a training session. If a 
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participant got less than three errors on three consecutive trials, the difficulty settings 

were adjusted in the next training session. Only one parameter was adjusted at a time 

in the order prescribed by the game design (see Chapter 5). 

 

7.3.3.2. Physiotherapy exercises 

The hand exercises used were taken from multiple sources. For this study we reviewed 

exercises from the NHS, Scleroderma and Raynaud’s UK, The Salford Royal NHS 

Hospital, The British Association of Hand Therapists and multiple published exercise 

intervention studies in SSc.  In total 15 exercises were chosen (see Table 6) and 

composed in a leaflet (TIDieR Domain 3). The leaflet was handed to the participants of 

this group, alongside any equipment needed. During the first supervised face-to-face 

session, a member of the research group (TIDieR Domain 5) carefully explained all 

exercises, familiarised the patient with the equipment and introduced the patient to the 

training diary (TIDieR Domain 3). To ensure the participant fully understood the 

procedures awaiting, the first training session was completed and diary filled in 

together. After one supervised training session, the remaining 11 sessions were self-

managed (TIDieR Domain 4 and 6). The participants of this group received weekly 

phone calls for the duration of the training phase to track progress, adherence and 

answer any questions the participant had (TIDieR Domain 6). In their diary participants 

recorded the exercises completed in a session, as well as the duration and number of 

repetitions of each task on each hand (TIDieR Domain 11). The diary also had a 

contact list attached in case of any urgent study related questions or medical 

emergencies that could have been induced by the exercises. No specific modifications 

and tailoring to individual ability was done for this study group, instead participants 

were instructed to push their ability their perceived limit in every exercise session 

(TIDieR Domains 9 and 10). 
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Table 6: Hand exercises performed by the control group three times per week. 

 
Exercise 1: Lifting all fingers from the table 

thereby getting the fingers as straight and wide 

apart as possible. The wrist was slightly 

extended. Hold for 3 x 10 seconds, repeat on 

both hands. 

 
Exercise 2: Lift every finger individually while 

keeping the wrist and palm on the table. Hold for 

two seconds on each finger, repeat three times per 

hand. 

 
Exercise 3: Put your hands above one another 

on a flat surface. Gently push down your lower 

hand with the upper hand and hold for ten 

seconds. Repeat three times on each hand.  

 
Exercise 4: Tap the thumb with the index, middle, 

right and little finger and briefly squeeze together. 

Repeat three times on both hands. 

 
Exercise 5: Draw a circle in the air with your 

thumb, stretching your thumb as much as you 

can. Draw five circles, and repeat three times per 

hand. 

 
Exercise 6: Place your hand on a flat surface, palm 

facing upwards. Move the thumb towards the base 

of the little finger and hold there for five seconds. 

Repeat three times per hand.  

 

Exercise 7: Rest your elbow on a table and hold your hand as straight as possible. Bend the two top 

joints. Then bend the knuckles followed by extending the top two joints but keeping the knuckles bent. 

Then form an L with your thumb. Hold each position for five seconds. Repeat three times per hand.  
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Exercise 8: The hand is on a flat surface, fingers 

spread apart maximally. Hold for five seconds. 

Repeat three times per hand.  

 

Exercise 9: Interlock your fingers and hold for ten 

seconds. Repeat three times.  

 

Exercise 10: Pick up a piece of paper and pinch it 

between the thumb and index finger. Repeat 

three times.  

 

Exercise 11: Pick up a coin from a flat surface and 

pinch it between the thumb and index finder. 

Repeat three times on each hand. 

 

Exercise 12: Pull all fingers of one hand back 

with the other hand, then bend thee fingers and 

pull down. Hold 15 seconds in each direction. 

Repeat three times per hand. 

 

Exercise 13: Pull index finger back using the other 

hand, then pull down. Hold five seconds in each 

direction, then repeat on middle, ring and little 

finger. Repeat three times per hand.  

 

Exercise 14: Place one hand behind the other. 

Bend and squeeze the top two joints of the 

bottom hand with help of the upper hand. Hold 

for 15 seconds. Repeat three times on both 

hands.  

 

Exercise 15: Pick up a ball and squeeze. Hold for 

two seconds. Repeat five times and on both hands. 
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7.3.4. Assessment methods 

A three-dimensional motion analysis using the LM was performed. Data was captured 

in D-Flow, and angular kinematics were calculated in Visual3D (C-Motion Inc., 

Germantown, MD, USA) by the model described in Chapter 3. Dynamic movements, 

from active maximum flexion to maximum extension, and for active maximum 

abduction to adduction were measured. Thumb circumduction was recorded by 

instructing the participants to draw a large circle (as large as possible) into the air. 

Further, the FTP was measured using a simple ruler. Participants provided feedback 

on their perceived functional status via the CHFS. A dexterity assessment was 

performed using a customised keyboard. Participants followed a tapping sequence for 

15 seconds, increasing in difficulty and complexity over seven levels, starting with a 

single finger and increasing to include four fingers. The sequences were showing 

colours matching the colours on the customised keyboard. The tasks (1-6) increased 

progressively in difficulty by combining one (MC1), two (MC2 and MC3), three (MC4 

and MC5) or four (MC6) fingers pressing three (MC1-5) or four (MC6) buttons on the 

customised keyboard. The participants rested the ball of the hand in front of the 

keyboard and were instructed to type in the sequence in front of them as fast as 

possible while avoiding to make mistakes. The number of taps made, tapping speed 

and errors made were recorded in Matlab R2018a (Natick, WA, USA) and written into a 

text file following task completion for further analysis. All measurements were taken at 

baseline (Day 1), after four weeks of exercise (Day 28) and after a four-week no 

exercise period (Day 56).  

 

7.3.5. Outcome measures 

Range of motion of all joints was calculated from three-dimensional movement data. 

Movement range was assessed for all joints in flexion-extension and for the MCP joints 

and thumb TM joint also the abduction-adduction range. The scores of the CHFS were 

recorded as well as the FTP (in cm), as described by Torok et al. (2010). The tapping 
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speed from the dexterity test was calculated as taps/second and the mean 

performance was calculated. Only data of the dominant hand was analysed as no 

statistical difference was identified between the dominant and non-dominant hand 

mobility of the patients of both groups (Appendix 6).   

 

7.3.6. Data analysis 

A test for normality was conducted on all outcome measures, indicating a non-normal 

distribution of all quantitative measures. Therefore non-parametric tests were used to 

the analysis. Median and interquartile ranges were calculated, and an outlier analysis 

was performed on the raw data. The data was statistically analysed using a Friedman 

test for within-group changes between test sessions, followed by a Wilcoxon Signed 

Rank post-hoc analysis. Between group differences were assessed using the Mann-

Whitney U test. The change in ROM (ΔROM) was calculated for each joint between the 

pre- and post-intervention tests (T1-T2) and post-intervention and follow-up tests (T2-

T3). A descriptive analysis was conducted, and a Mann-Whitney U test was performed 

to assess the between group differences. A qualitative analysis was conducted to 

summarise the patient feedback on motivation and likelihood of adherence from the 

non-validated questionnaire applied during the post-intervention test session (T2). 

 

7.4. Results 

The effectiveness of both intervention programmes was evaluated using several 

outcome measures which were analysed separately.  

 

7.4.1. FTP 

Both groups could reduce the distance between middle fingertip and palm (Median 

ΔFTPPre-Post: Physio: -0.5 cm; VR: -1.5 cm) after training (Figure 29). While the 
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physiotherapy group could maintain their FTP at follow-up (ΔFTPPost-FollowUp: 0.0 cm) the 

VR group did not manage to maintain the flexibility (ΔFTPPost-FollowUp: +0.5 cm). The 

within-group Friedman tests showed an significant effect of exercises on FTP for the 

physiotherapy group but not the VR group. (Physiotherapy: χ2(2)=7.625, p=0.022; VR: 

(χ2(2)=5.840, p=0.540). However, the Wilcoxon Signed Rank post-hoc test showed a 

significant reduction of the FTP between the pre- and post-exercise tests in the VR 

group (p=0.048). The Wilcoxon Signed Rank tests showed no significant between-

group differences between test sessions. In the physiotherapy three patients improved 

the FTP, while the others were able to maintain their score after exercises. In the VR 

group five participant reduced the FTP, one deteriorated to a higher FTP and three 

maintained their score when comparing pre- and post-exercise tests. Overall, the 

gradients of the connected scatter plot indicate more improvement in the participants of 

the VR group compared to the physiotherapy group. 

 

Figure 29: Finger-to-Palm index (FTP) was assessed before (pre-) and after (post-) 
exercise as well as after four weeks after intervention completion. No significant 
changes were identified in the (a) physiotherapy or (b) VR group overall. Box-plots 
show the median ± interquartile range. The whisker length refers to extreme data: if no 
outlier is present the whiskers extend to the minimum and/or maximum values. In the 
presence of outliers, the whiskers are equivalent to 1 IQR. Outliers are highlighted in 
red crosses. The overlaid connected scatter plot shows participant raw data and 
individual participant changes over time.  

 

 

* 

a) b) 
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7.4.2. CHFS 

 

Figure 30: Cochin Hand Function Scale (CHFS) score was acquired before (pre-) and 
after (post-) exercise as well as after four weeks after intervention completion. No 
significant changes were identified in the (a) physiotherapy or (b) VR group overall. 
Box-plots show the median ± interquartile range. The whisker length refers to extreme 
data: if no outlier is present the whiskers extend to the minimum and/or maximum 
values. In the presence of outliers, the whiskers are equivalent to 1 IQR. Outliers are 
highlighted in red crosses. The overlaid connected scatter plot shows participant raw 
data and individual participant changes over time.  

 

Both groups presented with reduced CHFS scores after training, but these changes 

were not maintained four weeks after exercise completion (Figure 30). The magnitude 

of change of the median between pre- and post-exercise results (ΔCHFSPre-Post) was -

11 (Physio) and -6 (VR) on the scale. At follow-up (ΔCHFSPost-FollowUp) the scores 

increased by 1 (Physio) and 5 (VR) respectively. The within-group Friedman tests 

showed no significant effect of exercises on CHFS score (Physiotherapy: 

χ2(2)=5.67, p=0.079; VR: (χ2(2)=2.387, p=0.303). The Wilcoxon Signed Rank tests 

showed no significant between-group differences between test sessions. In the 

physiotherapy group six patients reduced (improved) the CHFS score, two deteriorated 

and one could maintain their score after exercises. In the VR group six participants 

reduced the CHFS score, one deteriorated to a higher CHFS and two maintained their 

score when comparing pre- and post-exercise tests. Overall, the gradients of the 

connected scatter plot indicate more improvement in the participants of the VR group 

compared to the physiotherapy group. However, one participant in the physiotherapy 

a) b) 
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group showed a sizeable 61-point drop on the CHFS after exercises and was able to 

maintain this drop at follow up.  

 

7.4.3. Finger dexterity 

Both groups demonstrated increased median tapping speeds over 15 seconds after 

exercises across all six dexterity tasks (MC1-6) (Figure 31). In summary, the VR 

groups showed greater improvements (ΔFDexPre-Post_MC1-6: +0.20 taps/s, +0.53 taps/s, 

+0.20 taps/s, +0.46 taps/s, +1.00 taps/s, +0.53 taps/s) than the physiotherapy group 

(ΔFDexPre-Post_MC1-6: +0.27 taps/s, +0.14 taps/s, +0.33 taps/s, -0.13 taps/s, +0.27 taps/s,  

  

    

    

Figure 31: Finger dexterity was measured at six skill levels (MC1-6) (a-f) with 
increasing difficulty before (pre-) and after (post-) exercise as well as four weeks after 
completing the intervention programme. Box-plots show the median ± interquartile 
range. The whisker length refers to extreme data: if no outlier is present the whiskers 
extend to the minimum and/or maximum values. In the presence of outliers, the 
whiskers are equivalent to 1 IQR. Outliers are highlighted in red crosses. The overlaid 
connected scatter plot shows participant raw data and individual participant changes 
over time.  

a) b) 

c) d) 

e) f) 
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+0.13 taps/s). The Friedman test in the physiotherapy group showed significant 

improvements in MC1-2 (MC1: χ2(2)=7.257, p=0.27; MC2: (χ2(2)=1.429, p=0.49), but 

not MC3-6 (MC3: χ2(2)=6.788, p=0.034; MC4: (χ2(2)=7.118, p=0.028; MC5: 

χ2(2)=12.514, p=0.002; MC6: (χ2(2)=13.118, p=0.001). The VR group on the contrary 

showed non-significant changes during MC1-2 (MC1: χ2(2)=11.48, p=0.003; MC2: 

(χ2(2)=6.059, p=0.048), but strongly significant improvements for MC3-6. The increases 

in dexterity after exercises could be maintained at follow up and no statistically 

significant interactions or differences were identified for both the physiotherapy and VR 

group (Physiotherapy: ΔFDexPost-FollowUp_MC1-6: +0.33 taps/s, +0.00 taps/s, -0.13 taps/s, 

+0.46 taps/s, +0.07 taps/s, +0.34 taps/s; VR: ΔFDexPost-FollowUP_MC1-6: +0.06 taps/s, 

+0.20 taps/s, +0.20 taps/s, -0.40 taps/s, -0.06 taps/s, -0.27 taps/s). The VR group 

showed greater improvements towards more complex tasks whereas the physiotherapy 

group could improve on the simpler dexterity tasks. The majority of patients in both 

groups showed improved dexterity after exercises, whereby the participants of the VR 

group typically showed steeper gradients (more improvement) between the pre- and 

post-exercise tests. 

 

7.4.4. Range of motion 

The mean changes in ROM (ΔROM) were calculated between pre- and post- exercise  

(ΔROMPre-Post) and post-exercise follow-up test (ΔROMPost-FollowUp) for all joints and 

movement directions separately (Figure 32). A positive change reflects an increase in 

ROM whereas a negative change reflects a reduction in ROM between two test 

sessions. Between pre-and post-exercise test changes in ROM were minimal in 

abduction-adduction direction, and the thumb. However, the VR group showed 

approximately 10° increases in flexion-extension ROM at the MCP and PIP joints of 

digits 2-5, which is above the clinically significant level of 5° (McGinley et al., 2009). 

While flexion-extension range of the DIP joint improved as well in the VR group, only  
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Figure 32: The change in ROM (ΔROM) for 20 ranges (5 abduction-adduction (AA) + 
15 flexion-extension (FE)  ranges) of digits 1-5 (D1 = Thumb, D2 = Index, D3 = Middle, 
D4 = Ring, D5 = Little) was calculated between pre-and post-exercise tests as well as 
post- and follow up tests for the physiotherapy group (a + c) and VR group (b + d). Box-
plots show the median ± interquartile range. The whisker length refers to extreme data: 
if no outlier is present the whiskers extend to the minimum and/or maximum values. In 
the presence of outliers, the whiskers are equivalent to 1 IQR.  Outliers are highlighted 
in red crosses. The overlaid scatter plot shows participant raw data. 

the ROM of digits 4 and 5 improved clinically significantly. The ΔROM in the 

physiotherapy groups did not change clinically significantly at any joint, with the 

exception of the middle DIP joint, and little PIP and DIP joints where a clinically 

significant reduction in ROM was recorded. A Mann-Whitney U test revealed that on 

average the VR group (ΔROMPre-Post: 5.79°) achieved significantly greater 

a) 

b) 

c) 

d) 
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improvements in ROM compared to the physiotherapy group (ΔROMPre-Post: -1.14°) (p = 

0.00002).  

Between post-exercise and follow-up test both groups showed increases in ROM 

across most joints. In the VR group all ΔROMPost-FollowUp were clinically non-significant 

with the exception of the Thumb IP joint flexion-extension range (ΔROM: 7.49°). The 

physiotherapy group also showed increases in ΔROMPost-FollowUp with the flexion-

extension ranges of the Thumb MCP (ΔROMPost-FollowUp: 7.46°) and IP (ΔROMPost-FollowUp: 

17.97°), and the Index DIP (ΔROMPost-FollowUp: 6.95°) joints reaching clinical significance. 

There was no statistically significant difference in ΔROMPost-FollowUp between the groups 

(p = 0.57).  

 

7.4.5. Qualitative participant feedback  

Two qualitative questionnaires were completed: one prior and one after completion of 

the exercises. Prior to the starting the intervention information regarding the awareness 

of hand exercises was collected (Figure 33), whereas after the intervention study the 

participants provided feedback on their respective training programme (Figure 34).  

Prior to starting this study 13 participants reported to have engaged in exercises for an 

average duration of three months. This was for all participants more than three years 

prior to this intervention study.  The participants reported very low levels of motivation 

to feeling impartial about the exercises, leading to subsequent discontinuation of 

training. Seven participants reported not to have engaged in hand exercises prior to 

this study. Out of these seven, five stated that they were not aware of the existence of 

hand exercises for SSc but would have liked to have received information via their 

healthcare professionals, whilst the other two did not think hand exercises were 

necessary for them. 
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Figure 33: Qualitative patient feedback regarding the awareness of hand exercises 
prior to study participation of all enrolling study participants (n = 20). A quarter of the 
participants enrolling in study were unaware of the existence of hand exercises to aid 
their condition. 

 
Figure 34: Nine patients completed the physiotherapy programme (green) and Virtual 
rehabilitation programme (blue) each. Following completion of the respective 
programme a qualitative approach to evaluate the respective regime was conducted. 
The VR group showed greater levels of enjoyment and likelihood of adherence to 
exercises in the future. The perceived benefit was similar in both groups, yet 
confidence levels increased in all participants of the VR group, but not the 
physiotherapy group.  
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After the intervention completion a second questionnaire to evaluate the patient 

perception of their exercise programme was conducted with the nine participants who 

completed the study in each group.  

Participants of the physiotherapy group showed varied responses. While five stated 

they enjoyed the exercise programme, the other four disagreed. Similarly, seven 

participants felt benefits of hand exercises whereas two strongly disagreed. Three 

participants commented on improved levels of confidence and five stated it made them 

more aware of their hands and are more willing to attempt ADLs on independently. 

Seven participants stated that they would continue the exercises because of a potential 

benefit, whilst two did say they would not adhere past this intervention study. Common 

barriers acknowledged by the participants was the monotonous exercise structure and 

time barrier. People reported difficulties to prioritise the exercises over other 

commitments. Further, most participants in the physiotherapy group did not complete 

all 12 prescribed exercise sessions, but missed one or two.  

The participants of the VR group all enjoyed their training programme and stated they 

would like to continue the exercises, with two even be willing to invest financial 

resources to this despite five of them finding the exercises painful at times. Seven 

stated they felt a benefit, whilst two were uncertain regarding their joint mobility 

improvements. All reported increased confidence levels after the exercises. All nine 

participants stated they enjoyed the game setting as they did not realise they were 

doing exercises in the playful environment (x9), that it was fun (x6) and that it made 

them competitive against themselves and eager to see improvements in game scores 

(x4).  
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7.5. Discussion 

Virtual rehabilitation had a greater beneficial response than physiotherapy over the 

four-week exercise period. On average both groups showed similar decline in hand 

function after four weeks of no exercises.  

The FTP, as a simple clinical measure for finger mobility impairment (Torok et al., 

2010), was improved in both groups after four weeks of exercises. Overall, the VR 

group showed greater improvements after exercises. The magnitude of change in FTP 

between test sessions is similar to the changes in FTP following an intervention 

programme of tissue massages and hand stretches (Bongi et al., 2009), who reported 

a reduction of 0.75 cm following their intervention, which was maintained at follow-up. 

In comparison the physiotherapy group showed a reduction of  0.5 cm, while the VR 

group (1.5 cm reduction after exercises) showed greater improvements than both 

physiotherapy and physiotherapy combined with tissue massages. It is important to 

note that some patients had an FTP of 0 on the dominant hand despite having overall 

visible movement impairment. An FTP value of 0 prior to exercises was linked to either 

asymmetry (i.e. not all fingers touched the palm during maximum voluntary flexion), or 

the patient could touch the palm with the tip (0 cm distance) but was not able to 

actually squeeze the fingers into the palm as a healthy individual would. This might 

explain the insignificant change in FTP between test sessions. This would have 

especially affected the results of the physiotherapy group where five participants could 

touch the palm before the intervention compared to the two participants in the VR 

group.  

The CHFS, as a measure of inability to perform ADLs, was reduced in both groups 

before and after exercises, reflecting an improved ability to perform ADLs. While the 

physiotherapy group showed a reduction of 11 points on the scale (out of 90), the VR 

group could only improve by 6 points after the four-week training block. Bongi et al. 

(2009) studied the effect of combined exercises and tissue massages and found a 



163 
 

decrease by 13 points on the CHFS, which is in agreement with the results of the 

physiotherapy group. The additional two points in reduction reported by Bongi et al. 

(2009) could be explained by the intensity (daily exercises) and additional tissue 

massages. Contrary to this, an RCT by Rannou et al. (2017) showed only a reduction 

by five points after one month of physical therapy, which is closer to the findings of the 

VR group in this study. The CHFS provided a patient-reported outcome measure about 

the perceived benefits of exercises on their ADL performance. The reduction in score 

therefore showed an improvement in ability to perform ADLs, suggesting at least short-

term beneficial effects of exercises. The data in this study matches the data presented 

in the literature, however, as the CHFS relies on patient feedback, the mental health 

status and attitude towards their disability will affect this measure. This is outlined by 

psychological models, such as the Kübler-Ross model (Bolden, 2010). A prominent 

example from this study is one participant of the physiotherapy group, who reported a 

drop of 61 points after four weeks of exercises, reflecting a transition from very 

impaired to no impairment, and maintained a level of no impairment at four weeks after 

exercise completion. This patient further reported feeling more confident, less 

depressed and conscious about their hands and was exceedingly more confident to 

complete ADLs independently.  

Finger dexterity improved in both groups, but in summary the VR group showed greater 

improvements than the physiotherapy group. Dexterity has been assessed in some 

studies as part of the Arthritis Hand Function Tests (Backman et al., 1991), which 

includes a 9-hole peg test and measures time required to move the pegs. Based on 

this test, studies have reported improved levels of dexterity following exercises or 

manual massages (Mancuso and Poole, 2009). The magnitude of change can however 

not be directly compared to the keyboard tapping speed measured in this study. It has 

been suggested in the past that there might be a neurological component to the 

disease (Amaral et al., 2013), which is supported by data in this study, and data 
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reported in the literature, showing improved dexterity following training. Finger dexterity 

is one contributor to hand function, therefore, dexterity should be targeted in 

interventions. The data presented in this study is limited as the interventions 

predominantly targeted the range of motion. Future research should therefore explore 

the effect of dexterity-specific exercises in patients with SSc to determine the 

contribution of a deteriorated finger dexterity to reduced hand function.  

The ΔROM calculated between test sessions showed very variable results. While the 

median ΔROM was mostly close to 0°, some clinically significant increases (>5°, 

(Gajdosik and Bohannon, 1987; McGinley et al., 2009)) in ROM were measured for the 

FE range. The VR group did show greater improvements on average, however, there 

were many outliers identified in both groups, which will likely have skewed the analysis. 

AA ROM was improved in both groups, whereby the VR group showed greater 

improvements. We identified motion limitations for the AA range in Chapter 4, which led 

to the integration of an AA range-specific mode in the VR game. The only small AA 

ΔROM might be due to the smaller AA ROM than FE ROM available in general. Both 

groups included exercises for AA range, yet, the VR group did show greater 

improvements than the Physiotherapy group, meaning that the movement in AA can be 

rehabilitated and should be targeted in exercise regimes.  

Participants of the VR group reported higher levels of motivation to continue the 

exercises as they felt a beneficial effect from the exercises. Participants of the 

Physiotherapy group had strongly conflicting responses on motivation, and were found 

to be less likely to continue the exercises in the future, despite reporting improved 

ability to perform ADLs and feeling more confident about their hands. The low 

adherences and risk of drop out are therefore consistent with the existing literature. 

While the VR group showed greater magnitudes of improvements across the tests in 

general, it is important to note that the VR group completed supervised exercises, while 

the physiotherapy group only had three test sessions and a weekly phone call 
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(approximately 10 minutes) in the training phase. This could have potentially 

discouraged the physiotherapy group as they could see from the provided information 

sheet that the second group received weekly in-person visits, thus potentially leading 

the participants of the Physiotherapy group to believe they are at a disadvantage and 

thus reducing their efforts. Further, the effect of supervision on exercise effectiveness 

has been reported in the literature and could have led to an inflation of positive results 

in the VR group due to the Hawthorne effect. Unfortunately, due to technical limitations, 

it was at this stage not possible to offer the VR group an unsupervised intervention. 

However, this should be explored in future research. The motion data, collected with 

the Leap Motion device could not be processed with the neural network approach 

outlined in Chapter 6 due to inaccuracies in the NNs predictive ability. Therefore, the 

ROM is subjected to the systematic errors of the LM algorithm. However, as the data 

was collected under the same conditions and with the same device, the extent of the 

error is thought to be identical between sessions and for all subjects, which justifies the 

use of ΔROM as an outcome measure. Due to this limitation, the calculated magnitude 

of the changed ROM cannot be compared to other literature data.  

In general, the patient cohort was very broad in their disease status, which is reflected 

by large interquartile ranges across all numerical measures. Further the group sizes 

were small (n=9) after dropout, limiting the ability to make clear clinical suggestions.  

 

7.6. Conclusion 

Both intervention groups showed improvements for ability to perform ADLs, finger 

mobility, as well as dexterity. Across all measured variables the VR group showed 

greater improvements on the median values. The individual participant improvement 

was greater in the VR group as well for the FTP, CHFS and finger dexterity tasks.  

Non-significance of results can be due to large interquartile ranges which are likely due 

to the broad patient cohort considered in this study. Patients reported positive feedback 
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regarding motivational levels in the VR group, while the physiotherapy group showed 

less indication for future adherence to their programme. This pilot study has shown that 

VR has the potential to improve hand function and overcome adherence barriers 

compared to physiotherapy. Whilst proof of concept was successful, a multi-centre 

randomised control trial with long-term follow-up and more participants of various 

stages is required.   
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8.1. Overview 

The main aim of this research was to investigate the effect of a purpose build, portable 

virtual rehabilitation (VR) tool, informed by an objective 3D mobility assessment of 

hand function in patients with SSc. Hand function combines aspects of mobility, 

dexterity and strength, and when impaired, affects ability to perform ADLs.  A reduced 

ability to perform ADLs has negative impacts on mental health, independence and 

quality of life (Maddali-Bongi et al., 2014; Nguyen et al., 2014). In the first study, 

movement deviations from normality were assessed during functional tasks leading to 

the identification of movement impairments at all joints in both flexion-extension and 

abduction-adduction directions. This information was then used to inform a novel VR 

exercise tool to train finger mobility in a multi-joint approach. In a pilot study, the effect 

of training on the VR tool was compared to the effectiveness of conventional 

physiotherapy. The training programmes exposed the participants of both groups to 

exercises targeting the range of motion, however, finger dexterity was also assessed 

as dexterity is an aspect of hand function. A secondary aim was to create a portable 

device for hand motion analysis. Using the LM and artificial neural networks, a study on 

healthy controls was conducted to predict accurate kinematic data from a commercially 

available sensor. While this project showed promising results in healthy controls, 

several flaws in the prediction were identified. In order to use the method for future 

research in both healthy and pathologic populations, the current limitations and flaws 

need to be resolved.  

While some of the results were already discussed in the prior chapters, general 

questions need to be addressed under the consideration of the combined chapter 

results. The following questions will be addressed over the next sections: 

• Do objective measures provide new, valuable information for hand function in 

SSc relevant to clinical practice? 
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• Should ability to perform activities of daily living be used as a primary outcome 

measure?   

• Can a portable VR tool alone realistically increase adherence to exercise? 

• Can non-specialised commercially available sensors, such as the Leap Motion 

controller, be a good alternative to gold-standard opto-electronic systems?  

 

8.1.1. Do objective measures provide new, valuable information for hand 

function in SSc relevant to clinical practice? 

The functional tasks assessed in Study 1, opening a zipper or a lid, are frequently 

reported as problematic by patients with SSc. Therefore, it might be no surprise that it 

was identified that patients struggled more than the age-matched healthy controls. In a 

second step the contribution of individual joints to the overall MDPmean was assessed 

by eliminating one joint at a time from the MDP calculation. The existing literature 

states that the flexion range of the interphalangeal (IP) joints is predominantly affected. 

We found contrasting information where all joints and degrees of freedom are equally 

impaired. Further, our data indicated that extension range is impaired prior to flexion, 

suggesting that the currently used FTP as an assessment for finger mobility is 

insufficient and needs to be enhanced by a finger extension test and a finger spread 

test, especially in early stages of the disease. 

The translation of the MDP into clinical practice as an objective measure faces several 

barriers, such as cost, expertise and time demand. While all these barriers could be 

overcome with a portable motion capture system, such as the Leap Motion controller in 

association with artificial neural networks, the use and acceptance of the MDP 

approach by clinicians is a different challenge which can only be overcome with 

persistence and quality research conducted.  
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Until the barriers may be solved, the MDP can be replaced by simple measures that 

evaluate more than one movement. Therefore, it was suggested to include a finger 

spread-test and a positive prayer sign test during routine appointments. These take up 

very little time and provide simple distance measures, which are easy to understand by 

healthcare professionals. The MDP, on the other hand, is more complex to understand 

and could possibly best be used to measure disease progression over time.  

While the level of detail offered by the MDP might not be informative to the patient or 

directly affecting patient care, it provides information which can be used to design 

research studies. The design of any clinical research study needs to be justified by 

scientific or medical literature. When searching the literature there are multiple ways to 

identify a research questions, for example by identifying a gap or conflicting evidence. 

Research may also be justified if methodologies or the approach to research was 

flawed or prone to bias. Justifying a potentially very expensive drug or physical 

exercise intervention study purely based on subjective patient-reported outcome 

measures (PROMs) could therefore be considered a mistake, and potentially lead to 

reduced funding. In order to develop rigorous study design objective measures are 

essential to assess effectiveness without subjective bias. Therefore, the MDP and 

MDPmean as presented in this thesis provide new information, which can be used for the 

design of intervention studies and also to examine the effectiveness thereof.  

 

8.1.2. Should ability to perform activities of daily living be used as a primary 

outcome measure?  

A virtual rehabilitation (VR) tool was designed based on the information of the joint 

specific MDPmean. This novel tool could train finger extension-flexion range as well as 

abduction-adduction range in a playful environment that matched the individual’s 

ability. After four weeks of intensive exercises (3 x 30 min a week) finger dexterity and 

mobility had improved significantly. The ability to perform ADLs was also increased, 
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however not significantly. In comparison to conventional physiotherapy virtual 

rehabilitation performed slightly better when considering median values, but not 

significantly. Further the magnitude of change in patient-reported outcome measures 

(PROMs) was not correlated to the results of objective assessments. 

Based on these findings, it is debatable if PROMs should be used as a primary 

outcome measure to assess effectiveness of exercises or to assess mobility in clinical 

practice. PROMs are used to evaluate if a clinician’s treatment has the intended effect 

or if changes are required. Therefore, in research PROMs are a useful tool to evaluate 

the patient perspective on the process and identify means to improve the research 

process or identify new areas of research. The use of PROMs is considered central to 

good clinical practice and integral to patient-centred care (Kingsley and Patel, 2017). 

However, PROMs are known to be influenced by psychosocial factors, such as gender, 

age, ethnical background, level of education, disease activity at time of the evaluation 

and marital status (Frost et al., 2007). Further, if used in context of evaluating a new 

treatment, the type of intervention, and purpose (curative or pallative), are likely to 

influence responses to repeated PROMs over time (Frost et al., 2007). Further, 

depression, anxiety and social isolation are commonly reported for patients with SSc 

(Amaral et al., 2013; Cinar et al., 2012; Del Rosso et al., 2013; Nguyen et al., 2014). 

One example regarding the potential effect of psychology on PROMs is shown by a 

patient of the physiotherapy training group in the intervention study (Chapter 7), who 

showed a drop of 61 points on the CHFS (from severely impaired to no impairment at 

all), but only very minor positive changes on the objective measures. This patient 

further reported to be very depressed prior to starting the exercises, whereas 

depression was not a factor after four weeks. At the same time, patients stating no 

depression or anxiety prior to exercises still improved their ability to perform ADLs.  

Therefore, in order to fully understand and standardise responses to PROMs, a 

psychological assessment component is required. This could be achieved by adding 
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more questionnaires and scales specifically designed to assess depression and anxiety 

in patients with uncurable diseases, such has the Hospital Anxiety and Depression 

Scale (Snaith, 2003) or the Hamilton Depression Rating Scale (HAM-D) (Hamilton, 

1960). The Canadian Occupational Performance Measure (COPM) (Law et al., 1991) is 

a tool to evaluate occupational performance in multiple areas of life over time under 

consideration of special circumstances. It can be predominantly used to track changes 

over time taking into consideration tasks that are not specifically linked to the hands but 

that affect overall health and well-being.  

Psychological evaluation is very important in chronic conditions, as patients have to live 

with an uncurable disease which will eventually lead to early death. Access to a skilled 

psychologist to talk about and learning to cope with such a severe diagnosis would be 

invaluable (Frost et al., 2007). Patients with SSc have annual or bi-annual check ins 

with their care clinician, which includes multiple other tests regarding the physiological 

capacity, such as echo cardiograms, lung capacity tests and blood tests as well as a 

series of PROMs. A psychological assessment does currently not form part of this 

routine care, however, in order to fully understand PROMs and also some physiological 

tests, a psychological evaluation is required.  

 

8.1.3. Can a portable VR tool alone realistically increase adherence to 
exercise?  

One of the reasons to use VR was to counteract low adherence rates which are 

reported in the literature in relation to conventional therapy. The VR literature does 

indicate higher motivational levels towards VR than other therapies. The patients in the 

intervention study presented in this thesis (Chapter 7) filled in a non-validated 

questionnaire to evaluate likelihood of future adherence and motivation. Motivation is a 

complex term, which refers to needs, desires, wants or drives of a person towards an 

ambition or goal (Souders, 2019). Motivation has also been linked to adherence for 
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exercises in a sporting and therapeutic context. However, it depends on the motive 

itself that drives the ambition how well someone will adhere to exercises. Ryan et al. 

(2018) found that motives focussing on enjoyment, competence and social interaction 

will increase adherence to sporting exercise. Appearance and fitness as primary 

motives were less linked with adherence. The effect of motive on adherence could 

potentially be similar for rehabilitation programmes.  

While VR is likely to improve the motivational aspect by providing a playful and 

potentially competitive environment, there are several other barriers that influence 

adherence. Most frequently reported is a time burden, or difficulty to prioritise exercises 

over other commitments. Further, completing therapeutic exercises can be isolating as 

family and friends might not share or understand the need for the exercises. In a 

sporting environment this barrier could be overcome by joining group exercise classes 

or a sports team. In rehabilitation this is more difficult. A potential solution could be to 

provide VR tools as an online game where patients can compete or chat to one 

another. Integrating a social aspect to improve adherence goes well beyond the scope 

of this thesis.  

Work presented in this thesis also indicated a lack of educational resources, with five 

patients having been unaware of hand exercises for systemic sclerosis. Education of 

patients in regards to potential self-managed rehabilitation exercises is the first step 

which needs to be addressed by healthcare professionals. Patients need to be 

encouraged to complete exercises and be provided with resources which highlight not 

only what exercises to do but also illustrate beneficial effects of exercises to give the 

patients a purpose. Patients, who participated in the intervention study (Chapter 7), 

continued to complete exercises after the research study as they felt a benefit after 

having been provided with resources, materials and guidance. Unfortunately, the 

literature states low number of referrals to professionals and educational resources to 

be handed out in clinics (Bassel et al., 2012). If educational resources are not in place, 
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no intervention, even a portable and enjoyable game, can possibly improve adherence, 

as a game alone cannot convey the importance or purpose of exercises. Goal-setting is 

an important factor for any kind of exercises, and especially supervised goal setting to 

agree on realistic goals has been associated with more frequent achievements of these 

goals (Coppack et al., 2012; Nelis et al., 2018; Wilson et al., 2020). A supervised 

counselling session with an experienced health care professional to set realistic goals 

and manage expectations prior to an exercise prescription in form of virtual 

rehabilitation or physiotherapy could greatly benefit adherence to exercise programmes 

in patients with systemic sclerosis.  

 

8.1.4. Can non-specialised commercially available sensors, such as the Leap 

Motion controller, be a good alternative to gold-standard opto-electronic 

systems?  

Research in this thesis relied on two main methods: a marker-based and a markerless 

motion capture approach. Both methods have benefits and limitations discussed in the 

previous chapters (Chapter 2 and 3). In an attempt to overcome the limitations of both 

systems, an artificial neural network was applied to generate accurate motion data from 

a cheap and portable device, in this case the Leap Motion controller (LM). This protocol 

was tested in young healthy adults and showed on average a reduction in root mean 

square error. While the reductions were significant, the agreement between NN 

prediction and gold-standard measurements of kinematics was not perfect, and rather 

inconsistent. The hand has 29 degrees of freedom, resulting in several million 

theoretical ways to move our hands. Given the sheer amount of possible movements 

and the many mathematical assumptions made in the kinematic models prior to neural 

network analysis, it is not necessarily possible to achieve perfect agreement between 

the two motion capture techniques and resulting models.  

Hand motion analysis is unlikely to be done in healthy controls, but rather in impaired 

individuals. The impairment could be linked to neurological conditions, such as stroke 
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or Parkinson’s disease, or it could be due to deformities, such as in SSc or rheumatoid 

arthritis. Structural impairments visible to the eye cannot be detected by the LM and the 

NN could not correct for the impairments either as it was not configured to do so in the 

first place. In Chapter 4 it was concluded that all joints are impaired, but the large 

spread of data also indicated that movement impairments very variable between 

patients, although some patterns could be identified. The large variability of 

impairments in turn will increase the difficulty of a NN to predict data from the low-

quality input source. To overcome this barrier a sizeable amount of data from patients 

with various degrees of impairment is required. Given the rarity of the disease, this will 

involve a larger multi-centre study to obtain the desired sample size.  

  

8.2. Limitations 
 

8.2.1. Sample size 

As SSc is a rare disease, identifying suitable participants can be challenging. Our 

studies included 10 patients for a cross-sectional evaluation of hand function, and 20 

(split into 2 x 10 patients) for an intervention protocol. These numbers are quite small, 

even in comparison to other non-pharmacologic studies in SSc evaluating non-

supervised and remotely monitored interventions (Mugii et al., 2006; Poole et al., 

2013c; Rannou et al., 2016; Rannou et al., 2017; Willems et al., 2015b). However, if 

interventions are required to be supervised, such as the VR group in this research, the 

cohort sizes are smaller (Bongi et al., 2009; Bongi et al., 2011; Piga et al., 2014; Pils et 

al., 1991; Sandqvist et al., 2004a; Uhlemann et al., 1990; Werner and Eder, 1996). 

Therefore, based on protocol design the patient cohort size is consistent with other 

studies in the literature. Nevertheless, the small sample size diminished the ability to 

generalise the findings from this study and an evaluation of the tested protocols in a 

larger, scientifically justified sample size is required. The data presented in this thesis 

could be considered a pilot study, which allowed the calculation of sample sizes. It was 
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determined, that 80 (based on the FTP data), 115 (for ROM assessments) and 490 

(CHFS) patients are required to complete the protocol in order to obtain values which 

reflect the whole population, thus justifying the demand for a larger cohort study. These 

calculations were based on the standard deviations and 95% confidence interval of the 

data.  

 

8.2.2. Variability of patient cohort 

The patient-centred studies include not only a small sample size, but also a highly 

variable cohort. The disease does not have a clear progression pattern, and the used 

inclusion and exclusion criteria were insufficient to produce a narrow cohort. This is 

particularly apparent in the intervention study, where we identified large interquartile 

ranges and multiple outliers across all measurements. To overcome this in the 

statistical analysis, non-parametric data testing was applied, however, the cohort effect 

(McAdams, 2008) is likely to influence the results. Therefore, all results from patient 

data merely described a general trend which needs to be interpreted with caution. To 

generate a more focussed patient group, some inclusion and exclusion criteria should 

be amended. The patients had a large range of movement impairments, which could 

have been prevented by adding to the inclusion criteria an FTP of 1-6 cm or similar, to 

ensure that patients have at least some visible impairment prior to the intervention 

programme. Further, a criterion for mental health should be added to the exclusion 

criteria, to minimise the effect of psychological factors on movement ability. 

 

8.2.3. The black box that is the LM integrated algorithm  

The LM is a commercially available sensor for touchless interaction with computers. 

The LM hosts an inaccessible extrapolation algorithm to reconstruct a 3D hand 

skeleton based on two video images. Due to the inaccessible nature of the algorithm, 

the understanding of the generation of the skeleton is limited. Yet, we can tell from the 
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visual image of the skeleton that the fingers are never entirely straight with the LM 

algorithm. Further, pathological deformities are unlikely to be picked up by the LM if 

only a single joint is affected. For example, a long-standing fixed flexion contracture of 

a specific joint in an SSc patient would not be correctly identified. The application of the 

neural network could potentially offset this error if the NN is trained with sufficient 

patient data. Yet this was not done in this study. Instead we calculated changes in the 

possibly incorrectly measured ROM to evaluate the magnitude of change before and 

after exercises. While the ROM measures themselves are likely inaccurate if they were 

to be compared to goniometer data or motion capture data, the error induced by the LM 

does not change over time. Therefore, the pre- and post-exercise measurements are 

affected by the same error, making the magnitude of change between test sessions a 

relevant measure. Yet, the absolute values should not be compared to goniometer or 

motion capture data (Coton et al., 2016; Nizamis et al., 2018).  

 

8.2.4. Supervised and non-supervised exercises 

In the intervention study we compared a supervised VR group to a mostly non-

supervised physiotherapy group. This was justified as there is already evidence that 

physiotherapy can be used to rehabilitate hand function in non-supervised studies 

(Piga et al., 2014; Poole et al., 2013c; Rannou et al., 2017). For the VR group there is 

no data in the literature and this study’s purpose was to identify if VR is a suitable tool 

for hand function rehabilitation in patients with SSc. Further, funding for the cost of 

equipment (laptops, LM controllers and D-Flow software licenses) that would be 

required to conduct the VR group as a non-supervised group was not available. 

However, comparing supervised and non-supervised groups is frequently discussed in 

the literature for intervention studies ranging from children, to adults and from healthy 

to impaired cohorts (Coll-Fernandez et al., 2016; Florez-Garcia et al., 2017; Hartvigsen 

et al., 2010; Nicolai et al., 2009; Rustaden et al., 2017). The Hawthorne effect refers to 
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the awareness of being observed and the subsequent possible impact of behaviour on 

the results while enrolled in a research study (McCambridge et al., 2014). Based on the 

theory of the Hawthorne effect, the results of the VR group could have been inflated. 

Simultaneously the non-supervised physiotherapy group could have felt disadvantaged 

compared to the supervised VR group therefore reducing the effort put into training. 

Controversially it could be argued that participants in the physiotherapy group would 

increase the effort to compensate for the lack of supervision. To minimise the possible 

Hawthorne effect, verbal engagement was kept to a minimum during the VR training 

sessions. The research team also supervised the first physiotherapy training session. 

After the first training, the participants of the physiotherapy group received weekly 

phone calls to provide some interaction between the researcher and the patient.  

 

8.3. Recommendations for future research 

Hand movements are complex, and therefore the MDP provides an interesting 

measure (Chapter 4). While the MDP is validated in the lower limb, it has not yet been 

compared to other potential indices in the hand. The MDPmean can be used to monitor 

disease progression, of which little is known about in SSc. It is currently unknown how 

sensitive the MDPmean is regarding the development of flexion contractures.  

The use of artificial neural networks to improve the accuracy of the LM showed very 

promising results, but the error between LM and Vicon was never completely 

diminished (Chapter 6). Future research should primarily aim to enhance and improve 

the current methods and data sets. The data sets should be enhanced with additional 

data for all movements from participants of multiple ages. The processing of data prior 

to NN training has major impact on the quality of the NN. In this study we offset a single 

joint to the same position to overcome the difference between two distinct Cartesian 

coordinate systems. A more accurate approach would be the merging of the two 
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systems using ‘Iterative closest point’ (ICP) methods (He et al., 2017). ICP refers to an 

algorithm designed to minimise the difference between two data clouds, such as 3D 

motion data. A PCA and z-score were performed to reduce dimensionality and scale 

the data. Both the PCA and z-score had to be performed on an accumulated matrix in 

order to be able to reverse the processes after NN training. For a 10-fold cross-

validation a PCA and z-score could have been completed on individual trials, which 

would have improved the data. However, if tested with new subject LM data only (Vicon 

data not present) the PCA would not be reversible to predict data as the principal 

component coefficients and mean of the corresponding Vicon data are essential. 

Therefore, a method to overcome these processing barriers needs to be identified. The 

NN was trained with joint centre data. For a more direct approach angle data could also 

be used to train the NN. In this research study a shallow neural network was trained. 

Given the complex temporal-spatial data, a time-series or deep neural network could 

improve the NN prediction. Once corrected for healthy individuals, the NN approach 

needs to be trained with movement data of impaired participants. The LM could 

potentially be insensitive to pathologic hand deformities and impairments, and thus the 

NN predictions could be inaccurate for patients.  

Once the Leap Motion method has been improved, this system should be integrated 

into a virtual rehabilitation programme. While the current tool can be played without 

accurate angular kinematics (Chapter 5), more advanced tools could use kinematics 

from a real-time neural network to either drive the game or as another form of bio-

feedback to show progress of hand mobility in response to exercises. The greatest 

challenge would be the translation of the improved methods to a large-cohort multi-

centre randomised controlled trial.  

Data in this thesis (Chapter 7) indicated positive short-term effects of VR for hand 

mobility in patients with SSc. However, these measurements are subject to limitations, 

among which is the small sample size, supervision and short exercise period. The 
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study fulfilled the purpose of a pilot study into the initial effects of VR in SSc, and 

should in a next step be enhanced to non-supervised VR in a large sample size with a 

long follow-up period (at least 12 months). It is thought that VR improves adherence at 

this stage but this needs to be verified by extensive follow-ups. Further a tele-

monitored approach could be employed in an attempt to compromise between 

supervised and non-supervised exercises. If a larger study is conducted, psychological 

expertise should be drawn upon to evaluate the psychological influence on the 

performance of exercises, adherence and the effect of exercises on the mental health, 

confidence and self-efficacy.  

 

8.4. General conclusions 

Despite hand movement impairments in patients with SSc being evident and 

appreciated by clinicians, there is not much objective data regarding the magnitude of 

impairment in the literature. Most studies evaluated the impact of the impairments on 

the quality of life and ability to perform ADLs using self-reporting questionnaires. Other 

studies report subjectively observed data. In this thesis movement deviations from 

healthy controls were objectively assessed and identified that movement impairment is 

evident at all joints and in all movement directions, contrasting the literature stating that 

predominantly the flexion-extension range of the interphalangeal joints is impaired. This 

new knowledge was then incorporated into a purpose built, portable virtual 

rehabilitation game to train the impaired movements identified. The novel intervention 

tool was then tested in comparison to conventional physiotherapy. After four weeks of 

intensive exercises patients showed improved finger mobility, finger dexterity and 

ability to perform ADLs in both groups, while the VR group showed greater 

improvements. To the author’s knowledge, this represents the first study on VR in 

patients with SSc.  
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The initial studies were conducted in a conventional lab-based environment, however, 

to be able to generate translatable research the stationary, gold-standard approach 

needs to be complemented with low cost, lower accuracy but more feasible, portable 

motion capture methods, such as the Leap Motion controller. Advanced mathematical 

algorithms like ANNs could reduce the error of the LM relative to gold-standard Vicon 

data, however, the inconsistency in NN output prevented the application of this method 

to research at this stage.  

The low participant numbers in all studies present a limitation, and a larger sample size 

would be desirable to meet average cohort sizes of the existing literature. Despite 

some weaknesses of the research study, the individual patient responses to the 

exercises have established important insight into the suitability of VR to hand mobility, 

finger dexterity and ability to perform ADLs in patients with SSc. 

In conclusion, hand impairments affect all joints in all movement directions and virtual 

rehabilitation provides a good option to maintain hand function, including movement 

ability and finger dexterity, in patients with systemic sclerosis.  

 

8.5. Original contributions to knowledge 

Every study presented in this chapter creates new knowledge in the field of Systemic 

sclerosis and biomechanics. 

Study 1 (Chapter 4) saw the application of the Movement Deviation Profile to the upper 

extremity. To the author’s knowledge this is the first time that a movement index has 

been applied to the upper extremity. The upper extremity, in particular the hand, 

represents a smaller field of biomechanical research, yet the importance is not to be 

neglected. An index to show at which time point patients struggle in dynamic tasks is 

important to not only quantify the level of impairment but also to inform rehabilitation 

exercises and other interventions.  
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The concept of virtual rehabilitation is well known, however, a game to dynamically 

train all finger joints and multiple directions of movement for patients with systemic 

sclerosis did not exist prior to the research presented in this research (Chapter 5). In 

fact, even for more common conditions, such as Rheumatoid Arthritis, a game to train 

hand function is not available, and may benefit from the results of this project.  

Markerless motion capture is becoming increasingly more common, however, like 

every other aspect of biomechanics, the markerless approaches focus on the lower 

extremity. The Leap Motion might be commercially available, but by using artificial 

neural networks, the Leap Motion accuracy was improved, thus showing important, and 

new work to create a hand specific markerless motion capture tool. This work has 

further won multiple awards at conferences, showing the appreciation of technical 

detail by the scientific community.  

The intervention study was the first study in SSc to assess if virtual rehabilitation has 

beneficial effects on hand function. Interestingly, similar to the computer game itself, 

there is currently no other study evaluating the effect of virtual rehabilitation in any 

rheumatic condition, even the more common Rheumatoid arthritis and Lupus. 

Therefore, this study contributes important knowledge to the future of rehabilitation 

exercises, virtually and non-virtually, in rheumatoid conditions.   
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Appendix 1:  

 

The script below was applied in D-Flow to initiate jumping and falling of the ball in the 

presence or absence of movement respectively.  The script was written in Lua, the 

integrated coding language for D-Flow, in the Script module.  

 

The script relied on a single input (ratio) which reflected the position of the finger within 

the range, and created a single output (s) which reflected the displacement of the ball.  

 

Script:  

if v==nil then     At the start, the ball was at it the set start position  
 v=0     thus velocity (v) and displacement (s) were 0 and  
 s=0     the finger was maximally flexed/abducted this ratio  
 ratio_old=0    was also 0.  
end 
 
g=9.81*inputs.get("g_mult") The fall acceleration of the ball was defined at 9.81 

multiplied by the gravity multiplier as defined in 
the parameter settings in the console.  

 
v=v-g*framedelta() The velocity of the ball increased for every frame 

recorded. The rate of change of the velocity 
depends on ‘g’ a                              .  

 
s=s+v*framedelta() The displacement, thus position of the ball was 

then defined as the sum of the position of the ball 
in the previous frame and the product of the 
velocity of the current frame.  

 
ratio= inputs.get ("ratio") Here the ratio, effectively finger position within the 

calibrated range was added.  
 
jump_speed= inputs.get("jump_speed") This line linked the script to the adjustable 

 a a      ‘          ’ w              
manipulated in the console to match player ability.  

 
if (ratio>0.8 and ratio_old<0.8) then The conditions of the jumping of the ball were 

defined as: the ratio has to exceed 0.8 in the 
current frame and had to be less than 0.8 in the 
previous frame. This ensured that the ball would 
only jump once and the player had to flex the 
finger, followed by another extension (or 
abduction followed by an adduction respectively) 
to initiate another jump of the ball.  

 
v=jump_speed If the conditions where met, the velocity was 

changed to jump speed resulting in a single 
upwards bounce of the ball.  

end 
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if s<-4 then If the ball fell to the ground (displacement -4 from 

v=-v*0.9 starting position) the velocity of the ball changed 
end and was reduced, resulting in a bouncing ball that, 

in the absence of movement would become static.   
 
if s>2-0.25 then The position of the ball was calculated from the  

v=0  centre of the ball therefore the ball radius was  
end subtracted to ensure the bouncing would occur at 

the time the lower margin of the ball touched the 
ground. 

  
ratio_old= ratio At the end of the scrip the ratio of the current 

frame was stored as ratio_old to be used in the 
analysis of the next frame 

 
outputs.set("Position", s) The Position of the ball was generated as output 

and used further in other modules to drive the 
game.  
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Appendix 2:  

The random number generator seeds a random number upon creation of any neural 

network in Matlab. The generated number sets the weights and biases for all neurons 

in the network, and therefore can affect the predictive strength of a neural network. As 

the random number is seeded newly each time the network is generated, no NN will 

ever be completely identical if initiated twice or more times, without constraints on the 

random number generator.  

As the random number selected can influence the quality of the NN, the NN was 

evaluated 1000 times, with the random number generator being controlled. The 

weights increased from 1 to 1000 in single number increments. The performance was 

analysed based on the neural network test performance measure (distance between 

target and output data, measured using mean squared error (MSE)) and the resulting 

correlation coefficient. The value showing the best performance values, thus smallest 

mean squared error, and highest correlation coefficients was determined to produce 

the best result for our data set, in this case 19 as can be seen in the figures below.  

The network performance: 

    

The mean squared error was smallest for when the RNG was 19 (MSE: 0.04107), 

however, the range of MSE over all 1000 seeds was negligible: The average MSE was 

0.04132, with the range being 0.00038 MSE (Min: RNG19 = 0.04107, Max: RNG731 = 

0.04145).  
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The correlation coefficient 

 

The correlation coefficient was highest for when the RNG was 19 (MSE: 0.97913), 

however, the range of MSE over all 1000 seeds was small: The average correlation 

coefficient was 0.97481, with the range being 0.00755 (Min: RNG464 = 0.97158, Max: 

RNG423 = 0.97913).  

 

Summary 

On the sixth significant figure the RNG seed 423 resulted in a higher correlation 

coefficient than 19. Under consideration of both MSE and correlation coefficient the 

seed 19 was determined to be the most beneficial. Neither performance, nor correlation 

coefficient were much affected by the RNG seed, as evident by the small ranges of 

(<0.01) for both parameters.  
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Appendix 3: 

Application of an artificial neural network to predict joint centres 

and subsequently angles of finger joints during flexion extension 

movement 

Following the same protocol as outlined in chapter 6, a task specific neural network for 

the left and right hand was generated, trained and tested. The results were assessed 

using the same methods as outlined in Chapter 6 but the hands were trained and 

evaluated separately.  

Left hand: 
p-value: 

  
On the left, the p-value for the input (LM) and target (Vicon) correlation is shown. On 

the right the p-value for the NN output-target correlation. Both LM and NN generated 

data is significantly correlated to the Vicon target data for most angles (y-axis) and NNs 

(NN1 - NN10: x-axis). While the output data shows in sum more significant correlations, 

there are more highly insignificant correlations for the output data as well. These are 

mostly linked to abduction-adduction angles (row 16-20), which are only minorly moved 

in the flexion-extension movement the participants followed.  

Correlation coefficient (R2): 

 
On the left, the correlation coefficient for the input (LM) and target (Vicon) data is 

shown (mean R value: 0.57). On the right the correlation coefficient for the NN output-

target correlation (mean R value: 0.6). In sum, both methods show similar strength of 

correlation. The abduction-adduction angles (row 16-20) show weak correlations in for 

both the LM-Vicon correlation and the NN-Vicon correlation, supporting the findings of 

the p-value table.  
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RMSE 

 

On the left, the RMSE between the input (LM) and target (Vicon) data is shown. On the 

right the RMSE between the NN output and Vicon data. The LM-Vicon correlation 

showed greater RMSE values (Mean: 18.74° ± 8.35°, Range: 3.62°- 42.12°) than the 

NN output -Vicon correlation (Mean: 12.79° ± 5.79°, Range: 3.87°- 37.77°). This 

suggests that the neural network successfully reduced the error of the LM. The RMSE 

was smallest for the abduction-adduction angles (row 16-20) in both correlation 

approaches, which is interesting considering that the correlations were weak and 

insignificant for these angles.  

Percentage change RMSE 

 
The percentage change in RMSE between the two methods (LM to Vicon and NN 

output to Vicon) was calculated. As the purpose of the NN method was to reduce the 

error of the LM, a negative value in the table indicates a reduced RMSE value. And 

positive value indicates an increased RMSE after for the NN output data relative to the 

LM raw data. On average the RMSE was reduced by 31%, which was found to be 

significant (p<0.001). 
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Right hand: 

 

p-value: 

 
On the left, the p-value for the input (LM) and target (Vicon) correlation is shown. On 

the right the p-value for the NN output-target correlation. Both LM and NN generated 

data is significantly correlated to the Vicon target data for most (LM to Vicon) or all (NN 

output to Vicon) angles (y-axis) and NNs (NN1 - NN10: x-axis). Contrary to the left 

hand, the NN output is significantly correlated for all joints in all NNs, suggesting 

differences in data sets or differences of the quality of input data. Similarly, to the left 

hand, the insignificant correlations for the LM to Vicon correlation data are mostly 

linked to abduction-adduction angles (row 16-20), which are only minorly moved in the 

flexion-extension movement the participants followed.  

Correlation coefficient (R2): 

 
On the left, the correlation coefficient (R2) for the input (LM) and target (Vicon) (mean R 

value: 0.73) correlation is shown and on the right R2 for the NN output to Vicon 

correlation (mean R value: 0.81). In sum, both methods show similar strength of 

correlation for the flexion-extension angles (row 1-15).While FE angles show strong 

correlations in both approaches as indicated by the yellow shading, the abduction-

adduction angles (row 16-20) show weak correlations for both the LM-Vicon 

comparison and NN output to Vicon, whereby the LM to Vicon correlations are weaker 

than the NN output to Vicon ones. This trend is supported by the finding on the left 

hand and is likely linked to the limited amount of movement in AA direction during the 

flexion-extension movement.  Weak R2 values further support the findings of the p-

value table.  
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RMSE 

 
On the left, the RMSE between the input (LM) and target (Vicon) data is shown and on 

the right the RMSE between the NN output Vicon data. The LM-Vicon comparison 

showed greater RMSE values (Mean: 19.21° ± 7.91°, Range: 4.19°- 38.99°) than the 

NN output to Vicon comparison (Mean: 8.89° ± 3.49°, Range: 3.46°- 28.41°). This 

suggests that the neural network successfully reduced the error of the LM. The RMSE 

was smallest for the abduction-adduction angles (row 16-20) for the LM to Vicon 

comparison, and the NN approach showed conflicting effects on the RMSE magnitude 

for these joints, decreasing some RMSE values while increasing others.  

 

Percentage change RMSE 

 
The percentage change in RMSE between the two methods (LM to Vicon and NN 

output to Vicon) was calculated. As the purpose of the NN method was to reduce the 

error of the LM, a negative value in the table indicates a reduced RMSE value. And 

positive value indicates an increased RMSE for the NN output data relative to the LM 

raw data. On average the RMSE was reduced by 54%, which was found to be 

significant (p<0.001). However, the abduction-adduction angles (row 16-20 show very 

conflicting evidence, which might be linked to the limited amount of movement in these 

joints.  
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Appendix 4: 

Application of an artificial neural network to predict joint centres 

and subsequently angles of finger joints during abduction-

adduction movement 

Following the same protocol as outlined in chapter 6, a task specific neural network for 

the left and right hand was generated, trained and tested. The results were assessed 

using the same methods as outlined in Chapter 6, but the hands were trained and 

evaluated separately. In this appendix the ability to measure and predict abduction-

adduction movements is evaluated.  

Left hand: 

p-value: 

 
On the left, the p-value for the input (LM) to target (Vicon) correlation is shown and on 

the right the p-value for the NN output to Vicon correlation. Both methods show mostly 

significant correlations. All insignificant correlations for both methods are for flexion-

extension angles (rows 1-15), while all abduction-adduction angles (16-20) are 

significantly correlated. This might be linked to abduction-adduction being the primary 

movement in the analysed task.  

Correlation coefficient (R2): 

 
On the left, the correlation coefficient (R2) for the input (LM) and target (Vicon) 

correlation (mean R value: 0.30) is shown and on the right R2 for the NN output to 

Vicon correlation (mean R value: 0.61). In particular for the FE angles (rows 1-15) the 

LM to Vicon data shows weaker correlations than the NN output and Vicon data as 

indicted by the change in shading of the cells. Important to notice are also some 

negative correlations for the Middle MCP joint abduction adduction angle (row 18) in 

both methods. The reason for this is unclear.  
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 RMSE 

 
On the left, the RMSE between the input (LM) and target (Vicon) data is shown and, on 

the right, the RMSE between the NN output Vicon data. The LM-Vicon comparison 

showed greater RMSE values (Mean: 20.61° ± 11.98°, Range: 2.13°- 55.59°) than the 

NN output -Vicon comparison (Mean: 6.73° ± 3.74°, Range: 1.57°- 19.68°). This 

suggests that the neural network successfully reduced the error of the LM on average. 

The RMSE values for the flexion-extension angles (row 1-15) of the LM to Vicon 

comparison were greater than the abduction-adduction related angles (row 16-20), 

which supports the findings from the flexion-extension approaches. The NN approach 

could successfully reduce the large RMSE values of the flexion-extension angles as 

indicated by the change of colour in the table.  

 

Percentage change RMSE 

 
The percentage change in RMSE between the two methods (LM to Vicon and NN 

output to Vicon) was calculated. As the purpose of the NN method was to reduce the 

error of the LM, a negative value in the table indicates a reduced RMSE value. And 

positive value indicates an increased RMSE after for the NN output data relative to the 

LM raw data. On average the RMSE was reduced by 67%, which was found to be 

significant (p<0.001). While the RMSE was reduced for the flexion-extension angles 

(row 1-15), changes for the abduction-adduction angles are conflicting. Most AA-angles 

show a reduced RMSE in the NN to Vicon data set, yet for some the error increased. 

This might be linked to the already small RMSE of the LM to Vicon data and the large 

discrepancies for the flexion-extension angles, leading to an overestimation of 

abduction-adduction movements.  
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Right hand: 

 

p-value: 

 
On the left, the p-value for the input (LM) to target (Vicon) correlation is shown and on 

the right the p-value for the NN output to Vicon correlation. Both methods show mostly 

significant correlations, whereby the NN output to Vicon data shows more significant 

correlations. Most insignificant correlations for both methods are for flexion-extension 

angles (rows 1-15), while abduction-adduction angles (16-20) are significantly 

correlated, with the exception of the Middle MCP joint for the 10th data split (x-axis) of 

the LM to Vicon data set and the 9th data split for the NN output to Vicon data. The 

weak correlations support findings from the left hand and again, may be linked to 

abduction-adduction being the primary movement.  

 

Correlation coefficient (R2): 

 
On the left, the correlation coefficient (R2) for the input (LM) and target (Vicon) 

correlation (mean R value: 0.13) is shown and on the right R2 for the NN output to 

Vicon correlation (mean R value: 0.74). The LM to Vicon data shows mostly very weak 

to moderate correlations, and some strongly negative (mostly row 2: Thumb MCP joint 

flexion extension). The reason for this is unknown, however it appear that the NN can 

rectify this poor correlation. The NN output indicates some perfect correlation (R2 = 1) 

and shows generally greater strength of correlation as indicated by the shading of the 

cells.   
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RMSE 

 
On the left, the RMSE between the input (LM) and target (Vicon) data is shown and, on 

the right, the RMSE between the NN output Vicon data. The LM-Vicon comparison 

showed greater RMSE values (Mean: 47.33° ± 21.99°, Range: 6.31°- 104.80°) than the 

NN output -Vicon comparison (Mean: 21.37° ± 22.58°, Range: 1.56°- 107.86°). This 

suggests that the neural network successfully reduced the error of the LM on average. 

The RMSE values for the flexion-extension angles (row 1-15) of the LM to Vicon 

comparison were much greater than the abduction-adduction related angles (row 16-

20), similar to the pattern identified at the left hand. The NN approach could 

successfully reduce the large RMSE values for many flexion-extension angles as 

indicated by the change of colour in the table, yet some sizeable RMSE values remain. 

The AA angles showed smaller RMSE values between the LM  and Vicon data, and 

these could mostly be further reduced by the NN approach.  

Percentage change RMSE 

 
The percentage change in RMSE between the two methods (LM to Vicon and NN 

output to Vicon) was calculated. As the purpose of the NN method was to reduce the 

error of the LM, a negative value in the table indicates a reduced RMSE value. And 

positive value indicates an increased RMSE after for the NN output data relative to the 

LM raw data. On average the RMSE was reduced by 55%, which was found to be 

significant (p<0.001). While the RMSE was reduced for most angles the magnitude of 

chance varied greatly. The reasons for the inconsistent changes in RMSE by the neural 

network approach cannot be explained at this stage.  
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Appendix 5:  

Application of an artificial neural network to predict joint centres 

and subsequently angles of finger joints during thumb 

circumduction movement 

Following the same protocol as outlined in chapter 6, a task specific neural network for 

the left and right hand was generated, trained and tested. The results were assessed 

using the same methods as outlined in Chapter 6, but the hands were trained and 

evaluated separately. In this appendix the ability to measure and predict thumb-

circumduction movements is evaluated.  

Left hand: 

p-value: 

 
On the left, the p-value for the input (LM) to target (Vicon) correlation is shown and on 

the right the p-value for the NN output to Vicon correlation. There are 34 insignificant 

correlations for both approaches, but not for the same angles (y-axis) or 10% data 

splits (x-axis). In comparison to abduction-adduction and flexion-extension movements 

there are many more insignificant correlations. As only the thumb is moving in this 

circumduction trial, most attention should be given to the angles of the thumb (Flexion-

Extension angles of the TM (row 1), MCP (row 2) and IP (row 3) joints and Abduction 

adduction of the TM joints (row 16). Yet even for the thumb joint angles there are 

insignificant correlations.  

Correlation coefficient (R2): 

 
On the left, the correlation coefficient (R2) for the input (LM) and target (Vicon) 

correlation (mean R value: 0.08) is shown and on the right R2 for the NN output to 

Vicon correlation (mean R value: 0.13). For both approaches’ correlations are mostly 

very weak to moderate, which is in conjunction with the findings in the p-value table.  



215 
 

RMSE 

 

On the left, the RMSE between the input (LM) and target (Vicon) data is shown and, on 

the right, the RMSE between the NN output Vicon data. The LM-Vicon comparison 

showed greater RMSE values (Mean: 28.06° ± 13.63°, Range: 7.08°- 64.1°) than the 

NN output -Vicon comparison (Mean: 12.73° ± 10.03°, Range: 1.90°- 60.45°). This 

suggests that the neural network successfully reduced the error of the LM on average, 

but the pattern from the flexion-extension and abduction adduction movements, 

indicating that the predominantly moving joints are better predicted, is not supported by 

the RMSE for thumb circumduction.  

 

Percentage change RMSE 

 
The percentage change in RMSE between the two methods (LM to Vicon and NN 

output to Vicon) was calculated. As the purpose of the NN method was to reduce the 

error of the LM, a negative value in the table indicates a reduced RMSE value. And 

positive value indicates an increased RMSE after for the NN output data relative to the 

LM raw data. On average the RMSE was reduced by 55%, which was found to be 

significant (p<0.001). In the flexion-extension and abduction-adduction movements, the 

RMSE of the predominantly moving joints was typically reduced by the NN application. 

Here, for thumb circumduction, the RMSE frequently increases for the primarily moving 

joints (Row 1-3 and row 16). The reason for this is unclear at this stage.  
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Right hand: 

 

p-value: 

 
On the left, the p-value for the input (LM) to target (Vicon) correlation is shown and on 

the right the p-value for the NN output to Vicon correlation. There are 40 and 35 

insignificant correlations respectively. In comparison to abduction-adduction and 

flexion-extension movements there are many more insignificant correlations, but it this 

finding is an accordance with the left-hand thumb circumduction. When assessing the 

thumb joint specifically (Flexion-Extension angles of the TM (row 1), MCP (row 2) and 

IP (row 3) joints), still several non-significant correlations can be identified. This 

contrasts findings from the flexion-extension and abduction-adduction applications, but 

is in agreement with findings from the left-hand thumb circumduction data.   

 

Correlation coefficient (R2): 

 
On the left, the correlation coefficient (R2) for the input (LM) and target (Vicon) 

correlation (mean R value: 0.13) is shown and on the right R2 for the NN output to 

Vicon correlation (mean R value: 0.40). For both approaches’ correlations are mostly 

very weak to moderate, which is in conjunction with the findings in the p-value table. 

The NN seems to mostly reduce negative correlations but not weak to moderate ones, 

such as seen in the first data block (x-axis, 1) 
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RMSE 

 

 
On the left, the RMSE between the input (LM) and target (Vicon) data is shown and, on 

the right, the RMSE between the NN output Vicon data. The LM-Vicon comparison 

showed greater RMSE values (Mean: 25.85° ± 14.09°, Range: 2.61°- 75.05°) than the 

NN output -Vicon comparison (Mean: 6.39° ± 4.31°, Range: 0.65°- 28.60°). On 

average, the neural network reduces the error of the LM. Interestingly, in this data set, 

the LM shows greatest differences to the Vicon data for any FE angle of the most 

proximal joint of each finger (Row 1: Thumb TM joint,  Row 3: Index MCP joint, Row 7: 

Middle MCP joint, Row 10: Ring MCP joint and row 13: little MCP joint). Large errors at 

the thumb joints, despite being the primarily moving fingers, agrees with findings from 

the left hand. 

 

Percentage change RMSE 

 
The percentage change in RMSE between the two methods (LM to Vicon and NN 

output to Vicon) was calculated. As the purpose of the NN method was to reduce the 

error of the LM, a negative value in the table indicates a reduced RMSE value. And 

positive value indicates an increased RMSE after for the NN output data relative to the 

LM raw data. On average the RMSE was reduced by 75%, which was found to be 

significant (p<0.001). Whilst reduced on average, in several 10% data sets the RMSE 

for the thumb joints (row 1-3 and row 16) increases following the application of the 

neural network, which cannot be explained at this stage.  
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Appendix 6:  

Only the dominant hand was evaluated when examining the effectiveness of the 

intervention protocols in Chapter 7. This decision was made as there was no 

statistically significant difference of range of motion in the dominant and non-dominant 

hand as measured with the Finger-to-Palm index (FTP) in patients with SSc. To ensure 

accuracy this comparison was repeated at all three test sessions, yet the pattern 

remained the same and no statistical difference, as determined by a paired samples t-

test) was identified at any stage between the dominant and non-dominant hand. Prior 

to the exercises the average FTP was slightly higher on the non-dominant hand (p = 

0.72), whereas at the post-exercise and follow up test the FTP of the non-dominant 

hand was slightly less (p = 0.11 and p = 0.71 respectively). 
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Appendix 7: 

 

 

Is that a Vicon in your pocket? An evaluation of the Leap Motion capturing finger movements 

Elena Eusterwiemann1, Marina Anderson2, Mark A Robinson1, Gabor J Barton1 

1Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. 
2Department of Rheumatology, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK. 

Introduction: The Leap Motion controller is a markerless, portable method for capturing hand and finger 

movements. It accurately and precisely registers positions of finger tips under static and dynamic conditions 

[1,2] and computes joint angles between finger bones. Yet, the accuracy of the angle computation is unknown 

in comparison to a gold standard optoelectronic system. The aim of this study was to compare angles 

measured with the Leap Motion controller and a Vicon system and assess if an artificial neural network can 

predict true finger movements from joint positions calculated by the Leap Motion device. 

Methods: A Leap Motion sensor (£49.99) was positioned under a hand to capture 3D coordinates of the 

carpometacarpal, metacarpophalangeal (MCPJ), proximal interphalangeal (PIPJ), distal interphalangeal 

(DIPJ) joints and the fingertip. Joint coordinates were streamed into D-Flow (Motek Forcelink, Amsterdam) via 

its Network module using a custom made C# program. 3D coordinates of retro-reflective markers dorsal to the 

CMCJ, MCPJ, PIPJ and DIPJ joint centre and Tip were streamed simultaneously from Vicon (16MX cameras, 

Vicon Nexus 2.5) into D-Flow. Data of five flexion/extension cycles (8.3 s) was sampled at 300Hz. Joint angles 

were computed between two adjacent segments and the offset was removed by subtracting the mean LMC 

angle from the Vicon angle [3]. Following principal component analysis of the marker coordinates, a 

backpropagation neural network (Matlab Neural Network Toolbox) was trained with 75% of the decorrelated 

principal scores to estimate the nonlinear function between the Leap Motion and Vicon. The remaining data 

were used to test the function with unseen data. Three 3D models of the finger were created in Visual3D (Leap 

Motion, Neural Net, Vicon). The root mean square errors (RMSE) of joint angles were calculated between the 

Leap Motion and Vicon, and the Neural Net estimation and Vicon. 

Results: The raw differences of the angles between Leap Motion and Vicon ranged from 1.96° to 34.54° 

reducing to an RMSE of 3.44° to 15.43° after offset correction. The RMSE between angles of the Neural Net 

estimation and Vicon were 1.7°, 2.4° and 1.9° in the MCPJ (Figure 1), PIPJ and DIPJ respectively. 

 
Figure 1: Left Index finger MCPJ angles from Leap Motion, with offset correction, Vicon, and Neural Net.  

Discussion and Conclusion: Raw data angles measured by the Leap Motion controller are not sufficiently 

close to a gold standard optoelectronic system, but an offset correction improves this error. A close match 

with a Vicon system was achieved by appropriate pre-processing and function estimation with an artificial 

neural network. The large difference between the Leap Motion and Vicon finger model is due to the Leap 

Motion reconstructing joints from the video image of the palmar surface while the Vicon markers are on the 

dorsal side and that the Leap Motion calculated joint positions based on an algorithm. Future research will 

compare angle profiles from the Leap Motion controller to data acquired using a validated six-degrees-of-

freedom model.  
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1. Weichert F, Bachmann D, Rudak B, Fisseler D. (2013) Analysis of the Accuracy and Robustness of the Leap Motion 

Controller. Sensors. 13:6380-93. 
2. Guna J, Jakus G, Pogacnik M, Tomazic S, Sodnik, J. (2014) An Analysis of the Precision and Reliability of the Leap 

Motion Sensor and Its Suitability for Static and Dynamic Tracking. Sensors. 14:3702-20. 
3. Ferrari A, Cutti AG, Garofalo P, Raggi M, Heijboer M, Capello A, Davalli A. (2010) First in vivo assessment of 

‘Outwalk’: a novel protocol for clinical gait analysis based on inertial and magnetic sensors. Medical and Biological 
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Appendix 8:  

 

Abstract for The British Society of Rheumatology Annual 

Conference 2017 

 

Title: Development of a virtual rehabilitation game for scleroderma: gender 

differences in unimpaired controls  

Author: Elena Eusterwiemann1, Marina Anderson2, Mark Robinson1, Gabor Barton1 

1Research Institute for Sport and Exercise Sciences, Liverpool John Moores 

University, Liverpool, UK 

2Department of Rheumatology, Aintree University Hospitals NHS Foundation Trust, 

Liverpool, UK 

Abstract: 

Objective:  

Hand mobility impairments due to scleroderma have a large impact on activities of daily living 

ultimately leading to reduced quality of life. Restoring hand mobility is crucial to maintain mental and 

physical well-being but adherence to rehabilitation programmes is low. A motivating and interactive 

rehabilitation approach specific to scleroderma is needed. We aimed to 1) develop a smart game for 

improving finger extension and 2) compare finger movements and gaming performance of males and 

females with normal hand function to inform game training of patients with scleroderma. 

Methods:  

We created and tested an interactive, virtual rehabilitation game (FlappyBall) to evaluate finger 

mobility in 24 young healthy adults (12 males: 24.7yrs±2.3 and 12 females: 24.8yrs±2.8). A Vicon 

motion capture system and single marker on a finger nail was used to measure finger extension range 

of motion to drive the game which involved directing a ball through an obstacle course: the ball would 

fall if the finger was within 80% of its range of motion, and rise if the finger was in the final 20% of its 

range of extension. Duration of game play was used as a measure of performance. A complex 3D 

hand model of 28 markers was also used to assess angles and angular velocities in each joint. A 

correlation analysis was performed to determine if gender or kinematic movement characteristics 

relate to game performance, which would impact the intervention duration or design of future 

applications to be used with patients. 

Results: Males performed significantly better at the game than females (P=0.025) in spite of no 

gender differences in the magnitudes of finger angles and angular velocities. The kinematic 

movement profiles of fingers were not related to game performance (all P>0.05) which varied greatly, 

in particular among male participants. Performance initially improved but declined after ten 

consecutive trials for both genders, yet all performance changes were found to be insignificant 

(P>0.05). 

Conclusion: Finger kinematics could not explain the differences in game performance between 

males and females, suggesting differences in motor control. Males have a more effective control of 

voluntary finger extension in response to cognitive stimuli, which might be linked to higher exposure 

levels to video games, or greater degree of hand-eye coordination. Despite the game play being 

perceived as fun and stimulating, the difficulty needs to be matched to individual levels of ability, 

respecting gender differences, to prevent frustration and reduced motivation. Further, the 

performance decline after ten trials suggests that breaks are needed to allow a short mental and 

physical recovery phase to prevent fatigue. We are now aiming to develop a portable biofeedback 

game that specifically targets commonly experienced movement limitations of scleroderma patients, 

determined by a functional three dimensional movement assessment.  



223 
 

Appendix 9: 

 



224 
 

 

 

 

 

 



225 
 

Appendix 10:  3dAHM 2018 Abstract submission 
 

Improved accuracy of markerless finger tracking with the Leap Motion, using an artificial 

neural network 

Elena Eusterwiemann1, Gabor J Barton1, Mark A Robinson1, Marina Anderson2 

1Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. 
2Department of Rheumatology, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK. 

Introduction 

The Leap Motion, a device developed for touchless computer interaction, can reconstruct joint 

centres and a hand skeleton in real-time, and thus offering a solution to markerless hand motion 

capture. Compared to a gold-standard optoelectronic system, the Leap Motion is inaccurate when 

calculating joint angles between two adjacent finger segments [1]. Root mean square error (RMSE) 

for joint flexion/extension angles ranged from 3.44° to 15.45° after offset correction. In motion 

capture, markers are applied to track segments used to calculate joint angles, making accurate 

marker tracking essential to determine angular motion correctly. Artificial neural networks (NN) are 

able to learn multi-dimensional patterns between two data sets, input and target outcome, during a 

training phase [2]. After successful training, an artificial NN is able to predict outcome data based on 

input data presented to it. Neural networks were successfully applied to predict EMG patterns to 

improve the use of EMG-controlled prosthetic arms and hands [3]. The aim of this study was to 

evaluate if an artificial NN can improve the accuracy of the Leap Motion. 

Research Question 

Can the Leap Motion, in association with artificial Neural Networks, be used for accurate markerless 

3D motion capture? 

Methods 

Following institutional ethical approval, nine young, healthy adults were fitted with a retro-reflective 

marker setup (48 markers) arranged in 16 rigid clusters with three markers each. Clusters were 

placed on the dorsum of the hand in the middle of each phalanx, and the palm. Marker coordinates, 

captured with a Vicon system (15 T160 and T10 MX cameras, Vicon Nexus 2.5), were streamed live 

into D-Flow (Version 3.26.0, Motek Forcelink, Amsterdam). The Leap Motion (£50) was placed 

~25cm underneath the hand and captured 3D finger joint (carpometacarpal, metacarpophalangeal, 

proximal interphalangeal, distal interphalangeal) and tip coordinates, relative to the device. Joint 

coordinates were streamed live into D-Flow via its Network module using a custom-made C# 

program. Participants performed 15 cycles (25s per cycle) of self-selected hand movements, which 

were captured simultaneously by the Leap Motion and Vicon in D-Flow at 300 Hz. Principal 

component analysis (PCA) was performed on Vicon markers and Leap Motion joint coordinates. 

The first 20 principle components (explaining 99.97% of data variance) were used to train a 

backpropagation NN (Matlab Neural Network Toolbox) with the Bayesian regularisation algorithm 

using 20 input, 20 hidden and 20 output neurons. The decorrelated principle scores were randomly 

partitioned into training (80%), validation (10%) and test sets (10%). During training, the NN 

gradually developed a non-linear, multivariate function between Leap Motion joint centres and Vicon 

marker coordinates. Training terminated when the NN performance gradient dropped below the 

defined minimum value (1e-7). The NN function was tested with the previously unseen test data set. 

Reverse PCA was performed on the NN output to obtain predicted 3D marker positions. The 

relationship and error between captured Vicon and NN generated marker coordinates was assed 

using linear regression analysis and RMSE.  

Results 

Regression analysis between Vicon measured and NN predicted marker positions gave a 

correlation coefficient (R) of 0.9994 (r2= 0.9988).  The RMSE between marker coordinates from 

Vicon and the NN prediction was calculated in 2 steps: First the RMSE for each marker and 
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dimension was calculated separately. Secondly, the mean RMSE_XYZ of one marker was 

calculated, providing a single RMSE value for each marker reflecting three dimensions. The RMSE 

values ranged from 0.182mm to 0.43mm, and an average RMSE for all 48 markers of 0.278mm.  

  

Discussion 

A large agreement between measured Vicon and NN predicted marker positions was identified. 

With sufficient training the NN is able to predict marker coordinates from Leap Motion data with high 

accuracy, thus the Leap Motion can potentially be used as a device for markerless 3D motion 

tracking. These results cannot be directly compared to angles measured in degrees [1]. However, 

the NN improves the accuracy of the Leap Motion as angular calculation with precisely 

reconstructed markers reconstructed will be close to Vicon angles. In future we will test this principle 

to predict joint centres and movement patterns from Leap Motion data in a cohort of healthy controls 

and patients with hand movement impairments.  
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QUANTIFYING HAND MOVEMENT LIMITATIONS IN SCLERODERMA DURING FUNCTIONAL TASKS USING 

THE MOVEMENT DEVIATION PROFILE  

 

E. Eusterwiemann1, M. A. Robinson1, M. Anderson2, G. J. Barton1 
1Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom 

2Department of Rheumatology, Aintree University Hospital, Liverpool, United Kingdom 

Email: k.e.eusterwiemann@2015.ljmu.ac.uk  
 

Summary 

Disease-induced impaired hand function relates to reduced 

quality of life, and is frequently assessed by physicians in 

routine care of scleroderma patients. Hand movements are 

complex and current clinical assessment are objective or 

inaccurate. A mixed cohort of scleroderma patients and healthy 

controls performed two functional tasks and the finger-to-palm 

index. Joint angles of the frontal and sagittal plane were 

calculated and analysed using the movement deviation profile 

(MDP). Results showed significant deviations from normality 

in scleroderma patients during functional tasks. While some 

significant correlations between movement deviation and 

clinical measures were identified, no clinical measure 

correlated to deviation of both functional tasks, suggesting that 

one clinical measure is insufficient to assess hand impairments 

in scleroderma patients.  

Introduction 

Scleroderma, a rare rheumatic autoimmune disease, increases 

the stiffness and thickness of connective tissues, leading to 

flexion contractures at the hands. Impaired hand function is 

associated with a decline in quality of life and mental health [1], 

and therefore needs to be frequently assessed in clinical 

practice. Current clinical assessments subjectively rank patient 

perception of difficulty to perform activities of daily living or 

inaccurately quantify finger flexion range. The movement 

deviation profile (MDP) is a single curve describing the 

distance between abnormal patient movement and typical 

healthy movement [2]. This study aimed to quantify hand 

movement deviations from normality of scleroderma patients 

during functional tasks and to compare MDP results to simple 

clinical measures.  

Methods 

Five patients (62.4 ± 15.1, all right-handed females) and eleven 

healthy controls (55.9 ±14.7yrs, 9 females, 2 males, all right-

handed) performed two functional tasks: opening a 1) large lid 

and 2) zipper from a standardised seated position. The Finger-

to-Palm Index (FTP) [2] was taken for all participants prior to 

placing 48 markers on the dorsum of the hand. Movements were 

captured in Vicon Nexus 2.5 using 15 Vicon MX cameras 

(Vicon Inc., Oxford). Joint angles were calculated in Visual3D 

(C-Motion) for the sagittal and frontal plane. Movement 

deviation from normality of each patient was determined using 

the MDP. Age, years since diagnosis, movement duration (from 

onset of movement to grasp completion) and maximum 

extension angles were correlated to the mean MDP. Pearson’s 

correlation coefficient (r) was tested for significance and the 

coefficient of determination (r2) was calculated. An 

independent sample t-test was performed between healthy 

control and patient data for 1) movement duration and 2) 

maximum extension angle.  

Results and Discussion 

All patients showed variable, but statistically significant 

deviations from normality during both functional tasks. 

Almost all patients required significantly more time 

(p<0.05) to perform both functional tasks. Mean movement 

deviation correlated to clinical and movement parameters 

revealed two significant correlations:  1) Movement 

deviation when opening a zip significantly correlates to FTP 

(p = 0.043) and 2) Movement deviation when opening a lid 

correlated to movement duration (p = 0.0021) (Table 1). 

Strength of correlation (R2) is however only weak to moderate.  

Conclusions 

Movement deviations only correlated to the FTP only for the 

zip task, but not when opening a lid. The FTP measures finger 

flexion ability, which is essential for grasping small objects, 

such as zips. When opening a large lid, the movement requires 

a larger extension range, and less flexion, which could explain 

the lack of correlation for the lid task. The data indicates a trend 

of correlation between MDP and maximum extension angle for 

the lid task. Therefore, a maximum extension test chould be 

included routine in clinical assessment. No tested parameter 

correlated to the MDP for both functional tasks, suggesting that 

movement deviation from normality is task-specific and cannot 

be addressed with one single measure.  

References 

[1] Sandqvist G et al. (2004). Scand J Rheumatol, 33:102-107. 

[2] Barton GJ et al. (2012) Hum Mov Sci, 31:284-294. 

[3] Torok KS et al. (2010). Clin Exp Rheumatol, 28: 28-36. 
 

Table 1: Movement Deviation Profile (MDP) correlations with 1) Finger to Palm Index (FTP), 2) Years since diagnosis (Disease duration), 3) 

Mean Maximum extension angle (mean of all maximum extension angles) and 4) Time to perform the functional task (Movement time) 

  

  

MDP to FTP MDP to Disease duration MDP to max. extension angle MDP to Movement time 

Pearson r p-value R2 Pearson r p-value R2 Pearson r p-value R2 Pearson r p-value R2 

Lid 0.3112 0.2788 0.0968 -0.0819 0.7807 0.0067 0.4316 0.1234 0.1862 0.7478 0.0021 0.5592 

Zip 0.5837 0.0463 0.3407 0.3808 0.2219 0.145 -0.0975 0.763 0.0095 0.0328 0.9195 0.0011 
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Comparing the effectiveness of virtual rehabilitation and physiotherapy on finger mobility and 

ability to perform ADL in scleroderma patients 

Elena Eusterwiemann1, Mark A Robinson1, Marina Anderson2, Gabor J Barton1 

1Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. 
2Department of Rheumatology, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK. 

Introduction 

Scleroderma triggers an autoimmune response, leading to increased fibrosis and collagen 

production, often resulting in reduced mobility of the wrist and fingers. Patients with scleroderma 

commonly struggle to perform activities of daily living (ADL) and rely on help from others or specially 

adapted utensils1,2. Hand exercises, based on passive stretches, which are thought to be beneficial 

for tense tissues, are recommended. Adherence to such physiotherapy is low and mixed results are 

reported regarding the effectiveness2. Virtual rehabilitation has the potential to increase motivation 

and adherence to exercise using an active range of hand and finger motion combined with a high 

number of repetitions. The aim of this study was to compare the effects of virtual rehabilitation and 

physiotherapy on finger mobility and ability to perform ADL.  

Research Question 

Can virtual rehabilitation and physiotherapy improve finger joint range of motion and ability to 

perform ADL in scleroderma patients over four weeks?  

Methods 

Six patients (all female, white British, 53.1±10.6 years) were recruited from a local hospital and split 

into two equal groups. One group followed a non-supervised physiotherapy programme based on 

hand stretches and squeezing tasks. The virtual rehabilitation group played a custom-made 

computer game aiming to improve range and agility of flexion-extension movements as well as 

abduction-adduction movements at the metacarpo-phalangeal joints.  A 3D motion analysis using 

the LeapMotion controller (LeapMotion Inc.) to calculate range of motion at each joint, and 

validated questionnaires (Cochin Hand Function Scale (CHFS) and Michigan Hand Outcomes 

Questionnaire MHOQ_ADL)) were conducted before and after completion of the training 

programme. The change in range of motion (ΔROM) of the dominant and non-dominant hand, CHFS 

(ΔCHFS) and MHOQ_ADL (ΔMHOQ_ADL) were tested for significance using a one-way mixed ANOVA 

(Matlab, Mathworks).  

Results 

Mean ΔROM varied among the participants and individual joints. Both groups showed improvements 

on all parameters before and after the training (Figure 1a). The ANOVA analysis showed a significant 

effect of the group for ΔCHFS (p=0.04) and dominant hand ΔROM (p=0.01) (Figure 1b), but not for 

the non-dominant hand ΔROM (0.79) or the ΔMHQ_ADL outcome (dominant hand: p=0.25, non-

dominant hand: 0.45).  

Discussion 

Questionnaires revealed significant improvements in functionality for the virtual rehabilitation 

group, but not the physiotherapy group. However, the mean change in range of motion was found 

non-significant, suggesting that factors other than range of motion are contributing to the reduced 

ability to perform tasks of daily living in scleroderma patients. The virtual rehabilitation group 

showed greater increases in range of motion, suggesting a more beneficial effect compared to 
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physiotherapy. The exercises were only continued for four weeks, limiting the ability to draw 

conclusions regarding long-term effects and adherence. Future research should examine the long-

term effects of virtual rehabilitation in scleroderma. 
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